WorldWideScience

Sample records for characterizing fractured rock

  1. Rock fracture characterization with GPR by means of deterministic deconvolution

    Science.gov (United States)

    Arosio, Diego

    2016-03-01

    In this work I address GPR characterization of rock fracture parameters, namely thickness and filling material. Rock fractures can generally be considered as thin beds, i.e., two interfaces whose separation is smaller than the resolution limit dictated by the Rayleigh's criterion. The analysis of the amplitude of the thin bed response in the time domain might permit to estimate fracture features for arbitrarily thin beds, but it is difficult to achieve and could be applied only to favorable cases (i.e., when all factors affecting amplitude are identified and corrected for). Here I explore the possibility to estimate fracture thickness and filling in the frequency domain by means of GPR. After introducing some theoretical aspects of thin bed response, I simulate GPR data on sandstone blocks with air- and water-filled fractures of known thickness. On the basis of some simplifying assumptions, I propose a 4-step procedure in which deterministic deconvolution is used to retrieve the magnitude and phase of the thin bed response in the selected frequency band. After deconvolved curves are obtained, fracture thickness and filling are estimated by means of a fitting process, which presents higher sensitivity to fracture thickness. Results are encouraging and suggest that GPR could be a fast and effective tool to determine fracture parameters in non-destructive manner. Further GPR experiments in the lab are needed to test the proposed processing sequence and to validate the results obtained so far.

  2. Site characterization in fractured crystalline rock

    International Nuclear Information System (INIS)

    This report concerns a study which is part of the SKI performance assessment project SITE-94. SITE-94 is a performance assessment of a hypothetical repository at a real site. The main objective of the project is to determine how site specific data should be assimilated into the performance assessment process and to evaluate how uncertainties inherent in site characterization will influence performance assessment results. Other important elements of SITE-94 are the development of a practical and defensible methodology for defining, constructing and analyzing scenarios, the development of approaches for treatment of uncertainties, evaluation of canister integrity, and the development and application of an appropriate Quality Assurance plan for Performance Assessments. (111 refs.)

  3. Analog site for fractured rock characterization. Annual report FY 1995

    International Nuclear Information System (INIS)

    This report describes the accomplishments of the Analog Site for Fracture Rock Characterization Project during fiscal year 1995. This project is designed to address the problem of characterizing contaminated fractured rock. In order to locate contaminant plumes, develop monitoring schemes, and predict future fate and transport, the project will address the following questions: What parts of the system control flow-geometry of a fracture network? What physical processes control flow and transport? What are the limits on measurements to determine the above? What instrumentation should be used? How should it be designed and implemented? How can field tests be designed to provide information for predicting behavior? What numerical models are good predictors of the behavior of the system? The answers to these question can be used to help plan drilling programs that are likely to intersect plumes and provide effective monitoring of plume movement. The work is done at an open-quotes analogueclose quotes site, i.e., a site that is not contaminated, but has similar geology to sites that are contaminated, in order to develop tools and techniques without the financial, time and legal burdens of a contaminated site. The idea is to develop conceptual models and investigations tools and methodology that will apply to the contaminated sites in the same geologic regimes. The Box Canyon site, chosen for most of this work represents a unique opportunity because the Canyon walls allow us to see a vertical plane through the rock. The work represents a collaboration between the Lawrence Berkeley National Laboratory (LBL), Stanford University (Stanford), Idaho National Engineering Laboratory (INEL) and Parsons Environmental Engineering (Parsons). LBL and Stanford bring extensive experience in research in fractured rock systems. INEL and Parsons bring significant experience with the contamination problem at INEL

  4. Fracture analysis and rock quality designation estimation for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Within the Yucca Mountain Site Characterization Project, the design of drifts and ramps and evaluation of the impacts of thermomechanical loading of the host rock requires definition of the rock mass mechanical properties. Ramps and exploratory drifts will intersect both welded and nonwelded tuffs with varying abundance of fractures. The rock mass mechanical properties are dependent on the intact rock properties and the fracture joint characteristics. An understanding of the effects of fractures on the mechanical properties of the rock mass begins with a detailed description of the fracture spatial location and abundance, and includes a description of their physical characteristics. This report presents a description of the abundance, orientation, and physical characteristics of fractures and the Rock Quality Designation in the thermomechanical stratigraphic units at the Yucca Mountain site. Data was reviewed from existing sources and used to develop descriptions for each unit. The product of this report is a data set of the best available information on the fracture characteristics

  5. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Gary Mavko

    2000-10-01

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  6. Fracture hydraulic characterization based on aperture data measured by 50 cm scale rock sample

    International Nuclear Information System (INIS)

    The homogeneous one-dimensional parallel plate model is usually applied for nuclide migration model in a single fracture. An actual fracture has complex rough surface. It is one of issues for developing the methodology how to define the representative parameters used for the parallel plate model, such as transmissivity and aperture. We conducted the fracture geometrical characterization by grinding 50 cm scale of rock block including a single natural fracture, and we obtained the valuable data to study the relationship between heterogeneous fracture aperture distribution and the hydraulic characteristics. It is concluded that the fracture shows the mixed system of relatively fast flow paths and slow flow paths. (author)

  7. On the characterization of retention mechanisms in rock fractures

    International Nuclear Information System (INIS)

    Radionuclide transport in fractured media is controlled by advection and mass transfer processes. Advection primarily takes place along single fractures, whereas mass transfer such as surface sorption and matrix diffusion occurs at the fracture surfaces. Aperture heterogeneity thus affects both advection and mass transfer characteristics. This spatial heterogeneity, in combination with sparse aperture measurements, results in a prediction uncertainty with implications for both fracture characterization in the field and for safety assessments. An analytical solution for the mass flux in a single fracture is derived using the stochastic Lagrangian travel time approach. Combined matrix diffusion and equilibrium sorption are incorporated in the analysis. The solution is dependent on three variables: the conservative solute travel time (t), a parameter accounting for solute characteristics (k), and a parameter related to the fluid discharge and surface available for diffusion and sorption (b). Based on the analytical mass flux solution and underlying moments of b and t, the first two mass flux moments and first two moments of the time for a given accumulated mass fraction are derived. The results are illustrated for a kinematic flow path with predefined aperture and width statistics. The moments of b and t are derived analytically for the simplified flow case. The effect of variability and spatial correlation structure of aperture and width on the mass flux moments and moments of the time for a given accumulated mass fraction are investigated. The implications of the results for field-scale tracer test and for safety assessment are discussed. The possible correlation between t and b for increasingly complex flow conditions and/or evolving scales is identified as a key issue in both applications. 28 refs

  8. Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Gary Mavko

    2004-11-30

    Most current seismic methods to seismically characterize fractures in tight reservoirs depend on a few anisotropic wave propagation signatures that can arise from aligned fractures. While seismic anisotropy can be a powerful fracture diagnostic, a number of situations can lessen its usefulness or introduce interpretation ambiguities. Fortunately, laboratory and theoretical work in rock physics indicates that a much broader spectrum of fracture seismic signatures can occur, including a decrease in P- and S-wave velocities, a change in Poisson's ratio, an increase in velocity dispersion and wave attenuation, as well as well as indirect images of structural features that can control fracture occurrence. The goal of this project was to demonstrate a practical interpretation and integration strategy for detecting and characterizing natural fractures in rocks. The approach was to exploit as many sources of information as possible, and to use the principles of rock physics as the link among seismic, geologic, and log data. Since no single seismic attribute is a reliable fracture indicator in all situations, the focus was to develop a quantitative scheme for integrating the diverse sources of information. The integrated study incorporated three key elements: The first element was establishing prior constraints on fracture occurrence, based on laboratory data, previous field observations, and geologic patterns of fracturing. The geologic aspects include analysis of the stratigraphic, structural, and tectonic environments of the field sites. Field observations and geomechanical analysis indicates that fractures tend to occur in the more brittle facies, for example, in tight sands and carbonates. In contrast, strain in shale is more likely to be accommodated by ductile flow. Hence, prior knowledge of bed thickness and facies architecture, calibrated to outcrops, are powerful constraints on the interpreted fracture distribution. Another important constraint is that

  9. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada's radioactive wastes

    International Nuclear Information System (INIS)

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada's nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro's used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  10. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    Energy Technology Data Exchange (ETDEWEB)

    Wood, James R.; Harrison, William B.

    2000-10-24

    The main objective of this project is for a university-industry consortium to develop a comprehensive model for fracture carbonate reservoirs based on the ''data cube'' concept using the Michigan Basin as a prototype. This project combined traditional historical data with 2D and 3D seismic data as well as data from modern logging tools in a novel way to produce a new methodology for characterizing fractured reservoirs in carbonate rocks. Advanced visualization software was used to fuse the data and to image it on a variety of scales, ranging from basin-scale to well-scales.

  11. Using radar tomography, tracer experiments and hydraulic data to characterize fractured rock flow systems

    Science.gov (United States)

    Day-Lewis, Frederick David

    Among the most pressing problems in hydrogeology is describing heterogeneity in fractured rock, where data are typically local and sparse, and permeability varies by orders of magnitude over short distances. This dissertation presents new approaches to characterize fractured rock groundwater flow systems using cross-well radar, tracer, and hydraulic experiments. The methods are demonstrated using data from the U.S. Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, New Hampshire. One underutilized source of information in characterization of fractured rock is hydraulic connection data. Wells connected by a high-permeability fracture zone tend to exhibit similar hydraulic responses during pumping or drilling. A simulated-annealing algorithm is presented to condition geostatistical simulations to inferred connections. The method is used to generate 3-D realizations of fracture-zone geometry at the Mirror Lake Site. Results indicate the likely extents of specific zones. Flow models based on realizations are calibrated to hydraulic data to estimate the hydraulic parameters of the fracture zones and surrounding bedrock. Another innovative source of information for characterization is time-lapse difference-attenuation radar tomography, which has been used to monitor the migration of electrically conductive saline tracers. A sequential-inversion methodology is presented and demonstrated for a synthetic example. The method uses space-time parameterization and regularization to account for changes in concentration that occur quickly relative to the collection of radar data. The time-lapse tomographic inversion method is applied to data from the Mirror Lake Site. Difference-attenuation tomography indicates the timing and spatial distribution of tracer transport in three planes that form a triangular prism. Tracer migration is focused along a preferential pathway. Comparison of the time-series of tomograms with the outlet tracer data suggests that much

  12. Innovations in the characterization of fractured rocks developed within the Stripa project

    International Nuclear Information System (INIS)

    This text deals with the hydrogeological work that has been carried out at Stripa Mine. First of all, the philosophy applied evolved through the years, and has finally been focused on a fractured rock approach. Second, it has been necessary to develop hydraulic testing methods - such as focused packer testing - and equipment; the key of the success of the equipment that was built, was that it was fully computer controlled and able to regulate water pressures quickly, reliably and accurately. In the end, the aim of the hydrogeological testing was to characterize both the small scale fracture network and the large scale major fracture zone which composed the site. (TEC). 13 refs., 5 figs

  13. Surface and subsurface non-invasive investigations to improve the characterization of a fractured rock mass

    International Nuclear Information System (INIS)

    Three-dimensional assessment and modelling of fractured rock slopes is a challenging task. The reliability of the fracture network definition is of paramount importance for several engineering and geotechnical applications, and so far, different approaches have been proposed to improve the assessment procedure. A thorough knowledge of the actual fracture system is necessary to construct an accurate geometrical model of the rock mass and to determine block size distribution within the rock body. This paper describes the integration of diverse techniques used to define the rock mass fracture pattern, focusing on the most important fracture features, which are joint orientation, spacing, and persistence. A case study in the north of Italy was selected in order to show the potential of an integrated approach where surface and subsurface investigations are coupled. The rock surface was analysed by means of both standard geological mapping and terrestrial laser scanning. Ground penetrating radar surveys were conducted to image and map the discontinuity planes inside the rock mass and to estimate fracture persistence. The results obtained from the various investigation methodologies were employed to construct a model of the rock mass. This approach may lead to a better understanding of fracture network features, usually observed only on the rock surface. A careful analysis of block size distribution in a rock body can be of valuable help in several engineering and risk mitigation applications. (paper)

  14. Hydrogeloogic characterization of fractured rock formations: A guide for groundwater remediators

    International Nuclear Information System (INIS)

    A field site was developed in the foothills of the Sierra Nevada, California to develop and test a multi-disciplinary approach to the characterization of ground water flow and transport in fractured rocks. Nine boreholes were drilled into the granitic bedrock, and a wide variety of new and traditional subsurface characterization tools were implemented. The hydrogeologic structure and properties of the field site were deduced by integrating results from the various geologic, geophysical, hydrologic, and other investigative methods. The findings of this work are synthesized into this report, which is structured in a guidebook format. The applications of the new and traditional technologies, suggestions on how best to use, integrate, and analyze field data, and comparisons of the shortcoming and benefits of the different methods are presented

  15. Hydrogeloogic characterization of fractured rock formations: A guide for groundwater remediators

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, A.J.B.

    1995-10-01

    A field site was developed in the foothills of the Sierra Nevada, California to develop and test a multi-disciplinary approach to the characterization of ground water flow and transport in fractured rocks. Nine boreholes were drilled into the granitic bedrock, and a wide variety of new and traditional subsurface characterization tools were implemented. The hydrogeologic structure and properties of the field site were deduced by integrating results from the various geologic, geophysical, hydrologic, and other investigative methods. The findings of this work are synthesized into this report, which is structured in a guidebook format. The applications of the new and traditional technologies, suggestions on how best to use, integrate, and analyze field data, and comparisons of the shortcoming and benefits of the different methods are presented.

  16. Characterization of Preferential Flow Path in Fractured Rock Using Heat-pulse Flowmeter

    Science.gov (United States)

    Lee, Tsai-Ping; Lin, Ming-Hsuan; Chuang, Po-Yu; Chia, Yeeping

    2015-04-01

    Rigorous thinking on how to dispose radioactive wastes safely is essential to mankind and living environment. The concepts of multiple barriers and deep geologic disposal remain the preferred option to retard the radionuclide migration in most countries. However, the investigation of preferential groundwater flow path in a fractured rock is a challenge to the characterization of potential disposal site. Heat-pulse flowmeter is a developing logging tool for measuring the vertical flow velocity in a borehole under a constant pumping or injection rate and provides a promising direct measurement method for determining the vertical distribution of hydraulic conductivity of formation. As heat-pulse flowmeter is a potential technique to measure low-velocity borehole flow, we adopted it to test the feasibility of detecting permeable fractures. Besides, a new magnetic tracer made by nano-iron particles is developed to identify the possible flow path precisely and to verify the permeable section detected by the heat-pulse flowmeter. The magnetic tracer was received by a magnet array and can also be detected by a sensor of electric conductivity. The test site is located in the Heshe of Taiwan. Eight wells were established in a fractured sandy siltstone for characterizing the fracture network. The test wells are 25 to 45 m depth and opened ranging from 15 to 45 m. Prior to the heat-pulse flowmeter measurement, we also performed surface geological investigation, pumping test, geophysical logging, and salt tracer test. Field measurements using heat-pulse flowmeter were then conducted at a constant pumping rate. The measurement interval is 50 to 100 cm in depth but improved to 25 cm near the relatively permeable zone. Based on the results of heat-pulse flowmeter, several permeable sections were identified. The magnetic tracer tests were then conducted to verify the potential preferential flow pathway between adjacent wells. Test results indicated that water flow in borehole is

  17. Characterization of preferential flow paths between boreholes in fractured rock using a nanoscale zero-valent iron tracer test

    Science.gov (United States)

    Chuang, Po-Yu; Chia, Yeeping; Liou, Ya-Hsuan; Teng, Mao-Hua; Liu, Ching-Yi; Lee, Tsai-Ping

    2016-05-01

    Recent advances in borehole geophysical techniques have improved characterization of cross-hole fracture flow. The direct detection of preferential flow paths in fractured rock, however, remains to be resolved. In this study, a novel approach using nanoscale zero-valent iron (nZVI or `nano-iron') as a tracer was developed for detecting fracture flow paths directly. Generally, only a few rock fractures are permeable while most are much less permeable. A heat-pulse flowmeter can be used to detect changes in flow velocity for delineating permeable fracture zones in the borehole and providing the design basis for the tracer test. When nano-iron particles are released in an injection well, they can migrate through the connecting permeable fracture and be attracted to a magnet array when arriving in an observation well. Such an attraction of incoming iron nanoparticles by the magnet can provide quantitative information for locating the position of the tracer inlet. A series of field experiments were conducted in two wells in fractured rock at a hydrogeological research station in Taiwan, to test the cross-hole migration of the nano-iron tracer through permeable connected fractures. The fluid conductivity recorded in the observation well confirmed the arrival of the injected nano-iron slurry. All of the iron nanoparticles attracted to the magnet array in the observation well were found at the depth of a permeable fracture zone delineated by the flowmeter. This study has demonstrated that integrating the nano-iron tracer test with flowmeter measurement has the potential to characterize preferential flow paths in fractured rock.

  18. Sealing of fractured rock

    International Nuclear Information System (INIS)

    This paper consists of a presentation of the third phase of the Stripa Project. This phase was dedicated to fracture sealing. First of all it has been necessary to show that fine-grained grouts could effectively be injected in relatively fine cracks, and that the fluidity of bentonite could also be enhanced. The field tests comprised investigation of excavation-induced disturbance and attempts to seal disturbed rock, and, in separate tests, grouting of deposition holes and a natural fine-fracture zone. (TEC). 12 figs., 1 tab., 6 refs

  19. Innovative Field Methods for Characterizing the Hydraulic Properties of a Complex Fractured Rock Aquifer (Ploemeur, Brittany)

    Science.gov (United States)

    Bour, O.; Le Borgne, T.; Longuevergne, L.; Lavenant, N.; Jimenez-Martinez, J.; De Dreuzy, J. R.; Schuite, J.; Boudin, F.; Labasque, T.; Aquilina, L.

    2014-12-01

    Characterizing the hydraulic properties of heterogeneous and complex aquifers often requires field scale investigations at multiple space and time scales to better constrain hydraulic property estimates. Here, we present and discuss results from the site of Ploemeur (Brittany, France) where complementary hydrological and geophysical approaches have been combined to characterize the hydrogeological functioning of this highly fractured crystalline rock aquifer. In particular, we show how cross-borehole flowmeter tests, pumping tests and frequency domain analysis of groundwater levels allow quantifying the hydraulic properties of the aquifer at different scales. In complement, we used groundwater temperature as an excellent tracer for characterizing groundwater flow. At the site scale, measurements of ground surface deformation through long-base tiltmeters provide robust estimates of aquifer storage and allow identifying the active structures where groundwater pressure changes occur, including those acting during recharge process. Finally, a numerical model of the site that combines hydraulic data and groundwater ages confirms the geometry of this complex aquifer and the consistency of the different datasets. The Ploemeur site, which has been used for water supply at a rate of about 106 m3 per year since 1991, belongs to the French network of hydrogeological sites H+ and is currently used for monitoring groundwater changes and testing innovative field methods.

  20. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  1. Conceptual characterization of the system of fractures of the rock mass known as Sierra del Medio (Chubut)

    International Nuclear Information System (INIS)

    This work characterizes conceptually the system of fractures of the rock mass known as Sierra del Medio and its surroundings. The purpose of this characterization is to define the spectra of flow regimes which must be covered in computational models to be used in the prediction of the thermohydraulic effects of the eventual emplacement of a high-level radioactive waste repository. The analysis of the available data from previous studies was performed in order to determine qualitative data to be used in the stage of feasibility studied. The flow of water roughly N-S is defined by two systems of vertical, almost orthogonal fractures and surrounded by large faults. A set of hypotheses were considered which allow, supposing a given distribution of surface fractures, to establish the variations according to depth. The usual ways of obtaining the permeability and the hydraulic conductivity in fractured porous media are summarized in an appendix. (Author)

  2. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada`s radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lodha, G.S.; Davison, C.C.; Gascoyne, M. [Atomic Energy of Canada Ltd. , Pinawa, MB (Canada). Whiteshell Labs.

    1998-09-01

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada`s nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro`s used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  3. Hydraulic conductivity of rock fractures

    International Nuclear Information System (INIS)

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs

  4. Aperture distribution of rock fractures

    International Nuclear Information System (INIS)

    This thesis concerns the properties of the fracture void geometry of single rock fractures. It is suggested that the parameter aperture be used to describe the fracture void geometry and a definition of the aperture is proposed. The relation between void geometry and other fracture properties such as roughness, stiffness, conductivity and channelling are discussed. Different experimental techniques for aperture measurement have been developed in this work. The methods are applicable to fractures of different nature and size. A compilation of measurement results indicates that the spatial correlation (range) of fracture apertures increases with increasing mean aperture and that the range is correlated with the coefficient of variation. The existing data from aperture measurements and fracture flow experiments are still very scarce, in particular for fractures with large apertures. For future research, additional aperture measurements from fractures of different types is recommended. A further development of aperture measurement techniques suitable for field investigation is also suggested. 31 refs, 18 figs

  5. Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock

    International Nuclear Information System (INIS)

    This paper discusses the borehole radar system, RAMAC, developed within the framework of the International Stripa Project, which can be used in three different measuring modes; single-hole reflection, cross-hole reflection and cross-hole tomography. The reflection modes basically provide geometrical data on features located at some distance from the borehole. In addition the strength of the reflections indicate the contrast in electrical properties. Single-hole reflection data are cylindrically symmetrical with respect to the borehole, which means that a unique fracture orientation cannot be obtained. A method has been devised where absolute orientation of fracture zones is obtained by combining single-hole reflection data from adjacent holes. Similar methods for the analysis of cross-hole reflection data have also been developed and found to be efficient. The radar operates in the frequency range 20-60 MHz which gives a resolution of 1-3 m in crystalline rock. The investigation range obtained in the Stripa granite is approximately 100 m in the single-hole mode and 200-300 m in the cross-hole model. Variations in the arrival time and amplitude of the direct wave between transmitter and receiver have been used for cross-hole tomographic imaging to yield maps of radar velocity and attenuation. The cross-hole measurement configuration coupled with tomographic inversion has less resolution than the reflection methods but provides better quantitative estimates of the values of measured properties. The analysis of the radar data has provided a consistent description of the fracture zones at the Stripa Cross-hole site in agreement with both geological and geophysical observations

  6. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  7. Detailed measurement of the magnitude and orientation of thermal gradients in lined boreholes for characterizing groundwater flow in fractured rock

    Science.gov (United States)

    Pehme, Peeter; Parker, Beth L.; Cherry, John A.; Blohm, Detlef

    2014-05-01

    Recent developments have led to revitalization of the use of temperature logging for characterizing flow through fractured rock. The sealing of boreholes using water-filled, flexible impermeable liners prevents vertical cross connection between fractures intersecting the hole and establishes a static water column with a temperature stratification that mimics that in the surrounding formation. Measurement of the temperature profile of the lined-hole, water column (using a high sensitivity single-point probe achieving resolution on the order of 0.001 °C) has identified fractures with active flow under ambient groundwater conditions (without cross connecting flow along the borehole). Detection of flow in fractures was further improved with the use of a heater to create thermal disequilibrium in the active line source (ALS) technique and eliminate normal depth limitations in the process. This paper presents another advancement; detailed measurement of the magnitude and direction of the thermal gradient to characterize flow through fractured rock. The temperature within the water column is measured along the length of the lined hole using a temperature vector probe (TVP): four high sensitivity sensors arranged in a tetrahedral pattern oriented using three directional magnetometers. Based on these data, the horizontal and vertical components of the thermal field, as well as the direction of temperature gradient are determined, typically at depth intervals of less than 0.01 m. This probe was assessed and refined by trials in over 30 lined boreholes; the results from two holes through a fractured dolostone aquifer in Guelph, Ontario are used as exampled. Since no other device exists for measuring flow magnitude and direction under the ambient flow condition created by lined holes, the performance of the TVP is assessed by examining the reproducibility of the temperature measurements through an ALS test, and by the consistency of the results relative to other types of

  8. Characterization of spatial variability of hydraulic parameters in fractured rocks: Interpretation of pumping tests at the Altona Flat Rock Experimental Site

    Science.gov (United States)

    Castagna, M.; Becker, M. W.; Bellin, A.

    2007-12-01

    We present the results of the interpretation of multiple hydraulic tests conducted at the Altona Flat Rock experimental site, located near Plattsburgh (NY). The purpose of these tests was to establish the nature of flow connectivity in a single sub-horizontal bedrock fracture. The geology of the area is dominated by the Potsdam sandstone which is characterized by sub-horizontal bedding-plane fractures that extend over the scale of kilometres. Seven open boreholes with a diameter of 15 cm have been drilled to a depth of 12.2 m in the formation at reciprocal distances ranging from 7 to 15.8 m. Packer injection tests show the presence of a saturated horizontal fracture at 7.3 meters of depth, which intersects all the wells. The single fracture is characterized by a highly variable aperture which leads to a wide range of hydraulic transmissivity (T) and storativity (S) estimated from slug tests. In order to characterize the hydraulic properties of the fractured rock, a series of pumping tests were performed. The pumping tests were executed at constant rate of 7;e-5; m3/s for about 30 minutes in each well while the drawdown curves were collected in the remaining wells. Cooper-Jacob analyses of the pump tests indicate a large and variable apparent storativity. In highly heterogeneous media, variability in apparent storativity is often interpreted as a test artifact caused by anisotropic and heterogeneous transmissivity. Our objectives in the inversion of the hydraulic data were to (1) attempt to separate true and apparent storativity in the bedrock fracture and (2) investigate improved methods of pump test design that can decouple the influence of storativity and transmissivity on drawdown. The former was investigated primarily using the field data and the later using hypothetical simulations based upon the field data. The inversion was performed within a Bayesian framework by using the pilot point concept and by assuming unknown the stochastic parameters of the spatial

  9. Characterization and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The third Aespoe International Seminar was organised by SKB to assess the state of the art in characterisation and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Site characterisation and evaluation are important elements for determining the site suitability and long-term safety of a geological repository for radioactive waste disposal. Characterisation work also provides vital information for the design of the underground facility and the engineered barrier system that will contain the waste. The aim of the seminar was to provide a comprehensive assessment of the current know-how on this topic based on world-wide experience from more than 20 years of characterisation and evaluation work. The seminar, which was held at the Aespoe Hard Rock Laboratory was attended by 72 scientists from 10 different countries. The program was divided into four sessions of which two were run in parallel. A total of 38 oral and 5 poster presentations were given at the seminar. The presentations gave a comprehensive summary of recently completed and current work on site characterisation, modelling and application in performance assessments. The results presented at the seminar generally show that significant progress has been made in this field during the last decade. New characterisation techniques have become available, strategies for site investigations have developed further, and model concepts and codes have reached new levels of refinement. Data obtained from site characterisation have also successfully been applied in several site specific performance assessments. The seminar clearly showed that there is a solid scientific basis for assessing the suitability of sites for actual repositories based on currently available site characterisation technology and modelling capabilities. Separate abstracts have been prepared for 38 of the presentations

  10. Characterization and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Proceedings

    International Nuclear Information System (INIS)

    The third Aespoe International Seminar was organised by SKB to assess the state of the art in characterisation and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Site characterisation and evaluation are important elements for determining the site suitability and long-term safety of a geological repository for radioactive waste disposal. Characterisation work also provides vital information for the design of the underground facility and the engineered barrier system that will contain the waste. The aim of the seminar was to provide a comprehensive assessment of the current know-how on this topic based on world-wide experience from more than 20 years of characterisation and evaluation work. The seminar, which was held at the Aespoe Hard Rock Laboratory was attended by 72 scientists from 10 different countries. The program was divided into four sessions of which two were run in parallel. A total of 38 oral and 5 poster presentations were given at the seminar. The presentations gave a comprehensive summary of recently completed and current work on site characterisation, modelling and application in performance assessments. The results presented at the seminar generally show that significant progress has been made in this field during the last decade. New characterisation techniques have become available, strategies for site investigations have developed further, and model concepts and codes have reached new levels of refinement. Data obtained from site characterisation have also successfully been applied in several site specific performance assessments. The seminar clearly showed that there is a solid scientific basis for assessing the suitability of sites for actual repositories based on currently available site characterisation technology and modelling capabilities. Separate abstracts have been prepared for 38 of the presentations

  11. Sealing of rock fractures

    International Nuclear Information System (INIS)

    The major water-bearing fractures in granite usually from fairly regular sets but the extension and degree of connectivity is varying. This means that only a few fractures that are interconnected with the deposition holes and larger water-bearing structures in a HLW repository are expected and if they can be identified and cut off through sealing it would be possible to improve the isolation of waste packages very effectively. Nature's own fracture sealing mechanisms may be simulated and a survey of the involved processes actually suggests a number of possible filling methods and substances. Most of them require high temperature and pressure and correspondingly sophisticated techniques, but some are of potential interest for immediate application with rather moderate effort. Such a technique is to fill the fractures with clayey substances which stay flexible and low-permeable provided that they remain physically and chemically intact. It is demonstrated in the report that effective grouting requires a very low viscosity and shear strength of the substance and this can be achieved by mechanical agitation as demonstrated in this report. Thus, by superimposing static pressure and shear waves induced by percussion hammering at a suitable frequency, clays and fine-grained silts as well as cement can be driven into fractures with an average aperture as small as 0.1 mm. Experiments were made in the laboratory using concrete and steel plates, and a field pilot test was also conducted under realistic conditions on site in Stripa. They all demonstrated the practicality of the 'dynamic injection technique' and that the fluid condition of the grouts yielded complete filling of the injected space to a considerable distance from the injection point. The field test indicated a good sealing ability as well as a surprisingly high resistance to erosion and piping. (author)

  12. Unsaturated fractured rock characterization methods and data sets at the Apache Leap Tuff Site

    International Nuclear Information System (INIS)

    Performance assessment of high-level nuclear waste containment feasibility requires representative values of parameters as input, including parameter moments, distributional characteristics, and covariance structures between parameters. To meet this need, characterization methods and data sets for interstitial, hydraulic, pneumatic and thermal parameters for a slightly welded fractured tuff at the Apache Leap Tuff Site situated in central Arizona are reported in this document. The data sets include the influence of matric suction on measured parameters. Spatial variability is investigated by sampling along nine boreholes at regular distances. Laboratory parameter estimates for 105 core segments are provided, as well as field estimates centered on the intervals where the core segments were collected. Measurement uncertainty is estimated by repetitively testing control samples. 31 refs., 10 figs., 21 tabs

  13. Unsaturated fractured rock characterization methods and data sets at the Apache Leap Tuff Site

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, T.C.; Evans, D.D.; Sheets, P.J.; Blanford, J.H. [Arizona Univ., Tucson, AZ (USA). Dept. of Hydrology and Water Resources

    1990-08-01

    Performance assessment of high-level nuclear waste containment feasibility requires representative values of parameters as input, including parameter moments, distributional characteristics, and covariance structures between parameters. To meet this need, characterization methods and data sets for interstitial, hydraulic, pneumatic and thermal parameters for a slightly welded fractured tuff at the Apache Leap Tuff Site situated in central Arizona are reported in this document. The data sets include the influence of matric suction on measured parameters. Spatial variability is investigated by sampling along nine boreholes at regular distances. Laboratory parameter estimates for 105 core segments are provided, as well as field estimates centered on the intervals where the core segments were collected. Measurement uncertainty is estimated by repetitively testing control samples. 31 refs., 10 figs., 21 tabs.

  14. Grouting design based on characterization of the fractured rock. Presentation and demonstration of a methodology

    International Nuclear Information System (INIS)

    The design methodology presented in this document is based on an approach that considers the individual fractures. The observations and analyses made during production enable the design to adapt to the encountered conditions. The document is based on previously published material and overview flow charts are used to show the different steps. Parts of or the full methodology has been applied for a number of tunneling experiments and projects. SKB projects in the Aespoe tunnel include a pillar experiment and pre-grouting of a 70 meter long tunnel (TASQ). Further, for Hallandsas railway tunnel (Skaane south Sweden), a field pre-grouting experiment and design and post-grouting of a section of 133 meters have been made. For the Nygard railway tunnel (north of Goeteborg, Sweden), design and grouting of a section of 86 meters (pre-grouting) and 60 meters (post-grouting) have been performed. Finally, grouting work at the Tornskog tunnel (Stockholm, Sweden) included design and grouting along a 100 meter long section of one of the two tunnel tubes. Of importance to consider when doing a design and evaluating the result are: - The identification of the extent of the grouting needed based on inflow requirements and estimates of tunnel inflow before grouting. - The selection of grout and performance of grouting materials including penetration ability and length. The penetration length is important for the fan geometry design. - The ungrouted compared to the grouted and excavated rock mass conditions: estimates of tunnel inflow and (if available) measured inflows after grouting and excavation. Identify if possible explanations for deviations. For the Hallandsas, Nygard and Tornskog tunnel sections, the use of a Pareto distribution and the estimate of tunnel inflow identified a need for sealing small aperture fractures (< 50 - 100 μm) to meet the inflow requirements. The tunneling projects show that using the hydraulic aperture as a basis for selection of grout is a good

  15. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m2) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  16. Experimental and Numerical Study on the Cracked Chevron Notched Semi-Circular Bend Method for Characterizing the Mode I Fracture Toughness of Rocks

    Science.gov (United States)

    Wei, Ming-Dong; Dai, Feng; Xu, Nu-Wen; Liu, Jian-Feng; Xu, Yuan

    2016-05-01

    The cracked chevron notched semi-circular bending (CCNSCB) method for measuring the mode I fracture toughness of rocks combines the merits (e.g., avoidance of tedious pre-cracking of notch tips, ease of sample preparation and loading accommodation) of both methods suggested by the International Society for Rock Mechanics, which are the cracked chevron notched Brazilian disc (CCNBD) method and the notched semi-circular bend (NSCB) method. However, the limited availability of the critical dimensionless stress intensity factor (SIF) values severely hinders the widespread usage of the CCNSCB method. In this study, the critical SIFs are determined for a wide range of CCNSCB specimen geometries via three-dimensional finite element analysis. A relatively large support span in the three point bending configuration was considered because the fracture of the CCNSCB specimen in that situation is finely restricted in the notch ligament, which has been commonly assumed for mode I fracture toughness measurements using chevron notched rock specimens. Both CCNSCB and NSCB tests were conducted to measure the fracture toughness of two different rock types; for each rock type, the two methods produce similar toughness values. Given the reported experimental results, the CCNSCB method can be reliable for characterizing the mode I fracture toughness of rocks.

  17. Verification and characterization of continuum behavior of fractured rock at AECL Underground Research Laboratory

    International Nuclear Information System (INIS)

    The purposes of this study are to determine when a fracture system behaves as a porous medium and what the corresponding permeability tensor is. A two-dimensional fracture system model is developed with density, size, orientation, and location of fractures in an impermeable matrix as random variables. Simulated flow tests through the models measure directional permeability, K/sub g/. Polar coordinate plots of 1/√K/sub g/, which are ellipses for equivalent anistropic homogeneous porous media, are graphed and best fit ellipses are calculated. Fracture length and areal density were varied such that fracture frequency was held constant. The examples showed the permeability increased with fracture length. The modeling techniques were applied to data from the Atomic Energy of Canada Ltd.'s Underground Research Laboratory facility in Manitoba, Canada by assuming the fracture pattern at the surface persists at depth. Well test data were used to estimate the aperture distribution by both correlating and not correlating the aperture with fracture length. The permeability of models with uncorrelated length and aperture were smaller than those for correlated models. A Monte Carlo type study showed that analysis of steady state packer tests consistently underestimate the mean aperture. Finally, a three-dimensional model in which fractures are discs randomly located in space, interactions between the fractures are line segments, and the solution of the steady state flow equations is based on image theory was discussed

  18. Characterization and modeling of the stress and pore-fluid dependent acoustic properties of fractured porous rocks

    Science.gov (United States)

    Almrabat, Abdulhadi M.

    The thesis presents the results of a study of the characterization and modeling of the stress and pore-fluid dependent acoustic properties of fractured porous rocks. A new laboratory High Pressure and High Temperature (HPHT) triaxial testing system was developed to characterize the seismic properties of sandstone under different levels of effective stress confinement and changes in pore-fluid composition. An intact and fractured of Berea sandstones core samples were used in the experimental studies. The laboratory test results were used to develop analytical models for stress-level and pore-fluid dependent seismic velocity of sandstones. Models for stress-dependent P and S-wave seismic velocities of sandstone were then developed based on the assumption that stress-dependencies come from the nonlinear elastic response of micro-fractures contained in the sample under normal and shear loading. The contact shear stiffness was assumed to increase linearly with the normal stress across a micro-fracture, while the contact normal stiffness was assumed to vary as a power law with the micro-fracture normal stress. Both nonlinear fracture normal and shear contact models were validated by experimental data available in the literature. To test the dependency of seismic velocity of sandstone on changes in pore-fluid composition, another series of tests were conducted where P and S-wave velocities were monitored during injection of supercritical CO 2 in samples of Berea sandstone initially saturated with saline water and under constant confining stress. Changes in seismic wave velocity were measured at different levels of supercritical CO2 saturation as the initial saline water as pore-fluid was displaced by supercritical CO 2. It was found that the P- iv wave velocity significantly decreased while the S-wave velocity remained almost constant as the sample supercritical CO2 saturation increased. The dependency of the seismic velocity on changes on pore fluid composition during

  19. Characterizing Ground-Water Flow Paths in High-Altitude Fractured Rock Settings Impacted by Mining Activities

    Science.gov (United States)

    Wireman, M.; Williams, D.

    2003-12-01

    The Rocky Mountains of the western USA have tens of thousands of abandoned, inactive and active precious-metal(gold,silver,copper)mine sites. Most of these sites occur in fractured rock hydrogeologic settings. Mining activities often resulted in mobilization and transport of associated heavy metals (zinc,cadmium,lead) which pose a significant threat to aquatic communities in mountain streams.Transport of heavy metals from mine related sources (waste rock piles,tailings impoudments,underground workings, mine pits)can occur along numerous hydrological pathways including complex fracture controlled ground-water pathways. Since 1991, the United States Environmental Protection Agency, the Colorado Division of Minerals and Geology and the University of Colorado (INSTAAR)have been conducting applied hydrologic research at the Mary Murphy underground mine. The mine is in the Chalk Creek mining district which is located on the southwestern flanks of the Mount Princeton Batholith, a Tertiary age intrusive comprised primarily of quartz monzonite.The Mount Princeton batholith comprises a large portion of the southern part of the Collegiate Range west of Buena Vista in Chaffee County, CO. Chalk Creek and its 14 tributaries drain about 24,900 hectares of the eastern slopes of the Range including the mining district. Within the mining district, ground-water flow is controlled by the distribution, orientation and permeability of discontinuities within the bedrock. Important discontinuities include faults, joints and weathered zones. Local and intermediate flow systems are perturbed by extensive underground excavations associated with mining (adits, shafts, stopes, drifts,, etc.). During the past 12 years numerous hydrological investigations have been completed. The investigations have been focused on developing tools for characterizing ground-water flow and contaminant transport in the vicinity of hard-rock mines in fractured-rock settings. In addition, the results from these

  20. Characterizing fractured rock for fluid-flow, geomechanical, and paleostress modeling: Methods and preliminary results from Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Fractures have been characterized for fluid-flow, geomechanical, and paleostress modeling at three localities in the vicinity of drill hole USW G-4 at Yucca Mountain in southwestern Nevada. A method for fracture characterization is introduced that integrates mapping fracture-trace networks and quantifying eight fracture parameters: trace length, orientation, connectivity, aperture, roughness, shear offset, trace-length density, and mineralization. A complex network of fractures was exposed on three 214- to 260-m 2 pavements cleared of debris in the upper lithophysal unit of the Tiva Canyon Member of the Miocene Paint-brush Tuff. The pavements are two-dimensional sections through the three-dimensional network of strata-bound fractures. All fractures with trace lengths greater than 0.2 m were mapped and studied

  1. Flow and Transport Through Unsaturated Fractured Rock

    Science.gov (United States)

    Evans, Daniel D.; Nicholson, Thomas J.; Rasmussen, Todd C.

    This monograph is an update and revision of the first edition, Geophysical Monograph 42, on ground-water flow and transport through unsaturated, fractured rock, published by AGU in 1987. The first edition evolved from a special symposium held during the American Geophysical Union fall meetings in San Francisco in December 1986. Invited and contributed papers at that AGU session, as well as panel presentations, focused on conceptualizing, measuring and modeling flow and transport through unsaturated fractured rock. As noted in the preface to the first edition, "the expanded interest in the topic (water flow and contaminant transport through unsaturated fractured rock) was initiated when the U.S. Geological Survey proposed that deep unsaturated zones in arid regions be considered in the site selection for the first high-level, commercially generated radioactive waste repository." Much of the research reported in that first edition was motivated by the U.S. Department of Energy's program to investigate Yucca Mountain at the Nevada Test Site as a possible geologic repository for commercially generated, high-level radioactive waste. As noted in the overview paper of the first edition, "characterization methods and modeling are in their developmental stage with the greatest lack of knowledge being the interaction between fracture and matrix flow and transport properties." Although the first edition of this monograph reflected the state-of-the science, laboratory and field experimental programs were novel and limited and, in general, followed from the principles and methods developed in the soil science community.

  2. Electromagnetic characterization of fractured rock for geological disposal studies of spent nuclear fuel

    International Nuclear Information System (INIS)

    In the report, the results of a joint research project carried out in 1991-1997 by the Finnish Radiation and Nuclear Safety Authority (STUK) and the Electromagnetics Laboratory of the Helsinki University of Technology are presented. The main purpose was to create computational models for electric potential responses when the medium is anisotropic and is bounded by a perfect magnetic conductor, a perfect electric conductor, and an anisotropic impedance surface. Furthermore, the geometry of two anisotropic half spaces and a layered medium were considered. The solutions of the problems were made using image theory. For modeling the electric potential in anisotropic medium with inhomogeneities, an integral equation was formulated. Also a wedge structure was treated as an extension to the traditional two parallel plate model of fracture geometry. The equivalentization of fracturing with anisotropy is a research area that still continues that still continues

  3. Electromagnetic characterization of fractured rock for geological disposal studies of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Eloranta, E. [Radiation and Nuclear Safety Authority, Helsinki (Finland); Ermutlu, M. [Nokia Research Center, Helsinki (Finland); Flykt, M.; Lindell, I.; Nikoskinen, K.; Sihvola, A. [Helsinki Univ. of Technology, Espoo (Finland). Electromagnetics Lab.

    1998-04-01

    In the report, the results of a joint research project carried out in 1991-1997 by the Finnish Radiation and Nuclear Safety Authority (STUK) and the Electromagnetics Laboratory of the Helsinki University of Technology are presented. The main purpose was to create computational models for electric potential responses when the medium is anisotropic and is bounded by a perfect magnetic conductor, a perfect electric conductor, and an anisotropic impedance surface. Furthermore, the geometry of two anisotropic half spaces and a layered medium were considered. The solutions of the problems were made using image theory. For modeling the electric potential in anisotropic medium with inhomogeneities, an integral equation was formulated. Also a wedge structure was treated as an extension to the traditional two parallel plate model of fracture geometry. The equivalentization of fracturing with anisotropy is a research area that still continues that still continues 46 refs. The publication contains also fourteen previous publications by authors

  4. Advanced Characterization of Fractured Reservoirs in Carbonate Rocks: The Michigan Basin

    Energy Technology Data Exchange (ETDEWEB)

    Wood, James R.; Harrison, William B.

    2002-12-02

    The purpose of the study was to collect and analyze existing data on the Michigan Basin for fracture patterns on scales ranging form thin section to basin. The data acquisition phase has been successfully concluded with the compilation of several large digital databases containing nearly all the existing information on formation tops, lithology and hydrocarbon production over the entire Michigan Basin. These databases represent the cumulative result of over 80 years of drilling and exploration.

  5. Properties of Flow Zones in Fractured Rock

    Science.gov (United States)

    Salve, R.

    2004-12-01

    Observations over the last 25 years from various field studies suggest that preferential flow is common in soils and rocks. Despite this realization, very little is known about the large-scale properties (e.g., structure, distribution, continuity) of such flow regimes. This information is important for predictive models, but it remains elusive, mainly because of the difficulties involved in characterizing flow that has substantial spatial (both vertical and horizontal) and temporal variability. To better understand preferential flow in fractured rock, we carried out an in situ field experiment in the Topopah Spring tuff found in Exploratory Studies Facility at Yucca Mountain, Nevada. This experiment involved the release of ~22 m3 of ponded water (at a pressure head of ~0.04 m) over a period of 7 months, directly onto a 12 m2 infiltration plot. As water was released, changes in moisture content were monitored along horizontal boreholes located in the formation ~19-22 m below. Distinct flow zones, with significant differences in flow velocity, size, and extent of lateral movement, intercepted the 6-9 m long monitoring boreholes. Further, in some flow zones saturation levels persisted for the time period in which water was released, while in others there were periodic fluctuations. There was also evidence of water being diverted above the ceiling of a cavity in the immediate vicinity of the monitoring boreholes. Observations from this field experiment suggested that inconsistencies exist in present conceptual models of flow in fractured rock. Particularly, these observations suggest that isolated conduits within the fractured rock formation encompass a large number of fractures to form preferential flow paths that persist if there is a continuous supply of water. It appears that in fractured welded tuffs, the propensity for vertical dispersion and fracture-matrix interactions may be significantly greater than suggested by existing conceptual models. These observations

  6. Seismic characterization of fracture properties

    International Nuclear Information System (INIS)

    A critical component of site characterization and performance assessment involves the demonstration that any fluid flow which might reach the accessible environment is within acceptable limits. Various methods of analyzing flow in fractured rocks have been proposed, but choice of an appropriate method and its application to a specific site probably requires some knowledge of the spacing and length (or density) of fractures, their orientation and their hydraulic conductivity. Some of this information will undoubtedly come from geologic mapping on surface and in excavations, as well as from boreholes, cores and laboratory tests. However, it will be necessary to detect and characterize fractures in the rock mass between these direct observations. The remote detection and characterization of fractures by geophysical methods is, therefore, of considerable interest in connection with geologic repositories. The purpose of this paper is to show that there is a relationship, both empirical and theoretical, between the measured seismic response, the mechanical stiffness of fractures and their hydraulic conductivity. Laboratory measurements of the mechanical stiffness, hydraulic conductivity and seismic properties of natural fractures are summarized. A theoretical model for the amplitude and group time delay for compressional and shear waves transmitted across a single fracture is presented. Predictions based on this model are compared with laboratory measurements. Finally, the results for a single fracture are extended to multiple parallel fractures

  7. Hydrogeophysical characterization of transport processes in fractured rock by combining push-pull and single-hole ground penetrating radar experiments

    Science.gov (United States)

    Shakas, Alexis; Linde, Niklas; Baron, Ludovic; Bochet, Olivier; Bour, Olivier; Le Borgne, Tanguy

    2016-02-01

    The in situ characterization of transport processes in fractured media is particularly challenging due to the considerable spatial uncertainty on tracer pathways and dominant controlling processes, such as dispersion, channeling, trapping, matrix diffusion, ambient and density driven flows. We attempted to reduce this uncertainty by coupling push-pull tracer experiments with single-hole ground penetrating radar (GPR) time-lapse imaging. The experiments involved different injection fractures, chaser volumes and resting times, and were performed at the fractured rock research site of Ploemeur in France (H+ network, hplus.ore.fr/en). For the GPR acquisitions, we used both fixed and moving antenna setups in a borehole that was isolated with a flexible liner. During the fixed-antenna experiment, time-varying GPR reflections allowed us to track the spatial and temporal dynamics of the tracer during the push-pull experiment. During the moving antenna experiments, we clearly imaged the dominant fractures in which tracer transport took place, fractures in which the tracer was trapped for longer time periods, and the spatial extent of the tracer distribution (up to 8 m) at different times. This demonstrated the existence of strongly channelized flow in the first few meters and radial flow at greater distances. By varying the resting time of a given experiment, we identified regions affected by density-driven and ambient flow. These experiments open up new perspectives for coupled hydrogeophysical inversion aimed at understanding transport phenomena in fractured rock formations.

  8. Impact of rock anisotropy on fracture development

    Institute of Scientific and Technical Information of China (English)

    Lianbo Zeng; Jiyong Zhao; Shengju Zhu; Weiliang Xiong; Yonghong He; Jianwen Chen

    2008-01-01

    Experiments on uniaxial and triaxial rock mechanics and rock acoustic emissions have been conducted for research on the impact of rock anisotropy on the development of the fractures of different directions by taking as an example the ultra-low-permeability sandstone reservoir in the Upper Triassic Yanchang Formation within the Ordos Basin. The experimental results prove the existence of anisotropy of the rock mechanical property in the different directions on the plane, which is the chief reason for the production of impacts on the development of different assemblages of fractures in the geological periods. The rock anisotropy usually restricts the development of one assemblage of conjugate shear fractures. The fractures in the Yanchang Formation within the Ordos Basin are mainly shear fractures that formed under two tectonic actions. Theoretically, here, four assemblages of shear fractures should have developed, but due to the effect of a strong rock anisotropy, in each period one assemblage of fractures chiefly developed. Thus, two assemblages of fractures are usually developed in every part at present.

  9. Fracture Reactivation in Chemically Reactive Rock Systems

    Science.gov (United States)

    Eichhubl, P.; Hooker, J. N.

