WorldWideScience

Sample records for characterizing fractured rock

  1. Analog site for fractured rock characterization. Annual report FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    Long, J.C.S.; Loughty, C.; Faybishenko, B. [and others

    1995-10-01

    This report describes the accomplishments of the Analog Site for Fracture Rock Characterization Project during fiscal year 1995. This project is designed to address the problem of characterizing contaminated fractured rock. In order to locate contaminant plumes, develop monitoring schemes, and predict future fate and transport, the project will address the following questions: What parts of the system control flow-geometry of a fracture network? What physical processes control flow and transport? What are the limits on measurements to determine the above? What instrumentation should be used? How should it be designed and implemented? How can field tests be designed to provide information for predicting behavior? What numerical models are good predictors of the behavior of the system? The answers to these question can be used to help plan drilling programs that are likely to intersect plumes and provide effective monitoring of plume movement. The work is done at an {open_quotes}analogue{close_quotes} site, i.e., a site that is not contaminated, but has similar geology to sites that are contaminated, in order to develop tools and techniques without the financial, time and legal burdens of a contaminated site. The idea is to develop conceptual models and investigations tools and methodology that will apply to the contaminated sites in the same geologic regimes. The Box Canyon site, chosen for most of this work represents a unique opportunity because the Canyon walls allow us to see a vertical plane through the rock. The work represents a collaboration between the Lawrence Berkeley National Laboratory (LBL), Stanford University (Stanford), Idaho National Engineering Laboratory (INEL) and Parsons Environmental Engineering (Parsons). LBL and Stanford bring extensive experience in research in fractured rock systems. INEL and Parsons bring significant experience with the contamination problem at INEL.

  2. Characterizing and Modelling Preferential Flow Path in Fractured Rock Aquifer: A Case Study at Shuangliou Fractured Rock Hydrogeology Research Site

    Science.gov (United States)

    Hsu, Shih-Meng; Ke, Chien-Chung; Lo, Hung-Chieh; Lin, Yen-Tsu; Huang, Chi-Chao

    2016-04-01

    On the basis of a relatively sparse data set, fractured aquifers are difficult to be characterized and modelled. The three-dimensional configuration of transmissive fractures and fracture zones is needed to be understood flow heterogeneity in the aquifer. Innovative technologies for the improved interpretation are necessary to facilitate the development of accurate predictive models of ground-water flow and solute transport or to precisely estimate groundwater potential. To this end, this paper presents a procedure for characterizing and modelling preferential flow path in the fractured rock aquifer carried out at Fractured Rock Hydrogeology Research Site in Shuangliou Forest Recreation Area, Pingtung County, Southern Taiwan. The Shuangliou well field is a 40 by 30-meter area consisting of 6 wells (one geological well, one pumping well and four hydrogeological testing wells). The bedrock at the site is mainly composed of slate and intercalated by meta-sandstone. The overburden consists of about 5.6 m of gravel deposits. Based on results of 100 m geological borehole with borehole televiewer logging, vertical flow logging and full-wave sonic logging, high transmissivity zones in the bedrock underlying the well field were identified. One of transmissivity zone (at the depths of 30~32 m) and its fracture orientation(N56/54) selected for devising a multiple well system with 4 boreholes (borehole depths :45m, 35m, 35m and 25m, respectively), which were utilized to perform cross-borehole flow velocity data under the ambient flow and pumped flow conditions to identify preferential flow paths. Results from the cross-borehole test show the preferential flow pathways are corresponding to the predicted ones. Subsequently, a 3-D discrete fracture network model based on outcrop data was generated by the FracMan code. A validation between observed and simulated data has proved that the present model can accurately predict the hydrogeological properties (e.g., number of fractures

  3. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Gary Mavko

    2000-10-01

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  4. A new device for characterizing fracture networks and measuring groundwater and contaminant fluxes in fractured rock aquifers

    Science.gov (United States)

    Klammler, Harald; Hatfield, Kirk; Newman, Mark A.; Cho, Jaehyun; Annable, Michael D.; Parker, Beth L.; Cherry, John A.; Perminova, Irina

    2016-07-01

    This paper presents the fundamental theory and laboratory test results on a new device that is deployed in boreholes in fractured rock aquifers to characterize vertical distributions of water and contaminant fluxes, aquifer hydraulic properties, and fracture network properties (e.g., active fracture density and orientation). The device, a fractured rock passive flux meter (FRPFM), consists of an inflatable core assembled with upper and lower packers that isolate the zone of interest from vertical gradients within the borehole. The outer layer of the core consists of an elastic fabric mesh equilibrated with a visible dye which is used to provide visual indications of active fractures and measures of fracture location, orientation, groundwater flux, and the direction of that flux. Beneath the outer layer is a permeable sorbent that is preloaded with known amounts of water soluble tracers which are eluted at rates proportional to groundwater flow. This sorbent also captures target contaminants present in intercepted groundwater. The mass of contaminant sorbed is used to quantify cumulative contaminant flux; whereas, the mass fractions of resident tracers lost are used to provide measures of water flux. In this paper, the FRPFM is bench tested over a range of fracture velocities (2-20 m/day) using a single fracture flow apparatus (fracture aperture = 0.5 mm). Test results show a discoloration in visible dye corresponding to the location of the active fracture. The geometry of the discoloration can be used to discern fracture orientation as well as direction and magnitude of flow in the fracture. Average contaminant fluxes were measured within 16% and water fluxes within 25% of known imposed fluxes.

  5. Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Gary Mavko

    2004-11-30

    Most current seismic methods to seismically characterize fractures in tight reservoirs depend on a few anisotropic wave propagation signatures that can arise from aligned fractures. While seismic anisotropy can be a powerful fracture diagnostic, a number of situations can lessen its usefulness or introduce interpretation ambiguities. Fortunately, laboratory and theoretical work in rock physics indicates that a much broader spectrum of fracture seismic signatures can occur, including a decrease in P- and S-wave velocities, a change in Poisson's ratio, an increase in velocity dispersion and wave attenuation, as well as well as indirect images of structural features that can control fracture occurrence. The goal of this project was to demonstrate a practical interpretation and integration strategy for detecting and characterizing natural fractures in rocks. The approach was to exploit as many sources of information as possible, and to use the principles of rock physics as the link among seismic, geologic, and log data. Since no single seismic attribute is a reliable fracture indicator in all situations, the focus was to develop a quantitative scheme for integrating the diverse sources of information. The integrated study incorporated three key elements: The first element was establishing prior constraints on fracture occurrence, based on laboratory data, previous field observations, and geologic patterns of fracturing. The geologic aspects include analysis of the stratigraphic, structural, and tectonic environments of the field sites. Field observations and geomechanical analysis indicates that fractures tend to occur in the more brittle facies, for example, in tight sands and carbonates. In contrast, strain in shale is more likely to be accommodated by ductile flow. Hence, prior knowledge of bed thickness and facies architecture, calibrated to outcrops, are powerful constraints on the interpreted fracture distribution. Another important constraint is that

  6. Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Gary Mavko

    2004-11-30

    Most current seismic methods to seismically characterize fractures in tight reservoirs depend on a few anisotropic wave propagation signatures that can arise from aligned fractures. While seismic anisotropy can be a powerful fracture diagnostic, a number of situations can lessen its usefulness or introduce interpretation ambiguities. Fortunately, laboratory and theoretical work in rock physics indicates that a much broader spectrum of fracture seismic signatures can occur, including a decrease in P- and S-wave velocities, a change in Poisson's ratio, an increase in velocity dispersion and wave attenuation, as well as well as indirect images of structural features that can control fracture occurrence. The goal of this project was to demonstrate a practical interpretation and integration strategy for detecting and characterizing natural fractures in rocks. The approach was to exploit as many sources of information as possible, and to use the principles of rock physics as the link among seismic, geologic, and log data. Since no single seismic attribute is a reliable fracture indicator in all situations, the focus was to develop a quantitative scheme for integrating the diverse sources of information. The integrated study incorporated three key elements: The first element was establishing prior constraints on fracture occurrence, based on laboratory data, previous field observations, and geologic patterns of fracturing. The geologic aspects include analysis of the stratigraphic, structural, and tectonic environments of the field sites. Field observations and geomechanical analysis indicates that fractures tend to occur in the more brittle facies, for example, in tight sands and carbonates. In contrast, strain in shale is more likely to be accommodated by ductile flow. Hence, prior knowledge of bed thickness and facies architecture, calibrated to outcrops, are powerful constraints on the interpreted fracture distribution. Another important constraint is that

  7. Hydrogeloogic characterization of fractured rock formations: A guide for groundwater remediators

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A.J.B.

    1995-10-01

    A field site was developed in the foothills of the Sierra Nevada, California to develop and test a multi-disciplinary approach to the characterization of ground water flow and transport in fractured rocks. Nine boreholes were drilled into the granitic bedrock, and a wide variety of new and traditional subsurface characterization tools were implemented. The hydrogeologic structure and properties of the field site were deduced by integrating results from the various geologic, geophysical, hydrologic, and other investigative methods. The findings of this work are synthesized into this report, which is structured in a guidebook format. The applications of the new and traditional technologies, suggestions on how best to use, integrate, and analyze field data, and comparisons of the shortcoming and benefits of the different methods are presented.

  8. Ssismic Methodologies Applied To The Characterization Of Fractured Rock Massifs: Case Studies

    Science.gov (United States)

    Marti, D.; Carbonell, R.; Flecha, I.; Palomeras, I.; Font-Capo, J.; Vazquez-Sune, E.; Perez-Estaun, A.

    2007-05-01

    The detailed characterization of fractured media in the shallow subsurface is becoming important. The detailed knowledge of the fracture network is mandatory in any hydrogeological model to constrain the potential pathways for water circulation. The geophysical methodolgies can provide a detailed image of the fractured rock and also the 3D distribution of physical properties. Two case studies are discussed in this work. The characterization of fractures in a waste disposal site and, the design and construction of a subway tunnel. In the first case, a multiseismic experiment was carried out in an old abandoned uranium mine. 2D and 3D seismic experiments including VSP, surface seismic reflection and travel time seismic tomography provided a 3D image of the internal structure of a granitic massif for hydrogeological studies of the preferred paths for the migration of contaminants. The tectonic stability of the site was also addressed by means of seismic measurements. The joint interpretation of all the available data enabled the interpretation of the low velocity anomalies in the 3D seismic tomography image as the fragile fractures and the alteration associated to them. A 3D image of the geometry of the heterogeneous weathered surface layer was also obtained. This surface is controlled by the complex network of faults and dykes observed in the area. The second case study involves 2D and 3D seismic experiments to aid the horizontal drilling of tunnels for a new subway line in Barcelona (Spain). Seismic data acquisition in a densely populated city is very difficult. The street layout determines the geometry of the acquisition experiments. The instrumentation can not always be located on the surface projection of the tunnel trace, therefore, pseudo 3D acquisition is required, deploying the instrumentation were it is possible. Furthermore, the shallow subsurface features extremely heterogeneous "weathered" layer of variable thickness (building fundations, sewage system

  9. Characterization of preferential flow paths between boreholes in fractured rock using a nanoscale zero-valent iron tracer test

    Science.gov (United States)

    Chuang, Po-Yu; Chia, Yeeping; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-11-01

    Recent advances in borehole geophysical techniques have improved characterization of cross-hole fracture flow. The direct detection of preferential flow paths in fractured rock, however, remains to be resolved. In this study, a novel approach using nanoscale zero-valent iron (nZVI or `nano-iron') as a tracer was developed for detecting fracture flow paths directly. Generally, only a few rock fractures are permeable while most are much less permeable. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. When nano-iron particles are released in an injection well, they can migrate through the connecting permeable fracture and be attracted to a magnet array when arriving in an observation well. Such an attraction of incoming iron nanoparticles by the magnet can provide quantitative information for locating the position of the tracer inlet. A series of field experiments were conducted in two wells in fractured rock at a hydrogeological research station in Taiwan, to test the cross-hole migration of the nano-iron tracer through permeable connected fractures. The fluid conductivity recorded in the observation well confirmed the arrival of the injected nano-iron slurry. All of the iron nanoparticles attracted to the magnet array in the observation well were found at the depth of a permeable fracture zone delineated by the flowmeter. This study has demonstrated that integrating the nano-iron tracer test with flowmeter measurement has the potential to characterize preferential flow paths in fractured rock.

  10. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada`s radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lodha, G.S.; Davison, C.C.; Gascoyne, M. [Atomic Energy of Canada Ltd. , Pinawa, MB (Canada). Whiteshell Labs.

    1998-09-01

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada`s nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro`s used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  11. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; William B. Harrison

    2002-12-01

    Michigan Basin, and it is crucial in developing reservoir quality rocks in some fields. Data on the occurrence of dolomite was extracted from driller's reports for all reported occurrences in Michigan, nearly 50 fields and over 500 wells. A digital database was developed containing the geographic location of all these wells (latitude-longitude) as well as the elevation of the first encounter of dolomite in the field/reservoir. Analysis shows that these dolomite occurrences are largely confined to the center of the basin, but with some exceptions, such as N. Adams Field. Further, some of the dolomite occurrences show a definite relationship to the fracture pattern described above, suggesting a genetic relationship that needs further work. Other accomplishments of this past reporting period include obtaining a complete land grid for the State of Michigan and further processing of the high and medium resolution DEM files. We also have measured new fluid inclusion data on dolomites from several fields that suggest that the dolomitization occurred at temperatures between 100 and 150 C. Finally, we have extracted the lithologic data for about 5000 wells and are in the process of integrating this data into the overall model for the Michigan Basin.

  12. Characterization and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The third Aespoe International Seminar was organised by SKB to assess the state of the art in characterisation and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Site characterisation and evaluation are important elements for determining the site suitability and long-term safety of a geological repository for radioactive waste disposal. Characterisation work also provides vital information for the design of the underground facility and the engineered barrier system that will contain the waste. The aim of the seminar was to provide a comprehensive assessment of the current know-how on this topic based on world-wide experience from more than 20 years of characterisation and evaluation work. The seminar, which was held at the Aespoe Hard Rock Laboratory was attended by 72 scientists from 10 different countries. The program was divided into four sessions of which two were run in parallel. A total of 38 oral and 5 poster presentations were given at the seminar. The presentations gave a comprehensive summary of recently completed and current work on site characterisation, modelling and application in performance assessments. The results presented at the seminar generally show that significant progress has been made in this field during the last decade. New characterisation techniques have become available, strategies for site investigations have developed further, and model concepts and codes have reached new levels of refinement. Data obtained from site characterisation have also successfully been applied in several site specific performance assessments. The seminar clearly showed that there is a solid scientific basis for assessing the suitability of sites for actual repositories based on currently available site characterisation technology and modelling capabilities. Separate abstracts have been prepared for 38 of the presentations

  13. Characterization of fractures and flow zones in a contaminated crystalline-rock aquifer in the Tylerville section of Haddam, Connecticut

    Science.gov (United States)

    Johnson, Carole D.; Kiel, Kristal F.; Joesten, Peter K.; Pappas, Katherine L.

    2016-10-04

    The U.S. Geological Survey, in cooperation with the Connecticut Department of Energy and Environmental Protection, investigated the characteristics of the bedrock aquifer in the Tylerville section of Haddam, Connecticut, from June to August 2014. As part of this investigation, geophysical logs were collected from six water-supply wells and were analyzed to (1) identify well construction, (2) determine the rock type and orientation of the foliation and layering of the rock, (3) characterize the depth and orientation of fractures, (4) evaluate fluid properties of the water in the well, and (5) determine the relative transmissivity and head of discrete fractures or fracture zones. The logs included the following: caliper, electromagnetic induction, gamma, acoustic and (or) optical televiewer, heat-pulse flowmeter under ambient and pumped conditions, hydraulic head data, fluid electrical conductivity and temperature under postpumping conditions, and borehole-radar reflection collected in single-hole mode. In a seventh borehole, a former water-supply well, only caliper, fluid electrical conductivty, and temperature logs were collected, because of a constriction in the borehole.This report includes a description of the methods used to collect and process the borehole geophysical data, the description of the data collected in each of the wells, and a comparison of the results collected in all of the wells. The data are presented in plots of the borehole geophysical logs, tables, and figures. Collectively these data provide valuable characterizations that can be used to improve or inform site conceptual models of groundwater flow in the study area.

  14. FRACTAL PROPERTIES OF ROCK FRACTURE SURFACES

    Institute of Scientific and Technical Information of China (English)

    王金安; 谢和平; MarekA.KWASNIEWSKI

    1996-01-01

    To give a better understanding of the morphological features of rock fracture surfaces within the framework of fractal geometry, the fractal characters of the rough surfaces in" rock are analyzed according to the variogram method. The study elaborates the significance of the geometric parameters-fractal dimension D and the intercept A on a log-log plot to the surface structure. Investigation extends to the anisotropy and heterogeneity of rock fracture surfaces, and the scale effect on the fractal estimation. The present study indicates that fractal dimension alone may not be sufficient to characterize the surface roughness of rock joints. A reliable estimation should take into account the combination of D and A.

  15. Electromagnetic characterization of fractured rock for geological disposal studies of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Eloranta, E. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Ermutlu, M. [Nokia Research Center, Helsinki (Finland); Flykt, M.; Lindell, I.; Nikoskinen, K.; Sihvola, A. [Helsinki Univ. of Technology, Espoo (Finland). Electromagnetics Lab.

    1998-04-01

    In the report, the results of a joint research project carried out in 1991-1997 by the Finnish Radiation and Nuclear Safety Authority (STUK) and the Electromagnetics Laboratory of the Helsinki University of Technology are presented. The main purpose was to create computational models for electric potential responses when the medium is anisotropic and is bounded by a perfect magnetic conductor, a perfect electric conductor, and an anisotropic impedance surface. Furthermore, the geometry of two anisotropic half spaces and a layered medium were considered. The solutions of the problems were made using image theory. For modeling the electric potential in anisotropic medium with inhomogeneities, an integral equation was formulated. Also a wedge structure was treated as an extension to the traditional two parallel plate model of fracture geometry. The equivalentization of fracturing with anisotropy is a research area that still continues that still continues 46 refs. The publication contains also fourteen previous publications by authors

  16. ADVANCED CHARACTERIZATION OF FRACTURED RESERVOIRS IN CARBONATE ROCKS: THE MICHIGAN BASIN

    Energy Technology Data Exchange (ETDEWEB)

    James R. Wood; William B. Harrison

    2000-04-01

    Progress in year 2 of this project is highlighted by the completing of the writing and testing of the project database, ''Atlas'', and populating it with all the project data gathered to date. This includes digitization of 17,000+ original Scout Tickets for the Michigan Basin. Work continues on the Driller's Reports, where they have scanned about 50,000 pages out of an estimated 300,000 pages. All of the scanned images have been attached to ''Atlas'', the visual database viewer developed for this project. A complete set of the 1/24,000 USGS DEM (Digital Elevation Models) for the State of Michigan has been downloaded from the USGS Web sites, decompressed and converted to ArcView Grid files. A large-scale map (48 inches x 84 inches) has been constructed by mosaicking of the high-resolution files. This map shows excellent ground surface detail and has drawn much comment and requests for copies at the venues where it has been displayed. Although it was generated for mapping of surface lineations the map has other uses, particularly analysis of the glacial drift in Michigan. It presents unusual problems due to its size and they are working with vendors on compression and display algorithms (e.g. MrSID{copyright}) in an attempt to make it available over the Internet, both for viewing and download. A set of aeromagnetic data for the Michigan Basin has been acquired and is being incorporated into the study. As reported previously, the general fracture picture in the Michigan Basin is a dominant NW-SE trend with a conjugate NE-SW trend. Subsurface, DEM and gravity data support the interpretation of a graben-type deep basement structural trend coincident with the Michigan Basin Gravity High. They plan to incorporate the aeromagnetic data into this interpretation as well.

  17. The Behaviour of Fracture Growth in Sedimentary Rocks: A Numerical Study Based on Hydraulic Fracturing Processes

    Directory of Open Access Journals (Sweden)

    Lianchong Li

    2016-03-01

    Full Text Available To capture the hydraulic fractures in heterogeneous and layered rocks, a numerical code that can consider the coupled effects of fluid flow, damage, and stress field in rocks is presented. Based on the characteristics of a typical thin and inter-bedded sedimentary reservoir, China, a series of simulations on the hydraulic fracturing are performed. In the simulations, three points, i.e., (1 confining stresses, representing the effect of in situ stresses, (2 strength of the interfaces, and (3 material properties of the layers on either side of the interface, are crucial in fracturing across interfaces between two adjacent rock layers. Numerical results show that the hydrofracture propagation within a layered sequence of sedimentary rocks is controlled by changing in situ stresses, interface properties, and lithologies. The path of the hydraulic fracture is characterized by numerous deflections, branchings, and terminations. Four types of potential interaction, i.e., penetration, arrest, T-shaped branching, and offset, between a hydrofracture and an interface within the layered rocks are formed. Discontinuous composite fracture segments resulting from out-of-plane growth of fractures provide a less permeable path for fluids, gas, and oil than a continuous planar composite fracture, which are one of the sources of the high treating pressures and reduced fracture volume.

  18. Application of geophysical methods for fracture characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H.; Majer, E.L. [Lawrence Berkeley Lab., CA (USA); McEvilly, T.V. [Lawrence Berkeley Lab., CA (USA)]|[California Univ., Berkeley, CA (USA). Dept. of Geology and Geophysics; Morrison, H.F. [Lawrence Berkeley Lab., CA (USA)]|[California Univ., Berkeley, CA (USA). Dept. of Materials Science and Mineral Engineering

    1990-01-01

    One of the most crucial needs in the design and implementation of an underground waste isolation facility is a reliable method for the detection and characterization of fractures in zones away from boreholes or subsurface workings. Geophysical methods may represent a solution to this problem. If fractures represent anomalies in the elastic properties or conductive properties of the rocks, then the seismic and electrical techniques may be useful in detecting and characterizing fracture properties. 7 refs., 3 figs.

  19. Fractures and Rock Mechanics, Phase 1

    DEFF Research Database (Denmark)

    Havmøller, Ole; Krogsbøll, Anette

    1997-01-01

    The main objectives of the project are to combine geological description of fractures, chalk types and rock mechanical properties, and to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. Five chalk types, representing two outcrop localities: Stevns and Hillers......The main objectives of the project are to combine geological description of fractures, chalk types and rock mechanical properties, and to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. Five chalk types, representing two outcrop localities: Stevns...

  20. Acoustic Resonance Characteristics of Rock and Concrete Containing Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Seiji [Univ. of California, Berkeley, CA (United States)

    1998-08-01

    In recent years, acoustic resonance has drawn great attention as a quantitative tool for characterizing properties of materials and detecting defects in both engineering and geological materials. In quasi-brittle materials such as rock and concrete, inherent fractures have a significant influence on their mechanical and hydraulic properties. Most of these fractures are partially open, providing internal boundaries that are visible to propagating seismic waves. Acoustic resonance occurs as a result of constructive and destructive interferences of propagating waves. Therefore the geometrical and mechanical properties of the fracture are also interrogated by the acoustic resonance characteristics of materials. The objective of this dissertation is to understand the acoustic resonance characteristics of fractured rock and concrete.

  1. Fractures and rock mechanics, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Knowledge of fracture occurrence and orientation in chalk is important for optimum field development planning and evaluation of well-bore stability. The combined geological and geotechnical studies carried out under the EFP-96 and EFP-98 programmes have investigated the influence of fractures on rock mechanics properties for chalk. Data for quantifying the effect of natural fractures in chalk have been supplied by triaxial testing in normal scale and large scale on samples from three chalk types, namely from Valhall Tor and Tyra Maastrichtian and an outcrop locality at Hillerslev. >From the latter locality special big cylindrical specimens were sampled for the large scale triaxial testing (500x500 mm) in order to get at true representation of the natural fracturing in the Hillerslev chalk. By comparing test results from normal scale to large scale on fractured and non fractured specimens it was found that the stiffness of the chalk is dependent on scale while the shear strength generally seems to depend on fractures and not on scale. Furthermore the studies revealed, that fractures have a significant reducing effect on the shear strength, that characterisation by the Geological Strength Index, GSI, on fractured test specimens igve a very good prediction of shear, that shear failure and yield surface characteristics for fractued and intact chalk can be provided using GSI, that up-scaling influence the elastic deformation properties in the low stress regime and that fractures influence the compressibility in the elastic stress regime, but not in the plastic stress regime. Finally, the practical application of some of the results on reservoir chalk has been addressed, especially the up-scaling of strength and deformation properties from normal scale tests to reservoir conditions. The up-scaling laws are relevant for borehole stability problems but not for compaction. Generally, the observations in the study are relevant for quantifying the effect of fracturing and

  2. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by g

  3. Mechanic behavior of unloading fractured rock mass

    Institute of Scientific and Technical Information of China (English)

    YIN Ke; ZHANG Yongxing; WU Hanhui

    2003-01-01

    Under tension and shear conditions related to unloading of rock mass, a jointed rock mass model of linear elastic fracture mechanics is established. According to the model, the equations of stresses, strains and displacements of the region influenced by the crack but relatively faraway the crack (the distance between the research point and the center of the crack is longer than the length of crack) are derived. They are important for evaluating the deformation of cracked rock. It is demonstrated by the comparison between computational results of these theoretical equations and the observed data from unloading test that they are applicable for actual engineering.

  4. Fractures and Rock Mechanics, Phase 1

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Jakobsen, Finn; Madsen, Lena

    1997-01-01

    The main objective of the project is to combine geological descriptions of fractures, chalk types and rock mechanical properties in order to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. This report deals with 1) geological descriptions of outcrop locality...

  5. Flow dynamics and solute transport in unsaturated rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Su, Grace Woan-chee [Univ. of California, Berkeley, CA (United States)

    1999-10-01

    Rock fractures play an important role in flow and contaminant transport in fractured aquifers, production of oil from petroleum reservoirs, and steam generation from geothermal reservoirs. In this dissertation, phenomenological aspects of flow in unsaturated fractures were studied in visualization experiments conducted on a transparent replica of a natural, rough-walled rock fracture for inlet conditions of constant pressure and flow rate over a range of angles of inclination. The experiments demonstrated that infiltrating liquid proceeds through unsaturated rock fractures along non-uniform, localized preferential flow paths. Even in the presence of constant boundary conditions, intermittent flow was a persistent flow feature observed, where portions of the flow channel underwent cycles of snapping and reforming. Two modes of intermittent flow were observed, the pulsating blob mode and the rivulet snapping mode. A conceptual model for the rivulet snapping mode was proposed and examined using idealized, variable-aperture fractures. The frequency of intermittent flow events was measured in several experiments and related to the capillary and Bond numbers to characterize this flow behavior.

  6. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Glass, R.J.; Tidwell, V.C.

    1991-09-01

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction.

  7. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Ha [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. such properties of fractures stimulate a synthetic study on (1) analyses of fracture systems, and (2) characterization of groundwater flow and sorption processes in fractured rocks to establish a preliminary model for assessing suitable sites for industrial facilities. The analyses of fracture systems cover (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach is performed to determine various potential hazards which may result from the Quaternary or the Holocene tectonic movements. In addition, stepwise and careful integration of various data obtained from field works and laboratory experiments are carried out to analyze groundwater flow in fractures rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of conductive fractures using electrical conductivity, temperature, and flow logs, (4) identification of hydraulic connections between fractures using televiewer logs with tracer tests within specific zones. The results obtained from these processes allow a qualitative interpretation of groundwater flow patterns

  8. A fractured rock geophysical toolbox method selection tool

    Science.gov (United States)

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  9. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  10. Use of fracture filling mineral assemblages for characterizing water-rock interactions during exhumation of an accretionary complex: An example from the Shimanto Belt, southern Kyushu Japan

    Science.gov (United States)

    Ono, Takuya; Yoshida, Hidekazu; Metcalfe, Richard

    2016-06-01

    Various fracture filling minerals and secondary minerals in fracture walls were formed by fluid-rock interaction during the exhumation of the Palaeogene Shimanto Belt of Kyushu, Japan, which is located in an accretionary complex. Each mineral formed under favourable geological conditions and can be used to estimate the conditions of accretion and formation of the related rock sequences. Petrographic observations, mineralogical and geochemical analyses were made on fracture filling minerals and secondary minerals from boreholes of ca. 140 m depth, drilled in the Shimanto Belt. Results reveal that the secondary minerals were formed in three major stages distinguished by the sequential textural relationships of the minerals and the interpreted environment of mineral formation. Filling mineral assemblages show that the studied rock formation has been subducted to a depth of several km and the temperature reached was ca. 200-300 °C. After the subduction, the rock formation was uplifted and surface acidic water penetrated up to 80 m beneath the present ground surface. The acid water dissolved calcite fracture filling minerals to form the present groundwater flow-paths, which allowed recent wall rock alteration to occur. The results shown here imply that filling mineral assemblages can be an effective tool to evaluate the environmental changes during exhumation of an accretionary complex.

  11. Study on mechanical parameters of fractured rock masses

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The equivalent strength parameters of fractured rock masses are prerequisite for stability analysis of geotechnical engineering projects constructed in fractured rock masses which are encountered frequently in western china.Based on generated mesh of fractured rock masses,combined with statistic damage constitutive model of intact rock and damage model of structural plane,progressive failure of fractured rock masses is studied using finite element method(FEM) .Furthermore,Scale effect and anisotropy of compressive strength of fractured rock masses are studied.Study results show that the strength decreases and tend towards stability rapidly from intact rock to fractured rock masses,and the anisotropy of strength of fractured rock masses is not significant.At last,based on numerical simulation conducted on 10 m scale rock masses under different confining pressures,the equivalent strength parameters of fractured rock masses are gained and the results are compared with Hoek-Brown criteria.The method developed is helpful for determination of strength parameters of fractured rock masses.

  12. Rock fracture image acquisition with both visible and ultraviolet illuminations

    Science.gov (United States)

    Wang, Weixing; Hakami, Eva

    2006-02-01

    Swedish Nuclear Fuel and Waste Management Company (SKB) have identified the need for a better understanding of radionuclide transport and retention processes in fractured rock since 1994. In the study, the first hard problem is to obtain rock fracture images of a good quality, since rock surface is very rough, and composed of complicated and multiple fractures, as a result, image acquisition is the first important. As a cooperation project between Sweden and China, we sampled a number of rock specimens for analyzing rock fracture network by visible and ultraviolet image technique, in the field. The samples are resin injected, in which way; opened fractures can be seen clearly by means of UV light illumination, and the rock surface information can be obtained by using visible optical illumination. We used different digital cameras and microscope to take images by two illuminations. From the same samples; we found that UV illumination image gives the clear information of fracture opening or closing, and the visible optical illumination gives the information of the rock surface (e.g. filling materials inside of fractures). By applying this technique, the minimum width of rock fracture 0.01 mm can be analyzed. This paper presents: (1) Rock fracture image acquiring techniques; (2) Rock fracture image acquisition by using UV light illumination and visible optical illumination; and (3) Conclusions. The studied method can be used both in the field and a laboratory.

  13. Natural fracture characterization using passive seismic illumination

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.

    2003-01-08

    The presence of natural fractures in reservoir rock can significantly enhance gas production, especially in tight gas formations. Any general knowledge of the existence, location, orientation, spatial density, and connectivity of natural fractures, as well as general reservoir structure, that can be obtained prior to active seismic acquisition and drilling can be exploited to identify key areas for subsequent higher resolution active seismic imaging. Current practices for estimating fracture properties before the acquisition of surface seismic data are usually based on the assumed geology and tectonics of the region, and empirical or fracture mechanics-based relationships between stratigraphic curvature and fracturing. The objective of this research is to investigate the potential of multicomponent surface sensor arrays, and passive seismic sources in the form of local earthquakes to identify and characterize potential fractured gas reservoirs located near seismically active regions. To assess the feasibility of passive seismic fracture detection and characterization, we have developed numerical codes for modeling elastic wave propagation in reservoir structures containing multiple, finite-length fractures. This article describes our efforts to determine the conditions for favorable excitation of fracture converted waves, and to develop an imaging method that can be used to locate and characterize fractures using multicomponent, passive seismic data recorded on a surface array.

  14. Groundwater flow and sorption processes in fractured rocks (I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Woo, Nam Chul; Yum, Byoung Woo; Choi, Young Sub; Chae, Byoung Kon; Kim, Jung Yul; Kim, Yoo Sung; Hyun, Hye Ja; Lee, Kil Yong; Lee, Seung Gu; Youn, Youn Yul; Choon, Sang Ki [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    This study is objected to characterize groundwater flow and sorption processes of the contaminants (ground-water solutes) along the fractured crystalline rocks in Korea. Considering that crystalline rock mass is an essential condition for using underground space cannot be overemphasized the significance of the characterizing fractured crystalline rocks. the behavior of the groundwater contaminants is studied in related to the subsurface structure, and eventually a quantitative technique will be developed to evaluate the impacts of the contaminants on the subsurface environments. The study has been carried at the Samkwang mine area in the Chung-Nam Province. The site has Pre-Cambrian crystalline gneiss as a bedrock and the groundwater flow system through the bedrock fractures seemed to be understandable with the study on the subsurface geologic structure through the mining tunnels. Borehole tests included core logging, televiewer logging, constant pressure fixed interval length tests and tracer tests. The results is summarized as follows; 1) To determine the hydraulic parameters of the fractured rock, the transient flow analysis produce better results than the steady - state flow analysis. 2) Based on the relationship between fracture distribution and transmissivities measured, the shallow part of the system could be considered as a porous and continuous medium due to the well developed fractures and weathering. However, the deeper part shows flow characteristics of the fracture dominant system, satisfying the assumptions of the Cubic law. 3) Transmissivities from the FIL test were averaged to be 6.12 x 10{sup -7}{sub m}{sup 2}{sub /s}. 4) Tracer tests result indicates groundwater flow in the study area is controlled by the connection, extension and geometry of fractures in the bedrock. 5) Hydraulic conductivity of the tracer-test interval was in maximum of 7.2 x 10{sup -6}{sub m/sec}, and the effective porosity of 1.8 %. 6) Composition of the groundwater varies

  15. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Ha; Kim, Won-Young; Lee, Seung-Gu [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. For the study of groundwater flow and sorption processes in fractured rocks, five boreholes were drilled. A stepwise and careful integration of various data obtained from field works and laboratory experiments were carried out to analyze groundwater flow in fractured rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of hydrogeological properties of fractured aquifers using geophysical borehole logging, pumping and slug tests, and continuous monitoring of groundwater level and quality, (4) evaluation of groundwater flow patterns using fluid flow modeling. The results obtained from these processes allow a qualitative interpretation of fractured aquifers in the study area. Column experiments of some reactive radionuclides were also performed to examine sorption processes of the radionuclides including retardation coefficients. In addition, analyses of fracture systems covered (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach was performed to determine various potential hazards which may result from the

  16. Geophysical study in waste landfill localized above fractured rocks

    Directory of Open Access Journals (Sweden)

    Ariveltom Cosme da Silva

    2011-08-01

    Full Text Available Geophysical survey is an important method for investigation of contaminated areas used in the characterization of contrasting physical properties in the presence of pollutants. This work applied the geophysical methods of Electrical Resistivity and Self Potential in waste landfill, located in Caçapava do Sul city, RS. The landfill is located over fractured metamorphic rocks. Eight lines of electrical profiling with 288 measures of self potential were done. In addition, 83 measurements of direction and dip of fractures were taken. The application of spontaneous potential method permitted to detect the direction of groundwater flow. The electrical resistivity measurements allowed the identification of low-intensity anomalies associated with the presence of leachate. There is a relationship between anomalous zones and the directions of fractures.

  17. Fracture Toughness Characterization

    Directory of Open Access Journals (Sweden)

    Manuel Beltrán Z

    2014-11-01

    Full Text Available This paper addresses the fracture toughness ( , or also known as critical stress intensity Factor, according to conditions of Lineal Elastic Fracture Mechanics (LEFM. The characterization of the mechanical properties in tensile and fracture toughness of structural steel pipes API-5L used in hydrocarbons transportation was performed. For fracture toughness, the material was tested through fatigue crack propagation on standardized compact specimen (CT according to ASTM E-399 norm. A thickness (B equal to and a crack size (a equal to 0.5w were used. With the porpoise of establishing the adequate conditions at the crack tip, the specimens were subjected to fatigue pre-cracking by application of repeated cycles of load in tensile-tensile and constant load amplitude with a load ratio of R = 0.1. The experimental Compliance method was used based on data obtained from load vs. Crack Mouth Opening Displacement (CMOD. The results show a Stress Intensity factor of 35.88 MPa√m for a 25 mm crack size specimen. The device used for testing is a MTS-810 machine with capacity of 100KN and 6 kHz sampling rate, which meets the conditions of the ASTM E-399 standard. The cracking susceptibility of steel is influenced by the size, morphology and distribution of non-metallic inclusions, thermochemical interaction with the environment and microstructure.

  18. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, B. (ed.)

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  19. Evaluating petrophysical relationships in fractured rock using geophysical measurements

    Science.gov (United States)

    Robinson, J.; Slater, L. D.; Keating, K.; Parker, B. L.; Rose, C.; Meyer, J. R.; Johnson, C. D.; Robinson, T.; Pehme, P.; Chapman, S.; Day-Lewis, F. D.

    2015-12-01

    Quantification of the pore geometric properties controlling mass transfer rates in fractured rock aquifers is a challenging characterization problem, especially given the scales of heterogeneity. The efficiency of in-situ remediation efforts that target hydraulically connected and dead-end fracture zones is limited, in part, due to the diffusion of aqueous phase contaminants into and out of the less-mobile pore spaces in the matrix surrounding fractures. Two geophysical technologies, complex resistivity (CR) and nuclear magnetic resonance (NMR) are sensitive to pore geometry and may provide key information on transport parameters where diffusion can be a limiting factor in and around boreholes. We present laboratory CR and NMR data from cores collected from field sites with variable lithologies and examine the sensitivity of these measurements to less-mobile versus mobile porosity. Supporting data include surface area measurements using the Brunauer-Emmett-Teller (BET) method, pore size distributions from mercury porosimetry, gravimetric measurements of matrix total porosity and gas permeability. We examine the predictive capability of CR and NMR to determine these pore scale properties as a function of geological setting. The petrophysical relationships illustrate the potential for use of new borehole logging tools to determine the spatial variability of physical properties controlling mass transfer close to fractures. The correlations of measurements to rock-type specific relations indicate that minimal core measurements might be needed to calibrate the results to a specific site.

  20. Multi-scale approach to invasion percolation of rock fracture networks

    CERN Document Server

    Ebrahimi, Ali N; Araújo, Nuno A M; Herrmann, Hans J

    2014-01-01

    A multi-scale scheme for the invasion percolation of rock fracture networks with heterogeneous fracture aperture fields is proposed. Inside fractures, fluid transport is calculated on the finest scale and found to be localized in channels as a consequence of the aperture field. The channel network is characterized and reduced to a vectorized artificial channel network (ACN). Different realizations of ACNs are used to systematically calculate efficient apertures for fluid transport inside differently sized fractures as well as fracture intersection and entry properties. Typical situations in fracture networks are parameterized by fracture inclination, flow path length along the fracture and intersection lengths in the entrance and outlet zones of fractures. Using these scaling relations obtained from the finer scales, we simulate the invasion process of immiscible fluids into saturated discrete fracture networks, which were studied in previous works.

  1. Rock mass characterization for Copenhagen Metro using face logs

    DEFF Research Database (Denmark)

    Hansen, Sanne Louise; Galsgaard, Jens; Foged, Niels Nielsen

    2015-01-01

    of relevant rock mass properties for tunnelling in Danian limestone has previously been difficult, as core logging shows a high degree of induced fracturing and core loss due to drilling disturbance, with an underestimation of the RQD values, and other rock mass properties, compared to face logging. However......, describing rock mass characteristics using detailed face logging with geological description and recording of induration and fracturing, giving a field RQD value during excavation, combined with televiewer logs, when available, has shown to be a valuable tool for rock mass characterization compared...

  2. Fault-fracture mesh petroleum plays in the Zhanhua Depression, Bohai Bay Basin: Part 1: Source rock characterization and quantitative assessment

    Energy Technology Data Exchange (ETDEWEB)

    Yongshi Wang; Dishi Shi [SINOPEC Shengli Oilfield Co., Shandong (China). Geoscience Research Inst.; Maowen Li; Dong Xia [Petroleum Univ., Beijing (China); Geological Survey of Canada, NW Calgary (Canada); Xiongqi Pang [Petroleum Univ., Beijing (China); Shanwen Zhang [SINOPEC Shengli Oilfield Co., Shandong (China)

    2005-02-01

    In the prolific Zhanhua Depression of the Bohai Bay Basin, eastern China, over 76% of the proven petroleum reserves occur in the Neogene Guantao and Minhuazhen formations. Detailed geological and geochemical mapping of the Phanerozoic strata in this area reveals that oil shales and dark mudstones in the Es{sub 4}, Es{sub 3} and Es{sub 1} members of the Eocene-Oligocene Shahejie Formation have excellent potential as petroleum source rocks. Regional distributions of total organic carbon content, kerogen type and thermal maturation indicate that abundant mature source rocks are present in several discrete sag areas bounded by extensive basement-related fault networks. In contrast, source rocks along the paleo-topographic highs are currently immature with respect to the generation of conventional oils. This study examined the key molecular characteristics for the common isoprenoid, hopanoid and steroid biomarkers, in relation to source facies variations in lacustrine sediments. The hydrocarbon source potential and expulsion efficiency for each of the source rock units were evaluated, which integrated the source rock characteristics with regional thermal subsidence and sediment burial. An important observation made during this study is the striking contrast between the source potential and proven oil reserves within each stratigraphic section, illustrating how significant the migration of hydrocarbon fluids derived from deep mature source kitchens through over 2000 m of fine-grained formations must have been to form several giant oil accumulations in the shallow strata. These results support the concept of the 'Neogene fault-fracture mesh petroleum plays' proposed by Zhang et al. (2004) [Marine and Petroleum Geology, 21, 651-668] and the vital role that the faults and fracture systems have in controlling hydrocarbon migration conduits and accumulation habitat in this rift basin. (Author)

  3. Characterization of the rock joint surface. A contribution to DECOVALEX II Task 3 `Constitutive relationships of rock joints`

    Energy Technology Data Exchange (ETDEWEB)

    Vuopio, J.; Poellae, J. [VTT Communities and Infrastructure, Espoo (Finland)

    1997-12-01

    In order to understand the effects of spent fuel on the hydraulical behaviour of the rock mass it is necessary to have knowledge about the relationship between the stresses and hydraulical properties of the fractures. The roughness of a fracture surface governs the dilatation of the fracture and the displacement of the fracture surface under shear stress. The peak shear strength and hydraulic flow properties of fractures depend very much on the surface roughness. This report describes different methods and techniques used in the characterization of rock joint surfaces and their applications in rock mechanics. 29 refs.

  4. Numerical evaluation of strength and deformability of fractured rocks

    Institute of Scientific and Technical Information of China (English)

    Majid Noorian Bidgoli; Zhihong Zhao; Lanru Jing

    2013-01-01

    Knowledge of the strength and deformability of fractured rocks is important for design, construction and stability evaluation of slopes, foundations and underground excavations in civil and mining engineering. However, laboratory tests of intact rock samples cannot provide information about the strength and deformation behaviors of fractured rock masses that include many fractures of varying sizes, orientations and locations. On the other hand, large-scale in situ tests of fractured rock masses are economically costly and often not practical in reality at present. Therefore, numerical modeling becomes necessary. Numerical predicting using discrete element methods (DEM) is a suitable approach for such modeling because of their advantages of explicit representations of both fractures system geometry and their constitutive behaviors of fractures, besides that of intact rock matrix. In this study, to generically determine the compressive strength of fractured rock masses, a series of numerical experiments were performed on two-dimensional discrete fracture network models based on the realistic geometrical and mechanical data of fracture systems from field mapping. We used the UDEC code and a numerical servo-controlled program for controlling the progressive compressive loading process to avoid sudden violent failure of the models. The two loading conditions applied are similar to the standard laboratory testing for intact rock samples in order to check possible differences caused by such loading conditions. Numerical results show that the strength of fractured rocks increases with the increasing confining pressure, and that deformation behavior of fractured rocks follows elasto-plastic model with a trend of strain hardening. The stresses and strains obtained from these numerical experiments were used to fit the well-known Mohr-Coulomb (M-C) and Hoek-Brown (H-B) failure criteria, represented by equivalent material properties defining these two criteria. The results show

  5. Dynamic model of normal behavior of rock fractures

    Institute of Scientific and Technical Information of China (English)

    YANG Wen-yi; KONG Guang-ya; CAI Jun-gang

    2005-01-01

    Based on laboratory tests of artificial fractures in mortar material, established the dynamic constitutive model of normal behaviour of rock fracture,. The tests were systematically conducted under quasi-static and dynamic monotonic loading conditions. The fractures were of different numbers of asperities in contact and were subsequently of different initial contact areas, which imitated the natural rock fractures. The rate of compressive load applied normal to the fractures covers a wide range from 10-1 MPa/s (quasi-static) up to 103 MPa/s (highly dynamic). The normal stress-closure responses of fractures were measured for different loading rates. Based on the stress-closure relation curves measured, a nonlinear (hyperbolic) dynamic model of fracture, normal behaviour, termed as dynamic BB model, was proposed, which was modified from the existing BB model of static normal behaviour of fractures by taking into account the effect of loading rate.

  6. Modelling karst aquifer evolution in fractured, porous rocks

    Science.gov (United States)

    Kaufmann, Georg

    2016-12-01

    The removal of material in soluble rocks by physical and chemical dissolution is an important process enhancing the secondary porosity of soluble rocks. Depending on the history of the soluble rock, dissolution can occur either along fractures and bedding partings of the rock in the case of a telogenetic origin, or within the interconnected pore space in the case of eogenetic origin. In soluble rocks characterised by both fractures and pore space, dissolution in both flow compartments is possible. We investigate the dissolution of calcite both along fractures and within the pore space of a limestone rock by numerical modelling. The limestone rock is treated as fractured, porous aquifer, in which the hydraulic conductivity increases with time both for the fractures and the pore spaces. We show that enlargement of pore space by dissolution will accelerate the development of a classical fracture-dominated telogenetic karst aquifer, breakthrough occurs faster. In the case of a pore-controlled aquifer as in eogenetic rocks, enlargement of pores results in a front of enlarged pore spaces migrating into the karst aquifer, with more homogeneous enlargement around this dissolution front, and later breakthrough.

  7. An XFEM Model for Hydraulic Fracturing in Partially Saturated Rocks

    Directory of Open Access Journals (Sweden)

    Salimzadeh Saeed

    2016-01-01

    Full Text Available Hydraulic fracturing is a complex multi-physics phenomenon. Numerous analytical and numerical models of hydraulic fracturing processes have been proposed. Analytical solutions commonly are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass. Numerical models are able to analyse complex problems such as multiple hydraulic fractures and fracturing in heterogeneous media. However, majority of available models are restricted to single-phase flow through fracture and permeable porous rock. This is not compatible with actual field conditions where the injected fluid does not have similar properties as the host fluid. In this study we present a fully coupled hydro-poroelastic model which incorporates two fluids i.e. fracturing fluid and host fluid. Flow through fracture is defined based on lubrication assumption, while flow through matrix is defined as Darcy flow. The fracture discontinuity in the mechanical model is captured using eXtended Finite Element Method (XFEM while the fracture propagation criterion is defined through cohesive fracture model. The discontinuous matrix fluid velocity across fracture is modelled using leak-off loading which couples fracture flow and matrix flow. The proposed model has been discretised using standard Galerkin method, implemented in Matlab and verified against several published solutions. Multiple hydraulic fracturing simulations are performed to show the model robustness and to illustrate how problem parameters such as injection rate and rock permeability affect the hydraulic fracturing variables i.e. injection pressure, fracture aperture and fracture length. The results show the impact of partial saturation on leak-off and the fact that single-phase models may underestimate the leak-off.

  8. Study on orientation fracture blasting with shaped charge in rock

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    On the basis of the theories of mechanics of explosive and rock fracture mechanics, the mechanism of crack initiation and its expansion of directional fracture controlled blasting with shaped charges in rock were studied, then the blasting parameters were designed and tested by a model test in laboratory and field experiment. The experimental and test results showed that the energy from blasting is directionally concentrated for the cumulative action. The directional expansion of cracks is satisfactory, the results of the model test and field test suggested that the orientation fracture blasting with shaped charge is a good means of excavating tunnels or cutting rock.

  9. Pre- and post-stimulation characterization of geothermal well GRT-1, Rittershoffen, France: insights from acoustic image logs of hard fractured rock

    Science.gov (United States)

    Vidal, Jeanne; Genter, Albert; Schmittbuhl, Jean

    2016-08-01

    Geothermal well GRT-1 (Rittershoffen, Alsace) was drilled in 2012. Its open-hole section (extending down to a depth of 2.6 km) penetrated fractured sandstones and granite. In 2013, the well was subjected to Thermal, Chemical and Hydraulic (TCH) stimulation, which improved the injectivity index fivefold. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation well-logging (acoustic and temperature [T] logs) and mud-logging data. This comparison revealed modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement, and the post-stimulation T logs are important for characterizing this enhancement. Chemical alteration due to mechanical erosion at the tops and bottoms of the fractures was observed in the sandstones. These zones display indications of very small new permeability after the TCH stimulation. Because a major fault zone caved extensively where it crosses the borehole, it was not imaged in the acoustic logs. However, this originally permeable zone was enhanced as demonstrated by the T logs. Based on the natural injectivity of this fault zone, hydraulic erosion and thermal microcracking of its internal quartz veins are associated with this permeability enhancement. Although local changes in the borehole wall observed in the acoustic images cannot be directly linked to the improved injectivity index, the comparison of the acoustic image logs allows for identification of fracture zones impacted by the TCH stimulation.

  10. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks.

    Science.gov (United States)

    Mukhopadhyay, Sumit; Liu, H-H; Spycher, N; Kennedy, B M

    2013-11-01

    In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area.

  11. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  12. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Institute of Scientific and Technical Information of China (English)

    Marte Gutierrez; Dong-Joon Youn

    2015-01-01

    Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda’s elastic compliance tensor, Monte Carlo simulation (MCS), and suitable probability density functions (PDFs) were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distribu-tions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV) in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  13. Experiment on Hydraulic Fracturing in Rock and Induced Earthquake

    Institute of Scientific and Technical Information of China (English)

    Yan Yuding; Li Yalin; Zhang Zhuan; Ouyang Lisheng; Xie Mingfu

    2005-01-01

    Experiment on rock hydraulic fracturing strength under different confining pressures was conducted on a series of test specimens with various pre-cracks prepared from 7 types of rock.Combining the data of an actual reservoir-induced earthquake with the experimental results of the contemporary tectonic stress field according to the theory of rock strength and the principle and method of rock fracture mechanics, the authors tentatively investigated the earthquakes induced by pore-water pressure in rock and obtained the initial results as follows: ( 1 ) One type of induced earthquake may occur in the case of larger tectonic stress on such weak planes that strike in similar orientation of principle tectonic compressional stress in the shallows of the rock mass; the pore-water pressure σp may generate tensile fracture on them and induce small earthquakes; (2) Two types of induced earthquake may occur in the case of larger tectonic stress, i.e., ① on such weakness planes that strike in similar orientation of principle tectonic compressioual stress, σ1, in the shallows of the rockmass, the pore-water pressure, σp, may generate tensile fracture on them and induce small earthquakes; ② When the tectonic stress approximates the shear strength of the fracture, the pore-water pressure σp may reduce the normal stress, σn, on the fracture face causing failure of the originally stable fracture,producing gliding fracture and thus inducing an earthquake. σp may also increase the fracture depth, leading to an induced earthquake with the magnitude larger than the previous potential magnitude; (3) There is a depth limit for each type of rock mass, and no induced earthquake will occur beyond this limit.

  14. Fracture-Flow-Enhanced Solute Diffusion into Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu; Ye, Ming; Sudicky, E.A.

    2007-12-15

    We propose a new conceptual model of fracture-flow-enhanced matrix diffusion, which correlates with fracture-flow velocity, i.e., matrix diffusion enhancement induced by rapid fluid flow within fractures. According to the boundary-layer or film theory, fracture flow enhanced matrix diffusion may dominate mass-transfer processes at fracture-matrix interfaces, because rapid flow along fractures results in large velocity and concentration gradients at and near fracture-matrix interfaces, enhancing matrix diffusion at matrix surfaces. In this paper, we present a new formulation of the conceptual model for enhanced fracture-matrix diffusion, and its implementation is discussed using existing analytical solutions and numerical models. In addition, we use the enhanced matrix diffusion concept to analyze laboratory experimental results from nonreactive and reactive tracer breakthrough tests, in an effort to validate the new conceptual model.

  15. Analysis of compressive fracture in rock using statistical techniques

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S.C.

    1994-12-01

    Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.

  16. Discrete Fracture Network Characterization and Modeling in the Swedish Program for Nuclear Waste Disposal in Crystalline Rocks Using Information Acquired by Difference Flow Logging and Borehole Wall Image Logging

    Science.gov (United States)

    Follin, S.; Stigsson, M.; Levén, J.

    2006-12-01

    Difference flow logging is a relatively new hydraulic test method. It offers a superior geometrical resolution compared to the classic double-packer injection test method. Other significant features of the difference flow logging method are the long duration of the test period and the line source flow regime. These three features are vital for the characterization and the modeling of the conductive fracture frequency in crystalline rocks. Further, combining difference flow logging with core mapping and in situ borehole wall image logging (BIPS) allows for an enhanced geological cross correlation and structural interpretation. The data and analyses presented here come from the ongoing site investigations for a high-level nuclear waste repository in Forsmark managed by the Swedish Nuclear Fuel and Waste Management Co. First, we demonstrate the statistical properties of the fracture transmissivities acquired by difference flow logging for a number of one-kilometer-long cored boreholes. Secondly, we make a hydraulic comparison between these data and the transmissivities acquired by double-packer injection tests. Thirdly, we present a method for investigating the geometrical connectivity of open fractures in fracture network simulations and how this connectivity can be cross correlated to the fracture transmissivity distribution acquired by difference flow logging. Finally, we discuss the geometrical properties of flowing fractures as acquired by BIPS data and the correlation to the current stress situation in Forsmark. The geometrical anisotropy observed in the transmissivity data suggests that the current stress situation is very important for the flow field in Forsmark. This puts constraints on the collection and use of geological/structural data for hydrogeological discrete fracture network modeling.

  17. Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-mDFN approach

    Institute of Scientific and Technical Information of China (English)

    Pooya Hamdi; Doug Stead; Davide Elmo

    2015-01-01

    abstract Heterogeneity is an inherent component of rock and may be present in different forms including mineral heterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks are usually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stress-induced microcracking increases with depth and in-situ stress. Laboratory results indicate that the physical properties of rocks such as strength, deformability, P-wave velocity and permeability are influenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM) is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks using the proposed micro discrete fracture network (mDFN) approach. The characteristics of the microcracks required to create mDFN models are obtained through image analyses of thin sections of Lac du Bonnet granite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial, triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data. The FDEM-mDFN models indicate that micro-heterogeneity has a profound influence on both the me-chanical behavior and resultant fracture pattern. An increase in the microcrack intensity leads to a reduction in the strength of the sample and changes the character of the rock strength envelope. Spalling and axial splitting dominate the failure mode at low confinement while shear failure is the dominant failure mode at high confinement. Numerical results from simulated compression tests show that microcracking reduces the cohesive component of strength alone, and the frictional strength component remains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced by the presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. The importance of microcrack heterogeneity in reproducing

  18. Multiporosity Flow in Fractured Low-Permeability Rocks

    CERN Document Server

    Kuhlman, Kristopher L; Heath, Jason E

    2015-01-01

    A multiporosity extension of classical double and triple porosity fractured rock flow models for slightly compressible fluids is presented. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo-steady-state and transient interporosity flow double porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semi-analytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform to illustrate its behavior. The multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice ...

  19. A new approach for effectively determining fracture network connections in fractured rocks using R tree indexing

    Institute of Scientific and Technical Information of China (English)

    LIU Hua-mei; WANG Ming-yu; SONG Xian-feng

    2011-01-01

    Determinations of fracture network connections would help the investigators remove those “meaningless” no-flow-passing fractures,providing an updated and more effective fracture network that could considerably improve the computation efficiency in the pertinent numerical simulations of fluid flow and solute transport.The effective algorithms with higher computational efficiency are needed to accomplish this task in large-scale fractured rock masses.A new approach using R tree indexing was proposed for determining fracture connection in 3D stochastically distributed fracture network.By comparing with the traditional exhaustion algorithm,it was observed that from the simulation results,this approach was much more effective; and the more the fractures were investigated,the more obvious the advantages of the approach were.Furthermore,it was indicated that the runtime used for creating the R tree indexing has a major part in the total of the runtime used for calculating Minimum Bounding Rectangles(MBRs),creating the R tree indexing,precisely finding out fracture intersections,and identifying flow paths,which are four important steps to determine fracture connections.This proposed approach for the determination of fracture connections in three-dimensional fractured rocks are expected to provide efficient preprocessing and critical database for practically accomplishing numerical computation of fluid flow and solute transport in large-scale fractured rock masses.

  20. Anisotropy of strength and deformability of fractured rocks

    Institute of Scientific and Technical Information of China (English)

    Majid Noorian Bidgoli; Lanru Jing

    2014-01-01

    Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non-regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes con-taining many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a nu-merical modeling method. A series of realistic two-dimensional (2D) discrete fracture network (DFN) models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM), with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and suggestions for future study are also presented.

  1. Anisotropy of strength and deformability of fractured rocks

    Directory of Open Access Journals (Sweden)

    Majid Noorian Bidgoli

    2014-04-01

    Full Text Available Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non-regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes containing many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a numerical modeling method. A series of realistic two-dimensional (2D discrete fracture network (DFN models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM, with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and suggestions for future study are also presented.