    2013-12-01

    Reactivation of existing fractures is a fundamental process of brittle failure that controls the nucleation of earthquake ruptures, propagation and linkage of hydraulic fractures in oil and gas production, and the evolution of fault and fracture networks and thus of fluid and heat transport in the upper crust. At depths below 2-3 km, and frequently shallower, brittle processes of fracture growth, linkage, and reactivation compete with chemical processes of fracture sealing by mineral precipitation, with precipitation rates similar to fracture opening rates. We recently found rates of fracture opening in tectonically quiescent settings of 10-20 μm/m.y., rates similar to euhedral quartz precipitation under these conditions. The tendency of existing partially or completely cemented fractures to reactivate will vary depending on strain rate, mineral precipitation kinetics, strength contrast between host rock and fracture cement, stress conditions, degree of fracture infill, and fracture network geometry. Natural fractures in quartzite of the Cambrian Eriboll Formation, NW Scotland, exhibit a complex history of fracture formation and reactivation, with reactivation involving both repeated crack-seal opening-mode failure and shear failure of fractures that formed in opening mode. Fractures are partially to completely sealed with crack-seal or euhedral quartz cement or quartz cement fragmented by shear reactivation. Degree of cementation controls the tendency of fractures for later shear reactivation, to interact elastically with adjacent open fractures, and their intersection behavior. Using kinematic, dynamic, and diagenetic criteria, we determine the sequence of opening-mode fracture formation and later shear reactivation. We find that sheared fracture systems of similar orientation display spatially varying sense of slip We attribute these inconsistent directions of shear reactivation to 1) a heterogeneous stress field in this highly fractured rock unit and 2

  10. Geostatistics for fracture characterization

    International Nuclear Information System (INIS)

    As the critical role of fractures has become more apparent in fluid flow and contaminant transport studies, the characterization of fracture networks has received considerable attention in a wide variety of applications such as nuclear waste repository design. The application of geostatistics to fracture characterization has traditionally involved modelling fractures as thin disks; assumptions about the frequency, orientation, length and width of these disks allow the construction of a 3D model of the fracture network. This paper examines alternatives whose statistical parameters are more relevant for contaminant transport studies and are also easier to infer and validate. A new algorithm for conditional simulation is presented, one that is able to honor multipoint statistics through annealing. By honoring statistics that capture with two-point spatial convariances, this algorithm offers an important new tool not only for the specific problem of fracture characterization but also for the more general problem of spatial simulation

  11. Application of geophysical methods for fracture characterization

    International Nuclear Information System (INIS)

    One of the most crucial needs in the design and implementation of an underground waste isolation facility is a reliable method for the detection and characterization of fractures in zones away from boreholes or subsurface workings. Geophysical methods may represent a solution to this problem. If fractures represent anomalies in the elastic properties or conductive properties of the rocks, then the seismic and electrical techniques may be useful in detecting and characterizing fracture properties. 7 refs., 3 figs

  12. Mechanical dispersion in fractured crystalline rock systems

    International Nuclear Information System (INIS)

    This report compiles and evaluates the hydrogeologic parameters describing the flow of groundwater and transport of solutes in fractured crystalline rocks. This report describes the processes of mechanical dispersion in fractured crystalline rocks, and compiles and evaluates the dispersion parameters determined from both laboratory and field tracer experiments. The compiled data show that extrapolation of the reliable test results performed over intermediate scales (10's of m and 10's to 100's of hours) to larger spatial and temporal scales required for performance assessment of a nuclear waste repository in crystalline rock is not justified. The reliable measures of longitudinal dispersivity of fractured crystalline rock are found to range between 0.4 and 7.8 m

  13. Flow and contaminant transport in fractured rocks

    International Nuclear Information System (INIS)

    This book is a compilation of nine articles dealing with various aspect of flow in fractured media. Articles range from radionuclide waste to multiphase flow in petroleum reservoirs to practical field test methods. Each chapter contains copious figures to aid the reader, but is also a detailed in-depth analysis of some major flow problem. The subjects covered are as follows: an introduction to flow and transport models; solute transport in fractured rock with application to radioactive waste repositories; solute transport models through fractured networks; theoretical view of stochastic models of fracture systems; numerical models of tracers; multiphase flow models in fractured systems and petroleum reservoirs; unsaturated flow modeling; comparative analysis of various flow modeling techniques in fractured media; and, a summary of field methods for measuring transfers of mass, heat, contaminant, momentum, and electrical charge in fractured media

  14. The Behaviour of Fracture Growth in Sedimentary Rocks: A Numerical Study Based on Hydraulic Fracturing Processes

    Directory of Open Access Journals (Sweden)

    Lianchong Li

    2016-03-01

    Full Text Available To capture the hydraulic fractures in heterogeneous and layered rocks, a numerical code that can consider the coupled effects of fluid flow, damage, and stress field in rocks is presented. Based on the characteristics of a typical thin and inter-bedded sedimentary reservoir, China, a series of simulations on the hydraulic fracturing are performed. In the simulations, three points, i.e., (1 confining stresses, representing the effect of in situ stresses, (2 strength of the interfaces, and (3 material properties of the layers on either side of the interface, are crucial in fracturing across interfaces between two adjacent rock layers. Numerical results show that the hydrofracture propagation within a layered sequence of sedimentary rocks is controlled by changing in situ stresses, interface properties, and lithologies. The path of the hydraulic fracture is characterized by numerous deflections, branchings, and terminations. Four types of potential interaction, i.e., penetration, arrest, T-shaped branching, and offset, between a hydrofracture and an interface within the layered rocks are formed. Discontinuous composite fracture segments resulting from out-of-plane growth of fractures provide a less permeable path for fluids, gas, and oil than a continuous planar composite fracture, which are one of the sources of the high treating pressures and reduced fracture volume.

  15. Quantifying Groundwater and Contaminant Flux in Fractured Rock Systems

    Science.gov (United States)

    Cho, J.; Newman, M. A.; Klammler, H.; Hatfield, K.; Annable, M. D.; Parker, B. L.; Cherry, J.; Kroeker, R.; Pedler, W. H.

    2011-12-01

    Complex hydrogeologic conditions such as fractured and karst bedrock settings pose substantial economic and technical challenges both to the characterization and remediation of DNAPL source zones. The objective of this project is to demonstrate and validate the fractured rock passive flux meter (FRPFM) as new technology for measuring the magnitudes and directions of cumulative water and contaminant fluxes in fractured rock aquifers. The sensor consists of an inflatable core that compresses a reactive fabric against the wall of a borehole and to any water-filled fractures intersected by a borehole. The reactive fabric is designed to intercept and retain target groundwater contaminants (e.g. TCE, DCE, VC); in addition, the fabric releases non-toxic tracers, some of which visibly indicate active fracture location, aperture, orientation, and direction of fracture flow along a borehole, while others quantify cumulative groundwater discharge within the fractures. Field demonstration tests are ongoing at a site in Guelph, Ontario and at the Naval Air Warfare Center (NAWC) in West Trenton, NJ. The tests are comparing multiple technologies including fractured rock passive flux meters, hydrophysical logging, temperature logging, and borehole dilution tests. The technologies are being evaluated based upon their ability to: identify flowing fractures, determine flow direction, and quantify both water and contaminant mass flux in flowing fractures. Laboratory tests comparing the capabilities of each technology were previously performed in two separate flow simulators representing a range of likely field conditions: a planar single fracture simulator (fracture aperture = 0.5 mm; specific discharge range 25 - 2500 cm/day) and a large-scale three-dimensional aquifer box with layered high contrast flow zones simulating fractured zones (physical flow domain 2 m length, 0.5 m width, and 1 m height; specific discharge range 25 to 4000 cm/day (per layer)). Based upon initial field and

  16. Water flow characteristics of rock fractures

    International Nuclear Information System (INIS)

    This report has been worked out within the project 'Groundwater flow and dispersion processes in fractured rock' supported by the National Board for Spent Nuclear Fuel (SKN) in Sweden, dnr 96/85. This project is attached to the safety problems involved in the final disposal of spent nuclear fuel. The purpose of the report is to give a survey of the knowledge of fracture characteristics and to discuss this knowledge in relation to the modelling of flow and dispersion of radioactive substances in the fractures

  17. Uncertainty in hydraulic tests in fractured rock

    International Nuclear Information System (INIS)

    Interpretation of hydraulic tests in fractured rock has uncertainty because of the different hydraulic properties of a fractured rock to a porous medium. In this study, we reviewed several interesting phenomena which show uncertainty in a hydraulic test at a fractured rock and discussed their origins and the how they should be considered during site characterisation. Our results show that the estimated hydraulic parameters of a fractured rock from a hydraulic test are associated with uncertainty due to the changed aperture and non-linear groundwater flow during the test. Although the magnitude of these two uncertainties is site-dependent, the results suggest that it is recommended to conduct a hydraulic test with a little disturbance from the natural groundwater flow to consider their uncertainty. Other effects reported from laboratory and numerical experiments such as the trapping zone effect (Boutt, 2006) and the slip condition effect (Lee, 2014) can also introduce uncertainty to a hydraulic test, which should be evaluated in a field test. It is necessary to consider the way how to evaluate the uncertainty in the hydraulic property during the site characterisation and how to apply it to the safety assessment of a subsurface repository. (authors)

  18. Fractures and Rock Mechanics, Phase 1

    DEFF Research Database (Denmark)

    Havmøller, Ole; Krogsbøll, Anette

    1997-01-01

    The main objectives of the project are to combine geological description of fractures, chalk types and rock mechanical properties, and to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. Five chalk types, representing two outcrop localities: Stevns and...

  19. Rock fracture skeleton tracing by image processing and quantitative analysis by geometry features

    Science.gov (United States)

    Liang, Yanjie

    2016-06-01

    In rock engineering, fracture measurement is important for many applications. This paper proposes a novel method for rock fracture skeleton tracing and analyzing. As for skeleton localizing, the curvilinear fractures are multiscale enhanced based on a Hessian matrix, after image binarization, and clutters are post-processed by image analysis; subsequently, the fracture skeleton is extracted via ridge detection combined with a distance transform and thinning algorithm, after which gap sewing and burrs removal repair the skeleton. In regard to skeleton analyzing, the roughness and distribution of a fracture network are respectively described by the fractal dimensions D s and D b; the intersection and fragmentation of a fracture network are respectively characterized by the average number of ends and junctions per fracture N average and the average length per fracture L average. Three rock fracture surfaces are analyzed for experiments and the results verify that both the fracture tracing accuracy and the analysis feasibility are satisfactory using the new method.

  20. Image Segmentation for rock fractures based on ARMA model

    OpenAIRE

    P. Seetal,; N.Natarajan

    2010-01-01

    Rock fracture mapping is very important in many applications related to rock mechanics. The toughest task is the extraction of the fractures from the images of the rocks. Time series model has been used in this paper for segmentation of fractures from the rock images. The model is compared with orthodox edge detection algorithms. A first order autoregressive image model has been implemented. The model has been applied for both rough as well as smooth fractures. The model was observed to perfo...

  1. Flow dynamics and solute transport in unsaturated rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Su, G. W.

    1999-10-01

    Rock fractures play an important role in flow and contaminant transport in fractured aquifers, production of oil from petroleum reservoirs, and steam generation from geothermal reservoirs. In this dissertation, phenomenological aspects of flow in unsaturated fractures were studied in visualization experiments conducted on a transparent replica of a natural, rough-walled rock fracture for inlet conditions of constant pressure and flow rate over a range of angles of inclination. The experiments demonstrated that infiltrating liquid proceeds through unsaturated rock fractures along non-uniform, localized preferential flow paths. Even in the presence of constant boundary conditions, intermittent flow was a persistent flow feature observed, where portions of the flow channel underwent cycles of snapping and reforming. Two modes of intermittent flow were observed, the pulsating blob mode and the rivulet snapping mode. A conceptual model for the rivulet snapping mode was proposed and examined using idealized, variable-aperture fractures. The frequency of intermittent flow events was measured in several experiments and related to the capillary and Bond numbers to characterize this flow behavior.

  2. Hydrostructural Characterization of Fracture Networks

    Science.gov (United States)

    Doe, T. W.; Hermanson, J.

    2007-12-01

    for their refinement. Confirmation of the network geometries comes from pressure transient testing. Although flow logging is very useful for locating conductive fractures, their steady-flow analysis methods do not allow for skin effects or accurate determination of hydraulic properties. Transient tests using single hole and interference data provide accurate hydraulic properties of the networks as well as insights to the network geometry and its boundaries. Geochemical data provide further constraints on connectivity and compartmentalization. The hydro-structural characterization of block scale experiments at the Äspö Hard Rock Laboratory provides an example of this integration approach.

  3. Geometry, mechanics and transmissivity of rock fractures

    International Nuclear Information System (INIS)

    This thesis work investigates methods and tools for characterising, testing and modelling the behaviour of rock fractures. Using a 3D-laser-scanning technique, the topography of the surfaces and their position with respect to one another are measured. From the fracture topography, fracture roughness, angularity and aperture are quantified; the major features used for characterisation. The standard deviations for the asperity heights, surface slopes and aperture are determined. These statistical parameters usually increase/decrease according to power laws of the sampling size, and sometimes reach a sill beyond which they become constant. Also the number of contact spots with a certain area decreases according to a power-law function of the area. These power-law relations reveal the self affine fractal nature of roughness and aperture. Roughness is 'persistent' while aperture varies between 'persistent' and 'anti-persistent' probably depending on the degree of match of the fracture walls. The fractal models for roughness, aperture and contact area are used to develop a constitutive model, based on contact mechanics, for describing the fracture normal and shear deformability. The experimental testing results of normal deformability are simulated well by the model whereas fracture shear deformability is not as well modelled. The model predicts well fracture dilation but is too stiff compared to rock samples. A mathematical description of the aperture pattern during shearing is also formulated. The mean value and covariance of the aperture in shearing is calculated and verifies reported observations. The aperture map of samples is inserted in a numerical program for flow calculation. The 'integral transform method' is used for solving the Reynolds' equation; it transforms the fracture transmissivity pattern into a frequency-based function. This closely resembles the power laws that describe fractals. This function can be described directly from the fractal properties of

  4. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  5. Use of fracture filling mineral assemblages for characterizing water-rock interactions during exhumation of an accretionary complex: An example from the Shimanto Belt, southern Kyushu Japan

    Science.gov (United States)

    Ono, Takuya; Yoshida, Hidekazu; Metcalfe, Richard

    2016-06-01

    Various fracture filling minerals and secondary minerals in fracture walls were formed by fluid-rock interaction during the exhumation of the Palaeogene Shimanto Belt of Kyushu, Japan, which is located in an accretionary complex. Each mineral formed under favourable geological conditions and can be used to estimate the conditions of accretion and formation of the related rock sequences. Petrographic observations, mineralogical and geochemical analyses were made on fracture filling minerals and secondary minerals from boreholes of ca. 140 m depth, drilled in the Shimanto Belt. Results reveal that the secondary minerals were formed in three major stages distinguished by the sequential textural relationships of the minerals and the interpreted environment of mineral formation. Filling mineral assemblages show that the studied rock formation has been subducted to a depth of several km and the temperature reached was ca. 200-300 °C. After the subduction, the rock formation was uplifted and surface acidic water penetrated up to 80 m beneath the present ground surface. The acid water dissolved calcite fracture filling minerals to form the present groundwater flow-paths, which allowed recent wall rock alteration to occur. The results shown here imply that filling mineral assemblages can be an effective tool to evaluate the environmental changes during exhumation of an accretionary complex.

  6. Calculation of gas migration in fractured rock

    International Nuclear Information System (INIS)

    Calculations are presented for rock properties characteristic to the Forsmark area. The rock permeability was determined by flow tests in vertical boreholes. It is assumed that the permeability distribution obtained from these boreholes is representative also for the permeability distribution along the repository cavern. Calculations were worked out for two different types of boundary conditions, one in which a constant gas flow rate equivalent to a gas production of 33000 kg/year was assumed and the other in which a constant gas cushion of 0.5 metres was assumed. For the permeability distribution considered, the breakthrough at the sea bottom occurred within one hour. The gaswater displacement took place mainly through the fractures of high permeability and practically no flow took place in the fractures of low permeability. (orig./DG)

  7. Radionuclide retardation in crystalline rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Hoelttae, P.; Hakanen, M.; Siitari-Kauppi, M. [Univ. of Helsinki (Finland). Dept. of Radiochemistry; Hautojaervi, A.

    1995-12-31

    Transport and retardation of slightly sorbing sodium was studied in Syyry area SY-KR7 mica gneiss and in altered porous tonalite. Experiments were performed using dynamic fracture and crushed rock column methods and the static batch method. Flow conditions in the column were determined using tritiated water and chloride as non-sorbing tracers. {sup 14}C-PMMA method was used to study the pore structure of matrices and the surface areas were determined by B.E.T. method. Sodium was retarded strongly in altered tonalite owing to homogeneous porous matrix structure and the composition of alteration minerals. An agreement between retardation values in batch and crushed rock column experiments as well as in fracture column experiments was good.

  8. Fractures and Rock Mechanics, Phase 1

    DEFF Research Database (Denmark)

    Krogsbøll, Anette; Jakobsen, Finn; Madsen, Lena

    1997-01-01

    The main objective of the project is to combine geological descriptions of fractures, chalk types and rock mechanical properties in order to investigate whether the chosen outcrops can be used as analogues to reservoir chalks. This report deals with 1) geological descriptions of outcrop locality ...... Hillerslev quarry, 2) Classification and description of all samples (normal and large scale) and 3) Evaluation of stress- and deformation history....

  9. Investigation of blast-induced fracture in rock mass using reversed vertical seismic profiling

    Science.gov (United States)

    Zou, D. H.; Wu, Y. K.

    2001-10-01

    The rock mass on quarry and pit wall surfaces is usually fractured during production blasting. Quantitative investigations of the fractured zones are needed for stabilization of the rock walls. In this study, the principle of reversed vertical seismic profiling (RVSP) was applied. A set of seismic geophones were arranged on the horizontal bench surface and seismic signals were generated along the vertical rock wall using a free-swinging hammer. The travel times of seismic rays were recorded and the P-wave velocities of the rock mass were analyzed using the Simultaneous Iterative Reconstruction Technique (SIRT). A series of site tests have been carried out on the rock walls at a granite quarry that are characterized by fractures. The fracture depth at various locations on the wall surface is thereby determined. The results indicate that RVSP provides an easy and reliable method to quantitatively evaluate the blasting-induced fractures in the rock mass.

  10. Hydraulic sealing of fractured argillaceous rocks

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The French National Radioactive Waste Management Agency (Andra) has chosen Callovo-Oxfordian (COx) clay-stone, an argillaceous formation in east of France, to sit the future deep geological disposal for intermediate and high level long-lived waste. Among the main reasons of this choice are the low water permeability (less than 10-19 m2) and the high retention properties of the formation towards radionuclides (RN) which ensure a strong confinement of the radioactive waste. Tunnel excavation will cause hydro-mechanical perturbations in the surrounding host rock and will induce a fractured zone localized around the underground openings. This zone where hydro-mechanical and geochemical modifications occur, could lead to significant change in flow and transport properties. Prediction of evolution for the Excavation damaged zone (EDZ) is very important in regards to long-term safety performances of the geological disposal. Observations performed at the main level of the underground research laboratory (-490 m) located in Bure, permitted to achieve an understanding of the fracture network structure and showed different kind of fractures. Those fractures which could be very conductive for some of them become less hydraulically active function of time and after water saturation occurs. Few studies report such sealing of fractures which is expected in argillaceous rocks due to combined effects of rock compression, backfill resistance, water saturation and clay swelling during the post-closure phase. Moreover, Andra has recently proposed an experimental program on these phenomena in partnership with different laboratories (GL Transfert de Gaz). The aim of the present study is to understand and quantify the sealing behaviour of fractures in Cox clay-stone through experimental investigations under relevant thermo-hydro-mechanical conditions. Therefore, laboratory tests were carried out on artificially-fractured cylindrical

  11. Study on mechanical parameters of fractured rock masses

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The equivalent strength parameters of fractured rock masses are prerequisite for stability analysis of geotechnical engineering projects constructed in fractured rock masses which are encountered frequently in western china.Based on generated mesh of fractured rock masses,combined with statistic damage constitutive model of intact rock and damage model of structural plane,progressive failure of fractured rock masses is studied using finite element method(FEM) .Furthermore,Scale effect and anisotropy of compressive strength of fractured rock masses are studied.Study results show that the strength decreases and tend towards stability rapidly from intact rock to fractured rock masses,and the anisotropy of strength of fractured rock masses is not significant.At last,based on numerical simulation conducted on 10 m scale rock masses under different confining pressures,the equivalent strength parameters of fractured rock masses are gained and the results are compared with Hoek-Brown criteria.The method developed is helpful for determination of strength parameters of fractured rock masses.

  12. Fracture toughness measurements on igneous rocks using a high-pressure, high-temperature rock fracture mechanics cell

    OpenAIRE

    Balme, M.R.; Rocchi, V; Jones, C.; Sammonds, P.R.; Meredith, P.G.; Boon, S.

    2004-01-01

    A sound knowledge of mechanical properties of rocks at high temperatures and pressures is essential for modelling volcanological problems such as fracture of lava flows and dike emplacement. In particular, fracture toughness is a scale-invariant material property of a rock that describes its resistance to tensile failure. A new fracture mechanics apparatus has been constructed enabling fracture toughness measurements on large (60 mm diameter) rock core samples at temperatures up to 750–C and ...

  13. Nuclide migration analysis in fractured rock

    International Nuclear Information System (INIS)

    This paper describes the results of PA studies considering heterogeneous fracture characteristics, for the purpose of contributing for the performance assessment of the natural barrier system PA in H12 report (The second progress report on research and development for the Geological Disposal of HLW in Japan). In this study, 3-D discrete fracture network model (DFN) and 1-D multiple pathways model is applied for 100 m scale of rock block. Although nuclide release rate calculated by DFN are widely distributed among the realizations, it is shown that several tens realizations are enough number to understand the stochastic characteristics of the nuclide release. From the data uncertainty analysis, there are no significant effects for the nuclide retardation in fracture geometry parameters such as fracture radius, density and etc. 1-D multiple pathways model is developed with focusing on the heterogeneity of the transmissivity, which has a large effect to the nuclide retardation effects. The nuclide release rate calculated by using 1-D multiple pathways model approximates to the results of DFN. This result also shows that the relatively large fractures/faults that connects disposal tunnel and downstream faults have an important role for performance assessment in natural barrier system. (author)

  14. Groundwater flow and sorption processes in fractured rocks (I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won Young; Woo, Nam Chul; Yum, Byoung Woo; Choi, Young Sub; Chae, Byoung Kon; Kim, Jung Yul; Kim, Yoo Sung; Hyun, Hye Ja; Lee, Kil Yong; Lee, Seung Gu; Youn, Youn Yul; Choon, Sang Ki [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1996-12-01

    This study is objected to characterize groundwater flow and sorption processes of the contaminants (ground-water solutes) along the fractured crystalline rocks in Korea. Considering that crystalline rock mass is an essential condition for using underground space cannot be overemphasized the significance of the characterizing fractured crystalline rocks. the behavior of the groundwater contaminants is studied in related to the subsurface structure, and eventually a quantitative technique will be developed to evaluate the impacts of the contaminants on the subsurface environments. The study has been carried at the Samkwang mine area in the Chung-Nam Province. The site has Pre-Cambrian crystalline gneiss as a bedrock and the groundwater flow system through the bedrock fractures seemed to be understandable with the study on the subsurface geologic structure through the mining tunnels. Borehole tests included core logging, televiewer logging, constant pressure fixed interval length tests and tracer tests. The results is summarized as follows; 1) To determine the hydraulic parameters of the fractured rock, the transient flow analysis produce better results than the steady - state flow analysis. 2) Based on the relationship between fracture distribution and transmissivities measured, the shallow part of the system could be considered as a porous and continuous medium due to the well developed fractures and weathering. However, the deeper part shows flow characteristics of the fracture dominant system, satisfying the assumptions of the Cubic law. 3) Transmissivities from the FIL test were averaged to be 6.12 x 10{sup -7}{sub m}{sup 2}{sub /s}. 4) Tracer tests result indicates groundwater flow in the study area is controlled by the connection, extension and geometry of fractures in the bedrock. 5) Hydraulic conductivity of the tracer-test interval was in maximum of 7.2 x 10{sup -6}{sub m/sec}, and the effective porosity of 1.8 %. 6) Composition of the groundwater varies

  15. Predicting hydrology of fractured rock masses from geology

    Science.gov (United States)

    La Pointe, Paul R.

    Fracture network connectivity often dominates movement rate, flow volume, and mass transport through rock masses. These networks influence the effectiveness of petroleum reservoir development, safe disposal of nuclear waste, delineation of water supply or establishment of well-head protection plans, recovery from geothermal reservoirs, solution mining, construction of underground openings, and the remediation of contaminated rock. Well tests can provide a great deal of useful information on the hydraulic properties of fracture systems, but they are often expensive or logistically infeasible. These tests also may not provide an accurate description of the hydrologic properties of the rock volume under consideration. Methods to model fractured rock can be improved by quantifying the relation between geologic parameters and the hydrologically conductive fractures. This study illustrates the application of four statistical and pattern recognition methods—evaluation of correlation coefficients, contingency table analysis, multivariate regression, and neural net analysis. The data for the study consist of borehole and well-test information from eight boreholes used for characterizing a proposed low-level radioactive waste repository in Wake County, North Carolina. The analyses show that high localized flow rates are related to the presence of increased fracture intensity, and that this intensity is controlled by a complex interplay of structural geology and lithology. Some of the initial hypotheses concerning the relation of geology to hydrology were not substantiated by the data, leading to a refined conceptual model that differed in significant ways from the initial model. Although the techniques used are of general applicability, the precise nature of the correlation between geology and hydrology is site dependent.

  16. Grouting Rock Fractures with Cement Grout

    Science.gov (United States)

    El Tani, Mohamed

    2012-07-01

    The radial flow rate of a cement grout in a rock fracture is obtained from Bingham's relation and the fact that the power expended by the injection mechanism is the energy dissipated by viscous effects. The energy balance reveals that the advance ratio is of fundamental importance in the grouting process and is inherently related to the rest and advance phases of a cement grout. This allows giving a precise definition of the zero flow path that divides the energy diagram into two distinct domains for advancing and non-advancing grout. The advance ratio and the zero flow path are used to explore the grouting of one or more fractures, analyze the GIN model in the context of the SL dispute, draw a terminal sequence considering the energy interval alternative, and reformulate the refusal criterion of the North American grouting method. Secondary grouting effects are also investigated.

  17. Reaction-driven fracturing of porous rock

    Science.gov (United States)

    Ulven, O. I.; Jamtveit, B.; Malthe-Sørenssen, A.

    2014-10-01

    A 2-D computer model has been developed to investigate fluid-mediated transformation processes such as chemical weathering, mineral carbonation, and serpentinization that require transport of H2O and/or CO2 into reacting rock volumes. Hydration and carbonation cause local volume expansion, and the resulting nonuniform stresses may drive fracturing, which increases both the rate of transport and the accessible reactive surface area in the system and thus accelerates the rate of the transformation process. The model couples reactions, fracturing, and fluid transport for systems with a range of initial porosities, assumed constant throughout the process. With low initial porosity, a sharp reaction front between completely reacted material and unreacted material propagates into unaltered rock, while for high porosities, diffuse reaction fronts are formed in which a large fraction of the initial volume is partly reacted. When diffusive transport is rate limiting, the total reaction rate depends on porosity to a power N, where N is in the range 0.45-2. The exponent N increases as the reaction-generated expansion decreases. In high-porosity rocks, the total reaction rate is limited by reaction kinetics, and it is thus insensitive to porosity variations. As the volume increasing reaction proceeds, fracturing divides the unreacted porous material into subdomains, which may undergo further subdivision as they are consumed by the reaction. The total reaction rate and progress depend on the initial geometry of a reacting domain, and this significantly affects the weathering profiles for systems that evolve from an initial assembly of blocks with different sizes and shapes.

  18. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Ha; Kim, Won-Young; Lee, Seung-Gu [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. For the study of groundwater flow and sorption processes in fractured rocks, five boreholes were drilled. A stepwise and careful integration of various data obtained from field works and laboratory experiments were carried out to analyze groundwater flow in fractured rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of hydrogeological properties of fractured aquifers using geophysical borehole logging, pumping and slug tests, and continuous monitoring of groundwater level and quality, (4) evaluation of groundwater flow patterns using fluid flow modeling. The results obtained from these processes allow a qualitative interpretation of fractured aquifers in the study area. Column experiments of some reactive radionuclides were also performed to examine sorption processes of the radionuclides including retardation coefficients. In addition, analyses of fracture systems covered (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach was performed to determine various potential hazards which may result from the

  19. Erosion of clay-based grouts in simulated rock fractures

    International Nuclear Information System (INIS)

    The paper presents a laboratory study on the erosion of clay-based grouts in a simulated rock fracture and in a simulated rock fracture network. The apparatus specially constructed for these experiments and the testing procedure are described. The testing results have shown that a partially eroded clay-based grout may still be effective in sealing rock fractures and that the addition of cement in a clay grout can minimize erosion

  20. Simulation of Seismic Scattering from Rock Fractures

    Science.gov (United States)

    Petrovitch, C.; Teasdale, N.; Pyrak-Nolte, L. J.; de Hoop, M. V.

    2010-12-01

    Accurate predictions of the hydraulic and mechanical properties of fractured subsurface reservoirs are hampered because the coupled processes among fluid properties, mechanical behavior, and seismic scattering are not well understood. A goal of laboratory experiments is to illuminate fundamental physical behavior that can be used on the laboratory scale and translated to the field scale. Our approach to understanding the interrelationship between the hydraulic and seismic properties of fractures is based on determining the relevant geometric length scales that define a fracture and affect fluid flow, as well as the length scales associated with seismic measurements that quantify physical changes in fractures. To achieve this goal, we use a combination of numerical simulation and laboratory measurements to obtain the necessary range of relevant scales. We performed computational seismic scattering simulations from rough fluid-filled (either gas or water-saturated) fractures and compared the simulations to laboratory measurements. Plane-wave compressional-mode source and receiver transducers (water-coupled, 1 MHz central frequency, piezoelectric) were used to measure wave propagation across a single rough fracture. The fracture sample was an acrylic replica of an induced fracture from a carbonate rock (Austin Chalk). An acrylic sample was used to visualize the fluid-saturation of the sample. Reflection and transmission full-waveform measurements were made in 1 mm increments over a 60 mm by 60 mm region of the fracture. The roughness of the fracture surfaces was measured using laser profilometry. The surface roughness data were used to create the computational domain, and the measured arrival times, peak-to-peak amplitudes and frequency content are compared to the simulation results. Many fracture scattering simulations are done by assuming the fracture lies in a 2Dl plane and employ the displacement-discontinuity boundary conditions at the fracture’s surface

  1. Phase-field modeling of fracture propagation under hydraulic stimulation in pre-fractured rocks

    Science.gov (United States)

    Khisamitov, Ildar; Mohseni, Seyed Ali; Meschke, Guenther

    2016-04-01

    The presentation presents the numerical analysis of hydraulic fracturing within Griffith theory of brittle damage. The phase-field method [1] is employed to model brittle fracture propagation driven by pressurized fluids within fully saturated porous rocks. The phase-field equation is coupled with the Biot-theory using the effective stress concept. The porous rock is assumed as fully saturated with incompressible fluid and deforms within elasticity theory. The hydraulic fracturing propagates under mode I crack opening in quasi-static regime with slow fluid flow in porous matrix and fracture. The phase-field approach for the modelling of brittle fracture [2] coincides with the maximum energy release rate criterion in fracture mechanics theory. The phase-field equation is approximated over entire the domain and introduces new degree of freedom (damage variable). Crack surface is represented by a smooth regularized damage distribution over the fractured area. The presented numerical investigations are characterized by different scenarios of hydraulic stimulation and the interaction of a new fracture emanating from the bore hole with pre-existing cracks. The scenarios include predefined fractures with different oriented to specific angle and spatial distribution over the entire domain. The undamaged rock matrix is modeled as an isotropic elastic material with initial porosity and isotropic matrix permeability. The flow within the undamaged region is governed by Darcy's law while the fluid flow in fractures is approximated by cubic law with the crack opening computed from the displacement solution and the damage variable distribution [3]. Initial fractures are modeled by an initial distribution of the damage variable and by special zero-thickness interface finite elements. Adaptive algorithms in conjunction with appropriately chosen refinement criteria are utilized to reduce the computational costs. References [1] M.J. Borden "A phase-field description of dynamic

  2. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    International Nuclear Information System (INIS)

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nuclear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks

  3. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, B. (ed.)

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  4. Multi-scale approach to invasion percolation of rock fracture networks

    CERN Document Server

    Ebrahimi, Ali N; Araújo, Nuno A M; Herrmann, Hans J

    2014-01-01

    A multi-scale scheme for the invasion percolation of rock fracture networks with heterogeneous fracture aperture fields is proposed. Inside fractures, fluid transport is calculated on the finest scale and found to be localized in channels as a consequence of the aperture field. The channel network is characterized and reduced to a vectorized artificial channel network (ACN). Different realizations of ACNs are used to systematically calculate efficient apertures for fluid transport inside differently sized fractures as well as fracture intersection and entry properties. Typical situations in fracture networks are parameterized by fracture inclination, flow path length along the fracture and intersection lengths in the entrance and outlet zones of fractures. Using these scaling relations obtained from the finer scales, we simulate the invasion process of immiscible fluids into saturated discrete fracture networks, which were studied in previous works.

  5. Study of deep fracturation of granitic rock mass. Documentary study

    International Nuclear Information System (INIS)

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground. The Mt Blanc road tunnel, the EDF's Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied because detailed structural and geological studies have been realized these last 20 years. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater

  6. Two-phase flow in fractured rock

    International Nuclear Information System (INIS)

    This report gives the results of a three-day workshop on two-phase flow in fractured rock. The workshop focused on two-phase flow processes that are important in geologic disposal of nuclear waste as experienced in a variety of repository settings. The goals and objectives of the workshop were threefold: exchange information; describe the current state of understanding; and identify research needs. The participants were divided into four subgroups. Each group was asked to address a series of two-phase flow processes. The following groups were defined to address these processes: basic flow processes; fracture/matrix interactions; complex flow processes; and coupled processes. For each process, the groups were asked to address these four issues: (1) describe the two-phase flow processes that are important with respect to repository performance; (2) describe how this process relates to the specific driving programmatic issues given above for nuclear waste storage; (3) evaluate the state of understanding for these processes; and (4) suggest additional research to address poorly understood processes relevant to repository performance. The reports from each of the four working groups are given here

  7. Evolving fracture arrays and associated changes in rock mass properties

    International Nuclear Information System (INIS)

    Using a boundary element technique, we relate changes in rock mass properties associated with an evolving fracture array by quantifying the effect of fracture network changes on rock mass strength and deformability. The growth of a crack array is modeled using a two-dimensional displacement discontinuity computer algorithm. During each iteration cycle, each crack in the network is evaluated against a propagation criterion, and changes in the elastic properties of the rock mass are monitored

  8. Characterization of the rock joint surface. A contribution to DECOVALEX II Task 3 'Constitutive relationships of rock joints'

    International Nuclear Information System (INIS)

    In order to understand the effects of spent fuel on the hydraulical behaviour of the rock mass it is necessary to have knowledge about the relationship between the stresses and hydraulical properties of the fractures. The roughness of a fracture surface governs the dilatation of the fracture and the displacement of the fracture surface under shear stress. The peak shear strength and hydraulic flow properties of fractures depend very much on the surface roughness. This report describes different methods and techniques used in the characterization of rock joint surfaces and their applications in rock mechanics

  9. Prediction of grout penetration in fractured rocks by numerical simulation

    OpenAIRE

    Yang, MJ; Yue, ZQ; Lee, PKK; Su, B; Tham, LG

    2002-01-01

    As fractures in rock significantly reduce the strength as well as the stiffness of the rock mass, grouting may be required to improve the performance of the rock mass in engineering or mining projects. During grouting, mortar of cement or other materials is injected into the rock mass so that the fractures can be filled up and the rock mass can act as an integral unit. Unlike water, grouts are usually viscous and behave as non-Newtonian fluids. Therefore, the equations describing the flow of ...

  10. Microscopic characteristics of different fracture modes of brittle rock

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Three types of rock specimens, three-point bending specimen, anti-symmetric four-point bending specimen and direct shearing specimen, were used to achieve Mode Ⅰ , Mode Ⅱ and mixed mode Ⅰ - Ⅱ fracture, respectively . Microscopic characteristics of the three fracture modes of brittle rock were studied by SEM technique in order to analyze fracture behaviors and better understand fracture mechanisms of different fracture modes of brittle rock. Test results show that the microscopic characteristics of different fracture modes correspond to different fracture mechanisms. The surface of Mode Ⅰ fracture has a great number of sparse and steep slip-steps with few tearing ridges and shows strong brittleness. In the surface of Mode Ⅱ fracture there exist many tearing ridges and densely distributed parallel slip-steps and it is attributed to the action of shear stress.The co-action of tensile and shear stresses results in brittle cleavage planes mixed with streamline patterns and tearing ridges in the surface of mixed mode Ⅰ - Ⅱ fracture. The measured Mode Ⅱ fracture toughness K Ⅱ c and mixed mode Ⅰ -Ⅱ fracture toughness Kmc are larger than Mode Ⅰ fracture toughness KⅠc. KⅡc is about 3.5times KI c, and KmC is about 1.2 times K Ⅰ c.

  11. Dynamic model of normal behavior of rock fractures

    Institute of Scientific and Technical Information of China (English)

    YANG Wen-yi; KONG Guang-ya; CAI Jun-gang

    2005-01-01

    Based on laboratory tests of artificial fractures in mortar material, established the dynamic constitutive model of normal behaviour of rock fracture,. The tests were systematically conducted under quasi-static and dynamic monotonic loading conditions. The fractures were of different numbers of asperities in contact and were subsequently of different initial contact areas, which imitated the natural rock fractures. The rate of compressive load applied normal to the fractures covers a wide range from 10-1 MPa/s (quasi-static) up to 103 MPa/s (highly dynamic). The normal stress-closure responses of fractures were measured for different loading rates. Based on the stress-closure relation curves measured, a nonlinear (hyperbolic) dynamic model of fracture, normal behaviour, termed as dynamic BB model, was proposed, which was modified from the existing BB model of static normal behaviour of fractures by taking into account the effect of loading rate.

  12. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    Science.gov (United States)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.

  13. Linear Elastic and Cohesive Fracture Analysis to Model Hydraulic Fracture in Brittle and Ductile Rocks

    Science.gov (United States)

    Yao, Yao

    2012-05-01

    Hydraulic fracturing technology is being widely used within the oil and gas industry for both waste injection and unconventional gas production wells. It is essential to predict the behavior of hydraulic fractures accurately based on understanding the fundamental mechanism(s). The prevailing approach for hydraulic fracture modeling continues to rely on computational methods based on Linear Elastic Fracture Mechanics (LEFM). Generally, these methods give reasonable predictions for hard rock hydraulic fracture processes, but still have inherent limitations, especially when fluid injection is performed in soft rock/sand or other non-conventional formations. These methods typically give very conservative predictions on fracture geometry and inaccurate estimation of required fracture pressure. One of the reasons the LEFM-based methods fail to give accurate predictions for these materials is that the fracture process zone ahead of the crack tip and softening effect should not be neglected in ductile rock fracture analysis. A 3D pore pressure cohesive zone model has been developed and applied to predict hydraulic fracturing under fluid injection. The cohesive zone method is a numerical tool developed to model crack initiation and growth in quasi-brittle materials considering the material softening effect. The pore pressure cohesive zone model has been applied to investigate the hydraulic fracture with different rock properties. The hydraulic fracture predictions of a three-layer water injection case have been compared using the pore pressure cohesive zone model with revised parameters, LEFM-based pseudo 3D model, a Perkins-Kern-Nordgren (PKN) model, and an analytical solution. Based on the size of the fracture process zone and its effect on crack extension in ductile rock, the fundamental mechanical difference of LEFM and cohesive fracture mechanics-based methods is discussed. An effective fracture toughness method has been proposed to consider the fracture process zone

  14. Pre- and post-stimulation characterization of geothermal well GRT-1, Rittershoffen, France: insights from acoustic image logs of hard fractured rock

    Science.gov (United States)

    Vidal, Jeanne; Genter, Albert; Schmittbuhl, Jean

    2016-08-01

    Geothermal well GRT-1 (Rittershoffen, Alsace) was drilled in 2012. Its open-hole section (extending down to a depth of 2.6 km) penetrated fractured sandstones and granite. In 2013, the well was subjected to Thermal, Chemical and Hydraulic (TCH) stimulation, which improved the injectivity index fivefold. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation well-logging (acoustic and temperature [T] logs) and mud-logging data. This comparison revealed modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement, and the post-stimulation T logs are important for characterizing this enhancement. Chemical alteration due to mechanical erosion at the tops and bottoms of the fractures was observed in the sandstones. These zones display indications of very small new permeability after the TCH stimulation. Because a major fault zone caved extensively where it crosses the borehole, it was not imaged in the acoustic logs. However, this originally permeable zone was enhanced as demonstrated by the T logs. Based on the natural injectivity of this fault zone, hydraulic erosion and thermal microcracking of its internal quartz veins are associated with this permeability enhancement. Although local changes in the borehole wall observed in the acoustic images cannot be directly linked to the improved injectivity index, the comparison of the acoustic image logs allows for identification of fracture zones impacted by the TCH stimulation.

  15. Pre- and post-stimulation characterization of geothermal well GRT-1, Rittershoffen, France: insights from acoustic image logs of hard fractured rock

    Science.gov (United States)

    Vidal, Jeanne; Genter, Albert; Schmittbuhl, Jean

    2016-05-01

    Geothermal well GRT-1 (Rittershoffen, Alsace) was drilled in 2012. Its open-hole section (extending down to a depth of 2.6 km) penetrated fractured sandstones and granite. In 2013, the well was subjected to Thermal, Chemical and Hydraulic (TCH) stimulation, which improved the injectivity index five-fold. The goal of the study was to assess the impact of the stimulation by comparing pre- and post-stimulation logs and well-logging (temperature [T] log) and mud-logging data. This comparison revealed modifications of almost all the natural fractures. However, not all of these fractures are associated with permeability enhancement, and the post-stimulation T logs are important for characterizing this enhancement. Chemical alteration due to mechanical erosion at the tops and bottoms of the fractures was observed in the sandstones. These zones display indications of very small new permeability after the TCH stimulation. Because a major fault zone caved extensively where it crosses the borehole, it was not imaged in the acoustic logs. However, this originally permeable zone was enhanced as demonstrated by the T logs. Based on the natural injectivity of this fault zone, hydraulic erosion and thermal microcracking of its internal quartz veins are associated with this permeability enhancement. Although local changes in the borehole wall observed in the acoustic images cannot be directly linked to the improved injectivity index, the comparison of the acoustic image logs allows for identification of fracture zones impacted by the TCH stimulation.

  16. Impact of fluid-rock chemical interactions on tracer transport in fractured rocks

    Science.gov (United States)

    Mukhopadhyay, Sumit; Liu, H.-H.; Spycher, N.; Kennedy, B. M.

    2013-11-01

    In this paper, we investigate the impact of chemical interactions, in the form of mineral precipitation and dissolution reactions, on tracer transport in fractured rocks. When a tracer is introduced in fractured rocks, it moves through the fracture primarily by advection and it also enters the stagnant water of the surrounding rock matrix through diffusion. Inside the porous rock matrix, the tracer chemically interacts with the solid materials of the rock, where it can precipitate depending on the local equilibrium conditions. Alternatively, it can be dissolved from the solid phase of the rock matrix into the matrix pore water, diffuse into the flowing fluids of the fracture and is advected out of it. We show that such chemical interactions between the fluid and solid phases have significant impact on tracer transport in fractured rocks. We invoke the dual-porosity conceptualization to represent the fractured rocks and develop a semi-analytical solution to describe the transient transport of tracers in interacting fluid-rock systems. To test the accuracy and stability of the semi-analytical solution, we compare it with simulation results obtained with the TOUGHREACT simulator. We observe that, in a chemically interacting system, the tracer breakthrough curve exhibits a pseudo-steady state, where the tracer concentration remains more or less constant over a finite period of time. Such a pseudo-steady condition is not observed in a non-reactive fluid-rock system. We show that the duration of the pseudo-state depends on the physical and chemical parameters of the system, and can be exploited to extract information about the fractured rock system, such as the fracture spacing and fracture-matrix interface area.

  17. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  18. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Institute of Scientific and Technical Information of China (English)

    Marte Gutierrez; Dong-Joon Youn

    2015-01-01

    Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda’s elastic compliance tensor, Monte Carlo simulation (MCS), and suitable probability density functions (PDFs) were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distribu-tions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV) in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  19. Radionuclide migration through fractured rock: Effects of multiple fractures and two-member decay chains

    International Nuclear Information System (INIS)

    This report presents the results of an analytical study of the hydrological transport of a radioactive contaminant through fractured, porous rock. The purpose is to evaluate the time-, and space-dependent concentration of the contaminant in the ground-water in the fractures and in the rock pores. We propose a simplified analytical method that superposes two single-fracture solutions for the concentration in the rock matrix with a system of parallel fractures. The exact solutions require multiple integrals and summation of an infinite series, which converges slowly because of its oscillating nature. The convergence of the series becomes slower for strongly-sorbing media, large spacing of two fractures, and early times. In summary, we made extension to the theory of radionuclide penetration into multiply fractured rock, and provided solutions for a two-member decay chain. 9 refs., 10 figs., 1 tab

  20. Fracture-Flow-Enhanced Solute Diffusion into Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Shu; Ye, Ming; Sudicky, E.A.

    2007-12-15

    We propose a new conceptual model of fracture-flow-enhanced matrix diffusion, which correlates with fracture-flow velocity, i.e., matrix diffusion enhancement induced by rapid fluid flow within fractures. According to the boundary-layer or film theory, fracture flow enhanced matrix diffusion may dominate mass-transfer processes at fracture-matrix interfaces, because rapid flow along fractures results in large velocity and concentration gradients at and near fracture-matrix interfaces, enhancing matrix diffusion at matrix surfaces. In this paper, we present a new formulation of the conceptual model for enhanced fracture-matrix diffusion, and its implementation is discussed using existing analytical solutions and numerical models. In addition, we use the enhanced matrix diffusion concept to analyze laboratory experimental results from nonreactive and reactive tracer breakthrough tests, in an effort to validate the new conceptual model.

  1. Experiment on Hydraulic Fracturing in Rock and Induced Earthquake

    Institute of Scientific and Technical Information of China (English)

    Yan Yuding; Li Yalin; Zhang Zhuan; Ouyang Lisheng; Xie Mingfu

    2005-01-01

    Experiment on rock hydraulic fracturing strength under different confining pressures was conducted on a series of test specimens with various pre-cracks prepared from 7 types of rock.Combining the data of an actual reservoir-induced earthquake with the experimental results of the contemporary tectonic stress field according to the theory of rock strength and the principle and method of rock fracture mechanics, the authors tentatively investigated the earthquakes induced by pore-water pressure in rock and obtained the initial results as follows: ( 1 ) One type of induced earthquake may occur in the case of larger tectonic stress on such weak planes that strike in similar orientation of principle tectonic compressional stress in the shallows of the rock mass; the pore-water pressure σp may generate tensile fracture on them and induce small earthquakes; (2) Two types of induced earthquake may occur in the case of larger tectonic stress, i.e., ① on such weakness planes that strike in similar orientation of principle tectonic compressioual stress, σ1, in the shallows of the rockmass, the pore-water pressure, σp, may generate tensile fracture on them and induce small earthquakes; ② When the tectonic stress approximates the shear strength of the fracture, the pore-water pressure σp may reduce the normal stress, σn, on the fracture face causing failure of the originally stable fracture,producing gliding fracture and thus inducing an earthquake. σp may also increase the fracture depth, leading to an induced earthquake with the magnitude larger than the previous potential magnitude; (3) There is a depth limit for each type of rock mass, and no induced earthquake will occur beyond this limit.

  2. The effect of friction on simulated dynamic fracturing of rocks

    International Nuclear Information System (INIS)

    During underground nuclear tests, rocks may fail by plastic yielding, which limits shear strength, or by tensile fracture, wherever maximum principal stress exceeds tensile strength. A third mode of failure exists due to friction along closed fractured surfaces. There, friction affects slipping and can thus limit stress. In this paper, we study the effect of friction on the simulated dynamic response of rocks to underground nuclear explosions. The coefficient of friction is the ratio of total shear stress applied to a closed fracture surface to normal applied compressive total stress. At low coefficients of friction, the evolving stress field tends to be weakened by frictional slip, which also eases closing of fractures. At high coefficients of friction, the stress field tends to be strengthened, where fractures have closed, but remains weak, where fractures are left open. 4 refs., 4 figs

  3. Velocity dispersion in fractured rocks in a wide frequency range

    Czech Academy of Sciences Publication Activity Database

    Vilhelm, J.; Rudajev, Vladimír; Lokajíček, Tomáš; Živor, Roman

    2013-01-01

    Roč. 90, March (2013), s. 138-146. ISSN 0926-9851 R&D Projects: GA AV ČR IAA300130906 Institutional research plan: CEZ:AV0Z30130516 Keywords : fracture stiffness * fractured rocks * seismic velocity measurement * velocity anisotropy * velocity dispersion Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.301, year: 2013

  4. Influence of adsorption properties on radionuclide transport in fractured rock

    International Nuclear Information System (INIS)

    Most models predicting radionuclide transport in fractured rock include mechanisms of advection, dispersion, radioactive decay, and equilibrium adsorption between the solid and liquid phases. Recently, nonequilibrium adsorption has been given a great deal of attention. In this paper, the authors have successfully derived the analytical solutions to transport equations for a single fracture under various conditions covering no sorption, nonequilibrium adsorption, and equilibrium sorption

  5. Analysis of steady-state hydraulic tests in fractured rock

    International Nuclear Information System (INIS)

    A model for the analysis of steady-state hydraulic injection tests into single fractures of a rock-mass is presented, and solved analytically. It is used to obtain a probability distribution for the transmissivities of fractures in Cornish granite. (author)

  6. Fracture Characterization in the Astor Pass Geothermal Field, Nevada

    Science.gov (United States)

    Walsh, D. C.; Reeves, D. M.; Pohll, G.; Lyles, B. F.; Cooper, C. A.

    2011-12-01

    The Astor Pass geothermal field, near Pyramid Lake, NV, is under study as a site of potential geothermal energy production. Three wells have been completed in the graben of this typical Basin and Range geologic setting. Lithologies include a layer of unconsolidated sediment (basin fill) underlain by various tertiary volcanic units and granodiorite and metavolcanic basement rock. Characterization of fractures within the relatively impermeable rock matrix is being conducted for the three wells. Statistical analysis of fracture orientation, densities, and spacing obtained from borehole imaging logs is used to determine stress orientation and to generate a statistically equivalent Discrete Fracture Network (DFN) model. Fractures at depth are compared to fracture data collected in nearby outcrops of the same lithologic stratigraphy. Fracture geometry and density is correlated to mechanically discrete layers within the stratigraphy to test whether variations in fracturing can be attributed to variations in Young's modulus. Correlation of fracture geometry and densities with spinner flowmeter logs and distributed temperature sensor records are made in an effort to identify potential flowing fracture zones intersecting the borehole. Mean fracture aperture is obtained from open fracture counts and reservoir-scale transmissivity values (computed from a 30 day pump test) in the absence of readily available aperture data. The goal of this thorough fracture characterization is to create a physically relevant model which may be coupled with a multipurpose fluid flow and thermal simulator for investigation of geothermal reservoir behavior, particularly at the borehole scale.

  7. Fractures inside crystalline rocks. Effects of deformations on fluid circulations

    International Nuclear Information System (INIS)

    The modeling of fluid flows inside granite massifs is an important task for the evaluation of the feasibility of radioactive waste storage inside such formations. This document makes a synthesis of the works carried out since about 15 years, in particular by the French bureau of geological and mining research (BRGM), about the hydro-mechanical behaviour of a fracture and about the hydrodynamical characterization of fracture networks inside crystalline rocks: 1 - introduction; 2 - hydro-mechanical behaviour under normal stress: experimental results (hydro-mechanical behaviour, flow regimes, mechanical behaviour, test protocol, complementary tests, influence of samples size), geometrical interpretation of experimental results (relation with walls geometry, relation with voids geometry, relation with contacts geometry), hydro-mechanical modeling (hydraulic modeling, mechanical modeling); 3 - from the hydro-mechanical behaviour under normal stress to the coupling with heat transfers and chemistry: experiment for the study of the chemo-thermo-hydro-mechanical coupling (experimental results, relation with walls morphology), thermo-hydro-mechanical experiments, thermo-hydro-chemical experiments with fractures, conclusions; 4 - hydro-mechanical behaviour during shear: experimental results, geometrical interpretation (relation with the geometry of damaged zones, relation with voids geometry, relation with walls geometry), hydro-mechanical modeling (mechanical modeling, hydro-mechanical modeling of the behaviour during shear). (J.S.)

  8. Interpretation of migration of radionuclides in a rock fracture using a particle tracking method

    International Nuclear Information System (INIS)

    A particle tracking scheme was developed in order to model radionuclide transport through a tortuous flow field in a rock fracture. The particle tracking method may be used effectively in a heterogeneous flow field such as rock fracture. The parallel plate representation of the single fracture fails to recognize the spatial heterogeneity in the fracture aperture and thus seems inadequate in describing fluid movement through a real fracture. The heterogeneous flow field was modeled by a variable aperture channel model after characterizing aperture distribution by a hydraulic test. To support the validation of radionuclide transport models, a radionuclide migration experiment was performed in a natural fracture of granite. 3H2O and 131I are used as tracers. Simulated results were in agreement with experimental result and therefore support the validity of the transport model. Residence time distributions display multipeak curves caused by the fast arrival of solutes traveling along preferential fracture channels and by the much slower arrival of solutes following tortuous routes through the fracture. Results from the modelling of the transport of nonsorbing tracer through the fracture show that diffusion into the interconnected pore space in the rock mass has a significant effect on retardation. 12 figs., 3 tabs., 17 refs. (Author)

  9. Characterizing the influence of stress-induced microcracks on the laboratory strength and fracture development in brittle rocks using a finite-discrete element method-micro discrete fracture network FDEM-μDFN approach

    Directory of Open Access Journals (Sweden)

    Pooya Hamdi

    2015-12-01

    Full Text Available Heterogeneity is an inherent component of rock and may be present in different forms including mineral heterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks are usually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stress-induced microcracking increases with depth and in-situ stress. Laboratory results indicate that the physical properties of rocks such as strength, deformability, P-wave velocity and permeability are influenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks using the proposed micro discrete fracture network (μDFN approach. The characteristics of the microcracks required to create μDFN models are obtained through image analyses of thin sections of Lac du Bonnet granite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial, triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data. The FDEM-μDFN models indicate that micro-heterogeneity has a profound influence on both the mechanical behavior and resultant fracture pattern. An increase in the microcrack intensity leads to a reduction in the strength of the sample and changes the character of the rock strength envelope. Spalling and axial splitting dominate the failure mode at low confinement while shear failure is the dominant failure mode at high confinement. Numerical results from simulated compression tests show that microcracking reduces the cohesive component of strength alone, and the frictional strength component remains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced by the presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. The importance of microcrack heterogeneity in

  10. Design approaches for grouting of rock fractures; Theory and practice

    OpenAIRE

    Yaghoobi Rafi, Jalaleddin

    2013-01-01

    Currently, cement base grout is used widely for sealing of the rock fractures in order to decrease the permeability of rock mass. Grouting procedure is one of the main tasks in cycle of rock excavation. In addition, huge amount of grout should be used during dam construction in order to seal the bedding and embankment walls. Therefore, considering the effect of grouting in duration and cost of the project, improving the design methods seems essential. In successful grouting the goal is to ach...

  11. Multiporosity Flow in Fractured Low-Permeability Rocks

    CERN Document Server

    Kuhlman, Kristopher L; Heath, Jason E

    2015-01-01

    A multiporosity extension of classical double and triple porosity fractured rock flow models for slightly compressible fluids is presented. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo-steady-state and transient interporosity flow double porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semi-analytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform to illustrate its behavior. The multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice ...

  12. Scaling and Hierarchy of Models for Flow Processes in Unsaturated Fractured Rock

    Science.gov (United States)

    Faybishenko, B.; Bodvarsson, G. S.; Witherspoon, P. A.; Hinds, J.

    2002-12-01

    A key question facing soil scientists and hydrogeologists is whether, in analyzing flow processes within unsaturated fractured rock with geological discontinuities, the same measurements and models can be used regardless of scale. The goal of this presentation is to illustrate scaling concepts and suggest using a hierarchy of scales in describing the spatial-temporal behavior of unsaturated flow and transport in fractured rock. A conventional scaling approach is valid for liquid permeability of saturated media or air permeability of unsaturated fractured media. We will illustrate that multiscale spatial and temporal variations of flow and transport processes in unsaturated fractured rock are caused by a variety of processes (such as preferential and fast flow, funneling and divergence of flow paths, transient flow behavior, nonlinearity, unstable and chaotic flow, and fracture-matrix interaction). Small-scale intrafracture flow processes are neither physically nor geometrically analogous to large-scale fracture-network processes. As a consequence, scaling laws developed for unsaturated flow through porous media may fail for fractured rocks. To study unsaturated fractured rock, we utilize the concept of a hierarchy of scales: elemental, small, intermediate, and large scales. For each scale, the triadic hierarchical approach requires investigations one level above this scale to determine boundary conditions, and one level below to determine parameters of the equations. Thus, different conceptual approaches are needed for characterization and modeling at different scales. These theoretical concepts are illustrated using the results from field investigations of fractured basalt at the Snake River Plain, Idaho, and fractured tuff at Yucca Mountain, Nevada.

  13. Interpretation of hydraulic conductivity in a fractured-rock aquifer over increasingly larger length dimensions

    Science.gov (United States)

    Shapiro, Allen M.; Ladderud, Jeffery A.; Yager, Richard M.

    2015-11-01

    A comparison of the hydraulic conductivity over increasingly larger volumes of crystalline rock was conducted in the Piedmont physiographic region near Bethesda, Maryland, USA. Fluid-injection tests were conducted on intervals of boreholes isolating closely spaced fractures. Single-hole tests were conducted by pumping in open boreholes for approximately 30 min, and an interference test was conducted by pumping a single borehole over 3 days while monitoring nearby boreholes. An estimate of the hydraulic conductivity of the rock over hundreds of meters was inferred from simulating groundwater inflow into a kilometer-long section of a Washington Metropolitan Area Transit Authority tunnel in the study area, and a groundwater modeling investigation over the Rock Creek watershed provided an estimate of the hydraulic conductivity over kilometers. The majority of groundwater flow is confined to relatively few fractures at a given location. Boreholes installed to depths of approximately 50 m have one or two highly transmissive fractures; the transmissivity of the remaining fractures ranges over five orders of magnitude. Estimates of hydraulic conductivity over increasingly larger rock volumes varied by less than half an order of magnitude. While many investigations point to increasing hydraulic conductivity as a function of the measurement scale, a comparison with selected investigations shows that the effective hydraulic conductivity estimated over larger volumes of rock can either increase, decrease, or remain stable as a function of the measurement scale. Caution needs to be exhibited in characterizing effective hydraulic properties in fractured rock for the purposes of groundwater management.

  14. Quantitative Analysis Of Acoustic Emission From Rock Fracture Experiments

    Science.gov (United States)

    Goodfellow, Sebastian David

    This thesis aims to advance the methods of quantitative acoustic emission (AE) analysis by calibrating sensors, characterizing sources, and applying the results to solve engi- neering problems. In the first part of this thesis, we built a calibration apparatus and successfully calibrated two commercial AE sensors. The ErgoTech sensor was found to have broadband velocity sensitivity and the Panametrics V103 was sensitive to surface normal displacement. These calibration results were applied to two AE data sets from rock fracture experiments in order to characterize the sources of AE events. The first data set was from an in situ rock fracture experiment conducted at the Underground Research Laboratory (URL). The Mine-By experiment was a large scale excavation response test where both AE (10 kHz - 1 MHz) and microseismicity (MS) (1 Hz - 10 kHz) were monitored. Using the calibration information, magnitude, stress drop, dimension and energy were successfully estimated for 21 AE events recorded in the tensile region of the tunnel wall. Magnitudes were in the range -7.5 quantitative AE analysis. We found AE magnitudes in the range -7.8 quantitative analysis in the laboratory, which in- hibited our ability to study parameter scaling (M0 ∝ fc -3 scaling). These challenges were 0c (1) limited knowledge of attenuation which we proved was continuously evolving, (2) the use of a narrow frequency band for acquisition, (3) the inability to identify P and S waves given the small sample size, and (4) acquisition using a narrow amplitude range given a low signal to noise ratio. Moving forward to the final stage of this thesis, with the ability to characterize the sources of AE, we applied our method to study an engineering problem. We chose hydraulic fracturing because of its obvious importance in the future of Canadian energy production. During a hydraulic fracture treatment, whether in a lab or in the field, energy is added to the system via hydraulic pressure. The injection

  15. Evaluation of scale effects on hydraulic characteristics of fractured rock using fracture network model

    International Nuclear Information System (INIS)

    It is important to take into account scale effects on fracture geometry if the modeling scale is much larger than the in-situ observation scale. The scale effect on fracture trace length, which is the most scale dependent parameter, is investigated using fracture maps obtained at various scales in tunnel and dam sites. We found that the distribution of fracture trace length follows negative power law distribution in regardless of locations and rock types. The hydraulic characteristics of fractured rock is also investigated by numerical analysis of discrete fracture network (DFN) model where power law distribution of fracture radius is adopted. We found that as the exponent of power law distribution become larger, the hydraulic conductivity of DFN model increases and the travel time in DFN model decreases. (author)

  16. Anisotropy of strength and deformability of fractured rocks

    Directory of Open Access Journals (Sweden)

    Majid Noorian Bidgoli

    2014-04-01

    Full Text Available Anisotropy of the strength and deformation behaviors of fractured rock masses is a crucial issue for design and stability assessments of rock engineering structures, due mainly to the non-uniform and non-regular geometries of the fracture systems. However, no adequate efforts have been made to study this issue due to the current practical impossibility of laboratory tests with samples of large volumes containing many fractures, and the difficulty for controlling reliable initial and boundary conditions for large-scale in situ tests. Therefore, a reliable numerical predicting approach for evaluating anisotropy of fractured rock masses is needed. The objective of this study is to systematically investigate anisotropy of strength and deformability of fractured rocks, which has not been conducted in the past, using a numerical modeling method. A series of realistic two-dimensional (2D discrete fracture network (DFN models were established based on site investigation data, which were then loaded in different directions, using the code UDEC of discrete element method (DEM, with changing confining pressures. Numerical results show that strength envelopes and elastic deformability parameters of tested numerical models are significantly anisotropic, and vary with changing axial loading and confining pressures. The results indicate that for design and safety assessments of rock engineering projects, the directional variations of strength and deformability of the fractured rock mass concerned must be treated properly with respect to the directions of in situ stresses. Traditional practice for simply positioning axial orientation of tunnels in association with principal stress directions only may not be adequate for safety requirements. Outstanding issues of the present study and suggestions for future study are also presented.

  17. DEM modeling of fracture propagation in veined rock

    Science.gov (United States)

    Virgo, S.; Abe, S.; Urai, J. L.

    2012-04-01

    One fundamental aspect of crack seal veins is that an existing vein can act as a heterogeneity in the rock which controls the localization of successive fracturing at unchanged mean stress orientations. Observations from crack-seal vein systems suggest that existing veins fundamentally influence the fracture behavior of a rock even in cases where the orientation of the stress field is highly incompatible with the orientation of the vein. We used a series of 3D Discrete Element Simulations to systematically investigate the influence of existing veins with varying orientation and mechanical properties on an approaching fracture. The models consist of a tabular heterogeneity within a bonded particle volume fractured under uniaxial tension. The parameters varied in the study are the orientation of the heterogeneity relative to the direction of uniaxial extension and therefore relative to the orientation of the favorable fracture plane as well as the fracture strength ratio between the matrix material, the vein material and the interface between vein and matrix material. The elastic parameters (e.g. Young's modulus) are kept homogeneous throughout the model. Thereby it is ensured that the results are not altered by stress field perturbation induced by stiffness contrasts. The model materials used were carefully tested and calibrated to ensure comparability with natural examples in terms of their fracture-mechanical properties. The simulations were repeated for several random particle packings to eliminate the effect of heterogeneities in the packing on the results. The results show a strong influence of the tabular heterogeneity on the fracture propagation for all orientations and at cohesion ratios within the range of natural systems. Besides curving and deflection of the fracture path associated with changes in fracture mode, bifurcation of fractures as well as arrest of propagation and nucleation of new fractures can be observed.

  18. Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models

    Science.gov (United States)

    Katsaga, T.; Young, P.

    2009-05-01

    The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the

  19. Sealing of fractured rock: pilot tests and full scale tests

    International Nuclear Information System (INIS)

    The project for sealing fractured rock in the near-field of a repository started with pilot tests that were finished in 1988. The present activities are focussed on the following three main tasks: 1. Sealing of the rock surrounding the deposited high level radioactive waste by grouting from the interior of the deposition holes. 2. Sealing of the disturbed rock zone around shafts and tunnels in order to minimize the axial water transportation. 3. Sealing of water-bearing naturally fractured zones intersecting shafts and tunnels. The project runs until 1991. The pilot tests have shown that cement with water ratios of 0.3-0.4 and bentonite/quartz mixtures with water ratios lower than the liquid limit can be injected several meters into fractures with apertures smaller than 100 μm

  20. Fracture toughness properties of rocks in Olkiluoto: Laboratory measurements 2008-2009

    International Nuclear Information System (INIS)

    In Olkiluoto an underground rock characterization facility (ONKALO) for the final disposal site of spent nuclear fuel has been under thorough research many years, but further knowledge is needed on fracture toughness parameters. Fracture toughness parameters are important for example in fracture mechanics prediction for Posiva's Olkiluoto Spalling Experiment (POSE). This working report describes a laboratory campaign that was done between 2008 and 2009. The campaign aimed at determining the fracture mechanics parameters as well as density and ultrasonic velocities for Olkiluoto rocks. The specimens delivered were selected by Posiva; the core showed no damage and the quality of the delivered cores was good with varying sample diameter. Most of the test samples (9 out of 12) are gneissic rock. The Mode I fracture toughness was determined using two different methods to account for two different fracturing directions. The methods are the Chevron Bend (CB) test as proposed in the ISRM Suggested Method and a method based on the Brazilian Disk (BD) experiment. The Mode II fracture toughness was determined using the Punch-Through Shear with Confining Pressure experiment on the remaining pieces from the CB testing. The scatter in the results is very large, even within one piece of core sample. Usually the scatter of results is less than 5 %. The high scatter in the data at hand is believed to be due to the very inhomogeneous nature of the rock material. The magnitude of the determined Mode I fracture toughness compares well with available reported data for medium to coarse grained granitoide rocks. However the scatter of the mode II fracture toughness values is higher than experienced on other rock types, but the variability is reasonable for the inhomogeneous rock type. Distinguishing the fracture toughness values for different anisotropy directions would require more thorough testing with quality samples at different anisotropy directions. However since fracture mechanics

  1. Mixing induced reactive transport in fractured crystalline rocks

    International Nuclear Information System (INIS)

    In this paper the solute retention properties of crystalline fractured rocks due to mixing-induced geochemical reactions are studied. While fractured media exhibit paths of fast flow and transport and thus short residence times for conservative solutes, at the same time they promote mixing and dilution due to strong heterogeneity, which leads to sharp concentration contrasts. Enhanced mixing and dilution have a double effect that favors crystalline fractured media as a possible host medium for nuclear waste disposal. Firstly, peak radionuclide concentrations are attenuated and, secondly, mixing-induced precipitation reactions are enhanced significantly, which leads to radionuclide immobilization. An integrated framework is presented for the effective modeling of these flow, transport and reaction phenomena, and the interaction between them. In a simple case study, the enhanced dilution and precipitation potential of fractured crystalline rocks are systematically studied and quantified and contrasted it to retention and attenuation in an equivalent homogeneous formation.

  2. Sealing of fractured rock: grout composition and group properties

    International Nuclear Information System (INIS)

    The properties of smectite-rich clay with additives of quartz filler and salt and the properties of cement with additives of silica fume and superplasticizer are tested with respect to their usefulness for sealing fractured rock. Laboratory tests of the viscous properties as well as the longevity of the materials are performed. A flow theory for the behaviour of the grouts at static and dynamic pressure has been developed and tested in laboratory injection tests. The results show, so far, that the grout materials and the dynamic injection technique are well suited for sealing rock with narrow fractures

  3. Ozone generation by rock fracture: Earthquake early warning?

    Energy Technology Data Exchange (ETDEWEB)

    Baragiola, Raul A.; Dukes, Catherine A.; Hedges, Dawn [Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

    2011-11-14

    We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O{sub 2} and CO{sub 2} at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

  4. Analysis of styress heterogeneity in deep fractured chrystalline rock

    Science.gov (United States)

    Sahara, David; Kohl, Thomas

    2016-04-01

    The mechanical properties variation, the fracture characteristic and the inclination of the well might perturbed the development of wellbore failures and, hence, affect the estimation of the stress state in fractured rocks. A detailed analysis of 1221 and 827 compressional and tensional wellbore failures, respectively, in a 3.5 km crystalline rock observed in the GPK4 well in Soultz-sous-Forêts enables us to analyze the different pattern of stress heterogeneities which might be related to several factors. The inclination of the well affects the stress distribution by a few MPa which is found to have a significant effect of the development of wellbore, i.e. the limitation of tensile failures in part of the well which is inclined by less than 10°, and the delay of compressional failures occurrence by about 300 m in a 25° inclined well. Fractures and alteration reduced the compressional strength of the crystalline by approximately 30% and, hence, promoted the development of breakout at a smaller far-field stress. The orientation of wellbore failures in such fractured zones are found to be heterogeneously distributed, hence, lower the quality of the stress estimation. Furthermore, the first and second order of stress heterogeneities pattern in the vicinity of major and minor fractures, respectively, in a highly fractured zone at depth 4600 to 4850 m are observed. The numerical modeling of the development of breakouts that take into account the weak zone as a results of fracturing process developed in this study shows a systematic analysis of the variation of the breakout orientation and the reduction of the mechanical properties. In fractured rock, wellbore failures do not correlate to the principal stress only, but also to the variation of the mechanical properties and the properties of fractures. Hence, a long continuous section of wellbore failures is a must to have a sufficient stress-related failures data.

  5. Experimental studies of rock fracture behavior related to hydraulic fracture

    Science.gov (United States)

    Ma, Zifeng

    The objective of this experimental investigation stems from the uncontrollable of the hydraulic fracture shape in the oil and gas production field. A small-scale laboratory investigation of crack propagation in sandstone was first performed with the objective to simulate the field fracture growth. Test results showed that the fracture resistance increased with crack extension, assuming that there was an interaction between crack faces (bridging, interlocking, and friction). An acoustic emission test was conducted to examine the existence of the interaction by locating AE events and analyzing waveform. Furthermore, the effects of confining stress, loading rate, stress field, and strength heterogeneous on the tortuosity of the fracture surface were experimentally investigated in the study. Finally, a test was designed and conducted to investigate the crack propagation in a stratified media with permeability contrast. Crack was observed to arrested in an interface. The phenomenon of delamination along an interface between layers with permeability contrast was observed. The delamination was proposed to be the cause of crack arrest and crack jump in the saturated stratified materials under confinement test.

  6. Radionuclide dispersion from multiple patch sources into a rock fracture

    International Nuclear Information System (INIS)

    This report presents results of an analytical study on hydrological transport of a radionuclide released from sources of finite areal extent into a planar fracture. The purposes of this work are to predict the space-time-dependent concentrations of a radionuclide which is released from multiple-patch (or area) sources and transported by advection and transverse dispersion in a planar fracture and by molecular diffusion in rock matrix, and to investigate the effects of transverse dispersion in the fracture. 5 refs., 14 figs

  7. Rapid imbibition of water in fractures within unsaturated sedimentary rock

    Science.gov (United States)

    Cheng, C.-L.; Perfect, E.; Donnelly, B.; Bilheux, H. Z.; Tremsin, A. S.; McKay, L. D.; DiStefano, V. H.; Cai, J. C.; Santodonato, L. J.

    2015-03-01

    The spontaneous imbibition of water and other liquids into gas-filled fractures in variably-saturated porous media is important in a variety of engineering and geological contexts. However, surprisingly few studies have investigated this phenomenon. We present a theoretical framework for predicting the 1-dimensional movement of water into air-filled fractures within a porous medium based on early-time capillary dynamics and spreading over the rough surfaces of fracture faces. The theory permits estimation of sorptivity values for the matrix and fracture zone, as well as a dispersion parameter which quantifies the extent of spreading of the wetting front. Quantitative data on spontaneous imbibition of water in unsaturated Berea sandstone cores were acquired to evaluate the proposed model. The cores with different permeability classes ranging from 50 to 500 mD and were fractured using the Brazilian method. Spontaneous imbibition in the fractured cores was measured by dynamic neutron radiography at the Neutron Imaging Prototype Facility (beam line CG-1D, HFIR), Oak Ridge National Laboratory. Water uptake into both the matrix and the fracture zone exhibited square-root-of-time behavior. The matrix sorptivities ranged from 2.9 to 4.6 mm s-0.5, and increased linearly as the permeability class increased. The sorptivities of the fracture zones ranged from 17.9 to 27.1 mm s-0.5, and increased linearly with increasing fracture aperture width. The dispersion coefficients ranged from 23.7 to 66.7 mm2 s-1 and increased linearly with increasing fracture aperture width and damage zone width. Both theory and observations indicate that fractures can significantly increase spontaneous imbibition in unsaturated sedimentary rock by capillary action and surface spreading on rough fracture faces. Fractures also increase the dispersion of the wetting front. Further research is needed to investigate this phenomenon in other natural and engineered porous media.

  8. Experimental assessment of the sealing effectiveness of rock fracture grouting

    International Nuclear Information System (INIS)

    The objective of this investigation is to determine the effectiveness of cement grouts as sealants of fractures in rock. Laboratory experiments have been conducted on seven 15-cm granite cubes containing saw cuts, three 23-cm diameter andesite cores containing induced tension cracks, and one 15-cm diameter marble core containing a natural fracture. Prior to grouting, the hydraulic conductivity of the fractures is determined under a range of normal stresses, applied in loading and unloading cycles, from 0 to 14 MPa (2000 psi). Grout is injected through an axial borehole, at a pressure of 1.2 to 8.3 MPa (180 to 1200 psi), pressure selected to provide a likely groutable fracture aperture, while the fracture is stressed at a constant normal stress. The fracture permeability is measured after grouting. Flow tests on the ungrouted samples confirm the inverse relation between normal stress and fracture permeability. The equivalent aperture determined by these tests is a reliable indicator of groutability. Postgrouting permeability measurements as performed here, and frequently in practice, can be misleading, since incomplete grouting of fractures can result in major apparent reductions in permeability. The apparent permeability reduction is caused by grouting of a small area of a highly preferential flowpath directly adjacent to the hole used for grouting and for permeability testing. Experimental results confirm claims in the literature that ordinary portland cement inadequately penetrates fine fractures

  9. Modeling flow and transport in fractured crystalline rock using the discrete fracture network concept

    International Nuclear Information System (INIS)

    The conductive properties of fractured crystalline rock vary considerably in space, which implies that the flow is very unevenly distributed in space. The large variability raises doubts on modeling the flow with a large scale continuum model. Modeling flow in fractured crystalline rock in a network of discrete fractures provides an increased understanding of the character of the rock heterogeneity. Compared to a continuum model discrete models introduce new parameters such as statistical distributions for fracture orientation, radii, density and transmissivity that need to be estimated. By analyzing the migration experiment in the Stripa research mine in Sweden it is demonstrated how to calibrate and eventually validate a discrete model on field data. The flow analysis shows that the flow distribution on the drift roof and in two out of three vertical boreholes can be modelled with the same discrete model. The properties of the third borehole differ substantially. Initial attempts of analyzing the tracer experiment are described

  10. Reactive-infiltration instabilities in rocks. Fracture dissolution

    CERN Document Server

    Szymczak, Piotr

    2012-01-01

    A reactive fluid dissolving the surface of a uniform fracture will trigger an instability in the dissolution front, leading to spontaneous formation of pronounced well-spaced channels in the surrounding rock matrix. Although the underlying mechanism is similar to the wormhole instability in porous rocks there are significant differences in the physics, due to the absence of a steadily propagating reaction front. In previous work we have described the geophysical implications of this instability in regard to the formation of long conduits in soluble rocks. Here we describe a more general linear stability analysis, including axial diffusion, transport limited dissolution, non-linear kinetics, and a finite length system.

  11. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    CERN Document Server

    Roubinet, D; Jougnot, D; Irving, J

    2016-01-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interaction...

  12. Measurement of fracture toughness of rocks using deformation characteristics

    Czech Academy of Sciences Publication Activity Database

    Vavro, Leona

    Ostrava : Ústav geoniky AV ČR, 2009 - (Blaheta, R.; Kolcun, A.), s. 54-57 ISBN 978-80-86407-78-4. [Ph. D. Workshop 2009. Ostrava (CZ), 19.11.2009-19.11.2009] Institutional research plan: CEZ:AV0Z30860518 Keywords : fracture toughness * rock * extensometer * damage process Subject RIV: DB - Geology ; Mineralogy

  13. Mass transfer and transport of radionuclides in fractured porous rock

    International Nuclear Information System (INIS)

    Analytical studies are made to predict space-time dependent concentrations of radionuclides transported through water-saturated fractured porous rock. A basic model, which is expected to generate conservative results when used in long-term safety assessment of geologic repositories for radioactive waste, is established. Applicability and limitations of the model are investigated. 67 refs., 54 figs., 3 tabs

  14. Statistical fracture mechanics approach to the strength of brittle rock

    International Nuclear Information System (INIS)

    Statistical fracture mechanics concepts used in the past for rock are critically reviewed and modifications are proposed which are warranted by (1) increased understanding of fracture provided by modern fracture mechanics and (2) laboratory test data both from the literature and from this research. Over 600 direct and indirect tension tests have been performed on three different rock types; Stripa Granite, Sierra White Granite and Carrara Marble. In several instances assumptions which are common in the literature were found to be invalid. A three parameter statistical fracture mechanics model with Mode I critical strain energy release rate as the variant is presented. Methodologies for evaluating the parameters in this model as well as the more commonly employed two parameter models are discussed. The experimental results and analysis of this research indicate that surfacially distributed flaws, rather than volumetrically distributed flaws are responsible for rupture in many testing situations. For several of the rock types tested, anisotropy (both in apparent tensile strength and size effect) precludes the use of contemporary statistical fracture mechanics models

  15. Analytic solution of pseudocolloid migration in fractured rock

    International Nuclear Information System (INIS)

    A form of colloid migration that can enhance or retard the migration of a dissolved contaminant in ground water is the sorption of the contaminant on the moving colloidal particulate to form pseudocolloids. In this paper we develop analytical solutions for the interactive migration of radioactive species dissolved in ground water and sorbed as pseudocolloids. The solute and pseudocolloids are assumed to undergo advection and dispersion in a one-dimensional flow field in planar fractures in porous rock. Interaction between pseudocolloid and dissolved species is described by equilibrium sorption. Sorbed species on the pseudocolloids undergo radioactive decay, and pseudocolloids can sorb on fracture surfaces and sediments. Filtration is neglected. The solute can decay and sorb on pseudocolloids, on the fracture surfaces, and on sediments and can diffuse into the porous rock matrix. 1 fig

  16. Influence of heating to rock samples fracturing

    Czech Academy of Sciences Publication Activity Database

    Rudajev, Vladimír; Lokajíček, Tomáš; Vasin, R.N.; Nikitin, A. N.

    Prague : Institute of Geology, Academy of Sciences of the Czech Republic, v. v. i, 2011 - (Rudajev, V.; Živor, R.). s. 23-23 ISBN 978-80-87443-04-0. [Polish-Czech-Slovak Symposium on Mining and Environmental Geophysics /33./. 19.09.2011-22.09.2011, Staré Splavy] Institutional research plan: CEZ:AV0Z30130516 Keywords : acoustic emission * ultrasonic wave velocity * rock heating Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  17. Rock fracture under anti-plane shear (Mode Ⅲ) loading

    Institute of Scientific and Technical Information of China (English)

    RAO Qiu-hua; LIAO Zhen-feng

    2005-01-01

    Anti-plane punch-through shear test and anti-planefour-point bending test are used to study the crack initiation and propagation under anti-plane shear (Mode Ⅲ) loading. The tensile and shear stresses at the crack tip are calculated by finite element method. The results show that under Mode Ⅲ loading the maximum principal stress σ1 at crack tip is smaller or a little larger than the maximum shear stress τmax. Since the tensile strength of brittle rock is much lower than its shear strength, σ1 is easy to reach its critical value before τmax reaches its critical value and thus results in Mode I fracture. The fracture trajectory is helicoid and the normal direction of tangential plane with the fractured helicoid is along the predicted direction of the maximum principal stress at the notch tip. It is further proved that Mode Ⅰ instead of Mode Ⅲ fracture occurs in brittle rock under Mode Ⅲ loading. The fracture mode depending on the fracture mechanism must be distinguished from the loading form.

  18. Rock fall triggering from cyclic thermal forcing of exfoliation fractures

    Science.gov (United States)

    Collins, B. D.; Stock, G. M.

    2013-12-01

    Exfoliation of rocks cause cliffs to deteriorate through the formation and subsequent opening of fractures. Where human activities are exposed to this process, rock fall hazard is potentially high. A number of mechanisms (e.g., freeze-thaw, precipitation-induced seepage) are capable of triggering rock fall in steep rock masses, however, some rock falls occur in the absence of any identified trigger. Among the suggested causes for these unexplained rock falls is thermal heating which can lead to outward expansion of rock surfaces. Here we use data from three years of displacement transducer field monitoring and corroborated by lidar measurements to test this hypothesis by assessing the magnitude and temporal pattern of thermally-induced rock deformation in an exfoliating granitic landscape. We show that daily, seasonal, and annual temperature effects are sufficient to cause cyclic and cumulative deformation of fractures, and that fracture tip propagation with consequent detachment of rock masses likely results. We use thermodynamic and structural engineering principals to show that thermally-forced exfoliation surfaces (i.e., partially detached 'flakes' of rock) follow Carnot-cycle-type hysteresis loops (i.e., the cyclical conversion of thermal energy to work that occurs in a heat engine) and can be modeled by Euler-type buckling criteria (i.e., the resultant lateral deformation that occurs upon an increase in axial compressive loading, here, caused by thermal expansion along the axis of partially detached exfoliation flakes). Our data from a 19-m-tall, 4-m-wide, 10-cm-thick, instrumented granodiorite exfoliation flake indicate that cumulative annual outward deformation of up to 1 mm/yr occurs under fatigue crack growth conditions. These conditions are related to both cyclic thermal and mechanical forcing and gravitational loads acting along the surfaces that attach the flake to the rock mass. Based on these observations and our analyses, we suggest that the warmest

  19. Size and Geometry Effects on Rock Fracture Toughness: Mode I Fracture

    Science.gov (United States)

    Ayatollahi, M. R.; Akbardoost, J.

    2014-03-01

    In this paper, the effects of specimen size and geometry on the apparent mode I fracture toughness ( K c) of an Iranian white marble (Neyriz) are studied. A number of fracture tests were conducted on center-cracked circular disk (CCCD) specimens with different radii to investigate the size effects on K c. The experimental results demonstrate that the apparent fracture toughness increases in bigger specimens. In order to explain the experimental results, the modified maximum tangential stress (MMTS) criterion is used, where higher order terms of the Williams' series expansion are included in the maximum tangential stress criterion. It is shown that the MMTS criterion provides good estimates for the apparent fracture toughness of Neyriz marble, obtained from fracture tests of edge-cracked triangular specimens. It is, therefore, concluded that the proposed criterion is able to account for the size and geometry effects on the fracture resistance of rocks simultaneously.

  20. Element mobility in crystalline rock around open fractures at Palmottu

    International Nuclear Information System (INIS)

    Rock specimens adjacent to two conducting fractures at a depth of about 205 m from the Palmottu uranium deposit, a natural analogue study site for radionuclide migration, Southern Finland, were studied in order to obtain information on element mobility. The drill core was sawn in such a way that a series of specimens perpendicular to the water conducting fracture were obtained for each of the fractures. Concentration profiles for a number of elements were determined. Uranium series disequilibrium studies as well as petrographic studies and porosity determinations were also performed. In spite of closeness of fractures (only 67 apart) they were different in character. Hardly any mobilization was observed for the lower fracture but for the upper fracture several elements had been mobilized, while many remained immobile. Elements such as Na, Ca, Al, Si and u were enriched adjacent to the upper fracture. At the same time Fe, Sc, Co, S and Cu remained immobile. Elemental concentration data provided also for the alteration depth about 25 mm. The conditions have been reducing for very long times

  1. Dynamic injection tests of dense slurry into fine rock fractures

    International Nuclear Information System (INIS)

    Dynamic injection is the technology that efficiently injects with high dense slurry into small rock fractures. This technology may be expected for the improvement of fluidity and a penetration property of grout materials and the prevention of blockade phenomena. On this study, in order to make clear the effect of the dynamic injection method and the condition of pulsation pressure, injection tests with a fine model fractures and rheological tests under a proper vibration were made for high dense and viscosity grout materials. (author)

  2. Laboratory characterization of rock joints

    International Nuclear Information System (INIS)

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed

  3. Laboratory characterization of rock joints

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, S.M.; Kana, D.D.; Ahola, M.P.; Chowdhury, A.H.; Ghosh, A. [Southwest Research Inst., San Antonio, TX (United States). Center for Nuclear Waste Regulatory Analyses

    1994-05-01

    A laboratory characterization of the Apache Leap tuff joints under cyclic pseudostatic and dynamic loads has been undertaken to obtain a better understanding of dynamic joint shear behavior and to generate a complete data set that can be used for validation of existing rock-joint models. Study has indicated that available methods for determining joint roughness coefficient (JRC) significantly underestimate the roughness coefficient of the Apache Leap tuff joints, that will lead to an underestimation of the joint shear strength. The results of the direct shear tests have indicated that both under cyclic pseudostatic and dynamic loadings the joint resistance upon reverse shearing is smaller than that of forward shearing and the joint dilation resulting from forward shearing recovers during reverse shearing. Within the range of variation of shearing velocity used in these tests, the shearing velocity effect on rock-joint behavior seems to be minor, and no noticeable effect on the peak joint shear strength and the joint shear strength for the reverse shearing is observed.

  4. Discrete fracture hydromechanical model for the disturbed rock zone in a clay rock

    Science.gov (United States)

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.

    2013-12-01

    We have developed a coupled thermal-hydrological-mechanical (THM) fracture damage model, TOUGH-RBSN, to investigate the behavior of fracture generation and evolution in rock in the presence of perturbations to THM conditions. This model combines the capabilities of the TOUGH2 simulator to represent thermal-hydrological processes with a rigid-body-spring-network (RBSN) model, a type of discrete modeling, to treat geomechanical and fracture-damage processes. In particular, the development and evolution of fractures in the excavation damaged zone (EDZ) of a clay rock, with application to high-level nuclear waste disposal, is a focus for this model development. Previously, the TOUGH-RBSN approach has been used to model fracture damage under tensile conditions as a result of desiccation shrinkage. The next phase of model testing will be application to the HG-A test being conducted at the Mont Terri underground research laboratory (URL) near Saint-Ursanne, Switzerland. This test is being conducted in a 13-m long, 1-m diameter microtunnel in the Opalinus clay rock in which a test section at the far end of the microtunnel is isolated using a packer. The test is specifically targeted to observe how fluids injected into the test section penetrate into the rock, with particular emphasis on the EDZ. The HG-A microtunnel was excavated in 2005 and subsequent mapping of the tunnel surface shows preferential fracturing and tunnel breakouts along zones where bedding planes are tangential to the tunnel wall and where faults intercept the tunnel. It appears that the EDZ fracture damage can be attributed to both tensile and shear fracturing mechanisms. A series of injection tests with water and gas have been performed which also show preferential invasion of the fluid pressure along the observed damage zones, as well as fracture self-sealing over time. The TOUGH-RBSN approach has been successfully applied to modeling fracture driven by predominately tensile loading, whereas only

  5. A study on the groundwater flow and hydrogeochemical interaction in fractured rock masses

    International Nuclear Information System (INIS)

    Since the major transport mechanism of radionuclides leaching from a repository is by flowing groundwater, the flow paths, volume and travel time of groundwater in rock mass should be evaluated and convincingly predicted. Hence, the main objectives of this study include: 1) Characterization of the subsurface fracture system developed in rock mass, 2) Evaluation rocks with regard to the retardation mechanism of geological media. A groundwater flow study has been carried out for granitic porphyry occurred in the 2nd Yeonhwa mine which is located in Samchuck, Kangwondo. The fracture system in granitic porphyry has been studied on the basis of the existing surface geologic map and the sketch cards for tunnel geology, and accompanying field investigation. The groundwater system was analyzed by a numerical model of MODIFIED TRAFRAP WT for this study. Results are: 1) The groundwater flow system in fractured rock mass is governed by geological structure and fracture systems. 2) In the mountaineous region, a common feature in the study site, the local flow system is controlled by the amount of precipitation and topographic effects. 3) Jeekyung Dong volcanic rocks consist of tuff, qtz trachyte, rhyolite, andesite and tuffaceous andesite with major minerals of chlorite, smectite illite, chabazite, pyroxene, pl, K-feldspar, hematite, calcite. 4) Pl phenocrysts in tuffs underwent the albitization. Calcite filled partly the secondary pores in pl phenocryst. The porous pumices and glassy materials are partially altered to clay minerals. 5) The phenocrysts in tuff are strongly fractured. Bubbles, dissolved pores and welded textures are observed in tuff. Other volcanic rocks, however, show welded and dense textures. (author)

  6. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    OpenAIRE

    Yuji Nishi; Tsuneo Ishido

    2012-01-01

    In order to appraise the utility of self-potential (SP) measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulati...

  7. Stress, Flow and Particle Transport in Rock Fractures

    International Nuclear Information System (INIS)

    The fluid flow and tracer transport in a single rock fracture during shear processes has been an important issue in rock mechanics and is investigated in this thesis using Finite Element Method (FEM) and streamline particle tracking method, considering evolutions of aperture and transmissivity with shear displacement histories under different normal stresses, based on laboratory tests. The distributions of fracture aperture and its evolution during shear were calculated from the initial aperture fields, based on the laser-scanned surface roughness features of replicas of rock fracture specimens, and shear dilations measured during the coupled shear-flow-tracer tests in laboratory performed using a newly developed testing apparatus in Nagasaki University, Nagasaki, Japan. Three rock fractures of granite with different roughness characteristics were used as parent samples from which nine plaster replicas were made and coupled shear-flow tests was performed under three normal loading conditions (two levels of constant normal loading (CNL) and one constant normal stiffness (CNS) conditions). In order to visualize the tracer transport, transparent acrylic upper parts and plaster lower parts of the fracture specimens were manufactured from an artificially created tensile fracture of sandstone and the coupled shear-flow tests with fluid visualization was performed using a dye tracer injected from upstream and a CCD camera to record the dye movement. A special algorithm for treating the contact areas as zero-aperture elements was used to produce more accurate flow field simulations by using FEM, which is important for continued simulations of particle transport, but was often not properly treated in literature. The simulation results agreed well with the flow rate data obtained from the laboratory tests, showing that complex histories of fracture aperture and tortuous flow channels with changing normal stresses and increasing shear displacements, which were also captured

  8. Radionuclide transport and retardation in rock fracture and crushed rock column experiments

    Science.gov (United States)

    Höltä, P.; Siitari-Kauppi, M.; Hakanen, M.; Huitti, T.; Hautojärvi, A.; Lindberg, A.

    1997-04-01

    Transport and retardation of non-sorbing tritiated water and chloride and slightly sorbing sodium was studied in Syyry area SY-KR7 mica gneiss, in altered porous tonalite and in fresh tonalite. Experiments were performed using dynamic fracture and crushed rock column methods. Static batch method for sodium was introduced to compare retardation values from static and dynamic experiments. The 14C-PMMA method was used to study the pore structure of matrices. The pore aperture distribution was evaluated from Hg-porosimetry determinations and the surface areas were determined using the B.E.T. method. The flow characteristics and transport behavior of tracers were interpreted using a numerical compartment model for dispersion. The effect of matrix diffusion was calculated using an analytical solution to the advection-matrix diffusion problem in which surface retardation was taken into account. Radionuclide transport behavior in rock fractures was explained on the basis of rock structure.

  9. Discrete fracture modelling of the Finnsjoen rock mass: Phase 2

    International Nuclear Information System (INIS)

    A discrete fracture network (DFN) model of the Finnsjoen site was derived from field data, and used to predict block-scale flow and transport properties. The DFN model was based on a compound Poisson process, with stochastic fracture zones, and individual fracture concentrated around the fracture zones. This formulation was used to represent the multitude of fracture zones at the site which could be observed on lineament maps and in boreholes, but were not the focus of detailed characterization efforts. Due to a shortage of data for fracture geometry at depth, distributions of fracture orientation and size were assumed to be uniform throughout the site. Transmissivity within individual fracture planes was assumed to vary according to a fractal model. Constant-head packer tests were simulated with the model, and the observed transient responses were compared with actual tests in terms of distributions of interpreted transmissivity and flow dimension, to partially validate the model. Both simulated and actual tests showed a range of flow dimension from sublinear to spherical, indicating local variations in the connectivity of the fracture population. A methodology was developed for estimation of an effective stochastic continuum from the DFN model, but this was only partly demonstrated. Directional conductivities for 40 m block were estimated using the DFN model. These show extremely poor correlation with results of multiple packer tests in the same blocks, indicating possible limitation of small-scale packer tests for predicting block-scale properties. Estimates are given of effective flow porosity and flow wetted surface, based on the block-scale flow fields calculated by the DFN model, and probabilistic models for the relationships among local fracture transmissivity, void space, and specific surface. The database for constructing these models is extremely limited. A review is given of the existing database for single fracture hydrologic properties. (127 refs

  10. Spatial statistics for predicting flow through a rock fracture

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.J.

    1989-03-01

    Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs.

  11. Spatial statistics for predicting flow through a rock fracture

    International Nuclear Information System (INIS)

    Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs

  12. Fluids and stress in fractured rocks: A case study with applications to hydrodynamic modelling (Lodeve Basin, South France)

    International Nuclear Information System (INIS)

    In order to stock nuclear waste safely in fractured rock or optimize the development and exploitation of hydrocarbons in fractured reservoirs the same fracture parameters have to be investigated through field studies. It is essential to define the relationships between tectonics, 3D fracture networks and fluid flow, as well as the effect of past stress states on the network evolution and the effect of the present-day stress state on hydrodynamics. A case study was carried out on a site of the COGEMA Uranium mine with a very high density of wells and galleries in a Permian silicoclastic basin. Fracturation on all scales from individual fractures (with their connectivity and hydraulic behaviour) to fracture network was described. A multidisciplinary approach was necessary to understand the importance of fluids and to upscale metric scale obsessations to the well identified fracture network: 3D organization and evolution of the fracture network under the influence of paleostress was obtained from tectonic analysis and response of the reservoir in terms of fracture dilatancy or closure to present day stress was characterized by in situ stress measurements; water geochemistry and hydrogeology showed the large scale flow pattern characterized by the presence of main drains and barriers; geophysical prospecting and study of gaseous emanations from the soil helped to localize the subsurface fracture pattern, especially dilatant fractures. All this data is used to build a 3D model of the fracture pattern and its flow networks

  13. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 2. Characterization of low permeable and fractured sediments and rocks in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.; Laier, T.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. In Denmark, many different kinds of fine-grained sediments and crystalline rocks occur from the ground surface down to 300 meters depth. Therefore, the possible geological situations include sediments and rocks of different composition and age. These situations are geographical distributed over large areas of Denmark. These sediments and rocks are shortly described based on existing information and include five different major types of sediments and rocks: 1: Crystalline granite and gneiss of Bornholm (because these rock types are host for waste disposals in many other countries). 2: Sandstone and shale from Bornholm (as these sediments are rela- tively homogeneous although they have fracture permeability). 3: Chalk and limestone (because these sediments may act as low permeable seals, but in most areas they act as groundwater reservoirs). 4: Fine-grained Tertiary clay deposits (as these sediments have a low permeability, are widely distributed and can reach large thicknesses). 5: Quaternary glacial, interglacial and Holocene clay deposits. These sediments are distributed all over Denmark. Following the descriptions of the geologic deposits, the areas below (including several possible locations for waste disposal sites) are selected for further investigation. The Precambrian basement rocks of Bornholm could be host rocks for the disposal. The rock types for further evaluation will be: Hammer Granite, Vang Granite, Roenne Granite, Bornholm gneiss, Paradisbakke Migmatite and Alminding Granite. In the Roskilde Fjord area around Risoe, a combination of Paleocene clays, meltwater clay and clayey till could be interesting. The area is partly included in the OSD area in North Sjaelland but

  14. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 2. Characterization of low permeable and fractured sediments and rocks in Denmark

    International Nuclear Information System (INIS)

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. In Denmark, many different kinds of fine-grained sediments and crystalline rocks occur from the ground surface down to 300 meters depth. Therefore, the possible geological situations include sediments and rocks of different composition and age. These situations are geographical distributed over large areas of Denmark. These sediments and rocks are shortly described based on existing information and include five different major types of sediments and rocks: 1: Crystalline granite and gneiss of Bornholm (because these rock types are host for waste disposals in many other countries). 2: Sandstone and shale from Bornholm (as these sediments are rela- tively homogeneous although they have fracture permeability). 3: Chalk and limestone (because these sediments may act as low permeable seals, but in most areas they act as groundwater reservoirs). 4: Fine-grained Tertiary clay deposits (as these sediments have a low permeability, are widely distributed and can reach large thicknesses). 5: Quaternary glacial, interglacial and Holocene clay deposits. These sediments are distributed all over Denmark. Following the descriptions of the geologic deposits, the areas below (including several possible locations for waste disposal sites) are selected for further investigation. The Precambrian basement rocks of Bornholm could be host rocks for the disposal. The rock types for further evaluation will be: Hammer Granite, Vang Granite, Roenne Granite, Bornholm gneiss, Paradisbakke Migmatite and Alminding Granite. In the Roskilde Fjord area around Risoe, a combination of Paleocene clays, meltwater clay and clayey till could be interesting. The area is partly included in the OSD area in North Sjaelland but

  15. Application of Stochastic Fracture Network with Numerical Fluid Flow Simulations to Groundwater Flow Modeling in Fractured Rocks

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The continuum approach in fluid flow modeling is generally applied to porous geological media,but has limitel applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely distributed in the matrix, it may be difficult or erroneous to use a porous medium fluid flow model with continuum assumptions to describe the fluid flow in fractured rocks at small or even large field scales. A discrete fracture fluid flow approach incorporating a stochastic fracture network with numerical fluid flow simulations could have the capability of capturing fluid flow behaviors such as inhomogeneity and anisotropy while reflecting the changes of hydraulic features at different scales.Moreover, this approach can be implemented to estimate the size of the representative elementary volume (REV) in order to find out the scales at which a porous medium flow model could be applied, and then to determine the hydraulic conductivity tensor for fractured rocks. The following topics are focused on in this study: (a) conceptual discrete fracture fluid flow modeling incorporating a stochastic fracture network with numerical flow simulations; (b) estimation of REVand hydraulic conductivity tensor for fractured rocks utilizing a stochastic fracture network with numerical fluid flow simulations; (c) investigation of the effect of fracture orientation and density on the hydraulic conductivity and REV by implementing a stochastic fracture network with numerical fluid flow simulations, and (d) fluid flow conceptual models accounting for major and minor fractures in the 2-D or 3-D flow fields incorporating a stochastic fracture network with numerical fluid flow simulations.``

  16. Use of heat as a groundwater tracer in fractured rock hydrology

    Science.gov (United States)

    Bour, Olivier; Le Borgne, Tanguy; Klepikova, Maria V.; Read, Tom; Selker, John S.; Bense, Victor F.; Le Lay, Hugo; Hochreutener, Rebecca; Lavenant, Nicolas

    2015-04-01

    Crystalline rocks aquifers are often difficult to characterize since flows are mainly localized in few fractures. In particular, the geometry and the connections of the main flow paths are often only partly constrained with classical hydraulic tests. Here, we show through few examples how heat can be used to characterize groundwater flows in fractured rocks at the borehole, inter-borehole and watershed scale. Estimating flows from temperature measurements requires heat advection to be the dominant process of heat transport, but this condition is generally met in fractured rock at least within the few structures where flow is highly channelized. At the borehole scale, groundwater temperature variations with depth can be used to locate permeable fractures and to estimates borehole flows. Measurements can be done with classical multi-parameters probes, but also with recent technologies such as Fiber Optic Distributed Temperature Sensing (FO-DTS) which allows to measure temperature over long distances with an excellent spatial and temporal resolution. In addition, we show how a distributed borehole flowmeter can be achieved using an armored fiber-optic cable and measuring the difference in temperature between a heated and unheated cable that is a function of the fluid velocity. At the inter-borehole scale, temperature changes during cross-borehole hydraulic tests allow to identify the connections and the hydraulic properties of the main flow paths between boreholes. At the aquifer scale, groundwater temperature may be monitored to record temperature changes and estimate groundwater origin. In the example chosen, the main water supply comes from a depth of at least 300 meters through relatively deep groundwater circulation within a major permeable fault zone. The influence of groundwater extraction is clearly identified through groundwater temperature monitoring. These examples illustrate the advantages and limitations of using heat and groundwater temperature

  17. Tracers in high temperature and fractured basement rock reservoir

    International Nuclear Information System (INIS)

    Background on FBR. Fractured Basement Reservoir is uncommon oil reservoir where hydrocarbone storage and conductivity are provided by fracture system which is fault oriented. The fractures can be classified by macrofracture developing close to the fault with high porosity and being filled with clay or minerals, microfracture of much smaller porosity developing in the solid rock. The average porosity of fractured reservoir is rather small, about 2-3% while the permeability distributed in relative wide range. Fracture system divides reservoir into compartments and creates high heterogeneity of permeability and porosity distribution. Flow in FBR is unpredictable. Water is injected in the deeper part of reservoir to maintain the reservoir pressure and replace the oil toward production zone at the upper part. Combining all available geology data and seismic data the reservoir model and flow model are not completed. Considering all these uncertainties, it is indispensable to develop a new concept to work on oil production in FBR and other applied techniques including tracer need to comply with.

  18. Mechanics, hydraulic and coupled hydromechanics of fractured rock mass investigated by numerical experiment

    International Nuclear Information System (INIS)

    The Discrete Fracture Network-Discrete Element Method (DFN-DEM) approach uses DFN as the geometry of fractured rock and DEM for the solution technique to simulate the hydraulic and mechanical behaviour of fractured rock. This overview paper intends to summarize the applications on fractured rock using the DFN-DEM approach with the focus upon the determination of mechanical and hydraulic properties of fractured rock and their stress dependencies. The establishment of methodologies and actual applications in a site considered for geological repository of nuclear waste are introduced. (author)

  19. Fracturing tests on reservoir rocks: Analysis of AE events and radial strain evolution

    CERN Document Server

    Pradhan, S; Fjær, E; Stenebråten, J; Lund, H K; Sønstebø, E F; Roy, S

    2015-01-01

    Fracturing in reservoir rocks is an important issue for the petroleum industry - as productivity can be enhanced by a controlled fracturing operation. Fracturing also has a big impact on CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations towards these activities. In our study, the fracturing of rock sample is monitored by Acoustic Emission (AE) and post-experiment Computer Tomography (CT) scans. The fracturing experiments have been performed on hollow cylinder cores of different rocks - sandstones and chalks. Our analysis show that the amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. The amplitudes of AE events follow an exponential distribution while the energies follow a power law distribution. Time-evolution of the radial strain measured in the fracturing-test will later be comp...