  2. Spatial analysis of fractured rock around fault zones based on photogrammetric data

    Science.gov (United States)

    Deckert, H.; Gessner, K.; Drews, M.; Wellmann, J. F.

    2009-04-01

    The location of hydrocarbon, geothermal or hydrothermal fluids is often bound to fault zones. The fracture systems along these faults play an important role in providing pathways to fluids in the Earth's crust. Thus an evaluation of the change in permeability due to rock deformation is of particular interest in these zones. Recent advances in digital imaging using modern techniques like photogrammetry provide new opportunities to view, analyze and present high resolution geological data in three dimensions. Our method is an extension of the one-dimensional scan-line approach to quantify discontinuities in rock outcrops. It has the advantage to take into account a larger amount of spatial data than conventional manual measurement methods. It enables to recover the entity of spatial information of a 3D fracture pattern, i.e. position, orientation, extent and frequency of fractures. We present examples of outcrop scale datasets in granitic and sedimentary rocks and analyse changes in fracture patterns across fault zones from the host rock to the damage zone. We also present a method to generate discontinuity density maps from 3D surface models generated by digital photogrammetry methods. This methodology has potential for application in rock mass characterization, structural and tectonic studies, the formation of hydrothermal mineral deposits, oil and gas migration, and hydrogeology. Our analysis methods represent important steps towards developing a toolkit to automatically detect and interpret spatial rock characteristics, by taking advantage of the large amount of data that can be collected by photogrammetric methods. This acquisition of parameters defining a 3D fracture pattern allows the creation of synthetic fracture networks following these constraints. The mathematical description of such a synethtical network can be implemented into numerical simulation tools for modeling fluid flow in fracture media. We give an outline of current and future applications of

  3. Fracture toughness properties of rocks in Olkiluoto: Laboratory measurements 2008-2009

    Energy Technology Data Exchange (ETDEWEB)

    Siren, T.

    2012-05-15

    In Olkiluoto an underground rock characterization facility (ONKALO) for the final disposal site of spent nuclear fuel has been under thorough research many years, but further knowledge is needed on fracture toughness parameters. Fracture toughness parameters are important for example in fracture mechanics prediction for Posiva's Olkiluoto Spalling Experiment (POSE). This working report describes a laboratory campaign that was done between 2008 and 2009. The campaign aimed at determining the fracture mechanics parameters as well as density and ultrasonic velocities for Olkiluoto rocks. The specimens delivered were selected by Posiva; the core showed no damage and the quality of the delivered cores was good with varying sample diameter. Most of the test samples (9 out of 12) are gneissic rock. The Mode I fracture toughness was determined using two different methods to account for two different fracturing directions. The methods are the Chevron Bend (CB) test as proposed in the ISRM Suggested Method and a method based on the Brazilian Disk (BD) experiment. The Mode II fracture toughness was determined using the Punch-Through Shear with Confining Pressure experiment on the remaining pieces from the CB testing. The scatter in the results is very large, even within one piece of core sample. Usually the scatter of results is less than 5 %. The high scatter in the data at hand is believed to be due to the very inhomogeneous nature of the rock material. The magnitude of the determined Mode I fracture toughness compares well with available reported data for medium to coarse grained granitoide rocks. However the scatter of the mode II fracture toughness values is higher than experienced on other rock types, but the variability is reasonable for the inhomogeneous rock type. Distinguishing the fracture toughness values for different anisotropy directions would require more thorough testing with quality samples at different anisotropy directions. However since fracture

  4. Flow of fluids from matrix to fractures in rock

    Energy Technology Data Exchange (ETDEWEB)

    Lupo, M.J.

    1987-01-01

    The flow of a single-phase compressible fluid from the rock matrix to fractures was modeled using the pressure diffusion equation. Pressure histories are presented for homogeneous isotropic blocks bounded by planar fractures. The case of an infinite slab bounded by planes of constant pore pressure was studied. The slab was divided by a planar fracture perpendicular to the planes. Lateral flow was found to cease once equilibrium is reached between the fracture and the matrix. Disequilibrium is found to be short-lived for laboratory-sized specimens of typical reservoir rock. The most-important parameter in cross-flow is the distance l between the two planes of constan pore pressure. When a second fracture was added, parallel to the first, the cross-flow behavior was nearly identical to the one fracture case if the spacing of the fractures is greater than l. The pressure history of the blocks of the continuum model of naturally fractured reservoirs was examined with a discrete mathematical model. An analytical solution to the pressure diffusion equation with time dependent boundary conditions is presented for blocks in both a finite and infinite reservoir.

  5. Neutron Production from the Fracture of Piezoelectric Rocks

    CERN Document Server

    Widom, A; Srivastava, Y N

    2011-01-01

    A theoretical explanation is provided for the experimental evidence that fracturing piezoelectric rocks produces neutrons. The elastic energy micro-crack production ultimately yields the macroscopic fracture. The mechanical energy is converted by the piezoelectric effect into electric field energy. The electric field energy decays via radio frequency (microwave) electric field oscillations. The radio frequency electric fields accelerate the condensed matter electrons which then collide with protons producing neutrons and neutrinos.

  6. Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter [Energy & Geoscience Institute at the University of Utah, Salt Lake City, UT (United States); Harris, Joel [Univ. of Utah, Salt Lake City, UT (United States)

    2014-05-08

    The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one method of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.

  7. Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Judith; Johnson, Timothy C.; Slater, Lee D.

    2015-02-02

    There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivity constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured

  8. Rapid imbibition of water in fractures within unsaturated sedimentary rock

    Science.gov (United States)

    Cheng, C.-L.; Perfect, E.; Donnelly, B.; Bilheux, H. Z.; Tremsin, A. S.; McKay, L. D.; DiStefano, V. H.; Cai, J. C.; Santodonato, L. J.

    2015-03-01

    The spontaneous imbibition of water and other liquids into gas-filled fractures in variably-saturated porous media is important in a variety of engineering and geological contexts. However, surprisingly few studies have investigated this phenomenon. We present a theoretical framework for predicting the 1-dimensional movement of water into air-filled fractures within a porous medium based on early-time capillary dynamics and spreading over the rough surfaces of fracture faces. The theory permits estimation of sorptivity values for the matrix and fracture zone, as well as a dispersion parameter which quantifies the extent of spreading of the wetting front. Quantitative data on spontaneous imbibition of water in unsaturated Berea sandstone cores were acquired to evaluate the proposed model. The cores with different permeability classes ranging from 50 to 500 mD and were fractured using the Brazilian method. Spontaneous imbibition in the fractured cores was measured by dynamic neutron radiography at the Neutron Imaging Prototype Facility (beam line CG-1D, HFIR), Oak Ridge National Laboratory. Water uptake into both the matrix and the fracture zone exhibited square-root-of-time behavior. The matrix sorptivities ranged from 2.9 to 4.6 mm s-0.5, and increased linearly as the permeability class increased. The sorptivities of the fracture zones ranged from 17.9 to 27.1 mm s-0.5, and increased linearly with increasing fracture aperture width. The dispersion coefficients ranged from 23.7 to 66.7 mm2 s-1 and increased linearly with increasing fracture aperture width and damage zone width. Both theory and observations indicate that fractures can significantly increase spontaneous imbibition in unsaturated sedimentary rock by capillary action and surface spreading on rough fracture faces. Fractures also increase the dispersion of the wetting front. Further research is needed to investigate this phenomenon in other natural and engineered porous media.

  9. Reactive-infiltration instabilities in rocks. Fracture dissolution

    CERN Document Server

    Szymczak, Piotr

    2012-01-01

    A reactive fluid dissolving the surface of a uniform fracture will trigger an instability in the dissolution front, leading to spontaneous formation of pronounced well-spaced channels in the surrounding rock matrix. Although the underlying mechanism is similar to the wormhole instability in porous rocks there are significant differences in the physics, due to the absence of a steadily propagating reaction front. In previous work we have described the geophysical implications of this instability in regard to the formation of long conduits in soluble rocks. Here we describe a more general linear stability analysis, including axial diffusion, transport limited dissolution, non-linear kinetics, and a finite length system.

  10. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    CERN Document Server

    Roubinet, D; Jougnot, D; Irving, J

    2016-01-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interaction...

  11. Demonstration and Validation of a Fractured Rock Passive Flux Meter

    Science.gov (United States)

    2015-04-01

    FRPFM alcohol tracers. 3.5.1. DATA REQUIREMENTS FRPFM measures of water and contaminant fluxes were compared to measured /calculated fluxes from...Analysis. All samples were analyzed at laboratories at the University of Florida. Volatile organics, including alcohol tracers, were analyzed by...Fractured Rock Passive flux Meter (FRPFM) Figure 32. Measured cumulative water discharge by FRPFM alcohol tracers

  12. Quantifying Fracture Heterogeneity in Different Domains of Folded Carbonate Rocks to Improve Fractured Reservoir Analog Fluid Flow Models

    NARCIS (Netherlands)

    Bisdom, K.; Bertotti, G.; Gauthier, B.D.M.; Hardebol, N.J.

    2013-01-01

    Fluid flow in carbonate reservoirs is largely controlled by multiscale fracture networks. Significant variations of fracture network porosity and permeability are caused by the 3D heterogeneity of the fracture network characteristics, such as intensity, orientation and size. Characterizing fracture

  13. Nanoparticles migration in fractured rocks and affects on contaminant migration

    Science.gov (United States)

    Missana, Tiziana; Garcia-Gutierrez, Miguel; Alonso, Ursula

    2014-05-01

    In previous studies, the transport behavior of artificial (gold and latex) and natural (smectite clay) colloids, within a planar fracture in crystalline rock, was analyzed. In order to better understand the effects of colloid size, shape and surface charge on nanoparticle migration and especially on filtration processes on natural rock surfaces, different clay colloids and oxide nanoparticles were selected and their transport studied as a function of the residence time. In all the cases, (a fraction of) the nanoparticles travelled in the fracture as fast as or faster than water (with a retardation factor, Rf ≤ 1) and the observed Rf, was related to the Taylor dispersion coefficient, accounting for colloid size, water velocity and fracture width. However, under most of the cases, in contrast to the behavior of a conservative tracer, colloids recovery was much lower than 100 %. Differences in recovery between different nanoparticles, under similar residence times, were analyzed. In order to evaluate the possible consequences, on contaminant migration, of the presence of nanoparticles in the system, transport tests were carried out with both colloids and sorbing radionuclides. The overall capacity for colloids of enhancing radionuclide migration in crystalline rock fractures is discussed. Acknowledgments: The research leading to these results received funding from EU FP7/2007-2011 grant agreement Nº 295487 (BELBAR, Bentonite Erosion: effects on the Long term performance of the engineered Barrier and Radionuclide Transport) and by the Spanish Government under the project NANOBAG (CTM2011-2797).

  14. Design and analysis of tracer tests to determine effective porosity and dispersivity in fractured sedimentary rocks, Newark Basin, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Carleton, G.B.; Welty, C.; Buxton, H.T.

    1999-11-01

    Investigations of the transport and fate of contaminants in fractured-rock aquifers require knowledge of aquifer hydraulic and transport characteristics to improve prediction of the rate and direction of movement of contaminated ground water. This report describes an approach to estimating hydraulic and transport properties in fractured-rock aquifers; demonstrates the approach at a sedimentary fractured-rock site in the Newark Basin, N.J.; and provides values for hydraulic and transport properties at the site. The approach has three components: (1) characterization of the hydrogeologic framework of ground-water flow within the rock-fracture network, (2) estimation of the distribution of hydraulic properties (hydraulic conductivity and storage coefficient) within that framework, and (3) estimation of transport properties (effective porosity and dispersivity). The approach includes alternatives with increasingly complex data-collection and analysis techniques.

  15. Design and analysis of tracer tests to determine effective porosity and dispersivity in fractured sedimentary rocks, Newark Basin, New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Carleton, G.B.; Welty, C.; Buxton, H.T.

    1999-01-01

    Investigations of the transport and fate of contaminants in fractured-rock aquifers require knowledge of aquifer hydraulic and transport characteristics to improve prediction of the rate and direction of movement of contaminated ground water. This report describes an approach to estimating hydraulic and transport properties in fractured-rock aquifers; demonstrates the approach at a sedimentary fractured-rock site in the Newark Basin, N.J.; and provides values for hydraulic and transport properties at the site. The approach has three components: (1) characterization of the hydrogeologic framework of ground-water flow within the rock-fracture network, (2) estimation of the distribution of hydraulic properties (hydraulic conductivity and storage coefficient) within that framework, and (3) estimation of transport properties (effective porosity and dispersivity). The approach includes alternatives with increasingly complex data-collection and analysis techniques.

  16. Hydrogeologic framework of fractured sedimentary rock, Newark Basin, New Jersey

    Science.gov (United States)

    Lacombe, Pierre J.; Burton, William C.

    2010-01-01

    The hydrogeologic framework of fractured sedimentary bedrock at the former Naval Air Warfare Center (NAWC), Trenton, New Jersey, a trichloroethylene (TCE)-contaminated site in the Newark Basin, is developed using an understanding of the geologic history of the strata, gamma-ray logs, and rock cores. NAWC is the newest field research site established as part of the U.S. Geological Survey Toxic Substances Hydrology Program, Department of Defense (DoD) Strategic Environmental Research and Development Program, and DoD Environmental Security Technology Certification Program to investigate contaminant remediation in fractured rock. Sedimentary bedrock at the NAWC research site comprises the Skunk Hollow, Byram, and Ewing Creek Members of the Lockatong Formation and Raven Rock Member of the Stockton Formation. Muds of the Lockatong Formation that were deposited in Van Houten cycles during the Triassic have lithified to form the bedrock that is typical of much of the Newark Basin. Four lithotypes formed from the sediments include black, carbon-rich laminated mudstone, dark-gray laminated mudstone, light-gray massive mudstone, and red massive mudstone. Diagenesis, tectonic compression, off-loading, and weathering have altered the rocks to give some strata greater hydraulic conductivity than other strata. Each stratum in the Lockatong Formation is 0.3 to 8 m thick, strikes N65 degrees E, and dips 25 degrees to 70 degrees NW. The black, carbon-rich laminated mudstone tends to fracture easily, has a relatively high hydraulic conductivity and is associated with high natural gamma-ray count rates. The dark-gray laminated mudstone is less fractured and has a lower hydraulic conductivity than the black carbon-rich laminated mudstone. The light-gray and the red massive mudstones are highly indurated and tend to have the least fractures and a low hydraulic conductivity. The differences in gamma-ray count rates for different mudstones allow gamma-ray logs to be used to correlate and

  17. Laboratory characterization of rock joints

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1994-05-01

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

  18. Fracture and Healing of Rock Salt Related to Salt Caverns

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-03-01

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in

  19. Groundwater degassing in fractured rock: Modelling and data comparison

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, J.; Destouni, G. [Royal Inst. of Tech., Stockholm (Sweden). Water Resources Engineering

    1998-11-01

    Dissolved gas may be released from deep groundwater in the vicinity of open boreholes and drifts, where the water pressures are relatively low. Degassing of groundwater may influence observations of hydraulic conditions made in drifts, interpretation of experiments performed close to drifts, and buffer mass and backfill performance, particularly during emplacement and repository closure. Under certain conditions, considerable fracture inflow and transmissivity reductions have been observed during degassing experiments in the field and in the laboratory; such reductions affect the outcome and interpretation of both hydraulic and tracer tests. We develop models for the estimation of the resulting degree of fracture gas saturation and the associated transmissivity reduction due to groundwater degassing in fractured rock. Derived expressions for bubble trapping probability show that fracture aperture variability and correlation length influence the conditions for capillary bubble trapping and gas accumulation. The laboratory observations of bubble trapping in an Aespoe fracture replica are consistent with the prediction of a relatively high probability of bubble trapping in this fracture. The prediction was based on the measured aperture distribution of the Aespoe fracture and the applied hydraulic gradient. Results also show that the conceptualisation of gas and water occupancy in a fracture greatly influences model predictions of gas saturation and relative transmissivity. Images from laboratory degassing experiments indicate that tight apertures are completely filled with water, whereas both gas and water exist in wider apertures under degassing conditions; implementation of this relation in our model resulted in the best agreement between predictions and laboratory observations. Model predictions for conditions similar to those prevailing in field for single fractures at great depths indicate that degassing effects in boreholes should generally be small, unless the

  20. Spatial statistics for predicting flow through a rock fracture

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.J.

    1989-03-01

    Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs.

  1. Ecohydrology of Deep Fractured Rocks at Homestake DUSEL

    Science.gov (United States)

    Kieft, T. L.; Boutt, D. F.; Murdoch, L. C.; Wang, H. F.

    2009-12-01

    The Deep Underground Science and Engineering Laboratory (DUSEL) at Homestake in SD will provide an unprecedented opportunity to study the terrestrial subsurface. Such a study could fundamentally change the way we view the origin and early evolution of life on Earth, the search for novel materials, and the generation of energy. Knowledge of subsurface life has come from only a few boreholes and deep mines. DUSEL will enable the first detailed study of a deep ecosystem in the context of the hydrology, geochemistry, and rock system state that sustain it. We are guided by the over-arching question: What controls the distribution and evolution of subsurface life? Our hypothesis is that these controls are dominated by processes related to geology, geochemistry, geomechanics, and hydrology. Themes of scaling and the development of facies, or zones of similar characteristics cut across all the processes. The ecohydrologic setting of DUSEL Homestake is characterized by a vast expanse of fractured metamorphic rock cut by 100s of km of tunnels and boreholes. Many km3 of the region have been highly affected by mining activities; adjacent regions are partially desaturated; and more distal regions are pristine and presumed to harbor indigenous microbial ecosystems. Simulations along with descriptions of the mine suggest division into zones, or ecohydrologic facies, where essential characteristics related to the requirements for life are expected to be similar. These ecohydrologic facies are a primary organizing principle for our investigation. The Deep EcoHydrology Experiment will consist of field studies supported by numerical simulations. The experimental activities include a particularly exciting opportunity to probe the lower limits of the biosphere using deep drilling technology deployed from the lowest reaches of the facility (2440 m below the surface). The use of the flooding/dewatering event as a tracer combined with hydrologic and mechanical stressors form a theme that

  2. Application of Stochastic Fracture Network with Numerical Fluid Flow Simulations to Groundwater Flow Modeling in Fractured Rocks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The continuum approach in fluid flow modeling is generally applied to porous geological media,but has limitel applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely distributed in the matrix, it may be difficult or erroneous to use a porous medium fluid flow model with continuum assumptions to describe the fluid flow in fractured rocks at small or even large field scales. A discrete fracture fluid flow approach incorporating a stochastic fracture network with numerical fluid flow simulations could have the capability of capturing fluid flow behaviors such as inhomogeneity and anisotropy while reflecting the changes of hydraulic features at different scales.Moreover, this approach can be implemented to estimate the size of the representative elementary volume (REV) in order to find out the scales at which a porous medium flow model could be applied, and then to determine the hydraulic conductivity tensor for fractured rocks. The following topics are focused on in this study: (a) conceptual discrete fracture fluid flow modeling incorporating a stochastic fracture network with numerical flow simulations; (b) estimation of REVand hydraulic conductivity tensor for fractured rocks utilizing a stochastic fracture network with numerical fluid flow simulations; (c) investigation of the effect of fracture orientation and density on the hydraulic conductivity and REV by implementing a stochastic fracture network with numerical fluid flow simulations, and (d) fluid flow conceptual models accounting for major and minor fractures in the 2-D or 3-D flow fields incorporating a stochastic fracture network with numerical fluid flow simulations.``

  3. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 2. Characterization of low permeable and fractured sediments and rocks in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.; Laier, T.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. In Denmark, many different kinds of fine-grained sediments and crystalline rocks occur from the ground surface down to 300 meters depth. Therefore, the possible geological situations include sediments and rocks of different composition and age. These situations are geographical distributed over large areas of Denmark. These sediments and rocks are shortly described based on existing information and include five different major types of sediments and rocks: 1: Crystalline granite and gneiss of Bornholm (because these rock types are host for waste disposals in many other countries). 2: Sandstone and shale from Bornholm (as these sediments are rela- tively homogeneous although they have fracture permeability). 3: Chalk and limestone (because these sediments may act as low permeable seals, but in most areas they act as groundwater reservoirs). 4: Fine-grained Tertiary clay deposits (as these sediments have a low permeability, are widely distributed and can reach large thicknesses). 5: Quaternary glacial, interglacial and Holocene clay deposits. These sediments are distributed all over Denmark. Following the descriptions of the geologic deposits, the areas below (including several possible locations for waste disposal sites) are selected for further investigation. The Precambrian basement rocks of Bornholm could be host rocks for the disposal. The rock types for further evaluation will be: Hammer Granite, Vang Granite, Roenne Granite, Bornholm gneiss, Paradisbakke Migmatite and Alminding Granite. In the Roskilde Fjord area around Risoe, a combination of Paleocene clays, meltwater clay and clayey till could be interesting. The area is partly included in the OSD area in North Sjaelland but

  4. Fracturing tests on reservoir rocks: Analysis of AE events and radial strain evolution

    CERN Document Server

    Pradhan, S; Fjær, E; Stenebråten, J; Lund, H K; Sønstebø, E F; Roy, S

    2015-01-01

    Fracturing in reservoir rocks is an important issue for the petroleum industry - as productivity can be enhanced by a controlled fracturing operation. Fracturing also has a big impact on CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations towards these activities. In our study, the fracturing of rock sample is monitored by Acoustic Emission (AE) and post-experiment Computer Tomography (CT) scans. The fracturing experiments have been performed on hollow cylinder cores of different rocks - sandstones and chalks. Our analysis show that the amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. The amplitudes of AE events follow an exponential distribution while the energies follow a power law distribution. Time-evolution of the radial strain measured in the fracturing-test will later be comp...

  5. Structural controls on anomalous transport in fractured porous rock

    Science.gov (United States)

    Edery, Yaniv; Geiger, Sebastian; Berkowitz, Brian

    2016-07-01

    Anomalous transport is ubiquitous in a wide range of disordered systems, notably in fractured porous formations. We quantitatively identify the structural controls on anomalous tracer transport in a model of a real fractured geological formation that was mapped in an outcrop. The transport, determined by a continuum scale mathematical model, is characterized by breakthrough curves (BTCs) that document anomalous (or "non-Fickian") transport, which is accounted for by a power law distribution of local transition times ψ>(t>) within the framework of a continuous time random walk (CTRW). We show that the determination of ψ>(t>) is related to fractures aligned approximately with the macroscopic direction of flow. We establish the dominant role of fracture alignment and assess the statistics of these fractures by determining a concentration-visitation weighted residence time histogram. We then convert the histogram to a probability density function (pdf) that coincides with the CTRW ψ>(t>) and hence anomalous transport. We show that the permeability of the geological formation hosting the fracture network has a limited effect on the anomalous nature of the transport; rather, it is the fractures transverse to the flow direction that play the major role in forming the long BTC tail associated with anomalous transport. This is a remarkable result, given the complexity of the flow field statistics as captured by concentration transitions.

  6. Intense fracturation induced by mineral growth in porous rocks

    Science.gov (United States)

    Renard, F.; Noiriel, C.; Gratier, J.-P.; Doan, M.-L.

    2009-04-01

    When minerals precipitate in the pores of a rock, they may exert a force that depends on the supersaturation of the fluid; this is the so-called force of crystallization. This process happens in a wide range of geological systems, e.g. vein formation in deep crust, frost heave in soils, and salt damage in cultural heritage monuments. Sometimes, the force of crystallization is so large that it leads to a permanent damage and fracturation of the porous medium. Here, we have studied this process experimentally and imaged in 3D how an intense fracture pattern may emerge from purely chemical processes. Core samples of limestone (22% porosity) and sandstones (19% porosity) were left for one month in contact with an aqueous solution saturated with sodium chloride in an autoclave, at 40°C, under a normal stress in the range 0.2-0.3 MPa. The fluid was allowed to rise in the core samples by capillary forces, up to a height where evaporation occurred. The samples were left in a rubber jacket with the same height as the capillary fringe, allowing therefore an accurate control of the region of water evaporation and salt precipitation. The uniaxial deformation of the samples was measured using high resolution displacement sensors. After the experiments we have imaged the samples in three dimensions, using laboratory computed X-ray tomography, allowing therefore imaging the intensity and localization of the damage, as well as the regions of salt precipitation. During the initial fluid capillary rise, the deformation measurements indicate a small shortening of the samples (~5 micrometers), and then an increase of the samples' height (50-100 micrometers) during salt precipitation. Two kinds of damage could be observed in tomography. Firstly, small rock fragments were pealed from the sample surface. Secondly, and more interestingly, a radial fracture network developed, by nucleation of microcracks at the interface where evaporation occurred, and propagation to the free surface. Two

  7. Development of fractures in soft rock surrounding a roadway and their control

    Institute of Scientific and Technical Information of China (English)

    Li Xuehua; Yao Qiangling; Man Jiankang; Chen Chaoqun; He Lihui

    2011-01-01

    As the excavation of roadway,new fractures will be formed and the pre-existing fractures extend with the redistribution of stress in surrounding rocks.Eventually,fracture zone and bed separation are formed in rocks because of the developed fractures.Therefore,mastering the fracture evolution of surrounding rocks is very important to maintain the stability of roadway.The surrounding rocks of main haulage roadway in a certain coal mine is so broken and loose that the supporting is very difficult.Based on comprehensive analysis of the engineering geological conditions,a sight instrument was used to observe the fractures of internal surrounding rocks.Four indices,i.e.,the width of fracture zone W,the number of fractures n,the width of fractures d and rock fracture designation RFD,are put forward to evaluate the fracture development.According to the evolution rules of the soft rock roadway from this paper,control principles by stages and by regions are presented through the research.At the same time,the best time of grouting reinforcement is determined on the basis of fracture saturation.Field practice shows that the roadway can satisfy normal production during service periods by suitable first support and grouting reinforcement.

  8. Colloid transport in dolomite rock fractures: effects of fracture characteristics, specific discharge, and ionic strength.

    Science.gov (United States)

    Mondal, Pulin K; Sleep, Brent E

    2012-09-18

    The effects of fracture characteristics, specific discharge, and ionic strength on microsphere transport in variable-aperture dolomite rock fractures were studied in a laboratory-scale system. Fractures with different aperture distributions and mineral compositions were artificially created in two dolomite rock blocks. Transport tests were conducted with bromide and carboxylate-modified latex microspheres (20, 200, and 500 nm diameter). Under overall unfavorable attachment conditions, there was significant retention of the 20 nm microsphere and minimal retention of the 500 nm microsphere for all conditions examined. Aperture variability produced significant spatial variation in colloid transport. Flushing with low ionic strength solution (1 mM) following microsphere transport at 12 mM ionic strength solution produced a spike in effluent microsphere concentrations, consistent with retention of colloids in secondary energy minima. Surface roughness and charge heterogeneity effects may have also contributed to the effect of microsphere size on retention. Matrix diffusion influenced bromide transport but was not a dominant factor in transport for any microsphere size. Calibrated one-dimensional, two-site kinetic model parameters for colloid transport in fractured dolomite were sensitive to the physical and chemical properties of both the fractured dolomite and the colloids, indicating the need for mechanistic modeling for accurate prediction.

  9. Geoelectrical Characterization of Sulphate Rocks

    OpenAIRE

    Guinea Maysounave, Ander

    2012-01-01

    [eng] Gypsum rocks are widely exploited in the world as industrial minerals. The purity of the gypsum rocks (percentage in gypsum mineral –CaSO4•2H2O- in the whole rock) is a critical factor to evaluate the potential exploitability of a gypsum deposit. It is considered than purities higher than 80% in gypsum are required to be economically profitable. Gypsum deposits have been studied with geoelectrical methods; a direct relationship between the electrical resistivity values of the gypsum roc...

  10. Preliminary Rock Physics Characterization of Mississippian Carbonate Reservoir in Canada

    Science.gov (United States)

    Lee, M.; Keehm, Y.; Kim, H.

    2011-12-01

    The Mississippian formations in the Western Canada Sedimentary Basin are known to have large hydrocarbon resources. The Lodgepole formation is the most important reservoir for oil production in Daly and Virden fields. In this study, we performed preliminary reservoir characterization using rock physics modeling. We first delineated the Lodgepole formation by geological information, well-logs and core analysis data. Then, we conducted rock physics analyses such as GR-AI, DEM modeling, porosity-Vp, density-Vp, and porosity-permeability. We identified the Lodgepole formation has different porosity types, volume of shale, and the degree of fractures in difference intervals. In the upper part of the formation, we found that vuggy pores are well developed. Inter-particular porosity and fractures become significant as the depth increases. We found that the lower part can be divided into two groups by acoustic impedance. The prospective reservoir interval, one of the two groups, has higher fracture density, which can be identified by lower acoustic impedance. This result also implies that we could also use AVO analyses to delineate good reservoir intervals. In conclusion, rock physics modeling can be effectively applied to characterize the Lodgepole formation quantitatively with well-log and core analysis data. Acknowledgement: This work was supported by the Energy Resources R&D program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2009201030001A).

  11. Mass transfer controlled by fracturing in micritic carbonate rocks

    Science.gov (United States)

    Richard, James; Coulon, Michel; Gaviglio, Patrick

    2002-05-01

    The fractured Coniacian chalk from the Omey area (Paris Basin, France) displays strong evidence of modifications controlled by brittle deformation. Fracturing is associated with important changes in pore space (decrease in total porosity and pore interconnection, change in distribution of pore access diameters and capillary characteristics), nannofacies (gradual evolution from a point-contact fabric to a welded, interlocked or coalescent fabric) and chemical composition (Sr concentration decrease). These modifications result from fluid-rock interaction that control significant mass transfer (percentage of secondary calcite >50%). Sr is a remarkable indicator of these mass transfers. Sr analyses allowed us to prove that the deformed zone (26.7 m) is wider than the fractured zone (11.3 m). They also indicate that the footwall block is less affected than the hanging wall block. A physicochemical model of the deformation mechanism is proposed. It shows that a cyclic process of fracturing controls the temporal evolution of the fluid saturation and fluid pressure and, consequently, the mass transfer.

  12. Upscaling of permeability field of fractured rock system: Numerical examples

    KAUST Repository

    Bao, K.

    2012-01-01

    When the permeability field of a given porous medium domain is heterogeneous by the existence of randomly distributed fractures such that numerical investigation becomes cumbersome, another level of upscaling may be required. That is such complex permeability field could be relaxed (i.e., smoothed) by constructing an effective permeability field. The effective permeability field is an approximation to the real permeability field that preserves certain quantities and provides an overall acceptable description of the flow field. In this work, the effective permeability for a fractured rock system is obtained for different coarsening scenarios starting from very coarse mesh all the way towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases, and very good agreement is obtained.

  13. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    Science.gov (United States)

    Shapiro, Allen M.

    2007-01-01

    packers, the submersible pump, and other downhole components to land surface. Borehole geophysical logging must be conducted prior to deploying the Multifunction BAT3 in bedrock boreholes. In particular, it is important to identify the borehole diameter as a function of depth to avoid placing the packers over rough sections of the borehole, where they may be damaged during inflation. In addition, it is advantageous to identify the location of fractures intersecting the borehole wall, for example, using an acoustic televiewer log or a borehole camera. A knowledge of fracture locations is helpful in designing the length of the test interval and the locations where hydraulic tests and geochemical sampling are to be conducted. The Multifunction BAT3 is configured to conduct both fluid-injection and fluid-withdrawal tests. Fluid-injection tests are used to estimate the hydraulic properties of low-permeability fractures intersecting the borehole. The lower limit of the transmissivity that can be estimated using the configuration of the Multifunction BAT3 described in this report is approximately 10-3 square feet per day (ft2/d). Fluid-withdrawal tests are used to collect water samples for geochemical analyses and estimate the hydraulic properties of high-permeability fractures intersecting the borehole. The Multifunction BAT3 is configured with a submersible pump that can support pumping rates ranging from approximately 0.05 to 2.5 gallons per minute, and the upper limit of the of the transmissivity that can be estimated is approximately 104 ft2/d. The Multifunction BAT3 also can be used to measure the ambient hydraulic head of a section of a bedrock borehole, and to conduct single-hole tracer tests by injecting and later withdrawing a tracer solution.

  14. Rock fracture grouting with microbially induced carbonate precipitation

    Science.gov (United States)

    Minto, James M.; MacLachlan, Erica; El Mountassir, Gráinne; Lunn, Rebecca J.

    2016-11-01

    Microbially induced carbonate precipitation has been proposed for soil stabilization, soil strengthening, and permeability reduction as an alternative to traditional cement and chemical grouts. In this paper, we evaluate the grouting of fine aperture rock fractures with calcium carbonate, precipitated through urea hydrolysis, by the bacteria Sporosarcina pasteurii. Calcium carbonate was precipitated within a small-scale and a near field-scale (3.1 m2) artificial fracture consisting of a rough rock lower surfaces and clear polycarbonate upper surfaces. The spatial distribution of the calcium carbonate precipitation was imaged using time-lapse photography and the influence on flow pathways revealed from tracer transport imaging. In the large-scale experiment, hydraulic aperture was reduced from 276 to 22 μm, corresponding to a transmissivity reduction of 1.71 × 10-5 to 8.75 × 10-9 m2/s, over a period of 12 days under constantly flowing conditions. With a modified injection strategy a similar three orders of magnitude reduction in transmissivity was achieved over a period of 3 days. Calcium carbonate precipitated over the entire artificial fracture with strong adhesion to both upper and lower surfaces and precipitation was controlled to prevent clogging of the injection well by manipulating the injection fluid velocity. These experiments demonstrate that microbially induced carbonate precipitation can successfully be used to grout a fracture under constantly flowing conditions and may be a viable alternative to cement based grouts when a high level of hydraulic sealing is required and chemical grouts when a more durable grout is required.

  15. Evaporation from Near-Drift Fractured Rock Surfaces

    Science.gov (United States)

    Manepally, C.; Fedors, R. W.; Or, D.; Das, K.

    2007-12-01

    The amount of water entering emplacement drifts from a fractured unsaturated rock is an important variable for performance evaluation of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. Water entering the drifts as liquid or gas may enhance waste package corrosion rates and transport released radionuclides. Liquid water in form of droplets may emerge from fractures, or flow along the drift wall and potentially evaporate and condense at other locations. Driven by pressure and temperature gradients, vapor may be transported along fractures, or liquid water may evaporate directly from the matrix. Within the drift, heat-driven convection may redistribute the moisture leading to condensation at other locations. The geometry of the evaporation front around the drift is not fully understood and this, in turn, influences processes related to reflux, rewetting as the thermal pulse dissipates. Existing models focus on processes in the porous media (e.g., two-phase dual-permeability models for matrix and fractures), or on processes in the drift (e.g., gas-phase computational fluid dynamics models). This study focuses on the boundary between these two domains, and the corresponding models, where evaporation at the solid rock/drift air interface appears to play an important role. Studies have shown that evaporation from porous media is a complex process sensitive to factors such as (i) hydrological properties of the porous media, (ii) pressure gradients in the porous media, (iii) texture of the interface or boundary, (iv) local vapor and temperature gradients, and (v) convective flow rate and boundary layer transfer. Experimental observations based on passive monitoring at Yucca Mountain have shown that the formation surrounding the drift is able to provide and transport large amounts of water vapor over a relatively short period. This study will examine the basic processes that govern evaporation in the unsaturated rock surrounding drifts for

  16. Three-Dimensional Geostatistical Analysis of Rock Fracture Roughness and Its Degradation with Shearing

    Directory of Open Access Journals (Sweden)

    Nima Babanouri

    2013-12-01

    Full Text Available Three-dimensional surface geometry of rock discontinuities and its evolution with shearing are of great importance in understanding the deformability and hydro-mechanical behavior of rock masses. In the present research, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variography analysis of the surfaces indicated a strong non-linear trend in the data. Therefore, the spatial variability of rock fracture surfaces was decomposed to one deterministic component characterized by a base polynomial function, and one stochastic component described by the variogram of residuals. By using an image-processing technique, 343 damaged zones with different sizes, shapes, initial roughness characteristics, local stress fields, and asperity strength values were spatially located and clustered. In order to characterize the overall spatial structure of the degraded zones, the concept of ‘pseudo-zonal variogram’ was introduced. The results showed that the spatial continuity at the damage locations increased due to asperity degradation. The increase in the variogram range was anisotropic and tended to be higher in the shear direction; thus, the direction of maximum continuity rotated towards the shear direction. Finally, the regression-kriging method was used to reconstruct the morphology of the intact surfaces and degraded areas. The cross-validation error of interpolation for the damaged zones was found smaller than that obtained for the intact surface.

  17. A descriptive study of fracture networks in rocks using complex network metrics

    Science.gov (United States)

    Santiago, Elizabeth; Velasco-Hernández, Jorge X.; Romero-Salcedo, Manuel

    2016-03-01

    In this paper we describe the static topological fracture structure of five rock samples from three regions in Eastern Mexico by the application of centrality and communicability measures used in the area of complex networks. The information obtained from fracture images is used to characterize the fracture networks. The analysis is divided into two groups of characteristics. The first provides a general summary of the fracture network through the description of the number of nodes, edges, diameter, radius, lengths and clustering coefficients. A second group of features centers on the description of communicability in the network by means of three indexes recently proposed. In addition, we apply centrality measures (betweenness, closeness, eigenvector and eccentricity) for quantifying the importance of nodes in the entire network. Finally, we identify a topology for fracture networks using a classification based on the degree of communicability. The most important results obtained in this work are focused in the topological characteristic patterns found in fracture networks applying the approach of complex networks that in general provide local and global parameters of connectivity and communicability.

  18. Use of an Integrated Discrete Fracture Network Code for Stochastic Stability Analyses of Fractured Rock Masses

    Science.gov (United States)

    Merrien-Soukatchoff, V.; Korini, T.; Thoraval, A.

    2012-03-01

    The paper presents the Discrete Fracture Network code RESOBLOK, which couples geometrical block system construction and a quick iterative stability analysis in the same package. The deterministic or stochastic geometry of a fractured rock mass can be represented and interactively displayed in 3D using two different fracture generators: one mainly used for hydraulic purposes and another designed to allow block stability evaluation. RESOBLOK has downstream modules that can quickly compute stability (based on limit equilibrium or energy-based analysis), display geometric information and create links to other discrete software. The advantage of the code is that it couples stochastic geometrical representation and a quick iterative stability analysis to allow risk-analysis with or without reinforcement and, for the worst cases, more accurate analysis using stress-strain analysis computer codes. These different aspects are detailed for embankment and underground works.

  19. Experimental demonstration of contaminant removal from fractured rock by boiling.

    Science.gov (United States)

    Chen, Fei; Liu, Xiaoling; Falta, Ronald W; Murdoch, Lawrence C

    2010-08-15

    This study was conducted to experimentally demonstrate removal of a chlorinated volatile organic compound from fractured rock by boiling. A Berea sandstone core was contaminated by injecting water containing dissolved 1,2-DCA (253 mg/L) and sodium bromide (144 mg/L). During heating, the core was sealed except for one end, which was open to the atmosphere to simulate an open fracture. A temperature gradient toward the outlet was observed when boiling occurred in the core. This indicates that steam was generated and a pressure gradient developed toward the outlet, pushing steam vapor and liquid water toward the outlet. As boiling occurred, the concentration of 1,2-DCA in the condensed effluent peaked up to 6.1 times higher than the injected concentration. When 38% of the pore volume of condensate was produced, essentially 100% of the 1,2-DCA was recovered. Nonvolatile bromide concentration in the condensate was used as an indicator of the produced steam quality (vapor mass fraction) because it can only be removed as a solute, and not as a vapor. A higher produced steam quality corresponds to more concentrated 1,2-DCA removal from the core, demonstrating that the chlorinated volatile compound is primarily removed by partitioning into vapor phase flow. This study has experimentally demonstrated that boiling is an effective mechanism for CVOC removal from the rock matrix.

  20. Evaluation of regional fracture properties for groundwater development using hydrolithostructural domain approach in variably fractured hard rocks of Purulia district, West Bengal, India

    Indian Academy of Sciences (India)

    Tapas Acharya; Rajesh Prasad; S Chakrabarti

    2014-04-01

    Estimation of geohydrologic properties of fractured aquifers in hard crystalline and/or metamorphosed country rocks is a challenge due to the complex nature of secondary porosity that is caused by differential fracturing. Hydrologic potentiality of such aquifers may be assessed if the geological controls governing the spatial distribution of these fracture systems are computed using a software-based model. As an exemplar, the Precambrian metamorphics exposed in and around the Balarampur town of Purulia district, West Bengal (India) were studied to find out the spatial pattern and consistency of such fracture systems. Surfer and Statistica softwares were used to characterize these rock masses in terms of hydrological, structural and lithological domains. The technique is based on the use of hydraulically significant fracture properties to generate representative modal and coefficient of variance () of fracture datasets of each domain. The is interpreted to obtain the spatial variability of hydraulically significant fracture properties that, in turn, define and identify the corresponding hydrolithostructural domains. The groundwater flow estimated from such a technique is verified with the routine hydrological studies to validate the procedure. It is suggested that the hydrolithostructural domain approach is a useful alternative for evaluation of fracture properties and aquifer potentiality, and development of a regional groundwater model thereof.

  1. Flowpath independent monitoring of reductive dechlorination potential in a fractured rock aquifer

    Science.gov (United States)

    Bradley, P.M.; Lacombe, P.J.; Imbrigiotta, T.E.; Chapelle, F.H.; Goode, D.J.

    2009-01-01

    The flowpath dependent approaches that are typically employed to assess biodegradation of chloroethene contaminants in unconsolidated aquifers are problematic in fractured rock settings, due to difficulties defining discrete groundwater flowpaths in such systems. In this study, the variation in the potential for chloroethene biodegradation with depth was evaluated in a fractured rock aquifer using two flowpath independent lines of field evidence: (1) the presence of the three biochemical prerequisites [electron donor(s), chloroethene electron acceptor(s), and chlororespiring microorganism(s)] for efficient chloroethene chlororespiration and (2) the in situ accumulation of chloroethene reductive dechlorination daughter products. The validity of this approach was assessed by comparing field results with the results of [1, 2- 14C] cis-DCE microcosm experiments. Microcosms were prepared with depth-specific core material, which was crushed and emplaced in discrete packer intervals for 1 year to allow colonization by the indigenous microbial community. Packer intervals characterized by significant electron donor concentrations, elevated numbers of chlororespiring microorganisms, and high reductive dechlorination product to parent contaminant ratios correlated well with the production of 14C-labeled reductive dechlorination products in the microcosm experiments. These results indicate that, in the absence of information on discrete groundwater flowpaths, a modified approach emphasizing flowpath independent lines of evidence can provide insight into the temporal and spatial variability of contaminant biodegradation in fractured rock systems. ?? 2009 National Ground Water Association.

  2. Characterizing and modelling 'ghost-rock' weathered limestones

    Science.gov (United States)

    Dubois, Caroline; Goderniaux, Pascal; Deceuster, John; Poulain, Angélique; Kaufmann, Olivier

    2016-04-01

    'Ghost-rock' karst aquifer has recently been highlighted. In this particular type of aquifer, the karst is not expressed as open conduits but consists in zones where the limestone is weathered. The in-situ weathering of limestone leaves a soft porous material called 'alterite'. The hydro-mechanical properties of this material differs significantly from those of the host rock: the weathering enhances the storage capacity and the conductivity of the rock. This type of weathered karst aquifer has never been studied from a hydrogeological point of view. In this study, we present the hydraulic characterization of such weathered zones. We also present a modelling approach derived from the common Equivalent Porous Medium (EPM) approach, but including the spatial distribution of hydrogeological properties through the weathered features, from the hard rock to the alterite, according to a weathering index. Unlike the Discrete Fracture Network (DFN) approaches, which enable to take into account a limited number of fractures, this new approach allows creating models including thousands of weathered features. As the properties of the alterite have to be considered at a centimeter scale, it is necessary to upscale these properties to carry out simulations over large areas. Therefore, an upscaling method was developed, taking into account the anisotropy of the weathered features. Synthetic models are built, upscaled and different hydrogeological simulations are run to validate the method. This methodology is finally tested on a real case study: the modelling of the dewatering drainage flow of an exploited quarry in a weathered karst aquifer in Belgium.

  3. Fracture Detection in Geothermal Wells Drilled in Volcanic Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Gonfalini, Mauro; Chelini, Walter; Cheruvier, Etienne; Suau, Jean; Klopf, Werner

    1987-01-20

    The Phlegrean Fields, close to Naples, are the site of important geothermal activity. The formations are volcanic and mostly tuffites. They are originally very tight but the geothermal alteration locally produces fractures with large increase in permeability. The lack of geological markers makes well-to-well correlation quite difficult. Thus the local detection of fractured zones in each well is very important for the evaluation of its potential. The Mofete 8 D well is a typical example. A rather complete logging program was run for fracture detection. Standard methods turned out to be disappointing. However several non-standard detectors were found to be very consistent and, later on, in excellent agreement with the analysis of cuttings. They are derived from the Dual Laterolog, the SP, the Temperature log and, most particularly, the Acoustic Waveforms from the Long Spacing Sonic. The Dual Laterolog and the Temperature Log indicate invasion by fresh and cold mud filtrate; the SP behaves as in a typical Sand-Shale sequence. Sonic Waveforms were first analyzed by a purely empirical method derived from consistent log patterns. A practical algorithm compares the total energy measured in each of the two fixed time windows located the one before, the other after the fluid arrivals. The altered zones (i.e. fractured and permeable) are clearly shown by a complete reversal of the relative energy of these two windows. A more scientific method was then applied to the Waveforms; it is based on both logging experiments and physical considerations. The energy carried by the tube wave is separated by a frequency discrimination: it correlates very well with formation alteration, thus also with the other indicators including the empirical Waveform method. It should have two advantages: – It should permit at least a semi quantitative permeability evaluation – It seems to be promising in other formations: non-volcanic geothermal wells and even hydrocarbon-bearing rocks. 10 refs

  4. Use of the Fracture Continuum Model for Numerical Modeling of Flow and Transport of Deep Geologic Disposal of Nuclear Waste in Crystalline Rock

    Science.gov (United States)

    Hadgu, T.; Kalinina, E.; Klise, K. A.; Wang, Y.

    2015-12-01

    Numerical modeling of disposal of nuclear waste in a deep geologic repository in fractured crystalline rock requires robust characterization of fractures. Various methods for fracture representation in granitic rocks exist. In this study we used the fracture continuum model (FCM) to characterize fractured rock for use in the simulation of flow and transport in the far field of a generic nuclear waste repository located at 500 m depth. The FCM approach is a stochastic method that maps the permeability of discrete fractures onto a regular grid. The method generates permeability fields using field observations of fracture sets. The original method described in McKenna and Reeves (2005) was designed for vertical fractures. The method has since then been extended to incorporate fully three-dimensional representations of anisotropic permeability, multiple independent fracture sets, and arbitrary fracture dips and orientations, and spatial correlation (Kalinina et al. 20012, 2014). For this study the numerical code PFLOTRAN (Lichtner et al., 2015) has been used to model flow and transport. PFLOTRAN solves a system of generally nonlinear partial differential equations describing multiphase, multicomponent and multiscale reactive flow and transport in porous materials. The code is designed to run on massively parallel computing architectures as well as workstations and laptops (e.g. Hammond et al., 2011). Benchmark tests were conducted to simulate flow and transport in a specified model domain. Distributions of fracture parameters were used to generate a selected number of realizations. For each realization, the FCM method was used to generate a permeability field of the fractured rock. The PFLOTRAN code was then used to simulate flow and transport in the domain. Simulation results and analysis are presented. The results indicate that the FCM approach is a viable method to model fractured crystalline rocks. The FCM is a computationally efficient way to generate realistic

  5. Fractal characterization of fracture surfaces in concrete

    Science.gov (United States)

    Saouma, V.E.; Barton, C.C.; Gamaleldin, N.A.

    1990-01-01

    Fractal geometry is used to characterize the roughness of cracked concrete surfaces through a specially built profilometer, and the fractal dimension is subsequently correlated to the fracture toughness and direction of crack propagation. Preliminary results indicate that the fracture surface is indeed fractal over two orders of magnitudes with a dimension of approximately 1.20. ?? 1990.

  6. ModeⅠrock fracture toughness with different types of brazilian disc

    Institute of Scientific and Technical Information of China (English)

    YU Hai-yong; JIN Zhi-xin; JING Hai-he

    2004-01-01

    According to the results evaluated by researchers for mode Ⅰ rock fracture toughness measurement, a series of comparison tests with different types Brazilian discs were conducted in order to search for the simplest geometry specimens by which accurate,comparable and consistent mode Ⅰ rock fracture toughness could obtain.

  7. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 2. Characterization of low permeable and fractured sediments and rocks in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.; Laier, T.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. In Denmark, many different kinds of fine-grained sediments and crystalline rocks occur from the ground surface down to 300 meters depth. Therefore, the possible geological situations include sediments and rocks of different composition and age. These situations are geographical distributed over large areas of Denmark. These sediments and rocks are shortly described based on existing information and include five different major types of sediments and rocks: 1: Crystalline granite and gneiss of Bornholm (because these rock types are host for waste disposals in many other countries). 2: Sandstone and shale from Bornholm (as these sediments are rela- tively homogeneous although they have fracture permeability). 3: Chalk and limestone (because these sediments may act as low permeable seals, but in most areas they act as groundwater reservoirs). 4: Fine-grained Tertiary clay deposits (as these sediments have a low permeability, are widely distributed and can reach large thicknesses). 5: Quaternary glacial, interglacial and Holocene clay deposits. These sediments are distributed all over Denmark. Following the descriptions of the geologic deposits, the areas below (including several possible locations for waste disposal sites) are selected for further investigation. The Precambrian basement rocks of Bornholm could be host rocks for the disposal. The rock types for further evaluation will be: Hammer Granite, Vang Granite, Roenne Granite, Bornholm gneiss, Paradisbakke Migmatite and Alminding Granite. In the Roskilde Fjord area around Risoe, a combination of Paleocene clays, meltwater clay and clayey till could be interesting. The area is partly included in the OSD area in North Sjaelland but

  8. Experimental study on water seepage constitutive law of fracture in rock under 3D stress

    Institute of Scientific and Technical Information of China (English)

    赵阳升; 杨栋; 郑少河; 胡耀青

    1999-01-01

    The test method and test result of water seepage constitutive law of fracture in rock under 3D stress are introduced. A permeability coefficient formula including the coefficient of fracture connection, normal stiffness, 3D stress, initial width of fracture and Poisson ratio is presented based on the analysis of the test theory and its result.

  9. Inversion of Scattered Waves for Material Properties in Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, Roland; Korneev, Valeri A.; Johnson, Lane R.

    1999-07-01

    The authors apply a recently developed low-frequency, non-linear inversion method which includes near and far field terms to a crosshole data set to determine the bulk and shear modulus, as well as the density for a fractured zone in a granitic rock mass. The method uses the scattered elastic wavefield which is extracted from the recorded data before the inversion is performed. The inversion result is appraised by investigating the resolution and standard deviation of the model estimates. The sensitivity of the three parameters to different features of the medium is revealed. While the bulk modulus appears to be sensitive to voids and welded contacts, the density is mostly affected by fractured zones. The shear modulus is least constrained due to the absence of S wave anisotropy information. It is shown that the three medium parameters are generally sensitive to other medium features than those determined by velocity inversions. Thus this method is viewed as a complimentary approach to travel time tomography which provides more insight into the material properties of inhomogeneous media.

  10. Fractal model and Lattice Boltzmann Method for Characterization of Non-Darcy Flow in Rough Fractures

    Science.gov (United States)

    Ju, Yang; Zhang, Qingang; Zheng, Jiangtao; Chang, Chun; Xie, Heping

    2017-02-01

    The irregular morphology of single rock fracture significantly influences subsurface fluid flow and gives rise to a complex and unsteady flow state that typically cannot be appropriately described using simple laws. Yet the fluid flow in rough fractures of underground rock is poorly understood. Here we present a numerical method and experimental measurements to probe the effect of fracture roughness on the properties of fluid flow in fractured rock. We develop a series of fracture models with various degrees of roughness characterized by fractal dimensions that are based on the Weierstrass–Mandelbrot fractal function. The Lattice Boltzmann Method (LBM), a discrete numerical algorithm, is employed for characterizing the complex unsteady non-Darcy flow through the single rough fractures and validated by experimental observations under the same conditions. Comparison indicates that the LBM effectively characterizes the unsteady non-Darcy flow in single rough fractures. Our LBM model predicts experimental measurements of unsteady fluid flow through single rough fractures with great satisfactory, but significant deviation is obtained from the conventional cubic law, showing the superiority of LBM models of single rough fractures.

  11. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses

    Directory of Open Access Journals (Sweden)

    A. Lisjak

    2014-08-01

    Full Text Available The goal of this review paper is to provide a summary of selected discrete element and hybrid finite–discrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations.

  12. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses

    Institute of Scientific and Technical Information of China (English)

    A.Lisjak; G.Grasselli

    2014-01-01

    The goal of this review paper is to provide a summary of selected discrete element and hybrid finitee discrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accom-panied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations.

  13. AVAZ inversion for fracture weakness parameters based on the rock physics model

    Science.gov (United States)

    Chen, Huaizhen; Yin, Xingyao; Qu, Shouli; Zhang, Guangzhi

    2014-12-01

    Subsurface fractures within many carbonates and unconventional resources play an important role in the storage and movement of fluid. The more reliably the detection of fractures could be performed, the more finely the reservoir description could be made. In this paper, we aim to propose a method which uses two important tools, a fractured anisotropic rock physics effective model and AVAZ (amplitude versus incident and azimuthal angle) inversion, to predict fractures from azimuthal seismic data. We assume that the rock, which contains one or more sets of vertical or sub-vertical fractures, shows transverse isotropy with a horizontal axis of symmetry (HTI). Firstly, we develop one improved fractured anisotropic rock physics effective model. Using this model, we estimate P-wave velocity, S-wave velocity and fracture weaknesses from well-logging data. Then the method is proposed to predict fractures from azimuthal seismic data based on AVAZ inversion, and well A is used to verify the reliability of the improved rock physics effective model. Results show that the estimated results are consistent with the real log value, and the variation of fracture weaknesses may detect the locations of fractures. The damped least squares method, which uses the estimated results as initial constraints during the inversion, is more stable. Tests on synthetic data show that fracture weaknesses parameters are still estimated reasonably with moderate noise. A test on real data shows that the estimated results are in good agreement with the drilling.

  14. Seepage properties of a single rock fracture subjected to triaxial stresses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Coupled properties of seepage and stress fields of rock fractures greatly influence the safety of geotechnical engineering work.Based on the closing defomation principle of a single rock fracture,equations describing relationships of aperture and triaxial stresses are developed,and coupled models of seepage and triaxial stresses are proposed.Seepage tests are conducted under triaxial stress conditions by adopting hard granite specimens with an artificial fracture.The results show that the normal stress,lateral stress and seepage pressure significantly affect the flow behavior of rock fractures,and that hydraulic conductivity decreases with increasing normal.stress,but increases with rising lateral stress or seepage pressure.In addition,an exponential function provides a good representation of the seepage characteristics of a single rock fracture subjected to triaxial stresses.

  15. Comprehensive assessment on dynamic roof instability under fractured rock mass conditions in the excavation disturbed zone

    Institute of Scientific and Technical Information of China (English)

    Xing-ping Lai; Fen-hua Ren; Yong-ping Wu; Mei-feng Cai

    2009-01-01

    The damage process of fractured rock mass showed that the fracture in rocks induced roof collapse in Yangchangwan Coal Mine,China.The rock mass was particularly weak and fractured.There occurred 6 large-scale dynamical roof falls in the excavation disturbed zone (EDZ) with the collapsing volume of 216 m3.First,the field detailed geological environment,regional seismic dy-namics,and dynamic instability of roadways were generally investigated.Second,the field multiple-index monitoring measurements for detecting the deep delamination of the roof,convergence deformation,bolt-cable load,acoustic emission (AE) characteristic pa-rameters,total AE events,AE energy-releasing rate,rock mass fracture,and damage were arranged.Finally,according to the time-space-strength relations,a quantitative assessment of the influence of rock-mass damage on the dynamic roof instability was accomplished.

  16. FROMS3D: New Software for 3-D Visualization of Fracture Network System in Fractured Rock Masses

    Science.gov (United States)

    Noh, Y. H.; Um, J. G.; Choi, Y.

    2014-12-01

    A new software (FROMS3D) is presented to visualize fracture network system in 3-D. The software consists of several modules that play roles in management of borehole and field fracture data, fracture network modelling, visualization of fracture geometry in 3-D and calculation and visualization of intersections and equivalent pipes between fractures. Intel Parallel Studio XE 2013, Visual Studio.NET 2010 and the open source VTK library were utilized as development tools to efficiently implement the modules and the graphical user interface of the software. The results have suggested that the developed software is effective in visualizing 3-D fracture network system, and can provide useful information to tackle the engineering geological problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

  17. Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks

    Science.gov (United States)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Huang, Na

    2016-11-01

    Fracture networks play a more significant role in conducting fluid flow and solute transport in fractured rock masses, comparing with that of the rock matrix. Accurate estimation of the permeability of fracture networks would help researchers and engineers better assess the performance of projects associated with fluid flow in fractured rock masses. This study provides a review of previous works that have focused on the estimation of equivalent permeability of two-dimensional (2-D) discrete fracture networks (DFNs) considering the influences of geometric properties of fractured rock masses. Mathematical expressions for the effects of nine important parameters that significantly impact on the equivalent permeability of DFNs are summarized, including (1) fracture-length distribution, (2) aperture distribution, (3) fracture surface roughness, (4) fracture dead-end, (5) number of intersections, (6) hydraulic gradient, (7) boundary stress, (8) anisotropy, and (9) scale. Recent developments of 3-D fracture networks are briefly reviewed to underline the importance of utilizing 3-D models in future research.