  20. Hydraulic conductivity and migration characteristics of low-permeable rocks. 2. Solute migration through a single fracture

    International Nuclear Information System (INIS)

    The hydraulic conductivities of rock cores with a single fracture were measured, and subsequent solute transfer experiments were conducted. Sandstone cores with an artificial fracture and granite cores with a natural fracture were used for the experiments. The results showed that the hydraulic conductivities of rock cores with a fracture were three to four orders larger than those of the identical cores without any fractures, and that the hydraulic conductivity decreased with an increase in confining pressure. The migration of strontium used as a tracer through the granite core with a fracture indicated that the retardation by adsorption was hardly recognized. However, matrix diffusion coupled with adsorption to the rock matrix was observed in the breakthrough curve of strontium through the sandstone core with a fracture. The breakthrough curve obtained for the sandstone core was evaluated by an advective-dispersive equation through the fracture with matrix diffusion. The effective diffusion coefficient of sandstone matrix was approximately estimated at 5 x 10-5 cm2/s. However, the effective diffusion coefficient of granite matrix was estimated at a value larger than that of sandstone matrix, indicating that more detailed characterization of the granite fracture would be required. (author)

  1. Preliminary capillary hysteresis simulations in fractured rocks, Yucca Mountain, Nevada

    Science.gov (United States)

    Niemi, A.; Bodvarsson, G. S.

    1988-12-01

    Preliminary simulations have been carried out to address the question of how hysteretic (history-dependent) capillary pressure-liquid saturation relation may affect the flow and liquid saturation distribution in a fractured rock system. Using a hysteresis model modified from the theoretically based dependent domain model of Mualem (1984), a system consisting of discrete fractures and rock matrix parts was simulated under periodically occurring infiltration pulses. Comparisons were made between the hysteretic case and the non-hysteretic case using the main drying curve alone. Material properties used represent values reported for the densely welded tuffs at Yucca Mountain, Nevada. Since no actual hysteresis measurements were available for the welded tuffs, the necessary data was derived based on information available in the soils literature The strongly hysteretic behavior in the uppermost layer of the matrix along with the overall lower matrix capillary suctions, generated higher fracture flows and a more "smeared" matrix liquid saturation vs. depth distribution for the hysteretic case. While the actual amounts of water being absorbed into the matrix were very similar, the distributions of this absorbed water were different and the matrix was affected up to greater depths in the hysteretic case in comparison to the non-hysteretic case.

  2. Simulation of fluid flow in fractured rock: a probabilistic approach

    International Nuclear Information System (INIS)

    This report describes the results of a research project designed to investigate the influence of discontinuities on fluid flow through fractured rock masses. The aim has been to provide a rational basis for the assessment of prospective intermediate level radioactive waste repository sites. The results of this work are presented in the form of two groups of FORTRAN computer programs. The first of these is designed to process data obtained from exposed rock faces and thereby provide an unbiased estimate of discontinuity characteristics. The resulting data are input to the second group of programs which generate a two-dimensional random realisation of discontinuity geometry. When appropriate boundary conditions have been specified, the resulting network of channels is solved numerically to determine nodal potentials, flow quantities and equivalent permeabilities. A number of validation runs are presented, together with some parametric studies, to investigate the influence of excavation size and discontinuity geometry on fluid flow. A practical application is given in the form of a case study involving the prediction of fluid flow into a 2.8 m diameter tunnel in water bearing, fractured rock. Finally, the applications and limitations of the programs in site assessment for radioactive waste repositories are discussed. (author)

  3. Site characterization in densely fractured dolomite: Comparison of methods

    Science.gov (United States)

    Muldoon, M.; Bradbury, K.R.

    2005-01-01

    One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of ???10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head - and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid. Copyright ?? 2005 National Ground Water Association.

  4. Hydrogeological discrete fracture modelling to support rock suitability classification

    International Nuclear Information System (INIS)

    This report presents hydrogeological discrete fracture network (Hydro-DFN) modelling in support of the testing and development of the Posiva's Rock Suitability Classification (RSC) system. The aims are to: quantify information on the fulfilment of the inflow and large fracture criteria in the deposition tunnels and deposition holes; provide information on likely properties adjacent to large fractures and deformation zones; and quantify saline water upconing to support definition of the respect distances to the fault zones and hydraulically active zones. The work presented is an update to a previous RSC study performed in 2010, making use of an updated Hydro-DFN model developed for the 2012 Site Descriptive Model (SDM) accounting for new data, in particular that acquired underground in the pilot holes drilled ahead of the ONKALO facility. The interpretation of the tunnel pilot holes has provided a lower detection limit on the specific capacity of hydraulic fractures resulting in a higher overall number of inflows to deposition holes being simulated than in the previous study, although these are small in magnitude, and simulated inflows above 1 L/min are now very rare. Out of the 5391 possible deposition hole positions considered in the modelling, of order 100 are above the RSC limit of 0.1 L/min. It is demonstrated that screening such positions generally avoids locations with the highest post-closure flow-rates. Screening of positions in direct contact with large hydraulic fractures (defined as connected open fractures with equivalent radius greater than 75 m and at least one intersect with a deposition tunnel) is also very effective in avoiding the majority of locations with relatively high predicted post-closure flow-rates. Total inflows to the c. 40 km of deposition and adjacent central tunnels after grouting are of order 100 L/min. (orig.)

  5. Hydrogeological discrete fracture modelling to support rock suitability classification

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, L.; Hoek, J.; Swan, D.; Baxter, D.; Woollard, H. [AMEC, Oxford (United Kingdom)

    2014-01-15

    This report presents hydrogeological discrete fracture network (Hydro-DFN) modelling in support of the testing and development of the Posiva's Rock Suitability Classification (RSC) system. The aims are to: quantify information on the fulfilment of the inflow and large fracture criteria in the deposition tunnels and deposition holes; provide information on likely properties adjacent to large fractures and deformation zones; and quantify saline water upconing to support definition of the respect distances to the fault zones and hydraulically active zones. The work presented is an update to a previous RSC study performed in 2010, making use of an updated Hydro-DFN model developed for the 2012 Site Descriptive Model (SDM) accounting for new data, in particular that acquired underground in the pilot holes drilled ahead of the ONKALO facility. The interpretation of the tunnel pilot holes has provided a lower detection limit on the specific capacity of hydraulic fractures resulting in a higher overall number of inflows to deposition holes being simulated than in the previous study, although these are small in magnitude, and simulated inflows above 1 L/min are now very rare. Out of the 5391 possible deposition hole positions considered in the modelling, of order 100 are above the RSC limit of 0.1 L/min. It is demonstrated that screening such positions generally avoids locations with the highest post-closure flow-rates. Screening of positions in direct contact with large hydraulic fractures (defined as connected open fractures with equivalent radius greater than 75 m and at least one intersect with a deposition tunnel) is also very effective in avoiding the majority of locations with relatively high predicted post-closure flow-rates. Total inflows to the c. 40 km of deposition and adjacent central tunnels after grouting are of order 100 L/min. (orig.)

  6. Characterizing Hydraulic Properties and Ground-Water Chemistry in Fractured-Rock Aquifers: A User's Manual for the Multifunction Bedrock-Aquifer Transportable Testing Tool (BAT3)

    Science.gov (United States)

    Shapiro, Allen M.

    2007-01-01

    packers, the submersible pump, and other downhole components to land surface. Borehole geophysical logging must be conducted prior to deploying the Multifunction BAT3 in bedrock boreholes. In particular, it is important to identify the borehole diameter as a function of depth to avoid placing the packers over rough sections of the borehole, where they may be damaged during inflation. In addition, it is advantageous to identify the location of fractures intersecting the borehole wall, for example, using an acoustic televiewer log or a borehole camera. A knowledge of fracture locations is helpful in designing the length of the test interval and the locations where hydraulic tests and geochemical sampling are to be conducted. The Multifunction BAT3 is configured to conduct both fluid-injection and fluid-withdrawal tests. Fluid-injection tests are used to estimate the hydraulic properties of low-permeability fractures intersecting the borehole. The lower limit of the transmissivity that can be estimated using the configuration of the Multifunction BAT3 described in this report is approximately 10-3 square feet per day (ft2/d). Fluid-withdrawal tests are used to collect water samples for geochemical analyses and estimate the hydraulic properties of high-permeability fractures intersecting the borehole. The Multifunction BAT3 is configured with a submersible pump that can support pumping rates ranging from approximately 0.05 to 2.5 gallons per minute, and the upper limit of the of the transmissivity that can be estimated is approximately 104 ft2/d. The Multifunction BAT3 also can be used to measure the ambient hydraulic head of a section of a bedrock borehole, and to conduct single-hole tracer tests by injecting and later withdrawing a tracer solution.

  7. Rock fracture by ice segregation: linking laboratory modelling and rock slope erosion

    Science.gov (United States)

    Murton, J.

    2009-04-01

    It has been unclear until recently if ice can fracture intact bedrock subject to natural freezing regimes, or whether it simply enlarges existing fractures or does both. This question is important, because if ice segregation in bedrock permafrost is widespread, then there may be considerable potential for significantly increased rock slope instability as ice-cemented discontinuities warm and active layers thicken. Laboratory modelling has now begun to elucidate the process of ice segregation in bedrock. Laboratory experiments indicate that moist, porous rock behaves remarkably like moist, frost-susceptible soil, with both substrates experiencing ice enrichment and fracture / fissuring of near-surface permafrost. It appears that significant concentrations of segregated ice are most likely in the transition zone between the active layer and the permafrost, as a result of downward migration of water in summer and upward advance of freezing at the beginning of the winter. Laboratory modelling indicates that given adequate water supply, ice segregation produces a zone of ice-bonded fractured bedrock immediately below the permafrost table. In general, the importance of ice segregation relative to in situ volume expansion increases with decreasing thermal gradients and increasing duration of freezing. Recent theoretical developments suggest that the maximum possible disjointing pressure is governed by the temperature depression below the bulk-melting point, even in the absence of large temperature gradients, and therefore slow ice segregation in bedrock may be possible at greater depths where the frozen permeability of rock limits the actual amount of heave produced. Thus, over long timescales, ice segregation may be highly significant in frozen steep bedrock slopes where the presence of ice-rich fractured bedrock may be critically important in releasing rock falls and rock slides during climate-induced warming and permafrost degradation. With recent climate warming

  8. Development of fractures in soft rock surrounding a roadway and their control

    Institute of Scientific and Technical Information of China (English)

    Li Xuehua; Yao Qiangling; Man Jiankang; Chen Chaoqun; He Lihui

    2011-01-01

    As the excavation of roadway,new fractures will be formed and the pre-existing fractures extend with the redistribution of stress in surrounding rocks.Eventually,fracture zone and bed separation are formed in rocks because of the developed fractures.Therefore,mastering the fracture evolution of surrounding rocks is very important to maintain the stability of roadway.The surrounding rocks of main haulage roadway in a certain coal mine is so broken and loose that the supporting is very difficult.Based on comprehensive analysis of the engineering geological conditions,a sight instrument was used to observe the fractures of internal surrounding rocks.Four indices,i.e.,the width of fracture zone W,the number of fractures n,the width of fractures d and rock fracture designation RFD,are put forward to evaluate the fracture development.According to the evolution rules of the soft rock roadway from this paper,control principles by stages and by regions are presented through the research.At the same time,the best time of grouting reinforcement is determined on the basis of fracture saturation.Field practice shows that the roadway can satisfy normal production during service periods by suitable first support and grouting reinforcement.

  9. The moderately fractured rock experiment: Background and overview

    International Nuclear Information System (INIS)

    The Moderately Fractured Rock (MFR) experiment is conducted at Atomic Energy of Canada Limited's Underground Research Laboratory (URL) as part of Ontario Power Generation's Deep Geologic Repository Technology Program. The MFR experiment was initiated in the mid-1990s with the purpose of advancing the understanding of mass transport in MFR (fractures 1-5/m, k ≅ 10-15 m2) in which groundwater flow and solute migration occurs through a network of interconnected fractures. The experimental program has involved a series of multi-well forced gradient tracer tests at scales of 10-50 m within a ≅ 100,000 m3 volume of MFR accessed from the 240 m level of the URL. The tracer tests conducted with non-reactive, reactive and colloidal tracers have served to explore the applicability of continuum models for prediction of groundwater flow and mass transport. Recently, a Modeling Task Force was created to re-examine tracer test experimental methodologies, MFR flow and transport conceptual models and provide a broader forum in which to apply alternative dual-permeability, discrete fracture and hybrid mathematical codes for flow system analysis. This paper provides a description of the MFR experiment, preliminary research findings and plans for the future

  10. The moderately fractured rock experiment: Background and overview

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M.R. [Ontario Power Generation (Canada)

    2001-08-01

    The Moderately Fractured Rock (MFR) experiment is conducted at Atomic Energy of Canada Limited's Underground Research Laboratory (URL) as part of Ontario Power Generation's Deep Geologic Repository Technology Program. The MFR experiment was initiated in the mid-1990s with the purpose of advancing the understanding of mass transport in MFR (fractures 1-5/m, k {approx_equal} 10{sup -15} m{sup 2}) in which groundwater flow and solute migration occurs through a network of interconnected fractures. The experimental program has involved a series of multi-well forced gradient tracer tests at scales of 10-50 m within a {approx_equal} 100,000 m{sup 3} volume of MFR accessed from the 240 m level of the URL. The tracer tests conducted with non-reactive, reactive and colloidal tracers have served to explore the applicability of continuum models for prediction of groundwater flow and mass transport. Recently, a Modeling Task Force was created to re-examine tracer test experimental methodologies, MFR flow and transport conceptual models and provide a broader forum in which to apply alternative dual-permeability, discrete fracture and hybrid mathematical codes for flow system analysis. This paper provides a description of the MFR experiment, preliminary research findings and plans for the future.

  11. Analyzing transport in low permeable fractured rock using the discrete fracture network concept

    International Nuclear Information System (INIS)

    Tracer migration experiments in an experimental drift of the Stripa research mine, Sweden, are analyzed with a discrete fracture network model. Synthetic experiments with the discrete model explain the seemingly unstructured and erratic transport behaviour observed in the field experiment. A high variability of the flow channel transmissivity results in non-Fickian dispersion and channeling effects which may severely reduce the possibilities of estimating effective transport parameters (e.g. Peclet number and porosity) for predictive use. Consequently, transport predictions with an averaging continuum model will be hazardous in this type of rock. DISCFRAC is the discrete fracture network model used. 4 figs., 6 refs

  12. MATLOC, Transient Non Linear Deformation in Fractured Rock

    International Nuclear Information System (INIS)

    1 - Description of program or function: MATLOC is a nonlinear, transient, two-dimensional (planer and axisymmetric), thermal-stress, finite-element code designed to determine the deformation within a fractured rock mass. The mass is modeled as a nonlinear anisotropic elastic material which can exhibit stress-dependent bi-linear locking behavior. 2 - Method of solution: The numerical solution of the nonlinear equilibrium equations is performed using the incremental tangential stiffness method in which the material stiffness matrices are continually updated. 3 - Restrictions on the complexity of the problem: Three-dimensional deformations and discontinuous displacements across open fractures and faults cannot be modeled. MATLOC can solve a problem with of 400 elements with up to 1000 nodes, of which 200 may be fixed

  13. Upscaling of permeability field of fractured rock system: Numerical examples

    KAUST Repository

    Bao, K.

    2012-01-01

    When the permeability field of a given porous medium domain is heterogeneous by the existence of randomly distributed fractures such that numerical investigation becomes cumbersome, another level of upscaling may be required. That is such complex permeability field could be relaxed (i.e., smoothed) by constructing an effective permeability field. The effective permeability field is an approximation to the real permeability field that preserves certain quantities and provides an overall acceptable description of the flow field. In this work, the effective permeability for a fractured rock system is obtained for different coarsening scenarios starting from very coarse mesh all the way towards the fine mesh simulation. In all these scenarios, the effective permeability as well as the pressure at each cell is obtained. The total flux at the exit boundary is calculated in all these cases, and very good agreement is obtained.

  14. Characterization and flow simulations of discrete fracture networks

    OpenAIRE

    Zeeb, Conny

    2013-01-01

    Fractures, such as joints, faults and veins, strongly influence the transport of fluids through rocks by either enhancing or inhibiting flow. Especially in rocks with negligible permeability fractures can act as major for fluid conduits. Therefore, the contribution of fracture networks to the overall flow behavior is of high interest to, for example, the hydrocarbon industry, the power generation using deep geothermal systems, the sustainable management of fractured rock aquifers, the plannin...

  15. Pore pressure profiles in fractured and compliant rocks

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, O. (Geco-Prakla, West Sussex (United Kingdom)); Nolen-Hoeksema, R.C.; Nur, A. (Stanford Univ., CA (United States). Geophysics Dept.)

    1994-08-01

    Fluid permeability in fractured rocks is sensitive to pore-pressure changes. This dependence can have large effects on the flow of fluids through rocks. The authors define the permeability compliance [gamma] = 1/k([partial derivative]k/[partial derivative]p[sub p])[sub pc], which is the sensitivity of the permeability k to the pore pressure p[sub p] at a constant confining pressure p[sub c], and solve the specific problems of constant pressure at the boundary of a half-space, a cylindrical cavity and a spherical cavity. The results show that when the magnitude of permeability compliance is large relative to other compliances, diffusion is masked by a piston-like pressure profile. The authors expect this phenomenon to occur in highly fractured and compliant rock systems where [gamma] may be large. The pressure profile moves rapidly when fluids are pumped into the rock and very slowly when fluids are pumped out. Consequently, fluid pressure, its history and distribution around injection and production wells may be significantly different from pressures predicted by the linear diffusion equation. The propagation speed of the pressure profile, marked by the point where [partial derivative]p[sub p]/[partial derivative]x is a maximum, decreases with time approximately as [radical]t, and the amplitude of the profile also dissipates with time (or distance). The effect of permeability compliance can be important for fluid injection into and withdrawal from reservoirs. For example, excessive drawdown could cause near-wellbore flow suffocation. Also, estimates of the storage capacity of reservoirs may be greatly modified when [gamma] is large. The large near-wellbore pressure gradients caused during withdrawal by large [gamma] can cause sanding and wellbore collapse due to excessive production rates.

  16. Hydrogeologic controls on radon-222 in the hard rock fractured aquifer of Bangalore, Karnataka

    International Nuclear Information System (INIS)

    The objective of the present study is to evaluate the distribution of radon in hard rock fractured aquifer in Bangalore. Radon concentrations are known to be high in the granitic rock of this area and this study attempts to enhance our understanding of the distribution of radon in the highly fractured and non fractured granitic aquifers. Hydrogeologically, the area is underlain by granite, migmatite, granodiorite and gneiss rock

  17. Seismic characterization of fracture properties

    International Nuclear Information System (INIS)

    The purpose of this paper is to show that there is a relationship, both empirical and theoretical, between the measured seismic response, the mechanical stiffness (also referred to as specific stiffness) of fractures and their hydraulic conductivity. Laboratory measurements of the mechanical stiffness, hydraulic conductivity and seismic properties of natural fractures are summarized. A theoretical model for the amplitude and group time delay for compressional and shear waves transmitted across a single fracture is presented. Predictions based on this model are compared with laboratory measurements. Finally, the results for a single fracture are extended to multiple parallel fractures. 13 refs., 6 figs

  18. Zonal disintegration of rocks around underground workings. Part II. Rock fracture simulated in equivalent materials

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, E.I.; Fisenko, G.L.; Kurlenya, M.V.; Oparin, V.N.; Reva, V.N.; Glushikhin, F.P.; Rozenbaum, M.A.; Tropp, E.A.; Kuznetsov, Yu.S.

    1987-05-01

    For a detailed testing of the effects discovered in situ, analysis of the patterns and origination conditions of fractured rock zones inside the bed around workings, and ways explosions affect the surrounding rocks, a program and a method of study on models of equivalent materials have been developed. The method of simulation on two- and three-dimensional models involved building in a solid or fissured medium a tunnel of a circular or arched cross section. The tests were done for elongate adit-type workings. At the first stage, three models were tested with different working support systems: anchor supports, concrete-spray supports and no supports. Zone formation is shown and described. Tests were continued on two groups of three-dimensional models to bring the model closer to in situ conditions. The presence of gaping cracks and heavily fractured zones deep in the interior of the bed with a quasicylindrical symmetry indicates that the common views concerning the stressed-strained state of rocks around underground workings are at variance with the actual patterns of deformation and destruction of rocks near the workings in deep horizons.

  19. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    Science.gov (United States)

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  20. Fracture Propagation Characteristic and Micromechanism of Rock-Like Specimens under Uniaxial and Biaxial Compression

    OpenAIRE

    Xue-wei Liu; Quan-sheng Liu; Shi-bing Huang; Lai Wei; Guang-feng Lei

    2016-01-01

    This paper presents a set of uniaxial and biaxial compression tests on the rock-like material specimens with different fracture geometries through a rock mechanics servo-controlled testing system (RMT-150C). On the basis of experimental results, the characteristics of fracture propagation under different fracture geometries and loading conditions are firstly obtained. The newly formed fractures are observed propagating from or near the preexisting crack tips for different specimens, while the...

  1. Novel methods for 3-D semi-automatic mapping of fracture geometry at exposed rock faces

    OpenAIRE

    Feng, Quanhong

    2001-01-01

    To analyse the influence of fractures on hydraulic andmechanical behaviour of fractured rock masses, it is essentialto characterise fracture geometry at exposed rock faces. Thisthesis describes three semi-automatic methods for measuring andquantifying geometrical parameters of fractures, and aims tooffer a novel approach to the traditional mapping methods. Three techniques, i.e. geodetic total station, close-rangephotogrammetry and 3-D laser scanner, are used in this studyfor measurement of f...

  2. Characterization and behaviour of argillaceous rocks

    International Nuclear Information System (INIS)

    The main activities concerning characterization and behaviour of argillaceous rocks and their environment are presented. The studies are related to the technico-economic feasibility and the long-term safety of disposal of radioactive waste in argillaceous media. (author)

  3. Stress-Induced Fracturing of Reservoir Rocks: Acoustic Monitoring and μCT Image Analysis

    Science.gov (United States)

    Pradhan, Srutarshi; Stroisz, Anna M.; Fjær, Erling; Stenebråten, Jørn F.; Lund, Hans K.; Sønstebø, Eyvind F.

    2015-11-01

    Stress-induced fracturing in reservoir rocks is an important issue for the petroleum industry. While productivity can be enhanced by a controlled fracturing operation, it can trigger borehole instability problems by reactivating existing fractures/faults in a reservoir. However, safe fracturing can improve the quality of operations during CO2 storage, geothermal installation and gas production at and from the reservoir rocks. Therefore, understanding the fracturing behavior of different types of reservoir rocks is a basic need for planning field operations toward these activities. In our study, stress-induced fracturing of rock samples has been monitored by acoustic emission (AE) and post-experiment computer tomography (CT) scans. We have used hollow cylinder cores of sandstones and chalks, which are representatives of reservoir rocks. The fracture-triggering stress has been measured for different rocks and compared with theoretical estimates. The population of AE events shows the location of main fracture arms which is in a good agreement with post-test CT image analysis, and the fracture patterns inside the samples are visualized through 3D image reconstructions. The amplitudes and energies of acoustic events clearly indicate initiation and propagation of the main fractures. Time evolution of the radial strain measured in the fracturing tests will later be compared to model predictions of fracture size.

  4. A Rock Mechanics and Coupled Hydro mechanical Analysis of Geological Repository of High Level Nuclear Waste in Fractured Rocks

    International Nuclear Information System (INIS)

    This paper introduces a few case studies on fractured hard rock based on geological data from Sweden, Korea is one of a few countries where crystalline rock is the most promising rock formation as a candidate site of geological repository of high level nuclear waste. Despite the progress made in the area of rock mechanics and coupled hydro mechanics, extensive site specific study on multiple candidate sites is essential in order to choose the optimal site. For many countries concerned about the safe isolation of nuclear wastes from the biosphere, disposal in a deep geological formation is considered an attractive option. In geological repository, thermal loading continuously disturbs the repository system in addition to disturbances a recent development in rock mechanics and coupled hydro mechanical study using DFN(Discrete Fracture Network) - DEM(Discrete Element Method) approach mainly applied in hard, crystalline rock containing numerous fracture which are main sources of deformation and groundwater flow

  5. A descriptive study of fracture networks in rocks using complex network metrics

    Science.gov (United States)

    Santiago, Elizabeth; Velasco-Hernández, Jorge X.; Romero-Salcedo, Manuel

    2016-03-01

    In this paper we describe the static topological fracture structure of five rock samples from three regions in Eastern Mexico by the application of centrality and communicability measures used in the area of complex networks. The information obtained from fracture images is used to characterize the fracture networks. The analysis is divided into two groups of characteristics. The first provides a general summary of the fracture network through the description of the number of nodes, edges, diameter, radius, lengths and clustering coefficients. A second group of features centers on the description of communicability in the network by means of three indexes recently proposed. In addition, we apply centrality measures (betweenness, closeness, eigenvector and eccentricity) for quantifying the importance of nodes in the entire network. Finally, we identify a topology for fracture networks using a classification based on the degree of communicability. The most important results obtained in this work are focused in the topological characteristic patterns found in fracture networks applying the approach of complex networks that in general provide local and global parameters of connectivity and communicability.

  6. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses

    OpenAIRE

    A. Lisjak; Grasselli, G

    2014-01-01

    The goal of this review paper is to provide a summary of selected discrete element and hybrid finite–discrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. Th...

  7. Numerical Study on Crack Propagation in Brittle Jointed Rock Mass Influenced by Fracture Water Pressure

    OpenAIRE

    Yong Li; Hao Zhou; Weishen Zhu; Shucai Li; Jian Liu

    2015-01-01

    The initiation, propagation, coalescence and failure mode of brittle jointed rock mass influenced by fissure water pressure have always been studied as a hot issue in the society of rock mechanics and engineering. In order to analyze the damage evolution process of jointed rock mass under fracture water pressure, a novel numerical model on the basis of secondary development in fast Lagrangian analysis of continua (FLAC3D) is proposed to simulate the fracture development of jointed rock mass u...

  8. Experimental demonstration of contaminant removal from fractured rock by boiling.

    Science.gov (United States)

    Chen, Fei; Liu, Xiaoling; Falta, Ronald W; Murdoch, Lawrence C

    2010-08-15

    This study was conducted to experimentally demonstrate removal of a chlorinated volatile organic compound from fractured rock by boiling. A Berea sandstone core was contaminated by injecting water containing dissolved 1,2-DCA (253 mg/L) and sodium bromide (144 mg/L). During heating, the core was sealed except for one end, which was open to the atmosphere to simulate an open fracture. A temperature gradient toward the outlet was observed when boiling occurred in the core. This indicates that steam was generated and a pressure gradient developed toward the outlet, pushing steam vapor and liquid water toward the outlet. As boiling occurred, the concentration of 1,2-DCA in the condensed effluent peaked up to 6.1 times higher than the injected concentration. When 38% of the pore volume of condensate was produced, essentially 100% of the 1,2-DCA was recovered. Nonvolatile bromide concentration in the condensate was used as an indicator of the produced steam quality (vapor mass fraction) because it can only be removed as a solute, and not as a vapor. A higher produced steam quality corresponds to more concentrated 1,2-DCA removal from the core, demonstrating that the chlorinated volatile compound is primarily removed by partitioning into vapor phase flow. This study has experimentally demonstrated that boiling is an effective mechanism for CVOC removal from the rock matrix. PMID:20666474

  9. Effective media models for unsaturated fractured rock: A field experiment

    International Nuclear Information System (INIS)

    A thick unsaturated rock mass at Yucca Mountain is currently under consideration as a potential repository site for disposal of high level radioactive waste. In accordance with standard industry and scientific practices, abstract numerical models will be used to evaluate the potential for radionuclide release through the groundwater system. At this time, currently available conceptual models used to develop effective media properties are based primarily on simplistic considerations. The work presented here is part of an integrated effort to develop effective media models at the intermediate block scale (approximately 8-125m) through a combination of physical observations, numerical simulations and theoretical considerations. A multi-purpose field experiment designed and conducted as part of this integrated effort is described. Specific goals of this experimental investigation were to: (1) obtain fracture network data from Topopah Spring Tuff for use in block scale simulations; (2) identity positions of the network conducting flow under three different boundary conditions; (3) visualize preferential flow paths and small-scale flow structures; (4) collect samples for subsequent hydraulic testing and use in block-scale simulations; and (5) demonstrate the ability of Electrical Resistance Tomography (ERT) to delineate fluid distribution within fractured rock

  10. Evaluation of regional fracture properties for groundwater development using hydrolithostructural domain approach in variably fractured hard rocks of Purulia district, West Bengal, India

    Indian Academy of Sciences (India)

    Tapas Acharya; Rajesh Prasad; S Chakrabarti

    2014-04-01

    Estimation of geohydrologic properties of fractured aquifers in hard crystalline and/or metamorphosed country rocks is a challenge due to the complex nature of secondary porosity that is caused by differential fracturing. Hydrologic potentiality of such aquifers may be assessed if the geological controls governing the spatial distribution of these fracture systems are computed using a software-based model. As an exemplar, the Precambrian metamorphics exposed in and around the Balarampur town of Purulia district, West Bengal (India) were studied to find out the spatial pattern and consistency of such fracture systems. Surfer and Statistica softwares were used to characterize these rock masses in terms of hydrological, structural and lithological domains. The technique is based on the use of hydraulically significant fracture properties to generate representative modal and coefficient of variance () of fracture datasets of each domain. The is interpreted to obtain the spatial variability of hydraulically significant fracture properties that, in turn, define and identify the corresponding hydrolithostructural domains. The groundwater flow estimated from such a technique is verified with the routine hydrological studies to validate the procedure. It is suggested that the hydrolithostructural domain approach is a useful alternative for evaluation of fracture properties and aquifer potentiality, and development of a regional groundwater model thereof.

  11. Self-sealing of excavation induced fractures in clay host rock

    International Nuclear Information System (INIS)

    Excavation of an underground repository for disposal of radioactive waste in clay formations generates fractures around the openings, which may act as pathways for water transport and radionuclides migration. Because of the favorable properties of the clay rocks such as the rheological deformability and swelling capability, a recovery process of the excavation damaged zone (EDZ) can be expected due to the combined impact of rock compression, backfill resistance, and clay swelling during the post-closure phase. Another important issue is the impact of gases produced from anoxic corrosion of waste containers and other metallic components within the repository. The EDZ may act as a conduit for preferential gas flow, depending on the extent of the recovery process. For the safety assessment of a repository, the self-sealing behaviour and impact on water and gas transport through the EDZ have to be characterized, understood, and predicted. Recently, GRS has extensively investigated these important issues with various kinds of laboratory and in- situ experiments under relevant repository conditions. Test samples were taken from the Callovo-Oxfordian argillite at Bure in France and the Opalinus clay (shaly facies) at Mont Terri in Switzerland. Major findings are summarized as follows. As observed in laboratory and in-situ, the gas permeabilities of the claystones increase with stress-induced damage by several orders of magnitude from the impermeable state up to high levels of 10-12-10-13 m2. When hydrostatic confining stress is applied and increased, the fractures in the claystones tend to close up, leading to a decrease in gas permeability down to different levels of 10-16-10-21 m2 at stresses in a range of 10 to 20 MPa. As water enters and flows through fractures, the clay matrix can take up a great amount of the water and expand into the interstices. Consequently, the hydraulic conductivity decreases dramatically by several orders of magnitude down to very low levels

  12. Mechanical rock properties, fracture propagation and permeability development in deep geothermal reservoirs

    Science.gov (United States)

    Leonie Philipp, Sonja; Reyer, Dorothea

    2010-05-01

    Deep geothermal reservoirs are rock units at depths greater than 400 m from which the internal heat can be extracted using water as a transport means in an economically efficient manner. In many geothermal reservoirs, fluid flow is largely, and may be almost entirely, controlled by the permeability of the fracture network. No flow, however, takes place along a particular fracture network unless the fractures are interconnected. For fluid flow to occur from one site to another there must be at least one interconnected cluster of fractures that links these sites, that is, the percolation threshold must be reached. In "hydrothermal systems", only the natural fracture system (extension and shear fractures) creates the rock or reservoir permeability that commonly exceeds the matrix permeability by far; in "petrothermal systems", by contrast, interconnected fracture systems are formed by creating hydraulic fractures and massive hydraulic stimulation of the existing fracture system in the host rock. Propagation (or termination, that is, arrest) of both natural extension and shear fractures as well as man-made hydraulic fractures is mainly controlled by the mechanical rock properties, particularly rock toughness, stiffness and strengths, of the host rock. Most reservoir rocks are heterogeneous and anisotropic, in particular they are layered. For many layered rocks, the mechanical properties, particularly their Young's moduli (stiffnesses), change between layers, that is, the rocks are mechanically layered. Mechanical layering may coincide with changes in grain size, mineral content, fracture frequencies, or facies. For example, in sedimentary rocks, stiff limestone or sandstone layers commonly alternate with soft shale layers. In geothermal reservoirs fracture termination is important because non-stratabound fractures, that is, fractures not affected by layering, are more likely to form an interconnected fracture network than stratabound fractures, confined to single rock

  13. Fractal characterization of fracture surfaces in concrete

    Science.gov (United States)

    Saouma, V.E.; Barton, C.C.; Gamaleldin, N.A.

    1990-01-01

    Fractal geometry is used to characterize the roughness of cracked concrete surfaces through a specially built profilometer, and the fractal dimension is subsequently correlated to the fracture toughness and direction of crack propagation. Preliminary results indicate that the fracture surface is indeed fractal over two orders of magnitudes with a dimension of approximately 1.20. ?? 1990.

  14. Unsaturated flow and transport through fractured rock related to high-level waste repositories

    International Nuclear Information System (INIS)

    Research results are summarized for a US Nuclear Regulatory Commission contract with the University of Arizona focusing on field and laboratory methods for characterizing unsaturated fluid flow and solute transport related to high-level radioactive waste repositories. Characterization activities are presented for the Apache Leap Tuff field site. The field site is located in unsaturated, fractured tuff in central Arizona. Hydraulic, pneumatic, and thermal characteristics of the tuff are summarized, along with methodologies employed to monitor and sample hydrologic and geochemical processes at the field site. Thermohydrologic experiments are reported which provide laboratory and field data related to the effects conditions and flow and transport in unsaturated, fractured rock. 29 refs., 17 figs., 21 tabs

  15. Mobilities of radionuclides in fresh and fractured crystalline rock

    International Nuclear Information System (INIS)

    Sorption and migration of technetium, cesium and americium on fracture surfaces and fresh surfaces of granites taken from drilling cores from the Finnsjoen and Studsvik areas and the Stripa mine are reported. The three elements were used as reference elements with different chemistry and behaviour in water; under the conditions used in the experiments technetium exists as the heptavalent TcO-4-ion, cesium as the non-complexed monovalent cation Cs+ and americium as the strongly hydrolysed Am(OH)super (3-x) (x-1-4). The waters used were synthetic groundwaters representative of waters from the drilling holes. After the exposure of the fracture samples to spiked groundwater solutions for a period of three up to six months the penetration depths and concentration profiles were analysed and autoradiographs of cesium and americium distribution vs depth were taken. The sorption of technetium was found to be negligible. The transport of TcO-4 depends on accessibility to fractures and micro-fissures in the rock. Cesium is sorbed through an ion-exchange process. Migration of cesium depends not only on the transport in water into fractures and micro-fissures, but also on migration through mineral veins with a high CEC. Americium is strongly sorbed on most solid surfaces and did not migrate significantly during the contact time of three months. The diffusivity in granite was found to be around 10-13 m2/s for cesium; preliminary values for technetium and americium were 10-12m2/s and less than 10-16m2/s, respectively. (Authors)

  16. Monitoring borehole flow dynamics using heated fiber optic DTS in a fractured rock aquifer

    Science.gov (United States)

    Coleman, Thomas; Chalari, Athena; Parker, Beth; Munn, Jonathan; Mondanos, Michael

    2014-05-01

    Temperature profiles in fractured rock have long been used to identify and characterize flow in the rock formation or in the borehole. Fiber optic distributed temperature sensing (DTS) is a tool that allows for continuous borehole temperature profiling in space and time. Recent technology advancements in the spatial, temperature, and temporal resolutions of DTS systems now allow temperature profiling methods to offer improved insight into fractured rock hydrogeologic processes. An innovation in shallow borehole temperature logging utilizes high resolution DTS temperature profiling in sealed and heated boreholes to identify fractures with natural gradient groundwater flow by creating a thermal disequilibrium and monitoring the temperature response. This technique can also be applied to open well conditions to monitor borehole flow distributions caused by hydraulic perturbations such as pumping or injection. A field trial was conducted in Guelph, Ontario, Canada to determine the capabilities of heated DTS for flow monitoring in both open and sealed wells. Intelligent distributed acoustic sensing (iDAS) measurements for vertical seismic profiling were carried out simultaneously with the DTS measurements to assist with characterization of the fractured aquifer system. DTS heat pulse tests were conducted in a single well under sealed conditions for natural gradient flow measurements and open conditions to monitor flow distributions during injection and pumping. The results of these tests indicate that borehole flow distributions can be monitored using DTS and that active heating allows for further information about the hydrogeologic system to be determined than from the passive measurements alone. Depth-continuous transmissivity data from the borehole correlate well with the DTS testing results. DTS based flow monitoring systems may be useful for monitoring transient production and injection processes for a variety of applications including groundwater remediation

  17. Fracture Toughness Determination of Cracked Chevron Notched Brazilian Disc Rock Specimen via Griffith Energy Criterion Incorporating Realistic Fracture Profiles

    Science.gov (United States)

    Xu, Yuan; Dai, Feng; Zhao, Tao; Xu, Nu-wen; Liu, Yi

    2016-08-01

    The cracked chevron notched Brazilian disc (CCNBD) specimen has been suggested by the International Society for Rock Mechanics to measure the mode I fracture toughness of rocks, and has been widely adopted in laboratory tests. Nevertheless, a certain discrepancy has been observed in results when compared with those derived from methods using straight through cracked specimens, which might be due to the fact that the fracture profiles of rock specimens cannot match the straight through crack front as assumed in the measuring principle. In this study, the progressive fracturing of the CCNBD specimen is numerically investigated using the discrete element method (DEM), aiming to evaluate the impact of the realistic cracking profiles on the mode I fracture toughness measurements. The obtained results validate the curved fracture fronts throughout the fracture process, as reported in the literature. The fracture toughness is subsequently determined via the proposed G-method originated from Griffith's energy theory, in which the evolution of the realistic fracture profile as well as the accumulated fracture energy is quantified by DEM simulation. A comparison between the numerical tests and the experimental results derived from both the CCNBD and the semi-circular bend (SCB) specimens verifies that the G-method incorporating realistic fracture profiles can contribute to narrowing down the gap between the fracture toughness values measured via the CCNBD and the SCB method.

  18. Rock mass mechanical property estimations for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Rock mass mechanical properties are important in the design of drifts and ramps. These properties are used in evaluations of the impacts of thermomechanical loading of potential host rock within the Yucca Mountain Site Characterization Project. Representative intact rock and joint mechanical properties were selected for welded and nonwelded tuffs from the currently available data sources. Rock mass qualities were then estimated using both the Norwegian Geotechnical Institute (Q) and Geomechanics Rating (RMR) systems. Rock mass mechanical properties were developed based on estimates of rock mass quality, the current knowledge of intact properties, and fracture/joint characteristics. Empirical relationships developed to correlate the rock mass quality indices and the rock mass mechanical properties were then used to estimate the range of rock mass mechanical properties

  19. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 2. Characterization of low permeable and fractured sediments and rocks in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Gravesen, P.; Nilsson, B.; Schack Pedersen, S.A.; Binderup, M.; Laier, T.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. In Denmark, many different kinds of fine-grained sediments and crystalline rocks occur from the ground surface down to 300 meters depth. Therefore, the possible geological situations include sediments and rocks of different composition and age. These situations are geographical distributed over large areas of Denmark. These sediments and rocks are shortly described based on existing information and include five different major types of sediments and rocks: 1: Crystalline granite and gneiss of Bornholm (because these rock types are host for waste disposals in many other countries). 2: Sandstone and shale from Bornholm (as these sediments are rela- tively homogeneous although they have fracture permeability). 3: Chalk and limestone (because these sediments may act as low permeable seals, but in most areas they act as groundwater reservoirs). 4: Fine-grained Tertiary clay deposits (as these sediments have a low permeability, are widely distributed and can reach large thicknesses). 5: Quaternary glacial, interglacial and Holocene clay deposits. These sediments are distributed all over Denmark. Following the descriptions of the geologic deposits, the areas below (including several possible locations for waste disposal sites) are selected for further investigation. The Precambrian basement rocks of Bornholm could be host rocks for the disposal. The rock types for further evaluation will be: Hammer Granite, Vang Granite, Roenne Granite, Bornholm gneiss, Paradisbakke Migmatite and Alminding Granite. In the Roskilde Fjord area around Risoe, a combination of Paleocene clays, meltwater clay and clayey till could be interesting. The area is partly included in the OSD area in North Sjaelland but

  20. Altered crystalline rock distributed along groundwater conductive fractures and the retardation capacity in the orogenic field of Japan - 16332

    International Nuclear Information System (INIS)

    In the orogenic field Japanese islands, there are wide areas of crystalline rocks that inevitably contain groundwater conductive fractures associated with alteration zones. However, little attention has been given to the formation process and possible influence on the radionuclides migration from radioactive waste repository that might be sited within crystalline rock. In particular, the influences of alteration minerals and micro-fractures, due to chemical sorption and/or physical retardation are required to assess the realistic barrier function. In order to understand the alteration process and the retardation capacity, detailed mineralogical and physico-chemical characterization of altered crystalline rocks have been carried out. Mineralogical analysis reveals that the altered crystalline rocks have been formed through basically two stages of water-rock interaction during and after uplift. Physico-chemical characteristics including laboratory sorption experiments show that altered crystalline rock has a certain volume of accessible porosity, particularly in plagioclase grains, which would influence on nuclide retardation more than the accessible porosity in other minerals present, such as biotite. These results provide confidence that even altered and fractured parts of any crystalline rock that might be encountered in a site for the disposal of high-level radioactive waste may still play a role of barrier function. (authors)

  1. Validation studies for assessing unsaturated flow and transport through fractured rock

    International Nuclear Information System (INIS)

    *The objectives of this contract are to examine hypotheses and conceptual models concerning unsaturated flow and transport through heterogeneous fractured rock and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models. Important new information is presented such as the application and evaluation of procedures for estimating hydraulic, pneumatic, and solute transport coefficients for a range of thermal regimes. A field heater experiment was designed that focused on identifying the suitability of existing monitoring equipment to obtain required data. A reliable method was developed for conducting and interpreting tests for air permeability using a straddle-packer arrangement. Detailed studies of fracture flow from Queen Creek into the Magina Copper Company ore haulage tunnel have been initiated. These studies will provide data on travel time for transport of water and solute in unsaturated tuff. The collection of rainfall runoff, and infiltration data at two small watersheds at the Apache Leap Tuff Site enabled us to evaluate the quantity and rate of water infiltrating into the subsurface via either fractures or matrix. Characterization methods for hydraulic parameters relevant to Weigh-level waste transport, including fracture apertures, transmissivity, matrix porosity, and fracture wetting front propagation velocities, were developed

  2. Validation studies for assessing unsaturated flow and transport through fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Bassett, R.L.; Neuman, S.P.; Rasmussen, T.C.; Guzman, A.; Davidson, G.R.; Lohrstorfer, C.F. [Arizona Univ., Tucson, AZ (United States). Dept. of Hydrology and Water Resources

    1994-08-01

    *The objectives of this contract are to examine hypotheses and conceptual models concerning unsaturated flow and transport through heterogeneous fractured rock and to design and execute confirmatory field and laboratory experiments to test these hypotheses and conceptual models. Important new information is presented such as the application and evaluation of procedures for estimating hydraulic, pneumatic, and solute transport coefficients for a range of thermal regimes. A field heater experiment was designed that focused on identifying the suitability of existing monitoring equipment to obtain required data. A reliable method was developed for conducting and interpreting tests for air permeability using a straddle-packer arrangement. Detailed studies of fracture flow from Queen Creek into the Magina Copper Company ore haulage tunnel have been initiated. These studies will provide data on travel time for transport of water and solute in unsaturated tuff. The collection of rainfall runoff, and infiltration data at two small watersheds at the Apache Leap Tuff Site enabled us to evaluate the quantity and rate of water infiltrating into the subsurface via either fractures or matrix. Characterization methods for hydraulic parameters relevant to Weigh-level waste transport, including fracture apertures, transmissivity, matrix porosity, and fracture wetting front propagation velocities, were developed.

  3. Fracture Analysis of basement rock: A case example of the Eastern Part of the Peninsular Malaysia

    International Nuclear Information System (INIS)

    In general, reservoir rocks can be defined into carbonates, tight elastics and basement rocks. Basement rocks came to be highlighted as their characteristics are quite complicated and remained as a significant challenge in exploration and production area. Motivation of this research is to solve the problem in some area in the Malay Basin which consist fractured basement reservoirs. Thus, in order to increase understanding about their characteristic, a study was conducted in the Eastern part of the Peninsular Malaysia. The study includes the main rock types that resemble the offshore rocks and analysis on the factors that give some effect on fracture characteristic that influence fracture systems and fracture networks. This study will allow better fracture prediction which will be beneficial for future hydrocarbon prediction in this region

  4. Semi-analytical treatment of fracture/matrix flow in a dual-porosity simulator for unsaturated fractured rock masses

    International Nuclear Information System (INIS)

    A semi-analytical dual-porosity simulator for unsaturated flow in fractured rock masses has been developed. Fluid flow between the fracture network and the matrix blocks is described by analytical expressions that have been derived from approximate solutions to the imbibition equation. These expressions have been programmed into the unsaturated flow simulator, TOUGH, as a source/sink term. Flow processes are then simulated using only fracture elements in the computational grid. The modified code is used to simulate flow along single fractures, and infiltration into pervasively fractured formations

  5. Hydro-thermo-mechanical response of a fractured rock block

    International Nuclear Information System (INIS)

    Hydro-thermo-mechanical effects in fractured rocks are important in many engineering applications and geophysical processes. Modeling these effects is made difficult by the fact that the governing equations are nonlinear and coupled, and the problems to be solved are three dimensional. In this paper we describe a numerical code developed for this purpose. The code is finite element based to allow for complicated geometries, and the time differencing is implicit, allowing for large time steps. The use of state-of-the-art equation solvers has resulted in a practical code. The code is capable of fully three dimensional simulations, however, in this paper we consider only the case of two dimensional heat and mass flow coupled to one dimensional deformation. Partial verification of the code is obtained by comparison with published semianalytical results. Several examples are presented to demonstrate the effects of matrix expansion, due to pore pressure and heating, on fracture opening due to fluid injection. 16 refs., 11 figs

  6. Application of multiple tracer test for single fracture in sedimentary rock

    International Nuclear Information System (INIS)

    The evaluation of the advection-dispersion in the fracture and diffusion into the matrix from fracture is important to describe the mass transport processes in fractured porous media such as a sedimentary rock. However, it is often difficult to uniquely determine a number of parameters relevant to these phenomena, such as the fracture aperture, dispersivity coefficient, and matrix diffusion coefficient, from a data set of single tracer test. In this report, one-dimensional multiple tracer test for single fracture in a sedimentary rock block was conducted under the condition of injection rate for the unique parameter estimation suggested by authors. (author)

  7. Experimental study on water seepage constitutive law of fracture in rock under 3D stress

    Institute of Scientific and Technical Information of China (English)

    赵阳升; 杨栋; 郑少河; 胡耀青

    1999-01-01

    The test method and test result of water seepage constitutive law of fracture in rock under 3D stress are introduced. A permeability coefficient formula including the coefficient of fracture connection, normal stiffness, 3D stress, initial width of fracture and Poisson ratio is presented based on the analysis of the test theory and its result.

  8. Quantifying Fracture Heterogeneity in Different Domains of Folded Carbonate Rocks to Improve Fractured Reservoir Analog Fluid Flow Models

    OpenAIRE

    Bisdom, K.; Bertotti, G.; Gauthier, B.D.M.; Hardebol, N.J.

    2013-01-01

    Fluid flow in carbonate reservoirs is largely controlled by multiscale fracture networks. Significant variations of fracture network porosity and permeability are caused by the 3D heterogeneity of the fracture network characteristics, such as intensity, orientation and size. Characterizing fracture network heterogeneity is therefore essential in order to understand and predict fluid flow in fractured reservoirs, but this cannot be accomplished using only 1D data from wells, which is usually t...

  9. Workflow Integrating Fracture Permeability Characterization and Multiphase Flow Modeling for CO2 Storage and Risk Assessments in Fractured Reservoirs

    Science.gov (United States)

    Jin, G.; Pashin, J. C.

    2014-12-01

    Ensuring safe and permanent storage of sequestered CO2in naturally fractured geological media is vital for the success of geologic storage projects. Critical needs exist to develop advanced techniques to characterize and model fluid transport in naturally fractured reservoirs and seals. We have developed a scale-independent 3-D stochastic fracture permeability characterization workflow that employs multiple discrete fracture network (DFN) realizations. The workflow deploys a multidirectional flux-based upwind weighting scheme that is capable of modeling multiphase flow in highly heterogeneous fractured media. The techniques employed herein show great promise for increasing the accuracy of capacity determinations and the prediction of pressure footprints associated with injected CO2 plumes. The proposed workflow has been conducted in a simulation study of flow transport and risk assessment of CO2 injection into a deep fractured saline formation using geological parameters from Knox Group carbonate and Red Mountain shale rocks in central Alabama. A 3-D fracture permeability map was generated from multiple realizations of DFN models. A multiphase flow model composed of supercritical CO2 and saline water was applied to simulate CO2 plume evolution during and after injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes. The spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant lateral spreading of CO2 near the top of the fractured formations because of the buoyancy of injectate in rock matrix and strata-bound vertical fractures. Risk assessment shows that although pressure drops faster in the fractured formations than in those lacking fractures, lateral movement of CO2 along natural fractures necessitates that the injectate be confined by widespread seals with high integrity.

  10. The Model for Calculating Pore Evaluation of Fractal Rock Body Under Hydraulic Fracturing

    OpenAIRE

    Wang, Tingting; Wang, Chen; ZHAO Wanchun; Li, Xia; Liu, Yu

    2014-01-01

    In general, the pore medium of rock has fractal characters. In order to calculate the change regulations of porosity and evaluation character of the rock under hydraulic fracturing accurately, in this paper, a new damage variable was defined to describe the change of porosity. The model for calculating pore evaluation of the fractal fracturing rock body was established according to the principle of conservation of energy, considering the strain energy, the cracks propagation energy and the gr...

  11. Solute transport through fractured rocks : the influence of geological heterogeneities and stagnant water zones

    OpenAIRE

    Mahmoudzadeh, Batoul

    2016-01-01

    To describe reactive solute transport and retardation through fractured rocks, three models are developed in the study with different focuses on the physical processes involved and different simplifications of the basic building block of the heterogeneous rock domain. The first model evaluates the effects of the heterogeneity of the rock matrix and the stagnant water zones in part of the fracture plane. The second and the third models are dedicated to different simplifications of the flow cha...

  12. Comments on chevron bend specimen for determining fracture toughness of rock

    Institute of Scientific and Technical Information of China (English)

    孙宗颀; 陈枫; 徐纪成

    2001-01-01

    Based on a number of tests on different rocks, Suggested Methods for Determining the Fracture Toughness of Rock (SMs) was reviewed. The advantages of SMs are obvious, but some problems are also discovered. A serious one is that the nonlinear corrected fracture toughness of chevron bend specimens, KCCB, is less than the uncorrected one, KCB, for hard rock like granite, marble and others. The reason is discussed and the proposal is given.

  13. Estimating hydraulic conductivity of fractured rocks from high-pressure packer tests with an Izbash's law-based empirical model

    Science.gov (United States)

    Chen, Yi-Feng; Hu, Shao-Hua; Hu, Ran; Zhou, Chuang-Bing

    2015-04-01

    High-pressure packer test (HPPT) is an enhanced constant head packer test for characterizing the permeability of fractured rocks under high-pressure groundwater flow conditions. The interpretation of the HPPT data, however, remains difficult due to the transition of flow conditions in the conducting structures and the hydraulic fracturing-induced permeability enhancement in the tested rocks. In this study, a number of HPPTs were performed in the sedimentary and intrusive rocks located at 450 m depth in central Hainan Island. The obtained Q-P curves were divided into a laminar flow phase (I), a non-Darcy flow phase (II), and a hydraulic fracturing phase (III). The critical Reynolds number for the deviation of flow from linearity into phase II was 25-66. The flow of phase III occurred in sparsely to moderately fractured rocks, and was absent at the test intervals of perfect or poor intactness. The threshold fluid pressure between phases II and III was correlated with RQD and the confining stress. An Izbash's law-based analytical model was employed to calculate the hydraulic conductivity of the tested rocks in different flow conditions. It was demonstrated that the estimated hydraulic conductivity values in phases I and II are basically the same, and are weakly dependent on the injection fluid pressure, but it becomes strongly pressure dependent as a result of hydraulic fracturing in phase III. The hydraulic conductivity at different test intervals of a borehole is remarkably enhanced at highly fractured zone or contact zone, but within a rock unit of weak heterogeneity, it decreases with the increase of depth.

  14. Joint seismic, hydrogeological, and geomechanical investigations of a fracture zone in the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. From 1987 to 1989 the United States Department of Energy (DOE) and the Swiss Cooperative for the Storage of Nuclear Waste (Nagra) participated in an agreement to carryout experiments for understanding the effect of fractures in the storage and disposal of nuclear waste. As part of this joint work field and laboratory experiments were conducted at a controlled site in the Nagra underground Grimsel test site in Switzerland. The primary goal of these experiments in this fractured granite was to determine the fundamental nature of the propagation of seismic waves in fractured media, and to relate the seismological parameters to the hydrological parameters. The work is ultimately aimed at the characterization and monitoring of subsurface sites for the storage of nuclear waste. The seismic experiments utilizes high frequency (1000 to 10,000 Hertz) signals in a cross-hole configuration at scales of several tens of meters. Two-, three-, and four-sided tomographic images of the fractures and geologic structure were produced from over 60,000 raypaths through a 10 by 21 meter region bounded by two nearly horizontal boreholes and two tunnels. Intersecting this region was a dominant fracture zone which was the target of the investigations. In addition to these controlled seismic imaging experiments, laboratory work using core from this region were studied for the relation between fracture content, saturation, and seismic velocity and attenuation. In-situ geomechanical and hydrologic tests were carried out to determine the mechanical stiffness and conductivity of the fractures. 20 refs., 90 figs., 6 tabs

  15. A case study of fluid flow in fractured rock mass based on 2-D DFN modeling

    Science.gov (United States)

    Han, Jisu; Noh, Young-Hwan; Um, Jeong-Gi; Choi, Yosoon

    2014-05-01

    A two dimensional steady-state fluid flow through fractured rock mass of an abandoned copper mine in Korea is addressed based on discrete fracture network modeling. An injection well and three observation wells were installed at the field site to monitor the variations of total heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability. First, the two dimensional stochastic fracture network model was built and validated for a granitic rock mass using the geometrical and statistical data obtained from surface exposures and borehole logs. This validated fracture network model was combined with the fracture data observed on boreholes to generate a stochastic-deterministic fracture network system. Estimated apertures for each of the fracture sets using permeability data obtained from borehole packer tests were discussed next. Finally, a systematic procedure for fluid flow modeling in fractured rock mass in two dimensional domain was presented to estimate the conductance, flow quantity and nodal head in 2-D conceptual linear pipe channel network. The results obtained in this study clearly show that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic behavior of fractured rock masses.

  16. Design of a meso-scale poly-axial testing device for examining the role of anisotropic stress on fluid flow in fractured rock

    Science.gov (United States)

    Gosselin, M. J.; Boutt, D. F.

    2005-12-01

    Fluid flow in the shallow crust (meters) is not typically sensitive to the low magnitude crustal stress conditions present. Fractured rocks, unlike porous sedimentary rocks, in this respect are unique since most un-cemented fractures are compliant at lower stress states and fracture apertures can be strongly influenced by the loading. As a result, fracture permeability of the rocks can be strongly dependent on depth and loading conditions (e.g. residual tectonic stresses). This has implications for depth of flow systems and connections between deeper and shallower systems. This paper presents the design of a poly-axial testing apparatus for testing the role of low magnitude (flow and transport properties of fractured rock on meso-scale samples of fractured rock. A "true-triaxial" stress state will allow a more accurate description of shallow crustal conditions and isolation of the role of these stresses on fluid flow. Previous investigations into stress induced anisotropic conditions in fractured rocks have used traditional triaxial stress conditions to simulate crustal conditions. We constructed a frame with 6 loading pistons, two on each axis, which will be capable of stressing a cubic sample in 3 independent directions, thus creating a more realistic 3D stress state in the rock. The frame allows access to the sample on all sides. Six separate platens isolate each face of the sample permitting the measurement of fluid pressure response to off axis loading. The platens are designed to transfer the loads to the sample while allowing fluid flow monitoring and sampling. Design considerations also include geophysical characterization of the sample through both ultrasonic and NMR testing. We hope to quantify the relationships between stress fields and fluid flow through the fractured rock for low crustal stresses. Specifically we expect to be able to more completely quantify the aperture reduction on a fractured surface when a stress is not applied normal to the

  17. AVAZ inversion for fracture weakness parameters based on the rock physics model

    International Nuclear Information System (INIS)

    Subsurface fractures within many carbonates and unconventional resources play an important role in the storage and movement of fluid. The more reliably the detection of fractures could be performed, the more finely the reservoir description could be made. In this paper, we aim to propose a method which uses two important tools, a fractured anisotropic rock physics effective model and AVAZ (amplitude versus incident and azimuthal angle) inversion, to predict fractures from azimuthal seismic data. We assume that the rock, which contains one or more sets of vertical or sub-vertical fractures, shows transverse isotropy with a horizontal axis of symmetry (HTI). Firstly, we develop one improved fractured anisotropic rock physics effective model. Using this model, we estimate P-wave velocity, S-wave velocity and fracture weaknesses from well-logging data. Then the method is proposed to predict fractures from azimuthal seismic data based on AVAZ inversion, and well A is used to verify the reliability of the improved rock physics effective model. Results show that the estimated results are consistent with the real log value, and the variation of fracture weaknesses may detect the locations of fractures. The damped least squares method, which uses the estimated results as initial constraints during the inversion, is more stable. Tests on synthetic data show that fracture weaknesses parameters are still estimated reasonably with moderate noise. A test on real data shows that the estimated results are in good agreement with the drilling. (paper)

  18. Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured rock

    OpenAIRE

    Elkhoury, Jean E.; Niemeijer, André; Brodsky, Emily E.; Marone, Chris

    2011-01-01

    We report on laboratory experiments designed to investigate the influence of pore pressure oscillations on the effective permeability of fractured rock. Berea sandstone samples were fractured in situ under triaxial stresses of tens of megapascals, and deionized water was forced through the incipient fracture under conditions of steady and oscillating pore pressure. We find that short-term pore pressure oscillations induce long-term transient increases in effective permeability of the fracture...

  19. Thermo-hydro-mechanical processes in fractured rock formations during glacial advance

    Science.gov (United States)

    Selvadurai, A. P. S.; Suvorov, A. P.; Selvadurai, P. A.

    2014-11-01

    The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach that takes into account thermo-poroelasticity of the intact geological formation and the presence of a system of sessile but hydraulically interacting fractures (fracture zones). The modeling considers coupled thermo-hydro-mechanical effects in both the intact rock and the fracture zones due to contact normal stresses and fluid pressure at the base of the advancing glacier. Computational modelling provides an assessment of the role of fractures that can modify the pore pressure generation within the entire rock mass.

  20. Thermo-hydro-mechanical processes in fractured rock formations during a glacial advance

    Science.gov (United States)

    Selvadurai, A. P. S.; Suvorov, A. P.; Selvadurai, P. A.

    2015-07-01

    The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach that takes into account thermo-poroelasticity of the intact geological formation and the presence of a system of sessile but hydraulically interacting fractures (fracture zones). The modelling considers coupled thermo-hydro-mechanical effects in both the intact rock and the fracture zones due to contact normal stresses and fluid pressure at the base of the advancing glacier. Computational modelling provides an assessment of the role of fractures in modifying the pore pressure generation within the entire rock mass.

  1. Seepage properties of a single rock fracture subjected to triaxial stresses

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Coupled properties of seepage and stress fields of rock fractures greatly influence the safety of geotechnical engineering work.Based on the closing defomation principle of a single rock fracture,equations describing relationships of aperture and triaxial stresses are developed,and coupled models of seepage and triaxial stresses are proposed.Seepage tests are conducted under triaxial stress conditions by adopting hard granite specimens with an artificial fracture.The results show that the normal stress,lateral stress and seepage pressure significantly affect the flow behavior of rock fractures,and that hydraulic conductivity decreases with increasing normal.stress,but increases with rising lateral stress or seepage pressure.In addition,an exponential function provides a good representation of the seepage characteristics of a single rock fracture subjected to triaxial stresses.

  2. Lineament mapping of vertical fractures of rock outcrops by remote sensing images

    Science.gov (United States)

    Matarrese, Raffaella; Masciopinto, Costantino

    2016-04-01

    The monitoring of hydrological processes within the vadose zone is usually difficult, especially in the presence of compact rock subsoil. The possibility of recognizing the trend of the structural lineaments in fractured systems has important fallout in the understanding water infiltration processes, especially when the groundwater flow is strongly affected by the presence of faults and fractures that constitute the preferred ways of water fluxes. This study aims to detect fracture lineaments on fractured rock formations from CASI hyperspectral airborne VNIR images, with a size of 60 cm of the spatial resolution, and collected during November 2014. Lineaments detected with such high resolution have been compared with the fracture lineaments detected by a Landsat 8 image acquired at the same time of the CASI acquisition. The method has processed several remote sensed images at different spatial resolution, and it has produced the visualization of numerous lineament maps, as result of the vertical and sub-vertical fractures of the investigated area. The study has been applied to the fractured limestone outcrop of the Murgia region (Southern Italy). Here the rock formation hosts a deep groundwater, which supplies freshwater for drinking and irrigation purposes. The number of the fractures allowed a rough estimation of the vertical average hydraulic conductivity of the rock outcrop. This value was compared with field saturated rock hydraulic conductivity measurements derived from large ring infiltrometer tests carried out on the same rock outcrop.

  3. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    Science.gov (United States)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (Muschelkalk and the sandstones of Buntsandstein also. For the ongoing project at Rittershoffen, two deep boreholes, drilled down to 2.7 km depth target a reservoir in the sandstones of Buntsandstein and in the granitic basement interface. The thermal, hydraulic and chemical stimulations of the first well lead the project to an economic profitability with a temperature of 170° C and an industrial flow rate of 70 L/s. The deep sedimentary cover and the top of the granitic basement are the main target of the geothermal project in the URG. Permeability of fractured rocks after drilling operations or

  4. Analysis of hydromechanical well tests in fractured sedimentary rock at the NAWC site, New Jersey

    Science.gov (United States)

    Murdoch, L.C.; Hisz, D.B.; Ebenhack, J.F.; Fowler, D.E.; Tiedeman, C.R.; Germanovich, L.N.

    2009-01-01

    Hydromechanical well tests involve measuring and interpreting displacements along with hydraulic heads that result when a hydraulic stress is applied to a well. The motivation behind this type of test is that the displacement measurements provide information about the constitutive properties and structure of the aquifer that go beyond what can be derived from pressure signals alone. We used a borehole extensometer to measure transient displacements with a resolution of +/- 25 nm during well tests in fractured mudstone and sandstone at the former Naval Air Warfare Center in West Trenton, New Jersey. One well showed opening displacements on the order of 300nm during slug tests with maximum head changes of 7 m. Inversion of the transient signals suggest that a conductive fracture (aperture = 380 ??m, normal stiffness = 8??10 8 Pa/m) was largely responsible for the pressure signal, but the displacement signal appears to have resulted from both the fracture and deformation of the enveloping sandstone (E = 5 GPa, permeability = 0.6 md). At another well, an anomalous but repeatable signal was characterized by closing displacements during increasing pressure. This displacement signal can be explained by a hydraulically active fracture below the extensometer that became pressurized and compressed the overly sediments. Poroelastic theoretical analyses were inverted to estimate parameters and verify interpretations. Copyright 2009 ARMA, American Rock Mechanics Association.

  5. Theoretical and laboratory investigations of flow through fractures in crystalline rock

    International Nuclear Information System (INIS)

    A theoretical model developed for flow through a deformable fracture subject to stresses was successfully tested against laboratory experiments. The model contains no arbitrary parameters and can be used to predict flow rates through a single fracture if the fractional fracture contact area can be estimated and if stress-deformation data are available. These data can be obtained from laboratory or in situ tests. The model has considerable potential for practical application. The permeability of ultralarge samples of fractured crystalline rock as a function of stresses was measured. Results from tests on a pervasively fractured 1-m-diameter specimen of granitic rock showed that drastically simplifying assumptions must be used to apply theoretical models to this type of rock mass. Simple models successfully reproduce the trend of reduced permeability as stress is applied in a direction normal to the fracture plane. The tests also demonstrated how fracture conductivity increases as a result of dilatancy associated with shear displacements. The effect of specimen size on the hydraulic properties of fractured rock was also investigated. Permeability tests were performed on specimens of charcoal black granite containing a single fracture subjected to normal stress. Results are presented for tests performed on a 0.914-m-diameter specimen and on the same specimen after it had been reduced to 0.764 m in diameter. The data show that fracture conductivity is sensitive to stress history and sample disturbance

  6. Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks

    Science.gov (United States)

    Liu, Richeng; Li, Bo; Jiang, Yujing; Huang, Na

    2016-06-01

    Fracture networks play a more significant role in conducting fluid flow and solute transport in fractured rock masses, comparing with that of the rock matrix. Accurate estimation of the permeability of fracture networks would help researchers and engineers better assess the performance of projects associated with fluid flow in fractured rock masses. This study provides a review of previous works that have focused on the estimation of equivalent permeability of two-dimensional (2-D) discrete fracture networks (DFNs) considering the influences of geometric properties of fractured rock masses. Mathematical expressions for the effects of nine important parameters that significantly impact on the equivalent permeability of DFNs are summarized, including (1) fracture-length distribution, (2) aperture distribution, (3) fracture surface roughness, (4) fracture dead-end, (5) number of intersections, (6) hydraulic gradient, (7) boundary stress, (8) anisotropy, and (9) scale. Recent developments of 3-D fracture networks are briefly reviewed to underline the importance of utilizing 3-D models in future research.

  7. Determination of the location and connectivity of fractures in metamorphic rock with in-hole tracers

    International Nuclear Information System (INIS)

    In-hole tracer tests were used in a geohydrologic investigation of metamorphic rock at the Savannah River Plant near Aiken, SC to locate water-transmitting fractures and to determine the connectivity of these fractures between boreholes. Only after development of a conceptual model of the fracture occurrence and connection could the proper methods of analysis for the hydraulic parameters be selected. In-hole tracers were used to locate fractures in a borehole and supplemented other methods, such as core inspection, geophysical logs, borehole wall imaging techniques, dry drilling, and packer tests. The first three of these do not necessarily investigate fluid-transmitting fractures. In the study of the connectivity of fractures between boreholes, the in-hole tracer techniques supplemented determinations by the rapidity of hydraulic response and the use of between-well tracer tests. In hydraulically transmissive rock, fractures were located by changes in the velocity of the tracer pulse in response to adding fluid to the well. In virtually impermeable rock, the movement of the tracer pulse in the rock was normalized to the movement of another tracer pulse in the cased portion of the well because the movement was so slow that direct measurement was difficult. Connectivity of fractures between boreholes was determined by placing an in-hole tracer in one hole and measuring the movement induced by pumping a nearby borehole. From this test, it was determined that the fractures were interlacing, and single fractures did not extend from one borehole directly to the other

  8. Couple analyzing the acoustic emission characters from hard composite rock fracture

    Institute of Scientific and Technical Information of China (English)

    Xingping Lai; Linhai Wang; Meifeng Cai

    2004-01-01

    Rock mass is fractured media. Its fracture is a nonlinear process. The accumulation of acoustic emission (AE) is closely related to the degree of damage. The dynamics problem is simply described based on the non-equilibrium statistical theory of crack evolvement, trying to use the hybrid analysis of the statistical theory and scan electron microscopy (SEM), the characters of AE sig nals from rock damage in a mined-out area is synthetically analyzed and evaluated. These provide an evidence to reverse deduce and accurately infer the position of rock fracture for dynamical hazard control.

  9. Fluid-dependent anisotropy and experimental measurements in synthetic porous rocks with controlled fracture parameters

    International Nuclear Information System (INIS)

    In this study, we analyse the influence of fluid on P- and S-wave anisotropy in a fractured medium. Equivalent medium theories are used to describe the relationship between the fluid properties and the rock physics characteristics in fractured rocks, and P-wave and S-wave velocities and anisotropy are considered to be influenced by fluid saturation. However, these theoretical predictions require experimental measurement results for calibration. A new construction method was used to create synthetic rock samples with controlled fracture parameters. The new construction process provides synthetic rocks that have a more realistic mineral composition, porous structure, cementation and pressure sensitivity than samples used in previous research on fractured media. The synthetic rock samples contain fractures which have a controlled distribution, diameter, thickness and fracture density. In this study, the fracture diameter was about 4 mm, the thickness of fractures was about 0.06 mm, and the fracture density in the two fractured rock samples was about 3.45%. SEM images show well-defined penny-shaped fractures of 4 mm in length and 0.06 mm in width. The rock samples were saturated with air, water and oil, and P- and S-wave velocities were measured in an ultrasonic measurement system. The laboratory measurement results show that the P-wave anisotropy is strongly influenced by saturated fluid, and the P-wave anisotropy parameter, ε, has a much larger value in air saturation than in water and oil saturations. The S-wave anisotropy decreases when the samples are saturated with oil, which can be caused by high fluid viscosity. In the direction perpendicular to the fractures (the 0° direction), shear-wave splitting is negligible, and is similar to the blank sample without fractures, as expected. In the direction parallel to the fractures (the 90° direction) shear-wave splitting is significant. The fractured rock samples show significant P- and S-wave anisotropy caused

  10. Impact of hydraulic perforation on fracture initiation and propagation in shale rocks

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xi; JU Yang; YANG Yong; SU Sun; GONG WenBo

    2016-01-01

    To enhance the oil and gas recovery rate,hydraulic fracturing techniques have been widely adopted for stimulation of low-permeability reservoirs.Pioneering work indicates that hydraulic perforation and layout could significantly affect fracture initiation and propagation in low-permeability reservoir rocks subjected to complex in-situ stresses.This paper reports on a novel numerical method that incorporates fracture mechanics principles and the numerical tools FRANC3D and ANSYS to investigate the three-dimensional initiation and propagation behavior of hydro-fracturing cracks in shale rock.Considering the transverse isotropic property of shale rocks,the mechanical parameters of reservoir rocks attained from laboratory tests were adopted in the simulation.The influence of perforation layouts on the 3D initiation of hydro-fracturing fractures in reservoir rocks under geo-stresses was quantitatively illuminated.The propagation and growth of fractures in three dimensions in different perforating azimuth values were illustrated.The results indicate that:1) the optimal perforation direction should be parallel to the maximum horizontal principal stress,2) the crack plane gradually turns toward the direction of the maximum horizontal principal stress when they are not in parallel,3) compared with the linear and symmetric pattern,the staggered perforation is the optimal one,4) the proper perforation density is four to six holes per meter,5) the optimal perforation diameter in this model is 30 mm,and 6) the influence of the perforation depth on the fracture initiation pressure is low.

  11. Numerical simulation of Fluid-Rock coupling heat transfer in naturally fractured geothermal system

    International Nuclear Information System (INIS)

    Estimating heat extraction from naturally fractured geothermal systems is a challenging task. Most of the previous works in this area assumed an instantaneous local thermal equilibrium while simulating heat extraction from the fractured geothermal systems. This paper investigates the role of heat transfer between the rock matrix and circulating fluid on economic hot water production from fractured geothermal systems. For this purpose a numerical procedure is developed by coupling fluid flow with heat transfer. The novelty of this approach lies in its dynamic treatment of the characteristic properties (aperture, length and orientation) of individual fractures in simulating fluid flow and heat transfer between rock and circulating fluid. A naturally fractured geothermal system with a medium fracture density of 0.05 m-1 is chosen for a case study. The results of this study have shown that heat transfer between rock and fluid and fracture connectivity has a profound effect on the economic potential of a geothermal reservoir. - Highlights: → The results of this study have shown that heat transfer between rock and fluid has profound on the economic potential of the geothermal reservoir. → Estimation of heat extraction from naturally fractured geothermal systems is a challenging task. → A numerical procedure is developed by coupling the fluid flow model with heat transfer model. → The heat transfer coefficient value depends on the properties of the rock, circulating fluid and fluid velocity.

  12. Probabilistic fracture network models for preliminary site characterization

    International Nuclear Information System (INIS)

    Ontario Power Generation's Deep Geologic Repository Technology Program has developed a geostatistical procedure for creating 3D fracture network models (FNMs) that honour the types of information typically available for preliminary site characterization: detailed information on the locations of surface lineaments from aerial photography and remote sensing; regional tectonic information on stress; geomechanical and structural geology principles; field data gathered from geologically analogous sites. This approach provides a systematic and traceable method that is flexible and that accommodates data from many different sources. The detailed, complex and realistic models of 3D fracture geometry produced by this method can serve as the basis for developing rock property models to be used in flow and transport studies. In addition to being ideally suited to preliminary site characterization, the approach also readily incorporates field data that may become available during subsequent site investigations, including ground reconnaissance, borehole programs and other subsurface studies. The FNMs from this method are probabilistic in the sense that they consist of a family of equally likely renditions of fracture geometry, each one honouring the same surface and subsurface constraints. Such probabilistic models are well suited to studying issues that involve risk assessment and quantification of uncertainty. The geostatistical procedure for simulating FNMs is described, its use in case study examples is presented, and the realism of its fracture geometries is tested using field data collected from the Laegerdorf chalk quarry in northern Germany. (author)

  13. Hydraulic Fracturing of Heterogeneous Rock Monitored by Acoustic Emission

    Science.gov (United States)

    Stanchits, Sergey; Burghardt, Jeffrey; Surdi, Aniket

    2015-11-01

    In this paper, the results of laboratory studies of hydraulic fracture in homogeneous sandstone blocks with man-made interfaces and heterogeneous shale blocks with weak natural interfaces are reported. Tests were conducted under similar stress conditions, with fluids of different viscosity and at different injection rates. The measurements and analysis allows the identification of fracture initiation and behavior. Fracturing with high-viscosity fluids resulted in stable fracture propagation initiated before breakdown, while fracturing with low-viscosity fluids resulted in unstable fracture propagation initiated almost simultaneously with breakdown. Analysis also allows us to measure the fluid volume entering the fracture and the fracture volume. Monitoring of acoustic emission hypocenter localizations, indicates the development of created fractured area including the intersection with interfaces, fluid propagation along interfaces, crossing interfaces, and approaching the boundaries of the block. We observe strong differences in hydraulic fracture behavior, fracture geometry and fracture propagation speed, when fracturing with water and high-viscosity fluids. We also observed distinct differences between sandstone blocks and shale blocks, when a certain P-wave velocity ray path is intersected by the hydraulic fracture. The velocity increases in sandstones and decreases in shale.

  14. Geophysical characterization of fractured bedrock at Site 8, former Pease Air Force Base, Newington, New Hampshire

    Science.gov (United States)

    Mack, Thomas J.; Degnan, James R.

    2003-01-01

    Borehole-geophysical logs collected from eight wells and direct-current resistivity data from three survey lines were analyzed to characterize the fractured bedrock and identify transmissive fractures beneath the former Pease Air Force Base, Newington, N.H. The following logs were used: caliper, fluid temperature and conductivity, natural gamma radiation, electromagnetic conductivity, optical and acoustic televiewer, and heat-pulse flowmeter. The logs indicate several foliation and fracture trends in the bedrock. Two fracture-correlated lineaments trending 28? and 29?, identified with low-altitude aerial photography, are coincident with the dominant structural trend. The eight boreholes logged at Site 8 generally have few fractures and have yields ranging from 0 to 40 gallons per minute. The fractures that probably resulted in high well yields (20?40 gallons per minute) strike northeast-southwest or by the right hand rule, have an orientation of 215?, 47?, and 51?. Two-dimensional direct-current resistivity methods were used to collect detailed subsurface information about the overburden, bedrock-fracture zone depths, and apparent-dip directions. Analysis of data inversions from data collected with dipole-dipole and Schlumberger arrays indicated electrically conductive zones in the bedrock that are probably caused by fractured rock. These zones are coincident with extensions of fracture-correlated lineaments. The fracture-correlated lineaments and geophysical-survey results indicate a possible northeast-southwest anisotropy to the fractured rock.

  15. Fractured-rock permeability-versus-stress relationships from in situ experiments

    Science.gov (United States)

    Rutqvist, Jonny

    2016-04-01

    The purpose of this presentation is (1) to review field data on stress-induced permeability changes in fractured rock, (2) to describe back-analysis of fractured rock stress-versus-permeability relationships through model calibration against such field data, and (3) to discuss observations of chemically mediated fracture surface compaction and its effect on fractured rock permeability. Reviewed field data on stress-induced permeability changes, some of which are used for model calibration, includes in situ block experiments, borehole injection experiments, observations of depth dependent permeability, studies of excavation-induced changes in permeability around tunnels, and permeability changes associated with a large-scale rock mass heating experiment. It is suggested that model calibration of stress-versus-permeability relationships against field experiments involving simultaneously elevated stress and temperature may be strongly affected by additional temperature dependent fracture closure and fracture surface interlocking. This is a phenomenon that has been observed both in the lab and the field and has been described as thermal over-closure related to better fit of opposing fracture surfaces at high temperatures. The same phenomenon has also been described as chemically mediated fracture closure related to pressure solution of fracture surface asperities. The back-calculated stress-versus-permeability relationship may implicitly account for such effects, but the relative contribution of purely mechanical versus chemically mediated mechanical changes is difficult to isolate.

  16. Implementation of Linear Pipe Channel Network to Estimate Hydraulic Parameters of Fractured Rock Masses

    Science.gov (United States)

    Han, J.; Um, J. G.; Wang, S.

    2014-12-01

    Modeling of fluid flow is important in geological, petroleum, environmental, civil and mining engineering. Fluid flow through fractured hard rock is very much dependent on the fracture network pattern in the rock mass and on the flow behavior through these fractures. This research deals with fluid flow behavior through fractures at an abandoned copper mine in southeast Korea. An injection well and three observation wells were installed at the mine site to monitor the hydraulic heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability and corresponding effective hydraulic aperture of the fractures. The three dimensional stochastic fracture network model was built and validated for the mine site. The two dimensional linear pipe network systems were constructed in directions of the observation wells using the fracture network model. A procedure of the fluid flow analysis on two dimensional discrete domain was applied to estimate the conductance, flow quantity and nodal head in the 2-D linear pipe channel network. The present results indicate that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic characteristics of fractured rock masses.

  17. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    Science.gov (United States)

    Kleinbrod, Ulrike; Burjánek, Jan; Fäh, Donat

    2014-05-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. Analysing unstable rock slopes by means of ambient vibrations might be a new alternative to the already existing methods as for example geotechnical displacement measurements. A systematic measurement campaign has been initiated recently in Switzerland in order to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. First results are presented in this contribution. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. During each measurement a reference station was installed on a stable part close to the instability. The total number of stations used varies from 16 down to 2, depending on the site scope and resource availability. Instable rock slopes show a highly directional ground motion which is significantly amplified with respect to stable areas. These effects are strongest at certain frequencies which are identified as eigenfrequencies of the unstable rock mass. The eigenfrequencies and predominant directions have been estimated by frequency dependent polarization analysis. Site-to-reference spectral ratios have been calculated as well in order to estimate the relative amplification of ground motion at unstable parts. The retrieved results were compared with independent in-situ observations and other available data. The directions of maximum amplification are in most cases perpendicular to open cracks mapped on the surface and in good agreement with the deformation directions obtained by geodetic measurements. The interpretation of the observed wave field is done through numerical modelling of seismic wave propagation in fractured media with complex

  18. On the Characteristics of Rheological Fracture of Rock%岩石的蠕变断裂特性分析

    Institute of Scientific and Technical Information of China (English)

    陈有亮; 秦爱芳; 金孝杰

    2000-01-01

    Based on the traditional theory of fracture, time-dependence of rock fracture is taken into account and the creep fracture criteria are given. The effect of the microcrack zone on fracture toughness is analyzed. Finally, a model for time prediction of rheological fracture is derived and its feasibility is proven.

  19. Study on the theoretical evaluation of grouting area and effective porosity for fractured rock masses

    International Nuclear Information System (INIS)

    An accurate evaluation of the grouting area in fractured rock is very important for designing the grouting pitch in the field. In this study, a method of determining the effective porosity and the grouting area of a three-dimensional (3-D) fractured rock mass are described. To evaluate the validity of this method, constant injection rate experiments were carried out in the laboratory. First, an experiment was performed on a gravel ground model. Then, a second experiment was performed on an axisymmetric cubic block model with gaps between the blocks minicking fractures in rocks. The results obtained from the experiments agree well with proposed theory. The effect of gravity on high permeability fractured rock mass was also evaluated and the Hele-Shaw's seepage model was applied in explaining the laboratory results. (author)

  20. Determination of hydraulic conductivity of fractured rock masses: A case study for a rock cavern project in Singapore

    OpenAIRE

    Zhipeng Xu; Zhiye Zhao; Jianping Sun; Ming Lu

    2015-01-01

    In order to reduce the risk associated with water seepage in an underground rock cavern project in Singapore, a reliable hydro-geological model should be established based on the in situ investigation data. The key challenging issue in the hydro-geological model building is how to integrate limited geological and hydro-geological data to determine the hydraulic conductivity of the fractured rock masses. Based on the data obtained from different stages (feasibility investigation stage, constru...

  1. A study on new approaches for delineating groundwater protection zones in fractured-rock aquifers.

    OpenAIRE

    Carneiro, J. F.

    2005-01-01

    Delineation of groundwater protection zones in fractured-rock aquifers usually involves the equivalent porous media (EPM) assumption, although research studies have proved that, often, such an assumption is inadequate. This thesis is concerned with the study of flow and transport models that, while preserving the main hydrodynamic features of fractured rocks, are still practical enough to be applied to low-budget studies such as the delineation of groundwater protection zones. Methodologies a...

  2. Development of grouting technologies for geological disposal of high level waste in Japan (6). Description method of rock fractures using borehole fractures column

    International Nuclear Information System (INIS)

    A visually descriptive method of identifying type, occurrence and distribution of rock fractures is proposed using a newly developed borehole fractures column (BFC) technique. The BFC is constructed from borehole TV and core sample observation and interpretation. The usefulness of this approach is best illustrated through a case study of core sample taken from the Grimsel Test Site (GTS) in Switzerland. In this case, each mm scale fracture could be identified as forming part of much larger fracture zones. Fracture descriptions based on the BFC can be used to interpolate fractures between boreholes and provide fundamental 'big picture' insights into the fracture field of a rock mass. (author)

  3. Experimental and Analytical Research on Fracture Processes in ROck

    Energy Technology Data Exchange (ETDEWEB)

    Herbert H.. Einstein; Jay Miller; Bruno Silva

    2009-02-27

    Experimental studies on fracture propagation and coalescence were conducted which together with previous tests by this group on gypsum and marble, provide information on fracturing. Specifically, different fracture geometries wsere tested, which together with the different material properties will provide the basis for analytical/numerical modeling. INitial steps on the models were made as were initial investigations on the effect of pressurized water on fracture coalescence.

  4. Identification of transport processes in Southern Indian fractured crystalline rock using forced-gradient tracer experiments

    Science.gov (United States)

    Guihéneuf, Nicolas; Bour, Olivier; Boisson, Alexandre; Le Borgne, Tanguy; Becker, Matthew R.; Nigon, Benoit; Wajiduddin, Mohammed; Ahmed, Shakeel; Maréchal, Jean-Christophe

    2015-04-01

    Understanding dominant transport processes is essential to improve prediction of contaminants transfer in fractured crystalline rocks. In such fractured media, solute transport is characterized by fast advection within open and connected fractures and sometimes by matrix diffusion that may be enhanced by chemical weathering. To investigate this phenomenon, we carried out radially convergent and push-pull tracer experiments in the fractured granite of the Experimental Hydrogeological Park of Choutuppal (Southern India). Tracer tests were performed in the same permeable fracture from few meters to several ten meters and from few hours to two weeks to check the consistency of the results at different spatial and temporal scales. These different types of forced gradient tracer experiments allow separation of the effects of advection and diffusion on transport. Breakthrough curves from radially convergent tracer tests display systematically a -2 power law slope on the late time behavior. This tailing can be adequately represented by a transport model that only takes into account heterogeneous advection caused by fluid flow channeling. The negligible impact of matrix diffusion was confirmed by the push-pull tracer tests, at least for the duration of experiments. A push-pull experiment carried out with a cocktail of two conservative tracers having different diffusion coefficients displayed similar breakthrough curves. Increasing the resting phase during the experiments did not lead to a significant decline of peak concentration. All these results suggest a negligible impact of matrix diffusion. However, increasing the scales of investigation during push-pull tracer tests led to a decrease of the power law slope on the late time behavior. This behavior that cannot be modeled with a transport model based on independent flow paths and indicate non-reversible heterogeneous advection. This process could be explained by the convergence of streamlines after a certain distance

  5. Reactive transport of uranium with bacteria in fractured rock: Model development and sensitivity analysis

    Science.gov (United States)

    Kim, Jung-Woo; Baik, Min-Hoon; Jung, Haeryong; Jeong, Jong-Tae

    2013-09-01

    A numerical model for the reactive transport of uranium and bacteria in fractured rock was newly developed. The conceptual model consists of four phases (fracture, fracture surface, matrix pore, and matrix solid) and eight constituents (solutes in the fracture, on the fracture surface, on mobile bacteria, on immobile bacteria, in the rock matrix pores and on the rock matrix solids, and bacteria in the fracture and on the fracture surface). In addition to the kinetic sorption/desorption of uranium and bacteria, uranium reduction reaction accompanying with bacteria growth was considered in the reactive transport. The non-linear reactive transport equations were numerically solved using the symmetric sequential iterative scheme of the operator-splitting method. The transport and kinetic reaction modules in the developed model were separately verified, and the results were reasonably acceptable. From the sensitivity analysis, the uranium transport was generally more sensitive to the sorption rate rather than desorption rate of U(VI). Considering a uranium reduction reaction, bacteria could considerably retard the uranium transport no matter the uranium sorption/desorption rates. As the affinity of U(VI) onto the bacteria becomes higher than that onto a rock fracture surface, a biofilm effect, rather than a colloidal effect, of the bacteria becomes more influential on the uranium transport.

  6. Validation of elastic wave measurements of rock fracture compliance using numerical discrete particle simulations

    OpenAIRE

    Möllhoff, Martin; Bean, Christopher J.

    2009-01-01

    We test various methods of quantifying the compliance of single and multiple rock fractures from synthetic ultrasonic data. The data are generated with a 2D discrete particle scheme which has previously been shown to treat fractures in agreement with linear-slip theory. Studying single fractures, we find that delays derived from peak amplitudes do not correspond to group delays, as might be expected. This is due to waveform distortion caused by the frequency-dependent transmission across the ...

  7. Analyzing unsaturated flow patterns in fractured rock using an integrated modeling approach

    Science.gov (United States)

    Wu, Yu-Shu; Lu, Guoping; Zhang, Keni; Pan, Lehua; Bodvarsson, Gudmundur S.

    2007-05-01

    Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies due to the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. An integrated modeling methodology has been developed for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada (USA), a proposed underground repository site for storing high-level radioactive waste. The approach integrates moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain’s highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations through analyzing flow patterns in the unsaturated zone. In particular, this model provides clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain’s flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems.

  8. Seismic Waves in Rocks with Fluids and Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J G

    2006-02-06

    Seismic wave propagation through the earth is often strongly affected by the presence of fractures. When these fractures are filled with fluids (oil, gas, water, CO{sub 2}, etc.), the type and state of the fluid (liquid or gas) can make a large difference in the response of the seismic waves. This paper will summarize some early work of the author on methods of deconstructing the effects of fractures, and any fluids within these fractures, on seismic wave propagation as observed in reflection seismic data. Methods to be explored here include Thomsen's anisotropy parameters for wave moveout (since fractures often induce elastic anisotropy), and some very convenient fracture parameters introduced by Sayers and Kachanov that permit a relatively simple deconstruction of the elastic behavior in terms of fracture parameters (whenever this is appropriate).

  9. Detecting rupture precursors and determining the main fracture spread direction of rock with dynamic rock resistivity change anisotropy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ In the past, domestic and abroad scientific workers have done a large number of experiment researches on a great number of researches of experiment for the relationship between electrical resistivity change and the load stress on rock (Geoelectric Testing Group, Department of Geophysics, Peking University and Research Division, Seismological Brigade of Lanzhou, 1978; Zhang, 1981; Chen, et al, 1983; Zhao, et al, 1983; Zhang, Lu, 1983; Zhang, et al, 1985; Brace, Orange, 1968; Kurite, 1986; Teisseyre, 1989), such as imitating dynamic fracture of rock, frictional sliding course, and observing its resistivity change shape with a lot of experimental workssuch as simulating the dynamic course of crustal rocks fracturing and frictional slipping along the fracture surface, and observing its resistivity change shape with experiment. They found that, in the fracture process of rock under loading, not only its resistivity shape change notably, and its direction changes also very clearly, and therefore many scientific workers have shown strong interest in anisotropy of resistivity change, and have done some researches onfor it.

  10. Characteristics and modeling of fractures in japanese rock mass. Evaluation of confidence in fracture network model. Heisei-11 progress report for the precedence-foundation engineering field

    International Nuclear Information System (INIS)

    JNC (Japan Nuclear Cycle Development Institute) has been studying characteristics of fractures in Japanese rock formations, in order to perform the geosphere performance assessment of HLW disposal site by using discrete fracture network model. It was found that the almost all fracture characteristics described in literature were observed in small windows of few meters square at field outcrops and tunnel walls. This study aims to investigate the scale effects on fracture characteristics by using fracture trace maps obtained at various scales at tunnels, caverns and dam sites. This year, we developed fracture database by digitizing fracture maps obtained from 10 sites in Japan, such as tunnel, rock cavern and dam basement. As a result, it was found that fracture trace length follows negative power law distribution, that is, the accumulated number of fractures is inversely proportional to trace length in log-log plot, within the range from several meters to several hundreds meters regardless of rock types and regions. (author)

  11. Potentially Conductive Channels in Fracture Cements of Low Permeability Rocks

    Science.gov (United States)

    Wright, E.; Landry, C. J.; Eichhubl, P.

    2015-12-01

    Natural fractures in shale reservoirs are frequently filled with mineral cement that lacks any residual fracture porosity that is visible under the petrographic microscope. These fully cemented fractures are generally interpreted to be impermeable for fluid flow. Scanning electron microscopy of calcite, dolomite, and barite fracture cements from a variety of shale reservoirs, prepared using broad ion beam milling, provides evidence of open to partially healed elongate pores that are on the order of hundreds of nanometers in aperture. In calcite fracture cement, these pores have consistent apertures of about 100 nm. In dolomite and barite, apertures are up to 500 nm. These pores have been previously overlooked because traditional thin sectioning and polishing destroys sub-micron details of the fracture cement pore structure. Ion milling preserves these details with a minimum of sample damage during sample preparation. Electron backscatter diffraction shows that these pores occur along grain boundaries within the blocky or columnar fracture cement. While partially healed, these pores, arranged along grain boundaries, are frequently sufficiently well connected acting as channels for fluid flow along and across fully cemented natural fractures. In shale reservoirs of ultra-low matrix permeability, these grain boundary channels may thus provide fracture permeability significantly contributing to reservoir production where intersected or indirectly reactivated by hydraulic fractures.

  12. Hidromechanical simulation in a fractured rock mass: the experimental site of Coaraze (Southern-Alps, France)

    OpenAIRE

    Corbera Gaju, Sergi

    2004-01-01

    Hydromechanical processes in large permeable jointed rock masses have been poorly studied due to the difficulties in determining boundary conditions in such large sites. To study this type of problems, in situ field experiments have been carried out since 1997 on a small fractured calcareous rock mass in Southern France, near Coaraze (limestone aquifer). The present work is intended to enhance understanding of hydromechanics in rock masses by testing the stress and strain state...

  13. Use of markers of paleo-circulations to characterize the porous network of fractured granite.

    Science.gov (United States)

    Bertrand, L.; LeGarzic, E.; Géraud, Y.; Diraison, M.

    2012-04-01

    Fractured reservoirs in crystalline rocks are well studied nowadays for their application in water resources, oil exploitation or geothermics. In this king of rock, the matrice has a very low permeability and the fluid flow is localized in the fracture pattern. Thus, the characterization and the modeling of such reservoirs require the good knowledge of the fractures, in particular the orientation, density or spatial distribution. In actual fractured reservoirs, the access on those parameters are with seismic and borehole data. The two prospection techniques are at different scale and dimensions, and correlations between them are difficult to make. In consequence, it is necessary to study field rocks analogues on the underground fractured reservoirs. Tamariu's granite, Catalunya, is one of those fields' analogues. Previous studies have highlighted a structuration of the granite in structural blocs of different sizes, separated by faults, and internal fracture patterns in each bloc. Markers of intense paleofluids circulations have been seen in the faults and fractures of those blocs. This study follows the structural characterization of the fracture pattern and as the aim to study the fluid circulation in those fractures. With precise fracture maps, we have analyzed the principal flow direction and the nature of the hydrothermal deposits. Aside from primary hydrothermal quartz, the main secondary minerals are calcite and dolomite, and a little part of iron oxides. This observation, combined on the fracture maps, has allowed us to try a semi-quantification of the usable volume by the fluid in the granite at the circulations time. The fracture pattern has been the host of fluids of around 3% of their volume. Therefore, we have identified a diffuse flow in the grain matrice and which creates primary minerals alteration. The volume of alteration represent around 0,1-0,3% of the rock. In consequence, this study highlights a double-porosity behavior of the granite. On one

  14. Integrated approach for quantification of fractured tight reservoir rocks: Porosity, permeability analyses and 3D fracture network characterisation on fractured dolomite samples

    Science.gov (United States)

    Voorn, Maarten; Barnhoorn, Auke; Exner, Ulrike; Baud, Patrick; Reuschlé, Thierry

    2015-04-01

    Fractured reservoir rocks make up an important part of the hydrocarbon reservoirs worldwide. A detailed analysis of fractures and fracture networks in reservoir rock samples is thus essential to determine the potential of these fractured reservoirs. However, common analyses on drill core and plug samples taken from such reservoirs (including hand specimen analysis, thin section analysis and laboratory porosity and permeability determination) suffer from various problems, such as having a limited resolution, providing only 2D and no internal structure information, being destructive on the samples and/or not being representative for full fracture networks. In this study, we therefore explore the use of an additional method - non-destructive 3D X-ray micro-Computed Tomography (μCT) - to obtain more information on such fractured samples. Seven plug-sized samples were selected from narrowly fractured rocks of the Hauptdolomit formation, taken from wellbores in the Vienna Basin, Austria. These samples span a range of different fault rocks in a fault zone interpretation, from damage zone to fault core. 3D μCT data is used to extract porosity, fracture aperture, fracture density and fracture orientations - in bulk as well as locally. The 3D analyses are complemented with thin sections made to provide some 2D information with a much higher detail than the μCT data. Finally, gas- and water permeability measurements under confining pressure provide an important link (at least in order of magnitude) of the µCT results towards more realistic reservoir conditions. Our results show that 3D μCT can be applied efficiently on plug-sized samples of naturally fractured rocks, and that several important parameters can be extracted. μCT can therefore be a useful addition to studies on such reservoir rocks, and provide valuable input for modelling and simulations. Also permeability experiments under confining pressure provide important additional insights. Combining these and other

  15. Self-sealing of excavation induced fractures in clay host rock

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chun-Liang [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Braunschweig (Germany)

    2015-07-01

    Excavation of an underground repository for disposal of radioactive waste in clay formations generates fractures around the openings, which may act as pathways for water transport and radionuclides migration. Because of the favorable properties of the clay rocks such as the rheological deformability and swelling capability, a recovery process of the excavation damaged zone (EDZ) can be expected due to the combined impact of rock compression, backfill resistance, and clay swelling during the post-closure phase. Another important issue is the impact of gases produced from anoxic corrosion of waste containers and other metallic components within the repository. The EDZ may act as a conduit for preferential gas flow, depending on the extent of the recovery process. For the safety assessment of a repository, the self-sealing behaviour and impact on water and gas transport through the EDZ have to be characterized, understood, and predicted. Recently, GRS has extensively investigated these important issues with various kinds of laboratory and in- situ experiments under relevant repository conditions. Test samples were taken from the Callovo-Oxfordian argillite at Bure in France and the Opalinus clay (shaly facies) at Mont Terri in Switzerland. Major findings are summarized as follows. As observed in laboratory and in-situ, the gas permeabilities of the claystones increase with stress-induced damage by several orders of magnitude from the impermeable state up to high levels of 10{sup -12}-10{sup -13} m{sup 2}. When hydrostatic confining stress is applied and increased, the fractures in the claystones tend to close up, leading to a decrease in gas permeability down to different levels of 10{sup -16}-10{sup -21} m{sup 2} at stresses in a range of 10 to 20 MPa. As water enters and flows through fractures, the clay matrix can take up a great amount of the water and expand into the interstices. Consequently, the hydraulic conductivity decreases dramatically by several orders of

  16. Characterising rock fracture aperture-spacing relationships using power-law relationships: some considerations

    Science.gov (United States)

    Brook, Martin; Hebblewhite, Bruce; Mitra, Rudrajit

    2016-04-01

    The size-scaling of rock fractures is a well-studied problem in geology, especially for permeability quantification. The intensity of fractures may control the economic exploitation of fractured reservoirs because fracture intensity describes the abundance of fractures potentially available for fluid flow. Moreover, in geotechnical engineering, fractures are important for parameterisation of stress models and excavation design. As fracture data is often collected from widely-spaced boreholes where core recovery is often incomplete, accurate interpretation and representation of fracture aperture-frequency relationships from sparse datasets is important. Fracture intensity is the number of fractures encountered per unit length along a sample scanline oriented perpendicular to the fractures in a set. Cumulative frequency of fractures (F) is commonly related to fracture aperture (A) in the form of a power-law (F = aA‑b), with variations in the size of the a coefficient between sites interpreted to equate to fracture frequency for a given aperture (A). However, a common flaw in this approach is that even a small change in b can have a large effect on the response of the fracture frequency (F) parameter. We compare fracture data from the Late Permian Rangal Coal Measures from Australia's Bowen Basin, with fracture data from Jurassic carbonates from the Sierra Madre Oriental, northeastern Mexico. Both power-law coefficient a and exponent b control the fracture aperture-frequency relationship in conjunction with each other; that is, power-laws with relatively low a coefficients have relatively high b exponents and vice versa. Hence, any comparison of different power-laws must take both a and b into consideration. The corollary is that different sedimentary beds in the Sierra Madre carbonates do not show ˜8× the fracture frequency for a given fracture aperture, as based solely on the comparison of coefficient a. Rather, power-law "sensitivity factors" developed from

  17. Sustainability of Water Resources in the Fractured-Rock Area of Maryland

    Science.gov (United States)

    Bolton, David W.; Gerhart, James M.; Kasraei, Saeid

    2009-01-01

    The fractured-rock area of Maryland encompasses the region of the State west of the Fall Line, which is approximated by the Interstate 95 corridor. It includes the Piedmont, Blue Ridge, Ridge and Valley, and Appalachian Plateau Physiographic Provinces (fig. 1). Surface water and ground water are important and interconnected water sources in this area. Streamflow characteristics vary in response to different land use, geology, topography, soil, and other factors. Ground-water flow is quite localized, tending to be controlled by local watersheds. Water in this region moves down through the soil and decomposed rock (saprolite) and along joints, faults, and fractures in the underlying rock (fig. 2). Water availability depends upon the size of fractures as well as the interconnections between fractures.

  18. Analysis for preliminary evaluation of discrete fracture flow and large-scale permeability in sedimentary rocks

    International Nuclear Information System (INIS)

    Conceptual models for sedimentary rock settings that could be used in future evaluation and suitability studies are being examined through the DOE Repository Technology Program. One area of concern for the hydrologic aspects of these models is discrete fracture flow analysis as related to the estimation of the size of the representative elementary volume, evaluation of the appropriateness of continuum assumptions and estimation of the large-scale permeabilities of sedimentary rocks. A basis for preliminary analysis of flow in fracture systems of the types that might be expected to occur in low permeability sedimentary rocks is presented. The approach used involves numerical modeling of discrete fracture flow for the configuration of a large-scale hydrologic field test directed at estimation of the size of the representative elementary volume and large-scale permeability. Analysis of fracture data on the basis of this configuration is expected to provide a preliminary indication of the scale at which continuum assumptions can be made

  19. Characterizing Reactive Flow Paths in Fractured Cement

    Science.gov (United States)

    Wenning, Q. C.; Huerta, N. J.; Hesse, M. A.; Bryant, S. L.