  18. Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks

    Science.gov (United States)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Huang, Na

    2016-06-01

    Fracture networks play a more significant role in conducting fluid flow and solute transport in fractured rock masses, comparing with that of the rock matrix. Accurate estimation of the permeability of fracture networks would help researchers and engineers better assess the performance of projects associated with fluid flow in fractured rock masses. This study provides a review of previous works that have focused on the estimation of equivalent permeability of two-dimensional (2-D) discrete fracture networks (DFNs) considering the influences of geometric properties of fractured rock masses. Mathematical expressions for the effects of nine important parameters that significantly impact on the equivalent permeability of DFNs are summarized, including (1) fracture-length distribution, (2) aperture distribution, (3) fracture surface roughness, (4) fracture dead-end, (5) number of intersections, (6) hydraulic gradient, (7) boundary stress, (8) anisotropy, and (9) scale. Recent developments of 3-D fracture networks are briefly reviewed to underline the importance of utilizing 3-D models in future research.

  19. Numerical Simulation of Rock Fracturing under Uniaxial Compression Using Virtual Internal Bond Model

    Institute of Scientific and Technical Information of China (English)

    KE Chang-ren; JIANG Jun-ling; GE Xiu-run

    2009-01-01

    A multi-scale virtual internal bond (VIB) model for the isotropic materials has been recently proposed to describe the material deformation and fracturing. During the simulation process of material fracturing using VIB, the fracture criterion is directly built into the constitutive formulation of the material using the cohesive force law. Enlightened by the similarity of the damage constitutive model of rock under uniaxial compression and the cohesive force law of VIB, a VIB density function of rock under uniaxial compression is suggested. The elastic modulus tensor is formulated on the basis of the density function. Thus the complete deformation process of rock under the uniaxial compression is simulated.

  20. Couple analyzing the acoustic emission characters from hard composite rock fracture

    Institute of Scientific and Technical Information of China (English)

    Xingping Lai; Linhai Wang; Meifeng Cai

    2004-01-01

    Rock mass is fractured media. Its fracture is a nonlinear process. The accumulation of acoustic emission (AE) is closely related to the degree of damage. The dynamics problem is simply described based on the non-equilibrium statistical theory of crack evolvement, trying to use the hybrid analysis of the statistical theory and scan electron microscopy (SEM), the characters of AE sig nals from rock damage in a mined-out area is synthetically analyzed and evaluated. These provide an evidence to reverse deduce and accurately infer the position of rock fracture for dynamical hazard control.

  1. Petrography and geochemistry of basaltic rocks from the Conrad fracture zone on the America-Antarctica Ridge

    Science.gov (United States)

    le Roex, Anton P.; Dick, Henry J. B.

    1981-06-01

    Intrusive and extrusive basaltic rocks have been dredged from the Conrad fracture zone (transecting the slow-spreading America-Antarctica Ridge). The majority of rocks recovered are holocrystalline with the dominant mineral assemblage being plagioclase plus clinopyroxene with or without minor Fe-Ti oxides (olivine occurs in only three samples) and many of the samples show evidence of extensive alteration. Secondary minerals include chlorite, actinolite, K- and Na-feldspar, analcite and epidote. In terms of bulk chemistry the rocks are characterized by their generally evolved and highly variable compositions (e.g. Mg *=0.65-0.35;TiO 2=0.7-3.6%;Zr=31-374ppm;Nb=differentiation observed in the Conrad fracture zone basalts implies some additional constraint other than spreading rate on the formation of ferrobasalt and reaffirms the importance of extensive crustal differentiation during the production of this basalt type.

  2. Fluid-dependent anisotropy and experimental measurements in synthetic porous rocks with controlled fracture parameters

    Science.gov (United States)

    Ding, Pinbo; Di, Bangrang; Wei, Jianxin; Li, Xiangyang; Deng, Yinghua

    2014-02-01

    In this study, we analyse the influence of fluid on P- and S-wave anisotropy in a fractured medium. Equivalent medium theories are used to describe the relationship between the fluid properties and the rock physics characteristics in fractured rocks, and P-wave and S-wave velocities and anisotropy are considered to be influenced by fluid saturation. However, these theoretical predictions require experimental measurement results for calibration. A new construction method was used to create synthetic rock samples with controlled fracture parameters. The new construction process provides synthetic rocks that have a more realistic mineral composition, porous structure, cementation and pressure sensitivity than samples used in previous research on fractured media. The synthetic rock samples contain fractures which have a controlled distribution, diameter, thickness and fracture density. In this study, the fracture diameter was about 4 mm, the thickness of fractures was about 0.06 mm, and the fracture density in the two fractured rock samples was about 3.45%. SEM images show well-defined penny-shaped fractures of 4 mm in length and 0.06 mm in width. The rock samples were saturated with air, water and oil, and P- and S-wave velocities were measured in an ultrasonic measurement system. The laboratory measurement results show that the P-wave anisotropy is strongly influenced by saturated fluid, and the P-wave anisotropy parameter, ɛ, has a much larger value in air saturation than in water and oil saturations. The S-wave anisotropy decreases when the samples are saturated with oil, which can be caused by high fluid viscosity. In the direction perpendicular to the fractures (the 0° direction), shear-wave splitting is negligible, and is similar to the blank sample without fractures, as expected. In the direction parallel to the fractures (the 90° direction) shear-wave splitting is significant. The fractured rock samples show significant P- and S-wave anisotropy caused by

  3. The Dynamic Fracture Process in Rocks Under High-Voltage Pulse Fragmentation

    Science.gov (United States)

    Cho, Sang Ho; Cheong, Sang Sun; Yokota, Mitsuhiro; Kaneko, Katsuhiko

    2016-10-01

    High-voltage pulse technology has been applied to rock excavation, liberation of microfossils, drilling of rocks, oil and water stimulation, cleaning castings, and recycling products like concrete and electrical appliances. In the field of rock mechanics, research interest has focused on the use of high-voltage pulse technology for drilling and cutting rocks over the past several decades. In the use of high-voltage pulse technology for drilling and cutting rocks, it is important to understand the fragmentation mechanism in rocks subjected to high-voltage discharge pulses to improve the effectiveness of drilling and cutting technologies. The process of drilling rocks using high-voltage discharge is employed because it generates electrical breakdown inside the rocks between the anode and cathode. In this study, seven rock types and a cement paste were electrically fractured using high-voltage pulse discharge to investigate their dielectric breakdown properties. The dielectric breakdown strengths of the samples were compared with their physical and mechanical properties. The samples with dielectric fractured were scanned using a high-resolution X-ray computed tomography system to observe the fracture formation associated with mineral constituents. The fracture patterns of the rock samples were analyzed using numerical simulation for high-voltage pulse-induced fragmentation that adopts the surface traction and internal body force conditions.

  4. Effect of isolated fractures on accelerated flow in unsaturated porous rock

    Science.gov (United States)

    Su, G.W.; Nimmo, J.R.; Dragila, M.I.

    2003-01-01

    Fractures that begin and end in the unsaturated zone, or isolated fractures, have been ignored in previous studies because they were generally assumed to behave as capillary barriers and remain nonconductive. We conducted a series of experiments using Berea sandstone samples to examine the physical mechanisms controlling flow in a rock containing a single isolated fracture. The input fluxes and fracture orientation were varied in these experiments. Visualization experiments using dyed water in a thin vertical slab of rock were conducted to identify flow mechanisms occurring due to the presence of the isolated fracture. Two mechanisms occurred: (1) localized flow through the rock matrix in the vicinity of the isolated fracture and (2) pooling of water at the bottom of the fracture, indicating the occurrence of film flow along the isolated fracture wall. These mechanisms were observed at fracture angles of 20 and 60 degrees from the horizontal, but not at 90 degrees. Pooling along the bottom of the fracture was observed over a wider range of input fluxes for low-angled isolated fractures compared to high-angled ones. Measurements of matrix water pressures in the samples with the 20 and 60 degree fractures also demonstrated that preferential flow occurred through the matrix in the fracture vicinity, where higher pressures occurred in the regions where faster flow was observed in the visualization experiments. The pooling length at the terminus of a 20 degree isolated fracture was measured as a function of input flux. Calculations of the film flow rate along the fracture were made using these measurements and indicated that up to 22% of the flow occurred as film flow. These experiments, apparently the first to consider isolated fractures, demonstrate that such features can accelerate flow through the unsaturated zone and should be considered when developing conceptual models.

  5. Effect of rock rheology on fluid leak- off during hydraulic fracturing

    Science.gov (United States)

    Yarushina, V. M.; Bercovici, D.; Oristaglio, M. L.

    2012-04-01

    In this communication, we evaluate the effect of rock rheology on fluid leak­off during hydraulic fracturing of reservoirs. Fluid leak-off in hydraulic fracturing is often nonlinear. The simple linear model developed by Carter (1957) for flow of fracturing fluid into a reservoir has three different regions in the fractured zone: a filter cake on the fracture face, formed by solid additives from the fracturing fluid; a filtrate zone affected by invasion of the fracturing fluid; and a reservoir zone with the original formation fluid. The width of each zone, as well as its permeability and pressure drop, is assumed to remain constant. Physical intuition suggests some straightforward corrections to this classical theory to take into account the pressure dependence of permeability, the compressibility or non-Newtonian rheology of fracturing fluid, and the radial (versus linear) geometry of fluid leak­off from the borehole. All of these refinements, however, still assume that the reservoir rock adjacent to the fracture face is non­deformable. Although the effect of poroelastic stress changes on leak-off is usually thought to be negligible, at the very high fluid pressures used in hydraulic fracturing, where the stresses exceed the rock strength, elastic rheology may not be the best choice. For example, calculations show that perfectly elastic rock formations do not undergo the degree of compaction typically seen in sedimentary basins. Therefore, pseudo-elastic or elastoplastic models are used to fit observed porosity profiles with depth. Starting from balance equations for mass and momentum for fluid and rock, we derive a hydraulic flow equation coupled with a porosity equation describing rock compaction. The result resembles a pressure diffusion equation with the total compressibility being a sum of fluid, rock and pore-space compressibilities. With linear elastic rheology, the bulk formation compressibility is dominated by fluid compressibility. But the possibility

  6. Impact of hydraulic perforation on fracture initiation and propagation in shale rocks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xi; JU Yang; YANG Yong; SU Sun; GONG WenBo

    2016-01-01

    To enhance the oil and gas recovery rate,hydraulic fracturing techniques have been widely adopted for stimulation of low-permeability reservoirs.Pioneering work indicates that hydraulic perforation and layout could significantly affect fracture initiation and propagation in low-permeability reservoir rocks subjected to complex in-situ stresses.This paper reports on a novel numerical method that incorporates fracture mechanics principles and the numerical tools FRANC3D and ANSYS to investigate the three-dimensional initiation and propagation behavior of hydro-fracturing cracks in shale rock.Considering the transverse isotropic property of shale rocks,the mechanical parameters of reservoir rocks attained from laboratory tests were adopted in the simulation.The influence of perforation layouts on the 3D initiation of hydro-fracturing fractures in reservoir rocks under geo-stresses was quantitatively illuminated.The propagation and growth of fractures in three dimensions in different perforating azimuth values were illustrated.The results indicate that:1) the optimal perforation direction should be parallel to the maximum horizontal principal stress,2) the crack plane gradually turns toward the direction of the maximum horizontal principal stress when they are not in parallel,3) compared with the linear and symmetric pattern,the staggered perforation is the optimal one,4) the proper perforation density is four to six holes per meter,5) the optimal perforation diameter in this model is 30 mm,and 6) the influence of the perforation depth on the fracture initiation pressure is low.

  7. Computational Modelling of Fracture Propagation in Rocks Using a Coupled Elastic-Plasticity-Damage Model

    Directory of Open Access Journals (Sweden)

    Isa Kolo

    2016-01-01

    Full Text Available A coupled elastic-plasticity-damage constitutive model, AK Model, is applied to predict fracture propagation in rocks. The quasi-brittle material model captures anisotropic effects and the distinct behavior of rocks in tension and compression. Calibration of the constitutive model is realized using experimental data for Carrara marble. Through the Weibull distribution function, heterogeneity effect is captured by spatially varying the elastic properties of the rock. Favorable comparison between model predictions and experiments for single-flawed specimens reveal that the AK Model is reliable and accurate for modelling fracture propagation in rocks.

  8. On the Characteristics of Rheological Fracture of Rock%岩石的蠕变断裂特性分析

    Institute of Scientific and Technical Information of China (English)

    陈有亮; 秦爱芳; 金孝杰

    2000-01-01

    Based on the traditional theory of fracture, time-dependence of rock fracture is taken into account and the creep fracture criteria are given. The effect of the microcrack zone on fracture toughness is analyzed. Finally, a model for time prediction of rheological fracture is derived and its feasibility is proven.

  9. The Influence of Specimen Type on Tensile Fracture Toughness of Rock Materials

    Science.gov (United States)

    Aliha, Mohammad Reza Mohammad; Mahdavi, Eqlima; Ayatollahi, Majid Reza

    2017-03-01

    Up to now, several methods have been proposed to determine the mode I fracture toughness of rocks. In this research, different cylindrical and disc shape samples, namely: chevron bend (CB), short rod (SR), cracked chevron notched Brazilian disc (CCNBD), and semi-circular bend (SCB) specimens were considered for investigating mode I fracture behavior of a marble rock. It is shown experimentally that the fracture toughness values of the tested rock material obtained from different test specimens are not consistent. Indeed, depending on the geometry and loading type of the specimen, noticeable discrepancies can be observed for the fracture toughness of a same rock material. The difference between the experimental mode I fracture resistance results is related to the magnitude and sign of T-stress that is dependent on the geometry and loading configuration of the specimen. For the chevron-notched samples, the critical value of T-stress corresponding to the critical crack length was determined using the finite element method. The CCNBD and SR specimens had the most negative and positive T-stress values, respectively. The dependency of mode I fracture resistance to the T-stress was shown using the extended maximum tangential strain (EMTSN) criterion and the obtained experimental rock fracture toughness data were predicted successfully with this criterion.

  10. The Influence of Specimen Type on Tensile Fracture Toughness of Rock Materials

    Science.gov (United States)

    Aliha, Mohammad Reza Mohammad; Mahdavi, Eqlima; Ayatollahi, Majid Reza

    2016-12-01

    Up to now, several methods have been proposed to determine the mode I fracture toughness of rocks. In this research, different cylindrical and disc shape samples, namely: chevron bend (CB), short rod (SR), cracked chevron notched Brazilian disc (CCNBD), and semi-circular bend (SCB) specimens were considered for investigating mode I fracture behavior of a marble rock. It is shown experimentally that the fracture toughness values of the tested rock material obtained from different test specimens are not consistent. Indeed, depending on the geometry and loading type of the specimen, noticeable discrepancies can be observed for the fracture toughness of a same rock material. The difference between the experimental mode I fracture resistance results is related to the magnitude and sign of T-stress that is dependent on the geometry and loading configuration of the specimen. For the chevron-notched samples, the critical value of T-stress corresponding to the critical crack length was determined using the finite element method. The CCNBD and SR specimens had the most negative and positive T-stress values, respectively. The dependency of mode I fracture resistance to the T-stress was shown using the extended maximum tangential strain (EMTSN) criterion and the obtained experimental rock fracture toughness data were predicted successfully with this criterion.

  11. Identification of transport processes in Southern Indian fractured crystalline rock using forced-gradient tracer experiments

    Science.gov (United States)

    Guihéneuf, Nicolas; Bour, Olivier; Boisson, Alexandre; Le Borgne, Tanguy; Becker, Matthew R.; Nigon, Benoit; Wajiduddin, Mohammed; Ahmed, Shakeel; Maréchal, Jean-Christophe

    2015-04-01

    Understanding dominant transport processes is essential to improve prediction of contaminants transfer in fractured crystalline rocks. In such fractured media, solute transport is characterized by fast advection within open and connected fractures and sometimes by matrix diffusion that may be enhanced by chemical weathering. To investigate this phenomenon, we carried out radially convergent and push-pull tracer experiments in the fractured granite of the Experimental Hydrogeological Park of Choutuppal (Southern India). Tracer tests were performed in the same permeable fracture from few meters to several ten meters and from few hours to two weeks to check the consistency of the results at different spatial and temporal scales. These different types of forced gradient tracer experiments allow separation of the effects of advection and diffusion on transport. Breakthrough curves from radially convergent tracer tests display systematically a -2 power law slope on the late time behavior. This tailing can be adequately represented by a transport model that only takes into account heterogeneous advection caused by fluid flow channeling. The negligible impact of matrix diffusion was confirmed by the push-pull tracer tests, at least for the duration of experiments. A push-pull experiment carried out with a cocktail of two conservative tracers having different diffusion coefficients displayed similar breakthrough curves. Increasing the resting phase during the experiments did not lead to a significant decline of peak concentration. All these results suggest a negligible impact of matrix diffusion. However, increasing the scales of investigation during push-pull tracer tests led to a decrease of the power law slope on the late time behavior. This behavior that cannot be modeled with a transport model based on independent flow paths and indicate non-reversible heterogeneous advection. This process could be explained by the convergence of streamlines after a certain distance

  12. Experimental and Analytical Research on Fracture Processes in ROck

    Energy Technology Data Exchange (ETDEWEB)

    Herbert H.. Einstein; Jay Miller; Bruno Silva

    2009-02-27

    Experimental studies on fracture propagation and coalescence were conducted which together with previous tests by this group on gypsum and marble, provide information on fracturing. Specifically, different fracture geometries wsere tested, which together with the different material properties will provide the basis for analytical/numerical modeling. INitial steps on the models were made as were initial investigations on the effect of pressurized water on fracture coalescence.

  13. Syn- and postkinematic cement textures in fractured carbonate rocks: Insights from advanced cathodoluminescence imaging

    Science.gov (United States)

    Ukar, Estibalitz; Laubach, Stephen E.

    2016-10-01

    In calcite and dolomite deposits in fractures, transmitted light and optical cathodoluminescence methods detect crack-seal texture in some fractures, but scanning electron microscope-based cathodoluminescence (SEM-CL) combined with secondary-electron images and element maps, reveals crack-seal and cement growth textures where previous SEM-CL imaging methods found massive or featureless deposits. In a range of fractured carbonate rocks, patterns and textures of calcite and dolomite cements precipitated during and after fracture growth resemble complex accumulation patterns found in quartz in sandstone fractures, suggesting that some apparent differences between carbonate mineral and quartz deposits in fractures reflect the limits of previous imaging methods. Advances in delineating textures in widespread carbonate mineral deposits in fractures provide evidence for growth and occlusion of fracture porosity.

  14. Influence of shear and deviatoric stress on the evolution of permeability in fractured rock

    NARCIS (Netherlands)

    Faoro, Igor; Niemeijer, André; Marone, Chris; Elsworth, Derek

    2009-01-01

    The evolution of permeability in fractured rock as a function of effective normal stress, shear displacement, and damage remains a complex issue. In this contribution, we report on experiments in which rock surfaces were subject to direct shear under controlled pore pressure and true triaxial stress

  15. Seismic Waves in Rocks with Fluids and Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J G

    2006-02-06

    Seismic wave propagation through the earth is often strongly affected by the presence of fractures. When these fractures are filled with fluids (oil, gas, water, CO{sub 2}, etc.), the type and state of the fluid (liquid or gas) can make a large difference in the response of the seismic waves. This paper will summarize some early work of the author on methods of deconstructing the effects of fractures, and any fluids within these fractures, on seismic wave propagation as observed in reflection seismic data. Methods to be explored here include Thomsen's anisotropy parameters for wave moveout (since fractures often induce elastic anisotropy), and some very convenient fracture parameters introduced by Sayers and Kachanov that permit a relatively simple deconstruction of the elastic behavior in terms of fracture parameters (whenever this is appropriate).

  16. Lithostratigraphic contact – a significant site for hydrogeological investigation in crystalline fractured-rock terrains

    Indian Academy of Sciences (India)

    Tapas Acharya; Rajesh Prasad

    2017-02-01

    Estimating the hydrogeologic control of fractured aquifers in hard crystalline and metamorphosed rocks is challenging due to complexity in the development of secondary porosity. The present study in the Precambrian metamorphic terrain in and around the Balarampur of Purulia district, West Bengal, India, aims to estimate the hydrogeologic significance of lithostratigraphic contacts using fracture characteristics obtained from surface bedrock exposures supported by hydrological data from the existing dugwells. This study involves the domain-wise analysis of the frequencies of fractures that control the fractureporosity.The domain-wise study reveals higher fracture-frequencies adjacent to the lithostratigraphic contacts. The concurrence of lithostratigraphic contacts with the occurrences of high-discharging wells and also with the deep weathered zone in low-lying areas is clearly established, thus assigning the lithostratigraphic contact as hydrogeologically significant. An increase in frequencies of the fractures within the ‘influence zone’ of the lithocontact, is clearly visible. Among those fractures, particularly, which make the angle greater than the ‘limiting angle’ with the lithocontact are characterised by increased frequencies. However, brittle rocks like quartz biotite granite gneisses, phyllite and epidiorite show high porosity of fracture, within the ‘influence zone’ of the lithostratigraphic contact. Enhanced deepening of the weathered-zone at lower topographic region may perhaps be a plausible explanation for this increased fracture-porosity at lithocontact to assign it as a hydrogeologically significant transmissive zone within fractured rocks.

  17. Detecting rupture precursors and determining the main fracture spread direction of rock with dynamic rock resistivity change anisotropy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ In the past, domestic and abroad scientific workers have done a large number of experiment researches on a great number of researches of experiment for the relationship between electrical resistivity change and the load stress on rock (Geoelectric Testing Group, Department of Geophysics, Peking University and Research Division, Seismological Brigade of Lanzhou, 1978; Zhang, 1981; Chen, et al, 1983; Zhao, et al, 1983; Zhang, Lu, 1983; Zhang, et al, 1985; Brace, Orange, 1968; Kurite, 1986; Teisseyre, 1989), such as imitating dynamic fracture of rock, frictional sliding course, and observing its resistivity change shape with a lot of experimental workssuch as simulating the dynamic course of crustal rocks fracturing and frictional slipping along the fracture surface, and observing its resistivity change shape with experiment. They found that, in the fracture process of rock under loading, not only its resistivity shape change notably, and its direction changes also very clearly, and therefore many scientific workers have shown strong interest in anisotropy of resistivity change, and have done some researches onfor it.

  18. Mesoscale modeling of grain fracturing in high porosity rocks using the strong discontinuity approach

    Science.gov (United States)

    Tjioe, M.; Choo, J.; Borja, R. I.

    2013-12-01

    In previous studies, it has been found that two dominant micro-mechanisms play important roles in the deformation of high-porosity rocks. They are grain fracturing and crystal plasticity. Grain fracturing is a phenomenon where larger grains cleave to their smaller constituents as they respond to the stress concentration exerted on them close to the open pore spaces. Specimen-scale modeling cannot reflect such mechanism so our investigation is carried out in the next smaller scale, namely the mesoscopic scale. We model a solid matrix microstructure using finite element in which displacement discontinuity is introduced in each element where the slip condition has been exceeded. Such discontinuity is termed strong discontinuity and is characterized by zero band thickness and localized strain in the band that reaches infinity. For grains under compression, this slip condition is the cohesive-frictional law governing the behavior on the surface of discontinuity. The strong discontinuity in the grain scale is modeled via an Assumed Enhanced Strain (AES) method formulated within the context of nonlinear finite elements. Through this method, we can model grain-splitting as well as halos of cataclastic damage that are usually observed before a macropore collapses. The overall stress-strain curve and plastic slip of the mesoscopic element are then obtained and comparison to the crystal plasticity behavior is made to show the differences between the two mechanisms. We demonstrate that the incorporation of grain-fracturing and crystal plasticity can shed light onto the pore-scale deformation of high-porosity rocks.

  19. Self-sealing of excavation induced fractures in clay host rock

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chun-Liang [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Braunschweig (Germany)

    2015-07-01

    Excavation of an underground repository for disposal of radioactive waste in clay formations generates fractures around the openings, which may act as pathways for water transport and radionuclides migration. Because of the favorable properties of the clay rocks such as the rheological deformability and swelling capability, a recovery process of the excavation damaged zone (EDZ) can be expected due to the combined impact of rock compression, backfill resistance, and clay swelling during the post-closure phase. Another important issue is the impact of gases produced from anoxic corrosion of waste containers and other metallic components within the repository. The EDZ may act as a conduit for preferential gas flow, depending on the extent of the recovery process. For the safety assessment of a repository, the self-sealing behaviour and impact on water and gas transport through the EDZ have to be characterized, understood, and predicted. Recently, GRS has extensively investigated these important issues with various kinds of laboratory and in- situ experiments under relevant repository conditions. Test samples were taken from the Callovo-Oxfordian argillite at Bure in France and the Opalinus clay (shaly facies) at Mont Terri in Switzerland. Major findings are summarized as follows. As observed in laboratory and in-situ, the gas permeabilities of the claystones increase with stress-induced damage by several orders of magnitude from the impermeable state up to high levels of 10{sup -12}-10{sup -13} m{sup 2}. When hydrostatic confining stress is applied and increased, the fractures in the claystones tend to close up, leading to a decrease in gas permeability down to different levels of 10{sup -16}-10{sup -21} m{sup 2} at stresses in a range of 10 to 20 MPa. As water enters and flows through fractures, the clay matrix can take up a great amount of the water and expand into the interstices. Consequently, the hydraulic conductivity decreases dramatically by several orders of

  20. Fracture characteristics of a soft rock roadway: staged and zoned control

    Energy Technology Data Exchange (ETDEWEB)

    Li Xue-hua; Yao Qiang-ling; Zhang Nong [China University of Mining & Technology, Xuzhou (China). State Key Laboratory of Coal Resource and Mine Safety

    2009-05-15

    An accurate understanding of fracture and cracking in surrounding rock is the key to solving the problem of maintaining a soft-rock roadway. Experimental studies have been done within a typical soft-rock roadway in a coal mine. The components and micro-structural features of the surrounding rock were investigated. The properties of the rocks around the roadway and the process of fracture expansion were tested on site. The results show that crack propagation and run-through are non-uniform and occur in several stages. Key technologies for supporting the roadway by stages in different regions were put forward after considering time effects, local breakdown characteristics and fracture development. Staged concrete spraying, intensive support from anchor bolting (cabling) and control of the grouting process in the surrounding rock are the main parts of strengthened support technology. Practice shows that rock cracking in soft rock surrounding a roadway can be effectively controlled by this support technology. Stability of the rock surrounding the roadway can be achieved. 12 refs., 13 figs., 1 tab.

  1. Characterising rock fracture aperture-spacing relationships using power-law relationships: some considerations

    Science.gov (United States)

    Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit

    2016-04-01

    The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA-b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from both

  2. Study on the physical meaning of seismic inhomogeneous degree by rock fracture experiments

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-xiong; MA Sheng-li; LI Sheng-qiang; LI Min-feng; LU Peng; CHEN Hua-jing; WANG Song; WU Ting

    2005-01-01

    It is observed that the parameter of seismic inhomogeneous degree (GL value) calculated from the earthquake catalog shows obvious abnormal changes prior to strong earthquakes, indicating the state change of local seismic activity. This paper focuses on the mechanism for the abnormal changes of the GL values based on the sequences of acoustic emission for three types of rock samples containing macro-asperity fracture; compressional en-echelon fracture and model-III shear fracture. The results show that for the three types of rock samples, there are continuous abnormal changes of GL value (>1) just before the non-elastic deformation occurs or during the process of nucleation prior to the instability. Based on the experimental results, it seems that the process of creep sliding and resistance-uniformization along fault zone is the possible mechanism for the abnormal changes of GL value before rock fractures.

  3. On the use of Li isotopes as a proxy for water-rock interaction in fractured crystalline rocks: A case study from the Gotthard rail base tunnel

    Science.gov (United States)

    Wanner, Christoph; Bucher, Kurt; Pogge von Strandmann, Philip A. E.; Waber, H. Niklaus; Pettke, Thomas

    2017-02-01

    We present Li isotope measurements of groundwater samples collected during drilling of the 57 km long Gotthard rail base tunnel in Switzerland, to explore the use of Li isotope measurements for tracking water-rock interactions in fractured crystalline rocks at temperatures of up to 43 °C. The 17 groundwater samples originate from water-conducting fractures within two specific crystalline rock units, which are characterized by a similar rock mineralogy, but significantly different fluid composition. In particular, the aqueous Li concentrations observed in samples from the two units vary from 1-4 mg/L to 0.01-0.02 mg/L. Whereas δ7Li values from the unit with high Li concentrations are basically constant (δ7Li = 8.5-9.1‰), prominent variations are recorded for the samples from the unit with low Li concentrations (δ7Li = 10-41‰). This observation demonstrates that Li isotope fractionation can be highly sensitive to aqueous Li concentrations. Moreover, δ7Li values from the unit with low Li concentrations correlate well with reaction progress parameters such as pH and [Li]/[Na] ratios, suggesting that δ7Li values are mainly controlled by the residence time of the fracture groundwater. Consequently, 1D reactive transport modeling was performed to simulate mineral reactions and associated Li isotope fractionation along a water-conducting fracture system using the code TOUGHREACT. Modeling results confirm the residence time hypothesis and demonstrate that the absence of δ7Li variation at high Li concentrations can be well explained by limitation of the amount of Li that is incorporated into secondary minerals. Modeling results also suggest that Li uptake by kaolinite forms the key process to cause Li isotope fractionation in the investigated alkaline system (pH >9), and that under slow flow conditions (mineral reaction rates if more thermodynamic data about the temperature-dependent incorporation of Li in secondary minerals as well as corresponding fractionation

  4. Fracture Characteristics Analysis of Double-layer Rock Plates with Both Ends Fixed Condition

    Directory of Open Access Journals (Sweden)

    S. R. Wang

    2014-07-01

    Full Text Available In order to research on the fracture and instability characteristics of double-layer rock plates with both ends fixed, the three-dimension computational model of double-layer rock plates under the concentrated load was built by using PFC3D technique (three-dimension particle flow code, and the mechanical parameters of the numerical model were determined based on the physical model tests. The results showed the instability process of the double-layer rock plates had four mechanical response phases: the elastic deformation stage, the brittle fracture of upper thick plate arching stage, two rock-arch bearing stage and two rock-arch failure stage; moreover, with the rock plate particle radius from small to large change, the maximum vertical force of double rock-arch appeared when the particle size was a certain value. The maximum vertical force showed an upward trend with the increase of the rock plate temperature, and in the case of the same thickness the maximum vertical force increased with the increase of the upper rock plate thickness. When the boundary conditions of double-layer rock plates changed from the hinged support to the fixed support, the maximum horizontal force observably decreased, and the maximum vertical force showed small fluctuations and then tended towards stability with the increase of cohesive strength of double-layer rock plates.

  5. Numerical modeling of rock fracture and fragmentation under impact loading using discrete element method

    Directory of Open Access Journals (Sweden)

    Enan Chi

    2015-06-01

    Full Text Available The fracture and fragmentation of rock materials are basic and important problem in geomechanics and blasting engineering. An approach, which can simulate the process of fracture and fragmentation of rock materials, is introduced in this work. A beam–particle model is first introduced in the frame of the discrete element method. In the beam–particle model, the neighboring elements are connected by beams. Consequently, a beam network is formed in the particle system. The strength characteristics of rock materials are reflected by the beam network. The strength criterion was then built to verify whether a beam exists or not. The process of rock fracture and fragmentation is described by the gradual disappearance of beams. Finally, two cases were presented to indicate the validity of the method proposed in this work.

  6. Stresses and Shear Fracture Zone of Jinshazhou Tunnel Surrounding Rock in Rich Water Region

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun-jie; LOU Xiao-ming

    2008-01-01

    Field evidence has shown that large-scale and unstable discontinuous planes in the rock mass surrounding tunnels in rich water region are probably generated after excavation. The tunnel surrounding rock was divided into three zones, including elastic zone, plastic damage zone and shear fracture zone fof assessing the stability of the tunnel surrounding rock. By local hydrogeology, the stresses of surrounding rock of Jinshazhou circular tunnel was analyzed and the stress solutions on the elastic and plastic damage zones were obtained by applying the theories of fluid-solid coupling and elasto-plastic damage mechanics. The shear fracture zone generated by joints was studied and its range was determined by using Mohr-Coulomb strength criterion. Finally, the correctness of the theoretical results was validated by comparing the scopes of shear fracture zones calculated in this paper with those from literature.

  7. Photo-Disintegration of the Iron Nucleus in Fractured Magnetite Rocks with Magnetostriction

    CERN Document Server

    Widom, A; Srivastava, Y N

    2013-01-01

    There has been considerable interest in recent experiments on iron nuclear disintegrations observed when rocks containing such nuclei are crushed and fractured. The resulting nuclear transmutations are particularly strong for the case of magnetite rocks, i.e. loadstones. We argue that the fission of the iron nucleus is a consequence of photo-disintegration. The electro-strong coupling between electromagnetic fields and nuclear giant dipole resonances are central for producing observed nuclear reactions. The large electron energies produced during the fracture of piezomagnetic rocks are closely analogous to the previously discussed case of the fracture of piezoelectric rocks. In both cases electro-weak interactions can produce neutrons and neutrinos from energetic protons and electrons thus inducing nuclear transmutations. The electro-strong condensed matter coupling discussed herein represents new many body collective nuclear photo-disintegration effects.

  8. Thermoelastic stresses induced by non-isothermal fluid injection into fractured rock

    Science.gov (United States)

    Mossop, A.; Matthai, S. K.

    2003-04-01

    The injection of cold water into hot fractured rock occurs in a number of industrial scenarios, most commonly in the recharge of geothermal reservoirs and during waterflood operations in hydrocarbon reservoirs. The cold water cools the rock local to the fracture flow pathways, the cooled rock contracts, causing localised stress perturbations. Essentially analogous physical processes are involved in the injection of hot fluids into cooler rock such as occur in steam flood operations in viscous oil recovery. In this study we investigate such thermoelastic stresses induced by non-isothermal injection into a three dimensional fractured rock mass. The starting point of our analysis is an idealized model of injection into a single, uniform, horizontal fracture. For this case we have previously found semi-analytic solutions and analytic estimates of the stress perturbation and these are in turn used for cross-verification of an isoparametric, quadratic, finite element model of the system. In the numerical model the fractures are treated as discrete conductive channels within the matrix and an additional feature is that the matrix itself can be assigned a non-zero permeability. As the numerical simulator follows a fundamentally different methodology for solving these thermoelastic problems, the results help to validate some of the scaling relationships and non-intuitive behaviour deduced from the analytic estimates (e.g. for a broad range of flow rates, fracture normal stress perturbations decrease with increasing injection rates). The finite element model is then used to explore progressively more complex fracture geometries and networks. Finally we investigate the validity of a continuum limit as fracture densities increase to the point that fracture separation length scales are comparable with thermal diffusion length scales.

  9. Modeling of Immiscible, Two-Phase Flows in a Natural Rock Fracture

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H

    2009-01-01

    One potential method of geologically sequestering carbon dioxide (CO2) is to inject the gas into brine-filled, subsurface formations. Within these low-permeability rocks, fractures exist that can act as natural fluid conduits. Understanding how a less viscous fluid moves when injected into an initially saturated rock fracture is important for the prediction of CO2 transport within fractured rocks. Our study examined experimentally and numerically the motion of immiscible fluids as they were transported through models of a fracture in Berea sandstone. The natural fracture geometry was initially scanned using micro-computerized tomography (CT) at a fine volume-pixel (voxel) resolution by Karpyn et al. [1]. This CT scanned fracture was converted into a numerical mesh for two-phase flow calculations using the finite-volume solver FLUENT® and the volume-of-fluid method. Additionally, a translucent experimental model was constructed using stereolithography. The numerical model was shown to agree well with experiments for the case of a constant rate injection of air into the initially water-saturated fracture. The invading air moved intermittently, quickly invading large-aperture regions of the fracture. Relative permeability curves were developed to describe the fluid motion. These permeability curves can be used in reservoir-scale discrete fracture models for predictions of fluid motion within fractured geological formations. The numerical model was then changed to better mimic the subsurface conditions at which CO2 will move into brine saturated fractures. The different fluid properties of the modeled subsurface fluids were shown to increase the amount of volume the less-viscous invading gas would occupy while traversing the fracture.

  10. Mathematical modelling on transport of petroleum hydrocarbons in saturated fractured rocks

    Indian Academy of Sciences (India)

    G Suresh Kumar

    2014-10-01

    The present paper addresses critical issues that describe the dissolution mass transfer of petroleum hydrocarbons in a saturated subsurface system. The field procedure associated with the estimation of Light Non-Aqueous Phase Liquid (LNAPL) thickness in site monitor wells is revisited. A brief theory has been included on the composition and transport of petroleum hydrocarbons following an onshore oil spill in order to demonstrate the level of complexity associated with the LNAPL dissolution mass transfer even in a classical porous medium. However, such studies in saturated fractured rocks are highly complex and limited, and hence, deserve a special attention as the fate and transport of the petroleum hydrocarbons are not uncommon in saturated fractured rocks. In this context, an improved mathematical model has been proposed that will better describe the dissolution kinetics of petroleum hydrocarbons in saturated fractured rocks at the scale of a single fracture using dual-porosity concept. The lumped mass transfer coefficient in a classical porous medium proposed depends on mean grain size, while the same parameter has been replaced by an equivalent average thickness of fracture aperture that better describes the LNAPL dissolution rate in a coupled fracture-matrix system. A set of nonlinear coupled partial differential equations is deduced for a coupled fracture-matrix system in analogy with the differential equations of a classical porous medium. The proposed mathematical model may work well for the fracture aperture thicknesses varying between 100 and 500 microns with a relatively low Reynolds Number and initial NAPL saturation.

  11. Fracture Propagation Characteristic and Micromechanism of Rock-Like Specimens under Uniaxial and Biaxial Compression

    Directory of Open Access Journals (Sweden)

    Xue-wei Liu

    2016-01-01

    Full Text Available This paper presents a set of uniaxial and biaxial compression tests on the rock-like material specimens with different fracture geometries through a rock mechanics servo-controlled testing system (RMT-150C. On the basis of experimental results, the characteristics of fracture propagation under different fracture geometries and loading conditions are firstly obtained. The newly formed fractures are observed propagating from or near the preexisting crack tips for different specimens, while the propagation paths are affected by the loading condition obviously. Then, by adopting acoustic emission (AE location technique, AE event localization characteristics in the process of loading are investigated. The locations of AE events are in good agreement with the macroscopic fracture propagation path. Finally, the micromechanism of macroscopic fracture propagation under uniaxial and biaxial compression conditions is analyzed, and the fracture propagation can be concluded as a result of microdamage accumulation inside the material. The results of this paper are helpful for theory and engineering design of the fractured rock mass.

  12. Mode Ⅱ fracture mechanism of direct shearing specimen with guiding grooves of rock

    Institute of Scientific and Technical Information of China (English)

    饶秋华; 孙宗颀; 王桂尧; 徐纪成; 张静宜

    2001-01-01

    Fracture mechanism of direct shear specimen with guiding grooves of rock was investigated experimentally and numerically in order to explore a favorable stress condition for creating Mode Ⅱ fracture and guide design of specimen configuration for determining Mode Ⅱ fracture toughness of rock, KⅡC. The experimental and numerical results demonstrate that Mode Ⅱ fracture can be successfully achieved in the direct shearing specimen with guiding groove because the guiding grooves added in the notch plane can generate a favorable stress condition for Mode Ⅱ fracture, i.e. tensile stress at the notch tip is completely depressed and shear stress at the notch tip is very high in the notch plane. The optimum design of the specimen configuration for KⅡC testing should aim to reduce tensile stress to be compressive stress or be lower than tensile strength and greatly increase shear stress at crack tip.

  13. Study of the fracture behavior of mortar and concretes with crushed rock or pebble aggregates

    Directory of Open Access Journals (Sweden)

    Sebastião Ribeiro

    2011-03-01

    Full Text Available The objective of this work was to compare the fracture energy of mortar and concretes produced with crushed rock and pebble aggregates using zero, 10, 20, 30 and 40% of aggregates mixed with standard mortar and applying the wedge splitting method to achieve stable crack propagation. The samples were cast in a special mold and cured for 28 days, after which they were subjected to crack propagation tests by the wedge splitting method to determine the fracture energies of the mortar and concrete. The concretes showed higher fracture energy than the mortar, and the concretes containing crushed rock showed higher resistance to crack propagation than all the compositions containing pebbles. The fracture energy varied from 38 to 55 J.m-2. A comparison of the number of aggregates that separated from the two concrete matrices with the highest fracture energies indicated that the concrete containing pebbles crumbled more easily and was therefore less resistant to crack propagation.

  14. Rock damage caused by underground excavation and meteorite impacts

    OpenAIRE

    Bäckström, Ann

    2008-01-01

    The intent of this thesis is to contribute to the understanding of the origin of fractures in rock. The man-made fracturing from engineering activities in crystalline rock as well as the fracturing induced by the natural process of meteorite impacts is studied by means of various characterization methods. In contrast to engineering induced rock fracturing, where the goal usually is to minimize rock damage, meteorite impacts cause abundant fracturing in the surrounding bedrock. In a rock mass ...

  15. Trends, prospects and challenges in quantifying flow and transport through fractured rocks

    Science.gov (United States)

    Neuman, Shlomo P.

    2005-03-01

    Among the current problems that hydrogeologists face, perhaps there is none as challenging as the characterization of fractured rock (Faybishenko and Benson 2000). This paper discusses issues associated with the quantification of flow and transport through fractured rocks on scales not exceeding those typically associated with single- and multi-well pressure (or flow) and tracer tests. As much of the corresponding literature has focused on fractured crystalline rocks and hard sedimentary rocks such as sandstones, limestones (karst is excluded) and chalk, so by default does this paper. Direct quantification of flow and transport in such rocks is commonly done on the basis of fracture geometric data coupled with pressure (or flow) and tracer tests, which therefore form the main focus. Geological, geophysical and geochemical (including isotope) data are critical for the qualitative conceptualization of flow and transport in fractured rocks, and are being gradually incorporated in quantitative flow and transport models, in ways that this paper unfortunately cannot describe but in passing. The hydrogeology of fractured aquifers and other earth science aspects of fractured rock hydrology merit separate treatments. All evidence suggests that rarely can one model flow and transport in a fractured rock consistently by treating it as a uniform or mildly nonuniform isotropic continuum. Instead, one must generally account for the highly erratic heterogeneity, directional dependence, dual or multicomponent nature and multiscale behavior of fractured rocks. One way is to depict the rock as a network of discrete fractures (with permeable or impermeable matrix blocks) and another as a nonuniform (single, dual or multiple) continuum. A third way is to combine these into a hybrid model of a nonuniform continuum containing a relatively small number of discrete dominant features. In either case the description can be deterministic or stochastic. The paper contains a brief assessment

  16. Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara

    2016-04-01

    Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D

  17. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  18. A Reconsideration of the Extension Strain Criterion for Fracture and Failure of Rock

    Science.gov (United States)

    Wesseloo, J.; Stacey, T. R.

    2016-12-01

    The complex behaviours of rocks and rock masses have presented paradoxes to the rock engineer, including the fracturing of seemingly strong rock under low stress conditions, which often occurs near excavation boundaries. The extension strain criterion was presented as a fracture initiation criterion under these conditions (Stacey in Int J Rock Mech Min Sci 18:469-474, 1981). This criterion has been used successfully by some and criticised by others. In this paper, we review the literature on the extension strain criterion and present a case for the correct interpretation of the criterion and the conditions suitable for its use. We argue that the extension strain criterion can also be used to provide an indication of damage level under conditions of relatively low confining stress. We also present an augmentation of the criterion, the ultimate extension strain, which is applicable under extensional loading conditions when σ 2 is similar in magnitude to σ 1.

  19. Analysis of Fracturing Network Evolution Behaviors in Random Naturally Fractured Rock Blocks

    Science.gov (United States)

    Wang, Y.; Li, X.; Zhang, B.

    2016-11-01

    Shale gas has been discovered in the Upper Triassic Yanchang Formation, Ordos Basin, China. Due to the weak tectonic activities in the shale plays, core observations indicate abundant random non-tectonic micro-fractures in the producing shales. The role of micro-fractures in hydraulic fracturing for shale gas development is currently poorly understood yet potentially critical. In a series of scaled true triaxial laboratory experiments, we investigate the interaction of propagating fracturing network with natural fractures. The influence of dominating factors was studied and analyzed, with an emphasis on non-tectonic fracture density, injection rate, and stress ratio. A new index of P-SRV is proposed to evaluate the fracturing effectiveness. From the test results, three types of fracturing network geometry of radial random net-fractures, partly vertical fracture with random branches, and vertical main fracture with multiple branches were observed. It is suggested from qualitative and quantitative analysis that great micro-fracture density and injection rate tend to maximum the fracturing network; however, it tends to decrease the fracturing network with the increase in horizontal stress ratio. The function fitting results further proved that the injection rate has the most obvious influence on fracturing effectiveness.

  20. Seismic waves in rocks with fluids and fractures

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2007-05-14

    Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracture parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.

  1. Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones

    Energy Technology Data Exchange (ETDEWEB)

    Haase, C.S.; King, H.L.

    1986-01-01

    Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs.

  2. The Role of the Rock on Hydraulic Fracturing of Tight Shales

    Science.gov (United States)

    Suarez-Rivera, R.; Green, S.; Stanchits, S.; Yang, Y.

    2011-12-01

    Successful economic production of oil and gas from nano-darcy-range permeability, tight shale reservoirs, is achieved via massive hydraulic fracturing. This is so despite their limited hydrocarbon in place, on per unit rock volume basis. As a reference, consider a typical average porosity of 6% and an average hydrocarbon saturation of 50% to 75%. The importance of tight shales results from their large areal extent and vertical thickness. For example, the areal extent of the Anwar field in Saudi Arabia of 3230 square miles (and 300 ft thick), while the Marcellus shale alone is over 100,000 square miles (and 70 to 150 ft thick). The low permeability of the rock matrix, the predominantly mineralized rock fabric, and the high capillary forces to both brines and hydrocarbons, restrict the mobility of pore fluids in these reservoirs. Thus, one anticipates that fluids do not move very far within tight shales. Successful production, therefore results from maximizing the surface area of contact with the reservoir by massive hydraulic fracturing from horizontal bore holes. This was the conceptual breakthrough of the previous decade and the one that triggered the emergence of gas shales, and recently oily shales, as important economic sources of energy. It is now understood that the process can be made substantially more efficient, more sustainable, and more cost effective by understanding the rock. This will be the breakthrough of this decade. Microseismic monitoring, mass balance calculations, and laboratory experiments of hydraulic fracturing on tight shales indicate the development of fracture complexity and fracture propagation that can not be explained in detail in this layered heterogeneous media. It is now clear that in tight shales the large-scale formation fabric is responsible for fracture complexity. For example, the presence and pervasiveness of mineralized fractures, bed interfaces, lithologic contacts, and other types of discontinuities, and their orientation

  3. Unified pipe network method for simulation of water flow in fractured porous rock

    Science.gov (United States)

    Ren, Feng; Ma, Guowei; Wang, Yang; Li, Tuo; Zhu, Hehua

    2017-04-01

    Rock masses are often conceptualized as dual-permeability media containing fractures or fracture networks with high permeability and porous matrix that is less permeable. In order to overcome the difficulties in simulating fluid flow in a highly discontinuous dual-permeability medium, an effective unified pipe network method is developed, which discretizes the dual-permeability rock mass into a virtual pipe network system. It includes fracture pipe networks and matrix pipe networks. They are constructed separately based on equivalent flow models in a representative area or volume by taking the advantage of the orthogonality of the mesh partition. Numerical examples of fluid flow in 2-D and 3-D domain including porous media and fractured porous media are presented to demonstrate the accuracy, robustness, and effectiveness of the proposed unified pipe network method. Results show that the developed method has good performance even with highly distorted mesh. Water recharge into the fractured rock mass with complex fracture network is studied. It has been found in this case that the effect of aperture change on the water recharge rate is more significant in the early stage compared to the fracture density change.

  4. Estimation of the sustainable yields of boreholes in fractured rock formations

    Science.gov (United States)

    van Tonder, G. J.; Botha, J. F.; Chiang, W.-H.; Kunstmann, H.; Xu, Y.

    2001-01-01

    The simplest way to derive an estimate for the sustainable yield of a borehole is to study the behaviour of drawdowns observed during a hydraulic (also known as a pumping test) of the borehole, through an appropriate conceptual model. The choice of this model is probably the most difficult choice that the analyst of such a hydraulic test has to make, since a wrong model can only lead to the wrong conclusions and failure of the borehole. This paper discusses a semi-analytical and two numerical methods that can be used to simplify the analyses of hydraulic tests in fractured rock formations. The first method, called the Method of Derivative Fitting (MDF), uses a new approach to identify the conceptual model needed in such analyses. This is achieved by characterizing the various flow periods in fractured rock aquifers with numerical approximations of the first logarithmic derivative of the observed drawdown (the derivative of the drawdown with respect to the logarithm of the time). Semi-analytical expressions are used to estimate the influence that boundaries may have on the observed drawdown and the sustainable yield of a borehole — the rate at which a borehole can be pumped without lowering the water level below a prescribed limit. An effort has also been made to quantify errors in the estimates introduced by uncertainties in the parameters, such as the transmissivity and storativity, through a Gaussian error propagation analysis. These approximations and the MDF, called the Flow Characteristics Method (FCM) have been implemented in a user-friendly EXCEL notebook, and used to estimate the sustainable yield of a borehole on the Campus Test Site at the University of the Orange Free State. The first numerical method, a two-dimensional radial flow model, is included here because it allows the user more freedom than the FCM, although it requires more information. One particular advantage of the method is that it allows one to obtain realistic estimates of the

  5. Determination of hydraulic conductivity of fractured rock masses:A case study for a rock cavern project in Singapore

    Institute of Scientific and Technical Information of China (English)

    Zhipeng Xu; Zhiye Zhao; Jianping Sun; Ming Lu

    2015-01-01

    In order to reduce the risk associated with water seepage in an underground rock cavern project in Singapore, a reliable hydro-geological model should be established based on the in situ investigation data. The key challenging issue in the hydro-geological model building is how to integrate limited geological and hydro-geological data to determine the hydraulic conductivity of the fractured rock masses. Based on the data obtained from different stages (feasibility investigation stage, construction stage, and post-construction stage), suitable models and methods are proposed to determine the hy-draulic conductivities at different locations and depths, which will be used at other locations in the future.

  6. Porosity, permeability and 3D fracture network characterisation of dolomite reservoir rock samples.

    Science.gov (United States)

    Voorn, Maarten; Exner, Ulrike; Barnhoorn, Auke; Baud, Patrick; Reuschlé, Thierry

    2015-03-01

    With fractured rocks making up an important part of hydrocarbon reservoirs worldwide, detailed analysis of fractures and fracture networks is essential. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) however suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this paper, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. We process the 3D μCT data in this study by a Hessian-based fracture filtering routine and can successfully extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. Additionally, thin sections made from selected plug samples provide 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) towards more realistic reservoir conditions. This study shows that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that although there are limitations, several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and

  7. NUMERICAL ANALYSIS OF SATURATED-UNSATURATED SEEPAGE FLOW IN FRACTURED ROCK MASS DUE TO SURFACE INFILTRATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Seepage flow in fractured rock mass due to surface infiltration is a saturated-unsaturated seepage process. Aimed at rock mass with large fracture density, which can be equivalent to continuum, a mathematical model for saturated-unsaturated seepage flow in fractured rock mass due to surface infiltration was established in this paper. The Galerkin finite element method was used in numerical simulation and a finite element program used to calculate saturated-unsaturated seepage flow due to surface infiltration was worked out. A model experiment was employed examine the reasonableness of the program. The results show that the proposed model and program are reasonable. The application of the analysis method in this paper in an engineering project shows that the method is reliable and feasible.

  8. Groundwater flow into underground openings in fractured crystalline rocks: an interpretation based on long channels

    Science.gov (United States)

    Black, John H.; Woodman, Nicholas D.; Barker, John A.

    2016-12-01

    Rethinking an old tracer experiment in fractured crystalline rock suggests a concept of groundwater flow in sparse networks of long channels that is supported by results from an innovative lattice network model. The model, HyperConv, can vary the mean length of `strings' of connected bonds, and the gaps between them, using two independent probability functions. It is found that networks of long channels are able to percolate at lower values of (bond) density than networks of short channels. A general relationship between mean channel length, mean gap length and probability of percolation has been developed which incorporates the well-established result for `classical' lattice network models as a special case. Using parameters appropriate to a 4-m diameter drift located 360 m below surface at Stripa Mine Underground Research Laboratory in Sweden, HyperConv is able to reproduce values of apparent positive skin, as observed in the so-called Macropermeability Experiment, but only when mean channel length exceeds 10 m. This implies that such channel systems must cross many fracture intersections without bifurcating. A general relationship in terms of flow dimension is suggested. Some initial investigations using HyperConv show that the commonly observed feature, `compartmentalization', only occurs when channel density is just above the percolation threshold. Such compartments have been observed at Kamaishi Experimental Mine (Japan) implying a sparse flow network. It is suggested that compartments and skin are observable in the field, indicate sparse channel systems, and could form part of site characterization for deep nuclear waste repositories.

  9. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM

    Directory of Open Access Journals (Sweden)

    Ingrid Tomac

    2017-02-01

    Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.

  10. Advective-diffusive mass transfer in fractured porous media with variable rock matrix block size.

    Science.gov (United States)

    Sharifi Haddad, Amin; Hassanzadeh, Hassan; Abedi, Jalal

    2012-05-15

    Traditional dual porosity models do not take into account the effect of matrix block size distribution on the mass transfer between matrix and fracture. In this study, we introduce the matrix block size distributions into an advective-diffusive solute transport model of a divergent radial system to evaluate the mass transfer shape factor, which is considered as a first-order exchange coefficient between the fracture and matrix. The results obtained lead to a better understanding of the advective-diffusive mass transport in fractured porous media by identifying two early and late time periods of mass transfer. Results show that fractured rock matrix block size distribution has a great impact on mass transfer during early time period. In addition, two dimensionless shape factors are obtained for the late time, which depend on the injection flow rate and the distance of the rock matrix from the injection point.

  11. PARTRACK - A particle tracking algorithm for transport and dispersion of solutes in a sparsely fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)

    2001-04-01

    A particle tracking algorithm, PARTRACK, that simulates transport and dispersion in a sparsely fractured rock is described. The main novel feature of the algorithm is the introduction of multiple particle states. It is demonstrated that the introduction of this feature allows for the simultaneous simulation of Taylor dispersion, sorption and matrix diffusion. A number of test cases are used to verify and demonstrate the features of PARTRACK. It is shown that PARTRACK can simulate the following processes, believed to be important for the problem addressed: the split up of a tracer cloud at a fracture intersection, channeling in a fracture plane, Taylor dispersion and matrix diffusion and sorption. From the results of the test cases, it is concluded that PARTRACK is an adequate framework for simulation of transport and dispersion of a solute in a sparsely fractured rock.

  12. Analysis of fracture process zone in brittle rock subjected to shear-compressive loading

    Institute of Scientific and Technical Information of China (English)

    ZHOU De-quan; CHEN Feng; CAO Ping; MA Chun-de

    2005-01-01

    An analytical expression for the prediction of shear-compressive fracture process zone(SCFPZ) is derived by using a proposed local strain energy density criterion, in which the strain energy density is separated into the dilatational and distortional strain energy density, only the former is considered to contribute to the brittle fracture of rock in different loading cases. The theoretical prediction by this criterion shows that the SCFPZ is of asymmetric mulberry leaf in shape, which forms a shear-compression fracture kern. Dilatational strain energy density along the boundary of SCFPZ reaches its maximum value. The dimension of SCFPZ is governed by the ratio of KⅡ to KⅠ . The analytical results are then compared with those from literatures and the tests conducted on double edge cracked Brazilian disk subjected to diametrical compression. The obtained results are useful to the prediction of crack extension and to nonlinear analysis of shear-compressive fracture of brittle rock.

  13. Processes controlling the migration and biodegradation of non-aqueous phase liquids (NAPLs) within fractured rocks in the vadose zone. FY96 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Geller, J.T.; Holman, H.Y.; Conrad, M.; Pruess, K.; Hunter-Cevera, J.C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.; Su, G. [Univ. of California, Berkeley, CA (United States). Dept. of Civil Engineering

    1997-02-01

    This project investigates both flow dynamics and microbial processes affecting NAPLs in fractured rock in a closely coupled, integrated manner. The objective is to develop a qualitative and quantitative understanding of the behavior of two and three immiscible fluid phases, microbial transformation and/or degradation, and to provide a scientific basis for field investigations, site characterization, and remedial action for NAPL contamination in fractured rocks. To achieve this, the program combines laboratory and theoretical investigations, coupled with the evaluation of conditions at relevant field sites. This report summarizes the work accomplished since inception of the project in April 1996.

  14. Radon (222Rn) in ground water of fractured rocks: A diffusion/ion exchange model

    Science.gov (United States)

    Wood, W.W.; Kraemer, T.F.; Shapiro, A.

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion- exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42??56???N, 71??43???W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.

  15. Flow dynamics and potential for biodegradation of organic contaminants in fractured rock vadose zones

    Science.gov (United States)

    Geller, J. T.; Holman, H.-Y.; Su, G.; Conrad, M. E.; Pruess, K.; Hunter-Cevera, J. C.