    2011-12-01

    Geologic carbon sequestration can be a viable method for reducing anthropogenic CO2 flux into the atmosphere. However, the technology must be economically feasible and pose acceptable risk to stakeholders. One key risk is CO2 leakage out of the storage reservoir. Potential driving forces for leakage are the overpressure due to CO2 injection and the buoyancy of free phase CO2. Potential hazards of leakage are contamination of Underground Sources of Drinking Water or the atmosphere and would be deemed an unacceptable risk. Wells potentially provide a fast path for leakage from the reservoir. While the well's cement casing is reactive with CO2 and CO2-saturated brine, the low cement matrix permeability and slow diffusion rate make it unlikely that CO2 will escape through a properly constructed wellbore. However, highly permeable fractures with micrometer scale apertures can occur in cement casings. Reactions that occur in the flow in these fractures can either be self-limiting or self-enhancing. Therefore, understanding the reactive flow is critical to understanding of leakage evolution through these fractures. The goal of our work is to characterize the modification of the flow paths in the fracture due to reaction with acidic brine. With this aim we have characterized both the initial flow path of un-reactive flow and the final flow path after introduction of low-pH acid along the same fracture. Class H cement cores 3-6 cm in length and 2.5 cm diameter are created and a single natural and unique fracture is produced in each core using the Brazilian method. Our experimental fluid is injected at a constant rate into the cement core housed in a Hassler Cell under confining pressure. A solution of red dye and deionized water is pumped through the fracture to stain the un-reactive flow paths. Deionized water is then pumped through the core to limit diffusion of the dye into non-flowing portions of the fracture. After staining the initial flow path, low pH water due to

  20. Colloid and radionuclide retention mechanisms in fractured rock under near-natural flow conditions

    International Nuclear Information System (INIS)

    Full text of publication follows: Experiments in fractured host rock (Grimsel Test Site, GTS, Switzerland) revealed that the colloid relevance for actinide migration is high due to the specific geochemical groundwater conditions [1]. However, even under such conditions it is found that retention of colloids and colloid-borne actinides becomes significant under near-natural groundwater flow rates (1-10 m/a) [2]. Underlying mechanisms of colloid and radionuclide retention are not well understood up to now. The present study co-funded by the NoE ACTINET-6 focuses on (i) the kinetics of actinide-colloid interactions and (ii) the relevance of matrix diffusion as a competition process to other retention mechanisms which affect the actinides behavior in fractured rock systems such as the Grimsel granodiorite. Colloid migration is studied with well defined model colloids as e.g. fluorescence dyed carboxylated polystyrene particles, and natural colloids extracted from bentonite (FEBEX) and from fracture filling material (GTS). In order to study the influence of matrix porosity on actinides migration, those experiments are performed in columns of well defined geometry filled with microporous unmodified silica spheres, porous ceramic material and natural fracture filling material from the GTS. The behaviour of actinides (Pu(IV) and Am(III)) sorbed onto bentonite colloids is investigated in column and batch experiments. All experiments are performed under anoxic conditions. Colloid characterization methods used in this study include the combination of photon correlation spectroscopy (PCS), laser-induced breakdown detection (LIBD), fluorimetry and field flow fractionation (FFF). Experimental results and their application to the parametrisation of reactive colloid transport models are discussed. [1] Geckeis H, Schaefer T, Hauser W, Rabung T, Missana T, Degueldre C, Moeri A, Eikenberg J, Fierz T, Alexander WR (2004) Results of the Colloid and Radionuclide Retention experiment

  1. Experimental investigation of the temperature effects on CO2 permeability of fractured coal rock

    Science.gov (United States)

    Ju, Yang; Wang, Huijie; Pathegama Gamage, Ranjith; Sun, Huafei

    2012-11-01

    Accurate prediction of gas permeability is of great significance for coalbed methane production and CO2 sequestration. The permeability of coal rock plays a key role in determining coalbed methane productivity in the application of simultaneous excavation of coal and gas in deep coal mines. The main objective of this study is to investigate the temperature effects on the permeability of fractured coal rock in deep coal seams. The CO2 permeability of the fractured coal samples obtained from Ping Ding Shan coalfield, China, was measured using high pressure undrained triaxial apparatus. To probe the temperature effects, four levels of temperatures (25-75^o) were tested with the injection pressures ranging from 7 to 11MPa and a confining pressure of 15MPa. It is shown that the CO2 permeability of the fractured coal rock rises apparently with an increasing temperature. The physical mechanism that governs the CO2 permeability of coal rock is discussed in this study.

  2. Photo-Disintegration of the Iron Nucleus in Fractured Magnetite Rocks with Magnetostriction

    CERN Document Server

    Widom, A; Srivastava, Y N

    2013-01-01

    There has been considerable interest in recent experiments on iron nuclear disintegrations observed when rocks containing such nuclei are crushed and fractured. The resulting nuclear transmutations are particularly strong for the case of magnetite rocks, i.e. loadstones. We argue that the fission of the iron nucleus is a consequence of photo-disintegration. The electro-strong coupling between electromagnetic fields and nuclear giant dipole resonances are central for producing observed nuclear reactions. The large electron energies produced during the fracture of piezomagnetic rocks are closely analogous to the previously discussed case of the fracture of piezoelectric rocks. In both cases electro-weak interactions can produce neutrons and neutrinos from energetic protons and electrons thus inducing nuclear transmutations. The electro-strong condensed matter coupling discussed herein represents new many body collective nuclear photo-disintegration effects.

  3. 3-dimensional computer model to simulate fluid flow and contaminant transport through a rock fracture system

    International Nuclear Information System (INIS)

    A 3-dimensional fracture generating scheme is presented which can be used to simulate water flow and contaminant (solute) transport through fracture system of a rock. It is presently limited to water saturated conditions, zero permeability for the rock matrix, and steady state water flow, but allows for transient solute transport. The scheme creates finite planar plates of uniform thickness which represent fractures in 3-dimensional space. A given fracture (plate) has the following descriptors: center location, orientation, shape, areal extent and aperture. Each parameter can be described by an appropriate probability distribution. Individual fractures are generated to form an assemblage of a certain fracture density. All fracture intersections and boundary/fracture intersections are determined and deadend fractures are eliminated. Flow through the fracture assemblage is considered laminar and described by Poiseuille's law. The principle of mass conservation at each intersection is used to develop the global matrix equation, which is solved subject to specified boundary conditions to yield the head and flow distribution at each intersection. Solute transport is considered to be advective between intersections with complete mixing at each intersection. Solutes added to the flow system can be explicitly followed and concentration vs. time relationships can be determined anywhere in the system. Some examples are included

  4. Modeling of Immiscible, Two-Phase Flows in a Natural Rock Fracture

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H

    2009-01-01

    One potential method of geologically sequestering carbon dioxide (CO2) is to inject the gas into brine-filled, subsurface formations. Within these low-permeability rocks, fractures exist that can act as natural fluid conduits. Understanding how a less viscous fluid moves when injected into an initially saturated rock fracture is important for the prediction of CO2 transport within fractured rocks. Our study examined experimentally and numerically the motion of immiscible fluids as they were transported through models of a fracture in Berea sandstone. The natural fracture geometry was initially scanned using micro-computerized tomography (CT) at a fine volume-pixel (voxel) resolution by Karpyn et al. [1]. This CT scanned fracture was converted into a numerical mesh for two-phase flow calculations using the finite-volume solver FLUENT® and the volume-of-fluid method. Additionally, a translucent experimental model was constructed using stereolithography. The numerical model was shown to agree well with experiments for the case of a constant rate injection of air into the initially water-saturated fracture. The invading air moved intermittently, quickly invading large-aperture regions of the fracture. Relative permeability curves were developed to describe the fluid motion. These permeability curves can be used in reservoir-scale discrete fracture models for predictions of fluid motion within fractured geological formations. The numerical model was then changed to better mimic the subsurface conditions at which CO2 will move into brine saturated fractures. The different fluid properties of the modeled subsurface fluids were shown to increase the amount of volume the less-viscous invading gas would occupy while traversing the fracture.

  5. Mathematical modelling on transport of petroleum hydrocarbons in saturated fractured rocks

    Indian Academy of Sciences (India)

    G Suresh Kumar

    2014-10-01

    The present paper addresses critical issues that describe the dissolution mass transfer of petroleum hydrocarbons in a saturated subsurface system. The field procedure associated with the estimation of Light Non-Aqueous Phase Liquid (LNAPL) thickness in site monitor wells is revisited. A brief theory has been included on the composition and transport of petroleum hydrocarbons following an onshore oil spill in order to demonstrate the level of complexity associated with the LNAPL dissolution mass transfer even in a classical porous medium. However, such studies in saturated fractured rocks are highly complex and limited, and hence, deserve a special attention as the fate and transport of the petroleum hydrocarbons are not uncommon in saturated fractured rocks. In this context, an improved mathematical model has been proposed that will better describe the dissolution kinetics of petroleum hydrocarbons in saturated fractured rocks at the scale of a single fracture using dual-porosity concept. The lumped mass transfer coefficient in a classical porous medium proposed depends on mean grain size, while the same parameter has been replaced by an equivalent average thickness of fracture aperture that better describes the LNAPL dissolution rate in a coupled fracture-matrix system. A set of nonlinear coupled partial differential equations is deduced for a coupled fracture-matrix system in analogy with the differential equations of a classical porous medium. The proposed mathematical model may work well for the fracture aperture thicknesses varying between 100 and 500 microns with a relatively low Reynolds Number and initial NAPL saturation.

  6. Fracture Propagation Characteristic and Micromechanism of Rock-Like Specimens under Uniaxial and Biaxial Compression

    Directory of Open Access Journals (Sweden)

    Xue-wei Liu

    2016-01-01

    Full Text Available This paper presents a set of uniaxial and biaxial compression tests on the rock-like material specimens with different fracture geometries through a rock mechanics servo-controlled testing system (RMT-150C. On the basis of experimental results, the characteristics of fracture propagation under different fracture geometries and loading conditions are firstly obtained. The newly formed fractures are observed propagating from or near the preexisting crack tips for different specimens, while the propagation paths are affected by the loading condition obviously. Then, by adopting acoustic emission (AE location technique, AE event localization characteristics in the process of loading are investigated. The locations of AE events are in good agreement with the macroscopic fracture propagation path. Finally, the micromechanism of macroscopic fracture propagation under uniaxial and biaxial compression conditions is analyzed, and the fracture propagation can be concluded as a result of microdamage accumulation inside the material. The results of this paper are helpful for theory and engineering design of the fractured rock mass.

  7. Study of the fracture behavior of mortar and concretes with crushed rock or pebble aggregates

    Directory of Open Access Journals (Sweden)

    Sebastião Ribeiro

    2011-03-01

    Full Text Available The objective of this work was to compare the fracture energy of mortar and concretes produced with crushed rock and pebble aggregates using zero, 10, 20, 30 and 40% of aggregates mixed with standard mortar and applying the wedge splitting method to achieve stable crack propagation. The samples were cast in a special mold and cured for 28 days, after which they were subjected to crack propagation tests by the wedge splitting method to determine the fracture energies of the mortar and concrete. The concretes showed higher fracture energy than the mortar, and the concretes containing crushed rock showed higher resistance to crack propagation than all the compositions containing pebbles. The fracture energy varied from 38 to 55 J.m-2. A comparison of the number of aggregates that separated from the two concrete matrices with the highest fracture energies indicated that the concrete containing pebbles crumbled more easily and was therefore less resistant to crack propagation.

  8. Analysis of a mesoscale infiltration and water seepage test in unsaturated fractured rock: Spatial variabilities and discrete fracture patterns

    Science.gov (United States)

    Zhou, Q.; Salve, R.; Liu, H.-H.; Wang, J.S.Y.; Hudson, D.

    2006-01-01

    A mesoscale (21??m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3??m ?? 4??m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten ?? parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum

  9. Trends, prospects and challenges in quantifying flow and transport through fractured rocks

    Science.gov (United States)

    Neuman, Shlomo P.

    2005-03-01

    Among the current problems that hydrogeologists face, perhaps there is none as challenging as the characterization of fractured rock (Faybishenko and Benson 2000). This paper discusses issues associated with the quantification of flow and transport through fractured rocks on scales not exceeding those typically associated with single- and multi-well pressure (or flow) and tracer tests. As much of the corresponding literature has focused on fractured crystalline rocks and hard sedimentary rocks such as sandstones, limestones (karst is excluded) and chalk, so by default does this paper. Direct quantification of flow and transport in such rocks is commonly done on the basis of fracture geometric data coupled with pressure (or flow) and tracer tests, which therefore form the main focus. Geological, geophysical and geochemical (including isotope) data are critical for the qualitative conceptualization of flow and transport in fractured rocks, and are being gradually incorporated in quantitative flow and transport models, in ways that this paper unfortunately cannot describe but in passing. The hydrogeology of fractured aquifers and other earth science aspects of fractured rock hydrology merit separate treatments. All evidence suggests that rarely can one model flow and transport in a fractured rock consistently by treating it as a uniform or mildly nonuniform isotropic continuum. Instead, one must generally account for the highly erratic heterogeneity, directional dependence, dual or multicomponent nature and multiscale behavior of fractured rocks. One way is to depict the rock as a network of discrete fractures (with permeable or impermeable matrix blocks) and another as a nonuniform (single, dual or multiple) continuum. A third way is to combine these into a hybrid model of a nonuniform continuum containing a relatively small number of discrete dominant features. In either case the description can be deterministic or stochastic. The paper contains a brief assessment

  10. Surface energy characterization of sandstone rocks

    Science.gov (United States)

    Arsalan, Naveed; Palayangoda, Sujeewa S.; Burnett, Daniel J.; Buiting, Johannes J.; Nguyen, Quoc P.

    2013-08-01

    The fundamental forces of adhesion are responsible for the spreading of fluids such as crude oil/brine on the reservoir rock surface. These physico-chemical interactions determine the surface energetics of a reservoir and thus their wetting phenomena. Inverse Gas Chromatography (IGC) is introduced to characterize the surface energy of sandstones (Ottawa sand and Berea sandstone). The surface chemistry of the sandstone rocks is further elucidated using X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) techniques. The behavior of the polar and non-polar interaction forces was investigated at varying water coverage and at different temperatures. The results indicated that in general as the water coverage increased, the Lifshitz-van der Waals component of surface energy decreased to nearly that of the bulk water, while the acid-base component also showed a decreasing trend. The Lifshitz-van der Waals component of surface energy always decreased with increase in temperature, while the acid-base properties showed contrasting trends in line with changes in surface chemistry of the sandstones, due to the change in temperature. Finally, the wetting properties arising in reservoir sandstones were related to the surface chemistry of the reservoir fluids and their interactions with the reservoir rock surface.

  11. Influence of piezometer construction on groundwater sampling in fractured rock.

    Science.gov (United States)

    Kozuskanich, J; Novakowski, K S; Anderson, B C

    2012-01-01

    A numerical model for groundwater flow and solute transport was employed to examine the influence of the screen and sandpack on the collection of a representative geochemical sample from a piezometer monitoring well installation in a discretely fractured bedrock aquifer. The optimization of screen and sandpack combinations was explored for the potential to reduce purging times and volumes in practice. Simulations accounted for the location of the fractures along the well screen, fracture aperture, screen length, and the pumping rate. The variability in the required purging times (t(99)-the time required to achieve 99% fractional contribution from the formation to pump discharge) can be explained by: (1) the relative hydraulic conductivities of the components of the system (fracture, sandpack, and screen), (2) the truncation of the flow field from the fracture to the screen by the upper and/or lower boundary of the sandpack of the flow field from another fracture, and (3) time-dependent drawdown. During pumping, only a portion of the sandpack may actually become hydraulically active. The optimal configuration (shortest purging time) is achieved when the ratios of the screen, sandpack, and fracture hydraulic conductivities are close to 1:1:1. More importantly, the role of the fracture hydraulic conductivity in the ratios is not as crucial to reducing t(99) as having the hydraulic conductivities of the screen and sandpack as similar as possible. This study provides a better understanding of well dynamics during pumping for the purpose of obtaining representative groundwater samples. PMID:21797851

  12. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicted on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction

  13. Research program to develop and validate conceptual models for flow and transport through unsaturated, fractured rock

    International Nuclear Information System (INIS)

    As part of the Yucca Mountain Project, our research program to develop and validate conceptual models for flow and transport through unsaturated fractured rock integrates fundamental physical experimentation with conceptual model formulation and mathematical modeling. Our research is directed toward developing and validating macroscopic, continuum-based models and supporting effective property models because of their widespread utility within the context of this project. Success relative to the development and validation of effective property models is predicated on a firm understanding of the basic physics governing flow through fractured media, specifically in the areas of unsaturated flow and transport in a single fracture and fracture-matrix interaction. 43 refs

  14. Influence of mechanical rock properties and fracture healing rate on crustal fluid flow dynamics

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel; de Riese, Tamara

    2016-04-01

    Fluid flow in the Earth's crust is very slow over extended periods of time, during which it occurs within the connected pore space of rocks. If the fluid production rate exceeds a certain threshold, matrix permeability alone is insufficient to drain the fluid volume and fluid pressure builds up, thereby reducing the effective stress supported by the rock matrix. Hydraulic fractures form once the effective pressure exceeds the tensile strength of the rock matrix and act subsequently as highly effective fluid conduits. Once local fluid pressure is sufficiently low again, flow ceases and fractures begin to heal. Since fluid flow is controlled by the alternation of fracture permeability and matrix permeability, the flow rate in the system is strongly discontinuous and occurs in intermittent pulses. Resulting hydraulic fracture networks are largely self-organized: opening and subsequent healing of hydraulic fractures depends on the local fluid pressure and on the time-span between fluid pulses. We simulate this process with a computer model and describe the resulting dynamics statistically. Special interest is given to a) the spatially and temporally discontinuous formation and closure of fractures and fracture networks and b) the total flow rate over time. The computer model consists of a crustal-scale dual-porosity setup. Control parameters are the pressure- and time-dependent fracture healing rate, and the strength and the permeability of the intact rock. Statistical analysis involves determination of the multifractal properties and of the power spectral density of the temporal development of the total drainage rate and hydraulic fractures. References Bons, P. D. (2001). The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures. Tectonophysics, 336, 1-17. Miller, S. a., & Nur, A. (2000). Permeability as a toggle switch in fluid-controlled crustal processes. Earth and Planetary Science Letters, 183(1-2), 133-146. Sachau, T., Bons, P. D

  15. Modeling of thermally driven hydrological processes in partially saturated fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Yvonne; Birkholzer, Jens; Mukhopadhyay, Sumit

    2009-03-15

    This paper is a review of the research that led to an in-depth understanding of flow and transport processes under strong heat stimulation in fractured, porous rock. It first describes the anticipated multiple processes that come into play in a partially saturated, fractured porous volcanic tuff geological formation, when it is subject to a heat source such as that originating from the decay of radionuclides. The rationale is then given for numerical modeling being a key element in the study of multiple processes that are coupled. The paper outlines how the conceptualization and the numerical modeling of the problem evolved, progressing from the simplified to the more realistic. Examples of numerical models are presented so as to illustrate the advancement and maturation of the research over the last two decades. The most recent model applied to in situ field thermal tests is characterized by (1) incorporation of a full set of thermal-hydrological processes into a numerical simulator, (2) realistic representation of the field test geometry, in three dimensions, and (3) use of site-specific characterization data for model inputs. Model predictions were carried out prior to initiation of data collection, and the model results were compared to diverse sets of measurements. The approach of close integration between modeling and field measurements has yielded a better understanding of how coupled thermal hydrological processes produce redistribution of moisture within the rock, which affects local permeability values and subsequently the flow of liquid and gases. The fluid flow in turn will change the temperature field. We end with a note on future research opportunities, specifically those incorporating chemical, mechanical, and microbiological factors into the study of thermal and hydrological processes.

  16. Seismic waves in rocks with fluids and fractures

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2007-05-14

    Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracture parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.

  17. Continuous time markov process model for nuclide decay chain transport in the fractured rock medium

    International Nuclear Information System (INIS)

    A stochastic approach using continuous time Markov process is presented to model the one dimensional nuclide transport in fractured rock media as a further extension for previous works. Nuclide transport of decay chain of arbitrary length in the single planar fractured rock media in the vicinity of the radioactive waste repository is modeled using a continuous time Markov process. While most of analytical solutions for nuclide transport of decay chain deal with the limited length of decay chain, do not consider the case of having rock matrix diffusion, and have very complicated solution form, the present model offers rather a simplified solution in the form of expectance and its variance resulted from a stochastic modeling. As another deterministic way, even numerical models of decay chain transport, in most cases, show very complicated procedure to get the solution and large discrepancy for the exact solution as opposed to the stochastic model developed in this study. To demonstrate the use of the present model and to verify the model by comparing with the deterministic model, a specific illustration was made for the transport of a chain of three member in single fractured rock midium with constant groundwater flow rate in the fracture, which ignores the rock matrix diffusion and shows good capability to model the fractured media around the repository. (Author)

  18. Radionuclides migration in fractured porous rock: Analytical solutions for various boundary conditions

    International Nuclear Information System (INIS)

    Analytical solutions based on Laplace transform are developed for the problem of radionuclides transport along a discrete planar fracture in porous rock. The solutions take into account advective transport in the fracture, longitudinal hydrodynamic dispersion along the fracture axis, molecular diffusion from the fracture into the rock matrix, sorption within the rock matrix, sorption onto the surface of the fracture and radioactive decay. The initial concentration in both the fracture and the rock matrix is assumed to be zero. Four boundary conditions, constant concentration, exponentially decaying concentration, exponentially decaying flux and kinetic solubility-limited dissolution are assumed. All these analytical solutions are in a form of a single integral that is evaluated by a Gauss-Legendre quadrature for each point in space and time. A comparison between the concentration profiles with a constant concentration inlet boundary condition and those with a decaying concentration inlet boundary condition shows that the concentration profile is strongly influenced by the inlet boundary condition when the retardation factor of the matrix is high. As the dissolution rate constant approaches infinity, the inlet boundary condition of the kinetic solubility-limited dissolution model can be replaced by the boundary condition of constant concentration

  19. Transient of diffusion from a waste solid into fractured porous rock

    International Nuclear Information System (INIS)

    Previous analytical studies of the advective transport of dissolved contaminants through fractured rock have emphasized the effect of molecular diffusion in the rock matrix in affecting the space-time-dependent concentration of the contaminant as it moves along the fracture. Matrix diffusion only in the direction normal to the fracture surface was assumed. Contaminant sources were constant-concentration surfaces of width equal to the fracture aperture and of finite or infinite extent in the transverse direction. Such studies illustrate the far-field transport features of fractured media. To predict the time-dependent mass transfer from a long waste cylinder surrounded by porous rock and intersected by a fracture, the present study includes diffusion from the waste surface directly into porous rock, as well as the more realistic geometry. Here we present numerical results from Chambre's analytical solution for the time-dependent mass transfer from the cylinder, for the low-flow conditions wherein near-field mass transfer is expected to be controlled by molecular diffusion. 5 refs., 3 figs

  20. Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones

    International Nuclear Information System (INIS)

    Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs

  1. Use of fracture mechanics parameters to characterize comminution

    OpenAIRE

    Hao, Bin

    1996-01-01

    This report is to investigate the use of fracture mechanics parameters (fracture toughness, specific work of fracture) to characterize comminution process. Comminution is a very important industrial process and is extremely low in efficiency. Establishment of a crushing index based on fracture mechanics principles is of great significance for improved machine design and enhanced efficiency. Single particle fracture study has been reviewed because it is considered the most eleme...

  2. Modelling tracer transport in fractured rock at Stripa

    International Nuclear Information System (INIS)

    We present the results of a modelling study, making predictions for tracer transport experiments carried out within the H-zone feature in the Stripa mine. We use a direct fracture network approach to represent the system of interconnected flow-conducting fractures comprising this zone. It is a highly fractured granite, and our fracture-network models include up to 60000 fractures. We have had to develop efficient algorithms to calculate the flow and transport through these networks; these techniques are described and justified. The first stage of modelling addressed two saline injection experiments. The results of these were known to us and so in addition to 'predicting' the results of these experiments, we used them to calibrate a flow model of the experimental site. This model was then used to make true 'blind' predictions for a set of tracer experiments carried out in the natural head-field, caused by an open drift. Where our flow model was good, our predictions were found to be very accurate, explaining the dispersion in the tracer breakthrough in terms of the fracture network geometry. Discrepancies for experiments in less well characterised regions of the H-zone are presented, and we suggest that the errors in these predictions are a consequence of the inaccuracies of the flow-field. We have demonstrated the use of large-scale fracture network modelling. It has proved very successful, and made very accurate predictions of field experiments carried out at the Stripa mine. The measured dispersion of tracers can be accounted for by the geometry of the fracture network flow system. (14 refs.) (au)

  3. Hydraulic anisotropy characterization of pneumatic-fractured sediments using azimuthal self potential gradient

    Science.gov (United States)

    Wishart, D.N.; Slater, L.D.; Schnell, D.L.; Herman, G.C.

    2009-01-01

    The pneumatic fracturing technique is used to enhance the permeability and porosity of tight unconsolidated soils (e.g. clays), thereby improving the effectiveness of remediation treatments. Azimuthal self potential gradient (ASPG) surveys were performed on a compacted, unconsolidated clay block in order to evaluate their potential to delineate contaminant migration pathways in a mechanically-induced fracture network. Azimuthal resistivity (ARS) measurements were also made for comparative purposes. Following similar procedures to those used in the field, compressed kaolinite sediments were pneumatically fractured and the resulting fracture geometry characterized from strike analysis of visible fractures combined with strike data from optical borehole televiewer (BHTV) imaging. We subsequently injected a simulated treatment (electrolyte/dye) into the fractures. Both ASPG and ARS data exhibit anisotropic geoelectric signatures resulting from the fracturing. Self potentials observed during injection of electrolyte are consistent with electrokinetic theory and previous laboratory results on a fracture block model. Visual (polar plot) analysis and linear regression of cross plots show ASPG lobes are correlated with azimuths of high fracture strike density, evidence that the ASPG anisotropy is a proxy measure of hydraulic anisotropy created by the pneumatic fracturing. However, ARS data are uncorrelated with fracture strike maxima and resistivity anisotropy is probably dominated by enhanced surface conduction along azimuths of weak 'starter paths' formed from pulverization of the clay and increases in interfacial surface area. We find the magnitude of electrokinetic SP scales with the applied N2 gas pressure gradient (??PN2) for any particular hydraulically-active fracture set and that the positive lobe of the ASPG anomaly indicates the flow direction within the fracture network. These findings demonstrate the use of ASPG in characterizing the effectiveness of (1

  4. Hydraulic anisotropy characterization of pneumatic-fractured sediments using azimuthal self potential gradient

    Science.gov (United States)

    Wishart, DeBonne N.; Slater, Lee D.; Schnell, Deborah L.; Herman, Gregory C.

    2009-01-01

    The pneumatic fracturing technique is used to enhance the permeability and porosity of tight unconsolidated soils (e.g. clays), thereby improving the effectiveness of remediation treatments. Azimuthal self potential gradient (ASPG) surveys were performed on a compacted, unconsolidated clay block in order to evaluate their potential to delineate contaminant migration pathways in a mechanically-induced fracture network. Azimuthal resistivity (ARS) measurements were also made for comparative purposes. Following similar procedures to those used in the field, compressed kaolinite sediments were pneumatically fractured and the resulting fracture geometry characterized from strike analysis of visible fractures combined with strike data from optical borehole televiewer (BHTV) imaging. We subsequently injected a simulated treatment (electrolyte/dye) into the fractures. Both ASPG and ARS data exhibit anisotropic geoelectric signatures resulting from the fracturing. Self potentials observed during injection of electrolyte are consistent with electrokinetic theory and previous laboratory results on a fracture block model. Visual (polar plot) analysis and linear regression of cross plots show ASPG lobes are correlated with azimuths of high fracture strike density, evidence that the ASPG anisotropy is a proxy measure of hydraulic anisotropy created by the pneumatic fracturing. However, ARS data are uncorrelated with fracture strike maxima and resistivity anisotropy is probably dominated by enhanced surface conduction along azimuths of weak 'starter paths' formed from pulverization of the clay and increases in interfacial surface area. We find the magnitude of electrokinetic SP scales with the applied N 2 gas pressure gradient (Δ PN2) for any particular hydraulically-active fracture set and that the positive lobe of the ASPG anomaly indicates the flow direction within the fracture network. These findings demonstrate the use of ASPG in characterizing the effectiveness of (1

  5. Determination of hydraulic conductivity of fractured rock masses: A case study for a rock cavern project in Singapore

    Directory of Open Access Journals (Sweden)

    Zhipeng Xu

    2015-04-01

    Full Text Available In order to reduce the risk associated with water seepage in an underground rock cavern project in Singapore, a reliable hydro-geological model should be established based on the in situ investigation data. The key challenging issue in the hydro-geological model building is how to integrate limited geological and hydro-geological data to determine the hydraulic conductivity of the fractured rock masses. Based on the data obtained from different stages (feasibility investigation stage, construction stage, and post-construction stage, suitable models and methods are proposed to determine the hydraulic conductivities at different locations and depths, which will be used at other locations in the future.

  6. Determination of hydraulic conductivity of fractured rock masses:A case study for a rock cavern project in Singapore

    Institute of Scientific and Technical Information of China (English)

    Zhipeng Xu; Zhiye Zhao; Jianping Sun; Ming Lu

    2015-01-01

    In order to reduce the risk associated with water seepage in an underground rock cavern project in Singapore, a reliable hydro-geological model should be established based on the in situ investigation data. The key challenging issue in the hydro-geological model building is how to integrate limited geological and hydro-geological data to determine the hydraulic conductivity of the fractured rock masses. Based on the data obtained from different stages (feasibility investigation stage, construction stage, and post-construction stage), suitable models and methods are proposed to determine the hy-draulic conductivities at different locations and depths, which will be used at other locations in the future.

  7. Structural and neural network analyses of fracture systems at the Aespoe Hard Rock Laboratory, SE Sweden

    International Nuclear Information System (INIS)

    The > 10,000 fractures documented in the 450 m deep Aespoe Hard Rock Laboratory (HRL) provide a unique opportunity to study brittle deformation of a Swedish bedrock mass. The fracture population consists of six major sets, one sub-horizontal and five sub-vertical. A classical structural analysis explored the interrelations between geometry and frequency of both dry and wet fractures with respect to depth and in-situ stresses. Three main findings are: In-situ stresses govern frequency distributions of dilated, hence water-bearing fractures. About 68.5% of sub-horizontal fractures are dilated in the thrust regime above a depth of ca. 230 m while 53% of sub-vertical fractures are dilated in the underlying wrench regime. Fractures curve both horizontally and vertically, a finding confirmed by the application of artificial neural networks that included Back-Propagation and Self-Organizing (Kohonen) networks. The asymmetry of the total fracture population and tilts of the sub-Cambrian peneplain demonstrates that multiple reactivations of fractures have tilted the Aespoe rock mass 6 deg to the west. The potential space problem raised by this tilt is negated by systematic curvature of steep fractures, some of which sole out to gently dipping fracture zones. Fractures probably developed their curvature when they formed deep in crystalline crust in Precambrian times but have since reactivated at shallow depths. These findings add significantly to the conceptual model of Aespoe and should be taken into account in future studies regarding the isolation of Sweden's high-grade radioactive waste in crystalline bedrock

  8. Discrete fracture modelling of the Finnsjoen rock mass. Phase 1: Feasibility study

    International Nuclear Information System (INIS)

    The geometry and properties of discrete fractures are expected to control local heterogeneity in flow and solute transport within crystalline rock in the Finnsjoen area. The present report describes the first phase of a discrete-fracture modelling study, the goal of which is to develop stochastic-continuum and hydrologic properties. In the first phase of this study, the FracMan discrete fracture modelling package was used to analyse discrete fracture geometrical and hyrological data. Constant-pressure packer tests were analysed using fractional dimensional methods to estimate effective transmissivities and flow dimension for the packer test intervals. Discrete fracture data on orientation, size, shape, and location were combined with hydrologic data to develop a preliminary conceptual model for the conductive fractures at the site. The variability of fracture properties was expressed in the model by probability distributions. The preliminary conceptual model was used to simulate three-dimensional populations of conductive fractures in 25 m and 50 m cubes of rock. Transient packer tests were simulated in these fracture populations, and the simulated results were used to validate the preliminary conceptual model. The calibrated model was used to estimate the components of effective conductivity tensors for the rock by simulating steady-state groundwater flow through the cubes in three orthogonal directions. Monte Carlo stochastic simulations were performed for alternative realizations of the conceptual model. The number of simulations was insufficient to give a quantitative prediction of the effective conductivity heterogeneity and anisotropy on the scales of the cubes. However, the results give preliminary, rough estimates of these properties, and provide a demonstration of how the discrete-fracture network concept can be applied to derive data that is necessary for stochastic continuum and channel network modelling. (authors)

  9. Field test of ethanol/bentonite slurry grouting into rock fracture

    International Nuclear Information System (INIS)

    Crystalline rocks have fractures which may cause unexpected routes of groundwater seepage. Cement grouting is one of the most effective methods to minimize seepage; however, cement materials may not be suitable for the purpose of extra-long durability, because cement is neutralized or degraded by chemical and physical influence of chemical reaction. Natural clay like bentonite is one of the most promising materials for seepage barrier; however, water/bentonite grout is so viscous that enough amount of bentonite can not be grouted into rock fractures. To increase bentonite content in grout with low viscosity, the utilization of ethanol as a mixing liquid was studied. Ethanol suppresses bentonite swelling, and more bentonite can be injected more than that of water/bentonite slurry. In this paper, grouting into in-situ rock mass fracture from the ground surface was tested to investigate the barrier performance and workability of ethanol/bentonite slurry as a grouting material. (author)

  10. NUMERICAL ANALYSIS OF SATURATED-UNSATURATED SEEPAGE FLOW IN FRACTURED ROCK MASS DUE TO SURFACE INFILTRATION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Seepage flow in fractured rock mass due to surface infiltration is a saturated-unsaturated seepage process. Aimed at rock mass with large fracture density, which can be equivalent to continuum, a mathematical model for saturated-unsaturated seepage flow in fractured rock mass due to surface infiltration was established in this paper. The Galerkin finite element method was used in numerical simulation and a finite element program used to calculate saturated-unsaturated seepage flow due to surface infiltration was worked out. A model experiment was employed examine the reasonableness of the program. The results show that the proposed model and program are reasonable. The application of the analysis method in this paper in an engineering project shows that the method is reliable and feasible.

  11. Permeability Heterogeneity in a Fractured Sandstone-Mudstone Rock Mass in Xiaolangdi Dam Site, Central China

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiaowei; WAN Li; WANG Xusheng; KANG Aibin; HUANG Jun; HUANG Guoxing

    2009-01-01

    Heterogeneity of permeability in fractured media is a hot research topic in hydrogeology.Numerous approaches have been proposed to characterize heterogeneity in the last several decades.However, little attention has been paid to correlate permeability heterogeneity with geological information. In the present study, several causes of permeability heterogeneity, that is, lithology,tectonism, and depth, are identified. The unit absorption values (denoted as ω), which are results obtained from the packer test, are employed to represent permeability. The variability of permeability in sandstone-mudstone is so significant that the value of unit absorptions span 3-4 orders of magnitude at any depth with several test sections. By declustering, it has been found that under a similar tectonic history, the means of permeability differ greatly at different formations as a result of different mudrock contents. It has also been found that in the same formation, permeability can he significantly increased as a result of faulting. The well-known phenomenon, the decrease in permeability with depth, is found to be caused by the fractures in the rock mass, and the relationship between permeability and depth can be established in the form of logω-logd. After subtracting the trend of ω with absolute depth, the mean of the residual value at each relative depth can be well correlated with the distribution of mudstone.The methods proposed in this paper can be utilized to research in similar study areas.

  12. Transient dual-porosity simulations of unsaturated flow in fractured rocks

    International Nuclear Information System (INIS)

    This report describes the development and use of a semi-analytical dual-porosity simulator for unsaturated flow in fractured rock masses. Fluid flow between the fracture network and the matrix blocks is described by a nonlinear equation that relates the imbibition rate to the local difference in liquid-phase pressure between the fractures and the matrix blocks. This equation is a generalization of the Warren-Root equation, but is accurate in both early and late time regimes. The fracture/matrix interflow equation has been incorporated into a computational module that acts as a source/sink term for fracture elements; this module is compatible with the unsaturated flow simulator TOUGH. Flow processes are then simulated using only fracture elements in the computational grid. This semi-analytical dual-porosity module has been tested with TOUGH on various problems involving transient flow in fractured/porous media, and compared with simulations performed using explicit discretization of the matrix blocks. The new semi-analytical dual-porosity model accurately simulates flow processes in unsaturated fractured rocks, and typically requires an order of magnitude less computational time than do simulations using fully-discretized matrix blocks

  13. Radionuclide transport facilitated by polydispersed pseudo-colloids in the fractured rock media

    International Nuclear Information System (INIS)

    One dimensional analytic transport model in the fractured rock media which incorporates advective-dispersive transport, sorption onto stationary solid medium, pseudo-colloid formation, polydispersity of colloids, and radioactive decay was developed by assuming equilibrium sorption of radionuclide and colloids onto the solid medium and constant concentration of natural colloids in the fracture. It was resulted from this model study that transport of radionuclides in a fractured rock medium was accelerated by the presence of colloids and the polydispersity of colloids increased the mobility of radionuclides in the fracture, although the maximum concentration was decreased, comparing to the case of monodispersed colloids. Also it was noted that the effects of pseudo-colloid formation constant and concentration of natural colloids are of great importance in the transport of colloids. This model study could help to evaluate the significance of colloid presence in groundwater and to assess the overall behavior of radionuclides in groundwater. (author)

  14. A mathematical model for solid liquid and mass transfer coupling and numerical simulation for hydraulic fracture in rock salt

    Institute of Scientific and Technical Information of China (English)

    LIANG Weiguo; ZHAO Yangsheng

    2005-01-01

    The hydraulic fracture in rock salt is a complicated solid fluid and mass transfer coupling process. Through theoretical analysis, a solid fluid and mass transfer coupling mathematical model of hydraulic fracture in rock salt is established in this work, and numerical simulations are carried out with the model. The simulation results indicate that rock salt cracks in the typical way of wing-crack(or tensile crack) during the fracture, and the relation of fracture aperture (w) with expanding distance (x) and fracture time (t) is w =(0. 0034 + 0. 0006t )e(0.0007+00018t)x. Furthermore, it has been found that boththe water pressure in the crack and the expanding velocity of the crack decrease gradually as a result of the influence of salt dissolving during fracturing. These numerical simulations well illustrate the process of hydraulic fracture in rock salt and are significantly meaningful in engineering practice.

  15. Processes controlling the migration and biodegradation of non-aqueous phase liquids (NAPLs) within fractured rocks in the vadose zone. FY96 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Geller, J.T.; Holman, H.Y.; Conrad, M.; Pruess, K.; Hunter-Cevera, J.C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.; Su, G. [Univ. of California, Berkeley, CA (United States). Dept. of Civil Engineering

    1997-02-01

    This project investigates both flow dynamics and microbial processes affecting NAPLs in fractured rock in a closely coupled, integrated manner. The objective is to develop a qualitative and quantitative understanding of the behavior of two and three immiscible fluid phases, microbial transformation and/or degradation, and to provide a scientific basis for field investigations, site characterization, and remedial action for NAPL contamination in fractured rocks. To achieve this, the program combines laboratory and theoretical investigations, coupled with the evaluation of conditions at relevant field sites. This report summarizes the work accomplished since inception of the project in April 1996.

  16. Processes controlling the migration and biodegradation of non-aqueous phase liquids (NAPLs) within fractured rocks in the vadose zone. FY96 annual report

    International Nuclear Information System (INIS)

    This project investigates both flow dynamics and microbial processes affecting NAPLs in fractured rock in a closely coupled, integrated manner. The objective is to develop a qualitative and quantitative understanding of the behavior of two and three immiscible fluid phases, microbial transformation and/or degradation, and to provide a scientific basis for field investigations, site characterization, and remedial action for NAPL contamination in fractured rocks. To achieve this, the program combines laboratory and theoretical investigations, coupled with the evaluation of conditions at relevant field sites. This report summarizes the work accomplished since inception of the project in April 1996

  17. Flow dynamics and potential for biodegradation of organic contaminants in fractured rock vadose zones

    Science.gov (United States)

    Geller, J. T.; Holman, H.-Y.; Su, G.; Conrad, M. E.; Pruess, K.; Hunter-Cevera, J. C.

    2000-04-01

    We present an experimental approach for investigating the potential for bioremediation of volatile organic compounds (VOCs) in fractured rock vadose zones. The experimental work was performed with rock samples and indigenous microorganisms from the site of the United States Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL), located in a basalt flow basin where VOC contamination threatens the Snake River Aquifer. Our approach has four components: (1) establishing a conceptual model for fluid and contaminant distribution in the geologic matrix of interest; (2) identification of important features of liquid distribution by means of seepage experiments in the fracture plane; (3) identification of the presence and activity of microorganisms by non-destructive monitoring of biotransformations on rock surfaces at the micron-scale; and (4) integration of flow and biological activity in natural rock "geocosms". Geocosms are core-scale flow cells that incorporate some aspects of natural conditions, such as liquid seepage in the fracture plane and moisture content. Fluid flow and distribution within fracture networks may be a significant factor in the ability of microorganisms to degrade VOCs, as they affect the availability of substrate, moisture and nutrients. Flow visualization and tracer breakthrough curves in transparent fracture replicas for unsaturated inlet conditions exhibited the channelized and intermittent nature of liquid seepage. The seepage of water and non-aqueous phase liquids (NAPLs) of varying physical and chemical properties into an initially dry replica showed only subtle differences in liquid distribution. In contrast, the seepage of a NAPL into the fracture replica containing residual water resulted in complex trapping of NAPL along the solid/water/air contact lines and diversion of NAPL to previously dry parts of the fracture. We found that a mixed culture of viable bacteria exists on the natural rock surfaces

  18. Fracture Mechanics Characterization of an AnisotropicGeomaterial

    OpenAIRE

    Cravero, Masantonio; Iabichino, Giorgio; Valente, Silvio; Fidelibus, Corrado; Barpi, Fabrizio

    2012-01-01

    Argillites are considered worldwide as potential host rock for high level radioactive waste given the low permeability and strong adsorption potential. However, the excavation of the galleries of a repository would produce a disturbed zone around the boundaries rich of new fractures which may enhance the conductivity of the rock along the gallery axis. Several mine-by experiments have been performed in underground rock labs to investi- gate the features of the disturbed zone. In Mont Terri UR...

  19. Rock mass fracturing in main gate roof behind advancing longwall face

    Czech Academy of Sciences Publication Activity Database

    Waclawik, Petr; Ptáček, Jiří; Vavro, Martin; Koníček, Petr; Kukutsch, Radovan

    Vol. 5. Ostrava: Ústav geoniky AV ČR, 2014 - (Koníček, P.; Souček, K.; Heroldová, N.). s. 45-46 ISBN 978-80-86407-49-4. [5th International Colloquium on Geomechanics and Geophysics. 24.06.2014-27.06.2014, Ostravice, Karolínka] Institutional support: RVO:68145535 Keywords : main gate * longwall exploatation * RQD testing * rock mass fracturing * fracturing zone prediction Subject RIV: DH - Mining, incl. Coal Mining

  20. Rock mass fracturing in main gate roof behind advancing longwall face

    Czech Academy of Sciences Publication Activity Database

    Waclawik, Petr; Ptáček, Jiří; Vavro, Martin; Koníček, Petr; Kukutsch, Radovan

    Vol. 5. Ostrava : Ústav geoniky AV ČR, 2014 - (Koníček, P.; Souček, K.; Heroldová, N.). s. 45-46 ISBN 978-80-86407-49-4. [5th International Colloquium on Geomechanics and Geophysics. 24.06.2014-27.06.2014, Ostravice, Karolínka] Institutional support: RVO:68145535 Keywords : main gate * longwall exploatation * RQD testing * rock mass fracturing * fracturing zone prediction Subject RIV: DH - Mining, incl. Coal Mining

  1. Hydraulic characterization of a small groundwater flow system in fractured monzonitic gneiss

    International Nuclear Information System (INIS)

    The hydraulic characteristics of a small groundwater flow system active in a 200-m by 150-m by 50-m deep block of fractured monzonitic gneiss located at Chalk River, Ontario have been determined from surface and bore-hole investigations. Surface investigations including air photo lineament analysis, ground and airborne geophysics and fracture mapping were used to define the local and regional fracture system, locate the study site and direct the exploratory drilling program. Subsurface investigations were completed in 17 boreholes and included fracture logging, systematic straddle-packer injection testing, hydraulic interference testing and long-term hydraulic head monitoring. The interference tests and monitoring were conducted in 90 packer-isolated test intervals created by installation of multiple-packer casings in each borehole. Hydraulic interference tests provided detailed information on the equivalent single-fracture aperture and storativity of four major (≥ 50-m extent) fracture zones and the vertical hydraulic diffusivity of the rock mass of the study site. Fracture logs and injection test data were combined to generate a tensoral representation of hydraulic conductivity for each test interval. The results of the detailed investigations are presented and interpreted to provide a complete three-dimensional description of the groundwater flow system. A gravity-controlled flow system occurs at the Chalk River study site. Groundwater flow in the rock is primarily vertical to a low-hydraulic head, fracture zone at 33 to 50 m depth with a horizontal component of flow determined by surface topography. An impermeable diabase dyke and three additional high-permeability fracture zones are important hydrogeologic features influencing flow at the study site. The results of the investigations also show that characterization of the geometric and hydraulic properties of large structural discontinuities is essential in understanding the flow of fluids in fractured rocks

  2. Long-range spatial dependence in fractured rock. Empirical evidence and implications for tracer transport

    International Nuclear Information System (INIS)

    Nonclassical stochastic continuum models incorporating long-range spatial dependence are evaluated as models for fractured crystalline rock. Open fractures and fracture zones are not modeled explicitly in this approach. The fracture zones and intact rock are modeled as a single stochastic continuum. The large contrasts between the fracture zones and unfractured rock are accounted for by making use of random field models specifically designed for highly variable systems. Hydraulic conductivity data derived from packer tests in the vicinity of the Aespoe Hard Rock Laboratory form the basis for the evaluation. The Aespoe log K data were found to be consistent with a fractal scaling model based on bounded fractional Levy motion (bfLm), a model that has been used previously to model highly variable sedimentary formations. However, the data are not sufficient to choose between this model, a fractional Brownian motion model for the normal-score transform of log K, and a conventional geostatistical model. Stochastic simulations conditioned by the Aespoe data coupled with flow and tracer transport calculations demonstrate that the models with long-range dependence predict earlier arrival times for contaminants. This demonstrates the need to evaluate this class of models when assessing the performance of proposed waste repositories. The relationship between intermediate-scale and large-scale transport properties in media with long-range dependence is also addressed. A new Monte Carlo method for stochastic upscaling of intermediate-scale field data is proposed

  3. Parameter estimation from flowing fluid temperature logging data in unsaturated fractured rock using multiphase inverse modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, S.; Tsang, Y.; Finsterle, S.

    2009-01-15

    A simple conceptual model has been recently developed for analyzing pressure and temperature data from flowing fluid temperature logging (FFTL) in unsaturated fractured rock. Using this conceptual model, we developed an analytical solution for FFTL pressure response, and a semianalytical solution for FFTL temperature response. We also proposed a method for estimating fracture permeability from FFTL temperature data. The conceptual model was based on some simplifying assumptions, particularly that a single-phase airflow model was used. In this paper, we develop a more comprehensive numerical model of multiphase flow and heat transfer associated with FFTL. Using this numerical model, we perform a number of forward simulations to determine the parameters that have the strongest influence on the pressure and temperature response from FFTL. We then use the iTOUGH2 optimization code to estimate these most sensitive parameters through inverse modeling and to quantify the uncertainties associated with these estimated parameters. We conclude that FFTL can be utilized to determine permeability, porosity, and thermal conductivity of the fracture rock. Two other parameters, which are not properties of the fractured rock, have strong influence on FFTL response. These are pressure and temperature in the borehole that were at equilibrium with the fractured rock formation at the beginning of FFTL. We illustrate how these parameters can also be estimated from FFTL data.

  4. Scale and size effects in dynamic fracture of concretes and rocks

    Science.gov (United States)

    Petrov, Y.; Selyutina, N.

    2015-09-01

    Structural-temporal approach based on the notion of incubation time is used for interpretation of strain-rate effects in the fracture process of concretes and rocks. It is established that temporal dependences of concretes and rocks are calculated by the incubation time criterion. Experimentally observed different relations between ultimate stresses of concrete and mortar in static and dynamic conditions are explained. It is obtained that compressive strength of mortar at a low strain rate is greater than that of concrete, but at a high strain rate the opposite is true. Influence of confinement pressure on the mechanism of dynamic strength for concretes and rocks is discussed. Both size effect and scale effect for concrete and rocks samples subjected to impact loading are analyzed. Statistical nature of a size effect contrasts to a scale effect that is related to the definition of a spatio-temporal representative volume determining the fracture event on the given scale level.

  5. Self-potential measurements to determine preferred waterflow in fractured rocks

    Science.gov (United States)

    Hötzl, H.; Merkler, G.-P.

    The determination of the permeability behaviour of fractured rocks is of essential importance for the judgement of necessary grouting measures. Geoelectrical self-potential measurements in connection with water pressure tests and grouting experiments in rock masses were carried out to determine preferred flow paths of water or cement in relation to the joint system. The self-potential measurements proved to be closely related to the amount of water or cement absorption in the pressure-gauge borehole. The differences between the self-potential measuring values, calculated for various pressure/water or cement absorption proportions in the pressure-gauge boreholes, indicate an anisotropic system of water or cement pathways, especially in the statistical evaluation of the directions of self potential isolines. Use of this method may help to define the main water paths in fractured rocks and to determine the anisotropy of rock permeability.

  6. A NEW HIGH RESOLUTION OPTICAL METHOD FOR OBTAINING THE TOPOGRAPHY OF FRACTURE SURFACES IN ROCKS

    Directory of Open Access Journals (Sweden)

    Steven Ogilvie

    2011-05-01

    Full Text Available Surface roughness plays a major role in the movement of fluids through fracture systems. Fracture surface profiling is necessary to tune the properties of numerical fractures required in fluid flow modelling to those of real rock fractures. This is achieved using a variety of (i mechanical and (ii optical techniques. Stylus profilometry is a popularly used mechanical method and can measure surface heights with high precision, but only gives a good horizontal resolution in one direction on the fracture plane. This method is also expensive and simultaneous coverage of the surface is not possible. Here, we describe the development of an optical method which images cast copies of rough rock fractures using in-house developed hardware and image analysis software (OptiProf™ that incorporates image improvement and noise suppression features. This technique images at high resolutions, 15-200 μm for imaged areas of 10 × 7.5 mm and 100 × 133 mm, respectively and a similar vertical resolution (15 μm for a maximum topography of 4 mm. It uses in-house developed hardware and image analysis (OptiProf™ software and is cheap and non-destructive, providing continuous coverage of the fracture surface. The fracture models are covered with dye and fluid thicknesses above the rough surfaces converted into topographies using the Lambert-Beer Law. The dye is calibrated using 2 devices with accurately known thickness; (i a polycarbonate tile with wells of different depths and (ii a wedge-shaped vial made from silica glass. The data from each of the two surfaces can be combined to provide an aperture map of the fracture for the scenario where the surfaces touch at a single point or any greater mean aperture. The topography and aperture maps are used to provide data for the generation of synthetic fractures, tuned to the original fracture and used in numerical flow modelling.