    2000-04-01

    We present an experimental approach for investigating the potential for bioremediation of volatile organic compounds (VOCs) in fractured rock vadose zones. The experimental work was performed with rock samples and indigenous microorganisms from the site of the United States Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL), located in a basalt flow basin where VOC contamination threatens the Snake River Aquifer. Our approach has four components: (1) establishing a conceptual model for fluid and contaminant distribution in the geologic matrix of interest; (2) identification of important features of liquid distribution by means of seepage experiments in the fracture plane; (3) identification of the presence and activity of microorganisms by non-destructive monitoring of biotransformations on rock surfaces at the micron-scale; and (4) integration of flow and biological activity in natural rock "geocosms". Geocosms are core-scale flow cells that incorporate some aspects of natural conditions, such as liquid seepage in the fracture plane and moisture content. Fluid flow and distribution within fracture networks may be a significant factor in the ability of microorganisms to degrade VOCs, as they affect the availability of substrate, moisture and nutrients. Flow visualization and tracer breakthrough curves in transparent fracture replicas for unsaturated inlet conditions exhibited the channelized and intermittent nature of liquid seepage. The seepage of water and non-aqueous phase liquids (NAPLs) of varying physical and chemical properties into an initially dry replica showed only subtle differences in liquid distribution. In contrast, the seepage of a NAPL into the fracture replica containing residual water resulted in complex trapping of NAPL along the solid/water/air contact lines and diversion of NAPL to previously dry parts of the fracture. We found that a mixed culture of viable bacteria exists on the natural rock surfaces

  16. Effects of investigations into vibrating disc use for rock fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Krauze, K.; Pawlik, J.; Pawlik, K.

    1987-06-01

    Evaluates results of laboratory investigations into feasibility of mine drivage by heading machines with vibrating discs for rock cutting. Each cutting head was equipped with 2 discs. Discs with a diameter of 200 mm, 50 mm thick and with a wedge angle of 90 degrees were used for cutting three types of rocks (2 types of sandstones with a compression strength exceeding 80 MPa). Amplitude of disc vibrations ranged from 4 to 8 mm, frequency from 12 to 20 Hz. Investigations showed vibrating discs to be an efficient tool for cutting rocks with a high compression strength. Cutting disc wear was extremely low in contrast to wear of conventional picks of the NK-4 type (which after cutting a 0.3 m long rock section were removed due to wear). Cutting energy depended on vibration frequency and amplitude. 5 refs.

  17. A numerical model of hydro-thermo-mechanical coupling in a fractured rock mass

    Energy Technology Data Exchange (ETDEWEB)

    Bower, K.M.

    1996-06-01

    Coupled hydro-thermo-mechanical codes with the ability to model fractured materials are used for predicting groundwater flow behavior in fractured aquifers containing thermal sources. The potential applications of such a code include the analysis of groundwater behavior within a geothermal reservoir. The capability of modeling hydro-thermo systems with a dual porosity, fracture flow model has been previously developed in the finite element code, FEHM. FEHM has been modified to include stress coupling with the dual porosity feature. FEHM has been further developed to implicitly couple the dependence of fracture hydraulic conductivity on effective stress within two dimensional, saturated aquifers containing fracture systems. The cubic law for flow between parallel plates was used to model fracture permeability. The Bartin-Bandis relationship was used to determine the fracture aperture within the cubic law. The code used a Newton Raphson iteration to implicitly solve for six unknowns at each node. Results from a model of heat flow from a reservoir to the moving fluid in a single fracture compared well with analytic results. Results of a model showing the increase in fracture flow due to a single fracture opening under fluid pressure compared well with analytic results. A hot dry rock, geothermal reservoir was modeled with realistic time steps indicating that the modified FEHM code does successfully model coupled flow problems with no convergence problems.

  18. Flow dynamics and potential for Biodegradation of Organic Contaminants in Fractured Rock Vadose Zones

    Energy Technology Data Exchange (ETDEWEB)

    Geller, J.T.; Holman, H.-Y.; Su, T.-S.; Liou, M.S.; Conrad, M.S.; Pruess, K.; Hunter-Devera, J.C.

    1998-12-01

    We present an experimental approach for investigating the potential for bioremediation of volatile organic chemicals (VOCs) in fractured-rock vadose zones. This approach is based on the coupling of fluid flow dynamics and biotransformation processes. Fluid flow and distribution within fracture networks may be a significant factor in the ability of microorganisms to degrade VOCs, as they affect the availability of substrate, moisture and nutrients. Biological activity can change liquid surface tension and generate biofilms that may change the nettability of solid surfaces, locally alter fracture permeability and redirect infiltrating liquids. Our approach has four components: (1) establishing a conceptual model for fluid and contaminant distribution in the geologic matrix of interest; (2) physical and numerical experiments of liquid seepage in the fracture plane; (3) non-destructive monitoring of biotransformations on rock surfaces at the micron-scale; and, (4) integration of flow and biological activity in natural rock ''geocosms''. Geocosms are core-scale flow cells that incorporate some aspects of natural conditions, such as liquid seepage in the fracture plane and moisture content. The experimental work was performed with rock samples and indigenous microorganisms from the site of the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL), located in a basalt flow basin where VOC contamination threatens the Snake River Aquifer. The insights gained from this approach should contribute to the design of techniques to monitor and stimulate naturally occurring biological activity and control the spread of organic contaminants.

  19. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  20. Rock Springs Site 12 hydraulic/explosive true in situ oil shale fracturing experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, R.L.; Boade, R.R.; Stevens, A.L.; Long, A. Jr.; Turner, T.F.

    1980-06-01

    The experiment plan involved the creation and characterization of three horizontal hydraulic fractures, followed by the insertion and simultaneous detonation of slurry explosive in the two lower fractures. Core analyses, wellbore logging, and airflow and /sup 85/Kr tracer tests were used for site characterization and assessment of the hydraulic and explosive fracturing. Tiltmeters, wellhead pressure and flow gages, and in-formation pressure, flow and crack-opening sensors were used to monitor hydrofracture creation and explosive insertion. Explosive detonation diagnostic data were taken with stress and time-of-arrival gages and surface and in-formation accelerometers. The post-fracturing assessments indicated that: (1) hydrofracture creation and explosive insertion and detonation were accomplished essentially as planned; (2) induced fractures were randomly distributed through the shale with no extensively fractured regions or dislocation of shale; and (3) enhancement of permeability was limited to enlargement of the explosive-filled fractures.

  1. A NEW HIGH RESOLUTION OPTICAL METHOD FOR OBTAINING THE TOPOGRAPHY OF FRACTURE SURFACES IN ROCKS

    Directory of Open Access Journals (Sweden)

    Steven Ogilvie

    2011-05-01

    Full Text Available Surface roughness plays a major role in the movement of fluids through fracture systems. Fracture surface profiling is necessary to tune the properties of numerical fractures required in fluid flow modelling to those of real rock fractures. This is achieved using a variety of (i mechanical and (ii optical techniques. Stylus profilometry is a popularly used mechanical method and can measure surface heights with high precision, but only gives a good horizontal resolution in one direction on the fracture plane. This method is also expensive and simultaneous coverage of the surface is not possible. Here, we describe the development of an optical method which images cast copies of rough rock fractures using in-house developed hardware and image analysis software (OptiProf™ that incorporates image improvement and noise suppression features. This technique images at high resolutions, 15-200 μm for imaged areas of 10 × 7.5 mm and 100 × 133 mm, respectively and a similar vertical resolution (15 μm for a maximum topography of 4 mm. It uses in-house developed hardware and image analysis (OptiProf™ software and is cheap and non-destructive, providing continuous coverage of the fracture surface. The fracture models are covered with dye and fluid thicknesses above the rough surfaces converted into topographies using the Lambert-Beer Law. The dye is calibrated using 2 devices with accurately known thickness; (i a polycarbonate tile with wells of different depths and (ii a wedge-shaped vial made from silica glass. The data from each of the two surfaces can be combined to provide an aperture map of the fracture for the scenario where the surfaces touch at a single point or any greater mean aperture. The topography and aperture maps are used to provide data for the generation of synthetic fractures, tuned to the original fracture and used in numerical flow modelling.

  2. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    Science.gov (United States)

    Farough, Aida; Moore, Diane E.; Lockner, David A.; Lowell, R. P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1–2 orders of magnitude during the 200–330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  3. Experimental Investigation of Seepage Properties of Fractured Rocks Under Different Confining Pressures

    Science.gov (United States)

    Ma, D.; Miao, X. X.; Chen, Z. Q.; Mao, X. B.

    2013-09-01

    The effectiveness of transmitting underground water in rock fractures is strongly influenced by the widths of the fractures and their interconnections. However, the geometries needed for water flow in fractured rock are also heavily controlled by the confining pressure conditions. This paper is intended to study the seepage properties of fractured rocks under different confining pressures. In order to do this, we designed and manufactured a water flow apparatus that can be connected to the electro-hydraulic servo-controlled test system MTS815.02, which provides loading and exhibits external pressures in the test. Using this apparatus, we tested fractured mudstone, limestone and sandstone specimens and obtained the relationship between seepage properties and variations in confining pressure. The calculation of the seepage properties based on the collection of water flow and confining pressure differences is specifically influenced by non-Darcy flow. The results show that: (1) The seepage properties of fractured rocks are related to confining pressure, i.e. with the increase of confining pressure, the permeability decreases and the absolute value of non-Darcy flow coefficient increases. (2) The sandstone coefficients and range from to m2 and to m-1, respectively, and exhibit a greater change compared to coefficients of mudstone and limestone. (3) From the regression analysis of experimental data, it is concluded that the polynomial function is a better fit than the power and logarithmic functions. The results obtained can provide an important reference for understanding the stability of rock surrounding roadways toward prevention of underground water gushing-out, and for developing underground resources (e.g. coal).

  4. Sensors for hydraulic-induced fracturing characterization

    Science.gov (United States)

    Mireles, Jose, Jr.; Estrada, Horacio; Ambrosio, Roberto C.

    2011-06-01

    Hydraulic induced fracturing (HIF) in oil wells is used to increase oil productivity by making the subterranean terrain more deep and permeable. In some cases HIF connects multiple oil pockets to the main well. Currently there is a need to understand and control with a high degree of precision the geometry, direction, and the physical properties of fractures. By knowing these characteristics (the specifications of fractures), other drill well locations and set-ups of wells can be designed to increase the probability of connection of the oil pockets to main well(s), thus, increasing productivity. The current state of the art of HIF characterization does not meet the requirements of the oil industry. In Mexico, the SENER-CONACyT funding program recently supported a three party collaborative effort between the Mexican Petroleum Institute, Schlumberger Dowell Mexico, and the Autonomous University of Juarez to develop a sensing scheme to measure physical parameters of a HIF like, but not limited to pressure, temperature, density and viscosity. We present in this paper a review of HIF process, its challenges and the progress of sensing development for down hole measurement parameters of wells for the Chicontepec region of Mexico.

  5. Neutron Imaging of Rapid Water Imbibition in Fractured Sedimentary Rock Cores

    Science.gov (United States)

    Cheng, Chu-Lin; Perfect, Edmund; Donnelly, Brendan; Bilheux, Hassina; Tremsin, Anton; McKay, Larry; Distefano, Victoria; Cai, Jianchao; Santodonato, Lou

    2015-03-01

    Advances in nondestructive testing methods, such as neutron, nuclear magnetic resonance, and x-ray imaging, have significantly improved experimental capabilities to visualize fracture flow in various important fossil energy contexts, e.g. enhanced oil recovery and shale gas. We present a theoretical framework for predicting the rapid movement of water into air-filled fractures within a porous medium based on early-time capillary dynamics and spreading over rough fracture surfaces. The theory permits estimation of sorptivity values for the matrix and fracture zone, as well as a dispersion parameter which quantifies the extent of spreading of the wetting front. Dynamic neutron imaging of water imbibition in unsaturated fractured Berea sandstone cores was employed to evaluate the proposed model. The experiments were conducted at the Neutron Imaging Prototype Facility at Oak Ridge National Laboratory. Water uptake into both the matrix and fracture zone exhibited square-root-of-time behavior. Both theory and neutron imaging data indicated that fractures significantly increase imbibition in unsaturated sedimentary rock by capillary action and surface spreading on rough fracture faces. Fractures also increased the dispersion of the wetting front.

  6. Role of induced electrical polarization to identify soft ground/fractured rock conditions

    Science.gov (United States)

    Park, Jinho; Lee, Kang-Hyun; Seo, Hyungjoon; Ryu, Jinwoo; Lee, In-Mo

    2017-02-01

    This study attempted to evaluate the role and effectiveness of induced polarization (IP) along with electrical resistivity to identify soft ground/fractured rock. Theoretical studies as well as laboratory-scale experiments were conducted for this purpose. The theoretical study involved deriving the functional relationship between chargeability and influential variables. This was followed by performing a sensitivity analysis using the derived relationship to reveal that the size of narrow pores (r1) exerted the greatest influence on the chargeability followed by the salinity of the pore water (C0). In the laboratory test, a small-scale fractured rock zone was modeled using sandstone as a parent rock. The chargeability and resistivity were measured by changing the size of the joint aperture filled with tap water and/or sea water, the location of the fractured zone, and the thickness of the soil layer in a soil-rock multi-layered ground. The experimental study modeled the jointed zone between competent sandstone layers and indicated that the chargeability was mostly controlled by the size of the narrow pore (r1) of the surface sandstone and not by the porosity of the jointed zone. Hence, it was concluded that the chargeability did not significantly depend on the fractured characteristics of the jointed rock. It could be difficult to clearly distinguish as to whether the low resistivity value is caused by the sea water intrusion or by the increase in porosity of the fractured ground. However, the IP exploration can be effectively utilized to identify sea water intrusion since the chargeability decreased as the salinity of pore water increased. The experimental study on a soil-rock multi-layered ground indicated that the measured chargeability was controlled by the percentage of current flow that passed through the competent rock as well as by the narrow pore size of the rock itself. In conclusion, the ground condition could be easily identified by measuring the IP in

  7. A Study on the Fracture Control of Rock Bolts in High Ground Pressure Roadways of Deep Mines

    Directory of Open Access Journals (Sweden)

    Wen Jinglin

    2015-01-01

    Full Text Available According to the frequent fractures of rock bolts in high ground pressure roadways of deep mines, this paper analyzes the mechanism of fractures and concludes that high ground pressure and material de-fects are main reasons for the fracture of rock bolts. The basic idea of fracture control of rock bolts in high ground pressure roadways of deep mines is to increase the yield load and the limit load of rock bolt materials and reduce the actual load of rock bolts. There are four ways of controlling rock bolt fracture: increasing the rock bolt diameter, strengthening bolt materials, weakening support rigidity and the implementation of double supporting. With the roadway support of the 2302 working face of a coal mine as the project background, this paper carries out a study on the effect of two schemes, increasing the rock bolt diameter and the double supporting technique through methods of theoretical analysis, numerical simulation and so on. It determines the most reasonable diam-eter of rock bolts and the best delay distance of secondary support. Practices indicate that rock bolt fracture can be effectively controlled through the double supporting technique, which strengthens the roof and two sides through the first supporting technique and strengthens side angles through the secondary supporting technique.

  8. Ancient microbial activity recorded in fracture fillings from granitic rocks (Äspö Hard Rock Laboratory, Sweden).

    Science.gov (United States)

    Heim, C; Lausmaa, J; Sjövall, P; Toporski, J; Dieing, T; Simon, K; Hansen, B T; Kronz, A; Arp, G; Reitner, J; Thiel, V

    2012-07-01

    Fracture minerals within the 1.8-Ga-old Äspö Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at -450 m depth in the Äspö Hard Rock Laboratory. This approach included polarization microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), confocal Raman microscopy, electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The fracture mineral succession, consisting of fluorite and low-temperature calcite, showed a thin (20-100 μm), dark amorphous layer lining the boundary between the two phases. Microscopic investigations of the amorphous layer revealed corrosion marks and, in places, branched tubular structures within the fluorite. Geochemical analysis showed significant accumulations of Si, Al, Mg, Fe and the light rare earth elements (REE) in the amorphous layer. In the same area, ToF-SIMS imaging revealed abundant, partly functionalized organic moieties, for example, C(x)H(y)⁺, C(x)H(y)N⁺, C(x)H(y)O⁺. The presence of such functionalized organic compounds was corroborated by Raman imaging showing bands characteristic of C-C, C-N and C-O bonds. According to its organic nature and the abundance of relatively unstable N- and O- heterocompounds, the organic-rich amorphous layer is interpreted to represent the remains of a microbial biofilm that established much later than the initial cooling of the Precambrian host rock. Indeed, δ¹³C, δ¹⁸O and ⁸⁷Sr/⁸⁶Sr isotope data of the fracture minerals and the host rock point to an association with a fracture reactivation event in the most recent geological past.

  9. On the Relationship between Stress and Elastic Strain for Porous and Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Berryman, James G.

    2008-02-25

    Modeling the mechanical deformations of porous and fractured rocks requires a stress-strain relationship. Experience with inherently heterogeneous earth materials suggests that different varieties of Hook's law should be applied within regions of the rock having significantly different stress-strain behavior, e.g., such as solid phase and various void geometries. We apply this idea by dividing a rock body conceptually into two distinct parts. The natural strain (volume change divided by rock volume at the current stress state), rather than the engineering strain (volume change divided by the unstressed rock volume), should be used in Hooke's law for accurate modeling of the elastic deformation of that part of the pore volume subject to a relatively large degree of relative deformation (i.e., cracks or fractures). This approach permits the derivation of constitutive relations between stress and a variety of mechanical and/or hydraulic rock properties. We show that the theoretical predictions of this method are generally consistent with empirical expressions (from field data) and also laboratory rock experimental data.

  10. Measuring dynamic fracture toughness of cement rock using a short rod specimen

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As Daqing Oilfield is developing oil layer with a big potential,the requirement for the quality of well cementation is higher than ever before.Cement rock is a brittle material containing a great number of microcracks and defects.In order to reduce the damage to cement ring and improve sealed cementing property at the interface,it is necessary to conduct research on the modification of the cement rock available.According to the principle of super mixed composite materials,various fillers are added to the ingredients of cement rock.Dynamic fracture toughness of cement rock will be changed under the influence of filler.In this paper,short rod specimens of cement rock are employed in the experiments to investigate the dynamic fracture toughness of cement rocks with different ingredients using split Hopkinson Pressure Bar,and partial experimental results are given.The results indicate that fiber reinforcement is an effective way to improve the impact resistance of cement rock.

  11. Enhanced dichloroethene biodegradation in fractured rock under biostimulated and bioaugmented conditions

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste A.; Kirshtein, Julie D.; Voytek, Mary A.; Lacombe, Pierre J.; Imbrigiotta, Thomas E.; Chapelle, Francis H.; Tiedeman, Claire J.; Goode, Daniel J.

    2012-01-01

    Significant microbial reductive dechlorination of [1,2 14C] cis-dichloroethene (DCE) was observed in anoxic microcosms prepared with unamended, fractured rock aquifer materials, which were colonized in situ at multiple depths in two boreholes at the Naval Air Warfare Center (NAWC) in West Trenton, New Jersey. The lack of significant reductive dechlorination in corresponding water-only treatments indicated that chlororespiration activity in unamended, fractured rock treatments was primarily associated with colonized core material. In these unamended fractured rock microcosms, activity was highest in the shallow zones and generally decreased with increasing depth. Electron-donor amendment (biostimulation) enhanced chlororespiration in some but not all treatments. In contrast, combining electron-donor amendment with KB1 amendment (bioaugmentation) enhanced chlororespiration in all treatments and substantially reduced the variability in chlororespiration activity both within and between treatments. These results indicate (1) that a potential for chlororespiration-based bioremediation exists at NAWC Trenton but is limited under nonengineered conditions, (2) that the limitation on chlororespiration activity is not entirely due to electron-donor availability, and (3) that a bioaugmentation approach can substantially enhance in situ bioremediation if the requisite amendments can be adequately distributed throughout the fractured rock matrix.

  12. Estimating large-scale fractured rock properties from radon data collected in a ventilated tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Unger, Andre; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2003-05-12

    To address regulatory issues regarding worker safety, radon gas concentrations have been monitored as part of the operation of a deep tunnel excavated from a highly fractured tuff formation. The objective of this study was to examine the potential use of the radon data to estimate large-scale formation properties of fractured rock. An iTOUGH2 model was developed to predict radon concentrations for prescribed ventilation rates. The numerical model was used (1) to estimate the permeability and porosity of the fractured formation at the length scale of the tunnel and extending tens of meters into the surrounding rock, and (2) to understand the mechanism leading to radon concentrations that potentially exceed the regulatory limit. The mechanism controlling radon concentrations in the tunnel is a function of atmospheric barometric fluctuations propagated down the tunnel. In addition, a slight suction is induced by the ventilation system. The pressure fluctuations are dampened in the fractured formation according to its permeability and porosity. Consequently, as the barometric pressure in the tunnel drops, formation gases from the rock are pulled into the opening, resulting in high radon concentrations. Model calibration to both radon concentration data measured in the tunnel and gas phase pressure fluctuations observed in the formation yielded independent estimates of effective, large-scale fracture permeability and porosity. The calibrated model was then used as a design tool to predict the effect of adjusting the ventilation-system operation strategy for reducing the probability that radon gas concentrations will exceed the regulatory limit.

  13. Characterization of borehole fractures by the body and interface waves

    NARCIS (Netherlands)

    Henry, F.

    2005-01-01

    The success of the fracturing process in the oil and gas industry depends on our ability to define the hydraulic fracture geometry. To have a method of measurement for characterizing completely the fracture dimensions from a single well in reliable way, will be a primordial importance, in term of ec

  14. Characterization of hydraulic fractures and reservoir properties of shale using natural tracers

    Science.gov (United States)

    Heath, J. E.; Gardner, P.; Kuhlman, K. L.; Malama, B.

    2013-12-01

    Hydraulic fracturing plays a major role in the economic production of hydrocarbon from shale. Current fracture characterization techniques are limited in diagnosing the transport properties of the fractures on the near wellbore scale to that of the entire stimulated reservoir volume. Microseismic reveals information on fracture geometries, but not transport properties. Production analysis (e.g., rate transient analysis using produced fluids) estimates fracture and reservoir flow characteristics, but often relies on simplified models in terms of fracture geometries and fluid storage and transport. We present the approach and potential benefits of incorporating natural tracers with production data analysis for fracture and reservoir characterization. Hydraulic fracturing releases omnipresent natural tracers that accumulate in low permeability rocks over geologic time (e.g., radiogenic 4He and 40Ar). Key reservoir characteristics govern the tracer release, which include: the number, connectivity, and geometry of fractures; the distribution of fracture-surface-area to matrix-block-volume; and the nature of hydrocarbon phases within the reservoir (e.g., methane dissolved in groundwater or present as a separate gas phase). We explore natural tracer systematics using numerical techniques under relevant shale-reservoir conditions. We evaluate the impact on natural tracer transport due to a variety of conceptual models of reservoir-transport properties and boundary conditions. Favorable attributes for analysis of natural tracers include the following: tracer concentrations start with a well-defined initial condition (i.e., equilibrium between matrix and any natural fractures); there is a large suite of tracers that cover a range of at least 7x in diffusion coefficients; and diffusive mass-transfer out of the matrix into hydraulic fractures will cause elemental and isotopic fractionation. Sandia National Laboratories is a multi-program laboratory managed and operated by

  15. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies

    Science.gov (United States)

    Williams, J.H.; Johnson, C.D.

    2004-01-01

    Imaging with acoustic and optical televiewers results in continuous and oriented 360?? views of the borehole wall from which the character, relation, and orientation of lithologic and structural planar features can be defined for studies of fractured-rock aquifers. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing of the character of and relation between lithology, fractures, foliation, and bedding. The most powerful approach is the combined application of acoustic and optical imaging with integrated interpretation. Imaging of the borehole wall provides information useful for the collection and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. ?? 2003 Elsevier B.V. All rights reserved.

  16. Modelling of excavation depth and fractures in rock caused by tool indentation

    Energy Technology Data Exchange (ETDEWEB)

    Kou Shaoquan; Tan Xiangchun; Lindqvist, P.A. [Luleaa Univ. of Technology (Sweden)

    1997-10-01

    The hydraulic regime after excavation in the near-field rock around deposition holes and deposition tunnels in a spent nuclear fuel repository is of concern for prediction of the saturation process of bentonite buffer and tunnel backfill. The hydraulic condition of main interest in this context is a result of the fracture network that is caused by the excavation. Modelling of the excavation disturbed zone in hard rocks caused by mechanical excavation has been carried out in the Division of Mining Engineering since 1993. This report contains an overview of the work conducted. The mechanical excavation is reasonably simplified as an indentation process of the interaction between rigid indenters and rocks. A large number of experiments have been carried out in the laboratory, and the results used for identifying crushed zones and fracture systems in rock under indentation are presented based on these experiments. The indentation causes crushing and damage of the rock and results in a crushed zone and a cracked zone. The indenter penetrates the rock with a certain depth when the force is over a threshold value relevant to the rock and tool. Outside the cracked zone there are basically three systems of cracks: median cracks, radial cracks, and side cracks. Fully developed radial cracks on each side of the indented area can connect with each other and join with median crack. This forms the so-called radial/median crack system. The influence of the mechanical properties of the rock is discussed based on our conceptual model, and the main factors governing the indentation event are summarised. The cracked zone is dealt with by an analytical fracture model. The side crack is simulated by applying the boundary element method coupled with fracture mechanics. Functional relationships are established relating either the indentation depth or the length of radial/median cracks to the various quantities characterising the physical event, namely the shape and the size of the

  17. Mechanical interactions between proppants and rock and their effect on hydraulic fracture performance

    Energy Technology Data Exchange (ETDEWEB)

    Legarth, B.A.; Raab, S.; Huenges, E. [GeoForschungsZentrum Potsdam (Germany)

    2005-07-01

    Proppants interact mechanically with the rock matrix. This causes damage to the fracture face and influences propped fracture performance. Therefore, proppant embedment and proppant crushing phenomena were analysed in laboratory under simulated in situ conditions. The embedment tests were performed in a conductivity cell using reassembled core halves. Embedment features in the rock matrix were optically analyzed. In a separate unit single grain strength tests were performed on a wide range of ceramic proppant types (AI203-based, coated/uncoated) and sizes (diameter 0,2-1,6 mm). The experiment showed that areas in the fracture with low proppant concentration revealed severe proppant crushing and embedment that occurred already at low effective stress. Punctual loading was identified as reason for premature proppant failure. Grain strength testing showed that compressive fracture force increases with grain diameter, is influenced by the presence of a coating and might be additionally controlled by grain surface structure. Compressive fracture strength is largely independent from size for same proppant types. A contact model introduced by Hertz was applied to retrieve the stress magnitudes at grain failure. Proppant crushing leads to generation of fines in the matrix and the proppant pack. These fines can be transported and plug pore-throats and flow channels. Dependent on completion type and expected fracture widths proppant grain size should be maximized for higher fracture conductivity. Proppant crushing and embedment processes are enforced by decreasing proppant concentration. Considering natural conditions in a fracture - rough surfaces, tortuous-twisted paths that hinder even proppant distribution - low proppant concentrations appear to be very real, maybe even the normal case in nature. Thus, high proppant concentration is the key issue to mitigate fracture impairment. (orig.)

  18. Method to calculate fatigue fracture life of control fissure in perilous rock

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-kai; TANG Hong-mei

    2007-01-01

    Rupture and safety of perilous rock are dominated by control fissure behind perilous rock block. Based on model-Ⅰ and model-Ⅱ stress strength factors of control fissure under acting of weight of perilous rock, water pressure in control fissure and earthquake forces, method to calculate critical linking length of control fissure is established. Take water pressure in control fissure as a variable periodic load, and abide by P-M criterion, when control fissure is filled with water, establish the method to calculate fatigue fracture life of control fissure in critical status by contributing value of stress strength factor stemming from water pressure of control fissure in Paris's fatigue equation. Further, parameters(C and m)of sandstone with quartz and feldspar in the area of the Three Gorges Reservoir of China are obtained by fatigue fracture testing.

  19. Numerical Modeling of Porous Flow in Fractured Rock and Its Applications in Geothermal Energy Extraction

    Institute of Scientific and Technical Information of China (English)

    Yucang Wang; Shimin Wang; Sheng Xue; Deepak Adhikary

    2015-01-01

    Understanding the characteristics of hydraulic fracture, porous flow and heat transfer in fractured rock is critical for geothermal power generation applications, and numerical simulation can provide a powerful approach for systematically and thoroughly investigating these problems. In this paper, we present a fully coupled solid-fluid code using discrete element method (DEM) and lattice Boltzmann method (LBM). The DEM with bonded particles is used to model the deformation and fracture in solid, while the LBM is used to model the fluid flow. The two methods are two-way coupled, i.e., the solid part provides a moving boundary condition and transfers momentum to fluid, while the fluid exerts a dragging force to the solid. Two widely used open source codes, the ESyS_Particle and the OpenLB, are integrated into one code and paralleled with Message Passing Interface (MPI) library. Some preliminary 2D simulations, including particles moving in a fluid and hydraulic fracturing in-duced by injection of fluid into a borehole, are carried out to validate the integrated code. The prelimi-nary results indicate that the new code is capable of reproducing the basic features of hydraulic frac-ture and thus offers a promising tool for multiscale simulation of porous flow and heat transfer in fractured rock.

  20. Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing

    Science.gov (United States)

    Becker, M.W.; Shapiro, A.M.

    2000-01-01

    Extended tailing of tracer breakthrough is often observed in pulse injection tracer tests conducted in fractured geologic media. This behavior has been attributed to diffusive exchange of tracer between mobile fluids traveling through channels in fractures and relatively stagnant fluid between fluid channels, along fracture walls, or within the bulk matrix. We present a field example where tracer breakthrough tailing apparently results from nondiffusive transport. Tracer tests were conducted in a fractured crystalline rock using both a convergent and weak dipole injection and pumping scheme. Deuterated water, bromide, and pentafluorobenzoic acid were selected as tracers for their wide range in molecular diffusivity. The late time behavior of the normalized breakthrough curves were consistent for all tracers, even when the pumping rate was changed. The lack of separation between tracers of varying diffusivity indicates that strong breakthrough tailing in fractured geologic media may be caused by advective transport processes. This finding has implications for the interpretation of tracer tests designed to measure matrix diffusion in situ and the prediction of contaminant transport in fractured rock.

  1. Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Queen, John H. [Hi-Geophysical, Inc., Ponca, OK (United States)

    2016-05-09

    Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parameters for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most

  2. Changes of the groundwater composition in fractured rocks of low permeability as a consequence of deglaciation

    Energy Technology Data Exchange (ETDEWEB)

    Delos, A.; Duro, L.; Guimera, J.; Bruno, J. [Enviros Spain SL, Passeig de Rubi, 29-31, 08197 Valldoreix, Barcelona (Spain); Puigdomenech, I. [SKB, Brahegatan 47, SE-102 40 Stockholm (Sweden)

    2005-07-01

    Full text of publication follows: The Swedish concept of a spent fuel repository is based on deep geological disposal in granitic bedrock under geochemically reducing conditions. Groundwaters in areas that have been subjected to advance and retreat of glacial sheets such as the Canadian and Scandic shields, display a signature of deep penetration of oxidant waters such as melt waters, likely to affect the stability of the repository. Some studies have been focused on new experimental methodologies to understand the depletion of oxygen in granitic rocks. They determine how the oxygen reacts with rocks mineral and the water conducting zones [1]. A former study analyses the redox front migration due to the effect of the oxygen intrusion [2]. It concluded that the oxygen in groundwater derived from ice melting would be consumed by the rock minerals, and that the Eh of the system would be oxidising in case of very high groundwater velocities are maintained over long time periods. This work was reviewed by [3] and considered over-conservative and too much simplistic. The objective of this present work is to calculate the impacts of the ice melt on the composition of groundwater likely to reach the repository by means of multicomponent reactive transport simulations. The latest updates of the thermodynamic and kinetic databases will allow more accurate understanding of the processes occurring in the system. The latest hydrogeological, geochemical and mineralogical characterizations performed in the Foersmark region are used in the definition of the more realistic 2D conceptual model. [1] Puigdomenech, I., J.P. Ambrosi, L. Eisenlohr, J.E. Lartigue, S.A. Banwart, K. Bateman, A.E. Milodowski, J. M. West, L. Griffault, E. Gustafsson, K. Hama, H. Yoshida, S. Kotelkinova, K. Pedersen, V. Michaud, L. Trotignon, J. Rivas-Perez and E.L. Tullborg (2001) O{sub 2} depletion in granitic media. The REX project. SKB TR-01-05, 92 pp. [2] Guimera, J., L.Duro, S.Jordana and J.Bruno (1999

  3. Methodologies used for the multiscale characterization of fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Klint, K.E.S.; Gravesen, P.; Rosenbom, A. [Geological Survey of Denmark and Greenland, Copenhagen (Denmark); Sanchez, F.; Molinelli, L. [CH2M-Hill Espana S.A., Parque Empresarial San Fernando Edificio Berlin, Madrid (Spain); Tsakiroglou, C.D. [Inst. of Chemical Engineering and High Temperature Chemical Processes - Foundation for Research and Technology, Patras (Greece)

    2002-07-01

    The role of fractures as hydraulic highways for the spreading of pollutants in aquifers has been recognised during the last decade, and the need for the introduction of high quality fracture properties to hydraulic models has accordingly become more evident. The majority of fracture models need accurate input data concerning the orientation, the size distribution, the fracture density and the opening diameter (aperture) of fractures. In the present study a new integrated methodology is developed to characterise fractures and calculate properties that are used as input parameters in hydraulic models. The methodology is based on field-scale measurements of fractured outcrops, lab-scale treatment of fractured core samples, and SEM image analysis of 2-D sections of resin-impregnated single fractures. The most significant fracture characteristics are identified, classified and quantified at several different scales, so that information useful for the calculation of the hydraulic properties of fractured media is obtained. The methodology of characterization is demonstrated with its application to two contaminated fractured sites of very different geological settings. One is a fractured clayey till in Denmark and the other one is a fractured granite in Spain. (orig.)

  4. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling.

    Science.gov (United States)

    Goode, Daniel J; Imbrigiotta, Thomas E; Lacombe, Pierre J

    2014-12-15

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently

  5. Estimation of fluid flow and mass transport properties in a natural fracture using laboratory testing system on mass transport in fractured rock (LABROCK)

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Naoto; Uchida, Masahiro [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan); Satou, Hisashi [Inspection Development Company Ltd., Tokai, Ibaraki (Japan)

    2003-03-01

    The understanding of mass transport and fluid flow properties in natural rock fractures is important for safety assessment of geological disposal of high level nuclear waste. The authors developed advanced tracer test equipment in which a 50-cm cubic scale rock sample was feasible. The mass transport and fluid flow properties in a single fracture were also examined. The relation among hydraulic, transport and mass balance apertures of a natural single fracture were obtained. Heterogeneity of the aperture distribution was evident, as was the possibility of some major flow line perpendicular to the flow direction. Additionally, the relation between normal stress and each aperture was also obtained by loading normal stress on the fracture. In future, measuring the aperture distribution and establishing the model considering fluid flow and mass transport properties in natural rock fractures will be conducted. (author)

  6. Fracture detection in crystalline rock using ultrasonic shear waves

    Energy Technology Data Exchange (ETDEWEB)

    Waters, K.H.; Palmer, S.P.; Farrell, W.E.

    1978-12-01

    An ultrasonic shear wave reflection profiling system for use in the detection of water-filled cracks occurring within a crystalline rock mass is being tested in a laboratory environment. Experiments were performed on an irregular tensile crack induced approximately 0.5 m below one circular face of a 1.0-m-dia, 1.8-m-long granite cylinder. Good reflection data were obtained from this irregular crack with the crack either air filled or water filled. Data were collected that suggest a frequency-dependent S/sub H/ wave reflection coefficient for a granite-water interface. Waves that propagate along the free surface of a rock mass (surface waves) can severely hinder the detection of reflected events. Two methods of reducing this surface wave noise were investigated. The first technique uses physical obstructions (such as a slit trench) to scatter the surface waves. The second technique uses a linear array of receivers located on the free surface to cancel waves that are propagating parallel to the array (e.g., surface waves), thus enhancing waves with propagation vectors orthogonal to the linear array (e.g., reflected events). Deconvolution processing was found to be another method useful in surface wave cancellation.

  7. Theory and application of rock burst prevention using deep hole high pressure hydraulic fracturing

    Institute of Scientific and Technical Information of China (English)

    Shan-Kun ZHAO; Jun LIU; Xiang-Zhi WEI; Chuan-Hong DING; Yu-Lei LV; Gang-Feng LI

    2013-01-01

    In order to analyze the mechanism of deep hole high pressure hydraulic fracturing,nonlinear dynamic theory,damage mechanics,elastic-plastic mechanics are used,and the law of crack propagation and stress transfer under two deep hole hydraulic fracturing in tectonic stress areas is studied using seepage-stress coupling models with RFPA simulation software.In addition,the effects of rock burst control are tested using multiple methods,either in the stress field or in the energy field.The research findings show that with two deep holes hydraulic fracturing in tectonic stress areas,the direction of the main crack propagation under shear-tensile stress is parallel to the greatest principal stress direction.High-pressure hydraulic fracturing water seepage can result in the destruction of the coal structure,while also weakening the physical and mechanical properties of coal and rock.Therefore the impact of high stress concentration in hazardous areas will level off,which has an effect on rock burst prevention and control in the region.

  8. Characterization of EGS Fracture Network Lifecycles

    Energy Technology Data Exchange (ETDEWEB)

    Gillian R. Foulger

    2008-03-31

    Geothermal energy is relatively clean, and is an important non-hydrocarbon source of energy. It can potentially reduce our dependence on fossil fuels and contribute to reduction in carbon emissions. High-temperature geothermal areas can be used for electricity generation if they contain permeable reservoirs of hot water or steam that can be extracted. The biggest challenge to achieving the full potential of the nation’s resources of this kind is maintaining and creating the fracture networks required for the circulation, heating, and extraction of hot fluids. The fundamental objective of the present research was to understand how fracture networks are created in hydraulic borehole injection experiments, and how they subsequently evolve. When high-pressure fluids are injected into boreholes in geothermal areas, they flow into hot rock at depth inducing thermal cracking and activating critically stressed pre-existing faults. This causes earthquake activity which, if monitored, can provide information on the locations of the cracks formed, their time-development and the type of cracking underway, e.g., whether shear movement on faults occurred or whether cracks opened up. Ultimately it may be possible to monitor the critical earthquake parameters in near-real-time so the information can be used to guide the hydraulic injection while it is in progress, e.g., how to adjust factors such as injectate pressure, volume and temperature. In order to achieve this, it is necessary to mature analysis techniques and software that were, at the start of this project, in an embryonic developmental state. Task 1 of the present project was to develop state-of-the-art techniques and software for calculating highly accurate earthquake locations, earthquake source mechanisms (moment tensors) and temporal changes in reservoir structure. Task 2 was to apply the new techniques to hydrofracturing (Enhanced Geothermal Systems, or “EGS”) experiments performed at the Coso geothermal field

  9. Multiphase fluid flow and subsequent geochemical transport invariably saturated fractured rocks: 1. Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Pruess, Karsten

    2000-08-08

    Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).

  10. Fracture control of ground water flow and water chemistry in a rock aquitard.

    Science.gov (United States)

    Eaton, Timothy T; Anderson, Mary P; Bradbury, Kenneth R

    2007-01-01

    There are few studies on the hydrogeology of sedimentary rock aquitards although they are important controls in regional ground water flow systems. We formulate and test a three-dimensional (3D) conceptual model of ground water flow and hydrochemistry in a fractured sedimentary rock aquitard to show that flow dynamics within the aquitard are more complex than previously believed. Similar conceptual models, based on regional observations and recently emerging principles of mechanical stratigraphy in heterogeneous sedimentary rocks, have previously been applied only to aquifers, but we show that they are potentially applicable to aquitards. The major elements of this conceptual model, which is based on detailed information from two sites in the Maquoketa Formation in southeastern Wisconsin, include orders of magnitude contrast between hydraulic diffusivity (K/S(s)) of fractured zones and relatively intact aquitard rock matrix, laterally extensive bedding-plane fracture zones extending over distances of over 10 km, very low vertical hydraulic conductivity of thick shale-rich intervals of the aquitard, and a vertical hydraulic head profile controlled by a lateral boundary at the aquitard subcrop, where numerous surface water bodies dominate the shallow aquifer system. Results from a 3D numerical flow model based on this conceptual model are consistent with field observations, which did not fit the typical conceptual model of strictly vertical flow through an aquitard. The 3D flow through an aquitard has implications for predicting ground water flow and for planning and protecting water supplies.

  11. Field-Scale Effective Matrix Diffusion Coefficient for FracturedRock: Results From Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.

    2005-03-28

    Matrix diffusion is an important mechanism for solutetransport in fractured rock. We recently conducted a literature survey onthe effective matrix diffusion coefficient, Dem, a key parameter fordescribing matrix diffusion processes at the field scale. Forty fieldtracer tests at 15 fractured geologic sites were surveyed and selectedfor study, based on data availability and quality. Field-scale Dem valueswere calculated, either directly using data reported in the literature orby reanalyzing the corresponding field tracer tests. Surveyed dataindicate that the effective-matrix-diffusion-coefficient factor FD(defined as the ratio of Dem to the lab-scale matrix diffusioncoefficient [Dem]of the same tracer) is generally larger than one,indicating that the effective matrix diffusion coefficient in the fieldis comparatively larger than the matrix diffusion coefficient at therock-core scale. This larger value could be attributed to the manymass-transfer processes at different scales in naturally heterogeneous,fractured rock systems. Furthermore, we observed a moderate trend towardsystematic increase in the emDFmDDF value with observation scale,indicating that the effective matrix diffusion coefficient is likely tobe statistically scale dependent. The FD value ranges from 1 to 10,000for observation scales from 5 to 2,000 m. At a given scale, the FD valuevaries by two orders of magnitude, reflecting the influence of differingdegrees of fractured rock heterogeneity at different sites. In addition,the surveyed data indicate that field-scale longitudinal dispersivitygenerally increases with observation scale, which is consistent withprevious studies. The scale-dependent field-scale matrix diffusioncoefficient (and dispersivity) may have significant implications forassessing long-term, large-scale radionuclide and contaminant transportevents in fractured rock, both for nuclear waste disposal and contaminantremediation.

  12. An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures

    Science.gov (United States)

    Amadei, B.; Savage, W.Z.

    2001-01-01

    We present below an analytical solution to model the one-dimensional transient flow of a Bingham viscoplastic material in a fracture with parallel walls (smooth or rough) that is subjected to an applied pressure gradient. The solution models the acceleration and the deceleration of the material as the pressure gradient changes with time. Two cases are considered: A pressure gradient applied over a finite time interval and an applied pressure gradient that is constant over time. The solution is expressed in dimensionless form and can therefore be used for a wide range of Bingham viscoplastic materials. The solution is also capable of capturing the transition that takes place in a fracture between viscoplastic flow and rigid plug flow. Also, it shows the development of a rigid central layer in fractures, the extent of which depends on the fluid properties (viscosity and yield stress), the magnitude of the pressure gradient, and the fracture aperture and surface roughness. Finally, it is shown that when a pressure gradient is applied and kept constant, the solution for the fracture flow rate converges over time to a steady-state solution that can be defined as a modified cubic law. In this case, the fracture transmissivity is found to be a non-linear function of the head gradient. This solution provides a tool for a better understanding of the flow of Bingham materials in rock fractures, interfaces, and cracks. ?? 2001 Elsevier Science Ltd. All rights reserved.

  13. Upscaling Fracture Network Models to Continua: An Example Using Weathered Granitic Rock

    Science.gov (United States)

    Clark, A.; Doe, T.; Jones, J. W.

    2006-12-01

    In the early 1990's, a proposed landfill site on the Campo Indian Reservation in San Diego County, California, was the object of a characterization program involving over ninety exploration and monitoring wells, geophysical investigations, flow meter logging, tracer testing, and fracture characterization. This intensively studied site rests on deeply weathered tonalite. The weathered zone extends several tens to about 100 feet below the surface; however, the deeply weathered material follows hydraulically active fractures to even greater depths. The flow meter logging was especially valuable both for locating conductive fractures but also, in un- pumped mode, for defining regions of upward and downward vertical flow. The deep weathering on the conductive fractures gives each pathway a large effective porosity that translates to lower flow velocities compared with unweathered fractures with similar transmissivities. The simulation of the groundwater flow at this site used a local-scale fracture network model which was upscaled to a continuum code at regional scales. At the largest scale we generated a small number of major fractures to match the topographic lineaments. At an intermediate scale we had geophysical lineaments that were deterministic under the site footprint, and stochastic elsewhere using generation parameters based on the lengths, orientations and intensities of the deterministic features. The fractures of the most detailed scale were background fractures that were stochastically generated from borehole data. The site-scale fracture network model was incorporated into a regional-scale MODFLOW model, by overlaying the MODFLOW grid on the fracture network model and calculating equivalent porous medium properties for each MODFLOW grid cell using the Oda tensor method. This fast algorithm calculates a permeability tensor for each MODFLOW grid cell by summing the oriented area-weighted permeabilities of each fracture. The resulting MODFLOW model was then

  14. Geochemical evolution of a fractured zone in the cap rock of an underground carbon storage site

    Science.gov (United States)

    Vialle, S.; Druhan, J. L.; Maher, K.

    2013-12-01

    Assessment and management of environmental risks associated with underground storage of CO2 in geological systems is essential for the commercial deployment of this technology. A major risk is leakage of the CO2 from its storage reservoir, through wellbores, and along faults and fractures in the cap rock. The geochemical reactions likely to take place as CO2 leaks through a damage zone and their impact on cap rock integrity still need to be better understood and quantified. Should CO2 leakage occur, geochemical reactions would govern the environmental impact on shallow groundwater aquifers and could provide an indication of the leak prior to surface-based monitoring techniques. We used the reactive transport code TOUGH2/TOUGHREACT to model a leakage scenario through a fractured cap rock. Since geochemical reactions will strongly depend upon the local hydrodynamics of the CO2 leak, the first step of the study is to provide an appropriate physical representation of fluid flow through the system. Typically, for a low porosity rock formation, a fault/damaged zone system is composed of a core of low permeability and a damage zone with second-order fractures whose density decreases with distance from the fault core. Permeability is thus increased along the fault plane and laterally decreases down to the permeability value of the undamaged cap rock. Appropriate scaling relationships (e.g., and analytical expression of for permeability as a function of fracture aperture and fracture density), effective physical parameters as well as constitutive relationships are carefully chosen to model the fractured system, treated as an equivalent porous medium. The cap rock is initially saturated with brine (salinity of 0.15 in mass fraction) and due to overpressure in the lower storage reservoir, CO2 migrates through the damage zone. Geochemical reactions involve both salt precipitation due to the partitioning of H2O and CO2 between liquid and gas phases as well as well reactions

  15. A numerical manifold method model for analyzing fully coupled hydro-mechanical processes in porous rock masses with discrete fractures

    Science.gov (United States)

    Hu, Mengsu; Rutqvist, Jonny; Wang, Yuan

    2017-04-01

    In this study, a numerical manifold method (NMM) model was developed for fully coupled analysis of hydro-mechanical (HM) processes in porous rock masses with discrete fractures. Using an NMM two-cover-mesh system of mathematical and physical covers, fractures are conveniently discretized by dividing the mathematical cover along fracture traces to physical cover, resulting in a discontinuous model on a non-conforming mesh. In this model, discrete fracture deformation (e.g. open and slip) and fracture fluid flow within a permeable and deformable porous rock matrix are rigorously considered. For porous rock, direct pore-volume coupling was modeled based on an energy-work scheme. For mechanical analysis of fractures, a fracture constitutive model for mechanically open states was introduced. For fluid flow in fractures, both along-fracture and normal-to-fracture fluid flow are modeled without introducing additional degrees of freedom. When the mechanical aperture of a fracture is changing, its hydraulic aperture and hydraulic conductivity is updated. At the same time, under the effect of coupled deformation and fluid flow, the contact state may dynamically change, and the corresponding contact constraint is updated each time step. Therefore, indirect coupling is realized under stringent considerations of coupled HM effects and fracture constitutive behavior transfer dynamically. To verify the new model, examples involving deformable porous media containing a single and two sets of fractures were designed, showing good accuracy. Last, the model was applied to analyze coupled HM behavior of fractured porous rock domains with complex fracture networks under effects of loading and injection.

  16. Numerical Simulation of Rock Fracturing under Laboratory True-Triaxial Stress Conditions

    Science.gov (United States)

    Ghofrani Tabari, Mehdi; Hazzard, Jim; Young, R. Paul

    2016-04-01

    A True-triaxial test (TTT) also known as polyaxial test was carried out on saturated Fontainebleau sandstone to elevate our knowledge about the role of the intermediate principal stress on deformation, fracturing and failure patterns of the rock using acoustic emission (AE) monitoring. The induced AE activities were studied by location of the AE events and mapping them on the captured features in the post-mortem CT scan images of the failed sample. The time-lapse monitoring of the velocity structure and AE activity in the sample portrayed a deformational path which led to propagation of fractures and formation of failure patterns in the rock. Having these experimental results, we aimed at running a numerical model of our true-triaxial testing system using an Itasca software based on three-dimensional explicit finite-difference method called FLAC3D. The loads were applied at the end of each platen while the steel platens transferred the stress to the surface of the cubic specimen. In order to simulate the failure, randomly distributed strength demonstrated by Mohr-Columb failure criterion was implemented in the spatial elements of the model representing the random distribution of the micro-cracks. During the experiment, pseudo-boundary surfaces were formed along the minimum and intermediate principal stress axes in the rock due to non-uniform distribution of stress as a result of geometrical constraints including the corner effects and friction on the platen-rock surfaces. Both the real AE data as well as the numerical simulation verified that coalescence of micro-cracks mainly occurred around these pseudo-boundaries with highest stress gradients as well as highest velocity gradients in the rock specimen and formed curvi-planar fractures. The rock specimen strength and brittleness in the macro-scale was also obtained from the stress-strain curve which was consistent with the experimental laboratory measurements. Eventually, the failure of the rock specimen was

  17. Estimation of migration characteristics of a nonsorbing tracer through an artificial rock fracture

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, B. H.; Park, J. K.; Han, P. S. [KAERI, Taejon (Korea, Republic of)

    1998-10-01

    Experiment on the transport of a nonsorbing tracer in an artificial rock fracture was carried out. The scale of an artificial rock was 50x20x5cm. The migration field was assumed as a two dimensional system. Eosine, a kind of an organic dye, was used as a nonsorbing tracer. This tracer was injected as a pulse function in a point source and point withdraw system. Volumetric flow rate was 0.5ml/min. The migration plume of the tracer was captured by a digital camera and compared with a result from transport modeling.

  18. Fatigue properties analysis of cracked rock based on fracture evolution process

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; XU Jian-guang; LI Ning

    2008-01-01

    Fracture evolution process (initiation, propagation and coalescence) of cracked rock was observed and the force-displacement curves of cracked rock were measured under uniaxial cyclic loading. The tested specimens made of sandstone-like modeling material contained three pre-existing intermittent cracks with different geometrical distributions. The experimental results indicate that the fatigue deformation limit corresponding to the maximal cyclic load is equal to that of post-peak locus of static complete force-displacement curve; the fatigue deformation process can be divided into three stages: initial deformation, constant deformation rate and accelerative deformation; the time of fi' acture initiation, propagation and coalescence corresponds to the change of irreversible deformation.

  19. Fractures inside crystalline rocks. Effects of deformations on fluid circulations; Fractures dans les roches cristallines. Effets des deformations sur les circulations de fluides

    Energy Technology Data Exchange (ETDEWEB)

    Gentier, S

    2005-07-01

    The modeling of fluid flows inside granite massifs is an important task for the evaluation of the feasibility of radioactive waste storage inside such formations. This document makes a synthesis of the works carried out since about 15 years, in particular by the French bureau of geological and mining research (BRGM), about the hydro-mechanical behaviour of a fracture and about the hydrodynamical characterization of fracture networks inside crystalline rocks: 1 - introduction; 2 - hydro-mechanical behaviour under normal stress: experimental results (hydro-mechanical behaviour, flow regimes, mechanical behaviour, test protocol, complementary tests, influence of samples size), geometrical interpretation of experimental results (relation with walls geometry, relation with voids geometry, relation with contacts geometry), hydro-mechanical modeling (hydraulic modeling, mechanical modeling); 3 - from the hydro-mechanical behaviour under normal stress to the coupling with heat transfers and chemistry: experiment for the study of the chemo-thermo-hydro-mechanical coupling (experimental results, relation with walls morphology), thermo-hydro-mechanical experiments, thermo-hydro-chemical experiments with fractures, conclusions; 4 - hydro-mechanical behaviour during shear: experimental results, geometrical interpretation (relation with the geometry of damaged zones, relation with voids geometry, relation with walls geometry), hydro-mechanical modeling (mechanical modeling, hydro-mechanical modeling of the behaviour during shear). (J.S.)

  20. Planning and Analysis of Fractured Rock Injection Tests in the Cerro Brillador Underground Laboratory, Northern Chile

    Science.gov (United States)

    Fairley, J. P., Jr.; Oyarzún L, R.; Villegas, G.

    2015-12-01

    Early theories of fluid migration in unsaturated fractured rock hypothesized that matrix suction would dominate flow up to the point of matrix saturation. However, experiments in underground laboratories such as the ESF (Yucca Mountain, NV) have demonstrated that liquid water can migrate significant distances through fractures in an unsaturated porous medium, suggesting limited interaction between fractures and unsaturated matrix blocks and potentially rapid transmission of recharge to the sat- urated zone. Determining the conditions under which this rapid recharge may take place is an important factor in understanding deep percolation processes in arid areas with thick unsaturated zones. As part of an on-going, Fondecyt-funded project (award 11150587) to study mountain block hydrological processes in arid regions, we are plan- ning a series of in-situ fracture flow injection tests in the Cerro Brillador/Mina Escuela, an underground laboratory and teaching facility belonging to the Universidad la Serena, Chile. Planning for the tests is based on an analytical model and curve-matching method, originally developed to evaluate data from injection tests at Yucca Mountain (Fairley, J.P., 2010, WRR 46:W08542), that uses a known rate of liquid injection to a fracture (for example, from a packed-off section of borehole) and the observed rate of seepage discharging from the fracture to estimate effective fracture aperture, matrix sorptivity, fracture/matrix flow partitioning, and the wetted fracture/matrix interac- tion area between the injection and recovery points. We briefly review the analytical approach and its application to test planning and analysis, and describe the proposed tests and their goals.

  1. Dyke propagation and tensile fracturing at high temperature and pressure, insights from experimental rock mechanics.

    Science.gov (United States)

    Bakker, Richard; Benson, Philip; Vinciguerra, Sergio

    2014-05-01

    It is well known that magma ascends trough the crust by the process of dyking. To enable dyke emplacement, basement rocks typically fail in a mode 1 fracture, which acts as conduits for magma transport. An overpressure of the ascending magma will further open/widen the fracture and permit the fracture to propagate. In order to further understand the emplacement and arrest of dykes in the subsurface, analogue and numerical studies have been conducted. However, a number of assumptions regarding rock mechanical behaviour frequently has to be made as such data are very hard to directly measure at the pressure/temperature conditions of interest: high temperatures at relatively shallow depths. Such data are key to simulating the magma intrusion dynamics through the lithologies that underlie the volcanic edifice. Here we present a new laboratory setup, which allows us to investigate the tensile fracturing properties under both temperature and confining pressure, and the emplacement of molten material within the newly formed fracture. We have modified a traditional tri-axial test assembly setup to be able to use a Paterson type High Pressure, High Temperature deformation apparatus. Sample setup consists of cylindrical rock samples with a 22 mm diameter and a 8 mm bore at their centre, filled with a material chosen as such that it's in a liquid state at the experimental temperature and solid at room temperature to enable post-experiment analysis. The top and lower parts of the rock sample are fitted with plugs, sealing in the melt. The assembly is then placed between ceramic pistons to ensure there are no thermal gradients across the sample. The assembly is jacketed to ensure the confining medium (Ar) cannot enter the assembly. A piston is driven into the sample such that the inner conduit materials pressure is slowly increased. At some point a sufficient pressure difference between the inner and outer surfaces causes the sample to deform and fail in the tensile regime

  2. Numerical Study of Critical Role of Rock Heterogeneity in Hydraulic Fracture Propagation

    Energy Technology Data Exchange (ETDEWEB)

    J. Zhou; H. Huang; M. Deo

    2016-03-01

    Log and seismic data indicate that most shale formations have strong heterogeneity. Conventional analytical and semi-analytical fracture models are not enough to simulate the complex fracture propagation in these highly heterogeneous formation. Without considering the intrinsic heterogeneity, predicted morphology of hydraulic fracture may be biased and misleading in optimizing the completion strategy. In this paper, a fully coupling fluid flow and geomechanics hydraulic fracture simulator based on dual-lattice Discrete Element Method (DEM) is used to predict the hydraulic fracture propagation in heterogeneous reservoir. The heterogeneity of rock is simulated by assigning different material force constant and critical strain to different particles and is adjusted by conditioning to the measured data and observed geological features. Based on proposed model, the effects of heterogeneity at different scale on micromechanical behavior and induced macroscopic fractures are examined. From the numerical results, the microcrack will be more inclined to form at the grain weaker interface. The conventional simulator with homogeneous assumption is not applicable for highly heterogeneous shale formation.

  3. Effect of specimen thickness on Mode Ⅱ fracture toughness of rock

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Anti-symmetric four-point bending specimens with different thickness, without and with guiding grooves, were used to conduct Mode Ⅱ fracture test and study the effect of specimen thickness on Mode Ⅱ fracture toughness of rock. Numerical calculations show that the occurrence of Mode Ⅱ fracture in the specimens without guiding grooves (when the inner and outer loading points are moved close to the notch plane) and with guiding grooves is attributed to a favorable stress condition created for Mode Ⅱ fracture, i.e. tensile stress at the notch tip is depressed to be lower than the tensile strength or to be compressive stress, and the ratio of shear stress to tensile stress at notch tip is very high. The measured value of Mode Ⅱ fracture toughness KⅡC decreases with the increase of the specimen thickness or the net thickness of specimen. This is because a thick specimen promotes a plane strain state and thus results in a relatively small fracture toughness.

  4. Quantifying sedimentary and diagenetic controls on fracturing: an application in rock engineering systems

    Science.gov (United States)

    Rafiei, Mehrnoush; Rahimpour-Bonab, Hossain; Tavakoli, Vahid; Khorasani, Emad

    2016-12-01

    Several studies have been carried out to understand and justify the influences of depositional and post depositional (diagenetic) processes on the fracturing and its features. However, the effecting parameters are not completely understood yet. In this research, 1440 datasets, obtained from thin sections and cores analysis from one well in the Dalan and Kangan carbonate reservoir are considered to evaluate the effect of various depositional-diagenetic parameters on the fracturing. The considered parameters include lithology, facies, dolomitization (crystal size and shape), porosity, stylolitization and anhydrite nodules and they are further subdivided based on their fracture intensity. Then, the rock engineering systems (RES) approach is employed to weight them. Moreover, an interaction matrix is provided in which the main parameters are arranged along its main diagonal elements while the interrelations between pairs of parameters are distributed in its off-diagonal elements. The weighting coefficient of each parameter is calculated through this matrix. According to the calculations, facies and porosity are the most causal and effected parameters, respectively. The Fracture Index is obtained by using the weighting coefficient and normalized code of the parameters in the classification. Additionally, a polynomial equation with the coefficient of determination (R 2), in FI versus number of fractures (FN) diagram, is gained 0.735 where the number of fractures is enhanced with increase in FI. Finally, 300 datasets of the data are utilized to validate the methodology. The FIs of these data (predicted values) show a proper correlation with FNs (real values).

  5. THE STRESS IMPACT ON MECHANICAL PROPERTIES OF ROCKS IN HYDRO FRACTURING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    B. GURUPRASAD

    2012-02-01

    Full Text Available Ground water is considered to be the best safe protected drinking water source and bore wells are drilled in hard crystalline rock terrains for drinking water, irrigation and industrial purposes. Even after scientific location, some bore wells yield inadequate quantity of water or fail to yield. The success of bore wells depend largely onnumber, length, dilation and interconnectivity of fractures encountered on drilling. Considering the cost factor involved in drilling a new bore well, rejuvenation of failed bore well through some technique is thought off. The innovative technology of ‘hydro fracturing’ is a new interdisciplinary approach of Hydro mechanical tostimulate the bore well to improve the yield by applying water pressure into bore well by using a heavy duty mechanical compressor. The hydro fracturing technique was first used in oil well to increase oil and gas production. In this research paper, the hydraulic pressure applied increases with depth reflecting the rigidness,toughness of rock. The fracture development, propagation of fracture and stress behavior depends on the physical and mechanical properties of rocks. The hydro fracturing process has been conducted in three depth zones ranging from 8 m to 45 m below ground level in Annavasal union of Pudukottai district, Tamil Nadu, India. The Pressure application varies depending on the geological formations. This study pertains to a part of research work. The minimum and maximum pressures applied are 1 and 10 N/mm2 respectively. The maximumpressure of 10 N/mm2 has been recorded in the third zone, where the country rock is charnockite which is generally massive, compact and dense rock. Generally for the igneous rock in the third zone in the depth range of 40 to 50 m, more than 7 N/mm2 of pressure has been applied indicating extremely strong nature with uniaxial compressive strength 100 – 300 N/mm2, tensile strength 7- 25 N/mm2. Out of 37 bore wells 32.4% of bore wells have shown

  6. Semi-analytical model of cross-borehole flow experiments for fractured medium characterization

    Science.gov (United States)

    Roubinet, D.; Irving, J.; Day-Lewis, F. D.

    2014-12-01

    The study of fractured rocks is extremely important in a wide variety of research fields where the fractures and faults can represent either rapid access to some resource of interest or potential pathways for the migration of contaminants in the subsurface. Identification of their presence and determination of their properties are critical and challenging tasks that have led to numerous fracture characterization methods. Among these methods, cross-borehole flowmeter analysis aims to evaluate fracture connections and hydraulic properties from vertical-flow-velocity measurements conducted in one or more observation boreholes under forced hydraulic conditions. Previous studies have demonstrated that analysis of these data can provide important information on fracture connectivity, transmissivity, and storativity. Estimating these properties requires the development of analytical and/or numerical modeling tools that are well adapted to the complexity of the problem. Quantitative analysis of cross-borehole flowmeter experiments, in particular, requires modeling formulations that: (i) can be adapted to a variety of fracture and experimental configurations; (ii) can take into account interactions between the boreholes because their radii of influence may overlap; and (iii) can be readily cast into an inversion framework that allows for not only the estimation of fracture hydraulic properties, but also an assessment of estimation error. To this end, we present a new semi-analytical formulation for cross-borehole flow in fractured media that links transient vertical-flow velocities measured in one or a series of observation wells during hydraulic forcing to the transmissivity and storativity of the fractures intersected by these wells. Our model addresses the above needs and provides a flexible and computationally efficient semi-analytical framework having strong potential for future adaptation to more complex configurations. The proposed modeling approach is demonstrated

  7. Insensitive explosive composition and method of fracturing rock using an extrudable form of the composition

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Lloyd L.

    2015-07-28

    Insensitive explosive compositions were prepared by reacting di-isocyanate and/or poly-isocyanate monomers with an explosive diamine monomer. Prior to a final cure, the compositions are extrudable. The di-isocyanate monomers tend to produce tough, rubbery materials while polyfunctional monomers (i.e. having more than two isocyanate groups) tend to form rigid products. The extrudable form of the composition may be used in a variety of applications including rock fracturing.

  8. Rock mass characterization for tunnels in the Copenhagen limestone

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Jakobsen, Lisa; Jackson, Peter;

    2007-01-01

    Tunnels in Copenhagen are drilled through highly anisotropic limestone comprising alternating strongly lithified and less lithified parts. The mass quality of the limestone is usually defined from fracture spacing registered in core samples. The deposit is, however, affected destructively by dril...... by drilling activity yielding a low Rock Quality Designation RQD. In-situ observations of the limestone in excavations or televiewer logs reveal only few natural discontinuities compared to core logging, indicating a very good suitability for tunneling....

  9. Characterization of EGS Fracture Network Lifecycles

    Energy Technology Data Exchange (ETDEWEB)

    Gillian R. Foulger

    2008-03-31

    Geothermal energy is relatively clean, and is an important non-hydrocarbon source of energy. It can potentially reduce our dependence on fossil fuels and contribute to reduction in carbon emissions. High-temperature geothermal areas can be used for electricity generation if they contain permeable reservoirs of hot water or steam that can be extracted. The biggest challenge to achieving the full potential of the nation’s resources of this kind is maintaining and creating the fracture networks required for the circulation, heating, and extraction of hot fluids. The fundamental objective of the present research was to understand how fracture networks are created in hydraulic borehole injection experiments, and how they subsequently evolve. When high-pressure fluids are injected into boreholes in geothermal areas, they flow into hot rock at depth inducing thermal cracking and activating critically stressed pre-existing faults. This causes earthquake activity which, if monitored, can provide information on the locations of the cracks formed, their time-development and the type of cracking underway, e.g., whether shear movement on faults occurred or whether cracks opened up. Ultimately it may be possible to monitor the critical earthquake parameters in near-real-time so the information can be used to guide the hydraulic injection while it is in progress, e.g., how to adjust factors such as injectate pressure, volume and temperature. In order to achieve this, it is necessary to mature analysis techniques and software that were, at the start of this project, in an embryonic developmental state. Task 1 of the present project was to develop state-of-the-art techniques and software for calculating highly accurate earthquake locations, earthquake source mechanisms (moment tensors) and temporal changes in reservoir structure. Task 2 was to apply the new techniques to hydrofracturing (Enhanced Geothermal Systems, or “EGS”) experiments performed at the Coso geothermal field

  10. Sensitivity analysis of GSI based mechanical characterization of rock mass

    CERN Document Server

    Ván, P

    2012-01-01

    Recently, the rock mechanical and rock engineering designs and calculations are frequently based on Geological Strength Index (GSI) method, because it is the only system that provides a complete set of mechanical properties for design purpose. Both the failure criteria and the deformation moduli of the rock mass can be calculated with GSI based equations, which consists of the disturbance factor, as well. The aim of this paper is the sensitivity analysis of GSI and disturbance factor dependent equations that characterize the mechanical properties of rock masses. The survey of the GSI system is not our purpose. The results show that the rock mass strength calculated by the Hoek-Brown failure criteria and both the Hoek-Diederichs and modified Hoek-Diederichs deformation moduli are highly sensitive to changes of both the GSI and the D factor, hence their exact determination is important for the rock engineering design.

  11. A science plan for a comprehensive assessment of water supply in the region underlain by fractured rock in Maryland

    Science.gov (United States)

    Fleming, Brandon J.; Hammond, Patrick A.; Stranko, Scott A.; Duigon, Mark T.; Kasraei, Saeid

    2012-01-01

    The fractured rock region of Maryland, which includes land areas north and west of the Interstate 95 corridor, is the source of water supply for approximately 4.4 million Marylanders, or approximately 76 percent of the State's population. Whereas hundreds of thousands of residents rely on wells (both domestic and community), millions rely on surface-water sources. In this region, land use, geology, topography, water withdrawals, impoundments, and other factors affect water-flow characteristics. The unconfined groundwater systems are closely interconnected with rivers and streams, and are affected by seasonal and climatic variations. During droughts, groundwater levels drop, thereby decreasing well yields, and in some cases, wells have gone dry. Low ground-water levels contribute to reduced streamflows, which in turn, can lead to reduced habitat for aquatic life. Increased demand, over-allocation, population growth, and climate change can affect the future sustainability of water supplies in the region of Maryland underlain by fractured rock. In response to recommendations of the 2008 Advisory Committee on the Management and Protection of the State's Water Resources report, the Maryland Department of the Environment's Water Supply Program, the Maryland Geological Survey, the Maryland Department of Natural Resources, Monitoring and Non-Tidal Assessment (MANTA) Division, and the U.S. Geological Survey have developed a science plan for a comprehensive assessment that will provide new scientific information, new data analysis, and new tools for the State to better manage water resources in the fractured rock region of Maryland. The science plan lays out five goals for the comprehensive assessment: (1) develop tools for the improved management and investigation of groundwater and surface-water resources; (2) characterize factors affecting reliable yields of individual groundwater and surface-water supplies; (3) investigate impacts on nearby water withdrawal users caused

  12. Fractal Characteristics of Rock Fracture Surface under Triaxial Compression after High Temperature

    Directory of Open Access Journals (Sweden)

    X. L. Xu

    2016-01-01

    Full Text Available Scanning Electron Microscopy (SEM test on 30 pieces of fractured granite has been researched by using S250MK III SEM under triaxial compression of different temperature (25~1000°C and confining pressure (0~40 MPa. Research results show that (1 the change of fractal dimension (FD of rock fracture with temperature is closely related to confining pressure, which can be divided into two categories. In the first category, when confining pressure is in 0~30 MPa, FD fits cubic polynomial fitting curve with temperature, reaching the maximum at 600°C. In the second category, when confining pressure is in 30~40 MPa, FD has volatility with temperature. (2 The FD of rock fracture varies with confining pressure and is also closely related to the temperature, which can be divided into three categories. In the first category, FD has volatility with confining pressure at 25°C, 400°C, and 800°C. In the second category, it increases exponentially at 200°C and 1000°C. In the third category, it decreases exponentially at 600°C. (3 It is found that 600°C is the critical temperature and 30 MPa is the critical confining pressure of granite. The rock transfers from brittle to plastic phase transition when temperature exceeds 600°C and confining pressure exceeds 30 MPa.

  13. Field and numerical determinations of pneumatic flow parameters of unsaturated fractured porous rocks on various scales

    Science.gov (United States)

    Guillon, S.; Vu, M. T.; Pili, E.; Adler, P. M.

    2013-05-01

    Air permeability is measured in the fractured crystalline rocks of the Roselend Natural Laboratory (France). Single-hole pneumatic injection tests as well as differential barometric pressure monitoring are conducted on scales ranging from 1 to 50 m, in both shallow and deep boreholes, as well as in an isolated 60 m3 chamber at 55 m depth. The field experiments are interpreted using numerical simulations in equivalent homogeneous porous media with their real 3-D geometry in order to estimate pneumatic parameters. For pneumatic injection tests, steady-state data first allow to estimate air permeability. Then, pressure recovery after a pneumatic injection test allows to estimate the air-filled porosity. Comparison between the various studied cases clarifies the influence of the boundary conditions on the accuracy of the often used 1-D estimate of air permeability. It also shows that permeabilities correlate slightly with fracture density. In the chamber, a 1 order-of-magnitude difference is found between the air permeabilities obtained from pneumatic injection tests and from differential barometric pressure monitoring. This discrepancy is interpreted as a scale effect resulting from the approximation of the heterogeneous fractured rock by a homogeneous numerical model. The difference between the rock volumes investigated by pneumatic injection tests and by differential barometric pressure monitoring may also play a role. No clear dependence of air permeability on saturation has been found so far.

  14. Analysis of propagation mechanisms of stimulation-induced fractures in rocks

    Science.gov (United States)

    Krause, Michael; Renner, Joerg

    2016-04-01

    Effectivity of geothermal energy production depends crucially on the heat exchange between the penetrated hot rock and the circulating water. Hydraulic stimulation of rocks at depth intends to create a network of fractures that constitutes a large area for exchange. Two endmembers of stimulation products are typically considered, tensile hydro-fractures that propagate in direction of the largest principal stress and pre-existing faults that are sheared when fluid pressure reduces the effective normal stress acting on them. The understanding of the propagation mechanisms of fractures under in-situ conditions is still incomplete despite intensive research over the last decades. Wing-cracking has been suggested as a mechanism of fracture extension from pre-existent faults with finite length that are induced to shear. The initiation and extension of the wings is believed to be in tensile mode. Open questions concern the variability of the nominal material property controlling tensile fracture initiation and extension, the mode I facture toughness KIC, with in-situ conditions, e.g., its mean-stress dependence. We investigated the fracture-propagation mechanism in different rocks (sandstones and granites) under varying conditions mimicking those representative for geothermal systems. To determine KIC-values we performed 3-point bending experiments. We varied the confining pressure, the piston velocity, and the position of the chevron notch relative to the loading configuration. Additional triaxial experiments at a range of confining pressures were performed to study wing crack propagation from artificial flaws whose geometrical characteristics, i.e., length, width, and orientation relative to the axial load are varied. We monitored acoustic emissions to constrain the spacio-temporal evolution of the fracturing. We found a significant effect of the length of the artificial flaw and the confining pressure on wing-crack initiation but did not observe a systematic dependence

  15. Colloid facilitated transport in fractured rocks : parameter estimation and comparison with experimental data.

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, H. S. (Hari Selvi); Wolfsberg, A. V. (Andrew V.); Reimus, P. W. (Paul William); Ware, S. D. (Stuart D.); Lu, G. (Guoping)

    2003-01-01

    Colloid-facilitated migration of plutonium in fractured rock has been implicated in both field and laboratory studies . Other reactive radionuclides may also experience enhanced mobility due to groundwater colloids. Model prediction of this process is necessary for assessment of contaminant boundaries in systems for which radionuclides are already in the groundwater and for performance assessment of potential repositories for radioactive waste. Therefore, a reactive transport model is developed and parameterized using results from controlled laboratory fracture column experiments. Silica, montmorillonite and clinoptilolite colloids are used in the experiments along with plutonium and Tritium . . The goal of the numerical model is to identify and parameterize the physical and chemical processes that affect the colloid-facilitated transport of plutonium in the fractures. The parameters used in this model are similar in form to those that might be used in a field-scale transport model.

  16. Effective-stress-law behavior of Austin chalk rocks for deformation and fracture conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Warpinski, N.R.; Teufel, L.W.

    1994-08-01

    Austin chalk core has been tested to determine the effective law for deformation of the matrix material and the stress-sensitive conductivity of the natural fractures. For deformation behavior, two samples provided data on the variations of the poroelastic parameter, {alpha}, for Austin chalk, giving values around 0.4. The effective-stress-law behavior of a Saratoga limestone sample was also measured for the purpose of obtaining a comparison with a somewhat more porous carbonate rock. {alpha} for this rock was found to be near 0.9. The low {alpha} for the Austin chalk suggests that stresses in the reservoir, or around the wellbore, will not change much with changes in pore pressure, as the contribution of the fluid pressure is small. Three natural fractures from the Austin chalk were tested, but two of the fractures were very tight and probably do not contribute much to production. The third sample was highly conductive and showed some stress sensitivity with a factor of three reduction in conductivity over a net stress increase of 3000 psi. Natural fractures also showed a propensity for permanent damage when net stressed exceeded about 3000 psi. This damage was irreversible and significantly affected conductivity. {alpha} was difficult to determine and most tests were inconclusive, although the results from one sample suggested that {alpha} was near unity.

  17. Modeling Fluid Flow and Electrical Resistivity in Fractured Geothermal Reservoir Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Detwiler, R L; Roberts, J J; Ralph, W; Bonner, B P

    2003-01-14

    Phase change of pore fluid (boiling/condensing) in rock cores under conditions representative of geothermal reservoirs results in alterations of the electrical resistivity of the samples. In fractured samples, phase change can result in resistivity changes that are more than an order of magnitude greater than those measured in intact samples. These results suggest that electrical resistivity monitoring may provide a useful tool for monitoring the movement of water and steam within fractured geothermal reservoirs. We measured the electrical resistivity of cores of welded tuff containing fractures of various geometries to investigate the resistivity contrast caused by active boiling and to determine the effects of variable fracture dimensions and surface area on water extraction. We then used the Nonisothermal Unsaturated Flow and Transport model (NUFT) (Nitao, 1998) to simulate the propagation of boiling fronts through the samples. The simulated saturation profiles combined with previously reported measurements of resistivity-saturation curves allow us to estimate the evolution of the sample resistivity as the boiling front propagates into the rock matrix. These simulations provide qualitative agreement with experimental measurements suggesting that our modeling approach may be used to estimate resistivity changes induced by boiling in more complex systems.

  18. Veneers, rinds, and fracture fills: Relatively late alteration of sedimentary rocks at Meridiani Planum, Mars

    Science.gov (United States)

    Knoll, Andrew H.; Jolliff, Brad L.; Farrand, William H.; Bell, James F., III; Clark, Benton C.; Gellert, Ralf; Golombek, M. P.; Grotzinger, John P.; Herkenhoff, Kenneth E.; Johnson, Jeffrey R.; McLennan, Scott M.; Morris, Richard; Squyres, Steven W.; Sullivan, Robert; Tosca, Nicholas J.; Yen, Albert; Learner, Zoe

    2008-05-01

    Veneers and thicker rinds that coat outcrop surfaces and partially cemented fracture fills formed perpendicular to bedding document relatively late stage alteration of ancient sedimentary rocks at Meridiani Planum, Mars. The chemistry of submillimeter thick, buff-colored veneers reflects multiple processes at work since the establishment of the current plains surface. Veneer composition is dominated by the mixing of silicate-rich dust and sulfate-rich outcrop surface, but it has also been influenced by mineral precipitation, including NaCl, and possibly by limited physical or chemical weathering of sulfate minerals. Competing processes of chemical alteration (perhaps mediated by thin films of water or water vapor beneath blanketing soils) and sandblasting of exposed outcrop surfaces determine the current distribution of veneers. Dark-toned rinds several millimeters thick reflect more extensive surface alteration but also indicate combined dust admixture, halite precipitation, and possible minor sulfate removal. Cemented fracture fills that are differentially resistant to erosion occur along the margins of linear fracture systems possibly related to impact. These appear to reflect limited groundwater activity along the margins of fractures, cementing mechanically introduced fill derived principally from outcrop rocks. The limited thickness and spatial distribution of these three features suggest that aqueous activity has been rare and transient or has operated at exceedingly low rates during the protracted interval since outcropping Meridiani strata were exposed on the plains surface.

  19. Characterization of a hydraulically induced bedrock fracture

    OpenAIRE

    2014-01-01

    Hydraulic fracturing is a controversial practice because of concerns about environmental impacts due to its widespread use in recovering unconventional petroleum and natural gas deposits. However, water-only hydraulic fracturing has been used safely and successfully for many years to increase the permeability of aquifers used for drinking and irrigation water supply. This process extends and widens existing bedrock fractures, allowing groundwater storage to increase. Researchers have studied ...

  20. Characterizing Fracture Spatial Patterns by Using Semivariograms

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Semivariogram is applied to fracture data obtained from detailed scanline surveys of nine field sites in western New York, USA in order to investigate the spatial patterns of natural fractures. The length of the scanline is up to 36 m. How both fracture spacing and fracture length vary with distance is determined through semivariogram calculations. In this study, the authors developed a FORTRAN program to resample the fracture data from the scanline survey. By calculating experimental semivariogram, the authors found five different types of spatial patterns that can be described by linear, spherical, reversed spherical, polynomial I (for a0) models, of which the last three are newly proposed in this study. The well-structured semivariograms of fracture spacing and length indicate that both the location of the fractures and the length distribution within their structure domains are not random. The results of this study also suggest that semivariograms can provide useful information in terms of spatial correlation distance for fracture location and fracture length. These semivariograms can also be utilized to design more efficient sampling schemes for further surveys, as well as to define the limits of highly probable extrapolation of a structure domain.

  1. Study on Smooth-Blasting Results in Jointed and Fractured Rock

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Factors that affect blasting results may be grouped into those factors that can be controlled and those that cannot be controlled. The controllable factors include explosive properties, initiation timing, and blast geometry. The uncontrollable factors comprise the rock’s natural structures, such as joints and fractures, and the properties, such as elastic constants, density and strength. Among these, the influence of rock structural planes often contributes a high degree of variability to blasting results. This paper presents a theoretical analysis of rock structural plane influences on smooth-blasting results based on elasticity and stress wave propagation theory with an emphasis on smooth blasting techniques. Two types of simulated experiments in lab (using strain and acoustic emission measurements) are used to verify the theoretical analysis. The results show that it is difficult to achieve smooth-blasting results when the angle between the natural rock structural planes and the blast-induced fracture planes ranges from 10° to 60°. Among these angles, 30° is the least desirable angle to produce a smooth wall. For angles less than 10° and greater than 60°, the influence of rock structural planes on blasting results can be ignored.

  2. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  3. The Fracture Influence on the Energy Loss of Compressed Air Energy Storage in Hard Rock

    Directory of Open Access Journals (Sweden)

    Hehua Zhu

    2015-01-01

    Full Text Available A coupled nonisothermal gas flow and geomechanical numerical modeling is conducted to study the influence of fractures (joints on the complex thermohydromechanical (THM performance of underground compressed air energy storage (CAES in hard rock caverns. The air-filled chamber is modeled as porous media with high porosity, high permeability, and high thermal conductivity. The present analysis focuses on the CAES in hard rock caverns at relatively shallow depth, that is, ≤100 m, and the pressure in carven is significantly higher than ambient pore pressure. The influence of one discrete crack and multiple crackson energy loss analysis of cavern in hard rock media are carried out. Two conditions are considered during each storage and release cycle, namely, gas injection and production mass being equal and additional gas injection supplemented after each cycle. The influence of the crack location, the crack length, and the crack open width on the energy loss is studied.

  4. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Q. Zhou; Hui-Hai Liu; F.J. Molz; Y. Zhang; G.S. Bodvarsson

    2005-04-08

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D{sub m}{sup e}, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D{sub m}{sup e} values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F{sub D} (defined as the ratio of D{sub m}{sup e} to the lab-scale matrix diffusion coefficient [D{sub m}] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F{sub D} value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F{sub D} value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F{sub D} value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal

  5. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride

  6. Characterization of fracture loci in metal forming

    DEFF Research Database (Denmark)

    Martins, P.A.F.; Bay, Niels; Tekkaya, A.E.

    2014-01-01

    Fracture in metal forming can occur in three different modes: (i) tensile; (ii) in-plane shear; and (iii) out-of-plane shear (respectively the same as modes I, II and III of fracture mechanics). The circumstances under which each mode will occur are identified in terms of plastic flow and microst...

  7. The role of acoustic emission in the study of rock fracture

    Science.gov (United States)

    Lockner, D.

    1993-01-01

    The development of faults and shear fracture systems over a broad range of temperature and pressure and for a variety of rock types involves the growth and interaction of microcracks. Acoustic emission (AE), which is produced by rapid microcrack growth, is a ubiquitous phenomenon associated with brittle fracture and has provided a wealth of information regarding the failure process in rock. This paper reviews the successes and limitations of AE studies as applied to the fracture process in rock with emphasis on our ability to predict rock failure. Application of laboratory AE studies to larger scale problems related to the understanding of earthquake processes is also discussed. In this context, laboratory studies can be divided into the following categories. 1) Simple counting of the number of AE events prior to sample failure shows a correlation between AE rate and inelastic strain rate. Additional sorting of events by amplitude has shown that AE events obey the power law frequency-magnitude relation observed for earthquakes. These cumulative event count techniques are being used in conjunction with damage mechanics models to determine how damage accumulates during loading and to predict failure. 2) A second area of research involves the location of hypocenters of AE source events. This technique requires precise arrival time data of AE signals recorded over an array of sensors that are essentially a miniature seismic net. Analysis of the spatial and temporal variation of event hypocenters has improved our understanding of the progression of microcrack growth and clustering leading to rock failure. Recently, fracture nucleation and growth have been studied under conditions of quasi-static fault propagation by controlling stress to maintain constant AE rate. 3) A third area of study involves the analysis of full waveform data as recorded at receiver sites. One aspect of this research has been to determine fault plane solutions of AE source events from first motion

  8. Assessing geotechnical centrifuge modelling in addressing variably saturated flow in soil and fractured rock.

    Science.gov (United States)

    Jones, Brendon R; Brouwers, Luke B; Van Tonder, Warren D; Dippenaar, Matthys A

    2017-01-05

    The vadose zone typically comprises soil underlain by fractured rock. Often, surface water and groundwater parameters are readily available, but variably saturated flow through soil and rock are oversimplified or estimated as input for hydrological models. In this paper, a series of geotechnical centrifuge experiments are conducted to contribute to the knowledge gaps in: (i) variably saturated flow and dispersion in soil and (ii) variably saturated flow in discrete vertical and horizontal fractures. Findings from the research show that the hydraulic gradient, and not the hydraulic conductivity, is scaled for seepage flow in the geotechnical centrifuge. Furthermore, geotechnical centrifuge modelling has been proven as a viable experimental tool for the modelling of hydrodynamic dispersion as well as the replication of similar flow mechanisms for unsaturated fracture flow, as previously observed in literature. Despite the imminent challenges of modelling variable saturation in the vadose zone, the geotechnical centrifuge offers a powerful experimental tool to physically model and observe variably saturated flow. This can be used to give valuable insight into mechanisms associated with solid-fluid interaction problems under these conditions. Findings from future research can be used to validate current numerical modelling techniques and address the subsequent influence on aquifer recharge and vulnerability, contaminant transport, waste disposal, dam construction, slope stability and seepage into subsurface excavations.

  9. Non-Darcian flow experiments of shear-thinning fluids through rough-walled rock fractures

    Science.gov (United States)

    Rodríguez de Castro, Antonio; Radilla, Giovanni

    2016-11-01

    Understanding non-Darcian flow of shear-thinning fluids through rough-walled rock fractures is of vital importance in a number of industrial applications such as hydrogeology or petroleum engineering. Different laws are available to express the deviations from linear Darcy law due to inertial pressure losses. In particular, Darcy's law is often extended through addition of quadratic and cubic terms weighted by two inertial coefficients depending on the strength of the inertia regime. The relations between the effective shear viscosity of the fluid and the apparent viscosity in porous media when inertial deviations are negligible were extensively studied in the past. However, only recent numerical works have investigated the superposition of both inertial and shear-thinning effects, finding that the same inertial coefficients obtained for non-Darcian Newtonian flow applied in the case of shear-thinning fluids. The objective of this work is to experimentally validate these results, extending their applicability to the case of rough-walled rock fractures. To do so, flow experiments with aqueous polymer solutions have been conducted using replicas of natural fractures, and the effects of polymer concentration, which determine the shear rheology of the injected fluid, have been evaluated. Our findings show that the experimental pressure loss-flow rate data for inertial flow of shear-thinning fluids can be successfully predicted from the empirical parameters obtained during non-Darcian Newtonian flow and Darcian shear-thinning flow in a given porous medium.

  10. UNDERSTANDING HARD ROCK HYDROGEOLOGY THROUGH AN EXPERIMENTAL HYDROGEOLOGICAL PARK IN SOUTH INDIA: Site development and investigations on the major role of the fractured zone in crystalline aquifers

    Science.gov (United States)

    Ahmed, S.; Guiheneuf, N.; Boisson, A.; Marechal, J.; Chandra, S.; Dewandel, B.; Perrin, J.

    2012-12-01

    In water stressed south India most of the groundwater used for irrigation is pumped from crystalline rocks aquifers. In those structures groundwater flow dominantly occur in a shallow higher-permeability zone that overlies a deeper lower-permeability zone hosting little flow. The fractured zone of the weathering profile plays an important role for groundwater. In order to understand clearly this impact on water availability and quality changes the Experimental Hydrogeological Park at Choutuppal, Andhra Pradesh, India is developed in the framework of the SORE H+ network. Several hydraulic tests (injection, flowmeter profiles, single-packer tests…) and geophysical measurements (ERT, Borehole logging…) are carried out on the site in order to characterize the depth-dependence of hydrodynamic parameters in the Indian Archean granite. Specific investigation on a borewell through packer tests demonstrate that the most conductive part of the aquifer corresponds to the upper part of the fractured layer, located just below the saprolite bottom, between 15 meters and 20 meters depth. There is no highly conductive fracture beyond 20 meters depth and no indication for any conductive fracture beyond 25 meters depth. Packer tests show that the upper part of the fractured layer (15-20 m depth) is characterized by a good vertical connectivity. On the contrary, the tests carried out below 20 m depth show no vertical connectivity at all. The geometry of the fracture network and associated hydrodynamic parameters are in agreement with the conceptual model of hard-rock aquifers that derive its properties from weathering processes. The general existence of such a highly conductive structure at the top of the fractured zone has a great impact on water prospection and exploitation in such crystalline aquifers.

  11. Testing study of subcritical crack growth rate and fracture toughness in different rocks

    Institute of Scientific and Technical Information of China (English)

    CAO Ping; LI Jiang-teng; YUAN Hai-ping

    2006-01-01

    Subcritical crack growth of double torsion specimens made of ore, lherzolite, marble and granite was studied using Instron1342 type electro hydraulic servo test machine. The relations of the mode-Ⅰ stress intensity factor KI versus the subcritical crack growth velocity v and the fracture toughness KIC were obtained by the double torsion constant displacement load relaxation method. The behavior of subcritical crack growth was analyzed for different rocks. The results show that lgKI-lgv relations of four kinds of rocks measured by this method accord with linear rule, i.e. the relations between subcritical crack growth velocity and stress intensity factor have a power law, which is in good agreement with CHARLES theory. lgKI-lgv curves move to top left corner with the decrease of the elastic modulus, which implies that the subcritical crack growth velocity speeds up. The maximum subcritical crack growth velocity exhibits negative exponential increase, and mode-Ⅰ fracture toughness KIC decreases with the decrease of elastic modulus. The testing results provide a basis for time-dependence of rock engineering stability.

  12. Modeling the Fracturing of Rock by Fluid Injection - Comparison of Numerical and Experimental Results

    Science.gov (United States)

    Heinze, Thomas; Galvan, Boris; Miller, Stephen

    2013-04-01

    Fluid-rock interactions are mechanically fundamental to many earth processes, including fault zones and hydrothermal/volcanic systems, and to future green energy solutions such as enhanced geothermal systems and carbon capture and storage (CCS). Modeling these processes is challenging because of the strong coupling between rock fracture evolution and the consequent large changes in the hydraulic properties of the system. In this talk, we present results of a numerical model that includes poro-elastic plastic rheology (with hardening, softening, and damage), and coupled to a non-linear diffusion model for fluid pressure propagation and two-phase fluid flow. Our plane strain model is based on the poro- elastic plastic behavior of porous rock and is advanced with hardening, softening and damage using the Mohr- Coulomb failure criteria. The effective stress model of Biot (1944) is used for coupling the pore pressure and the rock behavior. Frictional hardening and cohesion softening are introduced following Vermeer and de Borst (1984) with the angle of internal friction and the cohesion as functions of the principal strain rates. The scalar damage coefficient is assumed to be a linear function of the hardening parameter. Fluid injection is modeled as a two phase mixture of water and air using the Richards equation. The theoretical model is solved using finite differences on a staggered grid. The model is benchmarked with experiments on the laboratory scale in which fluid is injected from below in a critically-stressed, dry sandstone (Stanchits et al. 2011). We simulate three experiments, a) the failure a dry specimen due to biaxial compressive loading, b) the propagation a of low pressure fluid front induced from the bottom in a critically stressed specimen, and c) the failure of a critically stressed specimen due to a high pressure fluid intrusion. Comparison of model results with the fluid injection experiments shows that the model captures most of the experimental

  13. Impact of Geological Characterization Uncertainties on Subsurface Flow & Transport Using a Stochastic Discrete Fracture Network Approach

    Science.gov (United States)

    Ezzedine, S. M.

    2009-12-01

    Fractures and fracture networks are the principal pathways for transport of water and contaminants in groundwater systems, enhanced geothermal system fluids, migration of oil and gas, carbon dioxide leakage from carbon sequestration sites, and of radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples, among other techniques. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distribution functions for predictive modeling and simulation in a stochastic framework such as a stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions of fracture density, orientation, aperture and size on the flow and transport using topological measures such as fracture connectivity, physical characteristics such as effective hydraulic conductivity tensors, and

  14. Modeling Single Well Injection-Withdrawal (SWIW) Tests for Characterization of Complex Fracture-Matrix Systems

    Energy Technology Data Exchange (ETDEWEB)

    Cotte, F.P.; Doughty, C.; Birkholzer, J.

    2010-11-01

    The ability to reliably predict flow and transport in fractured porous rock is an essential condition for performance evaluation of geologic (underground) nuclear waste repositories. In this report, a suite of programs (TRIPOLY code) for calculating and analyzing flow and transport in two-dimensional fracture-matrix systems is used to model single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using one well, is proposed as a useful means of collecting data for site characterization, as well as estimating parameters relevant to tracer diffusion and sorption. After some specific code adaptations, we numerically generated a complex fracture-matrix system for computation of steady-state flow and tracer advection and dispersion in the fracture network, along with solute exchange processes between the fractures and the porous matrix. We then conducted simulations for a hypothetical but workable SWIW test design and completed parameter sensitivity studies on three physical parameters of the rock matrix - namely porosity, diffusion coefficient, and retardation coefficient - in order to investigate their impact on the fracture-matrix solute exchange process. Hydraulic fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new set of fractures to the field. The results of all these different tests are analyzed by studying the population of matrix blocks, the tracer spatial distribution, and the breakthrough curves (BTCs) obtained, while performing mass-balance checks and being careful to avoid some numerical mistakes that could occur. This study clearly demonstrates the importance of matrix effects in the solute transport process, with the sensitivity studies illustrating the increased importance of the matrix in providing a retardation mechanism for radionuclides as matrix porosity, diffusion coefficient, or retardation

  15. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  16. Estimating Liquid Fluxes in Thermally Perturbed Fractured Rock Using Measured Temperature Profiles

    Energy Technology Data Exchange (ETDEWEB)

    J.T. Birkholzer

    2005-02-14

    A new temperature-profile method was recently developed for analyzing perturbed flow conditions in superheated porous media. The method uses high-resolution temperature data to estimate the magnitude of the heat-driven liquid and gas fluxes that form as a result of boiling, condensation, and recirculation of pore water. In this paper, we evaluate the applicability of this new method to the more complex flow behavior in fractured formations with porous rock matrix. In such formations, with their intrinsic heterogeneity, the porous but low-permeable matrix provides most of the mass and heat storage capacity, and dominates conductive heat transfer, Fractures, on the other hand, offer highly effective conduits for gas and liquid flow, thereby generating significant convective heat transfer. After establishing the accuracy of the temperature-profile method for fractured porous formations, we apply the method in analyzing the perturbed flow conditions in a large-scale underground heater test conducted in unsaturated fractured porous tuff. The flux estimates for this test indicate a significant reflux of water near the heat source, on the order of a few hundred millimeter per year-much larger than the ambient percolation flux of only a few millimeter per year.

  17. Inference of Fractured Rock Transport Properties by Joint Inversion of Push-Pull and Single-Hole Ground Penetrating Radar Data

    Science.gov (United States)

    Shakas, A.; Linde, N.; Bour, O.; Le Borgne, T.

    2015-12-01

    Flow and transport characterization of fractured rock formations is very challenging and important for a multitude of applications that include groundwater extraction, nuclear waste storage and geothermal energy production. One popular hydrogeological method to study fractured rock is a push-pull test, in which injection and retrieval of a tracer is made at the same depth interval in a borehole. In theory, push-pull tests are not sensitive to changes in the heterogeneity of the tracer flow path since the retrieval at the injection location minimizes advective effects and makes the test more sensitive to time-dependent transport processes. This assumption is limiting in the presence of a natural hydraulic gradient or if non-neutrally buoyant tracers are used, but these limitations can be reduced by monitoring push-pull tests with ground penetrating radar (GPR). We present a methodology for combined modeling and inversion of a series of push-pull tests that we monitored with the single hole ground penetrating radar (GPR) method. For the GPR modeling we use a newly developed approach to simulate the GPR response in fractured rock. We coupled the GPR model to a flow-and-transport simulator that we use to define the electrical properties of the fracture filling. The combined model can cope with heterogeneous fractures of any orientation, aperture and size and allows for the effect of density driven flow (that is strong during the saline tracer tests). We use the combined simulator to create synthetic datasets for both the time-series of the GPR traces at different locations and the tracer breakthrough curves. Since the combined problem is highly non-linear and the inverse solution is ill-posed, we use stochastic inversion techniques to obtain probabilistic estimates of the parameters of interest (fracture length, orientation and aperture distribution) and assess the use of different measures to compare the simulated and experimental data.

  18. Fractured rock modeling in the National Waste Terminal Storage Program: a review of requirements and status

    Energy Technology Data Exchange (ETDEWEB)

    St. John, C.; Krug, A.; Key, S.; Monsees, J.

    1983-05-01

    Generalized computer codes capable of forming the basis for numerical models of fractured rock masses are being used within the NWTS program. Little additional development of these codes is considered justifiable, except in the area of representation of discrete fractures. On the other hand, model preparation requires definition of medium-specific constitutive descriptions and site characteristics and is therefore legitimately conducted by each of the media-oriented projects within the National Waste Terminal Storage program. However, it is essential that a uniform approach to the role of numerical modeling be adopted, including agreement upon the contribution of modeling to the design and licensing process and the need for, and means of, model qualification for particular purposes. This report discusses the role of numerical modeling, reviews the capabilities of several computer codes that are being used to support design or performance assessment, and proposes a framework for future numerical modeling activities within the NWTS program.

  19. Displacement and stress fields around rock fractures opened by irregular overpressure variations

    Directory of Open Access Journals (Sweden)

    Shigekazu eKusumoto

    2014-05-01

    Full Text Available Many rock fractures are entirely driven open by fluids such as ground water, geothermal water, gas, oil, and magma. These are a subset of extension fractures (mode I cracks; e.g., dikes, mineral veins and joints referred to as hydrofractures. Field measurements show that many hydrofractures have great variations in aperture. However, most analytical solutions for fracture displacement and stress fields assume the loading to be either constant or with a linear variation. While these solutions have been widely used, it is clear that a fracture hosted by heterogeneous and anisotropic rock is normally subject to loading that is neither constant nor with a linear variation. Here we present new general solutions for the displacement and stress fields around hydrofractures, modelled as two-dimensional elastic cracks, opened by irregular overpressure variations given by the Fourier cosine series. Each solution has two terms. The first term gives the displacement and stress fields due to the average overpressure acting inside the crack; it is given by the initial term of the Fourier coefficients expressing the overpressure variation. The second term gives the displacement and stress fields caused by the overpressure variation; it is given by general terms of the Fourier coefficients and solved through numerical integration. Our numerical examples show that the crack aperture variation closely reflects the overpressure variation. Also, that the general displacement and stress fields close to the crack follow the overpressure variation but tend to be more uniform far from the crack. The present solutions can be used to estimate the displacement and stress fields around any fluid-driven crack, that is, any hydrofracture, as well as its aperture, provided the variation in overpressure can be described by Fourier series. The solutions add to our understanding of local stresses, displacements, and fluid transport associated with hydrofractures in the crust.

  20. Seismoacoustic emission and electromagnetic radiation of fractured rocks in deep wells

    Science.gov (United States)

    Troyanov, A. K.; D'Yakonov, B. P.; Martyshko, P. S.; Astrakhantsev, Yu. G.; Nachapkin, N. I.; Gavrilov, V. A.; Beloglazova, N. A.

    2011-01-01

    The results of simultaneous measurements in seismoacoustic emission (SAE) and electromagnetic radiation (EMR), carried out with the help of a program-apparatus complex developed at the Institute of Geophysics, Ural Division, Russian Academy of Sciences, are considered. Measurements have been carried out in the wells with varied structures located in Karelia, Yamal-Nenets Autonomous Area, and Kamchatka. It has been shown that intervals of fractured rocks are simultaneously recorded in anomalies of SAE and EMR signals. This fact allows us to detect these zones of high tensosensitivity in a geomedium volume for the purposes of monitoring in geodynamic phenomena in the Earth's crust.

  1. Modelling of Dynamic Rock Fracture Process with a Rate-Dependent Combined Continuum Damage-Embedded Discontinuity Model Incorporating Microstructure

    Science.gov (United States)

    Saksala, Timo

    2016-10-01

    This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.

  2. Radon in a fractured bedrock aquifer: Relationships with rock type and distribution of parent radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Folger, P.F.; Wanty, R.B.; Day, W.; Frishman, D.; Taylor, T. (Geological Survey, Denver, CO (United States). Denver Federal Center); Poeter, E. (Colorado School of Mines, Golden, CO (United States))

    1992-01-01

    Ground-water samples collected from 35 domestic water wells in the Elk Creek drainage 30 miles southwest of Denver, Colorado, show a strong relationship between dissolved Rn-222 concentration and host-rock lithology. Wells completed in Precambrian Pikes Peak Granite (Ypp) average 11,000 pCi/L, whereas wells completed in Precambrian migmatitic rocks (Xm) average 4,000 pCi/L. Geophysical logs of three boreholes completed in the same rock type (Ypp) show significant differences in natural gamma traces and correspondingly different radon concentrations. One well shows a monotonous gamma response with depth, averaging 500 counts per second (cps); water from this well contains 5,300 pCi/L Rn-222. Water from the second well contains 11,000 pCi/L and the third well contain over 20,000 pCi/L. If Rn-222 parent radionuclides are homogeneously distributed along fracture walls, then Rn-222 concentration should decrease with an increasing water-volume-to-rock surface-area ratio. An inverse relationship between transmissivity and Rn-222 concentration is not observed for these 3 wells. The 2 wells with 5,300 pCi/L and 20,000 pCi/L Rn-222 in water have transmissivities of 26 and 75 gallons per day per foot (gpd/ft), respectively, whereas transmissivity for the well with 11,000 pCi/L is 195 gpd/ft. Single-well pumping tests on 29 other wells belie a systematic correlation between transmissivity and Rn-222 concentration, suggesting that local heterogeneous accumulations of Rn-222 parent radionuclides on fracture walls may strongly affect Rn-222 concentration in these wells.

  3. Impact of Micro-to Meso-scale Fractures on Sealing Behavior of Argillaceous Cap Rocks For CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Evans, James [Utah State Univ., Logan, UT (United States)

    2016-08-01

    This multi-disciplinary project evaluated seal lithologies for the safety and security of long-term geosequestration of CO2. We used integrated studies to provide qualitative risk for potential seal failure; we integrated data sets from outcrop, core, geochemical analysis, rock failure properties from mechanical testing, geophysical wireline log analysis, and geomechanical modeling to understand the effects of lithologic heterogeneity and changing mechanical properties have on the mechanical properties of the seal. The objectives of this study were to characterize cap rock seals using natural field analogs, available drillhole logging data and whole-rock core, geochemical and isotopic analyses. Rock deformation experiments were carried out on collected samples to develop better models of risk estimation for potential cap rock seal failure. We also sampled variably faulted and fractured cap rocks to examine the impacts of mineralization and/or alteration on the mechanical properties. We compared CO2 reacted systems to non-CO2 reacted seal rock types to determine response of each to increased pore fluid pressures and potential for the creation of unintentional hydrofractures at depth.

  4. Experimental study on time-dependent stress and strain of in-plane shear(ModeⅡ) fracture process of rock

    Institute of Scientific and Technical Information of China (English)

    王志; 饶秋华; 谢海峰

    2008-01-01

    Shear-box test with strain measurement was used to study time-dependent stress and strain of in-plane shear(Mode Ⅱ) fracture process of rock and to reveal the mechanism of Mode Ⅱ fracture.Numerical results show that the maximum shear stress τmax at the crack tip is much larger than the maximum tensile stress σ1 and the ratio of τmax/σ1 is about 5,which favors Mode Ⅱ fracture of rock.Test results indicate that the strain-time curve comprises three stages:the linear deformation stage,the micro-cracking stage and the macroscopic crack propagation.The strain in the direction of the original notch plane is negative,due to restraining effect of compressive loading applied to the original notch plane.Both σ1 and τmax are increased as the load increases,but the slope of τmax is larger than that of σ1 and the value of τmax is always larger than that of σ1.Therefore,τmax reaches its limited value at peak load before σ1 and results in Mode Ⅱ fracture of rock.Shear-box(i.e.compression-shear) test becomes a potential standard method for achieving the true Mode Ⅱ fracture and determining Mode Ⅱ fracture toughness of rock.

  5. A Hydraulic Tomography Experiment in Fractured Sedimentary Rocks, Newark Basin, New Jersey, USA

    Science.gov (United States)

    Tiedeman, C. R.; Barrash, W.; Thrash, C. J.; Johnson, C. D.

    2015-12-01

    Hydraulic tomography was performed in July 2015 in contaminated fractured mudstone beds at the former Naval Air Warfare Center (NAWC) in the Newark Basin near Trenton, NJ using seven existing wells. The spatial arrangement of wells (in a circle of 9 m radius with one central well), the use of packers to divide the wells into multiple monitoring intervals, and the deployment of fiber optic pressure transducers enabled collection of a hydraulic tomography dataset comprising high-resolution drawdown observations at an unprecedented level of spatial detail for fractured rocks. The experiment involved 45-minute cross-hole aquifer tests, conducted by pumping from a given packer-isolated well interval and continuously monitoring drawdowns in all other well intervals. The collective set of drawdown data from all tests and intervals displays a wide range of behavior suggestive of highly heterogeneous hydraulic conductivity (K) within the tested volume, such as: drawdown curves for different well intervals crossing one another on drawdown-time plots; variable drawdown curve shapes, including linear segments on log-log plots; variable order and magnitude of time-lag and/or drawdown for intervals of a given well in response to pumping from similar fractures or stratigraphic units in different wells; and variable groupings of wells and intervals showing similar responses for different pumping tests. The observed behavior is consistent with previous testing at the NAWC indicating that K within and across individual mudstone beds can vary by orders of magnitude over scales of meters. Preliminary assessment of the drawdown data together with a rich set of geophysical logs suggests an initial conceptual model that includes densely distributed fractures of moderate K at the shallowest depths of the tested volume, connected high-K bedding-plane-parting fractures at intermediate depths, and sparse low-K fractures in the deeper rocks. Future work will involve tomographic inversion of

  6. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    Energy Technology Data Exchange (ETDEWEB)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability

  7. The Influence of Shale Rock Fracturing Equipment Operation on Atmospheric Air Quality

    Science.gov (United States)

    Bogacki, Marek; Macuda, Jan

    2014-12-01

    The hydraulic fracturing jobs performed on shale rocks are connected with atmospheric emissions of dusts and exhaust gases from high-power motors supplying pump aggregates used for fracturing operations and from other technological devices. The total power of motors driving technological systems depends on the specific character of deposit and well and may range between a dozen to tens of thousands kW. An exemplary set of technological systems used for frac jobs is presented in figure 1. The following substances are emitted to the atmosphere during engine operation, e.g. nitrogen oxides (NOx), sulfur dioxide (SO2), carbon oxide (CO), dust PM10, ammonia, benzo(a)pyrene (B(a)P), benzene, toluene, xylene, formaldehyde, acetaldehyde, acrolein. As a consequence admissible concentrations of these substances in air can be exceeded. The influence of dust and gaseous emissions accompanying shale rock fracturing jobs is addressed in this paper. Model analyses were performed. An exemplary model of a process used for simulating propagation of atmospheric emissions in a specified calculation area (1,150 m × 1,150 m) were based on the analysis of hydraulic fracturing jobs performed in wells in Poland and abroad. For making calculations more actual, the model was located in the Gdańsk area and was ascribed its typical meteorological and orographic parameters. In the center of this area a rig site 150 m x 150 m was distinguished. The emission field was generated by 12 high-power engines supplying pump aggregates, 1680 kW each. The time of work of particular engines was established for 52 hrs (13 frac jobs, each lasting 4 hrs). It was assumed that all engines will operate simultaneously and using 100% of their power. Attention was paid to the correct modelling of the real emission field. Technical parameters of motors and the applied fuels were characterized. Emission indices were worked out by, e.g. U.S. Environmental Protection Agency or European Environment Agency. The

  8. Electromagnetic Emissions During Rock-fracturing Experiments Inside Magnetic Field Free Space

    Science.gov (United States)

    Wang, H.; Zhou, J.; Zhu, T.; Jin, H.

    2012-12-01

    Abnormal electromagnetic emission (EME) signal is one type of the most important precursors before earthquake, which has been widely observed and recorded before large earthquake, but the physical mechanism underlying the phenomenon is unclear and under controversy. Monitoring the EME signals during rock-fracturing experiments in laboratory is an effective way to study the phenomena and their underlying mechanism. Electromagnetic noise is everywhere because industrial and civilian electrical equipments have been widely used, which make difficulties to the in-lab experiments and field monitoring. To avoid the interference from electromagnetic noise, electromagnetic experiments must be carried out inside shielded space. Magnetic Field Free Space (MFFS) was constructed by Institute of Geophysics, China Earthquake Administration in 1980s. MFFS is a near-spherical polyhedron 'space' with 26 faces and inside diameter about 2.3 m. It is enclosed by 8-layer permalloy 1J85 for shielding magnetic field and 2-layer purified aluminium for shielding electric field. MFFS mainly shields static magnetic field by a factor of 160-4000 for the magnetic signals with the frequencies ranging from 0.01 Hz to 10 Hz. The intensity of magnetic field inside the space is less than 20 nT and its fluctuation is less than 0.3 nT in 90 hours. MFFS can dramatically shield EME signals in the frequency range of EME antennas utilized in our experiments, (several to ~320) kHz, by at least 90%, based on observation. Rock specimens (granite, marble) were fractured by two ways inside MFFS. 1) Cuboid bulk specimens were drilled, filled with static cracking agent, and then dilated from inside until fracture. 2) Cylindrical rock specimens were stressed until fracture by using a non-magnetic rock testing machine with the maximum testing force 300kN. EME, acoustic emission (AE) and strain signals were collected synchronously by the same data acquisitor, Acoustic Emission Workstation made by Physical Acoustics

  9. A simplified fracture network model for studying the efficiency of a single well semi open loop heat exchanger in fractured crystalline rock

    Science.gov (United States)

    de La Bernardie, Jérôme; de Dreuzy, Jean-Raynald; Bour, Olivier; Thierion, Charlotte; Ausseur, Jean-Yves; Lesuer, Hervé; Le Borgne, Tanguy

    2016-04-01

    Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (energy storage at these shallow depths is still remaining very challenging because of the complexity of fractured media. The purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, a simplified numerical model of fractured media is considered with few fractures. Here we present the different steps for building the model and for achieving the sensitivity analysis. First, an analytical and dimensional study on the equations has been achieved to highlight the main parameters that control the optimization of the system. In a second step, multiphysics software COMSOL was used to achieve numerical simulations in a very simplified model of fractured media. The objective was to test the efficiency of such a system to store and recover thermal energy depending on i) the few parameters controlling fracture network geometry (size and number of fractures) and ii) the frequency of cycles used to store and recover thermal energy. The results have then been compared to reference shallow geothermal systems already set up for porous media. Through this study, relationships between structure, heat exchanges and storage may be highlighted.

  10. Characterization of fracture toughness of epoxy resin after hygrothermal aging

    KAUST Repository

    Quispe, Gustavo Q.

    2013-07-01

    Characterization of fracture toughness of epoxy resin after hygrothermal ageing Gustavo Quino Quispe The aim of this work is to characterize the e ects of hygrothermal aging in the plain strain fracture toughness of the epoxy system composed by cycloaliphatic epoxy resin and diglycidyl ether of bisphenol-A (DGEBA). For this, after having been under hygrothermal aging in a climatic chamber, epoxy samples were studied using ASTM D5045 fracture toughness test, and micrography and roughness measurements of the fracture surface. It is reported a rapid decrease of GIc and KIc during the rst 2 days. Moreover, a numerical model [13] was used to simulate and see with more detail the water absorption in the aged samples. From that, it was observed the heterogeneous distribution of water. Accordingly, it was proposed that the results should be correlated with the water content at the vicinity of the crack tip. Consequently, it was possible to obtain, by quasi-static simulations, the ideal load-displacement curves of crack propagation in the heterogeneous samples. Finally, another contribution of this work is the study of the fracture surface, that gives a clue of the relationship among the fracture energy, the appearance of microcracks in the fracture surface, and the roughness (Ra).

  11. Study of fractures in Precambrian crystalline rocks using field technique in and around Balarampur, Purulia district, West Bengal, India

    Indian Academy of Sciences (India)

    Monalisa Mitra; Tapas Acharya

    2015-12-01

    Location of recharge zone in Precambrian crystalline rock is still unclear. The present study attempts to perform a detailed analysis of the joints/fractures developed in a Precambrian metamorphic terrain in and around Balarampur in Purulia district of West Bengal, India using bedrock data. The analysis shows that the orientations of major fracture trends are variable along with varying lithological units and structural affinities. The application of lithology-based analysis technique identifies highly predominant fracture frequency and fracture aperture in mica schist and phyllite in the area. This property is not evident in the granite gneiss and epidiorite. The moderate to high fracture permeability value is also associated with the fractures occurring in the shear zone. Mica schist and phyllite associated with the shear zone may represent a permeable recharge zone in the region.

  12. Seepage into an Underground Opening Constructed in Unsaturated Fractured Rock Under Evaporative Conditions

    Energy Technology Data Exchange (ETDEWEB)

    R. C. Trautz; Joseph S. Y. Wang

    2001-06-07

    Liquid-release tests, performed in boreholes above an underground opening constructed in unsaturated fractured rock, are used in this study to evaluate seepage into a waste emplacement drift. Evidence for the existence of a capillary barrier at the ceiling of the drift is presented, based on field observations (including spreading of the wetting front across the ceiling and water movement up fractures exposed in the ceiling before seepage begins). The capillary barrier mechanism has the potential to divert water around the opening, resulting in no seepage when the percolation flux is at or below the seepage threshold flux. Liquid-release tests are used to demonstrate that a seepage threshold exists and to measure the magnitude of the seepage threshold flux for three test zones that seeped. The seepage data are interpreted using analytical techniques to estimate the test-specific strength of the rock capillary forces ({alpha}{sup -1}) that prevent water from seeping into the drift. Evaporation increases the seepage threshold flux making it more difficult for water to seep into the drift and producing artificially inflated {alpha}{sup -1} values. With adjustments for evaporation, the minimum test-specific threshold is 1,600 mm/yr with a corresponding {alpha}{sup -1} of 0.027 m.

  13. Random Neighborhood Graphs as Models of Fracture Networks on Rocks: Structural and Dynamical Analysis

    CERN Document Server

    Estrada, Ernesto

    2016-01-01

    We propose a new model to account for the main structural characteristics of rock fracture networks (RFNs). The model is based on a generalization of the random neighborhood graphs to consider fractures embedded into rectangular spaces. We study a series of 29 real-world RFNs and find the best fit with the random rectangular neighborhood graphs (RRNGs) proposed here. We show that this model captures most of the structural characteristics of the RFNs and allows a distinction between small and more spherical rocks and large and more elongated ones. We use a diffusion equation on the graphs in order to model diffusive processes taking place through the channels of the RFNs. We find a small set of structural parameters that highly correlates with the average diffusion time in the RFNs. In particular, the second smallest eigenvalue of the Laplacian matrix is a good predictor of the average diffusion time on RFNs, showing a Pearson correlation coefficient larger than $0.99$ with the average diffusion time on RFNs. ...

  14. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Geotechnical Inst. Ltd., Bern (Switzerland); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Mazurek, M. [Univ. of Bern (Switzerland)

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features.

  15. High Resolution Geophysical Characterization of Fractures within a Granitic Pluton

    Science.gov (United States)

    Pérez-Estaún, A.; Carbonell, R.

    2007-12-01

    The FEBEX underground gallery was excavated in the Aar Granite (Switzerland), a heterogeneous granite containing from very leucocratic facies to granodiorites. The geology of the gallery shows the existence of various sets of fractures with different attributes: geometry, kinematics, fracture infilling, etc. The study of the structural data, new observations on the FEBEX gallery itself and borehole televiewer data acquired in the newly drilled boreholes, have allowed to identify four sets of fractures. The first group of fractures has a typical distribution and characteristics of en echelon tension fractures and were formed in late magmatic stages, according with the paragenesis of the minerals that filled the craks. The main strike is around 300 (280-300). These fractures are deformed and displaced by the other group of faults. The second group corresponds to the lamprophyre dikes, of mantelic origin, with an orientation oblique to the tunnel, and slightly oblique to the first group of fractures (strike, 310-330). They were formed during an extension event well evidenced by their irregular margins and flame structures into the granite. The margins of these dikes show several reactivations as strike slip faults. Geophysical data has been acquired to characterized the fracture network of the surrounding volume within the FEBEX gallery. The geophysic data include new borehole logging such as Natural Gamma and Borehole Ground Penetrating radar. The processing and integration of these different data sets indicates that the GPR record can provide images of a third set of fractures, which are probably fluid filled. This set of fractures a subparallel to the tunnel axis and appear to intersect older boreholes which are nearly perpendicular to the axis of the FEBEX gallery.