  7. Thermo-hydro-mechanical processes in fractured rock formations during a glacial advance

    OpenAIRE

    Selvadurai, A. P. S.; Suvorov, A. P.; Selvadurai, P. A.

    2015-01-01

    The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach that takes into account thermo-...

  8. Rock mechanics issues and research needs in the disposal of wastes in hydraulic fractures

    Energy Technology Data Exchange (ETDEWEB)

    Doe, T.W.; McClain, W.C.

    1984-07-01

    The proposed rock mechanics studies outlined in this document are designed to answer the basic questions concerning hydraulic fracturing for waste disposal. These questions are: (1) how can containment be assured for Oak Ridge or other sites; and (2) what is the capacity of a site. The suggested rock mechanics program consists of four major tasks: (1) numerical modeling, (2) laboratory testing, (3) field testing, and (4) monitoring. These tasks are described.

  9. Micromechanical Study of Rock Fracture and Fragmentation under Dynamic Loads using Discrete Element Method

    OpenAIRE

    Kazerani, Tohid

    2011-01-01

    The study presented in this thesis aims to numerically explore the micro-mechanisms underlying rock fracture and fragmentation under dynamic loading. The approach adopted is based on the Discrete Element Method (DEM) coupled to the Cohesive Process Zone (CPZ) theory. It assumes rock material as assemblage of irregular-sized deformable fragments joining together at their cohesive boundaries. The simulation, which is referred to as Cohesive Fragment Mod...

  10. A constitutive model for representing coupled creep, fracture, and healing in rock salt

    International Nuclear Information System (INIS)

    The development of a constitutive model for representing inelastic flow due to coupled creep, damage, and healing in rock salt is present in this paper. This model, referred to as Multimechanism Deformation Coupled Fracture model, has been formulated by considering individual mechanisms that include dislocation creep, shear damage, tensile damage, and damage healing. Applications of the model to representing the inelastic flow and fracture behavior of WIPP salt subjected to creep, quasi-static loading, and damage healing conditions are illustrated with comparisons of model calculations against experimental creep curves, stress-strain curves, strain recovery curves, time-to-rupture data, and fracture mechanism maps

  11. Mechanical and hydraulic performance of sludge-mixed cement grout in rock fractures

    OpenAIRE

    Khomkrit Wetchasat; Kittitep Fuenkajorn

    2014-01-01

    The objective is to assess the performance of sludge mixed with commercial grade Portland cement type I for use in minimizing the permeability of fractured rock mass. The fractures were artificially made by applying a line load to sandstone block specimens. The sludge comprises over 80% of quartz with grain sizes less than 75 μm. The results indicate that the mixing ratios of sludge:cement (S:C) of 1:10, 3:10, 5:10 with water:cement ratio of 1:1 by weight are suitable for fracture gr...

  12. Simulation of water seepage through a vadose zone in fractured rock

    International Nuclear Information System (INIS)

    In order to improve our understanding of the vadose zone in fractured rock, obtaining useful tools to simulate, predict and prevent subsurface contamination, a three-dimensional model has been developed from the base of recent two-dimensional codes. Fracture systems are simulated by means of a dynamical evolution of a random-fuse network model, and the multiphase expression of Richards equation is used to describe fluid displacements. Physical situations presented here emphasized the importance of fracture connectivity and spatial variability on the seepage evolution through the vadose zone, and confirm the existence of dendritic patterns along localized preferential paths. (author)

  13. Modeling the hydraulic characteristics of a fractured rock mass with correlated fracture length and aperture: Application in the underground research tunnel at KAERI

    International Nuclear Information System (INIS)

    A three-dimensional discrete fracture network model was developed in order to simulate the hydraulic characteristics of a granitic rock mass at Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The model N used a three-dimensional discrete fracture network (DFN), assuming a correlation between the length and aperture of the fractures, and a trapezoid flow path in the fractures. These assumptions that previous studies have not considered could make the developed model more practical and reasonable. The geologic and hydraulic data of the fractures were obtained in the rock mass at the KURT. Then, these data were applied to the developed fracture discrete network model. The model was applied in estimating the representative elementary volume (REV), the equivalent hydraulic conductivity tensors, and the amount of groundwater inflow into the tunnel. The developed discrete fracture network model can determine the REV size for the rock mass with respect to the hydraulic behavior and estimate the groundwater flow into the tunnel at the KURT. Therefore, the assumptions that the fracture length is correlated to the fracture aperture and the flow in a fracture occurs in a trapezoid shape appear to be effective in the DFN analysis used to estimate the hydraulic behavior of the fractured rock mass.

  14. Effective Permeability of Fractured Rocks by Analytical Methods: A 3D Computational Study

    Science.gov (United States)

    Sævik, P. N.; Berre, I.; Jakobsen, M.; Lien, M.

    2013-12-01

    Analytical upscaling methods have been proposed in the literature to predict the effective hydraulic permeability of a fractured rock from its micro-scale parameters (fracture aperture, fracture orientation, fracture content, etc.). In this presentation, we put special emphasis on three effective medium methods (the symmetric and asymmetric self-consistent methods, and the differential method), and evaluate their accuracy for a wide range of parameter values. The analytical predictions are computed using our recently developed effective medium formulations, which are specifically adapted for fractured media. Compared to previous formulations, the new expressions have improved numerical stability properties, and require fewer input parameters. To assess their accuracy, the analytical predictions have been compared with 3D finite element simulations. Specifically, we generated realizations of several different fracture geometries, each consisting of 102 fractures within a unit cube. We applied unit potential difference on two opposing sides, and no-flux conditions on the remaining sides. A commercial finite-element solver was used to calculate the mean flux, from which the effective conductivity was found. This process was repeated for fracture densities up to ɛ = 1.0. Also, a wide range of fracture permeabilities was considered, from completely blocking to infinitely permeable fractures. The results were used to determine the range of applicability for each analytical method, which excels in different regions of the parameter space. For blocking fractures, the differential method is very accurate throughout the investigated parameter range. The symmetric self-consistent method also agrees well with the numerical results on sealed fractures, while the asymmetric self-consistent method is more unreliable. For permeable fractures, the performance of the methods depends on the dimensionless quantity λ = (Kfrac a)/(r Kmat ), describing the contrast between fracture and

  15. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    Science.gov (United States)

    Farough, A.; Moore, D. E.; Lockner, D. A.; Lowell, R. P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1-2 orders of magnitude during the 200-330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  16. Evolution of fracture permeability of ultramafic rocks undergoing serpentinization at hydrothermal conditions: An experimental study

    Science.gov (United States)

    Farough, Aida; Moore, Diane E.; Lockner, David A.; Lowell, R. P.

    2016-01-01

    We performed flow-through laboratory experiments on five cylindrically cored samples of ultramafic rocks, in which we generated a well-mated through-going tensile fracture, to investigate evolution of fracture permeability during serpentinization. The samples were tested in a triaxial loading machine at a confining pressure of 50 MPa, pore pressure of 20 MPa, and temperature of 260°C, simulating a depth of 2 km under hydrostatic conditions. A pore pressure difference of up to 2 MPa was imposed across the ends of the sample. Fracture permeability decreased by 1–2 orders of magnitude during the 200–330 h experiments. Electron microprobe and SEM data indicated the formation of needle-shaped crystals of serpentine composition along the walls of the fracture, and chemical analyses of sampled pore fluids were consistent with dissolution of ferro-magnesian minerals. By comparing the difference between fracture permeability and matrix permeability measured on intact samples of the same rock types, we concluded that the contribution of the low matrix permeability to flow is negligible and essentially all of the flow is focused in the tensile fracture. The experimental results suggest that the fracture network in long-lived hydrothermal circulation systems can be sealed rapidly as a result of mineral precipitation, and generation of new permeability resulting from a combination of tectonic and crystallization-induced stresses is required to maintain fluid circulation.

  17. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    International Nuclear Information System (INIS)

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLABR, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  18. Neutron Imaging of Rapid Water Imbibition in Fractured Sedimentary Rock Cores

    Science.gov (United States)

    Cheng, Chu-Lin; Perfect, Edmund; Donnelly, Brendan; Bilheux, Hassina; Tremsin, Anton; McKay, Larry; Distefano, Victoria; Cai, Jianchao; Santodonato, Lou

    2015-03-01

    Advances in nondestructive testing methods, such as neutron, nuclear magnetic resonance, and x-ray imaging, have significantly improved experimental capabilities to visualize fracture flow in various important fossil energy contexts, e.g. enhanced oil recovery and shale gas. We present a theoretical framework for predicting the rapid movement of water into air-filled fractures within a porous medium based on early-time capillary dynamics and spreading over rough fracture surfaces. The theory permits estimation of sorptivity values for the matrix and fracture zone, as well as a dispersion parameter which quantifies the extent of spreading of the wetting front. Dynamic neutron imaging of water imbibition in unsaturated fractured Berea sandstone cores was employed to evaluate the proposed model. The experiments were conducted at the Neutron Imaging Prototype Facility at Oak Ridge National Laboratory. Water uptake into both the matrix and fracture zone exhibited square-root-of-time behavior. Both theory and neutron imaging data indicated that fractures significantly increase imbibition in unsaturated sedimentary rock by capillary action and surface spreading on rough fracture faces. Fractures also increased the dispersion of the wetting front.

  19. Hydrogeological assumptions for flow modelling within fractured rocks

    Czech Academy of Sciences Publication Activity Database

    Hanzlík, Josef; Jahoda, Karel

    Praha : Ústav hydrogeologie a inženýrské geologie UK, 1994 - (Krásný, J.; Hrkal, Z.). s. 3-7 [Workshop on hard rock hydrogeology of the Bohemian massif. 03.10.1994-05.10.1994, Rohanov] R&D Projects: GA AV ČR IA34619

  20. Configuration of hydraulic effective porosity based on borehole investigation in fractured rock

    International Nuclear Information System (INIS)

    The groundwater flow velocity in void space of rock mass is one of the important parameters for evaluating mass transport in deep underground, especially on the safety assessment of high-level radioactive waste disposal. In general, the groundwater velocity in void space of rock mass is calculated by Darcy velocity divided by the effective porosity. For estimating the effective porosity, the groundwater flowing void space should be evaluated. This paper describes configuration of the hydraulic effective porosity of fractured rock, and the study of estimating the hydraulic effective porosity by using borehole investigation data drilled from the surface. (author)

  1. Fracture mechanics and subcritical crack growth approach to model time-dependent failure in brittle rock

    OpenAIRE

    Rinne, Mikael

    2008-01-01

    Subcritical crack growth (SCG) takes place when a crack is stressed below its short-term strength. This slow fracturing process may lead to an accelerating crack velocity and to a sudden unstable failure event. SCG is thought to play an important role in long-term rock stability at all scales, ranging from laboratory samples to earthquake-generating faults. SCG can be detected as rock loosening or as sudden rock movements around excavations. A time-dependent crack growth model is develop...

  2. Characteristics and modeling of fractures in Japanese rock mass. Evaluation of confidence in fracture network model. Heisei-11 progress report for the precedence-foundation engineering field

    International Nuclear Information System (INIS)

    JNC (Japan Nuclear Cycle Development Institute) has been studying characteristics of fractures in Japanese rock formations, in order to perform the geosphere performance assessment of HLW disposal site by using discrete fracture network model. This study aims to investigate the scale effects on fracture characteristics by using fracture trace maps obtained at various scales at tunnels, caverns and dam sites. We developed fracture database by digitizing fracture maps and analyzed the characteristics of fracture trace length. As a result, it was found that fracture trace length follows negative power law distribution, that is, the accumulated number of fractures is inversely proportional to trace length in log-log plot, within the range from several meters to several hundreds meters regardless of rock types and regions. Based on this power law distribution of fracture trace length, we studied the sensitivity of the fracture trace length distribution to the nuclide migration in host rock. Additionally, we proposed the new method to evaluate confidence of fracture network model. (author)

  3. A Study on the Fracture Control of Rock Bolts in High Ground Pressure Roadways of Deep Mines

    Directory of Open Access Journals (Sweden)

    Wen Jinglin

    2015-01-01

    Full Text Available According to the frequent fractures of rock bolts in high ground pressure roadways of deep mines, this paper analyzes the mechanism of fractures and concludes that high ground pressure and material de-fects are main reasons for the fracture of rock bolts. The basic idea of fracture control of rock bolts in high ground pressure roadways of deep mines is to increase the yield load and the limit load of rock bolt materials and reduce the actual load of rock bolts. There are four ways of controlling rock bolt fracture: increasing the rock bolt diameter, strengthening bolt materials, weakening support rigidity and the implementation of double supporting. With the roadway support of the 2302 working face of a coal mine as the project background, this paper carries out a study on the effect of two schemes, increasing the rock bolt diameter and the double supporting technique through methods of theoretical analysis, numerical simulation and so on. It determines the most reasonable diam-eter of rock bolts and the best delay distance of secondary support. Practices indicate that rock bolt fracture can be effectively controlled through the double supporting technique, which strengthens the roof and two sides through the first supporting technique and strengthens side angles through the secondary supporting technique.

  4. On the Relationship between Stress and Elastic Strain for Porous and Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Berryman, James G.

    2008-02-25

    Modeling the mechanical deformations of porous and fractured rocks requires a stress-strain relationship. Experience with inherently heterogeneous earth materials suggests that different varieties of Hook's law should be applied within regions of the rock having significantly different stress-strain behavior, e.g., such as solid phase and various void geometries. We apply this idea by dividing a rock body conceptually into two distinct parts. The natural strain (volume change divided by rock volume at the current stress state), rather than the engineering strain (volume change divided by the unstressed rock volume), should be used in Hooke's law for accurate modeling of the elastic deformation of that part of the pore volume subject to a relatively large degree of relative deformation (i.e., cracks or fractures). This approach permits the derivation of constitutive relations between stress and a variety of mechanical and/or hydraulic rock properties. We show that the theoretical predictions of this method are generally consistent with empirical expressions (from field data) and also laboratory rock experimental data.

  5. Significance of fracture rim zone heterogeneity for tracer transport in crystalline rock

    Science.gov (United States)

    Cvetkovic, V.

    2010-03-01

    Conducting fractures of crystalline rock are typically altered over long periods of time. The fracture rim zone, a result of these alterations, will as a rule have different physical and chemical properties from the unaltered ("fresh") rock, depending on various microscopic and macroscopic factors of the alterations. In this paper, we study the impact of rim zone heterogeneity, exemplified by a decreasing porosity trend as inferred from the Äspö Hard Rock Laboratory site (Sweden), on short- and long-term tracer transport. Our main finding is that this particular rim zone structure will have a dominant effect on transport of moderately to strongly sorbing tracers on experimental time scales and a notable effect on application time scales. The findings of this work lend further support to the interpretation of the relatively strong retention reported by Cvetkovic et al. The fracture rim zone porosity structure may provide an additional safety margin for sorbing radionuclides in crystalline rock at sites where fracture alteration is prevalent.

  6. Fracture toughness of rocks and influence of the loading velocity in mode I

    Czech Academy of Sciences Publication Activity Database

    Vavro, Leona

    Ostrava : Ústav geoniky AV ČR, 2010 - (Blaheta, R.; Kolcun, A.), s. 148-151 ISBN 978-80-86407-96-8. [Ph. D. Workshop 2010. Ostrava, Brno (CZ), 25.11.2010-25.11.2010] Institutional research plan: CEZ:AV0Z30860518 Keywords : fracture toughness * rock * extensometer * damage process Subject RIV: DB - Geology ; Mineralogy

  7. A nuclide transport model in the fractured rock medium using a continuous time markov process

    International Nuclear Information System (INIS)

    A stochastic way using continuous time Markov process is presented to model the one dimensional nuclide transport in fractured rock matrix as an extended study for previous work. A nuclide migration model by the continuous time Markov process for single planar fractured rock matrix, which is considered as a transient system where a process by which the nuclide is diffused into the rock matrix from the fracture may be on more time homogeneous, is compared with a conventional deterministic analytical solution. The primary desired quantities from a stochastic model are the expected values and variance of the state variables as a function of time. The time-dependent probability distributions of nuclides are presented for each discretized compartment of the medium given intensities of transition. Since this model is discrete in medium space, parameters which affect nuclide transport could be easily incorporated for such heterogeneous media as the fractured rock matrix and the layered porous media. Even though the model developed in this study was shown to be sensitive to the number of discretized compartment showing numerical dispersion as the number of compartments is decreased, with small compensating of dispersion coefficient, the model agrees well to analytical solution. (Author)

  8. QTRACER PROGRAM FOR TRACER-BREAKTHROUGH CURVE ANALYSIS FOR KARST AND FRACTURED-ROCK AQUIFERS

    Science.gov (United States)

    Tracer tests are generally regarded as being the most reliable and efficient means of gathering subsurface hydraulic information. This is true for all types of aquifers, but especially so for karst and fractured-rock aquifers. Qualitative tracing tests have been conventionally em...

  9. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    Science.gov (United States)

    Zangerl, Christian

    2015-04-01

    Hydromechanical (HM) coupling in fractured rock play an important role when events including dam failures, landslides, surface subsidences due to water withdrawal or drainage, injection-induced earthquakes and others are analysed. Generally, hydromechanical coupling occurs when a rock mass contain interconnected pores and fractures which are filled with water and pore/fracture pressures evolves. In the on hand changes in the fluid pressure can lead to stress changes, deformations and failures of the rock mass. In the other hand rock mass stress changes and deformations can alter the hydraulic properties and fluid pressures of the rock mass. Herein well documented case studies focussing on surface subsidence due to water withdrawal, reversible deformations of large-scale valley flanks and failure as well as deformation processes of deep-seated rock slides in fractured rock masses are presented. Due to pore pressure variations HM coupling can lead to predominantly reversible rock mass deformations. Such processes can be considered by the theory of poroelasticity. Surface subsidence reaching magnitudes of few centimetres and are caused by water drainage into deep tunnels are phenomenas which can be assigned to processes of poroelasticity. Recently, particular focus was given on large tunnelling projects to monitor and predict surface subsidence in fractured rock mass in oder to avoid damage of surface structures such as dams of large reservoirs. It was found that surface subsidence due to tunnel drainage can adversely effect infrastructure when pore pressure drawdown is sufficiently large and spatially extended and differential displacements which can be amplified due to topographical effects e.g. valley closure are occurring. Reversible surface deformations were also ascertained on large mountain slopes and summits with the help of precise deformation measurements i.e. permanent GPS or episodic levelling/tacheometric methods. These reversible deformations are often

  10. Final Report - Advanced Conceptual Models for Unsaturated and Two-Phase Flow in Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, Michael J.

    2006-07-10

    The Department of Energy Environmental Management Program is faced with two major issues involving two-phase flow in fractured rock; specifically, transport of dissolved contaminants in the Vadose Zone, and the fate of Dense Nonaqueous Phase Liquids (DNAPLs) below the water table. Conceptual models currently used to address these problems do not correctly include the influence of the fractures, thus leading to erroneous predictions. Recent work has shown that it is crucial to understand the topology, or ''structure'' of the fluid phases (air/water or water/DNAPL) within the subsurface. It has also been shown that even under steady boundary conditions, the influence of fractures can lead to complex and dynamic phase structure that controls system behavior, with or without the presence of a porous rock matrix. Complicated phase structures within the fracture network can facilitate rapid transport, and lead to a sparsely populated and widespread distribution of concentrated contaminants; these qualities are highly difficult to describe with current conceptual models. The focus of our work is to improve predictive modeling through the development of advanced conceptual models for two-phase flow in fractured rock.

  11. A numerical procedure for the analysis of the hydromechanical coupling in fractured rock masses

    Science.gov (United States)

    Duarte Azevedo, I. C.; Vaz, L. E.; Vargas, E. A.

    1998-11-01

    This work presents a finite element implementation to treat the Hydromechanical Coupling (HM) in fractured rock masses under the framework of the so-called equivalent continuum' approach. The multilaminar concept, introduced by Zienkiewicz and Pande, is used to simulate the mechanical behaviour of both the intact rock and the families of fractures. In that concept, the non-linearities in the constitutive relations are dealt by means of fictitious viscoplasticity. In the present implementation, the mechanical behaviour of the fractures is modelled by means of Barton-Bandis model. The shear stress/shear displacement/dilatancy relationship is modelled as viscoplastic and the normal stress/normal displacement as non-linear viscoelastic. Flow along fractures is considered to occur as a sequence of permanent states. The permeability tensor of the equivalent continuum is determined from the hydraulic apertures, in accordance of Barton et al. From the numerical point of view, the basic aim of the work is the implementation of an efficient scheme to solve the above described problem. This is done by designing a self-adaptive time step control, transparent to the user, which determines the highest possible time step while assuming the conditions of precision, stability and convergence. The paper presents the numerical details of such scheme together with validation/comparative examples and the results obtained on the analysis of the fractured rock foundation of a hypothetical dam.

  12. Characterization of hydraulic fractures and reservoir properties of shale using natural tracers

    Science.gov (United States)

    Heath, J. E.; Gardner, P.; Kuhlman, K. L.; Malama, B.

    2013-12-01

    Hydraulic fracturing plays a major role in the economic production of hydrocarbon from shale. Current fracture characterization techniques are limited in diagnosing the transport properties of the fractures on the near wellbore scale to that of the entire stimulated reservoir volume. Microseismic reveals information on fracture geometries, but not transport properties. Production analysis (e.g., rate transient analysis using produced fluids) estimates fracture and reservoir flow characteristics, but often relies on simplified models in terms of fracture geometries and fluid storage and transport. We present the approach and potential benefits of incorporating natural tracers with production data analysis for fracture and reservoir characterization. Hydraulic fracturing releases omnipresent natural tracers that accumulate in low permeability rocks over geologic time (e.g., radiogenic 4He and 40Ar). Key reservoir characteristics govern the tracer release, which include: the number, connectivity, and geometry of fractures; the distribution of fracture-surface-area to matrix-block-volume; and the nature of hydrocarbon phases within the reservoir (e.g., methane dissolved in groundwater or present as a separate gas phase). We explore natural tracer systematics using numerical techniques under relevant shale-reservoir conditions. We evaluate the impact on natural tracer transport due to a variety of conceptual models of reservoir-transport properties and boundary conditions. Favorable attributes for analysis of natural tracers include the following: tracer concentrations start with a well-defined initial condition (i.e., equilibrium between matrix and any natural fractures); there is a large suite of tracers that cover a range of at least 7x in diffusion coefficients; and diffusive mass-transfer out of the matrix into hydraulic fractures will cause elemental and isotopic fractionation. Sandia National Laboratories is a multi-program laboratory managed and operated by

  13. Developments in characterization of surface topography of rock joint

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The approaches to characterizing the surface topography of a rock joint can be simply grouped into statistical approaches and fractal geometrical approaches. This paper reviews the developments in characterization of the surface topography of a rock joint. Moreover, several problems of the current researches are also discussed.

  14. Radionuclide transport in fractured rock: quantifying releases from final disposal of high level waste

    International Nuclear Information System (INIS)

    Crystalline rock has been considered as a potentially suitable matrix for high-level radioactive waste (HLW) repository because it is found in very stable geological formations and may have very low permeability. In this study the adopted physical system consists of the rock matrix containing a discrete horizontal fracture in a water saturated porous rock and a system of vertical fractures as a lineament. The transport in the fractures - horizontal and vertical, is assumed to obey a relation convection-diffusion, while the molecular diffusion is considered dominant mechanism of transport in porous rock. In this model the decay chain is considered. We use a code in Fortran 90, where the partial differential equations that describe the movement of radionuclides were discretized by finite differences methods. We use the fully implicit method for temporal discretization schemes. The simulation was performed with relevant data of nuclides in spent fuel for performance assessment in a hypothetical repository, thus quantifying the radionuclides released into the host rock. (author)

  15. Modelling of excavation depth and fractures in rock caused by tool indentation

    International Nuclear Information System (INIS)

    The hydraulic regime after excavation in the near-field rock around deposition holes and deposition tunnels in a spent nuclear fuel repository is of concern for prediction of the saturation process of bentonite buffer and tunnel backfill. The hydraulic condition of main interest in this context is a result of the fracture network that is caused by the excavation. Modelling of the excavation disturbed zone in hard rocks caused by mechanical excavation has been carried out in the Division of Mining Engineering since 1993. This report contains an overview of the work conducted. The mechanical excavation is reasonably simplified as an indentation process of the interaction between rigid indenters and rocks. A large number of experiments have been carried out in the laboratory, and the results used for identifying crushed zones and fracture systems in rock under indentation are presented based on these experiments. The indentation causes crushing and damage of the rock and results in a crushed zone and a cracked zone. The indenter penetrates the rock with a certain depth when the force is over a threshold value relevant to the rock and tool. Outside the cracked zone there are basically three systems of cracks: median cracks, radial cracks, and side cracks. Fully developed radial cracks on each side of the indented area can connect with each other and join with median crack. This forms the so-called radial/median crack system. The influence of the mechanical properties of the rock is discussed based on our conceptual model, and the main factors governing the indentation event are summarised. The cracked zone is dealt with by an analytical fracture model. The side crack is simulated by applying the boundary element method coupled with fracture mechanics. Functional relationships are established relating either the indentation depth or the length of radial/median cracks to the various quantities characterising the physical event, namely the shape and the size of the

  16. Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Queen, John H. [Hi-Geophysical, Inc., Ponca, OK (United States)

    2016-05-09

    Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parameters for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most

  17. Mechanical interactions between proppants and rock and their effect on hydraulic fracture performance

    Energy Technology Data Exchange (ETDEWEB)

    Legarth, B.A.; Raab, S.; Huenges, E. [GeoForschungsZentrum Potsdam (Germany)

    2005-07-01

    Proppants interact mechanically with the rock matrix. This causes damage to the fracture face and influences propped fracture performance. Therefore, proppant embedment and proppant crushing phenomena were analysed in laboratory under simulated in situ conditions. The embedment tests were performed in a conductivity cell using reassembled core halves. Embedment features in the rock matrix were optically analyzed. In a separate unit single grain strength tests were performed on a wide range of ceramic proppant types (AI203-based, coated/uncoated) and sizes (diameter 0,2-1,6 mm). The experiment showed that areas in the fracture with low proppant concentration revealed severe proppant crushing and embedment that occurred already at low effective stress. Punctual loading was identified as reason for premature proppant failure. Grain strength testing showed that compressive fracture force increases with grain diameter, is influenced by the presence of a coating and might be additionally controlled by grain surface structure. Compressive fracture strength is largely independent from size for same proppant types. A contact model introduced by Hertz was applied to retrieve the stress magnitudes at grain failure. Proppant crushing leads to generation of fines in the matrix and the proppant pack. These fines can be transported and plug pore-throats and flow channels. Dependent on completion type and expected fracture widths proppant grain size should be maximized for higher fracture conductivity. Proppant crushing and embedment processes are enforced by decreasing proppant concentration. Considering natural conditions in a fracture - rough surfaces, tortuous-twisted paths that hinder even proppant distribution - low proppant concentrations appear to be very real, maybe even the normal case in nature. Thus, high proppant concentration is the key issue to mitigate fracture impairment. (orig.)

  18. Method to calculate fatigue fracture life of control fissure in perilous rock

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-kai; TANG Hong-mei

    2007-01-01

    Rupture and safety of perilous rock are dominated by control fissure behind perilous rock block. Based on model-Ⅰ and model-Ⅱ stress strength factors of control fissure under acting of weight of perilous rock, water pressure in control fissure and earthquake forces, method to calculate critical linking length of control fissure is established. Take water pressure in control fissure as a variable periodic load, and abide by P-M criterion, when control fissure is filled with water, establish the method to calculate fatigue fracture life of control fissure in critical status by contributing value of stress strength factor stemming from water pressure of control fissure in Paris's fatigue equation. Further, parameters(C and m)of sandstone with quartz and feldspar in the area of the Three Gorges Reservoir of China are obtained by fatigue fracture testing.

  19. Numerical Modeling of Porous Flow in Fractured Rock and Its Applications in Geothermal Energy Extraction

    Institute of Scientific and Technical Information of China (English)

    Yucang Wang; Shimin Wang; Sheng Xue; Deepak Adhikary

    2015-01-01

    Understanding the characteristics of hydraulic fracture, porous flow and heat transfer in fractured rock is critical for geothermal power generation applications, and numerical simulation can provide a powerful approach for systematically and thoroughly investigating these problems. In this paper, we present a fully coupled solid-fluid code using discrete element method (DEM) and lattice Boltzmann method (LBM). The DEM with bonded particles is used to model the deformation and fracture in solid, while the LBM is used to model the fluid flow. The two methods are two-way coupled, i.e., the solid part provides a moving boundary condition and transfers momentum to fluid, while the fluid exerts a dragging force to the solid. Two widely used open source codes, the ESyS_Particle and the OpenLB, are integrated into one code and paralleled with Message Passing Interface (MPI) library. Some preliminary 2D simulations, including particles moving in a fluid and hydraulic fracturing in-duced by injection of fluid into a borehole, are carried out to validate the integrated code. The prelimi-nary results indicate that the new code is capable of reproducing the basic features of hydraulic frac-ture and thus offers a promising tool for multiscale simulation of porous flow and heat transfer in fractured rock.

  20. A reaction-transport model for calcite precipitation and evaluation of infiltration fluxes in unsaturated fractured rock.

    Science.gov (United States)

    Xu, Tianfu; Sonnenthal, Eric; Bodvarsson, Gudmundur

    2003-06-01

    The percolation flux in the unsaturated zone (UZ) is an important parameter addressed in site characterization and flow and transport modeling of the potential nuclear-waste repository at Yucca Mountain, NV, USA. The US Geological Survey (USGS) has documented hydrogenic calcite abundances in fractures and lithophysal cavities at Yucca Mountain to provide constraints on percolation fluxes in the UZ. The purpose of this study was to investigate the relationship between percolation flux and measured calcite abundances using reactive transport modeling. Our model considers the following essential factors affecting calcite precipitation: (1) infiltration, (2) the ambient geothermal gradient, (3) gaseous CO(2) diffusive transport and partitioning in liquid and gas phases, (4) fracture-matrix interaction for water flow and chemical constituents, and (5) water-rock interaction. Over a bounding range of 2-20 mm/year infiltration rate, the simulated calcite distributions capture the trend in calcite abundances measured in a deep borehole (WT-24) by the USGS. The calcite is found predominantly in fractures in the welded tuffs, which is also captured by the model simulations. Simulations showed that from about 2 to 6 mm/year, the amount of calcite precipitated in the welded Topopah Spring tuff is sensitive to the infiltration rate. This dependence decreases at higher infiltration rates owing to a modification of the geothermal gradient from the increased percolation flux. The model also confirms the conceptual model for higher percolation fluxes in the fractures compared to the matrix in the welded units, and the significant contribution of Ca from water-rock interaction. This study indicates that reactive transport modeling of calcite deposition can yield important constraints on the unsaturated zone infiltration-percolation flux and provide useful insight into processes such as fracture-matrix interaction as well as conditions and parameters controlling calcite deposition

  1. Views on the calculation of flow and dispersion processes in fractured rock

    International Nuclear Information System (INIS)

    In the report some basic aspects on model types, physical processes, determination of parameters are discussed in relation to a description of flow and dispersion processes in fractured rocks. As far as model types concern it is shown that Darcy's law and the dispersion equation are not especially applicable. These equations can only describe an average situation of flow and spreading while in reality very large deviations could exist between an average situation and the flow and concentration distribution for a certain fracture geometry. The reason for this is primarily the relation between the length scales for the repository and the near field and the fracture system respectively and the poor connectivity between fractures or expressed in another way - the geosphere can not be treated as a continuous medium. The statistical properties of the fractures and the fracture geometry cause large uncertainties in at least two respects: * boundary conditions as to groundwater flow at the repository and thus the mass flow of radioactive material * distribution of flows and concentrations in planes in the geosphere on different distances from the repository. A realistic evaluation of transport and spreading of radioactive material by the groundwater in the geosphere thus requires that the possible variation or uncertainty of the water conducting characteristics of the fracture system is considered. A possible approach is then to describe flow in the geosphere on the basic of the flow in single fractures which are hydraulically connected to each other so that a flow in a fracture system is obtained. The discussion on physical processes which might influence the flow description in single fractures is concentrated to three aspects - factors driving the flow besides the ordinary hydraulic gradient, the viscous properties of water in a very small space (such as a fracture), the influence on the flow of heat release from the repository. (42 figs., 28 refs.)

  2. Uncertainty Characterization of Reactor Vessel Fracture Toughness

    International Nuclear Information System (INIS)

    To perform fracture mechanics analysis of reactor vessel, fracture toughness (KIc) at various temperatures would be necessary. In a best estimate approach, KIc uncertainties resulting from both lack of sufficient knowledge and randomness in some of the variables of KIc must be characterized. Although it may be argued that there is only one type of uncertainty, which is lack of perfect knowledge about the subject under study, as a matter of practice KIc uncertainties can be divided into two types: aleatory and epistemic. Aleatory uncertainty is related to uncertainty that is very difficult to reduce, if not impossible; epistemic uncertainty, on the other hand, can be practically reduced. Distinction between aleatory and epistemic uncertainties facilitates decision-making under uncertainty and allows for proper propagation of uncertainties in the computation process. Typically, epistemic uncertainties representing, for example, parameters of a model are sampled (to generate a 'snapshot', single-value of the parameters), but the totality of aleatory uncertainties is carried through the calculation as available. In this paper a description of an approach to account for these two types of uncertainties associated with KIc has been provided. (authors)

  3. Study of strontium and cesium migration in fractured crystalline rock

    International Nuclear Information System (INIS)

    The purpose of this investigation has been to study the retardation and dilution of non-active strontium and cesium relative to a non-absorbing substance (iodide) in a well-defined fracture zone in the Finnsjoen field research area. The investigation was carried out in a previously tracer-tested fracture zone. The study has encompassed two separate test runs with prolonged injection of strontium and iodide and of cesium and iodide. The test have shown that: - Strontium is not retarded, but rather absorbed to about 40% at equilibrium. - At injection stop, 36.3% of the injected mass of strontium has been absorbed and there is no deabsorption. -Cesium is retarded a factor of 2-3 and absorbed to about 30% at equilibrium. - At injection stop, 39.4% of the injected mass of cesium has been absorbed. Cesium is deabsorbed after injection stop (400h) and after 1300 hours, only 22% of the injected mass of cesium is absorbed. (author)

  4. The roles of tectonics in erosion: Fracturing and fragmentation are key, rock uplift is not

    Science.gov (United States)

    Molnar, P.; Anderson, R. S.; Anderson, S. P.

    2005-12-01

    As Gilbert and Dutton recognized in the 19th century, erosion consists of two processes: "the disintegration of the rocks, reducing them to fragments, pebbles, sand, and clay" [Dutton, 1882] and then their transport. Tectonics contributes to both but more importantly to the first. Although many in the geomorphic community subscribe to "the emerging view that erosion rates adjust to high rates of tectonically driven rock uplift" [Montgomery and Brandon, 2002], numerical models are not needed to see that rather than ``driving" erosion, most "rock uplift" results from erosion via isostatic compensation. Relegation of rock uplift to consequence, not cause, of erosion, however, does not deny tectonics a role in erosion. Tectonics plays its key role by fracturing rock. Fractures not only provide avenues for water flow and thus promote weathering of rock, but also generate erodible fragments that can be extracted and transported on hillslopes or by rivers and glaciers. Tectonics does the first part of erosion (as defined by 19th century geologists): disintegration of massive rocks. Faults are not perfect planes; both local roughness and larger scale bends require straining of the adjacent rock masses upon slip on the fault, as shown well by aftershocks of major earthquakes. Although aftershocks of great earthquakes commonly occur on the faults that rupture in mainshocks, within continents many, if not most, aftershocks occur within the larger volume of rock of adjacent blocks that slipped past one another in mainshocks. Thus, they contribute to the dismemberment of these rock volumes into smaller blocks. Scaling rules for earthquakes suggest that dimensions of ruptures for very small earthquakes, Magnitude < -2, can be meters or less. The Gutenberg-Richter recurrence relationship implies that such earthquakes are common, as recordings by high-magnification seismographs in low-noise environments show. The large differences among fault plane solutions of aftershocks and of

  5. Modeling the Progressive Failure of Jointed Rock Slope Using Fracture Mechanics and the Strength Reduction Method

    Science.gov (United States)

    Zhang, Ke; Cao, Ping; Meng, Jingjing; Li, Kaihui; Fan, Wenchen

    2015-03-01

    The fracturing process during the progressive failure of a jointed rock slope is numerically investigated by using fracture mechanics and the strength reduction method (SRM). A displacement discontinuity method containing frictional elements is developed for the calculation of the stress intensity factor (SIF). The failure initiation of the jointed rock slope is analyzed by evaluating the SIF. A new joint model is proposed by combining solid elements with interface elements in the commercial software FLAC3D. These represent the discontinuous planes in a rock mass on which sliding or separation can occur. The progressive failure process is simulated by reducing the shear strength of the rock mass, which includes the process of stress concentration, crack initiation, crack propagation, slip weakening, and coalescence of failure surfaces. The factor of safety (FS) and location of the critical failure surface are determined by the SRM. The influence of the joint inclination is investigated using the FS and the SIF. Laboratory experiments on specimens containing an inclined flaw under compression-shear stress are also conducted to investigate the effect of the angle between the shear direction and the flaw inclination, which provides an experimental explanation for the shear behavior of jointed rock. The results show that the joint inclination dominates the failure behavior of jointed rock slope, and two failure patterns have been classified.

  6. Reflection seismic methods applied to locating fracture zones in crystalline rock

    International Nuclear Information System (INIS)

    The reflection seismic method is a potentially powerful tool for identifying and localising fracture zones in crystalline rock if used properly. Borehole sonic logs across fracture zones show that they have reduced P-wave velocities compared to the surrounding intact rock. Diagnostically important S-wave velocity log information across the fracture zones is generally lacking. Generation of synthetic reflection seismic data and subsequent processing of these data show that structures dipping up towards 70 degrees from horizontal can be reliably imaged using surface seismic methods. Two real case studies where seismic reflection methods have been used to image fracture zones in crystalline rock are presented. Two examples using reflection seismic are presented. The first is from the 5354 m deep SG-4 borehole in the Middle Urals, Russia where strong seismic reflectors dipping from 25 to 50 degrees are observed on surface seismic reflection data crossing over the borehole. On vertical seismic profile data acquired in the borehole, the observed P-wave reflectivity is weak from these zones, however, strong converted P to S waves are observed. This can be explained by the source of the reflectors being fracture zones with a high P wave to S wave velocity ratio compared to the surrounding rock resulting in a high dependence on the angle of incidence for the reflection coefficient. A high P wave to S wave velocity ratio (high Poisson's ratio) is to be expected in fluid filled fractured rock. The second case is from Aevroe, SE Sweden, where two 1 km long crossing high resolution seismic reflection lines were acquired in October 1996. An E-W line was shot with 5 m geophone and shotpoint spacing and a N-S one with 10 m geophone and shotpoint spacing. An explosive source with a charge size of 100 grams was used along both lines. The data clearly image three major dipping reflectors in the upper 200 ms (600 m). The dipping ones intersect or project to the surface at/or close to

  7. High-resolution delineation of chlorinated volatile organic compounds in a dipping, fractured mudstone: Depth- and strata-dependent spatial variability from rock-core sampling

    Science.gov (United States)

    Goode, Daniel J.; Imbrigiotta, Thomas E.; Lacombe, Pierre J.

    2014-12-01

    Synthesis of rock-core sampling and chlorinated volatile organic compound (CVOC) analysis at five coreholes, with hydraulic and water-quality monitoring and a detailed hydrogeologic framework, was used to characterize the fine-scale distribution of CVOCs in dipping, fractured mudstones of the Lockatong Formation of Triassic age, of the Newark Basin in West Trenton, New Jersey. From these results, a refined conceptual model for more than 55 years of migration of CVOCs and depth- and strata-dependent rock-matrix contamination was developed. Industrial use of trichloroethene (TCE) at the former Naval Air Warfare Center (NAWC) from 1953 to 1995 resulted in dense non-aqueous phase liquid (DNAPL) TCE and dissolved TCE and related breakdown products, including other CVOCs, in underlying mudstones. Shallow highly weathered and fractured strata overlie unweathered, gently dipping, fractured strata that become progressively less fractured with depth. The unweathered lithology includes black highly fractured (fissile) carbon-rich strata, gray mildly fractured thinly layered (laminated) strata, and light-gray weakly fractured massive strata. CVOC concentrations in water samples pumped from the shallow weathered and highly fractured strata remain elevated near residual DNAPL TCE, but dilution by uncontaminated recharge, and other natural and engineered attenuation processes, have substantially reduced concentrations along flow paths removed from sources and residual DNAPL. CVOCs also were detected in most rock-core samples in source areas in shallow wells. In many locations, lower aqueous concentrations, compared to rock core concentrations, suggest that CVOCs are presently back-diffusing from the rock matrix. Below the weathered and highly fractured strata, and to depths of at least 50 meters (m), groundwater flow and contaminant transport is primarily in bedding-plane-oriented fractures in thin fissile high-carbon strata, and in fractured, laminated strata of the gently

  8. Hydraulic and mechanical properties of natural fractures in low-permeability rock

    International Nuclear Information System (INIS)

    The results of a comprehensive laboratory study of the mechanical displacement, permeability, and void geometry of single rock fractures in a quartz monzonite are summarized and analyzed. A metal-injection technique was developed that provided quantitative data on the precise geometry of the void spaces between the fracture surfaces and the areas of contact at different stresses. At effective stresses of less than 20 MPa fluid flow was proportional to the mean fracture aperture raised to a power greater than 3. As stress was increased, contact area was increased and void spaces become interconnected by small tortuous channels that constitute the principal impediment to fluid flow. At effective stresses higher than 20 MPa, the mean fracture aperture continued to diminish with increasing stress, but this had little effect on flow because the small tortuous flow channels deformed little with increasing stress

  9. A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation.

    Science.gov (United States)

    Cuthbert, Mark O; McMillan, Lindsay A; Handley-Sidhu, Stephanie; Riley, Michael S; Tobler, Dominique J; Phoenix, Vernon R

    2013-01-01

    Microbially induced calcite precipitation (MICP) offers an attractive alternative to traditional grouting technologies for creating barriers to groundwater flow and containing subsurface contamination, but has only thus far been successfully demonstrated at the laboratory scale and predominantly in porous media. We present results of the first field experiments applying MICP to reduce fractured rock permeability in the subsurface. Initially, the ureolytic bacterium, Sporosarcina pasteurii, was fixed in the fractured rock. Subsequent injection of cementing fluid comprising calcium chloride and urea resulted in precipitation of large quantities (approximately 750 g) of calcite; significant reduction in the transmissivity of a single fracture over an area of several m(2) was achieved in around 17 h of treatment. A novel numerical model is also presented which simulates the field data well by coupling flow and bacterial and solute reactive transport processes including feedback due to aperture reduction via calcite precipitation. The results show that MICP can be successfully manipulated under field conditions to reduce the permeability of fractured rock and suggest that an MICP-based technique, informed by numerical models, may form the basis of viable solutions to aid pollution mitigation. PMID:24147737

  10. Theory and application of rock burst prevention using deep hole high pressure hydraulic fracturing

    Institute of Scientific and Technical Information of China (English)

    Shan-Kun ZHAO; Jun LIU; Xiang-Zhi WEI; Chuan-Hong DING; Yu-Lei LV; Gang-Feng LI

    2013-01-01

    In order to analyze the mechanism of deep hole high pressure hydraulic fracturing,nonlinear dynamic theory,damage mechanics,elastic-plastic mechanics are used,and the law of crack propagation and stress transfer under two deep hole hydraulic fracturing in tectonic stress areas is studied using seepage-stress coupling models with RFPA simulation software.In addition,the effects of rock burst control are tested using multiple methods,either in the stress field or in the energy field.The research findings show that with two deep holes hydraulic fracturing in tectonic stress areas,the direction of the main crack propagation under shear-tensile stress is parallel to the greatest principal stress direction.High-pressure hydraulic fracturing water seepage can result in the destruction of the coal structure,while also weakening the physical and mechanical properties of coal and rock.Therefore the impact of high stress concentration in hazardous areas will level off,which has an effect on rock burst prevention and control in the region.

  11. Wave Propagation in the Vicinities of Rock Fractures Under Obliquely Incident Wave

    Science.gov (United States)

    Zou, Yang; Li, Jianchun; He, Lei; laloui, Lyesse; Zhao, Jian

    2016-05-01

    Though obliquely incident plane wave across rock fractures has been extensively investigated by theoretical analysis, the quantitative identification of each wave emerged from fractures has not been achieved either in numerical simulation or laboratory experiment. On the other hand, there are no theoretical results describing the stress/velocity state of the rocks beside a fracture. The superposition of the multiple waves propagating in the media results in the variation of the stress/velocity state. To understand the superposition of the wave components in the adjacent rocks of a facture, based on the geometrical analysis of the wave paths, the lag times among passing waves at an arbitrary point are determined. The normalised critical distances from the fracture to the measuring locations where the corresponding harmonic waves depart from other waves for a certain duration are then derived. Discussion on the correction for an arbitrary incident wave is then carried out considering the changes of the duration of the reflected and transmitted waves. Under the guidance of the analysis, wave superposition is performed for theoretical results and separated waves are obtained from numerical model. They are demonstrated to be consistent with each other. The measurement and the data processing provide an approach for wave separation in a relatively unbounded media. In addition, based on the mechanical analysis on the wave front, an indirect wave separation method is proposed which provides a possibility for laboratory experiments of wave propagation with an arbitrary incident angle.

  12. Nuclide transport of decay chain in the fractured rock medium: a model using continuous time Markov process

    International Nuclear Information System (INIS)

    A model using continuous time Markov process for nuclide transport of decay chain of arbitrary length in the fractured rock medium has been developed. Considering the fracture in the rock matrix as a finite number of compartments, the transition probability for nuclide from the transition intensity between and out of the compartments is represented utilizing Chapman-Kolmogorov equation, with which the expectation and the variance of nuclide distribution for the fractured rock medium could be obtained. A comparison between continuous time Markov process model and available analytical solutions for the nuclide transport of three decay chains without rock matrix diffusion has been made showing comparatively good agreement. Fittings with experimental breakthrough curves obtained with nonsorbing materials such as NaLS and uranine in the artificial fractured rock are also made. (author)

  13. Multiphase fluid flow and subsequent geochemical transport invariably saturated fractured rocks: 1. Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tianfu; Pruess, Karsten

    2000-08-08

    Reactive fluid flow and geochemical transport in unsaturated fractured rocks has received increasing attention for studies of contaminant transport, groundwater quality, waste disposal, acid mine drainage remediation, mineral deposits, sedimentary diagenesis, and fluid-rock interactions in hydrothermal systems. This paper presents methods for modeling geochemical systems that emphasize: (1) involvement of the gas phase in addition to liquid and solid phases in fluid flow, mass transport and chemical reactions, (2) treatment of physically and chemically heterogeneous and fractured rocks, (3) the effect of heat on fluid flow and reaction properties and processes, and (4) the kinetics of fluid-rock interaction. The physical and chemical process model is embodied in a system of partial differential equations for flow and transport, coupled to algebraic equations and ordinary differential equations for chemical interactions. For numerical solution, the continuum equations are discretized in space and time. Space discretization is based on a flexible integral finite difference approach that can use irregular gridding to model geologic structure; time is discretized fully implicitly as a first-order finite difference. Heterogeneous and fractured media are treated with a general multiple interacting continua method that includes double-porosity, dual-permeability, and multi-region models as special cases. A sequential iteration approach is used to treat the coupling between fluid flow and mass transport on the one hand, chemical reactions on the other. Applications of the methods developed here to variably saturated geochemical systems are presented in a companion paper (part 2, this issue).

  14. A new method for real-time monitoring of grout spread through fractured rocks

    International Nuclear Information System (INIS)

    Reducing water ingress into the Shaft at Dounreay is essential for the success of future intermediate level waste (ILW) recovery using the dry retrieval method. The reduction is being realised by forming an engineered barrier of ultrafine cementitious grout injected into the fractured rock surrounding the Shaft. Grout penetration of 6 m in <50μm fractures is being reliably achieved, with a pattern of repeated injections ultimately reducing rock mass permeability by up to three orders of magnitude. An extensive field trials period, involving over 200 grout mix designs and the construction of a full scale demonstration barrier, has yielded several new field techniques that improve the quality and reliability of cementitious grout injection for engineered barriers. In particular, a new method has been developed for tracking in real-time the spread of ultrafine cementitious grout through fractured rock and relating the injection characteristics to barrier design. Fieldwork by the multi-disciplinary international team included developing the injection and real-time monitoring techniques, pre- and post injection hydro-geological testing to quantify the magnitude and extent of changes in rock mass permeability, and correlation of grout spread with injection parameters to inform the main works grouting programme. (authors)

  15. Field-Scale Effective Matrix Diffusion Coefficient for FracturedRock: Results From Literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Quanlin; Liu, Hui Hai; Molz, Fred J.; Zhang, Yingqi; Bodvarsson, Gudmundur S.

    2005-03-28

    Matrix diffusion is an important mechanism for solutetransport in fractured rock. We recently conducted a literature survey onthe effective matrix diffusion coefficient, Dem, a key parameter fordescribing matrix diffusion processes at the field scale. Forty fieldtracer tests at 15 fractured geologic sites were surveyed and selectedfor study, based on data availability and quality. Field-scale Dem valueswere calculated, either directly using data reported in the literature orby reanalyzing the corresponding field tracer tests. Surveyed dataindicate that the effective-matrix-diffusion-coefficient factor FD(defined as the ratio of Dem to the lab-scale matrix diffusioncoefficient [Dem]of the same tracer) is generally larger than one,indicating that the effective matrix diffusion coefficient in the fieldis comparatively larger than the matrix diffusion coefficient at therock-core scale. This larger value could be attributed to the manymass-transfer processes at different scales in naturally heterogeneous,fractured rock systems. Furthermore, we observed a moderate trend towardsystematic increase in the emDFmDDF value with observation scale,indicating that the effective matrix diffusion coefficient is likely tobe statistically scale dependent. The FD value ranges from 1 to 10,000for observation scales from 5 to 2,000 m. At a given scale, the FD valuevaries by two orders of magnitude, reflecting the influence of differingdegrees of fractured rock heterogeneity at different sites. In addition,the surveyed data indicate that field-scale longitudinal dispersivitygenerally increases with observation scale, which is consistent withprevious studies. The scale-dependent field-scale matrix diffusioncoefficient (and dispersivity) may have significant implications forassessing long-term, large-scale radionuclide and contaminant transportevents in fractured rock, both for nuclear waste disposal and contaminantremediation.