  16. Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems

    Science.gov (United States)

    Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.

    2014-06-01

    This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.

  17. Dynamic Fracture Properties of Rocks Subjected to Static Pre-load Using Notched Semi-circular Bend Method

    Science.gov (United States)

    Chen, Rong; Li, Kang; Xia, Kaiwen; Lin, Yuliang; Yao, Wei; Lu, Fangyun

    2016-10-01

    A dynamic load superposed on a static pre-load is a key problem in deep underground rock engineering projects. Based on a modified split Hopkinson pressure bar test system, the notched semi-circular bend (NSCB) method is selected to investigate the fracture initiation toughness of rocks subjected to pre-load. In this study, a two-dimensional ANSYS finite element simulation model is developed to calculate the dimensionless stress intensity factor. Three groups of NSCB specimen are tested under a pre-load of 0, 37 and 74 % of the maximum static load and with the loading rate ranging from 0 to 60 GPa m1/2 s-1. The results show that under a given pre-load, the fracture initiation toughness of rock increases with the loading rate, resembling the typical rate dependence of materials. Furthermore, the dynamic rock fracture toughness decreases with the static pre-load at a given loading rate. The total fracture toughness, defined as the sum of the dynamic fracture toughness and initial stress intensity factor calculated from the pre-load, increases with the pre-load at a given loading rate. An empirical equation is used to represent the effect of loading rate and pre-load force, and the results show that this equation can depict the trend of the experimental data.

  18. Generation of High-Frequency P and S Wave Energy by Rock Fracture During a Buried Explosion

    Science.gov (United States)

    2015-07-20

    AFRL-RV -PS- TR-2015-0145 AFRL-RV -PS- TR-2015-0145 GENERATION OF HIGH-FREQUENCY P AND S WAVE ENERGY BY ROCK FRACTURE DURING A BURIED EXPLOSION ...SUBTITLE Generation of High-Frequency P and S Wave Energy by Rock Fracture During a Buried Explosion 5a. CONTRACT NUMBER FA9453-12-C-0210 5b...underground nuclear explosions . This model predicts the generation of strong S wave radiation in the non-linear source region whenever spherical

  19. Numerical Simulation of P-Wave Propagation in Rock Mass with Granular Material-Filled Fractures Using Hybrid Continuum-Discrete Element Method

    Science.gov (United States)

    Gui, Y. L.; Zhao, Z. Y.; Zhou, H. Y.; Wu, W.

    2016-10-01

    In this paper, a cohesive fracture model is applied to model P-wave propagation through fractured rock mass using hybrid continuum-discrete element method, i.e. Universal Distinct Element Code (UDEC). First, a cohesive fracture model together with the background of UDEC is presented. The cohesive fracture model considers progressive failure of rock fracture rather than an abrupt damage through simultaneously taking into account the elastic, plastic and damage mechanisms as well as a modified failure function. Then, a series of laboratory tests from the literature on P-wave propagation through rock mass containing single fracture and two parallel fractures are introduced and the numerical models used to simulate these laboratory tests are described. After that, all the laboratory tests are simulated and presented. The results show that the proposed model, particularly the cohesive fracture model, can capture very well the wave propagation characteristics in rock mass with non-welded and welded fractures with and without filling materials. In the meantime, in order to identify the significance of fracture on wave propagation, filling materials with different particle sizes and the fracture thickness are discussed. Both factors are found to be crucial for wave attenuation. The simulations also show that the frequency of transmission wave is lowered after propagating through fractures. In addition, the developed numerical scheme is applied to two-dimensional wave propagation in the rock mass.

  20. A coupled thermo-poro-mechanical finite element analysis of fractured porous rocks using a cohesive interface element

    Science.gov (United States)

    Wang, W.; Regueiro, R. A.

    2014-12-01

    The coupling between multiphase flow, heat transfer, and poromechanics in fractured geomaterials has aroused great interest in the areas of geomechanics, geoenvironmental engineering, and petroleum engineering. Relevant applications include nuclear waste repositories, geological sequestration of CO2, geothermal systems, and exploitation of shale gas reservoirs. The paper presents a fully coupled thermo-poro-mechanical (TPM) cohesive interface element (CIE) model, which can represent fluid and heat flow along and across the fracture, and shear/normal deformation of the fracture surfaces. The proposed model is then applied to analyze two popular geological engineering problems using the finite element method (FEM) with a small strain formulation. The first application is the fracturing process in organic-rich shale due to heating. In the finite element analysis, multiple horizontal microcracks parallel to the bedding plane are assumed to preexist in the porous source rock, and are represented by coupled TPM cohesive interface elements. The porous bulk rock is assumed to be homogeneous, isotropic (for the time being, with transverse isotropy a natural extension), and linearly elastic. The excess pore fluid pressure, which mainly causes the development of the fractures, is actually induced by the rapid decomposition of organic matter during heating according to the literature. However, the involved complex chemical reaction process is beyond the scope of the paper, and is therefore substituted by a fluid injection process within the cracks under room temperature (25C) and high temperature (400C) in the paper. We investigate the fracture propagation due to pore fluid pressure increase and the development of fracture-induced permeability. The second application is a nuclear waste repository in a partially saturated fractured rock. Multiphase transport of moisture and heat, thermally-induced stress, as well as the change of fracture apertures are investigated due to short

  1. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Barr, Deborah; Birkholzer, Jens T.; Fujisaki, Kiyoshi; Kolditz, Olf; Liu, Quan-Shen; Fujita, tomoo; Wang, Wenqing; Zhang, Cheng-Yuan

    2008-10-23

    This paper presents an international, multiple-code, simulation study of coupled thermal, hydrological, and mechanical (THM) processes and their effect on permeability and fluid flow in fractured rock around heated underground nuclear waste emplacement drifts. Simulations were conducted considering two types of repository settings: (a) open emplacement drifts in relatively shallow unsaturated volcanic rock, and (b) backfilled emplacement drifts in deeper saturated crystalline rock. The results showed that for the two assumed repository settings, the dominant mechanism of changes in rock permeability was thermal-mechanically-induced closure (reduced aperture) of vertical fractures, caused by thermal stress resulting from repository-wide heating of the rock mass. The magnitude of thermal-mechanically-induced changes in permeability was more substantial in the case of an emplacement drift located in a relatively shallow, low-stress environment where the rock is more compliant, allowing more substantial fracture closure during thermal stressing. However, in both of the assumed repository settings in this study, the thermal-mechanically-induced changes in permeability caused relatively small changes in the flow field, with most changes occurring in the vicinity of the emplacement drifts.

  2. Implementation of an Empirical Joint Constitutive Model into Finite-Discrete Element Analysis of the Geomechanical Behaviour of Fractured Rocks

    Science.gov (United States)

    Lei, Qinghua; Latham, John-Paul; Xiang, Jiansheng

    2016-12-01

    An empirical joint constitutive model (JCM) that captures the rough wall interaction behaviour of individual fractures associated with roughness characteristics observed in laboratory experiments is combined with the solid mechanical model of the finite-discrete element method (FEMDEM). The combined JCM-FEMDEM formulation gives realistic fracture behaviour with respect to shear strength, normal closure, and shear dilatancy and includes the recognition of fracture length influence as seen in experiments. The validity of the numerical model is demonstrated by a comparison with the experimentally established empirical solutions. A 2D plane strain geomechanical simulation is conducted using an outcrop-based naturally fractured rock model with far-field stresses loaded in two consecutive phases, i.e. take-up of isotropic stresses and imposition of two deviatoric stress conditions. The modelled behaviour of natural fractures in response to various stress conditions illustrates a range of realistic behaviour including closure, opening, shearing, dilatancy, and new crack propagation. With the increase in stress ratio, significant deformation enhancement occurs in the vicinity of fracture tips, intersections, and bends, where large apertures can be generated. The JCM-FEMDEM model is also compared with conventional approaches that neglect the scale dependency of joint properties or the roughness-induced additional frictional resistance. The results of this paper have important implications for understanding the geomechanical behaviour of fractured rocks in various engineering activities.

  3. Image-based modeling of the flow transition from a Berea rock matrix to a propped fracture

    Science.gov (United States)

    Sanematsu, P.; Willson, C. S.; Thompson, K. E.

    2013-12-01

    In the past decade, new technologies and advances in horizontal hydraulic fracturing to extract oil and gas from tight rocks have raised questions regarding the physics of the flow and transport processes that occur during production. Many of the multi-dimensional details of flow from the rock matrix into the fracture and within the proppant-filled fracture are still unknown, which leads to unreliable well production estimations. In this work, we use x-ray computed micro tomography (XCT) to image 30/60 CarboEconoprop light weight ceramic proppant packed between berea sandstone cores (6 mm in diameter and ~2 mm in height) under 4000 psi (~28 MPa) loading stress. Image processing and segmentation of the 6 micron voxel resolution tomography dataset into solid and void space involved filtering with anisotropic diffusion (AD), segmentation using an indicator kriging (IK) algorithm, and removal of noise using a remove islands and holes program. Physically-representative pore network structures were generated from the XCT images, and a representative elementary volume (REV) was analyzed using both permeability and effective porosity convergence. Boundary conditions were introduced to mimic the flow patterns that occur when fluid moves from the matrix into the proppant-filled fracture and then downstream within the proppant-filled fracture. A smaller domain, containing Berea and proppants close to the interface, was meshed using an in-house unstructured meshing algorithm that allows different levels of refinement. Although most of this domain contains proppants, the Berea section accounted for the majority of the elements due to mesh refinement in this region of smaller pores. A finite element method (FEM) Stokes flow model was used to provide more detailed insights on the flow transition from rock matrix to fracture. Results using different pressure gradients are used to describe the flow transition from the Berea rock matrix to proppant-filled fracture.

  4. Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-peak Strength Parameters in Rock Uniaxial Compression

    Science.gov (United States)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-12-01

    Brittleness is a fundamental mechanical rock property critical to many civil engineering works, mining development projects and mineral exploration operations. However, rock brittleness is a concept yet to be investigated as there is not any unique criterion available, widely accepted by rock engineering community able to describe rock brittleness quantitatively. In this study, new brittleness indices were developed based on fracture strain energy quantities obtained from the complete stress-strain characteristics of rocks. In doing so, different rocks having unconfined compressive strength values ranging from 7 to 215 MPa were examined in a series of quasi-static uniaxial compression tests after properly implementing lateral-strain control in a closed-loop system to apply axial load to rock specimen. This testing method was essential to capture post-peak regime of the rocks since a combination of class I-II or class II behaviour featured post-peak stress-strain behaviour. Further analysis on the post-peak strain localisation, stress-strain characteristics and the fracture pattern causing class I-II and class II behaviour were undertaken by analysing the development of field of strains in the rocks via three-dimensional digital image correlation. Analysis of the results demonstrated that pre-peak stress-strain brittleness indices proposed solely based on pre-peak stress-strain behaviour do not show any correlation with any of pre-peak rock mechanical parameters. On the other hand, the proposed brittleness indices based on pre-peak and post-peak stress-strain relations were found to competently describe an unambiguous brittleness scale against rock deformation and strength parameters such as the elastic modulus, the crack damage stress and the peak stress relevant to represent failure process.

  5. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  6. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  7. Multiple-methods investigation of recharge at a humid-region fractured rock site, Pennsylvania, USA

    Science.gov (United States)

    Heppner, C.S.; Nimmo, J.R.; Folmar, G.J.; Gburek, W.J.; Risser, D.W.

    2007-01-01

    Lysimeter-percolate and well-hydrograph analyses were combined to evaluate recharge for the Masser Recharge Site (central Pennsylvania, USA). In humid regions, aquifer recharge through an unconfined low-porosity fractured-rock aquifer can cause large magnitude water-table fluctuations over short time scales. The unsaturated hydraulic characteristics of the subsurface porous media control the magnitude and timing of these fluctuations. Data from multiple sets of lysimeters at the site show a highly seasonal pattern of percolate and exhibit variability due to both installation factors and hydraulic property heterogeneity. Individual event analysis of well hydrograph data reveals the primary influences on water-table response, namely rainfall depth, rainfall intensity, and initial water-table depth. Spatial and seasonal variability in well response is also evident. A new approach for calculating recharge from continuous water-table elevation records using a master recession curve (MRC) is demonstrated. The recharge estimated by the MRC approach when assuming a constant specific yield is seasonal to a lesser degree than the recharge estimate resulting from the lysimeter analysis. Partial reconciliation of the two recharge estimates is achieved by considering a conceptual model of flow processes in the highly-heterogeneous underlying fractured porous medium. ?? Springer-Verlag 2007.

  8. A laboratory acoustic emission experiment and numerical simulation of rock fracture driven by a high-pressure fluid source

    Directory of Open Access Journals (Sweden)

    Xinglin Lei

    2016-02-01

    Full Text Available In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with fluid injection in the laboratory. Furthermore, we tested a number of numerical models using the FLAC3D modeling software to find the best model to represent the experimental results. The high-speed multichannel acoustic emission (AE waveform recording system used in this study made it possible to examine the total fracture process through detailed monitoring of AE hypocenters and seismic velocity. The experimental results show that injecting high-pressure oil into the rock sample can induce AE activity at very low stress levels and can dramatically reduce the strength of the rock. The results of the numerical simulations show that major experimental results, including the strength, the temporal and spatial patterns of the AE events, and the role of the fluid can be represented fairly well by a model involving (1 randomly distributed defect elements to model pre-existing cracks, (2 random modification of rock properties to represent inhomogeneity introduced by different mineral grains, and (3 macroscopic inhomogeneity. Our study, which incorporates laboratory experiments and numerical simulations, indicates that such an approach is helpful in finding a better model not only for simulating experimental results but also for upscaling purposes.

  9. Distinct element modelling of fracture plan control in continuum and jointed rock mass in presplitting method of surface mining

    Institute of Scientific and Technical Information of China (English)

    Sharafisafa Mansour; Aliabadian Zeinab; Alizadeh Rezvan; Mortazavi Ali

    2014-01-01

    Controlled blasting techniques are used to control overbreak and to aid in the stability of the remaining rock formation. Presplitting is one of the most common methods which is used in many open pit mining and surface blast design. The purpose of presplitting is to form a fracture plane across which the radial cracks from the production blast cannot travel. The purpose of this study is to investigate of effect of pre-splitting on the generation of a smooth wall in continuum and jointed rock mass. The 2D distinct element code was used to simulate the presplitting in a rock slope. The blast load history as a function of time was applied to the inner wall of each blasthole. Important parameters that were considered in the analysis were stress tensor and fracturing pattern. The blast loading magnitude and blasthole spacing and jointing pattern were found to be very significant in the final results.

  10. Advanced Reservoir Characterization and Evaluation of C02 Gravity Drainage in the Naturally Fractured Sprayberry Trend Area

    Energy Technology Data Exchange (ETDEWEB)

    David S. Schechter

    1998-04-30

    The objective is to assess the economic feasibility of CO2 flooding of the naturally fractured Straberry Trend Area in west Texas. Research is being conducted in the extensive characterization of the reservoirs, the experimental studies of crude oil/brine/rock (COBR) interaction in the reservoirs, the analytical and numerical simulation of Spraberry reservoirs, and the experimental investigations on CO2 gravity drainage in Spraberry whole cores.

  11. Water flow in fractured rock masses: numerical modeling for tunnel inflow assessment

    Science.gov (United States)

    Gattinoni, P.; Scesi, L.; Terrana, S.

    2009-04-01

    Water circulation in rocks represents a very important element to solve many problems linked with civil, environmental and mining engineering. In particular, the interaction of tunnelling with groundwater has become a very relevant problem not only due to the need to safeguard water resources from impoverishment and from the pollution risk, but also to guarantee the safety of workers and to assure the efficiency of the tunnel drainage systems. The evaluation of the hydrogeological risk linked to the underground excavation is very complex, either for the large number of variables involved or for the lack of data available during the planning stage. The study is aimed to quantify the influence of some geo-structural parameters (i.e. discontinuities dip and dip direction) on the tunnel drainage process, comparing the traditional analytical method to the modeling approach, with specific reference to the case of anisotropic rock masses. To forecast the tunnel inflows, a few Authors suggest analytic formulations (Goodman et al., 1965; Knutsson et al., 1996; Ribacchi et al., 2002; Park et al., 2008; Perrochet et al., 2007; Cesano et al., 2003; Hwang et al., 2007), valid for infinite, homogeneous and isotropic aquifer, in which the permeability value is given as a modulus of equivalent hydraulic conductivity Keq. On the contrary, in discontinuous rock masses the water flow is strongly controlled by joints orientation, by their hydraulic characteristics and by rocks fracturing conditions. The analytic equations found in the technical literature could be very useful, but often they don't reflect the real phenomena of the tunnel inflow in rock masses. Actually, these equations are based on the hypothesis of homogeneous aquifer, and then they don't give good agreement for an heterogeneous fractured medium. In this latter case, the numerical modelling could provide the best results, but only with a detailed conceptual model of the water circulation, high costs and long

  12. An Experimental Investigation into Failure and Localization Phenomena in the Extension to Shear Fracture Transition in Rock

    Science.gov (United States)

    Choens, R. C., II; Chester, F. M.; Bauer, S. J.; Flint, G. M.

    2014-12-01

    Fluid-pressure assisted fracturing can produce mesh and other large, interconnected and complex networks consisting of both extension and shear fractures in various metamorphic, magmatic and tectonic systems. Presently, rock failure criteria for tensile and low-mean compressive stress conditions is poorly defined, although there is accumulating evidence that the transition from extension to shear fracture with increasing mean stress is continuous. We report on the results of experiments designed to document failure criteria, fracture mode, and localization phenomena for several rock types (sandstone, limestone, chalk and marble). Experiments were conducted in triaxial extension using a necked (dogbone) geometry to achieve mixed tension and compression stress states with local component-strain measurements in the failure region. The failure envelope for all rock types is similar, but are poorly described using Griffith or modified Griffith (Coulomb or other) failure criteria. Notably, the mode of fracture changes systematically from pure extension to shear with increase in compressive mean stress and display a continuous change in fracture orientation with respect to principal stress axes. Differential stress and inelastic strain show a systematic increase with increasing mean stress, whereas the axial stress decreases before increasing with increasing mean stress. The stress and strain data are used to analyze elastic and plastic strains leading to failure and compare the experimental results to predictions for localization using constitutive models incorporating on bifurcation theory. Although models are able to describe the stability behavior and onset of localization qualitatively, the models are unable to predict fracture type or orientation. Constitutive models using single or multiple yield surfaces are unable to predict the experimental results, reflecting the difficulty in capturing the changing micromechanisms from extension to shear failure. Sandia

  13. Interpretation of tracer tests performed in fractured rock of the Lange Bramke basin, Germany

    Science.gov (United States)

    Maloszewski, Piotr; Herrmann, Andreas; Zuber, Andrzej

    Two multitracer tests performed in one of the major cross-fault zones of the Lange Bramke basin (Harz Mountains, Germany) confirm the dominant role of the fault zone in groundwater flow and solute transport. Tracers having different coefficients of molecular diffusion (deuterium, bromide, uranine, and eosine) yielded breakthrough curves that can only be explained by a model that couples the advective-dispersive transport in the fractures with the molecular diffusion exchange in the matrix. For the scale of the tests (maximum distance of 225m), an approximation was used in which the influence of adjacent fractures is neglected. That model yielded nearly the same rock and transport parameters for each tracer, which means that the single-fracture approximation is acceptable and that matrix diffusion plays an important role. The hydraulic conductivity of the fault zone obtained from the tracer tests is about 1.5×10-2m/s, whereas the regional hydraulic conductivity of the fractured rock mass is about 3×10-7m/s, as estimated from the tritium age and the matrix porosity of about 2%. These values show that the hydraulic conductivity along the fault is several orders of magnitude larger than that of the remaining fractured part of the aquifer, which confirms the dominant role of the fault zones as collectors of water and conductors of fast flow. Résumé Deux multitraçages ont été réalisés dans l'une des zones principales de failles du bassin de Lange Bramke (massif du Harz, Allemagne); les résultats confirment le rôle prédominant de la zone de failles pour l'écoulement souterrain et le transport de soluté. Les traceurs, possédant des coefficients de diffusion différents (deutérium, bromure, uranine et éosine), ont fourni des courbes de restitution qui ne peuvent être expliquées que par un modèle qui associe un transport advectif-dispersif dans les fractures à un échange par diffusion moléculaire dans la matrice. A l'échelle des expériences (distance

  14. Summary of Radionuclide Reactive Transport Experiments in Fractured Tuff and Carbonate Rocks from Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M; Roberts, S; Reimus, P; Johnson, M

    2006-10-11

    , Mercury, Nevada. Readers are referred to the original reports ''Radionuclide Transport in Tuff and Carbonate Fractures from Yucca Flat, Nevada Test Site'' (Zavarin et al., 2005) and ''Radionuclide Sorption and Transport in Fractured Rocks of Yucca Flat, Nevada Test Site'' (Ware et al., 2005) for specific details not covered in this summary report.

  15. Statistical analysis of surface lineaments and fractures for characterizing naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Genliang; George, S.A.; Lindsey, R.P.

    1997-08-01

    Thirty-six sets of surface lineaments and fractures mapped from satellite images and/or aerial photos from parts of the Mid-continent and Colorado Plateau regions were collected, digitized, and statistically analyzed in order to obtain the probability distribution functions of natural fractures for characterizing naturally fractured reservoirs. The orientations and lengths of the surface linear features were calculated using the digitized coordinates of the two end points of each individual linear feature. The spacing data of the surface linear features within an individual set were, obtained using a new analytical sampling technique. Statistical analyses were then performed to find the best-fit probability distribution functions for the orientation, length, and spacing of each data set. Twenty-five hypothesized probability distribution functions were used to fit each data set. A chi-square goodness-of-fit test was used to rank the significance of each fit. A distribution which provides the lowest chi-square goodness-of-fit value was considered the best-fit distribution. The orientations of surface linear features were best-fitted by triangular, normal, or logistic distributions; the lengths were best-fitted by PearsonVI, PearsonV, lognormal2, or extreme-value distributions; and the spacing data were best-fitted by lognormal2, PearsonVI, or lognormal distributions. These probability functions can be used to stochastically characterize naturally fractured reservoirs.

  16. Numerical Investigation of Dynamic Rock Fracture Toughness Determination Using a Semi-Circular Bend Specimen in Split Hopkinson Pressure Bar Testing

    Science.gov (United States)

    Xu, Y.; Dai, F.; Xu, N. W.; Zhao, T.

    2016-03-01

    The International Society for Rock Mechanics (ISRM) has suggested a notched semi-circular bend technique in split Hopkinson pressure bar (SHPB) testing to determine the dynamic mode I fracture toughness of rock. Due to the transient nature of dynamic loading and limited experimental techniques, the dynamic fracture process associated with energy partitions remains far from being fully understood. In this study, the dynamic fracturing of the notched semi-circular bend rock specimen in SHPB testing is numerically simulated for the first time by the discrete element method (DEM) and evaluated in both microlevel and energy points of view. The results confirm the validity of this DEM model to reproduce the dynamic fracturing and the feasibility to simultaneously measure key dynamic rock fracture parameters, including initiation fracture toughness, fracture energy, and propagation fracture toughness. In particular, the force equilibrium of the specimen can be effectively achieved by virtue of a ramped incident pulse, and the fracture onset in the vicinity of the crack tip is found to synchronize with the peak force, both of which guarantee the quasistatic data reduction method employed to determine the dynamic fracture toughness. Moreover, the energy partition analysis indicates that simplifications, including friction energy neglect, can cause an overestimation of the propagation fracture toughness, especially under a higher loading rate.

  17. Numerical simulations of water flow and contaminants transport near mining wastes disposed in a fractured rock mass

    Institute of Scientific and Technical Information of China (English)

    Ben Abdelghani Farouk; Aubertin Michel; Simon Richard; Therrien René

    2015-01-01

    A numerical tool, called Hydro-Geosphere, was used to simulate unsaturated water flow and contami-nants migration around an open pit filled with mining wastes. Numerical simulations had been carried out to assess the influence of various factors on water flow and solute transport in and around the surface openings including recharge, properties of the waste material and presence of fractures in the surround-ing rock mass. The effect of the regional hydraulic gradient was also investigated. The analyses were con-ducted by simulating various 2D cases using experimentally obtained material properties and controlled boundary conditions. The effects of the hydrogeological properties of the filling material (i.e., water reten-tion curve and hydraulic conductivity function), fracture network characteristics and conductivity of the joints were assessed. The results illustrate that fractures control water flow and contaminants transport around the waste disposal area. A fracture network can desaturate the system and improve the regional gradient effect.

  18. Multi-scale characterization of rock mass discontinuities and rock slope geometry using terrestrial remote sensing techniques

    Science.gov (United States)

    Sturzenegger, Matthieu

    Terrestrial remote sensing techniques including both digital photogrammetry and laser scanning, represent useful complements to conventional field mapping and rock mass discontinuity characterization. Several studies have highlighted practical advantages at close-range (design projects has grown substantially over recent years. As these techniques are increasingly applied by geologists and geological engineers, it is important that their use be properly evaluated. Furthermore, guidelines to optimize their application are required in a similar manner to standardization of conventional discontinuity mapping techniques. An important thesis objective is to develop recommendations for optimal applications of terrestrial remote sensing techniques for discontinuity characterization, based on a quantitative evaluation of various registration approaches, sampling bias and extended manual mapping of 3D digital models. It is shown that simple registration networks can provide adequate measurement of discontinuity geometry for engineering purposes. The bias associated with remote sensing mapping is described. The advantages of these techniques over conventional mapping are demonstrated, including reliable discontinuity orientation measurements. Persistence can be precisely quantified instead of approximately estimated, resulting in a new class for extremely persistent discontinuities being suggested. Secondary roughness and curvature can also be considered at larger scales. The techniques are suitable for the definition of discontinuity sets, and the estimation of both trace intensity and block size/shape, if sampling bias is correctly accounted for. A new type of sampling window, suitable for the incorporation of remote sensing data into discrete fracture network models is presented. Another significant thesis objective is the extension of terrestrial digital photogrammetric methods to greater distances (> 1 km), using f = 200-400 mm lenses. This has required a careful

  19. Coupling analysis of unsteady seepage and stress fields in discrete fractures network of rock mass in dam foundation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The drag force of water flow through single fracture and the coupling characteristics of seepage and stress in single fracture surface are analyzed,and a three dimensional model of coupled unsteady seepage and stress fields is proposed.This model is used to the analysis of foundation rock mass of a high dam.If the coupling effects are considered,the changes of boundary heads have less influence on the inner head of rock mass,and the strong permeability of main fractures appears.If the coupling effects are not considered,the fractures distribution affects the inner head more greatly.When the upstream water head declines,the inner head of dam foundation slightly declines and the hydraulic gradient distribution becomes smoother.A bigger upstream water level declining velocity has a stronger lag effect,meanwhile the values of stress components change more greatly.Therefore the upstream water level declining velocity directly affects the stability of rock mass in dam foundation and we should take into account the above factors to make sure the safety of the dam during reservoir level fluctuation period.

  20. Magnetic Signatures of Impact Fractured Rocks from Sierra Madera, Texas, USA - Implications to Magnetic Anomalies on Mars

    Science.gov (United States)

    Adachi, T.; Kletetschka, G.; Wasilewski, P. J.; Mikula, V.

    2007-05-01

    Mars Express Orbiter (sounding radar data) revealed that craters of ancient origin had been covered by thick sediments in northern hemisphere. Mars MOLA topography mission identified many crater on Mars surface. Thus despite the Mars dichotomy, both northern and southern hemisphere have been covered by impacts to similar density. Mars currently has no global magnetic field of internal origin. In southern hemisphere, magnetic field intensities due to anomalies of remanent origin are much lower over the gigantic impact craters (e.g. Hellas, Prometheus, and Argyre). Low magnetic field may not relate to the absence of internal dynamo but due to impacts. For example, the aerial survey over a two billion year old, largest crater on Earth, Vredefort in South Africa observed much lower magnetic intensity over the crater, despite of the strongly magnetized simgle domain (SD) magnetite in shocked granites. Randomized magnetic vector orientations caused by impact may be the origin of the lower magnetic field observed on both Vredefort and Mars. We conducted magnetic analysis for a suite of Sierra Madera Impact deformed rock sites with complete shatter cone structures and multiple striated joint set (MSJS), and the initial results were intriguing. NRM vector orientations, REM ratios, and AF demagnetization curves showed contrasted magnetic signatures between the sites as well as within the samples. The NRM signatures in small scale shatter cones and larger scale shatter cones indicated shock demagnetization (SDM). The peculiar signatures of the site with MSJS may be both SDM and shock magnetization (SRM). We characterized the complexity and distinct magnetic signatures of impact fractured rocks. The results suggest that the size of the shatter cones and structures may reflect the magnetic signatures of both intensity and directions. Also, the dimensional scale of shatter cones is indicative parameters for randomization of the magnetic vector orientations. Such variations may

  1. Alteration of Fractured Rocks Due to Coupled Chemical and Mechanical Processes: High-Resolution Simulations and Experimental Observations

    Science.gov (United States)

    Ameli, Pasha

    Engineering activities such as enhanced geothermal energy production and improved oil recovery techniques are heavily dependent on the permeability of the subsurface, while others such as CO2 sequestration and nuclear waste disposal rely on the efficiency of rock formations as transport barriers. In either case fractures provide the main pathways for fluid flow and transport, especially in rocks with lower matrix porosity. Laboratory experiments aimed at quantifying the chemo-mechanical responses of fractures have shown a range of results, some of which contradict simple conceptual models. For example, under conditions favoring mineral dissolution, where one would expect an overall increase in permeability, experiments show that permeability increases under some conditions and decreases under others. Recent experiments have attempted to link these core-scale observations to the relevant small-scale processes occurring within fractures. Results suggest that the loss of mechanical strength in asperities due to chemical alteration may cause non-uniform deformation and alteration of fracture apertures. However, due to the lack of direct micro-scale measurements of the coupled chemical and mechanical processes that lead to alteration of contacting fracture surfaces, our ability to predict the long-term evolution of fractures is still limited. To explore the processes that control permeability evolution, I developed a computational model that uses micro-scale surface roughness and explicitly couples dissolution and elastic deformation to calculate local alterations in fracture aperture under chemical and mechanical stresses. A depth-averaged algorithm of fracture flow is used to model reactive transport and chemical alteration of the fracture surfaces. Then, I deform the resulting altered fracture-surfaces using an algorithm that calculates the elastic deformation. The results of the model are compared with flow-through experiments conducted on fractured limestone. The

  2. Estimating regional-scale permeability-depth relations in a fractured-rock terrain using groundwater-flow model calibration

    Science.gov (United States)

    Sanford, Ward E.

    2017-03-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  3. Estimating regional-scale permeability-depth relations in a fractured-rock terrain using groundwater-flow model calibration

    Science.gov (United States)

    Sanford, Ward E.

    2016-11-01

    The trend of decreasing permeability with depth was estimated in the fractured-rock terrain of the upper Potomac River basin in the eastern USA using model calibration on 200 water-level observations in wells and 12 base-flow observations in subwatersheds. Results indicate that permeability at the 1-10 km scale (for groundwater flowpaths) decreases by several orders of magnitude within the top 100 m of land surface. This depth range represents the transition from the weathered, fractured regolith into unweathered bedrock. This rate of decline is substantially greater than has been observed by previous investigators that have plotted in situ wellbore measurements versus depth. The difference is that regional water levels give information on kilometer-scale connectivity of the regolith and adjacent fracture networks, whereas in situ measurements give information on near-hole fractures and fracture networks. The approach taken was to calibrate model layer-to-layer ratios of hydraulic conductivity (LLKs) for each major rock type. Most rock types gave optimal LLK values of 40-60, where each layer was twice a thick as the one overlying it. Previous estimates of permeability with depth from deeper data showed less of a decline at modeling results. There was less certainty in the modeling results deeper than 200 m and for certain rock types where fewer water-level observations were available. The results have implications for improved understanding of watershed-scale groundwater flow and transport, such as for the timing of the migration of pollutants from the water table to streams.

  4. COUPLING MODEL OF TWO PHASE FLOW IN A FRACTURE-ROCK MATRIX SYSTEM AND ITS STOCHASTIC FEATURE ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    王经明; 李竞生; 高智联; 杨保禹

    1998-01-01

    This study is concerned with developing a two-dimensional two-phase model thatsimulate the movement of non-aqueous phase liquid (NAPL) in a fracture-rock matrix system. Theintrinsic permeability and the fracture aperture are represented in the model via its Karhunen-Loeve expansion. Other parameters and the nodal unknowns, water saturations and waterpressures, are represented by their stochastic spectral expanions. The errors resulting fromtruncation of Karhunen - Loeve and polynomial chaos expansions to a finite number of terms areanalyzed. The eigenvalues of stochastic process is found out for any point in the special domain ofthe problem at any instant in time.

  5. Contaminant transport in fracture networks with heterogeneous rock matrices. The Picnic code

    Energy Technology Data Exchange (ETDEWEB)

    Barten, Werner [Paul Scherrer Inst., CH-5232 Villigen PSI (Switzerland); Robinson, Peter C. [QuantiSci Limited, Henley-on-Thames (United Kingdom)

    2001-02-01

    different timescales. To account for one-dimensional matrix diffusion into homogeneous planar or cylindrical rock layers, analytical relations in the Laplace domain are used. To deal with one-dimensional or two-dimensional matrix diffusion into heterogeneous rock matrices, a finite-element method is embedded. The capability of the code for handling two-dimensional matrix diffusion is - to our knowledge - unique in fracture network modelling. To ensure the reliability of the code, which merges methods from graph theory, Laplace transformation, finite-element methods, analytical and algebraic transformations and a convolution to calculate complex radionuclide transport processes over a large and diverse application range, implementation of the code and careful verification have been alternated for iterative improvement and especially the elimination of bugs. The internal mathematical structure of PICNIC forms the basis of the verification strategy. The code is verified in a series of seven steps with increasing complexity of the rock matrix. Calculations for single nuclides and nuclide decay chains are carefully tested and analysed for radionuclide transport in single legs, in pathways and in networks. Different sources and boundary conditions are considered. Quantitative estimates of the accuracy of the code are derived from comparisons with analytical solutions, cross-comparisons with other codes and different types of self -consistency tests, including extended testing of different refinements of the embedded finite- element method for different rock matrix geometries. The geosphere barrier efficiency is a good single indicator of the code accuracy. Application ranges with reduced accuracy of the code are also considered. For one-dimensional matrix diffusion into homogeneous and heterogeneous rock matrices, cross-comparisons with other codes are performed. For two-dimensional matrix diffusion, however, no code for cross-comparison is available. Consequently, the

  6. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    Hirasaki, George J.; Mohanty, Kishore, K.

    2001-07-13

    The objective of this project is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. This is the first annual progress report submitted to the DOE. It reports on the work completed during the reporting period even if it may have started before this period. This project is a partnership between Professor George J. Hirasaki at Rice University and Professor Kishore Mohanty at University of Houston. In addition to the DOE, this project is supported by a consortium of oil companies and service companies. The fluid properties characterization has emphasized the departure of live oils from correlations based on dead oils. Also, asphaltic components can result in a difference between the T1 and T2 relaxation time distributions as well as reduce the hydrogen index. The fluid rock characterizations that are reported here are the effects of wettability and internal magnetic field gradients. A pore reconstruction method ha s been developed to recreate three-dimensional porous media from two-dimensional images that reproduce some of their key statistical properties. A Monte Carlo simulation technique has been developed to calculate the magnetization decay in fluid saturated porous media given their pore structure.

  7. Dynamic characterization of the Chamousset rock column before its fall

    Science.gov (United States)

    Levy, C.; Baillet, L.; Jongmans, D.

    2009-04-01

    The rockfall of Chamousset (volume of 21000m3 ) occurred on November 10, 2007, affecting the 300 m high Urgonian cliff of the southern Vercors massif, French Alps. This event took place when the Vercors plateau was covered by snow. The unstable column was previously detected by observations on the development of a 30 m long fracture back on the plateau. Two aerial Lidar scans of the cliff were acquired before and after the failure, allowing the geometry of the column and of the broken plane to be determined. A temporary seismic array along with two extensometers was installed from July to November 2007. The seismic array consisted of 7 short period seismometers (1 three-components and 6 vertical-component). One vertical seismometer was installed on the column while the other 6 were deployed on the plateau with an array aperture of about 70 m. During the last two months of record, short period seismometers were replaced by 4.5 Hz geophones. The monitoring system recorded in a continuous mode (1000 Hz of frequency sampling) but it stopped to work two weeks before the fall, after the solar panels were covered by snow. During the running period, the seismic array recorded hundreds of local seismic events, from short (less than 0.5 s) impulsive signals to events with a long duration (a few tens of seconds). Our study was first focused on the dynamic response of the column and on the seismic noise frequency content. Fourier spectra of the seismic noise signals recorded on the column and the corresponding spectral ratios showed the presence of several resonance frequencies of the column. The first resonance frequency was measured at 3.6 Hz in July 2007 and it decreases regularly with time to reach 2.6 Hz two weeks before the fall. In parallel, extensometer measurements show that the fracture aperture increased with time during the same period. The dynamic response of a block which separates from a rock mass was 2D numerically modelled. Finite element computations showed

  8. Some Open Issues on Rockfall Hazard Analysis in Fractured Rock Mass: Problems and Prospects

    Science.gov (United States)

    Ferrero, Anna Maria; Migliazza, Maria Rita; Pirulli, Marina; Umili, Gessica

    2016-09-01

    Risk is part of every sector of engineering design. It is a consequence of the uncertainties connected with the cognitive boundaries and with the natural variability of the relevant variables. In soil and rock engineering, in particular, uncertainties are linked to geometrical and mechanical aspects and the model used for the problem schematization. While the uncertainties due to the cognitive gaps could be filled by improving the quality of numerical codes and measuring instruments, nothing can be done to remove the randomness of natural variables, except defining their variability with stochastic approaches. Probabilistic analyses represent a useful tool to run parametric analyses and to identify the more significant aspects of a given phenomenon: They can be used for a rational quantification and mitigation of risk. The connection between the cognitive level and the probability of failure is at the base of the determination of hazard, which is often quantified through the assignment of safety factors. But these factors suffer from conceptual limits, which can be only overcome by adopting mathematical techniques with sound bases, not so used up to now (Einstein et al. in rock mechanics in civil and environmental engineering, CRC Press, London, 3-13, 2010; Brown in J Rock Mech Geotech Eng 4(3):193-204, 2012). The present paper describes the problems and the more reliable techniques used to quantify the uncertainties that characterize the large number of parameters that are involved in rock slope hazard assessment through a real case specifically related to rockfall. Limits of the existing approaches and future developments of the research are also provided.

  9. Hydrogeologic Controls on Episodic H2 Release from Precambrian Fractured Rocks-Energy for Deep Subsurface Life on Earth and Mars

    Science.gov (United States)

    Sherwood Lollar, B.; Voglesonger, K.; Lin, L.-H.; Lacrampe-Couloume, G.; Telling, J.; Abrajano, T. A.; Onstott, T. C.; Pratt, L. M.

    2007-12-01

    Dissolved H2 concentrations up to the mM range and H2 levels up to 9-58% by volume in the free gas phase are reported for groundwaters at sites in the Precambrian shields of Canada and Finland. Along with previously reported dissolved H2 concentrations up to 7.4 mM for groundwaters from the Witwatersrand Basin, South Africa, these findings indicate that deep Precambrian Shield fracture waters contain some of the highest levels of dissolved H2 ever reported and represent a potentially important energy-rich environment for subsurface microbial life. The δ 2H isotope signatures of H2 gas from Canada, Finland, and South Africa are consistent with a range of H2-producing water-rock reactions, depending on the geologic setting, which include both serpentinization and radiolysis. In Canada and Finland, several of the sites are in Archean greenstone belts characterized by ultramafic rocks that have under-gone serpentinization and may be ancient analogues for serpentinite-hosted gases recently reported at the Lost City Hydrothermal Field and other hydrothermal seafloor deposits. The hydrogeologically isolated nature of these fracture-controlled groundwater systems provides a mechanism whereby the products of water-rock interaction accumulate over geologic timescales, which produces correlations between high H2 levels, abiogenic hydrocarbon signatures, and the high salinities and highly altered δ 18O and δ 2H values of these groundwaters. A conceptual model is presented that demonstrates how periodic opening of fractures and resultant mixing control the distribution and supply of H2 and support a microbial community of H2-utilizing sulfate reducers and methanogens.

  10. Hydrogeologic controls on episodic H2 release from precambrian fractured rocks--energy for deep subsurface life on earth and mars.

    Science.gov (United States)

    Sherwood Lollar, B; Voglesonger, K; Lin, L-H; Lacrampe-Couloume, G; Telling, J; Abrajano, T A; Onstott, T C; Pratt, L M

    2007-12-01

    Dissolved H(2) concentrations up to the mM range and H(2) levels up to 9-58% by volume in the free gas phase are reported for groundwaters at sites in the Precambrian shields of Canada and Finland. Along with previously reported dissolved H(2) concentrations up to 7.4 mM for groundwaters from the Witwatersrand Basin, South Africa, these findings indicate that deep Precambrian Shield fracture waters contain some of the highest levels of dissolved H(2) ever reported and represent a potentially important energy-rich environment for subsurface microbial life. The delta (2)H isotope signatures of H(2) gas from Canada, Finland, and South Africa are consistent with a range of H(2)-producing water-rock reactions, depending on the geologic setting, which include both serpentinization and radiolysis. In Canada and Finland, several of the sites are in Archean greenstone belts characterized by ultramafic rocks that have under-gone serpentinization and may be ancient analogues for serpentinite-hosted gases recently reported at the Lost City Hydrothermal Field and other hydrothermal seafloor deposits. The hydrogeologically isolated nature of these fracture-controlled groundwater systems provides a mechanism whereby the products of water-rock interaction accumulate over geologic timescales, which produces correlations between high H(2) levels, abiogenic hydrocarbon signatures, and the high salinities and highly altered delta (18)O and delta (2)H values of these groundwaters. A conceptual model is presented that demonstrates how periodic opening of fractures and resultant mixing control the distribution and supply of H(2) and support a microbial community of H(2)-utilizing sulfate reducers and methanogens.

  11. Shape Memory Alloy Rock Splitters (SMARS) - A Non-Explosive Method for Fracturing Planetary Rocklike Materials and Minerals

    Science.gov (United States)

    Benafan, Othmane; Noebe, Ronald D.; Halsmer, Timothy J.

    2015-01-01

    A static rock splitter device based on high-force, high-temperature shape memory alloys (HTSMAs) was developed for space related applications requiring controlled geologic excavation in planetary bodies such as the Moon, Mars, and near-Earth asteroids. The device, hereafter referred to as the shape memory alloy rock splitter (SMARS), consisted of active (expanding) elements made of Ni50.3Ti29.7Hf20 (at.%) that generate extremely large forces in response to thermal input. The preshaping (training) of these elements was accomplished using isothermal, isobaric and cyclic training methods, which resulted in active components capable of generating stresses in excess of 1.5 GPa. The corresponding strains (or displacements) were also evaluated and were found to be 2 to 3 percent, essential to rock fracturing and/or splitting when placed in a borehole. SMARS performance was evaluated using a test bed consisting of a temperature controller, custom heaters and heater holders, and an enclosure for rock placement and breakage. The SMARS system was evaluated using various rock types including igneous rocks (e.g., basalt, quartz, granite) and sedimentary rocks (e.g., sandstone, limestone).

  12. Evolution of Deformability and Transport Properties of Fractured Rocks Under the Action of Stress and Chemistry

    Science.gov (United States)

    Elsworth, Derek; Taron, Josh; Faoro, Igor; Lee, Dae-Sung; Liu, Jishan; Niemeijer, Andre; Yasuhara, Hideaki

    2010-05-01

    Fluids in the shallow crust exert important controls on a wide spectrum of natural and engineered phenomena. The complex interaction of stress and particularly that of chemistry exhibit important feedbacks which influence the evolution of the mechanical and transport properties of rocks. These feedbacks in turn relate crucially to the subsurface recovery of hydrocarbons from the full spectrum of conventional through unconventional reservoirs, to the recovery of hydrothermal and non-hydrothermal geothermal resources, to the secure and enduring sequestration of energy by-products, and to the earthquake cycle, for example. We report on enigmatic interactions between stress and chemistry in mediating the evolution of permeability and strength in natural and engineered systems pushed far-from equilibrium. These include the roles of excess pore fluid pressures in driving transient changes in permeability and as well as the influence of changes in chemical potential in systems driven far-from-equilibrium. These effects are shown to result in significant changes in permeability that may vary on timescales of minutes to years as feedbacks switch from mechanically-driven to chemically-driven and as the length-scale of the prototype grows. These interactions are explored through coupled modeling including feedbacks in stress and chemistry as relevant to high-carbon through low-carbon energy systems. Examples are selected to illustrate the significance of these interactions in controlling the response of hydrocarbon and geothermal reservoirs, fracture treatments and radioactive waste disposal.

  13. Rockfall source characterization at high rock walls in complex geological settings by photogrammetry, structural analysis and DFN techniques

    Science.gov (United States)

    Agliardi, Federico; Riva, Federico; Galletti, Laura; Zanchi, Andrea; Crosta, Giovanni B.

    2016-04-01

    Rockfall quantitative risk analysis in areas impended by high, subvertical cliffs remains a challenge, due to the difficult definition of potential rockfall sources, event magnitude scenarios and related probabilities. For this reasons, rockfall analyses traditionally focus on modelling the runout component of rockfall processes, whereas rock-fall source identification, mapping and characterization (block size distribution and susceptibility) are over-simplified in most practical applications, especially when structurally complex rock masses are involved. We integrated field and remote survey and rock mass modelling techniques to characterize rock masses and detect rockfall source in complex geo-structural settings. We focused on a test site located at Valmadrera, near Lecco (Southern Alps, Italy), where cliffs up to 600 m high impend on a narrow strip of Lake Como shore. The massive carbonates forming the cliff (Dolomia Principale Fm), normally characterized by brittle structural associations due to their high strength and stiffness, are here involved in an ENE-trending, S-verging kilometre-scale syncline. Brittle mechanisms associated to folding strongly controlled the nature of discontinuities (bedding slip, strike-slip faults, tensile fractures) and their attributes (spacing and size), as well as the spatial variability of bedding attitude and fracture intensity, with individual block sizes up to 15 m3. We carried out a high-resolution terrestrial photogrammetric survey from distances ranging from 1500 m (11 camera stations from the opposite lake shore, 265 pictures) to 150 m (28 camera stations along N-S directed boat routes, 200 pictures), using RTK GNSS measurements for camera station geo-referencing. Data processing by Structure-from-Motion techniques resulted in detailed long-range (1500 m) and medium-range (150 to 800 m) point clouds covering the entire slope with maximum surface point densities exceeding 50 pts/m2. Point clouds allowed a detailed

  14. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  15. Experimental and Numerical Studies on Development of Fracture Process Zone (FPZ) in Rocks under Cyclic and Static Loadings

    Science.gov (United States)

    Ghamgosar, M.; Erarslan, N.

    2016-03-01

    The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.

  16. Transport and attenuation of carboxylate-modified latex microspheres in fractured rock laboratory and field tracer tests

    Science.gov (United States)

    Becker, M.W.; Reimus, P.W.; Vilks, P.

    1999-01-01

    Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks

  17. Theoretical relation between water flow rate in a vertical fracture and rock temperature in the surrounding massif

    CERN Document Server

    Maréchal, Jean-Christophe

    2010-01-01

    A steady-state analytical solution is given describing the temperature distribution in a homogeneous massif perturbed by cold water flow through a discrete vertical fracture. A relation is derived to express the flow rate in the fracture as a function of the temperature measured in the surrounding rock. These mathematical results can be useful for tunnel drilling as it approaches a vertical cold water bearing structure that induces a thermal anomaly in the surrounding massif. During the tunnel drilling, by monitoring this anomaly along the tunnel axis one can quantify the flow rate in the discontinuity ahead before intersecting the fracture. The cases of the Simplon, Mont Blanc and Gotthard tunnels (Alps) are handled with this approach which shows very good agreement between observed temperatures and the theoretical trend. The flow rates before drilling of the tunnel predicted with the theoretical solution are similar in the Mont Blanc and Simplon cases, as well as the flow rates observed during the drilling....

  18. Active and passive seismic methods for characterization and monitoring of unstable rock masses: field surveys, laboratory tests and modeling.

    Science.gov (United States)

    Colombero, Chiara; Baillet, Laurent; Comina, Cesare; Jongmans, Denis; Vinciguerra, Sergio

    2016-04-01

    Appropriate characterization and monitoring of potentially unstable rock masses may provide a better knowledge of the active processes and help to forecast the evolution to failure. Among the available geophysical methods, active seismic surveys are often suitable to infer the internal structure and the fracturing conditions of the unstable body. For monitoring purposes, although remote-sensing techniques and in-situ geotechnical measurements are successfully tested on landslides, they may not be suitable to early forecast sudden rapid rockslides. Passive seismic monitoring can help for this purpose. Detection, classification and localization of microseismic events within the prone-to-fall rock mass can provide information about the incipient failure of internal rock bridges. Acceleration to failure can be detected from an increasing microseismic event rate. The latter can be compared with meteorological data to understand the external factors controlling stability. On the other hand, seismic noise recorded on prone-to-fall rock slopes shows that the temporal variations in spectral content and correlation of ambient vibrations can be related to both reversible and irreversible changes within the rock mass. We present the results of the active and passive seismic data acquired at the potentially unstable granitic cliff of Madonna del Sasso (NW Italy). Down-hole tests, surface refraction and cross-hole tomography were carried out for the characterization of the fracturing state of the site. Field surveys were implemented with laboratory determination of physico-mechanical properties on rock samples and measurements of the ultrasonic pulse velocity. This multi-scale approach led to a lithological interpretation of the seismic velocity field obtained at the site and to a systematic correlation of the measured velocities with physical properties (density and porosity) and macroscopic features of the granitic cliff (fracturing, weathering and anisotropy). Continuous

  19. Characterization of weathering profile in granites and volcanosedimentary rocks in West Africa under humid tropical climate conditions. Case of the Dimbokro Catchment (Ivory Coast)

    Science.gov (United States)

    Koita, M.; Jourde, H.; Koffi, K. J. P.; da Silveira, K. S.; Biaou, A.

    2013-06-01

    In granitic rocks, various models of weathering profile have been proposed, but never for the hard rocks of West Africa. Besides, in the literature there is no description of the weathering profile in volcanosedimentrary rocks. Therefore, we propose three models describing the weathering profiles in granites, metasediments, and volcanic rocks for hard rock formations located in West Africa. For each of these models proposed for granitic and volcanosedimentary rocks of the Dimbokro catchment, vertical layered weathering profiles are described, according to the various weathering and erosion cycles (specific to West Africa) that the geological formations of the Dimbokro catchment experienced from the Eocene to the recent Quaternary period. The characterization of weathering profiles is based on: i) bedrocks and weathering profile observations at outcrop, and ii) interpretation and synthesis of geophysical data and lithologs from different boreholes. For each of the geological formations (granites, metasediments, and volcanic rocks), their related weathering profile model depicted from top to bottom comprises four separate layers: alloterite, isalterite, fissured layer, and fractured fresh basement. These weathering profiles are systematically covered by a soil layer. Though granites, metasediments and volcanic rocks of the Dimbokro catchment experience the same weathering and erosion cycles during the palaeoclimatic fluctuations from Eocene to recent Quaternary period, they exhibit differences in thickness. In granites, the weathering profile is relatively thin due to the absence of iron crust which protects weathering products against dismantling. In metasediments and volcanic rocks iron crusts develop better than in granites; in these rocks the alterite are more resistant to dismantling.

  20. Characterization of weathering profile in granites and volcanosedimentary rocks in West Africa under humid tropical climate conditions. Case of the Dimbokro Catchment (Ivory Coast)

    Indian Academy of Sciences (India)

    M Koita; H Jourde; K J P Koffi; K S Da Silveira; A Biaou

    2013-06-01

    In granitic rocks, various models of weathering profile have been proposed, but never for the hard rocks of West Africa. Besides, in the literature there is no description of the weathering profile in volcanosedimentrary rocks. Therefore, we propose three models describing the weathering profiles in granites, metasediments, and volcanic rocks for hard rock formations located in West Africa. For each of these models proposed for granitic and volcano sedimentary rocks of the Dimbokro catchment, vertical layered weathering profiles are described, according to the various weathering and erosion cycles (specific to West Africa) that the geological formations of the Dimbokro catchment experienced from the Eocene to the recent Quaternary period. The characterization of weathering profiles is based on: i) bedrocks and weathering profile observations at outcrop, and ii) interpretation and synthesis of geophysical data and lithologs from different boreholes. For each of the geological formations (granites, metasediments, and volcanic rocks), their related weathering profile model depicted from top to bottom comprises four separate layers: alloterite, isalterite, fissured layer, and fractured fresh basement. These weathering profiles are systematically covered by a soil layer. Though granites, metasediments and volcanic rocks of the Dimbokro catchment experience the same weathering and erosion cycles during the palaeoclimatic fluctuations from Eocene to recent Quaternary period, they exhibit differences in thickness. In granites, the weathering profile is relatively thin due to the absence of iron crust which protects weathering products against dismantling. In metasediments and volcanic rocks iron crusts develop better than in granites; in these rocks the alterite are more resistant to dismantling.

  1. Characterization of fracture processes by continuum and discrete modelling

    Science.gov (United States)

    Kaliske, M.; Dal, H.; Fleischhauer, R.; Jenkel, C.; Netzker, C.

    2012-09-01

    A large number of methods to describe fracture mechanical features of structures on basis of computational algorithms have been developed in the past due to the importance of the topic. In this paper, current and promising numerical approaches for the characterization of fracture processes are presented. A fracture phenomenon can either be depicted by a continuum formulation or a discrete notch. Thus, starting point of the description is a micromechanically motivated formulation for the development of a local failure situation. A current, generalized method without any restriction to material modelling and loading situation in order to describe an existing crack in a structure is available through the material force approach. One possible strategy to simulate arbitrary crack growth is based on an adaptive implementation of cohesive elements in combination with the standard discretization of the body. In this case, crack growth criteria and the determination of the crack propagation direction in combination with the modification of the finite element mesh are required. The nonlinear structural behaviour of a fibre reinforced composite material is based on the heterogeneous microstructure. A two-scale simulation is therefore an appropriate and effective way to take into account the scale differences of macroscopic structures with microscopic elements. In addition, fracture mechanical structural properties are far from being sharp and deterministic. Moreover, a wide range of uncertainties influence the ultimate load bearing behaviour. Therefore, it is evident that the deterministic modelling has to be expanded by a characterization of the uncertainty in order to achieve a reliable and realistic simulation result. The employed methods are illustrated by numerical examples.

  2. MODE Ⅱ AND MIXED MODE Ⅰ-Ⅱ ROCK FRACTURE RESEARCH%岩石Ⅱ型和Ⅰ-Ⅱ混合型断裂研究

    Institute of Scientific and Technical Information of China (English)

    于海勇

    2004-01-01

    For the mode I rock fracture toughness measurement, three standard methods have beenrecommended by the ISRM, but there has not been a standard method for the determination of mode II and mixedmode I-II rock fracture toughness. However mode II and mixed mode I-II fracturing of rock structures is morecommonly observed than mode I in various geological and structural engineering settings. So it is of greatimportant to thoroughly research these rock fracture problems and establish a standard method for determining themode II or mixed mode I-II fracture toughness for rock materials. Based on the progress made for mode I rock fracture research, the cracked chevron notched Brazilian disk(CCNBD) specimen was also introduced for mode II and mixed mode I-II rock fracture toughness measurement.When the crack is orientated at an angle with respect to the diametrical loading, the crack of the CCNBD specimenis exposed to the mode II or mixed mode I-II stress distribution conditions. The solutions for stress intensityfactors in the vicinity of the crack tip have been evaluated by the stepwise superimposition technique. In order tomake sure that the theoretical analysis is correct, numerical calculation method has been employed to calibrate thetheoretical results. It has been proved that the theoretical results yielded by the dislocation method are correct andreliable. According to the characteristic that the propagation of the crack in the CCNBD specimen is in its own planeand application of the energy superposition principle, the stress intensity factor of the mixed mode I-II has beendefined in dimensionless terms as Y≠mix = [(Y1*)2 + (Y*11)2]1/2. It was found that the curve of Y*mix was concave. Thereexists a lowest point which corresponds to the maximum external load and indicates the crack has reached itscritical state. Since the values of Y*mix, Y*1 and Y*II are only dependent on the specimen geometry(α0, α1, αB and θ), the critical values of Y*mix, Y1* and Y*II can be

  3. Advanced reservoir characterization and evaluation of CO2 gravity drainage in the naturally fractured Spraberry Trend Area. Annual report, September 1, 1996--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, P.

    1998-06-01

    The objective of the Spraberry CO{sub 2} pilot project is to determine the technical and economic feasibility of continuous CO{sub 2} injection in the naturally fractured reservoirs of the Spraberry Trend. In order to describe, understand, and model CO{sub 2} flooding in the naturally fractured Spraberry reservoirs, characterization of the fracture system is a must. Additional reservoir characterization was based on horizontal coring in the second year of the project. In addition to characterization of natural fractures, horizontal coring has confirmed a previously developed rock model for describing the Spraberry Trend shaly sands. A better method for identifying Spraberry pay zones has been verified. The authors have completed the reservoir characterization, which includes matrix description and detection (from core-log integration) and fracture characterization. This information is found in Section 1. The authors have completed extensive imbibition experiments that strongly indicate that the weakly water-wet behavior of the reservoir rock may be responsible for poor waterflood response observed in many Spraberry fields. The authors have also made significant progress in analytical and numerical simulation of performance in Spraberry reservoirs as seen in Section 3. They have completed several suites of CO{sub 2} gravity drainage in Spraberry and Berea whole cores at reservoir conditions and reported in Section 4. The results of these experiments have been useful in developing a model for free-fall gravity drainage and have validated the premise that CO{sub 2} will recover oil from tight, unconfined Spraberry matrix.

  4. Characterization of Rock Mechanical Properties Using Lab Tests and Numerical Interpretation Model of Well Logs

    Directory of Open Access Journals (Sweden)

    Hao Xu

    2016-01-01

    Full Text Available The tight gas reservoir in the fifth member of the Xujiahe formation contains heterogeneous interlayers of sandstone and shale that are low in both porosity and permeability. Elastic characteristics of sandstone and shale are analyzed in this study based on petrophysics tests. The tests indicate that sandstone and mudstone samples have different stress-strain relationships. The rock tends to exhibit elastic-plastic deformation. The compressive strength correlates with confinement pressure and elastic modulus. The results based on thin-bed log interpretation match dynamic Young’s modulus and Poisson’s ratio predicted by theory. The compressive strength is calculated from density, elastic impedance, and clay contents. The tensile strength is calibrated using compressive strength. Shear strength is calculated with an empirical formula. Finally, log interpretation of rock mechanical properties is performed on the fifth member of the Xujiahe formation. Natural fractures in downhole cores and rock microscopic failure in the samples in the cross section demonstrate that tensile fractures were primarily observed in sandstone, and shear fractures can be observed in both mudstone and sandstone. Based on different elasticity and plasticity of different rocks, as well as the characteristics of natural fractures, a fracture propagation model was built.

  5. Controls on {sup 222}Rn variations in a fractured crystalline rock aquifer evaluated using aquifer tests and geophysical logging

    Energy Technology Data Exchange (ETDEWEB)

    Folger, P.F. [Office of Senator Pete V. Domenici, Washington, DC (United States)]|[Colorado School of Mines, Golden, CO (United States). Dept. of Geology and Geologic Engineering; Poeter, E. [Colorado School of Mines, Golden, CO (United States). Dept. of Geology and Geologic Engineering; Wanty, R.B.; Frishman, D.; Day, W.

    1996-03-01

    Concentrations of {sup 222}Rn in ground water may vary considerably within megascopically homogeneous rocks over relatively short distances. Calculations indicate that different hydraulic apertures of water-bearing fractures may account for variations in dissolved {sup 222}Rn concentration measured in domestic water wells completed in fractured Pikes Peak Granite, assuming that all other factors influencing dissolved {sup 222}Rn concentrations are constant. Concentrations of dissolved {sup 222}Rn range from 124 to 840 kBq/m{sup 3} [3,360 to 22,700 picocuries/liter] within a 2.5 km{sup 2} well field. Aquifer tests show that transmissivities range from 0.072 to 160 m{sup 2}/day within the well field. Acoustic televiewer and heat-pulse flow meter logging of four wells reveals that, despite tens to hundreds of fractures that intersect each well, a single fracture supplies all the flow to three wells, and one fracture provides 65% of the flow to the fourth well. Type-curve interpretation of early-time data from aquifer tests reveals classic half-slope behavior on log-log plots of drawdown versus time for two wells, suggesting linear flow to a single fracture. Drawdown versus time for the other two wells indicates radial or pseudo-radial flow, which suggests a higher degree of fracture interconnectivity near those boreholes. Hydraulic apertures calculated using the cubic law are 0.024 and 0.038 cm for producing fractures in the first hydraulically connected well pair and 0.011 and 0.020 cm for flowing fractures in the second well pair. Assuming uniform distribution of {sup 226}Ra along fracture walls and long residence time of water relative to {sup 222}Rn decay, the ratio of fracture apertures should equal the inverse ratio of {sup 222}Rn concentration in each well. Differences in {sup 222}Rn concentration between wells in the hydraulically connected pairs can be attributed solely to differences in hydraulic aperture.

  6. Characterizing Excavation Damaged Zone and Stability of Pressurized Lined Rock Caverns for Underground Compressed Air Energy Storage

    Science.gov (United States)

    Kim, Hyung-Mok; Rutqvist, Jonny; Jeong, Ju-Hwan; Choi, Byung-Hee; Ryu, Dong-Woo; Song, Won-Kyong

    2013-09-01

    In this paper, we investigate the influence of the excavation damaged zone (EDZ) on the geomechanical performance of compressed air energy storage (CAES) in lined rock caverns. We conducted a detailed characterization of the EDZ in rock caverns that have been excavated for a Korean pilot test program on CAES in (concrete) lined rock caverns at shallow depth. The EDZ was characterized by measurements of P- and S-wave velocities and permeability across the EDZ and into undisturbed host rock. Moreover, we constructed an in situ concrete lining model and conducted permeability measurements in boreholes penetrating the concrete, through the EDZ and into the undisturbed host rock. Using the site-specific conditions and the results of the EDZ characterization, we carried out a model simulation to investigate the influence of the EDZ on the CAES performance, in particular related to geomechanical responses and stability. We used a modeling approach including coupled thermodynamic multiphase flow and geomechanics, which was proven to be useful in previous generic CAES studies. Our modeling results showed that the potential for inducing tensile fractures and air leakage through the concrete lining could be substantially reduced if the EDZ around the cavern could be minimized. Moreover, the results showed that the most favorable design for reducing the potential for tensile failure in the lining would be a relatively compliant concrete lining with a tight inner seal, and a relatively stiff (uncompliant) host rock with a minimized EDZ. Because EDZ compliance depends on its compressibility (or modulus) and thickness, care should be taken during drill and blast operations to minimize the damage to the cavern walls.

  7. Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Toksoz, M. Nafi [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Earth, Atmospheric and Planetary Sciences

    2013-04-06

    The objective of this 3-year project is to use various geophysical methods for reservoir and fracture characterization. The targeted field is the Cove Fort-Sulphurdale Geothermal Field in Utah operated by ENEL North America (ENA). Our effort has been focused on 1) understanding the regional and local geological settings around the geothermal field; 2) collecting and assembling various geophysical data sets including heat flow, gravity, magnetotelluric (MT) and seismic surface and body wave data; 3) installing the local temporary seismic network around the geothermal site; 4) imaging the regional and local seismic velocity structure around the geothermal field using seismic travel time tomography; and (5) determining the fracture direction using the shear-wave splitting analysis and focal mechanism analysis. Various geophysical data sets indicate that beneath the Cove Fort-Sulphurdale Geothermal Field, there is a strong anomaly of low seismic velocity, low gravity, high heat flow and high electrical conductivity. These suggest that there is a heat source in the crust beneath the geothermal field. The high-temperature body is on average 150 °C – 200 °C hotter than the surrounding rock. The local seismic velocity and attenuation tomography gives a detailed velocity and attenuation model around the geothermal site, which shows that the major geothermal development target is a high velocity body near surface, composed mainly of monzonite. The major fracture direction points to NNE. The detailed velocity model along with the fracture direction will be helpful for guiding the geothermal development in the Cove Fort area.

  8. Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia

    Science.gov (United States)

    Vollgger, Stefan A.; Cruden, Alexander R.

    2016-04-01

    Brittle and ductile deformation of alternating layers of Devonian sandstone and mudstone at Cape Liptrap, Victoria, Australia, resulted in upright folds with associated fold accommodation faults and multiple fracture sets. Structures were mapped at the Fold Stack locality at Cape Liptrap using high-resolution aerial photographs acquired by a digital camera mounted on an unmanned aerial vehicle (UAV). Subsequent photogrammetric modelling resulted in georeferenced spatial datasets (point cloud, digital elevation model and orthophotograph) with sub-cm resolution and cm accuracy, which were used to extract brittle and ductile structure orientation data. An extensive dataset of bedding measurements derived from the dense point cloud was used to compute a 3D implicit structural trend model to visualise along-strike changes of Devonian (Tabberabberan) folds at the Fold Stack locality and to estimate bulk shortening strain. This model and newly collected data indicate that first generation shallowly south-southwest plunging upright folds were gently refolded about a steeply plunging/subvertical fold axis during a Devonian low-strain north-south shortening event. This also led to the local tightening of first generation folds and possibly strike-slip movement along regional scale faults. In order to distinguish fractures associated with Devonian compression from those that formed during Cretaceous extension and later inversion, we compared the five fracture sets defined at Cape Liptrap to previously mapped joints and faults within the overlying sedimentary cover rocks of the Cretaceous Strzelecki Group (Gippsland Basin), which crop out nearby. An east-southeast trending fracture set that is not evident in the Strzelecki Group can be linked to the formation of Devonian folds. Additionally, hinge line traces extracted from the Fold Stack dataset are aligned parallel to a dominant fracture set within the overlying cover sediments. This suggests that basement structures (folds

  9. The ISRM suggested methods for rock characterization, testing and monitoring 2007-2014

    CERN Document Server

    2015-01-01

    This book is a collection of ISRM suggested methods for testing or measuring properties of rocks and rock masses both in the laboratory and in situ, as well as for monitoring the performance of rock engineering structures. The first collection (Yellow Book) has been published in 1981. In order to provide access to all the Suggested Methods in one volume, the ISRM Blue Book was published in 2007 (by the ISRM via the Turkish National Group) and contains the complete set of Suggested Methods from 1974 to 2006 inclusive. The papers in this most recent volume have been published during the last seven years in international journals, mainly in Rock Mechanics and Rock Engineering. They offer guidance for rock characterization procedures and laboratory and field testing and monitoring in rock engineering. These methods provide a definitive procedure for the identification, measurement and evaluation of one or more qualities, characteristics, or properties of rocks or rock systems that produces a test result.

  10. Fractures network analysis and interpretation in carbonate rocks using a multi-criteria statistical approach. Case study of Jebal Chamsi and Jebal Belkhir, South-western part of Tunisia

    Science.gov (United States)

    Msaddek, Mohamed Haythem; Moumni, Yahya; Chenini, Ismail; Mercier, Eric; Dlala, Mahmoud

    2016-11-01

    The quantitative analysis of fractures in carbonate rocks across termination folds is important for the understanding of the fractures network distribution and arrangement. In this study, we performed a quantitative analysis and interpretation of fracture network to identify the fracture networks type. For this reason, we used a multi-criteria statistical analysis. The distribution of directional families in all measured stations and their elemental distribution are firstly examined. Then we performed the analysis of directional criteria for each of the two and three neighbouring stations. Finally, the elemental analyses of fracture families crossing others were carried out. This methodology was applied to the folds of Jebal Chamsi and Jebal Belkhir areas located in south western Tunisia characterized by simple folds of carbonate geological formations. The application of the global and the elemental statistical analysis criteria of directional families show a random arrangement of fractures. However, elemental analysis of two and three neighbouring stations for families crossing one another shows a pseudo-organization of fracture arrangements.

  11. Integrated Methods for Site Characterization and Conceptual Model Development for a Contaminated Fractured-Bedrock Aquifer

    Science.gov (United States)

    Johnson, C. D.; Kastrinos, J. R.; Haeni, F. P.

    2005-12-01

    of the geophysical surveys together with hydraulic and geochemical data from discrete-zone monitoring systems in bedrock wells, chemical data from private water supply wells, surface-water-quality data, and drive-point profiling data were used to develop a conceptual model of the ground-water flow and contaminant distribution at the site. The conceptual model was refined iteratively as additional data were obtained including transient head and chemical data. The conceptual model was used to assess contaminant migration from the landfill and chemical-waste disposal pits and to evaluate remedial alternatives. The University has initiated remedial actions on both the landfill and the chemical-waste disposal pits and has a long-term monitoring program, results of which will be evaluated against the conceptual model. This investigation demonstrated (1) the importance of a multi-disciplinary approach for characterizing contamination in a complex fractured-rock aquifer; (2) the development and use of an iteratively updated site conceptual ground-water flow model; and (3) the value of discrete-zone isolation and long-term monitoring in fractured-rock aquifers to prevent cross-contamination while permitting head measurements and water-quality sampling. This allowed characterization of contaminant migration over time, which might not have been identified without the discrete-interval data.

  12. U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.

  13. Characterization of the Oriskany and Berea Sandstones: Evaluating Biogeochemical Reactions of Potential Sandstone–Hydraulic Fracturing Fluid Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Harris, Aubrey [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2016-07-07

    The Marcellus shale, located in the mid-Atlantic Appalachian Basin, has been identified as a source for natural gas and targeted for hydraulic fracturing recovery methods. Hydraulic fracturing is a technique used by the oil and gas industry to access petroleum reserves in geologic formations that cannot be accessed with conventional drilling techniques (Capo et al., 2014). This unconventional technique fractures rock formations that have low permeability by pumping pressurized hydraulic fracturing fluids into the subsurface. Although the major components of hydraulic fracturing fluid are water and sand, chemicals, such as recalcitrant biocides and polyacrylamide, are also used (Frac Focus, 2015). There is domestic concern that the chemicals could reach groundwater or surface water during transport, storage, or the fracturing process (Chapman et al., 2012). In the event of a surface spill, understanding the natural attenuation of the chemicals in hydraulic fracturing fluid, as well as the physical and chemical properties of the aquifers surrounding the spill site, will help mitigate potential dangers to drinking water. However, reports on the degradation pathways of these chemicals are limited in existing literature. The Appalachian Basin Marcellus shale and its surrounding sandstones host diverse mineralogical suites. During the hydraulic fracturing process, the hydraulic fracturing fluids come into contact with variable mineral compositions. The reactions between the fracturing fluid chemicals and the minerals are very diverse. This report: 1) describes common minerals (e.g. quartz, clay, pyrite, and carbonates) present in the Marcellus shale, as well as the Oriskany and Berea sandstones, which are located stratigraphically below and above the Marcellus shale; 2) summarizes the existing literature of the degradation pathways for common hydraulic fracturing fluid chemicals [polyacrylamide, ethylene glycol, poly(diallyldimethylammonium chloride), glutaraldehyde

  14. A methodology to constrain the parameters of a hydrogeological discrete fracture network model for sparsely fractured crystalline rock, exemplified by data from the proposed high-level nuclear waste repository site at Forsmark, Sweden

    Science.gov (United States)

    Follin, Sven; Hartley, Lee; Rhén, Ingvar; Jackson, Peter; Joyce, Steven; Roberts, David; Swift, Ben

    2014-03-01

    The large-scale geological structure of the crystalline rock at the proposed high-level nuclear waste repository site at Forsmark, Sweden, has been classified in terms of deformation zones of elevated fracture frequency. The rock between deformation zones was divided into fracture domains according to fracture frequency. A methodology to constrain the geometric and hydraulic parameters that define a discrete fracture network (DFN) model for each fracture domain is presented. The methodology is based on flow logging and down-hole imaging in cored boreholes in combination with DFN realizations, fracture connectivity analysis and pumping test simulations. The simulations suggest that a good match could be obtained for a power law size distribution where the value of the location parameter equals the borehole radius but with different values for the shape parameter, depending on fracture domain and fracture set. Fractures around 10-100 m in size are the ones that typically form the connected network, giving inflows in the simulations. The report also addresses the issue of up-scaling of DFN properties to equivalent continuous porous medium (ECPM) bulk flow properties. Comparisons with double-packer injection tests provide confidence that the derived DFN formulation of detailed flows within individual fractures is also suited to simulating mean bulk flow properties and their spatial variability.

  15. Rock specific hydraulic fracturing and matrix acidizing to enhance a geothermal system — Concepts and field results

    Science.gov (United States)

    Zimmermann, Günter; Blöcher, Guido; Reinicke, Andreas; Brandt, Wulf

    2011-04-01

    Enhanced geothermal systems (EGS) are engineered reservoirs developed to extract economic amounts of heat from low permeability and/or porosity geothermal resources. To enhance the productivity of reservoirs, a site specific concept is necessary to actively make reservoir conditions profitable using specially adjusted stimulation treatments, such as multi fracture concepts and site specific well path design. The results of previously performed stimulation treatments in the geothermal research well GtGrSk4/05 at Groß Schönebeck, Germany are presented. The reservoir is located at a 4100-4300 m depth within the Lower Permian of the NE German Basin with a bottom-hole temperature of 150 °C. The reservoir rock is classified by two lithological units from bottom to top: volcanic rocks (andesitic rocks) and siliciclastics ranging from conglomerates to fine-grained sandstones (fluvial sediments). The stimulation treatments included multiple hydraulic stimulations and an acid treatment. In order to initiate a cross-flow from the sandstone layer, the hydraulic stimulations were performed in different depth sections (two in the sandstone section and one in the underlying volcanic section). In low permeability volcanic rocks, a cyclic hydraulic fracturing treatment was performed over 6 days in conjunction with adding quartz in low concentrations to maintain a sustainable fracture performance. Flow rates of up to 150 l/s were realized, and a total of 13,170 m 3 of water was injected. A hydraulic connection to the sandstone layer was successfully achieved in this way. However, monitoring of the water level in the offsetting well EGrSk3/90, which is 475 m apart at the final depth, showed a very rapid water level increase due to the stimulation treatment. This can be explained by a connected fault zone within the volcanic rocks. Two gel-proppant treatments were performed in the slightly higher permeability sandstones to obtain long-term access to the reservoir rocks. During each

  16. Rock physics and seismic modeling of shale reservoirs with horizontal fractures

    Institute of Scientific and Technical Information of China (English)

    LIU Xiwu; DONG Ning; GUO Zhiqi

    2016-01-01

    The presence of horizontal fractures enhances seismic anisotropy of shales.Calculation based on the effective medium theory indicates that horizontal fractures have little effects on velocities along the direction pa-rallel to fractures,but can significantly reduce velocities along the direction normal to fractures.Seismic respon-ses of shales with horizontal fractures are calculated based on the reflector model and the anisotropic propagator matrix method,in which the reflections are a combination of the contrast in impedance due to the variations in fracture density,anisotropic propagation of waves within the shales,and the tuning and interferences associated with layer thickness.Calculated results indicate that seismic reflections are sensitive to reservoir layer thickness and fracture density.Anisotropic propagation alters amplitudes and phases of reflections.It corresponds to high-er reflection amplitudes for the case of surrounding sandstone with higher velocity because the increase in frac-ture density increases the contrast in impedance between the shale and sandstone.In contrast,the surrounding sandstone with lower velocity corresponds to lower reflection amplitudes for the increase in fracture density.

  17. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    Science.gov (United States)

    Zang, Arno; Stephansson, Ove; Stenberg, Leif; Plenkers, Katrin; Specht, Sebastian; Milkereit, Claus; Schill, Eva; Kwiatek, Grzegorz; Dresen, Georg; Zimmermann, Günter; Dahm, Torsten; Weber, Michael

    2017-02-01

    In this paper, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multistage hydraulic fracturing with minimal impact on the environment, that is, seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive and pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocentres obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multistage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broad-band recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events are found to be smaller in the progressive treatment with

  18. Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array

    Science.gov (United States)

    Zang, A.; Stephansson, O.; Stenberg, L.; Plenkers, K.; Specht, S.; Milkereit, C.; Schill, E.; Kwiatek, G.; Dresen, G.; Zimmermann, G.; Dahm, T.; Weber, M.

    2016-11-01

    In this article, an underground experiment at the Äspö Hard Rock Laboratory (HRL) is described. Main goal is optimizing geothermal heat exchange in crystalline rock mass at depth by multi-stage hydraulic fracturing with minimal impact on the environment, i.e. seismic events. For this, three arrays with acoustic emission, microseismicity and electromagnetic sensors are installed mapping hydraulic fracture initiation and growth. Fractures are driven by three different water injection schemes (continuous, progressive, pulse pressurization). After a brief review of hydraulic fracture operations in crystalline rock mass at mine scale, the site geology and the stress conditions at Äspö HRL are described. Then, the continuous, single-flow rate and alternative, multiple-flow rate fracture breakdown tests in a horizontal borehole at depth level 410 m are described together with the monitoring networks and sensitivity. Monitoring results include the primary catalogue of acoustic emission hypocenters obtained from four hydraulic fractures with the in situ trigger and localizing network. The continuous versus alternative water injection schemes are discussed in terms of the fracture breakdown pressure, the fracture pattern from impression packer result and the monitoring at the arrays. An example of multi-stage hydraulic fracturing with several phases of opening and closing of fracture walls is evaluated using data from acoustic emissions, seismic broadband recordings and electromagnetic signal response. Based on our limited amount of in situ tests (six) and evaluation of three tests in Ävrö granodiorite, in the multiple-flow rate test with progressively increasing target pressure, the acoustic emission activity starts at a later stage in the fracturing process compared to the conventional fracturing case with continuous water injection. In tendency, also the total number and magnitude of acoustic events is found to be smaller in the progressive treatment with frequent

  19. Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance.

    Science.gov (United States)

    Dittrich, Timothy M; Reimus, Paul W

    2016-01-01

    Batch adsorption and breakthrough column experiments were conducted to evaluate uranium transport through altered material that fills fractures in a granite rock system at the Grimsel Test Site in Switzerland at pH 6.9 and 7.9. The role of adsorption and desorption kinetics was evaluated with reactive transport modeling by comparing one-, two-, and three-site models. Emphasis was placed on describing long desorption tails that are important for upscaling in time and distance. The effect of increasing pH in injection solutions was also evaluated. For pH 6.9, a three-site model with forward rate constants between 0.07 and 0.8 ml g(-1) h(-1), reverse rate constants between 0.001 and 0.06 h(-1), and site densities of 1.3, 0.104, and 0.026 μmol g(-1) for 'weak/fast', 'strong/slow', and 'very strong/very slow' sites provided the best fits. For pH 7.9, a three-site model with forward rate constants between 0.05 and 0.8 mL g(-1) h(-1), reverse rate constants between 0.001 and 0.6 h(-1), and site densities of 1.3, 0.039, and 0.013 μmol g(-1) for a 'weak/fast', 'strong/slow', and 'very strong/very slow' sites provided the best fits. Column retardation coefficients (Rd) were 80 for pH 6.9 and 10.3 for pH 7.9. Model parameters determined from the batch and column experiments were used in 50 year large-scale simulations for continuous and pulse injections and indicated that a three-site model is necessary at pH 6.9, although a Kd-type equilibrium partition model with one-site was adequate for large scale predictions at pH 7.9. Batch experiments were useful for predicting early breakthrough times in the columns while column experiments helped differentiate the relative importance of sorption sites and desorption rate constants on transport.

  20. Radionuclide migration through fractured rock for arbitrary-length decay chain: Analytical solution and global sensitivity analysis

    Science.gov (United States)

    Shahkarami, Pirouz; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2015-01-01

    This study presents an analytical approach to simulate nuclide migration through a channel in a fracture accounting for an arbitrary-length decay chain. The nuclides are retarded as they diffuse in the porous rock matrix and stagnant zones in the fracture. The Laplace transform and similarity transform techniques are applied to solve the model. The analytical solution to the nuclide concentrations at the fracture outlet is governed by nine parameters representing different mechanisms acting on nuclide transport through a fracture, including diffusion into the rock matrices, diffusion into the stagnant water zone, chain decay and hydrodynamic dispersion. Furthermore, to assess how sensitive the results are to parameter uncertainties, the Sobol method is applied in variance-based global sensitivity analyses of the model output. The Sobol indices show how uncertainty in the model output is apportioned to the uncertainty in the model input. This method takes into account both direct effects and interaction effects between input parameters. The simulation results suggest that in the case of pulse injections, ignoring the effect of a stagnant water zone can lead to significant errors in the time of first arrival and the peak value of the nuclides. Likewise, neglecting the parent and modeling its daughter as a single stable species can result in a significant overestimation of the peak value of the daughter nuclide. It is also found that as the dispersion increases, the early arrival time and the peak time of the daughter decrease while the peak value increases. More importantly, the global sensitivity analysis reveals that for time periods greater than a few thousand years, the uncertainty of the model output is more sensitive to the values of the individual parameters than to the interaction between them. Moreover, if one tries to evaluate the true values of the input parameters at the same cost and effort, the determination of priorities should follow a certain

  1. Mineralogy and geochemistry of rocks and fracture fillings from Forsmark and Oskarshamn: Compilation of data for SR-Can

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Henrik; Sandstroem, Bjoern [Isochron GeoConsulting HB, Goeteborg (Sweden); Tullborg, Eva-Lena [Terralogica AB, Graabo (Sweden)

    2006-11-15

    This report is a compilation of the so far available data for the safety assessment SR-Can carried out by SKB. The data consists of mineralogy, geochemistry, porosity, density and redox properties for both dominating rock types and fracture fillings at the Forsmark and Oskarshamn candidate areas. In addition to the compilation of existing information, the aim has been to identify missing data and to clarify some conception of e.g. deformation zones. The objective of the report is to present the available data requested for the modelling of the chemical stability of the two sites. The report includes no interpretation of the data.

  2. Fracture characterization of flysch formation by terrestrial digital photogrammetry: an example in the Antola Formation (upper Staffora Valley, Italy)

    Science.gov (United States)

    Meisina, Claudia; Menegoni, Niccolò; Perotti, Cesare

    2016-04-01

    Geomechanical characterization of flysch formations plays an important role for its implication in slope stability and fluids circulation, especially in Apenninic areas. The Antola Formation of Upper Cretaceous age crops out extensively in the Northern Apennines and provides an important case of study. It consists of turbiditic graded units of calcareous sandstones, sandstones, marlstones, and shales and is interpreted as a deep-sea basin plain deposit, with lateral facies variations which range from proximal, thick-bedded turbidities to distal turbidites that show predominantly thickening upward cycles and have a high percentage of shale. It is in general characterized by folds developed in absence of metamorphism and a usually high degree of fracturation. The presence of well developed fracture networks enhances circulation of fluid and therefore alteration of the less competent layers causing problems of slope stability. Fracture characterization of Antola Formation based on field survey is very time consuming and often limited by the insufficient availability and inaccessibility of outcrops. For this reason, terrestrial remote sensing and in particular terrestrial digital photogrammetry has been applied to investigate the geomechanical features of the formation in the upper Staffora Valley (Northern Italy). Digital photogrammetry allows to generate by Structure from Motion (SfM) technique a 3D point cloud that represents the Digital Outcrop Model (DOM). New technologies allow to associate appropriate texture to the point cloud from the images, in order to preserve important visual information. The analysis of several textured 3D DOMs allows to digitally acquire a large amount of data on discontinuities parameters such as orientation, spacing, aperture, persistence and filling, in order to better characterize the rock mass. Some tests performed by field survey data acquisition to validate the digitally collected data, gave positive results, showing differences

  3. 238U and 235U isotope fractionation upon oxidation of uranium-bearing rocks by fracture waters

    Science.gov (United States)

    Chernyshev, I. V.; Golubev, V. N.; Chugaev, A. V.; Mandzhieva, G. V.

    2016-10-01

    The variations in 238U/235U values accompanying mobilization of U by fracture waters from uranium-bearing rocks, in which U occurs as a fine impregnation of oxides and silicates, were studied by the high-precision (±0.07‰) MC-ICP-MS method. Transition of U into the aqueous phase in the oxidized state U(VI) is accompanied by its isotope fractionation with enrichment of dissolved U(VI) in the heavy isotope 238U up to 0.32‰ in relation to the composition of the solid phases. According to the sign, this effect is consistent with the tendency of the behavior of 238U and 235U upon interaction of river waters with rocks of the catchment areas [11] and with the effect observed during oxidation of uraninite by the oxygen-bearing NaHCO3 solution [12].

  4. Advanced Reservoir Characterization and Evaluation of CO2 Gravity Drainage in the Naturally Fractured Spraberry Trend Area, Class III

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Bill; Schechter, David S.

    2002-07-26

    The goal of this project was to assess the economic feasibility of CO2 flooding the naturally fractured Spraberry Trend Area in west Texas. This objective was accomplished through research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This provides results of the final year of the six-year project for each of the four areas.

  5. Advanced Reservoir Characterization and Evaluation of CO{sub 2} Gravity Drainage in the Naturally Fractured Spraberry Trend Area

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, D.S.

    1999-02-03

    The overall goal of this project is to assess the economic feasibility of CO{sub 2} flooding the naturally fractured Spraberry Trend Area in West Texas. This objective is being accomplished by conducting research in four areas: (1) extensive characterization of the reservoirs, (2) experimental studies of crude oil/brine/rock (COBR) interactions in the reservoirs, (3) reservoir performance analysis, and, (4) experimental investigations on CO2 gravity drainage in Spraberry whole cores. This report provides results of the third year of the five-year project for each of the four areas including a status report of field activities leading up to injection of CO2.

  6. Fractures in anisotropic media

    Science.gov (United States)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  7. An unsteady state tracer method for characterizing fractures in bedrock wells.

    Science.gov (United States)

    Libby, Jill L; Robbins, Gary A

    2014-01-01

    Evaluating contaminants impacting wells in fractured crystalline rock requires knowledge of the individual fractures contributing water. This typically involves using a sequence of tools including downhole geophysics, flow meters, and straddle packers. In conjunction with each other these methods are expensive, time consuming, and can be logistically difficult to implement. This study demonstrates an unsteady state tracer method as a cost-effective alternative for gathering fracture information in wells. The method entails introducing tracer dye throughout the well, inducing fracture flow into the well by conducting a slug test and then profiling the tracer concentration in the well to locate water contributing fractures where the dye has been diluted. By monitoring the development of the dilution zones within the wellbore with time, the transmissivity and the hydraulic head of the water contributing fractures can be determined. Ambient flow conditions and the contaminant concentration within the fractures can also be determined from the tracer dilution. This method was tested on a large physical model well and a bedrock well. The model well was used to test the theory underlying the method and to refine method logistics. The approach located the fracture and generated transmissivity values that were in excellent agreement with those calculated by slug testing. For the bedrock well tested, two major active fractures were located. Fracture location and ambient well conditions matched results from conventional methods. Estimates of transmissivity values by the tracer method were within an order of magnitude of those calculated using heat-pulse flow meter data.

  8. Characterization of CO2 reservoir rock in Switzerland

    Science.gov (United States)

    Fabbri, Stefano; Madonna, Claudio; Zappone, Alba

    2014-05-01

    Anthropogenic emissions of Carbon Dioxide (CO2) are one of the key drivers regarding global climate change (IPCC, 2007). Carbon Dioxide Capture and Storage (CCS) is one valuable technology to mitigate current climate change with an immediate impact. The IPCC special report on CCS predicted a potential capture range of 4.7 to 37.5 Gt of CO2 by 2050. Among several countries, Switzerland has started to investigate its potential for CO2 storage (Chevalier et al., 2010) and is currently performing research on the characterization of the most promising reservoir/seal rocks for CO2 sequestration. For Switzerland, the most feasible option is to store CO2 in saline aquifers, sealed by impermeable formations. One aquifer of regional scale in the Swiss Molasse Basin is a carbonate sequence consisting of reworked shallow marine limestones and accumulations of shell fragments. The upper part of the formation presents the most promising permeability values and storage properties. The storage potential has been estimated of 706 Mt of CO2, based on the specific ranking scheme proposed by Chevalier et al. 2010. In this study, key parameters such as porosity, permeability and acoustic velocities in compressional and shear mode have been measured in laboratory at pressures and temperatures simulating in situ conditions. Reservoir rock samples have been investigated. Permeability has been estimated before and after CO2 injection in supercritical state. The simulation of typical reservoir conditions allows us to go one step further towards a significant evaluation of the reservoir's true capacities for CO2 sequestration. It seems of major importance to notice that the permeability crucially depends on confining pressure, temperature and pore pressure conditions of the sample. Especially at in situ conditions with CO2 being at supercritical state, a substantial loss in permeability have to be taken into consideration when it comes to the calculation of potential injection rates. The

  9. Mixed mode fracture toughness characterization of sandwich interfaces using the modified TSD specimen

    DEFF Research Database (Denmark)

    Berggreen, Christian; Andreasen, J.H.; Carlsson, L.A.;

    2009-01-01

    An extensive parametric analysis shows that the modified Tilted Sandwich Debond (TSD) specimen provides a methodology for characterization of the face/core fracture resistance over a range of mode-mixities. A pilot experimental mixed mode characterization of the fracture toughness of sandwich spe...

  10. San Juan Fracture Characterization Project: Status and current results

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L.; Daley, T.M.; Myer, L.R.; Nihei, K.; Queen, J.; Sinton, J.; Murphy, J.; Fortuna, M.; Lynn, H.B.; Imhoff, M.A.; Wilson, R.

    2001-02-26

    The overall objectives of this report are to extend current state-of-the-art 3-D imaging to extract the optimal information for fracture quantification and to develop next generation capability in fracture imaging for true 3-D imaging of the static and dynamic fracture properties.

  11. Groundwater targeting in a hard-rock terrain using fracture-pattern modeling, Niva River basin, Andhra Pradesh, India

    Science.gov (United States)

    Srinivasa Rao, Y.; Reddy, T. V. K.; Nayudu, P. T.

    2000-09-01

    In hard-rock terrain, due to the lack of primary porosity in the bedrock, joints, fault zones, and weathered zones are the sources for groundwater occurrence and movement. To study the groundwater potential in the hard-rock terrain and drought-prone area in the Niva River basin, southern Andhra Pradesh state, India, Landsat 5 photographic data were used to prepare an integrated hydrogeomorphology map. Larsson's integrated deformation model was applied to identify the various fracture systems, to pinpoint those younger tensile fracture sets that are the main groundwater reservoirs, and to understand the importance of fracture density in groundwater prospecting. N35°-55°E fractures were identified as tensile and N35°-55°W fractures as both tensile and shear in the study area. Apparently, these fractures are the youngest open fractures. Wherever N35°-55°E and N35°-55°W fracture densities are high, weathered-zone thickness is greater, water-table fluctuations are small, and well yields are high. Groundwater-potential zones were delineated and classified as very good, good to very good, moderate to good, and poor. Résumé. Dans les roches de socle, l'absence de porosité primaire dans la roche fait que les fractures, les zones de faille et les zones d'altération sont les sites où l'eau souterraine est présente et s'écoule. Pour étudier le potentiel en eau souterraine dans la région de socle sujette à la sécheresse du bassin de la rivière Niva (sud de l'État d'Andhra Pradesh, Inde), des données photographiques de Landsat 5 ont été utilisées pour préparer une carte hydro-géomorphologique. Le modèle intégré de déformation de Larssons a été mis en œuvre pour identifier les différents systèmes de fractures, pour mettre l'accent sur les ensembles de fractures en extension les plus jeunes qui constituent les principaux réservoirs d'eau souterraine, et pour comprendre l'importance de la densité de fractures pour la prospection de l

  12. Results of Laboratory Scale Fracture Tests on Rock/Cement Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Jung, Hun Bok

    2012-06-01

    A number of pure cement and cement-basalt interface samples were subjected to a range of compressive loads to form internal fractures. X-ray microtomography was used to visualize the formation and growth of internal fractures in three dimensions as a function of compressive loads. This laboratory data will be incorporated into a geomechanics model to predict the risk of CO2 leakage through wellbores during geologic carbon storage.

  13. Proceedings of the workshop on numerical modeling of thermohydrological flow in fractured rock masses

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    Nineteen papers were presented at the workshop on modeling thermohydrologic flow in fractured masses. This workshop was a result of the interest currently being given to the isolation of nuclear wastes in geologic formations. Included in these proceedings are eighteen of the presentations, one abstract and summaries of the panel discussions. The papers are listed under the following categories: introduction; overviews; fracture modelings; repository studies; geothermal models; and recent developments. Eighteen of the papers have been abstracted and indexed.

  14. Blade-shaped (PKN) Hydraulic Fracture Driven By A Turbulent Fluid In An Impermeable Rock

    CERN Document Server

    Zolfaghari, Navid; Bunger, Andrew P

    2016-01-01

    High flow rate, water-driven hydraulic fractures are more common now than ever in the oil and gas industry. Although the fractures are small, the high injection rate and low viscosity of the water, lead to high Reynolds numbers and potentially turbulence in the fracture. Here we present a semi-analytical solution for a blade-shaped (PKN) geometry hydraulic fracture driven by a turbulent fluid in the limit of zero fluid leak-off to the formation. We model the turbulence in the PKN fracture using the Gaukler-Manning-Strickler parametrization, which relates the the flow rate of the water to the pressure gradient along the fracture. The key parameter in this relation is the Darcy-Weisbach friction factor for the roughness of the crack wall. Coupling this turbulence parametrization with conservation of mass allows us to write a nonlinear pde for the crack width as a function of space and time. By way of a similarity ansatz, we obtain a semi-analytical solution using an orthogonal polynomial series. Embedding the a...

  15. Interactions of trace elements with fracture filling minerals from the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Landstroem, O. [Studsvik Eco and Safety AB, Nykoeping (Sweden); Tullborg, E.L. [Terralogica AB (Sweden)

    1995-06-01

    This report focuses on the distribution of stable elements and natural radionuclides (e.g. REEs, Th, Ra, Sr and Cs) in natural fracture systems. They have been redistributed by natural processes in the past; mobilization, transport and deposition of which the latter is manifested as `enrichments` of the elements in fracture fillings. Fillings dominated by Fe-oxyhydroxide, calcite and clay minerals show the highest concentrations. Precipitates from different fractures show large variations in concentration levels of trace elements, REE patterns, and activity and activity ratios of natural radionuclides, reflecting variations in physical, chemical and hydrological properties of the fractures. The incorporation of REEs, Sr, Th and U in calcite is significant. The precipitation rate influences the amount of Sr incorporated and probably other elements as well. Clay minerals have high sorption capacity and are important in the retention of Cs and Sr as well as of REEs, Th, U and Ra. The importance of clay minerals in radionuclide retention is emphasized by the results from this study, even small amounts of clay minerals in fractures and fracture zones can significantly influence the radionuclide migration. Accurate determination of quantities and types of clay minerals is therefore very important for radionuclide migration modelling. 58 refs, 14 figs, 12 tabs.

  16. Application of rock-cad modelling system in characterization of crystalline bedrock

    Science.gov (United States)

    Saksa, Pauli

    The Finnish power company Teollisuuden Voima Oy studies crystalline bedrock in Finland for final disposal of high-level nuclear fuel waste. In evaluation of the varying lithological and structural conditions CAD-based ROCK-CAD system has been developed. ROCK-CAD is based on true solid modelling approach. One modelled volume consists of several mutually independent submodels. Mainly lithological, structural (fracturing) and hydraulical properties are modelled. ROCK-CAD is in operational use and experiences have been got from four sites modelled this far. The main uses of the software, have been in general visualization, in planning of sopplementary investigations and in qualitative interpretation and model development done by the experts. Computerized models form also the basis for ground water flow simulations and rock mechanical calculations. Two example drawings are presented and discussed.

  17. Mode II Interlaminar Fracture Toughness and Fatigue Characterization of a Graphite Epoxy Composite Material

    Science.gov (United States)

    O'Brien, T. Kevin; Johnston, William M.; Toland, Gregory J.

    2010-01-01

    Mode II interlaminar fracture toughness and delamination onset and growth characterization data were generated for IM7/8552 graphite epoxy composite materials from two suppliers for use in fracture mechanics analyses. Both the fracture toughness testing and the fatigue testing were conducted using the End-notched Flexure (ENF) test. The ENF test for mode II fracture toughness is currently under review by ASTM as a potential standard test method. This current draft ASTM protocol was used as a guide to conduct the tests on the IM7/8552 material. This report summarizes the test approach, methods, procedures and results of this characterization effort.

  18. Characterization of reservoir fractures using conventional geophysical logging

    Directory of Open Access Journals (Sweden)

    Paitoon Laongsakul

    2011-04-01

    Full Text Available In hydrocarbon exploration fractures play an important role as possible pathways for the hydrocarbon flow and bythis enhancing the overall formation’s permeability. Advanced logging methods for fracture analysis, like the boreholeacoustic televiewer and Formation Microscanner (FMS are available, but these are additional and expensive tools. However,open and with water or hydrocarbon filled fractures are also sensitive to electrical and other conventional logging methods.For this study conventional logging data (electric, seismic, etc were available plus additional fracture information from FMS.Taking into account the borehole environment the results show that the micro-spherically focused log indicates fractures byshowing low resistivity spikes opposite open fractures, and high resistivity spikes opposite sealed ones. Compressional andshear wave velocities are reduced when passing trough the fracture zone, which are assumed to be more or less perpendicularto borehole axis. The photoelectric absorption curve exhibit a very sharp peak in front of a fracture filled with bariteloaded mud cake. The density log shows low density spikes that are not seen by the neutron log, usually where fractures,large vugs, or caverns exist. Borehole breakouts can cause a similar effect on the logging response than fractures, but fracturesare often present when this occurs. The fracture index calculation by using threshold and input weight was calculatedand there was in general a good agreement with the fracture data from FMS especially in fracture zones, which mainlycontribute to the hydraulic system of the reservoir. Finally, the overall results from this study using one well are promising,however further research in the combination of different tools for fracture identification is recommended as well as the useof core for further validation.

  19. The effect of stagnant water zones on retarding radionuclide stransport in fractured rocks: An extension to the Channel Network Model

    Science.gov (United States)

    Shahkarami, Pirouz; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2016-09-01

    An essential task of performance assessment of radioactive waste repositories is to predict radionuclide release into the environment. For such a quantitative assessment, the Channel Network Model and the corresponding computer program, CHAN3D, have been used to simulate radionuclide transport in crystalline bedrocks. Recent studies suggest, however, that the model may tend to underestimate the rock retarding capability, because it ignores the presence of stagnant water zones, STWZs, situated in the fracture plane. Once considered, the STWZ can provide additional surface area over which radionuclides diffuse into the rock matrix and thereby contribute to their retardation. The main objective of this paper is to extend the Channel Network Model and its computer implementation to account for diffusion into STWZs and their adjacent rock matrices. In the first part of the paper, the overall impact of STWZs in retarding radionuclide transport is investigated through a deterministic calculation of far-field releases at Forsmark, Sweden. Over the time-scale of the repository safety assessments, radionuclide breakthrough curves are calculated for increasing STWZ width. It is shown that the presence of STWZs enhances the retardation of most long-lived radionuclides except for 36Cl and 129I. The rest of the paper is devoted to the probabilistic calculation of radionuclide transport in fractured rocks. The model that is developed for transport through a single channel is embedded into the Channel Network Model and new computer codes are provided for the CHAN3D. The program is used to (I) simulate the tracer test experiment performed at Äspö HRL, STT-1 and (II) investigate the short- and long-term effect of diffusion into STWZs. The required data for the model are obtained from detailed hydraulic tests in boreholes intersecting the rock mass where the tracer tests were made. The simulation results fairly well predict the release of the sorbing tracer 137Cs. It is found that

  20. Fractal characteristics and its application in electromagnetic radiation signals during fracturing of coal or rock

    Institute of Scientific and Technical Information of China (English)

    Wang Chao; Xu Jiankun; Zhao Xiaoxia; Wei Mingyao

    2012-01-01

    The present study analyzed the electromagnetic radiation (EMR) time series of the destruction process of coal or rock sample under uniaxial loading and the monitoring process in working face by means of frac tal geometry,and results of the correlation dimension change curve of EMR time series were obtained.In the meantime,the current study also sought the fractal characteristic to the EMR signals by contrast to,the change curve of EMR signals and explored the precursory phenomenon of rock burst.This paper con cluded the main findings as followed:the EMR time series of the destruction process of coal or rock sam ple under uniaxial loading and the monitonng process in working face corresponded to fractal;the correlation dimension of EMR time series reflected the process of coal or rock damage deformation,that is,the inner damage of coal or rock made a change from random to order.In the field application,the correlation dimension served as a new index of forecasting the coal or rock dynamic disaster.

  1. Rapid transport from the surface to wells in fractured rock: a unique infiltration tracer experiment.

    Science.gov (United States)

    Levison, Jana K; Novakowski, Kent S

    2012-04-01

    A unique infiltration tracer experiment was performed whereby a fluorescent dye was applied to the land surface in an agricultural field, near Perth, Ontario, Canada, to simulate the transport of solutes to two pumped monitoring wells drilled into the granitic gneiss aquifer. This experiment, interpreted using the discrete-fracture capability of the numerical model HydroGeoSphere, showed that solute transport from the surface through thin soil (less than 2m) to wells in fractured bedrock can be extremely rapid (on the order of hours). Also, it was demonstrated that maximum concentrations of contaminants originating from the ground surface will not necessarily be the highest in the shallow aquifer horizon. These are important considerations for both private and government-owned drinking water systems that draw water from shallow fractured bedrock aquifers. This research illustrates the extreme importance of protecting drinking water at the source.

  2. The use of synthetic colloids in tracer transport experiments in saturated rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Univ. of California, Berkeley, CA (United States)

    1995-08-01

    Studies of groundwater flow and contaminant transport in saturated, fractured geologic media are of great interest to researchers studying the potential long-term storage of hazardous wastes in or near such media. A popular technique for conducting such studies is to introduce tracers having different chemical and physical properties into a system and then observe the tracers at one or more downstream locations, inferring flow and transport mechanisms from the breakthrough characteristics of the different tracers. Many tracer studies have been conducted in saturated, fractured media to help develop and/or refine models capable of predicting contaminant transport over large scales in such media.

  3. Treated and untreated rock dust: Quartz content and physical characterization.

    Science.gov (United States)

    Soo, Jhy-Charm; Lee, Taekhee; Chisholm, William P; Farcas, Daniel; Schwegler-Berry, Diane; Harper, Martin

    2016-11-01

    Rock dusting is used to prevent secondary explosions in coal mines, but inhalation of rock dusts can be hazardous if the crystalline silica (e.g., quartz) content in the respirable fraction is high. The objective of this study is to assess the quartz content and physical characteristics of four selected rock dusts, consisting of limestone or marble in both treated (such as treatment with stearic acid or stearates) and untreated forms. Four selected rock dusts (an untreated and treated limestone and an untreated and treated marble) were aerosolized in an aerosol chamber. Respirable size-selective sampling was conducted along with particle size-segregated sampling using a Micro-Orifice Uniform Deposit Impactor. Fourier Transform Infrared spectroscopy and scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) analyses were used to determine quartz mass and particle morphology, respectively. Quartz percentage in the respirable dust fraction of untreated and treated forms of the limestone dust was significantly higher than in bulk samples, but since the bulk percentage was low the enrichment factor would not have resulted in any major change to conclusions regarding the contribution of respirable rock dust to the overall airborne quartz concentration. The quartz percentage in the marble dust (untreated and treated) was very low and the respirable fractions showed no enrichment. The spectra from SEM-EDX analysis for all materials were predominantly from calcium carbonate, clay, and gypsum particles. No free quartz particles were observed. The four rock dusts used in this study are representative of those presented for use in rock dusting, but the conclusions may not be applicable to all available materials.

  4. Fracture and Plasticity Characterization of DH-36 Navy Steel

    Science.gov (United States)

    2012-06-01

    composite material. The performance limit to this material during an impact is ductile fracture. The prediction follows that the onset of fracture...first step in creating an accurate model of the composite material. The performance limit to this material during an impact is ductile fracture. The...is widely used as a surface coating in many applications to include water treatment inflow/outflow piping, oil pipelines, concrete structures, bridges

  5. QEMSCAN° (Quantitative Evaluation of Minerals by Scanning Electron Microscopy): capability and application to fracture characterization in geothermal systems

    Science.gov (United States)

    Ayling, B.; Rose, P. E.; Zemach, E.; Drakos, P. S.; Petty, S.

    2011-12-01

    Fractures are important conduits for fluids in geothermal systems, and the creation and maintenance of fracture permeability is a fundamental aspect of EGS (Engineered Geothermal System) development. Hydraulic or chemical stimulation techniques are often employed to achieve this. In the case of chemical stimulation, an understanding of the minerals present in the fractures themselves is desirable to better design a stimulation effort (i.e. which chemical to use and how much). Borehole televiewer surveys provide important information about regional and local stress regimes and fracture characteristics (e.g. fracture aperture), and XRD is useful for examining bulk rock mineralogy, but neither technique is able to quantify the distribution of these minerals in fractures. QEMSCAN° is a fully-automated micro-analysis system that enables quantitative chemical analysis of materials and generation of high-resolution mineral maps and images as well as porosity structure. It uses a scanning electron microscopy platform (SEM) with an electron beam source in combination with four energy-dispersive X-ray spectrometers (EDS). The measured backscattered electron and electron-induced secondary X-ray emission spectra are used to classify sample mineralogy. Initial applications of QEMSCAN° technology were predominantly in the minerals industry and application to geothermal problems has remained limited to date. In this pilot study, the potential application of QEMSCAN° technology to fracture characterization was evaluated using samples of representative mineralized fractures in two geothermal systems (Newberry Volcano, Oregon and Brady's geothermal field, Nevada). QEMSCAN° results were compared with XRD and petrographic techniques. Nine samples were analyzed from each field, collected from the drill core in the 1000-1500 m depth range in two shallow wells (GEO-N2 at Newberry Volcano and BCH-3 at Brady's). The samples were prepared as polished thin sections for QEMSCAN° analysis

  6. Coupled gas flow/solid dynamics model for predicting the formation of fracture patterns in gas well simulation experiments. [Propellant mixture used instead of explosives to fracture rock surrounding borehole

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, L.M.; Swenson, D.V.; Cooper, P.W.

    1984-07-01

    A two-dimensional finite element model for predicting fracture patterns obtained in high energy gas fracture experiments is presented. In these experiments, a mixture of propellants is used instead of explosives to fracture the rock surrounding the borehole. The propellant mixture is chosen to tailor the pressure pulse so that multiple fractures emanate from the borehole. The model allows the fracture pattern and pressure pulse to be calculated for different combinations of propellant mixture, in situ stress conditions, and rock properties. The model calculates the amount of gas generated by the burning propellants using a burn rate given by a power law in pressure. By assuming that the gas behaves as a perfect gas and that the flow down the fractures is isothermal, the loss of gas from the borehole due to flow down the cracks is accounted for. The flow of gas down the cracks is included in an approximate manner by assuming self-similar pressure profiles along the fractures. Numerical examples are presented and compared to three different full-scale experiments. Results show a good correlation with the experimental data over a wide variety of test parameters. 9 reference, 10 figures, 3 tables.

  7. Classification and Geochemical Characterization of Igneous Rocks: Southern Part of Chihuahua City, Mexico

    Science.gov (United States)

    Fontes, I. D.; Espejel-Garcia, V. V.; Villalobos-Aragon, A.

    2013-05-01

    Chihuahua City is the capital of the state with the same name, located in northern Mexico. The city was established near the Chuviscar River, but in the last decades it has been extended to the nearby areas (mountains), with volcanic (rhyolitic tuffs), and sedimentary rocks (limestone). The study area includes areas in the south part of Chihuahua City, where we can still find unbuilt lands and it is possible to appreciate outcrops of igneous rocks. This project includes 5 study spots, which are located about 9 km. far from the south extreme of the city. This research is developed in order to complement the geological information in this area, as there is no is detailed record of it. In the geological map H13-10 (SGM, 1997), it is said that the urban area is covered by Quaternary conglomerates, while exploring the region we have located several igneous rocks outcrops. In three of the sampling points, dark colored intrusive igneous rocks with large crystals appear in blocks without noticeable fractures. While in the other two sampling points, highly fractured blocks of pink aphanitic igneous rocks, showing traces of pyrolusite were observed. The petrographic study shows the two different textures that classify these rocks as extrusive (aphanitic) or intrusive (phaneritic), both with quartz and feldspars being the dominant minerals. Geochemical analyses confirm the felsic composition of the rocks, varying form trachytes to rhyolites. The trace element results show high contents of Sr, Ba, V, Rb, and Zr in trachytic compositions, while there are high concentrations of Mn, W, Rb and Co for rhyolitic compositions.

  8. Preferential flow paths and heat pipes: Results from laboratory experiments on heat-driven flow in natural and artificial rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1997-06-01

    Water flow in fractures under the conditions of partial saturation and thermal drive may lead to fast flow along preferential localized pathways and heat pipe conditions. Water flowing in fast pathways may ultimately contact waste packages at Yucca Mountain and transport radionuclides to the accessible environment. Sixteen experiments were conducted to visualize liquid flow in glass fracture models, a transparent epoxy fracture replica, and a rock/replica fracture assembly. Spatially resolved thermal monitoring was performed in seven of these experiments to evaluate heat-pipe formation. Depending on the fracture apertures and flow conditions, various flow regimes were observed including continuous rivulet flow for high flow rates, intermittent rivulet flow and drop flow for intermediate flow rates, and film flow for low flow rates and wide apertures. These flow regimes were present in both fracture models and in the replica of a natural fracture. Heat-pipe conditions indicated by low thermal gradients were observed in five experiments. Conditions conducive to heat-pipe formation include an evaporation zone, condensation zone, adequate space for vapor and liquid to travel, and appropriate fluid driving forces. In one of the two experiments where heat pipe conditions were not observed, adequate space for liquid-vapor counterflow was not provided. Heat pipe conditions were not established in the other, because liquid flow was inadequate to compensate for imbibition and the quantity of heat contained within the rock.

  9. Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography

    Science.gov (United States)

    Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire R.; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, Jr., John W.

    2016-01-01

    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.

  10. Mechanical Models of Bed-Perpendicular Fractures in Layered Rocks Subjected to Extensional Strain

    Science.gov (United States)

    Sanz, P.; Pollard, D. D.; Borja, R. I.

    2010-12-01

    Natural fractures (joints) enhance permeability and therefore are important for the economical production of low-permeability hydrocarbon reservoirs and aquifers. In this work we investigate the formation of bed-perpendicular joints during extension in a stiff brittle layer surrounded by thick softer layers. The quasi-static finite element models consist of three elasto-plastic layers with frictional bedding interfaces and the middle layer contains layer-perpendicular fractures that can accommodate opening at the bedding surface accompanied by interface sliding. The upper and lower boundaries are subject to normal tractions appropriate for the depth of burial. Lateral boundaries are displaced horizontally to represent the extensional tectonic regime. We use an interface model that captures the most important mechanical features during sliding of bedding interfaces and opening of joints: unilateral contact, elastic and plastic relative deformation, tensile strength, cohesion, frictional sliding, and non-associative plastic flow. The constitutive law extends the Coulomb slip criterion to the tensile regime to capture opening of fractures in a quasi-brittle manner. The finite element implementation employs a penalty scheme to impose the contact constraints along the interfaces. The numerical simulations show the effects of mechanical properties of layers and interfaces in the development and spacing of bed-perpendicular joints. We evaluate the concepts of fracture saturation and sequential infilling, and the relationship between joint spacing and layer thickness in the context of the new modeling capabilities.

  11. STEAM ENHANCED REMEDIATION RESEARCH FOR DNAPL IN FRACTURED ROCK, LORING AIR FORCE BASE, LIMESTONE, MAINE

    Science.gov (United States)

    This report details a research project on Steam Enhanced Remediation (SER) for the recovery of volatile organic compounds from fractured limestone that was carried out at the Quarry at the former Loring Air Force Base in Limestone, Maine. This project was carried out by USEPA, Ma...

  12. Viruses and Bacteria in Karst and Fractured Rock Aquifers in East Tennessee, USA

    Science.gov (United States)

    A survey of enteric viruses and indicator bacteria was carried out in eight community water supply sources (four wells and four springs) in east Tennessee. Seven of the sites were in carbonate aquifers and the other was in fractured sandstone. Four sites (three wells and one sp...

  13. Analysis of microseismicity using fuzzy logic and fractals for fracture network characterization

    Science.gov (United States)

    Aminzadeh, F.; Ayatollahy Tafti, T.; Maity, D.; Boyle, K.; Sahimi, M.; Sammis, C. G.

    2010-12-01

    The area where microseismic events occur may be correlated with the fracture network at a geothermal field. For an Enhanced Geothermal System (EGS) reservoir, an extensive fracture network with a large aerial distribution is required. Pore-pressure increase, temperature changes, volume change due to fluid withdrawal/injection and chemical alteration of fracture surfaces are all mechanisms that may explain microseismic events at a geothermal field. If these mechanisms are operative, any fuzzy cluster of the microseismic events should represent a connected fracture network. Drilling new EGS wells (both injection and production wells) in these locations may facilitate the creation of an EGS reservoir. In this article we use the fuzzy clustering technique to find the location and characteristics of fracture networks in the Geysers geothermal field. We also show that the centers of these fuzzy clusters move in time, which may represent fracture propagation or fluid movement within the fracture network. Furthermore, analyzing the distribution of fuzzy hypocenters and quantifying their fractal structure helps us to develop an accurate fracture map for the reservoir. Combining the fuzzy clustering results with the fractal analysis allows us to better understand the mechanisms for fracture stimulation and better characterize the evolution of the fracture network. We also show how micro-earthquake date collected in different time periods can be correlated with drastic changes in the distribution of active fractures resulting from injection, production or other transient events.

  14. 3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

    Science.gov (United States)

    Di, Haibin; Gao, Dengliang

    2017-03-01

    Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.

  15. Analysis of tectonic structures and excavation induced fractures in the Opalinus Clay, Mont Terri underground rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaum, Ch.; Bossart, P. [Federal Office of Topography swisstopo, Wabern (Switzerland); Amann, F. [Swiss Federal Institute of Technology Zuerich, Zuerich (Switzerland); Aubourg, Ch. [Laboratoire des fluides complexes et leurs reservoirs, Centre National de la Recherche Scientitfique CNRS, Universite de Pau, Pau (France)

    2011-09-15

    Excavated in the Opalinus Clay formation, the Mont Terri underground rock laboratory in the Jura Mountains of NW Switzerland is an important international test site for researching argillaceous formations, particularly in the context of deep geological disposal of radioactive waste. The rock laboratory is intersected by naturally formed tectonic structures, as well as artificial fractures primarily formed as a consequence of tunnel excavation and the associated stress redistribution. The description and characterisation of tectonic and artificial structures is, in many cases, of key importance for interpreting the results of the various in situ experiments conducted in the rock laboratory. Systematic small-scale mapping of the tunnel walls and floor, and adjacent niches, provides basic information about the geometry and the kinematics of the geological fractures intersecting the underground laboratory. A compilation of all tectonic structures identified is presented in this paper. The underground laboratory is located in the backlimb of the Mont Terri anticline, a NNW-vergent imbricate fault-bend fold, which is characterised by a pronounced along-strike asymmetry resulting from variously oriented inherited faults. The total shortening accommodated by this structure was estimated by mass (area) balancing to be approximately 2.1 km. The Mont Terri area is significantly affected by N- to NNE-striking normal faults of the Eo-Oligocene Rhine-Bresse transfer zone and by ENE-striking faults of Late Variscan age. Depending on their orientation with respect to the transport direction towards the NNW, these faults served as oblique and frontal ramps during the subsequent Jura thrusting in the Late Miocene. The various fault systems identified in the underground rock laboratory clearly correlate with the regional-scale structures. In addition to classical structural analysis, the anisotropy of magnetic susceptibility was measured to determine the magnetic fabric and strain

  16. Characterization of Effective Parameters in Abrasive Waterjet Rock Cutting

    Science.gov (United States)

    Oh, Tae-Min; Cho, Gye-Chun

    2014-03-01

    The rock cutting performance of an abrasive waterjet is affected by various parameters. In this study, rock cutting tests are conducted with different energy (i.e., water pressure, traverse speed, and abrasive feed rate), geometry (i.e., standoff distance), and material parameters [i.e., uniaxial compressive strength (UCS)]. In particular, experimental tests are carried out at a long standoff distance (up to 60 cm) to consider field application. The effective parameters of the rock cutting process are identified based on the relationships between the cutting performance indices (depth, width, and volume) and parameters. In addition, the cutting efficiency is analyzed with effective parameters as well as different pump types and the number of cutting passes considering the concept of kinetic jet energy. Efficiency analysis reveals that the cutting depth efficiency tends to increase with an increase in the water pressure and traverse speed and with a decrease in the standoff distance and UCS. Cutting volume efficiency strongly depends on standoff distance. High efficiency of cutting volume is obtained at a long standoff distance regardless of the pump type. The efficiency analysis provides a realistic way to optimize parameters for abrasive waterjet rock excavation.

  17. Water quality requirements for sustaining aquifer storage and recovery operations in a low permeability fractured rock aquifer.

    Science.gov (United States)

    Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul

    2011-10-01

    A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria.

  18. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  19. Detection of a target in a rock formation using the radar fracture mapping tool

    Energy Technology Data Exchange (ETDEWEB)

    Duda, L.E.; Uhl, J.E.; Gabaldon, J.; Chang, Hsi-Tien

    1988-01-01

    A method to locate fractures adjacent to, but not intersecting, an uncased wellbore would be a great aid to the geothermal industry. A prototype downhole radar probe was recently completed with the aim of locating fractures near a single wellbore. This probe, operating in the pulse mode with a bandwidth of 30 to 300 MHz, contains two identical directional antennas. As with any prototype instrumentation, extensive field work is required to completely understand the characteristics of the system. A first step in that understanding is to operate the instrument under known or controlled conditions. In this paper, some tests of the radar probe in a travertine quarry using a known target are reported. In the tests, the target is clearly detected from a borehole located 14 ft away. 12 refs., 5 figs., 1 tab.

  20. Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    Energy Technology Data Exchange (ETDEWEB)

    G. Michael Grammer

    2006-09-30

    This topical report covers the year 2 of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). The characterization of select dolomite reservoirs has been the major focus of our efforts in Phase II/Year 2. Fields have been prioritized based upon the availability of rock data for interpretation of depositional environments, fracture density and distribution as well as thin section, geochemical, and petrophysical analyses. Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in the 3 studied intervals (based upon initial fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. For the Niagaran (Silurian), a comprehensive high resolution sequence stratigraphic framework has been developed for a pinnacle reef in the northern reef trend where we had 100% core coverage throughout the reef section. Major findings to date are that facies types, when analyzed at a detailed level, have direct links to reservoir porosity and permeability in these dolomites. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at this point

  1. The role of crack tip plasticity on the propagation of fracture in rocks and other brittle solids

    Science.gov (United States)

    Borja, R. I.; Rahmani, H.; Liu, F.; Aydin, A.

    2009-12-01

    Small-scale plastic yielding around a crack tip plays a key role in the propagation of fractures in brittle materials such as rocks. Linear elastic fracture mechanics (LEFM) quantifies the asymptotic strain field around a crack tip under the assumptions of linear elasticity and infinitesimal deformation. However, no material can withstand an infinite stress, and plastic yielding is expected to take place near and around a crack tip. Plastic yielding governs the extension of an existing crack, as well as determines the direction of propagation of splay cracks. Unlike in LEFM, however, no closed-form solution is available for the asymptotic strain field near and around a crack tip in the presence of inelastic deformation. In this work, we resort to finite element modeling for capturing plastic yielding and asymptotic strain field near and around a crack tip. Novel features of the modeling include an enhanced finite element around the crack tip that captures the expected asymptotic strain field, and an elastoplastic constitutive law for near-tip yielding. Through numerical simulations, we infer the likely orientation of splay cracks from the prevailing crystal orientation and overall stress field around the crack tip. We also compare the angular variation of the crack-tip enrichment function in the presence of plastic yielding with the closed-form solution derived from LEFM for different loading conditions and elastoplastic bulk constitutive laws.

  2. Fracture system influence on the reservoirs rock formation of Ordovician-Devonian carbonates in West Siberia tectonic depression

    Science.gov (United States)

    Koveshnikov, A. E.; Nesterova, A. C.; Dolgaya, T. F.

    2016-09-01

    During the Paleozoic period from the beginning of the Cambrian to the end of the Carboniferous in the boundaries of the West Siberia tectonic depression there occurred the sea, where the carbonate platforms were formed by the limestones accumulation. All the area at the end of the Carboniferous period was turned to land. Resulting from Gertsynskaya folding in the times of Permian - Triassic the formed deposits were folded and denudated to a considerable extent. Besides, the reservoir rocks of the crust of weathering including redeposited one, were formed as a result of hypergenesis, during the continental stand of the area in the near-surface zone. A new geological prospecting unit has been suggested which underlies these crusts of weathering and formed during fracture tectonic processes with hydrothermal-metasomatic limestones reworking and the processes of hydrothermal leaching and dolomitization. So, in the carbonate platforms the system of fissure zones related to tectonic disturbance was formed. This has a dendrite profile where the series of tangential, more thinned fractures deviate from the stem and finish in pores and caverns. The carbonate platforms formation in the West Siberia tectonic depression has been analyzed, their dynamics and gradual increasing from the minimal in Ordovician and Silurian to maximal at the end of the Late Devonian has been shown.

  3. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing

    Directory of Open Access Journals (Sweden)

    E. Ghazvinian

    2014-12-01

    Full Text Available A grain-based distinct element model featuring three-dimensional (3D Voronoi tessellations (random poly-crystals is proposed for simulation of crack damage development in brittle rocks. The grain boundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rock and allow for numerical replication of crack damage progression through initiation and propagation of micro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the past for brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi models has limited its application to two-dimensional (2D codes. The proposed approach is implemented in Neper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files that can be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS tests are simulated in 3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate the relationship between each micro-parameter and the model's macro-response. The possibility of numerical replication of the classical U-shape strength curve for anisotropic rocks is also investigated in numerical UCS tests by using complex-shaped (elongated grains that are cemented to one another along their adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models for accurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric rocks.

  4. 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing

    Institute of Scientific and Technical Information of China (English)

    E. Ghazvinian; M.S. Diederichs; R. Quey

    2014-01-01

    A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (random poly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grain boundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rock and allow for numerical replication of crack damage progression through initiation and propagation of micro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the past for brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi models has limited its application to two-dimensional (2D) codes. The proposed approach is implemented in Neper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files that can be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in 3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate the relationship between each micro-parameter and the model’s macro-response. The possibility of nu-merical replication of the classical U-shape strength curve for anisotropic rocks is also investigated in numerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another along their adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models for accurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks.

  5. Acoustic emission characterization of fracture toughness for fiber reinforced ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Hui, E-mail: phdhuimei@yahoo.com [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi' an Shaanxi 710072 (China); Sun, Yuyao; Zhang, Lidong; Wang, Hongqin; Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi' an Shaanxi 710072 (China)

    2013-01-10

    The fracture toughness of a carbon fiber reinforced silicon carbide composite was investigated relating to classical critical stress intensity factor K{sub IC}, work of fracture, and acoustic emission energy. The K{sub IC} was obtained by the single edge notch beam method and the work of fracture was calculated using the featured area under the load-displacement curves. The K{sub IC}, work of fracture, and acoustic emission energy were compared for the composites before and after heat treatment and then analyzed associated with toughening microstructures of fiber pullout. It indicates that the work of fracture and acoustic emission energy can be more suitable to reflect the toughness rather than the traditional K{sub IC}, which has certain limitation for the fracture toughness characterization of the crack tolerant fiber ceramic composites.

  6. Tensile Fracture Location Characterizations of Friction Stir Welded Joints of Different Aluminum Alloys

    Institute of Scientific and Technical Information of China (English)

    Huijie LIU; Hidetoshi FUJII; Masakatsu MAEDA; Kiyoshi NOGI

    2004-01-01

    The tensile fracture location characterizations of the friction stir welded joints of the AA1050-H24 and AA6061-T6Al alloys were evaluated in this study. The experimental results show that the fracture locations of the joints are different for the different Al alloys, and they are affected by the FSW parameters. When the joints are free of welding defects, the AA1050-H24 joints are fractured in the HAZ and TMAZ on the AS and the fracture parts undergo a large amount of plastic deformation, while the AA6061-T6 joints are fractured in the HAZ on the RS and the fracture surfaces are inclined a certain degree to the bottom surfaces of the joints. When some welding defects exist in the joints, the AA1050-H24 joints are fractured on the RS or AS, the AA6061-T6 joints are fractured on the RS, and all the fracture locations are near to the weld center. The fracture locations of the joints are dependent on the internal structures of the joints and can be explained by the microhardness profiles and defect morphologies of the joints.

  7. Improved fracture behavior and microstructural characterization of thin tungsten foils

    Directory of Open Access Journals (Sweden)

    Vladica Nikolic

    2016-12-01

    Full Text Available This study is focused towards the development of the technique for investigating the fracture behaviour of 100µm thick rolled tungsten foils, with a purity of 99.97%. Electron backscatter diffraction (EBSD scans reveal that the grains are elongated along the rolling direction of the foil, which has a very strong {100} texture. The test specimens were fabricated by electrical discharge machining (EDM and cracks were initiated by consecutively using a diamond wire saw, a razor blade and a focused ion beam (FIB workstation. Fracture experiments were performed at temperatures from −196°C to 800°C. The investigation of fracture appearance shows an improved behavior and significantly higher values of conditional fracture toughness Kq compared to bulk W-materials, which can be related to a higher degree of deformation during the production process. A high toughness at room temperature (RT and 200°C, slowly decreases when approaching the highest testing temperature of 800°C. The most significant result reveals that the ductile to brittle transition temperature (DBTT is around RT, which is an extraordinary result for any tungsten material. The fracture surfaces, investigated with a scanning electron microscope (SEM, show a transition from cleavage fracture at liquid nitrogen temperature, through pronounced delamination within the foil plane at ambient temperatures to ductile fracture at the highest testing temperatures.

  8. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Marte

    2013-05-31

    Colorado School of Mines conducted research and training in the development and validation of an advanced CO{sub 2} GS (Geological Sequestration) probabilistic simulation and risk assessment model. CO{sub 2} GS simulation and risk assessment is used to develop advanced numerical simulation models of the subsurface to forecast CO2 behavior and transport; optimize site operational practices; ensure site safety; and refine site monitoring, verification, and accounting efforts. As simulation models are refined with new data, the uncertainty surrounding the identified risks decrease, thereby providing more accurate risk assessment. The models considered the full coupling of multiple physical processes (geomechanical and fluid flow) and describe the effects of stochastic hydro-mechanical (H-M) parameters on the modeling of CO{sub 2} flow and transport in fractured porous rocks. Graduate students were involved in the development and validation of the model that can be used to predict the fate, movement, and storage of CO{sub 2} in subsurface formations, and to evaluate the risk of potential leakage to the atmosphere and underground aquifers. The main major contributions from the project include the development of: 1) an improved procedure to rigorously couple the simulations of hydro-thermomechanical (H-M) processes involved in CO{sub 2} GS; 2) models for the hydro-mechanical behavior of fractured porous rocks with random fracture patterns; and 3) probabilistic methods to account for the effects of stochastic fluid flow and geomechanical properties on flow, transport, storage and leakage associated with CO{sub 2} GS. The research project provided the means to educate and train graduate students in the science and technology of CO{sub 2} GS, with a focus on geologic storage. Specifically, the training included the investigation of an advanced CO{sub 2} GS simulation and risk assessment model that can be used to predict the fate, movement, and storage of CO{sub 2} in

  9. Depth-discrete specific storage in fractured sedimentary rock using steady-state and transient single-hole hydraulic tests

    Science.gov (United States)

    Quinn, Patryk M.; Cherry, John A.; Parker, Beth L.

    2016-11-01

    A method is presented for obtaining depth-discrete values of specific storage (Ss) from single-hole hydraulic tests in fractured rock boreholes using straddle packers (1.5-17 m test intervals). Low flow constant head (CH) step tests analyzed using the Thiem method provide transmissivity (T) values free from non-Darcian error. Short-term, constant-rate pumping tests (0.5-2 h) analyzed using the Cooper-Jacob approximation of the Theis method provide S from the hydraulic diffusivity using the Darcian T value from the CH step test. This synergistic use of two types of hydraulic tests avoids the common source of error when pumping tests (injection or withdrawal) are conducted at higher flow rates and thereby induce non-Darcian flow resulting in the underestimation of T. Other errors, such as well bore storage and leakage, can also substantially influence S by causing a shift in the time axis of the Cooper-Jacob semi-log plot. In this approach, the Darcian T values from the CH step tests are used in the analysis of the transient pumping test data for calculating S throughout the pumping test using the Cooper-Jacob approximation to minimize all of the aforementioned errors, resulting in more representative S values. The effect of these non-idealities on the measured drawdown is illustrated using the Theis equation with the Darcian T and S values to calculate drawdown for comparison to measured data. The Ss values for tests in sandstone obtained from this approach are more consistent with confined aquifer conditions than values derived from the traditional Cooper-Jacob method, and are within the range of field and lab values presented from a compilation of literature values for fractured sandstone. (10-7-10-5 m-1) This method for obtaining Ss values from short-interval, straddle packer tests improves the estimation of both K and Ss and provides opportunity to study their spatial distribution in fractured rock.

  10. Characterization of Metacarpal Fractures in a Military Population.

    Science.gov (United States)

    Dichiera, Robert; Dunn, John; Bader, Julia; Bulken-Hoover, Jamie; Pallis, Mark

    2016-08-01

    The purpose of this study was to investigate the incidence and type of metacarpal (MC) fractures in a military population, and whether these fractures are related to age, military occupational specialty, aggression, or accidental injury. A retrospective record-based review was conducted at a single military center over a 5-year period. Service members with index finger through small finger MC fracture were identified. Data were collected utilizing Armed Forces Health Longitudinal Technology Application and electronic profile (e-profile) databases. Data collected included demographic information, mechanism of injury, nature of injury, total number of visits, and estimated time on physical restriction. 400 patients met inclusion criteria. Males accounted for 94% of the study population, 75% of fractures were of the small finger MC, 54% of patients were between 20 and 24 years, 90% were sustained by junior enlisted personnel, and most occurred by punching. Men aged readiness.

  11. Pore space characterization in carbonate rocks - Approach to combine nuclear magnetic resonance and elastic wave velocity measurements

    Science.gov (United States)

    Müller-Huber, Edith; Schön, Jürgen; Börner, Frank

    2016-04-01

    Pore space features influence petrophysical parameters such as porosity, permeability, elastic wave velocity or nuclear magnetic resonance (NMR). Therefore they are essential to describe the spatial distribution of petrophysical parameters in the subsurface, which is crucial for efficient reservoir characterization especially in carbonate rocks. While elastic wave velocity measurements respond to the properties of the solid rock matrix including pores or fractures, NMR measurements are sensitive to the distribution of pore-filling fluids controlled by rock properties such as the pore-surface-to-pore-volume ratio. Therefore a combination of both measurement principles helps to investigate carbonate pore space using complementary information. In this study, a workflow is presented that delivers a representative average semi-axis length of ellipsoidal pores in carbonate rocks based on the pore aspect ratio received from velocity interpretation and the pore-surface-to-pore-volume ratio Spor as input parameters combined with theoretical calculations for ellipsoidal inclusions. A novel method to calculate Spor from NMR data based on the ratio of capillary-bound to movable fluids and the thickness of the capillary-bound water film is used. To test the workflow, a comprehensive petrophysical database was compiled using micritic and oomoldic Lower Muschelkalk carbonates from Germany. The experimental data indicate that both mud-dominated and grain-dominated carbonates possess distinct ranges of petrophysical parameters. The agreement between the predicted and measured surface-to-volume ratio is satisfying for oomoldic and most micritic samples, while pyrite or significant sample heterogeneity may lead to deviations. Selected photo-micrographs and scanning electron microscope images support the validity of the estimated representative pore dimensions.

  12. Fracture-related fluid migration and fluid-rock interaction in outcrop analogues of Buntsandstein reservoir rocks (southern Thuringia and northern Hesse)

    Science.gov (United States)

    Kasch, Norbert; Kley, Jonas; Köster, Jens; Wendler, Jens

    2010-05-01

    Suitable reservoir rocks for carbon capture and storage (CCS) in saline aquifers must be porous, permeable and reside at depths below c. 800 m in structurally simple, preferrably unfaulted settings. In central Europe, the Lower and particularly Middle Buntsandstein are regionally extensive stratigraphic units which often meet these requirements. While often deeply buried, the Buntsandstein is exposed at the surface and easily accessible in other areas. We have studied the evidence for natural fluid flux in Buntsandstein reservoir outcrop analogues and drill cores of southern Thuringia and northern Hesse. The clearest sign of fluid-rock interaction is local bleaching of the red sandstones. In the field and on drill cores we did not observe bleaching along faults, but commonly along joints. There, the bleached fringes may have sharp or diffuse boundaries and can be traced along individual joints for a few dm to m. They are most often observed on small joints and fine cracks. Using 3D laser scanning, photostereogrammetry and manual measurements we established the geometric properties of the joint systems. The joint systems always comprise several joint sets, but in southern Thuringia bleaching is restricted to one north-trending set. Mining reports and geological maps show that basalt dikes of Tertiary age in this region also trend north. In the underground salt mines of the Werra potassium district, potassium salt minerals show bleaching at the contacts with the dikes. Also, CO2 is found trapped within rock salt along north-trending fractures, sometimes causing violent gas eruptions during mining operations. Taken together, these observations suggest that the bleaching along north-trending joints in the Buntsandstein is causally related to the migration of CO2-bearing fluids associated with the basalt volcanism. However, the Fe-releasing process may depend on admixtures of other phases, most likely hydrocarbons released from bituminous Zechstein carbonates

  13. Rock types and ductile structures on a rock domain basis, and fracture orientation and mineralogy on a deformation zone basis. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Michael [Geological Survey of Sweden, Uppsala (Sweden); Forssberg, Ola [Golder Associates AB, Uppsala (Sweden)

    2006-09-15

    This report presents the results of the analysis of base geological data in order to establish the dominant rock type, the subordinate rock types and the orientation of ductile mineral fabrics within each rock domain included in the regional geological model, version 1.2. An assessment of the degree of homogeneity of each domain is also provided. The analytical work has utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values or best-fit great circles and corresponding pole values have been calculated for the ductile structural data. These values have been used in the geometric modelling of rock domains in the regional model, version 1.2. Furthermore, all analytical results have been used in the assignment of properties to rock domains in this model. A second analytical component reported here addresses the orientation and mineralogy of fractures in the deterministic deformation zones that are included in the regional geological model, version 1.2. The analytical work has once again utilised the presentation of data in the form of histograms and stereographic projections. Fisher means and K values are presented for the orientation of fracture sets in the deterministic deformation zones that have been identified with the help of new borehole data. The frequencies of occurrence of different minerals along the fractures in these deformation zones as well as the orientation of fractures in the zones, along which different minerals occur, are also presented. The results of the analyses have been used in the establishment of a conceptual structural model for the Forsmark site and in the assignment of properties to deterministic deformation zones in model version 1.2.

  14. Influence of Intrinsic Colloid Formation on Migration of Cerium through Fractured Carbonate Rock.

    Science.gov (United States)

    Tran, Emily L; Klein-BenDavid, Ofra; Teutsch, Nadya; Weisbrod, Noam

    2015-11-17

    Migration of colloids may facilitate the transport of radionuclides leaked from near surface waste sites and geological repositories. Intrinsic colloids are favorably formed by precipitation with carbonates in bicarbonate-rich environments, and their migration may be enhanced through fractured bedrock. The mobility of Ce(III) as an intrinsic colloid was studied in an artificial rainwater solution through a natural discrete chalk fracture. The results indicate that at variable injection concentrations (between 1 and 30 mg/L), nearly all of the recovered Ce takes the form of an intrinsic colloid of >0.45 μm diameter, including in those experiments in which the inlet solution was first filtered via 0.45 μm. In all experiments, these intrinsic colloids reached their maximum relative concentrations prior to that of the Br conservative tracer. Total Ce recovery from experiments using 0.45 μm filtered inlet solutions was only about 0.1%, and colloids of >0.45 μm constituted the majority of recovered Ce. About 1% of Ce was recovered when colloids of >0.45 μm were injected, indicating the enhanced mobility and recovery of Ce in the presence of bicarbonate.

  15. Application of artificial intelligence to characterize naturally fractured zones in Hassi Messaoud Oil Field, Algeria

    Energy Technology Data Exchange (ETDEWEB)

    El Ouahed, Abdelkader Kouider; Mazouzi, Amine [Sonatrach, Rue Djenane Malik, Hydra, Algiers (Algeria); Tiab, Djebbar [Mewbourne School of Petroleum and Geological Engineering, The University of Oklahoma, 100 East Boyd Street, SEC T310, Norman, OK, 73019 (United States)

    2005-12-15

    In highly heterogeneous reservoirs classical characterization methods often fail to detect the location and orientation of the fractures. Recent applications of Artificial Intelligence to the area of reservoir characterization have made this challenge a possible practice. Such a practice consists of seeking the complex relationship between the fracture index and some geological and geomechanical drivers (facies, porosity, permeability, bed thickness, proximity to faults, slopes and curvatures of the structure) in order to obtain a fracture intensity map using Fuzzy Logic and Neural Network. This paper shows the successful application of Artificial Intelligence tools such as Artificial Neural Network and Fuzzy Logic to characterize naturally fractured reservoirs. A 2D fracture intensity map and fracture network map in a large block of Hassi Messaoud field have been developed using Artificial Neural Network and Fuzzy Logic. This was achieved by first building the geological model of the permeability, porosity and shale volume using stochastic conditional simulation. Then by applying some geomechanical concepts first and second structure directional derivatives, distance to the nearest fault, and bed thickness were calculated throughout the entire area of interest. Two methods were then used to select the appropriate fracture intensity index. In the first method well performance was used as a fracture index. In the second method a Fuzzy Inference System (FIS) was built. Using this FIS, static and dynamic data were coupled to reduce the uncertainty, which resulted in a more reliable Fracture Index. The different geological and geomechanical drivers were ranked with the corresponding fracture index for both methods using a Fuzzy Ranking algorithm. Only important and measurable data were selected to be mapped with the appropriate fracture index using a feed forward Back Propagation Neural Network (BPNN). The neural network was then used to obtain a fracture intensity

  16. Comparative study of large scale simulation of underground explosions inalluvium and in fractured granite using stochastic characterization

    Science.gov (United States)

    Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.

    2014-12-01

    This work describes a methodology used for large scale modeling of wave propagation fromunderground explosions conducted at the Nevada Test Site (NTS) in two different geological settings:fractured granitic rock mass and in alluvium deposition. We show that the discrete nature of rockmasses as well as the spatial variability of the fabric of alluvium is very important to understand groundmotions induced by underground explosions. In order to build a credible conceptual model of thesubsurface we integrated the geological, geomechanical and geophysical characterizations conductedduring recent test at the NTS as well as historical data from the characterization during the undergroundnuclear test conducted at the NTS. Because detailed site characterization is limited, expensive and, insome instances, impossible we have numerically investigated the effects of the characterization gaps onthe overall response of the system. We performed several computational studies to identify the keyimportant geologic features specific to fractured media mainly the joints; and those specific foralluvium porous media mainly the spatial variability of geological alluvium facies characterized bytheir variances and their integral scales. We have also explored common key features to both geologicalenvironments such as saturation and topography and assess which characteristics affect the most theground motion in the near-field and in the far-field. Stochastic representation of these features based onthe field characterizations have been implemented in Geodyn and GeodynL hydrocodes. Both codeswere used to guide site characterization efforts in order to provide the essential data to the modelingcommunity. We validate our computational results by comparing the measured and computed groundmotion at various ranges. This work performed under the auspices of the U.S. Department of Energy by Lawrence LivermoreNational Laboratory under Contract DE-AC52-07NA27344.

  17. Processes controlling the migration and biodegradation of Non-aqueous phase liquids (NAPLs) within fractured rocks in the vadose zone FY97 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Geller, J.T.; Holman, Hoi-Ying; Conrad, M. [and others

    1998-02-01

    Subsurface contamination from volatile organic compounds (VOCs) has been found at many Department of Energy (DOE), Department of Defense (DoD) and industrial sites due to the widespread use of organic solvents and hydrocarbon fuels. At ambient pressures and temperatures in the shallow subsurface, these substances are liquids that are immiscible with water; hence they are commonly designated as non-aqueous phase liquids (NAPLs). At some DOE sites, NAPLs are the presumed source of groundwater contamination in fractured rocks, such as basalts (at Hanford and Idaho National Engineering and Environmental Laboratory (INEEL)), shales (Oak Ridge Y-12 Plant), and welded tuffs (Los Alamos National Laboratory (LANL)). The flow, transport and biodegradation processes controlling NAPL behavior in the vadose zone must be understood in order to establish the possible extent of contamination, the risk to groundwater supplies, and appropriate remediation action. This is particularly important in and sites with deep water tables (such as at Hanford, INEEL and LANL). In fractured rock aquifers, NAPL migration is likely to be dominated by the highly permeable pathways provided by rock fractures and joints. Two- and three-phase fluid phases may be present in vadose zone fractures, including NAPL-gas, NAPL-water (in regions of perched water) and NAPL-water-gas.

  18. Review: Natural tracers in fractured hard-rock aquifers in the Austrian part of the Eastern Alps—previous approaches and future perspectives for hydrogeology in mountain regions

    Science.gov (United States)

    Hilberg, Sylke

    2016-08-01

    Extensive in-depth research is required for the implementation of natural tracer approaches to hydrogeological investigation to be feasible in mountainous regions. This review considers the application of hydrochemical and biotic parameters in mountain regions over the past few decades with particular reference to the Austrian Alps, as an example for alpine-type mountain belts. A brief introduction to Austria's hydrogeological arrangement is given to show the significance of fractured hard-rock aquifers for hydrogeological science as well as for water supply purposes. A literature search showed that research concerning fractured hard-rock aquifers in Austria is clearly underrepresented to date, especially when taking the abundance of this aquifer type and the significance of this topic into consideration. The application of abiotic natural tracers (hydrochemical and isotope parameters) is discussed generally and by means of examples from the Austrian Alps. The potential of biotic tracers (microbiota and meiofauna) is elucidated. It is shown that the meiofauna approach to investigating fractured aquifers has not yet been applied in the reviewed region, nor worldwide. Two examples of new approaches in mountainous fractured aquifers are introduced: (1) use of CO2 partial pressure and calcite saturation of spring water to reconstruct catchments and flow dynamics (abiotic approach), and, (2) consideration of hard-rock aquifers as habitats to reconstruct aquifer conditions (biotic approach).

  19. Rock-physics and seismic-inversion based reservoir characterization of the Haynesville Shale

    Science.gov (United States)

    Jiang, Meijuan; Spikes, Kyle T.

    2016-06-01

    Seismic reservoir characterization of unconventional gas shales is challenging due to their heterogeneity and anisotropy. Rock properties of unconventional gas shales such as porosity, pore-shape distribution, and composition are important for interpreting seismic data amplitude variations in order to locate optimal drilling locations. The presented seismic reservoir characterization procedure applied a grid-search algorithm to estimate the composition, pore-shape distribution, and porosity at the seismic scale from the seismically inverted impedances and a rock-physics model, using the Haynesville Shale as a case study. All the proposed rock properties affected the seismic velocities, and the combined effects of these rock properties on the seismic amplitude were investigated simultaneously. The P- and S-impedances correlated negatively with porosity, and the V P/V S correlated positively with clay fraction and negatively with the pore-shape distribution and quartz fraction. The reliability of these estimated rock properties at the seismic scale was verified through comparisons between two sets of elastic properties: one coming from inverted impedances, which were obtained from simultaneous inversion of prestack seismic data, and one derived from these estimated rock properties. The differences between the two sets of elastic properties were less than a few percent, verifying the feasibility of the presented seismic reservoir characterization.

  20. Some Examples of Photogrammetry for the Characterization of Rock Masses

    Science.gov (United States)

    Tonon, Fulvio

    2015-04-01

    The presentation starts by briefly describing the basic elements of close-range photogrammetry, which are then used to understand its limitations, its accuracy, and its differences with respect to the LiDAR. Examples of applications will follow: • Baseline model accurate to 1.5 cm for a sub-vertical slope (800 m wide and 450 m high) in a narrow canyon in Colorado. • 3-D model for a 2.6 km long, 300 m high slope in Northern Italy. Its use for fracture mapping and analysis, and the determination of unstable blocks. • Monitoring of a by-pass tunnel in a Hydroelectric Power Scheme in California, where a major shear zone creates water seepage and movements

  1. ROCK COMPRESSION AND SHEAR FRACTURE NUCLEUS AND INTRAPLATE EARTHQUAKES%岩石压剪断裂核与板块内部地震

    Institute of Scientific and Technical Information of China (English)

    周群力; 刘振洪; 刘樵; 刘清波

    2011-01-01

    The earthquakes in China's mainland belong to intraplate earthquakes. The seismogenic mechanism is that the rocks break zone with special shape-rock compression and shear fracture nucleus forming by the end of original fault cause the fault expansion, under the action of the stress. The model has been confirmed by geological remains of earthquake source in Danjiang. Theory is consistent with experiment results and geological remains, and same for micro and macro phenomena. By laboratory studies, series results such as rock strength of compression and shear, dilatancy and expansive stress after rock broken, compression-shear fracture criterion, closed cracks surface stress transferring to the ends of the cracks and closed crack surface appearing opening displacement before fracture in the process of compression and shear fracture test, are all obtained. According to the rock compression and shear fracture nucleus mode analysis, rock breaking in the compression shear fracture nucleus takes place before the earthquake, deriving thermal infrared and many other phenomena. Abnormal change appears before the impending earthquake. Therefore, intraplate earthquakes are predictable.%在中国大陆内部发生的地震属于地球板块内部地震.它的发震机制是在应力作用下,原有断层裂面端部形成特殊形状的岩石破碎区——岩石压剪断裂核而导致断层扩展.该模式已被单江震源地质遗存所证实,且理论、试验、遗存一致,微观、宏观相符.通过试验研究,取得岩石压剪强度、岩石破碎后的扩容与膨胀应力、压剪断裂判据、压剪断裂试验过程中闭合裂缝面应力向缝端转移及断裂前闭合裂缝面出现开位等系列结果.根据岩石压剪断裂核模式分析,压剪断裂核内岩石破碎先于地震发生,衍生热红外等诸多现象,在临震前显现异动.因此,板内地震的发生具有可预测性.

  2. INCIDENCE AND CHARACTERIZATION OF ELDERLY IN THE ORTHOPEDIC CLINIC FOR FEMUR FRACTURE, CACERES MT

    Directory of Open Access Journals (Sweden)

    Andréia Costa Ferreira

    2013-05-01

    Full Text Available Introduction:The elderly population is growing gradually in recent years, it increases theincidence of elderly people at risk of falls and hip fractures develop.Objective:To identifythe incidence and characterize elderly patients hospitalized with hip fractures in theOrthopedic Clinic of the Hospital Regional Dr º Antonio Cáceres sources.Methodology:Thisis an epidemiological, descriptive, quantitative and retrospective data collection documentbasis. The study population comprised 105.Results:It was found that the fracture of thefemur showed predominance in females, comprising 40.90% of the cases and the right lowerlimb most affected. As for location, the trochanteric fractures showed 39.04%, followed byfractures of the femoral shaftwith 27.61% of the cases. The treatment applied in 62.85% ofpatients went to surgery.Conclusion:It is concluded that the femur fracture may preclude theelderly in their daily activities.

  3. A transient method for measuring the DC streaming potential coefficient of porous and fractured rocks

    Science.gov (United States)

    Walker, E.; Glover, P. W. J.; Ruel, J.

    2014-02-01

    High-quality streaming potential coupling coefficient measurements have been carried out using a newly designed cell with both a steady state methodology and a new pressure transient approach. The pressure transient approach has shown itself to be particularly good at providing high-quality streaming potential coefficient measurements as each transient increase or decrease allows thousands of measurements to be made at different pressures to which a good linear regression can be fitted. Nevertheless, the transient method can be up to 5 times as fast as the conventional measurement approaches because data from all flow rates are taken in the same transient measurement rather than separately. Test measurements have been made on samples of Berea and Boise sandstone as a function of salinity (approximately 18 salinities between 10-5 mol/dm3 and 2 mol/dm3). The data have also been inverted to obtain the zeta potential. The streaming potential coefficient becomes greater (more negative) for fluids with lower salinities, which is consistent with existing measurements. Our measurements are also consistent with the high-salinity streaming potential coefficient measurements made by Vinogradov et al. (2010). Both the streaming potential coefficient and the zeta potential have also been modeled using the theoretical approach of Glover (2012). This modeling allows the microstructural, electrochemical, and fluid properties of the saturated rock to be taken into account in order to provide a relationship that is unique to each particular rock sample. In all cases, we found that the experimental data were a good match to the theoretical model.

  4. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Karasaki, K. [Lawrence Berkeley Lab., CA (United States); Galloway, D. [Geological Survey, Sacramento, CA (United States)

    1991-06-01

    The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes is such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.

  5. Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ikwuakor, K.C.

    1994-03-01

    The objective of the project was to apply techniques of ``rock-typing`` and quantitative formation evaluation to borehole measurements in order to identify reservoir and non-reservoir rock-types and their properties within the ``C`` zone of the Ordovician Red River carbonates in the northeast Montana and northwest North Dakota areas of the Williston Basin. Rock-typing discriminates rock units according to their pore-size distribution. Formation evaluation estimates porosities and pore fluid saturation. Rock-types were discriminated using crossplots involving three rock-typing criteria: (1) linear relationship between bulk density and porosity, (2) linear relationship between acoustic interval transit-time and porosity, and (3) linear relationship between acoustic interval transit-time and bulk density. Each rock-type was quantitatively characterized by the slopes and intercepts established for different crossplots involving the above variables, as well as porosities and fluid saturations associated with the rock-types. All the existing production was confirmed through quantitative formation evaluation. Highly porous dolomites and anhydritic dolomites contribute most of the production, and constitute the best reservoir rock-types. The results of this study can be applied in field development and in-fill drilling. Potential targets would be areas of porosity pinchouts and those areas where highly porous zones are downdip from non-porous and tight dolomites. Such areas are abundant. In order to model reservoirs for enhanced oil recovery (EOR) operations, a more localized (e.g. field scale) study, expanded to involve other rock-typing criteria, is necessary.

  6. Improved characterization, monitoring and instability assessment of high rock faces by integrating TLS and GB-InSAR

    Science.gov (United States)

    Bianchetti, Matteo; Agliardi, Federico; Villa, Alberto; Battista Crosta, Giovanni; Rivolta, Carlo

    2015-04-01

    Rockfall risk analysis require quantifying rockfall onset susceptibility and magnitude scenarios at source areas, and the expected rockfall trajectories and related dynamic quantities. Analysis efforts usually focus on the rockfall runout component, whereas rock mass characterization and block size distribution quantification, monitoring and analysis of unstable rock volumes are usually performed using simplified approaches, due to technological and site-specific issues. Nevertheless, proper quantification of rock slope stability and rockfall magnitude scenarios is key when dealing with high rock walls, where widespread rockfall sources and high variability of release mechanisms and block volumes can result in excessive modelling uncertainties and poorly constrained mitigation measures. We explored the potential of integrating field, remote sensing, structural analysis and stability modelling techniques to improve hazard assessment at the Gallivaggio sanctuary site, a XVI century heritage located along the State Road 36 in the Spluga Valley (Italian Central Alps). The site is impended by a subvertical cliff up to 600 m high, made of granitic orthogneiss of the Truzzo granitic complex (Tambo Nappe, upper Pennidic domain). The rock mass is cut by NNW and NW-trending slope-scale structural lineaments and by 5-6 fracture sets with variable spatial distribution, spacing and persistence, which bound blocks up to tens of cubic meters and control the 3D slope morphology. The area is characterised by widespread rock slope instability from rockfalls to massive failures. Although a 180 m long embankment was built to protect the site from rockfalls, concerns remain about potential large unstable rock volumes or flyrocks projected by the widely observed impact fragmentation of stiff rock blocks. Thus, the authority in charge started a series of periodical GB-InSAR monitoring surveys using LiSALabTM technology (12 surveys in 2011-2014), which outlined the occurrence of unstable

  7. Hydrogeological Characteristics of Fractured Rocks around the In-DEBS Test Borehole at the Underground Research Facility (KURT)

    Science.gov (United States)

    Ko, Nak-Youl; Kim, Geon Young; Kim, Kyung-Su

    2016-04-01

    In the concept of the deep geological disposal of radioactive wastes, canisters including high-level wastes are surrounded by engineered barrier, mainly composed of bentonite, and emplaced in disposal holes drilled in deep intact rocks. The heat from the high-level radioactive wastes and groundwater inflow can influence on the robustness of the canister and engineered barrier, and will be possible to fail the canister. Therefore, thermal-hydrological-mechanical (T-H-M) modeling for the condition of the disposal holes is necessary to secure the safety of the deep geological disposal. In order to understand the T-H-M coupling phenomena at the subsurface field condition, "In-DEBS (In-Situ Demonstration of Engineered Barrier System)" has been designed and implemented in the underground research facility, KURT (KAERI Underground Research Tunnel) in Korea. For selecting a suitable position of In-DEBS test and obtaining hydrological data to be used in T-H-M modeling as well as groundwater flow simulation around the test site, the fractured rock aquifer including the research modules of KURT was investigated through the in-situ tests at six boreholes. From the measured data and results of hydraulic tests, the range of hydraulic conductivity of each interval in the boreholes is about 10-7-10-8 m/s and that of influx is about 10-4-10-1 L/min for NX boreholes, which is expected to be equal to about 0.1-40 L/min for the In-DEBS test borehole (diameter of 860 mm). The test position was determined by the data and availability of some equipment for installing In-DEBS in the test borehole. The mapping for the wall of test borehole and the measurements of groundwater influx at the leaking locations was carried out. These hydrological data in the test site will be used as input of the T-H-M modeling for simulating In-DEBS test.

  8. River-spring connectivity and hydrogeochemical interactions in a shallow fractured rock formation. The case study of Fuensanta river valley (Southern Spain)

    Science.gov (United States)

    Barberá, J. A.; Andreo, B.

    2017-04-01

    In upland catchments, the hydrology and hydrochemistry of streams are largely influenced by groundwater inflows, at both regional and local scale. However, reverse conditions (groundwater dynamics conditioned by surface water interferences), although less described, may also occur. In this research, the local river-spring connectivity and induced hydrogeochemical interactions in intensely folded, fractured and layered Cretaceous marls and marly-limestones (Fuensanta river valley, S Spain) are discussed based on field observations, tracer tests and hydrodynamic and hydrochemical data. The differential flow measurements and tracing experiments performed in the Fuensanta river permitted us to quantify the surface water losses and to verify its direct hydraulic connection with the Fuensanta spring. The numerical simulations of tracer breakthrough curves suggest the existence of a groundwater flow system through well-connected master and tributary fractures, with fast and multi-source flow components. Furthermore, the multivariate statistical analysis conducted using chemical data from the sampled waters, the geochemical study of water-rock interactions and the proposed water mixing approach allowed the spatial characterization of the chemistry of the springs and river/stream waters draining low permeable Cretaceous formations. Results corroborated that the mixing of surface waters, as well as calcite dissolution and CO2 dissolution/exsolution, are the main geochemical processes constraining Fuensanta spring hydrochemistry. The estimated contribution of the tributary surface waters to the spring flow during the research period was approximately 26-53% (Fuensanta river) and 47-74% (Convento stream), being predominant the first component during high flow and the second one during the dry season. The identification of secondary geochemical processes (dolomite and gypsum dissolution and dedolomitization) in Fuensanta spring waters evidences the induced hydrogeochemical

  9. Characterization of Acoustic Emission Source to Identify Fracture in Concrete

    Science.gov (United States)

    1993-04-01

    Hardy, "An Approach to Acoustic Emission Signal Analysis," Materials Evaluation, 35, 1977 , pp. 100-106. [5] Hsu, N.N. and F.R. Breckenridge...Measurements," Journal of Applied Mechanics, 53, 1986, pp. 61-68. [17] Mindess , S., "The Fracture Process Zone in Concrete," Toughening Mechanisms in

  10. Characterization of Hydraulic Fracture with Inflated Dislocation Moving Within a Semi-infinite Medium

    Institute of Scientific and Technical Information of China (English)

    OUYANG Zhi-hua; ELSWORTH Derek; LI Qiang

    2007-01-01

    Hydraulic fracturing is accompanied by a change in pore fluid pressure. As a result, this may be conveniently represented as inflated dislocation moving within a semi-infinite medium. Theory is developed to describe the pore pressures that build up around an inflated volumetric dislocation migrating within a saturated porous-elastic semi-infinite medium as analog to hydraulic fracturing emplacement. The solution is capable of evaluating the system behavior of both constant fluid pressure and zero flux surface conditions through application of a superposition. Characterization of horizontal moving dislocation processes is conducted as an application of these techniques. Where the mechanical and hydraulic parameters are defined, a priori, type curve matching of responses may be used to evaluate emplacement location uniquely. Pore pressure response elicited at a dilation, subject to pressure control is of interest in representing hydraulic fracturing where leak-off is an important component. The effect of hydraulic fracturing on fracture fluid pressure is evaluated in a poroelastic hydraulic fracture model utilizing dislocation theory. A minimum set of dimensionless parameters are defined that describe the system. Pore fluid pressures recorded during hydraulic fracturing of a well in the San Joaquin Valley of Central California is examined using the proposed model. The estimated geometry of the hydraulic fracture is matched with reasonable fidelity with the measured data.

  11. Combining chemical and isotopic measurements to estimate pesticide degradation rates in a fractured-rock aquifer

    Science.gov (United States)

    Farlin, Julien; Gallé, Tom; Bayerle, Michael; Pittois, Denis; El-Khabbaz, Hassanya; Schreglmann, Kathrin; Höche, Martina; Elsner, Martin

    2013-04-01

    Encouraged by new regulatory requirements for pesticide registration and authorization, the transport and environmental fate of these compounds in the different environmental compartments has been studied extensively. Degradation rates vary widely depending on hydraulic and chemical characteristics, with the strongest degradation usually occuring in the topsoil. Nonetheless, significant pesticide attenuation may still take place during transport in the aquifer, since residence times are generally much longer than in the soil. Ideally, pesticide transformation in the aquifer needs to be determined under real field conditions. Mass balance calculations however are complicated by the fact that the initial pesticide mass leached from the soil is often not known precisely enough. In this study, isotopic and classical pesticide concentration measurements were combined with groundwater dating techniques to assess the degradation rate of atrazine and its metabolite desethylatrazine in a fractured sandstone. The mass balance problem was solved by introducing the desethylatrazine to atrazine ratio, a relative measure which was used to quantify the advancement of atrazine degradation with increasing transport time in the subsurface. The extent of transformation of the parent compound was finally estimated from the shift in the isotopic signal between soil application and the outlet of the groundwater system.

  12. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

    Science.gov (United States)

    Nimmo, John R.; Creasey, Kaitlyn M.; Perkins, Kim S.; Mirus, Benjamin B.

    2017-03-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

  13. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

    Science.gov (United States)

    Nimmo, John R.; Creasey, Kaitlyn M; Perkins, Kimberlie; Mirus, Benjamin B.

    2017-01-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

  14. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

    Science.gov (United States)

    Nimmo, John R.; Creasey, Kaitlyn M.; Perkins, Kim S.; Mirus, Benjamin B.

    2016-11-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

  15. Assessment of rock wool as support material for on-site sanitation: hydrodynamic and mechanical characterization.

    Science.gov (United States)

    Wanko, Adrien; Laurent, Julien; Bois, Paul; Mosé, Robert; Wagner-Kocher, Christiane; Bahlouli, Nadia; Tiffay, Serge; Braun, Bouke; Provo kluit, Pieter-Willem

    2016-01-01

    This study proposes mechanical and hydrodynamic characterization of rock wool used as support material in compact filter. A double-pronged approach, based on experimental simulation of various physical states of this material was done. First of all a scanning electron microscopy observation allows to highlight the fibrous network structure, the fibres sizing distribution and the atomic absorption spectrum. The material was essentially lacunar with 97 ± 2% of void space. Static compression tests on variably saturated rock wool samples provide the fact that the strain/stress behaviours depend on both the sample conditioning and the saturation level. Results showed that water exerts plastifying effect on mechanical behaviour of rock wool. The load-displacement curves and drainage evolution under different water saturation levels allowed exhibiting hydraulic retention capacities under stress. Finally, several tracer experiments on rock wool column considering continuous and batch feeding flow regime allowed: (i) to determine the flow model for each test case and the implications for water dynamic in rock wool medium, (ii) to assess the rock wool double porosity and discuss its advantages for wastewater treatment, (iii) to analyse the benefits effect for water treatment when the high level of rock wool hydric retention was associated with the plug-flow effect, and (iv) to discuss the practical contributions for compact filter conception and management.

  16. The detection and characterization of natural fractures using P-wave reflection data, multicomponent VSP, borehole image logs and the in-situ stress field determination

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, P. [Coleman Research Corp., Orlando, FL (United States)

    1995-04-01

    The objectives of this project are to detect and characterize fractures in a naturally fractured tight gas reservoir, using surface seismic methods, borehole imaging logs, and in-situ stress field data. Further, the project aims to evaluate the various seismic methods as to their effectiveness in characterizing the fractures, and to formulate the optimum employment of the seismic methods as regards fracture characterization.

  17. Delineating Groundwater Vulnerability and Protection Zone Mapping in Fractured Rock Masses: Focus on the DISCO Index

    Directory of Open Access Journals (Sweden)

    Helen Meerkhan

    2016-10-01

    Full Text Available Hard-rock catchments are considered to be source of valuable water resources for water supply to inhabitants and ecosystems. The present work aims to develop a groundwater vulnerability approach in the Caldas da Cavaca hydromineral system (Aguiar da Beira, Central Portugal in order to improve the hydrogeological conceptual site model. Different types of information were overlaid, generating several thematic maps to achieve an integrated framework of key sectors in the study site. Thus, a multi-technical approach was used, encompassing field and laboratory techniques, whereby different types of data were collected from fields such as geology, hydrogeology, applied geomorphology and geophysics and hydrogeomechanics, with the fundamental aim of applying the so-called DISCO index method. All of these techniques were successfully performed and an intrinsic groundwater vulnerability to contamination assessment, based on the multicriteria methodology of GOD-S, DRASTIC-Fm, SINTACS, SI and DISCO indexes, was delineated. Geographic Information Systems (GIS provided the basis on which to organize and integrate the databases and to produce all the thematic maps. This multi-technical approach highlights the importance of groundwater vulnerability to contamination mapping as a tool to support hydrogeological conceptualization, contributing to improving the decision-making process regarding water resources management and sustainability.

  18. Macro- and micro-scale mechanisms of time-dependent fracturing in rocks

    Science.gov (United States)

    Brantut, Nicolas; Heap, Mike; Baud, Patrick; Meredith, Philip

    2013-04-01

    We performed a series of brittle deformation experiments in porous sandstones, in creep and constant strain rate conditions, in order to investigate the relationship between their short- and long-term mechanical behaviour. Elastic wave velocities measurements indicate that the amount of microcracking follows the amount of inelastic strain in a trend which does not depend upon the timescale involved. The comparison of stress-strain curves between constant strain rate and creep tests allows us to define a stress difference between the two, which can be viewed as a difference in energy release rate. We empirically show that the creep strain rates are proportional to an exponential function of this stress difference. We then establish a general method to estimate empirical micromechanical functions relating the applied stresses to mode I stress intensity factors at microcrack tips, and we determine the relationship between creep strain rates and stress intensity factors in our sandstone creep experiments. We finally provide an estimate of the sub-critical crack growth law parameters, and find that they match -within the experimental errors and approximations of the method- the typical values observed in independent single crack tests. Our approach provides a comprehensive and unifying explanation for the origin and the macroscopic manifestation of time-dependent brittle deformation in brittle rocks.

  19. Analytical modeling for colloid-facilitated transport of N-member radionuclides chains in the fractured rock

    Institute of Scientific and Technical Information of China (English)

    TIEN Neng-Chuan; JEN Chun-Ping

    2007-01-01

    A previous analytical model for N-member radionuclide decay chains has been extended to include the effect of radionuclide sorption with groundwater colloids.Published distribution coefficients were employed in the nuclide decay chain to illustrate the present model.The colloid concentration was assumed constant in time and space owing to equilibrium between colloid generation and sedimentation by chemical and/or physical perturbations.Furthermore,the diffusion of colloids into the rock matrix was ignored because the diameter of colloid is relatively large and colloids and fracture surfaces are like-charged.The results indicated that colloids could facilitate the transport of radionuclides and the large adsorbability of nuclides with colloids enlarged the effect of acceleration by colloids.The influence of colloids on the radionuclide transport was expected to be crucial to the actinides with large adsorbability;however,the present results revealed that the low-adsorbing nuclides whose parent nuclides have large capability of sorption could be also facilitated significantly by colloids indirectly.Therefore.the role of colloids played in the transport of the radionuclides decay chain should be assessed carefully in the radioactive waste disposal.The analytical method presented herein is helpful to verify/validate further complex far-field models.

  20. Characterization and nutrient release from silicate rocks and influence on chemical changes in soil

    Directory of Open Access Journals (Sweden)

    Douglas Ramos Guelfi Silva

    2012-06-01

    Full Text Available The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O, supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste. The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol, which was incubated for 100 days, at 70 % (w/w moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB were the silicate rocks that most influenced soil pH, while the mining byproduct (MB led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.

  1. Tracing surface water infiltration in fractured rocks with environmental isotopes: a case study of the former Balangero asbestos mine (northern Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Sacchi, Elisa [University of Pavia, Via Ferrata 1, Pavia I-27100 (Italy); Bergamini, Massimo; Castellano, Gianpaolo [R.S.A. S.r.l, Viale Copperi 15, Balangero - TO, I-10070 (Italy); Barella, Vittorio [ISO4 S.n.c., Via Valperga Caluso 37, Torino I-10125 (Italy)

    2013-07-01

    A semi-quantitative evaluation of the contribution of lake water to streams, springs, and groundwater circulating in the fractured rocks hosting the former Balangero asbestos mine was performed using stable isotopes of the water molecule. Results indicate that the lake, located in the open pit of the mine, generally contributes less than 30% of water to streams, springs, and groundwater. This contribution is more evident during dry periods, and should be taken into account in the design of remediation plans. (authors)

  2. Improved fracture behavior and microstructural characterization of thin tungsten foils

    OpenAIRE

    Vladica Nikolic; Stefan Wurster; Daniel Firneis; Reinhard Pippan

    2016-01-01

    This study is focused towards the development of the technique for investigating the fracture behaviour of 100µm thick rolled tungsten foils, with a purity of 99.97%. Electron backscatter diffraction (EBSD) scans reveal that the grains are elongated along the rolling direction of the foil, which has a very strong {100} texture. The test specimens were fabricated by electrical discharge machining (EDM) and cracks were initiated by consecutively using a diamond wire saw, a razor blade and a foc...

  3. Measurement of field-saturated hydraulic conductivity on fractured rock outcrops near Altamura (Southern Italy) with an adjustable large ring infiltrometer

    Science.gov (United States)

    Caputo, M.C.; de Carlo, L.; Masciopinto, C.; Nimmo, J.R.

    2010-01-01

    Up to now, field studies set up to measure field-saturated hydraulic conductivity to evaluate contamination risks, have employed small cylinders that may not be representative of the scale of measurements in heterogeneous media. In this study, a large adjustable ring infiltrometer was designed to be installed on-site directly on rock to measure its field-saturated hydraulic conductivity. The proposed device is inexpensive and simple to implement, yet also very versatile, due to its large adjustable diameter that can be fixed on-site. It thus allows an improved representation of the natural system's heterogeneity, while also taking into consideration irregularities in the soil/rock surface. The new apparatus was tested on an outcrop of karstic fractured limestone overlying the deep Murge aquifer in the South of Italy, which has recently been affected by untreated sludge disposal, derived from municipal and industrial wastewater treatment plants. The quasi-steady vertical flow into the unsaturated fractures was investigated by measuring water levels during infiltrometer tests. Simultaneously, subsurface electrical resistivity measurements were used to visualize the infiltration of water in the subsoil, due to unsaturated water flow in the fractures. The proposed experimental apparatus works well on rock outcrops, and allows the repetition of infiltration tests at many locations in order to reduce model uncertainties in heterogeneous media. ?? 2009 Springer-Verlag.

  4. Numerical study on equivalent permeability tensor of fractured rock masses%裂隙岩体等效渗透系数张量数值法研究

    Institute of Scientific and Technical Information of China (English)

    杨建平; 陈卫忠; 吴月秀; 谭贤君

    2013-01-01

    由于核废料地质储存、地热开采、深部油气开采的工程需求,裂隙岩体渗透性及其随着应力、温度的影响受到广泛关注.通过温度-渗流-应力耦合三轴仪对大理岩人工裂隙渗透率随应力及温度变化规律进行了试验研究,获得了大理岩闭合裂隙渗透率随应力、温度的变化趋势及受影响程度.在试验基础上,通过数值方法研究了裂隙岩体等效渗透系数的尺寸效应及各向异性,获得了该裂隙岩体的等效渗透系数REV及渗透张量.%Determination of permeability dependence of fracture on stresses and temperatures is the basis of safety evaluation in geological disposal of radioactive waste,geothermal exploitation and underground gas/oil exploitation.By means of the developed temperature-permeability-stress test equipment,permeability variation of an artificial rock fracture is studied under different stresses and temperatures.The test results show that the permeability decreases about a half as pressure increases from 9 MPa to 20 MPa,and the closure of fracture cannot recover its initial state as the pressure decreases.When the temperature increases from 19.7℃ to 56.1 ℃,the fracture permeability decreases about a half.At the end,transport properties of fractured rock masses,in which the fracture network is generated by Mont Carlo method,are studied by using UDEC code based on the fracture test results.The seepage REV and the corresponding equivalent permeability tensor of the fractured rock masses are obtained.

  5. Quantitative characterization of the fracture surface of Si single crystals by confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Y.B.; Hsia, K.J.; Lange, D.A. [Univ. of Illinois, Urbana, IL (United States)

    1995-12-01

    Experiments are conducted to study the dislocation nucleation conditions at the crack tip in {l_brace}110{r_brace}<110> oriented Si single crystals. Specimens with surface cracks are first statically loaded at elevated temperatures for a prolonged period of time to initiate and move dislocations away from the crack tip, then cooled down to room temperature and loaded to fracture to measure the fracture toughness. Fractographic analysis of the fracture surfaces is performed. Distinct wavy patterns on the fracture surface at the initial cleavage crack front are observed, which is attributed to the existence of local mixed mode 1/mode 3 stresses resulting from the inhomogeneous dislocation activity. Confocal microscopy is employed to quantify the fracture surface roughness. The results show that the increase of fracture toughness is directly associated with the increased area of the rough surface, which is characterized by the roughness number or the fractal dimension increment. The results also demonstrate that dislocation nucleation can occur only at discrete sites. The spacing between these dislocation nucleation sources is of the order of 1 {micro}m. A simple model is developed for the relationship between the fracture toughness and the surface roughness parameters, which is in good agreement with the experimental results.

  6. The role of advection and dispersion in the rock matrix on the transport of leaking CO2-saturated brine along a fractured zone

    Science.gov (United States)

    Ahmad, Nawaz; Wörman, Anders; Sanchez-Vila, Xavier; Bottacin-Busolin, Andrea

    2016-12-01

    CO2 that is injected into a geological storage reservoir can leak in dissolved form because of brine displacement from the reservoir, which is caused by large-scale groundwater motion. Simulations of the reactive transport of leaking CO2aq along a conducting fracture in a clay-rich caprock are conducted to analyze the effect of various physical and geochemical processes. Whilst several modeling transport studies along rock fractures have considered diffusion as the only transport process in the surrounding rock matrix (diffusive transport), this study analyzes the combined role of advection and dispersion in the rock matrix in addition to diffusion (advection-dominated transport) on the migration of CO2aq along a leakage pathway and its conversion in geochemical reactions. A sensitivity analysis is performed to quantify the effect of fluid velocity and dispersivity. Variations in the porosity and permeability of the medium are found in response to calcite dissolution and precipitation along the leakage pathway. We observe that advection and dispersion in the rock matrix play a significant role in the overall transport process. For the parameters that were used in this study, advection-dominated transport increased the leakage of CO2aq from the reservoir by nearly 305%, caused faster transport and increased the mass conversion of CO2aq in geochemical reactions along the transport pathway by approximately 12.20% compared to diffusive transport.

  7. Characterization of the disturbed zone in a large rock excavation for the Three Gorges Project