  16. Relationships of flow in crystalline rock aquifers: a solution to the fracture problem

    International Nuclear Information System (INIS)

    The so-called fracture problem in analyzing flow in crystalline rock aquifers persists because of both the lack of critical observations of field information and a biased influence from the porous media theory. The inconsistencies in the analysis of data give cause to re-evaluate the double porosity model which assumes that the transfer of fluid from blocks to fissures can be described by pseudo-steady state flow, and the fissure block model which assumes that the transfer of fluid from blocks to fissures occurs under fully transient conditions. It is suggested that these model approaches that duel on porosity concepts should be re-evaluated in terms of the behavior of the flow which is related to the exact functions of the fractured medium, and therefore, unrestricted by the kind of porosity present. Observations of pumping tests in fractured aquifers provide practical demonstrations that, basically, two flow relationships may exist in a porous fractured medium with a possible transition between the two as a result of fracture skin effects. The two flow relationships are fast flow that is defined physically by a relatively large representative elementary volume with flow in predominant fracture zones and having a set of pump test data that fits the latter-time curvilinear part of the time-drawdown curve, and a slow flow that is representative of the linear relationship of the early-time drawdown curve in the fractures at the vicinity of the well. 28 references, 3 figures

  17. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    Directory of Open Access Journals (Sweden)

    Yuji Nishi

    2012-01-01

    Full Text Available In order to appraise the utility of self-potential (SP measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulations of electrokinetic phenomena in MINC (multiple interacting continua double-porosity media, was observed near the fractures. Semilog plots of the ratio of SP change to pressure change observed in one of the two wells show obvious transition from intermediate time increasing to late time stable trends, which indicate that the time required for pressure equilibration between the fracture and matrix regions is about 800 seconds. Fracture spacing was estimated to be a few meters assuming several micro-darcies (10-18 m2 of the matrix region permeability, which is consistent with geological and hydrological observations.

  18. VSP [Vertical Seismic Profiling] and cross hole tomographic imaging for fracture characterization

    International Nuclear Information System (INIS)

    For the past several years LBL has been carrying out experiments at various fractured rock sites to determine the fundamental nature of the propagation of seismic waves in fractured media. These experiments have been utilizing high frequency (1000 to 10000 Hz.) signals in a cross-hole configuration at scales of several tens of meters. Three component sources and receivers are used to map fracture density, and orientation. The goal of the experiments has been to relate the seismological parameters to the hydrological parameters, if possible, in order to provide a more accurate description of a starting model for hydrological characterization. The work is ultimately aimed at the characterization and monitoring of the Yucca Mountain site for the storage of nuclear waste. In addition to these controlled experiments multicomponent VSP work has been carried out at several sites to determine fracture characteristics. The results to date indicate that both P-wave and S-wave can be used to map the location of fractures. In addition, fractures that are open and conductive are much more visible to seismic waves that non-conductive fractures. The results of these tests indicate direct use in an unsaturated environment. 12 refs., 10 figs

  19. A study on the ground water flow and hydrogeochemical interaction in fractured rock masses

    International Nuclear Information System (INIS)

    A study site, the Precambrian gneiss complex in the vincinity of Chungyang has been investigated by geologic surface mapping, tunnel mapping and core drilling with chemical analysis and microscopic observation of rock samples and fracture filling materials. Four boreholes at depths between 50 and 200m were drilled. They are located in a potential fracture zone, which was selected based on the topographic characterisitcs and the fracture survey data. The hydraulic characteristics are described based on the results of constant pressure injection test and cross hole test. In the single hole test, the test sections varied between 1 and 5 m. The hydraulic conductivity of local fracture zones ranges from 1xlO-5 to lxlO-7 m/sec whereas that of the intact rock within the depth of 50 m is in the range of 7xlO-8 to 8xlO-9 m/sec. The field dispersivity values obtained from an injection phase range from 0.15 to 4.5 m at varying depths. The whole thickness dispersivity on the 18 m section obtained from a withdrawal phase is 0.4 m. The dispersion test in two well non-circulation mode was carried out along a single fracture set at depth between 11.5-14.5m. The longitudinal dispersivity obtained from the two well test is 8.14 m. The identified minerals of host rocks are quartz, K-feldspar,plagioclase, biotite, muscovite, sericite, chlorite, calcite, pyrite, zircon and opaque minerals. The primary minerals such as feldspar and biotite are highly altered into sericite and chlorite respectively. The fracture-filling materials from core samples identified by as calcite, kaolinite, smectite, chlorite, illitite, quartz, pyrite with fe- and Mn-oxides. (Author)

  20. Calcite fracture fillings as indicators of paleohydrology at the Aspo Hard Rock Laboratory, Sweden

    International Nuclear Information System (INIS)

    Isotopic compositions of carbon (δ13C), oxygen (δ16O) strontium (δ87Sr) in calcite fracture fillings are being used to reconstruct the source and evolution of the groundwater at Aespoe and Laxemar, at the Aespoe Hard Rock Laboratory (AEHRL), south-eastern Sweden. These calcites precipitated from groundwater in the fractured crystalline rocks at some time in the past, and δ13C, δ18O and δ87Sr values of the calcites reflect those of the source waters. The fracture fillings mark the pathways of past fluid movement so an understanding of their genesis is particularly important for understanding the paleohydrology in the area. The utility in applying the multiple-isotope approach to groundwater and fracture minerals derives from the fact that the different systems represent different processes. Studies of the groundwater chemistry suggest a very complicated history, however, the isotope data demonstrate that it is possible to postulate mixing of different groundwater members to explain the isotopic systematics of the calcite fracture fillings at Aespoe and Laxemar

  1. Preliminary capillary hysteresis simulations for fractured rocks -- model development and results of simulations

    Energy Technology Data Exchange (ETDEWEB)

    Niemi, A.; Bodvarsson, G.S.

    1991-11-01

    As part of the code development and modeling work being carried out to characterize the flow in the unsaturated zone at Yucca Mountain, Nevada, capillary hysteresis models simulating the history-dependence of the characteristic curves have been developed. The objective of the work has been both to develop the hysteresis models, as well as to obtain some preliminary estimates of the possible hysteresis effects in the fractured rocks at Yucca Mountain given the limitations of presently available data. Altogether three different models were developed based on work of other investigators reported in the literature. In these three models different principles are used for determining the scanning paths: in model (1) the scanning paths are interpolated from tabulated first-order scanning curves, in model (2) simple interpolation functions are used for scaling the scanning paths from the expressions of the main wetting and main drying curves and in model (3) the scanning paths are determined from expressions derived based on the dependent domain theory of hysteresis.

  2. Geochemical evolution of a fractured zone in the cap rock of an underground carbon storage site

    Science.gov (United States)

    Vialle, S.; Druhan, J. L.; Maher, K.

    2013-12-01

    Assessment and management of environmental risks associated with underground storage of CO2 in geological systems is essential for the commercial deployment of this technology. A major risk is leakage of the CO2 from its storage reservoir, through wellbores, and along faults and fractures in the cap rock. The geochemical reactions likely to take place as CO2 leaks through a damage zone and their impact on cap rock integrity still need to be better understood and quantified. Should CO2 leakage occur, geochemical reactions would govern the environmental impact on shallow groundwater aquifers and could provide an indication of the leak prior to surface-based monitoring techniques. We used the reactive transport code TOUGH2/TOUGHREACT to model a leakage scenario through a fractured cap rock. Since geochemical reactions will strongly depend upon the local hydrodynamics of the CO2 leak, the first step of the study is to provide an appropriate physical representation of fluid flow through the system. Typically, for a low porosity rock formation, a fault/damaged zone system is composed of a core of low permeability and a damage zone with second-order fractures whose density decreases with distance from the fault core. Permeability is thus increased along the fault plane and laterally decreases down to the permeability value of the undamaged cap rock. Appropriate scaling relationships (e.g., and analytical expression of for permeability as a function of fracture aperture and fracture density), effective physical parameters as well as constitutive relationships are carefully chosen to model the fractured system, treated as an equivalent porous medium. The cap rock is initially saturated with brine (salinity of 0.15 in mass fraction) and due to overpressure in the lower storage reservoir, CO2 migrates through the damage zone. Geochemical reactions involve both salt precipitation due to the partitioning of H2O and CO2 between liquid and gas phases as well as well reactions

  3. Mapping permeable fractures at depth in crystalline metamorphic shield rocks using borehole seismic, logging, and imaging

    Science.gov (United States)

    Chan, J.; Schmitt, D. R.; Nieuwenhuis, G.; Poureslami Ardakani, E.; Kueck, J.; Abasolo, M. R.

    2012-04-01

    The presence of major fluid pathways in subsurface exploration can be identified by understanding the effects of fractures, cracks, and microcracks in the subsurface. Part of a feasibility study of geothermal development in Northern Alberta consists of the investigation of subsurface fluid pathways in the Precambrian basement rocks. One of the selected sites for this study is in the Fort McMurray area, where the deepest well drilled in the oilsands region in Northeastern Alberta is located. This deep borehole has a depth of 2.3 km which offers substantial depth coverage to study the metamorphic rocks in the Precambrian crystalline basement of this study area. Seismic reflection profiles adjacent to the borehole reveal NW-SE dipping reflectors within the metamorphic shield rocks some of which appear to intersect the wellbore. An extensive logging and borehole seismic program was carried out in the borehole in July, 2011. Gamma ray, magnetic susceptibility, acoustic televiewer, electrical resistivity, and full-waveform sonic logs were acquired to study the finer scale structure of the rock formations, with vertical resolutions in the range of 0.05 cm to 80 cm. These logs supplement earlier electrical microscanner images obtained by the well operator when it was drilled. In addition, we are also interested in identifying other geological features such as zones of fractures that could provide an indication of enhanced fluid flow potential - a necessary component for any geothermal systems to be viable. The interpretation of the borehole logs reveals a highly conductive 13 m thick zone at 1409 m depth that may indicate communication of natural brines in fractures with the wellbore fluid. The photoelectric factor and magnetic susceptibility also appear anomalous in this zone. Formation MicroImager (FMI) log was used to verify the presence of fractures in the borehole in this conductive zone. This fracture zone may coincide with the dipping seismic reflectors in the

  4. Single well injection withdrawal tests (SWIW) in fractured rock. Some aspects on interpretation

    International Nuclear Information System (INIS)

    Single-Well-Injection-Withdrawal, SWIW, tests are used to try to extract information on fracture apertures, sorption and diffusion properties and dispersion information in individual fractures. It is done by injecting a given amount of traced water into an isolated fracture. After a waiting period water is withdrawn from the fracture and the tracer concentration is measured. The concentration time curve is fitted to a model and the parameter values quantifying the different interaction mechanisms are determined. A number of different mechanisms influence the recovery of the tracer. One or more of the following mechanisms are considered. They include: dispersion due to velocity differences, sorption on fracture surface and on infill, diffusion in rock fragments in the fracture, diffusion between 'streamlines', diffusion into rock matrix and other stagnant water volumes, sorption kinetics and slow drift of the plume caused by the natural gradient. Many of the interaction mechanisms can influence the recovery curve in a similar way. For example, diffusion into rock matrix water and into stagnant water in the fracture adjacent to the flowing channels cannot be distinguished if only one tracer is used. Tracers with different properties can in principle be used but they will encounter different parts of the fracture, the sorbing tracer will move out less from the injection point than a nonsorbing tracer will. Diffusion and sorption in small particles in the flowpath can influence the recovery curve in a similar way as rock matrix diffusion does. Dispersion caused by diffusion between 'streamlines', Taylor dispersion, can give very different results in channels of different shapes. Such dispersion effects can be difficult to distinguish from matrix diffusion effects. Dispersion coefficients obtained in a SWIW test may have little relation to dispersion of a tracer moving from A to B. This is partly due to the different mechanisms and partly due to different time scales

  5. Advanced Conceptual Models for Unsaturated and Two-Phase Flow in Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Harihar Rajaram; Robert J. Glass; Michael J. Nicholl; Thomas R. Wood

    2007-06-24

    The Department of Energy Environmental Management Program is faced with two major issues involving two-phase flow in fractured rock; specifically, transport of dissolved contaminants in the Vadose Zone, and the fate of Dense Nonaqueous Phase Liquids (DNAPLs) below the water table. Conceptual models currently used to address these problems do not correctly include the influence of the fractures, thus leading to erroneous predictions. Recent work has shown that it is crucial to understand the topology, or 'structure' of the fluid phases (air/water or water/DNAPL) within the subsurface.

  6. Single well injection withdrawal tests (SWIW) in fractured rock. Some aspects on interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Neretnieks, Ivars [Dept. of Chemical Engineering and Technology, Royal Inst. of Technology, Stockholm (Sweden)

    2007-08-15

    Single-Well-Injection-Withdrawal, SWIW, tests are used to try to extract information on fracture apertures, sorption and diffusion properties and dispersion information in individual fractures. It is done by injecting a given amount of traced water into an isolated fracture. After a waiting period water is withdrawn from the fracture and the tracer concentration is measured. The concentration time curve is fitted to a model and the parameter values quantifying the different interaction mechanisms are determined. A number of different mechanisms influence the recovery of the tracer. One or more of the following mechanisms are considered. They include: dispersion due to velocity differences, sorption on fracture surface and on infill, diffusion in rock fragments in the fracture, diffusion between 'streamlines', diffusion into rock matrix and other stagnant water volumes, sorption kinetics and slow drift of the plume caused by the natural gradient. Many of the interaction mechanisms can influence the recovery curve in a similar way. For example, diffusion into rock matrix water and into stagnant water in the fracture adjacent to the flowing channels cannot be distinguished if only one tracer is used. Tracers with different properties can in principle be used but they will encounter different parts of the fracture, the sorbing tracer will move out less from the injection point than a nonsorbing tracer will. Diffusion and sorption in small particles in the flowpath can influence the recovery curve in a similar way as rock matrix diffusion does. Dispersion caused by diffusion between 'streamlines', Taylor dispersion, can give very different results in channels of different shapes. Such dispersion effects can be difficult to distinguish from matrix diffusion effects. Dispersion coefficients obtained in a SWIW test may have little relation to dispersion of a tracer moving from A to B. This is partly due to the different mechanisms and partly due to

  7. The study on bentonite slurry grout with ethanol for fractured rock masses

    International Nuclear Information System (INIS)

    The purpose of this paper is to propose the grouting material and method for fractured rock masses. So experimental study is executed in order to grasp that the properties of grouting material is stable and impermeable. In this study, experiments of hydraulic test and grouting injection test are performed on bentonite slurry mixes in the laboratory. From the results of the tests, a mixer of ethanol and bentonite is found to be very suitable for a grouting material. Also, dynamic grouting method is able to inject the concentrated bentonite slurry in the fractured aperture. (author)

  8. Fractures inside crystalline rocks. Effects of deformations on fluid circulations; Fractures dans les roches cristallines. Effets des deformations sur les circulations de fluides

    Energy Technology Data Exchange (ETDEWEB)

    Gentier, S

    2005-07-01

    The modeling of fluid flows inside granite massifs is an important task for the evaluation of the feasibility of radioactive waste storage inside such formations. This document makes a synthesis of the works carried out since about 15 years, in particular by the French bureau of geological and mining research (BRGM), about the hydro-mechanical behaviour of a fracture and about the hydrodynamical characterization of fracture networks inside crystalline rocks: 1 - introduction; 2 - hydro-mechanical behaviour under normal stress: experimental results (hydro-mechanical behaviour, flow regimes, mechanical behaviour, test protocol, complementary tests, influence of samples size), geometrical interpretation of experimental results (relation with walls geometry, relation with voids geometry, relation with contacts geometry), hydro-mechanical modeling (hydraulic modeling, mechanical modeling); 3 - from the hydro-mechanical behaviour under normal stress to the coupling with heat transfers and chemistry: experiment for the study of the chemo-thermo-hydro-mechanical coupling (experimental results, relation with walls morphology), thermo-hydro-mechanical experiments, thermo-hydro-chemical experiments with fractures, conclusions; 4 - hydro-mechanical behaviour during shear: experimental results, geometrical interpretation (relation with the geometry of damaged zones, relation with voids geometry, relation with walls geometry), hydro-mechanical modeling (mechanical modeling, hydro-mechanical modeling of the behaviour during shear). (J.S.)

  9. Scale effect experiment in a fractured rock mass phase 2. Volume 2

    International Nuclear Information System (INIS)

    An experimental and theoretical study dealing with 'scale effect' on hydraulic and transport parameters in a fractured rock mass was carried out in the granitic site at Fanay-Augeres. The study is divided into two phases. Phase 2A: experimental study and modelling of groundwater flows (respectively volume 1 and volume 2). Phase 2 B: experimental study and modelling of tracer tests (respectively volume 3 and volume 4); determination of the in-situ state of stress in the rock mass (volume 5). This study is part of the coordinated project MIRAGE (radionuclide migration in the geosphere), research subject matter number 4 hydrogeology

  10. ISRM Suggested Method for In Situ Microseismic Monitoring of the Fracturing Process in Rock Masses

    Science.gov (United States)

    Xiao, Ya-Xun; Feng, Xia-Ting; Hudson, John A.; Chen, Bing-Rui; Feng, Guang-Liang; Liu, Jian-Po

    2016-01-01

    The purpose of this ISRM Suggested Method is to describe a methodology for in situ microseismic monitoring of the rock mass fracturing processes occurring as a result of excavations for rock slopes, tunnels, or large caverns in the fields of civil, hydraulic, or mining engineering. In this Suggested Method, the equipment that is required for a microseismic monitoring system is described; the procedures are outlined and illustrated, together with the methods for data acquisition and processing for improving the monitoring results. There is an explanation of the methods for presenting and interpreting the results, and recommendations are supported by several examples.

  11. Scale effects experiment in a fractured rock mass phase 2. Volume 4

    International Nuclear Information System (INIS)

    An experimental and theoretical study dealing with 'scale effect' on hydraulic and transport parameters in a fractured rock mass was carried out in the granitic site at Fanay-Augeres. The study is divided into two phases. Phase 2A: experimental study and modelling of groundwater flows (respectively volume 1 and volume 2). Phase 2 B: experimental study and modelling of tracer tests (respectively volume 3 and volume 4); determination of the in-situ state of stress in the rock mass (volume 5). This study is part of the coordinated project MIRAGE (radionuclide migration in the geosphere), research subject matter number 4 hydrogeology

  12. Characterization of EGS Fracture Network Lifecycles

    Energy Technology Data Exchange (ETDEWEB)

    Gillian R. Foulger

    2008-03-31

    Geothermal energy is relatively clean, and is an important non-hydrocarbon source of energy. It can potentially reduce our dependence on fossil fuels and contribute to reduction in carbon emissions. High-temperature geothermal areas can be used for electricity generation if they contain permeable reservoirs of hot water or steam that can be extracted. The biggest challenge to achieving the full potential of the nation’s resources of this kind is maintaining and creating the fracture networks required for the circulation, heating, and extraction of hot fluids. The fundamental objective of the present research was to understand how fracture networks are created in hydraulic borehole injection experiments, and how they subsequently evolve. When high-pressure fluids are injected into boreholes in geothermal areas, they flow into hot rock at depth inducing thermal cracking and activating critically stressed pre-existing faults. This causes earthquake activity which, if monitored, can provide information on the locations of the cracks formed, their time-development and the type of cracking underway, e.g., whether shear movement on faults occurred or whether cracks opened up. Ultimately it may be possible to monitor the critical earthquake parameters in near-real-time so the information can be used to guide the hydraulic injection while it is in progress, e.g., how to adjust factors such as injectate pressure, volume and temperature. In order to achieve this, it is necessary to mature analysis techniques and software that were, at the start of this project, in an embryonic developmental state. Task 1 of the present project was to develop state-of-the-art techniques and software for calculating highly accurate earthquake locations, earthquake source mechanisms (moment tensors) and temporal changes in reservoir structure. Task 2 was to apply the new techniques to hydrofracturing (Enhanced Geothermal Systems, or “EGS”) experiments performed at the Coso geothermal field

  13. New method for continuous transmissivity profiling in fractured rock.

    Science.gov (United States)

    Keller, Carl E; Cherry, John A; Parker, Beth L

    2014-01-01

    A new method is presented to search for hydraulically transmissive features in open boreholes in bedrock. A flexible borehole liner made of a watertight, nylon fabric is filled with water to create a constant driving head to evert (reverse of invert) the liner down the hole so that the liner pushes the borehole water out into transmissive fractures or other permeable features. The descent rate is governed by the bulk transmissivity of the remaining permeable features below the liner. Initially, the liner descent rate or velocity is a measure of transmissivity (T) of the entire hole. As the everting liner passes and seals each permeable feature, changes in the liner velocity indicate the position of each feature and an estimate of T using the Thiem equation for steady radial flow. This method has been performed in boreholes with diameters ranging from 96 to 330 mm. Profiling commonly takes a few hours in holes 200- to 300-m long. After arrival of the liner at the bottom of the hole, the liner acts as a seal preventing borehole cross connection between transmissive features at different depths. Liner removal allows the hole to be used for other purposes. The T values determined using this method in a dolostone aquifer were found to be similar to the values from injection tests using conventional straddle packers. This method is not a replacement for straddle-packer hydraulic testing of specific zones where greater accuracy is desired; however, it is effective and efficient for scanning entire holes for transmissive features. PMID:23692626

  14. A field study of coupled mechanical-hydrological processes in fractured crystalline rock

    International Nuclear Information System (INIS)

    This paper reports on a series of experiments with a large in-situ cube of fractured metamorphic rock. The purpose is to better understand the response of jointed rock to loading. One of the parameters which can be measured in any mechanical testing scheme is displacement. An instrumentation system was developed to measure absolute displacement in the interior of the block during loading, avoiding a suspected decoupled zone near the surface. The system is based on an array of inductive proximity transducers mounted on a rigid reference frame anchored to the mine roof above the block. The stress field within the block during loading was monitored at several points with U.S.B.M. borehole deformation gages, using elastic moduli determined separately at each point with a borehole dilatometer. With these data the effect of fractures on the redistribution of stresses can be more readily understood

  15. Stress Wave Source Characterization: Impact, Fracture, and Sliding Friction

    Science.gov (United States)

    McLaskey, Gregory Christofer

    Rapidly varying forces, such as those associated with impact, rapid crack propagation, and fault rupture, are sources of stress waves which propagate through a solid body. This dissertation investigates how properties of a stress wave source can be identified or constrained using measurements recorded at an array of sensor sites located far from the source. This methodology is often called the method of acoustic emission and is useful for structural health monitoring and the noninvasive study of material behavior such as friction and fracture. In this dissertation, laboratory measurements of 1--300 mm wavelength stress waves are obtained by means of piezoelectric sensors which detect high frequency (10 kHz--3MHz) motions of a specimen's surface, picometers to nanometers in amplitude. Then, stress wave source characterization techniques are used to study ball impact, drying shrinkage cracking in concrete, and the micromechanics of stick-slip friction of Poly(methyl methacrylate) (PMMA) and rock/rock interfaces. In order to quantitatively relate recorded signals obtained with an array of sensors to a particular stress wave source, wave propagation effects and sensor distortions must be accounted for. This is achieved by modeling the physics of wave propagation and transduction as linear transfer functions. Wave propagation effects are precisely modeled by an elastodynamic Green's function, sensor distortion is characterized by an instrument response function, and the stress wave source is represented with a force moment tensor. These transfer function models are verified though calibration experiments which employ two different mechanical calibration sources: ball impact and glass capillary fracture. The suitability of the ball impact source model, based on Hertzian contact theory, is experimentally validated for small (˜1 mm) balls impacting massive plates composed of four different materials: aluminum, steel, glass, and PMMA. Using this transfer function approach

  16. Dyke propagation and tensile fracturing at high temperature and pressure, insights from experimental rock mechanics.

    Science.gov (United States)

    Bakker, Richard; Benson, Philip; Vinciguerra, Sergio

    2014-05-01

    It is well known that magma ascends trough the crust by the process of dyking. To enable dyke emplacement, basement rocks typically fail in a mode 1 fracture, which acts as conduits for magma transport. An overpressure of the ascending magma will further open/widen the fracture and permit the fracture to propagate. In order to further understand the emplacement and arrest of dykes in the subsurface, analogue and numerical studies have been conducted. However, a number of assumptions regarding rock mechanical behaviour frequently has to be made as such data are very hard to directly measure at the pressure/temperature conditions of interest: high temperatures at relatively shallow depths. Such data are key to simulating the magma intrusion dynamics through the lithologies that underlie the volcanic edifice. Here we present a new laboratory setup, which allows us to investigate the tensile fracturing properties under both temperature and confining pressure, and the emplacement of molten material within the newly formed fracture. We have modified a traditional tri-axial test assembly setup to be able to use a Paterson type High Pressure, High Temperature deformation apparatus. Sample setup consists of cylindrical rock samples with a 22 mm diameter and a 8 mm bore at their centre, filled with a material chosen as such that it's in a liquid state at the experimental temperature and solid at room temperature to enable post-experiment analysis. The top and lower parts of the rock sample are fitted with plugs, sealing in the melt. The assembly is then placed between ceramic pistons to ensure there are no thermal gradients across the sample. The assembly is jacketed to ensure the confining medium (Ar) cannot enter the assembly. A piston is driven into the sample such that the inner conduit materials pressure is slowly increased. At some point a sufficient pressure difference between the inner and outer surfaces causes the sample to deform and fail in the tensile regime

  17. Block-scale laboratory experiments of solute transport through a natural rock fracture

    International Nuclear Information System (INIS)

    Full text of publication follows: Crystalline rock is being considered as a host medium for repository of highly radioactive spent nuclear fuel in Finland and elsewhere. Rock-block migration experiments were introduced to evaluate the simplified radionuclide transport concept used in assessing the safety of the underground waste repositories. Objective of this study was to examine the processes causing retention in solute transport through rock fractures, especially focused on the matrix diffusion. Results of this work can be used to estimate importance of the retention processes during transport in different scales and flow conditions. Experimental set-up and instrumentation has been developed and tested using a granite block (0.9 m x 0.9 m x 0.7 m) having a horizontally planar natural fracture. Drill-holes drilled orthogonal to the fracture were equipped with sealing packers or tracer injection facilities. The outer upper and vertical surfaces are surrounded with water pools in order to maintain rock matrix saturated and to ensure constant hydraulic head around the outer boundary during the tracer tests. Description of the experimental set up of the rock-block, characterisation of the hydrological properties of the fracture and preliminary tracer experiments are given in Hoelttae et al. (2004). Preliminary tracer tests with dye tracer uranin showed that radionuclide migration take place through distinct channels. In this work a more complete set of tracer experiments were carried out applying flow fields and required flow conditions estimated on the basis of hydraulic characterisation and uranin tests in order to get matrix diffusion as an observable retention process. Tracer experiments were performed for a maximum length of the flow path using dye tracer uranin, and radioactive non-sorbing and sorbing tracers (22Na, 85Sr). All tracer tests were performed in radial diverging flow field. Water was pumped to a borehole and tracers were injected to the pumped

  18. Effect of specimen thickness on Mode Ⅱ fracture toughness of rock

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Anti-symmetric four-point bending specimens with different thickness, without and with guiding grooves, were used to conduct Mode Ⅱ fracture test and study the effect of specimen thickness on Mode Ⅱ fracture toughness of rock. Numerical calculations show that the occurrence of Mode Ⅱ fracture in the specimens without guiding grooves (when the inner and outer loading points are moved close to the notch plane) and with guiding grooves is attributed to a favorable stress condition created for Mode Ⅱ fracture, i.e. tensile stress at the notch tip is depressed to be lower than the tensile strength or to be compressive stress, and the ratio of shear stress to tensile stress at notch tip is very high. The measured value of Mode Ⅱ fracture toughness KⅡC decreases with the increase of the specimen thickness or the net thickness of specimen. This is because a thick specimen promotes a plane strain state and thus results in a relatively small fracture toughness.

  19. Fractured rock aquifer test in the Western Siberian Basin, Ozyorsk, Russia

    International Nuclear Information System (INIS)

    A series of multi-zone pumping tests was conducted in a contaminated fractured rock aquifer in the Western Siberian Basin, Ozyorsk, Russia. The tests were conducted adjacent to the Mishelyak River floodplain in fractured Paleozoic porphyrites, tufts, tuff breccia, and lava typical of the Ural mountain complex. Geophysical logs, borehole photography, core samples, and results from previous borehole contamination studies were used to identify the zones to be tested. A network of three uncased wells was tested using a system of inflatable packers, pressure transducers and data loggers. Seven zones were isolated and monitored in two of the uncased wells. A straddle packer assembly was used to isolate individual zones within the pumping well. Eight constant rate pumping tests were conducted. Results of the testing indicate that shallow groundwater migrates primarily in two intervals that are separated by an interval with low lateral conductivity. The water bearing intervals have moderate to high specific capacities (1.3 and 30 L/min/m). Several processes are responsible for fracturing present in the lower interval. The network of compound fractures produced a complex array of fracture intersections yielding a fractured media with hydraulic behavior similar to porous media. Models used for the analysis of pumping tests in porous media provide a good estimation of the hydraulic response of the lower interval to pumping. Future work will include more complex analysis of the data to determine hydraulic conductivity ellipses

  20. Fractured rock aquifer tests in the Western Siberian Basin, Ozyorsk, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A. [and others

    1997-10-01

    A series of multi-zone pumping tests was conducted in a contaminated fractured rock aquifer in the Western Siberian Basin, Ozyorsk, Russia. The tests were conducted adjacent to the Mishelyak River floodplain in fractured Paleozoic porphyrites, tufts, tuff breccia, and lava typical of the Ural mountain complex. Geophysical logs, borehole photography, core samples, and results from previous borehole contamination studies were used to identify the zones to be tested. A network of three uncased wells was tested using a system of inflatable packers, pressure transducers and data loggers. Seven zones were isolated and monitored in two of the uncased wells. A straddle packer assembly was used to isolate individual zones within the pumping well. Eight constant rate pumping tests were conducted. Results of the testing indicate that shallow groundwater migrates primarily in two intervals that are separated by an interval with low lateral conductivity. The water bearing intervals have moderate to high specific capacities (1.3 and 30 L/min/m). Several processes are responsible for fracturing present in the lower interval. The network of compound fractures produced a complex array of fracture intersections yielding a fractured media with hydraulic behavior similar to porous media. Models used for the analysis of pumping tests in porous media provide a good estimation of the hydraulic response of the lower interval to pumping. Future work will include more complex analysis of the data to determine hydraulic conductivity ellipses.

  1. THE STRESS IMPACT ON MECHANICAL PROPERTIES OF ROCKS IN HYDRO FRACTURING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    B. GURUPRASAD

    2012-02-01

    Full Text Available Ground water is considered to be the best safe protected drinking water source and bore wells are drilled in hard crystalline rock terrains for drinking water, irrigation and industrial purposes. Even after scientific location, some bore wells yield inadequate quantity of water or fail to yield. The success of bore wells depend largely onnumber, length, dilation and interconnectivity of fractures encountered on drilling. Considering the cost factor involved in drilling a new bore well, rejuvenation of failed bore well through some technique is thought off. The innovative technology of ‘hydro fracturing’ is a new interdisciplinary approach of Hydro mechanical tostimulate the bore well to improve the yield by applying water pressure into bore well by using a heavy duty mechanical compressor. The hydro fracturing technique was first used in oil well to increase oil and gas production. In this research paper, the hydraulic pressure applied increases with depth reflecting the rigidness,toughness of rock. The fracture development, propagation of fracture and stress behavior depends on the physical and mechanical properties of rocks. The hydro fracturing process has been conducted in three depth zones ranging from 8 m to 45 m below ground level in Annavasal union of Pudukottai district, Tamil Nadu, India. The Pressure application varies depending on the geological formations. This study pertains to a part of research work. The minimum and maximum pressures applied are 1 and 10 N/mm2 respectively. The maximumpressure of 10 N/mm2 has been recorded in the third zone, where the country rock is charnockite which is generally massive, compact and dense rock. Generally for the igneous rock in the third zone in the depth range of 40 to 50 m, more than 7 N/mm2 of pressure has been applied indicating extremely strong nature with uniaxial compressive strength 100 – 300 N/mm2, tensile strength 7- 25 N/mm2. Out of 37 bore wells 32.4% of bore wells have shown

  2. Study of Pumping Pressure and Stop Criteria in Grouting of Rock Fractures

    OpenAIRE

    Yaghoobi Rafi, Jalaleddin

    2014-01-01

    Today practice of grouting is based on empirical approaches in that, pumping pressure and stop criteria are determined by benchmarking similar projects. Considering a maximum limit for grouting pressure would allow applying a relatively high pressure that may lead to jacking of the fracture or even uplift of the rock mass. On the other hand, keeping the pressure lower than the overburden, in order to avoid any deformation, will prolong grouting process. Determination of pumping pressure is mo...

  3. THE STRESS IMPACT ON MECHANICAL PROPERTIES OF ROCKS IN HYDRO FRACTURING TECHNIQUE

    OpenAIRE

    Guruprasad, B; Dr.A. RAGUPATHY; T.S. BADRINARAYANAN; K.B. RAJKUMAR

    2012-01-01

    Ground water is considered to be the best safe protected drinking water source and bore wells are drilled in hard crystalline rock terrains for drinking water, irrigation and industrial purposes. Even after scientific location, some bore wells yield inadequate quantity of water or fail to yield. The success of bore wells depend largely onnumber, length, dilation and interconnectivity of fractures encountered on drilling. Considering the cost factor involved in drilling a new bore well, rejuve...

  4. Insensitive explosive composition and method of fracturing rock using an extrudable form of the composition

    Science.gov (United States)

    Davis, Lloyd L

    2013-11-05

    Insensitive explosive compositions were prepared by reacting di-isocyanate and/or poly-isocyanate monomers with an explosive diamine monomer. Prior to a final cure, the compositions are extrudable. The di-isocyanate monomers tend to produce tough, rubbery materials while polyfunctional monomers (i.e. having more than two isocyanate groups) tend to form rigid products. The extrudable form of the composition may be used in a variety of applications including rock fracturing.

  5. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    International Nuclear Information System (INIS)

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site

  6. Summary of three dimensional pump testing of a fractured rock aquifer in the western Siberian Basin

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Drozhko, E.G.; Glalolenko, Y.V.; Mokrov, Y.G.; Ivanov, I.A. [P.A. Mayak, Chelyabinsk (Russian Federation); Glagolev, A.V.; Vasil`kova, N.A. [P.S.A. Hydrospetzgeologiya, Moscow (Russian Federation)

    1996-10-30

    A group of scientists from the Savannah River Technology Center and Russia successfully completed a 17 day field investigation of a fractured rock aquifer at the MAYAK PA nuclear production facility in Russia. The test site is located in the western Siberian Basin near the floodplain of the Mishelyak river. The fractured rock aquifer is composed of orphyrites, tuff, tuffbreccia and lava and is overlain by 0.5--12 meters of elluvial and alluvial sediments. A network of 3 uncased wells (176, 1/96, and 2/96) was used to conduct the tests. Wells 176 and 2/96 were used as observation wells and the centrally located well 1/96 was used as the pumping well. Six packers were installed and inflated in each of the observation wells at a depth of up to 85 meters. The use of 6 packers in each well resulted in isolating 7 zones for monitoring. The packers were inflated to different pressures to accommodate the increasing hydrostatic pressure. A straddle packer assembly was installed in the pumping well to allow testing of each of the individual zones isolated in the observation wells. A constant rate pumping test was run on each of the 7 zones. The results of the pumping tests are included in Appendix A. The test provided new information about the nature of the fractured rock aquifers in the vicinity of the Mishelyak river and will be key information in understanding the behavior of contaminants originating from process wastes discharged to Lake Karachi. Results from the tests will be analyzed to determine the hydraulic properties of different zones within the fractured rock aquifer and to determine the most cost effective clean-up approach for the site.

  7. Fluorescence microscopy and Image Analysis for study of Micro-fracturing in Rocks

    Czech Academy of Sciences Publication Activity Database

    Ščučka, Jiří; Kožušníková, Alena; Obara, B.

    Vol. 2. Ostrava : Ústav geoniky AV ČR, v.v Ostrava, 2007 - (Kožušníková, A.), s. 165-170 ISBN 978-80-86407-18-0. [Geonics 2007. Ostrava (CZ), 23.05.2007-25.05.2007] Institutional research plan: CEZ:AV0Z30860518 Keywords : micro- fracturing * rocks * optical fluorescence microscopy Subject RIV: DB - Geology ; Mineralogy

  8. Characterizing Fracture Spatial Patterns by Using Semivariograms

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Semivariogram is applied to fracture data obtained from detailed scanline surveys of nine field sites in western New York, USA in order to investigate the spatial patterns of natural fractures. The length of the scanline is up to 36 m. How both fracture spacing and fracture length vary with distance is determined through semivariogram calculations. In this study, the authors developed a FORTRAN program to resample the fracture data from the scanline survey. By calculating experimental semivariogram, the authors found five different types of spatial patterns that can be described by linear, spherical, reversed spherical, polynomial I (for a0) models, of which the last three are newly proposed in this study. The well-structured semivariograms of fracture spacing and length indicate that both the location of the fractures and the length distribution within their structure domains are not random. The results of this study also suggest that semivariograms can provide useful information in terms of spatial correlation distance for fracture location and fracture length. These semivariograms can also be utilized to design more efficient sampling schemes for further surveys, as well as to define the limits of highly probable extrapolation of a structure domain.

  9. Sensitivity analysis of GSI based mechanical characterization of rock mass

    CERN Document Server

    Ván, P

    2012-01-01

    Recently, the rock mechanical and rock engineering designs and calculations are frequently based on Geological Strength Index (GSI) method, because it is the only system that provides a complete set of mechanical properties for design purpose. Both the failure criteria and the deformation moduli of the rock mass can be calculated with GSI based equations, which consists of the disturbance factor, as well. The aim of this paper is the sensitivity analysis of GSI and disturbance factor dependent equations that characterize the mechanical properties of rock masses. The survey of the GSI system is not our purpose. The results show that the rock mass strength calculated by the Hoek-Brown failure criteria and both the Hoek-Diederichs and modified Hoek-Diederichs deformation moduli are highly sensitive to changes of both the GSI and the D factor, hence their exact determination is important for the rock engineering design.

  10. Rock mass characterization for tunnels in the Copenhagen limestone

    DEFF Research Database (Denmark)

    Foged, Niels Nielsen; Jakobsen, Lisa; Jackson, Peter;

    2007-01-01

    Tunnels in Copenhagen are drilled through highly anisotropic limestone comprising alternating strongly lithified and less lithified parts. The mass quality of the limestone is usually defined from fracture spacing registered in core samples. The deposit is, however, affected destructively by dril...... drilling activity yielding a low Rock Quality Designation RQD. In-situ observations of the limestone in excavations or televiewer logs reveal only few natural discontinuities compared to core logging, indicating a very good suitability for tunneling....

  11. Field and numerical determinations of pneumatic flow parameters of unsaturated fractured porous rocks on various scales

    International Nuclear Information System (INIS)

    Air permeability is measured in the fractured crystalline rocks of the Roselend Natural Laboratory (France). Single-hole pneumatic injection tests as well as differential barometric pressure monitoring are conducted on scales ranging from 1 to 50 m, in both shallow and deep boreholes, as well as in an isolated 60 m3 chamber at 55 m depth. The field experiments are interpreted using numerical simulations in equivalent homogeneous porous media with their real 3-D geometry in order to estimate pneumatic parameters. For pneumatic injection tests, steady-state data first allow to estimate air permeability. Then, pressure recovery after a pneumatic injection test allows to estimate the air-filled porosity. Comparison between the various studied cases clarifies the influence of the boundary conditions on the accuracy of the often used 1-D estimate of air permeability. It also shows that permeabilities correlate slightly with fracture density. In the chamber, a 1 order-of-magnitude difference is found between the air permeabilities obtained from pneumatic injection tests and from differential barometric pressure monitoring. This discrepancy is interpreted as a scale effect resulting from the approximation of the heterogeneous fractured rock by a homogeneous numerical model. The difference between the rock volumes investigated by pneumatic injection tests and by differential barometric pressure monitoring may also play a role. No clear dependence of air permeability on saturation has been found so far. (authors)

  12. Chemically- and mechanically-mediated influences on the transport and mechanical characteristics of rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Min, K.-B.; Rutqvist, J.; Elsworth, D.

    2009-02-01

    A model is presented to represent changes in the mechanical and transport characteristics of fractured rock that result from coupled mechanical and chemical effects. The specific influence is the elevation of dissolution rates on contacting asperities, which results in a stress- and temperature-dependent permanent closure. A model representing this pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture. These relations are incorporated in a stress-stiffening model of fracture closure to define the stress- and temperature-dependency of aperture loss and behavior during stress and temperature cycling. These models compare well with laboratory and field experiments, representing both decoupled isobaric and isothermal responses. The model was applied to explore the impact of these responses on heated structures in rock. The result showed a reduction in ultimate induced stresses over the case where chemical effects were not incorporated, with permanent reduction in final stresses after cooling to ambient conditions. Similarly, permeabilities may be lower than they were in the case where chemical effects were not considered, with a net reduction apparent even after cooling to ambient temperature. These heretofore-neglected effects may have a correspondingly significant impact on the performance of heated structures in rock, such as repositories for the containment of radioactive wastes.

  13. CRYSTAL: A model of a fractured rock geosphere for performance assessment within SKI Project-90

    International Nuclear Information System (INIS)

    A one-dimensional model of a fractured rock geosphere (CRYSTAL) has been developed, which forms part of the toolkit for the Swedish Nuclear Power Inspectorates reference repository performance assessment programme (Project-90). CRYSTAL predicts the transport of arbitrary-length decay chains by advection, diffusion and surface sorption in the fractures and sideways diffusion into the rock matrix. The model equations are solved in Laplace transform space, and inverted numerically to the time domain. This approach avoids time-stepping and consequently is numerically very efficient. The interface of CRYSTAL with the time-series output from a near-field model, such as CALIBRE, is achieved using the method of convolution. The response of the geosphere to delta-function inputs from each nuclide is combined with the time series outputs from the near-field, to obtain the nuclide flux emerging from the far-field. The method is sufficiently flexible to allow for any general time-series input from CALIBRE or any other near-field model. Although CRYSTAL was developed to handle one-dimensional transport in a fractured rock, the equations solved are sufficiently general for it to be used in other applications, e.g. in a porous system. (au)

  14. Analysis of propagation mechanisms of stimulation-induced fractures in rocks

    Science.gov (United States)

    Krause, Michael; Renner, Joerg

    2016-04-01

    Effectivity of geothermal energy production depends crucially on the heat exchange between the penetrated hot rock and the circulating water. Hydraulic stimulation of rocks at depth intends to create a network of fractures that constitutes a large area for exchange. Two endmembers of stimulation products are typically considered, tensile hydro-fractures that propagate in direction of the largest principal stress and pre-existing faults that are sheared when fluid pressure reduces the effective normal stress acting on them. The understanding of the propagation mechanisms of fractures under in-situ conditions is still incomplete despite intensive research over the last decades. Wing-cracking has been suggested as a mechanism of fracture extension from pre-existent faults with finite length that are induced to shear. The initiation and extension of the wings is believed to be in tensile mode. Open questions concern the variability of the nominal material property controlling tensile fracture initiation and extension, the mode I facture toughness KIC, with in-situ conditions, e.g., its mean-stress dependence. We investigated the fracture-propagation mechanism in different rocks (sandstones and granites) under varying conditions mimicking those representative for geothermal systems. To determine KIC-values we performed 3-point bending experiments. We varied the confining pressure, the piston velocity, and the position of the chevron notch relative to the loading configuration. Additional triaxial experiments at a range of confining pressures were performed to study wing crack propagation from artificial flaws whose geometrical characteristics, i.e., length, width, and orientation relative to the axial load are varied. We monitored acoustic emissions to constrain the spacio-temporal evolution of the fracturing. We found a significant effect of the length of the artificial flaw and the confining pressure on wing-crack initiation but did not observe a systematic dependence

  15. Clay club initiative: self-healing of fractures in clay-rich host rocks

    International Nuclear Information System (INIS)

    The capacity of fractures in argillaceous rocks to self-heal (or become, with the passage of time, less conductive to groundwater) is often cited as a primary factor favouring the choice of such materials as host rocks for deep disposal. The underlying processes which contribute to self-healing can be broadly subdivided into: (a) mechanical and hydro-mechanical processes linked to the change in the stress field, movement of pore water, swelling, softening, plastic deformation and creep, and (b) geochemical processes linked to chemical alterations, transport in aqueous solution and the precipitation of minerals. Since chemical alteration can cause profound changes to the mechanical properties of argillaceous rocks, it is often difficult to draw a firm line between these two subdivisions. Based on the deliberations of the recent Cluster Conference in Luxembourg, there would appear to be some support for the use of the term 'self-sealing' for processes affecting fracture conductivity in argillaceous rock that are largely mechanical or hydro-mechanical in their origin. There are four main areas in which the self-healing capacity of the host rock becomes relevant to repository design and performance assessment: - potential for radionuclide transport within the excavation damage zone (EDZ); - design and performance of repository sealing systems; - potential impact of gas migration; - long-term performance considering erosional unloading, seismicity and fault reactivation. The presence of an EDZ is acknowledged to be a particularly important issue in performance assessment. Interconnection of fractures in the EDZ could lead to the development of a preferential flow path extending along the emplacement holes, access tunnels and shafts of a repository towards overlying aquifers and the biosphere. In the preliminary French Safety Analyses, for example, the treatment of scenarios relating to early seal failure have highlighted the hydraulic role of the damaged zone as a

  16. On the description of the properties of fractured rock using the concept of a porous medium

    International Nuclear Information System (INIS)

    In order to describe the flow of groundwater through fractured rock, water is either assumed to flow through a pervious continuum of through descrete fractures between impervious blocks of rock. The latter approach being the one demanding more information on the rock, problems on groundwater flow are usually discussed using the porous medium approach. It is often a question of debate wether the continuum approach is applicable to the fractured rock under consideration. Therefore, it is essential that after assuming that a certain flow region acts as a porous medium, we use a procedure for measuring the properties that at the same time gives a test of this assumption. When giving a description of groundwater flow, the goal is often a presentation of pathlines and flowtimes between points of interest and the ground surface. Using a porous medium approach, this means that hydraulic conductivity and porosity must be known through the medium. In order to cope with transient flow, we must also know the time constant governing the development of the flow. The pathlines depend to a great extent on the variation of conductivity through space. A conductivity decreasing with depth will force the pathlines to the surface giving local flow. If instead the conductivity is constant, the flow is regional. It is therefore important to know the gradient of hydraulic conductivity. Finally, as we know that the flow takes place through a geological structure, the anisotropic behaviour of the rock must be known in order to describe the flow. In this report a procedure to measure the properties listed above is developed. (author)

  17. Radionuclide migration in fractured rock: hydrological investigations at an experimental site in the Carnmennellis granite, Cornwall

    International Nuclear Information System (INIS)

    The objectives, methods and results of hydrological investigation of the granite at an experimental site in Cornwall are described and discussed. Constant head injection tests and radioactive tracer experiments have revealed a fracture permeability in which water movement is confined to discrete fractures separated by rock of very low permeability. Data on flow path frequency, orientation and effective hydraulic aperture, required for network modelling, are presented for a 700 m borehole, with additional hydraulic data from three other boreholes. In addition to fractures of average hydraulic conductivity a small number of major hydraulic features (''main drains'') with major implications for radionuclide migration have been identified. A mean hydraulic conductivity for the granite investigated of 1.57x10-7ms-1 has been obtained, 2.11x10-8ms-1 if the major hydraulic features are excluded

  18. Effective-stress-law behavior of Austin chalk rocks for deformation and fracture conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Warpinski, N.R.; Teufel, L.W.

    1994-08-01

    Austin chalk core has been tested to determine the effective law for deformation of the matrix material and the stress-sensitive conductivity of the natural fractures. For deformation behavior, two samples provided data on the variations of the poroelastic parameter, {alpha}, for Austin chalk, giving values around 0.4. The effective-stress-law behavior of a Saratoga limestone sample was also measured for the purpose of obtaining a comparison with a somewhat more porous carbonate rock. {alpha} for this rock was found to be near 0.9. The low {alpha} for the Austin chalk suggests that stresses in the reservoir, or around the wellbore, will not change much with changes in pore pressure, as the contribution of the fluid pressure is small. Three natural fractures from the Austin chalk were tested, but two of the fractures were very tight and probably do not contribute much to production. The third sample was highly conductive and showed some stress sensitivity with a factor of three reduction in conductivity over a net stress increase of 3000 psi. Natural fractures also showed a propensity for permanent damage when net stressed exceeded about 3000 psi. This damage was irreversible and significantly affected conductivity. {alpha} was difficult to determine and most tests were inconclusive, although the results from one sample suggested that {alpha} was near unity.

  19. Challenges in reactive transport modeling for prediction of geometry evolution in fractured carbonate rocks

    Science.gov (United States)

    Peters, C. A.; Deng, H.; Guo, B.; Fitts, J. P.

    2014-12-01

    Carbonate minerals are common in sedimentary rocks including in formations that serve as caprock seals. These formations are intended to stop migration of injected fluids, such as CO2 in the context of geologic carbon sequestration, ensuring permanent isolation from the atmosphere. Fractures in caprocks may allow injected CO2 and pressurized brine to escape. If the caprock contains substantial amounts of carbonates, flow of acidified fluids may cause substantial mineral dissolution which would increase the leakiness over time. Our research seeks to understand this process with particular attention to the evolution of fracture geometry and the implications for flow permeability. Our work combines high-pressure core flow experiments, x-ray imaging methods, reactive transport modeling, and computational fluid dynamics simulations. We have found that fracture permeability can increase substantially as a result of calcite dissolution. However, the extent of permeability increase is affected by complex alterations in fracture geometry. Newly-formed surface roughness and microporosity diminishes flow relative to what would be predicted by conventional practical models such as the local cubic law model. In contrast, channelization could lead to higher-than-expected flow rates because such fractures would stabilize open flow paths against geomechanical closure forces. Modeling these processes requires fine-scale 2D, if not 3D, reactive transport flow models that simulate not only the increase in fracture aperture but also the evolution in fracture geometry. Development of computationally-tractable reactive transport models that accurately predict reaction-induced changes in fracture permeability is an ongoing research priority in our lab.

  20. Characterization of fracture loci in metal forming

    DEFF Research Database (Denmark)

    Martins, P.A.F.; Bay, Niels; Tekkaya, A.E.; Atkins, A.G.

    2014-01-01

    Fracture in metal forming can occur in three different modes: (i) tensile; (ii) in-plane shear; and (iii) out-of-plane shear (respectively the same as modes I, II and III of fracture mechanics). The circumstances under which each mode will occur are identified in terms of plastic flow and...

  1. Fracture characterization from formation microlmager data

    NARCIS (Netherlands)

    Ponziani, M.; Slob, E.C.; Luthi, S.M.; Bloemenkamp, R.F.; Le Nir, I.

    2013-01-01

    The Formation MicroImager (mark of Schlumberger) is an electric imaging tool that produces electrical scans of the borehole walls. These measurements provide useful information on the fracture aperture of naturally fractured reservoirs. In this paper, we present a laboratory set-up that was realized

  2. Study on Smooth-Blasting Results in Jointed and Fractured Rock

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Factors that affect blasting results may be grouped into those factors that can be controlled and those that cannot be controlled. The controllable factors include explosive properties, initiation timing, and blast geometry. The uncontrollable factors comprise the rock’s natural structures, such as joints and fractures, and the properties, such as elastic constants, density and strength. Among these, the influence of rock structural planes often contributes a high degree of variability to blasting results. This paper presents a theoretical analysis of rock structural plane influences on smooth-blasting results based on elasticity and stress wave propagation theory with an emphasis on smooth blasting techniques. Two types of simulated experiments in lab (using strain and acoustic emission measurements) are used to verify the theoretical analysis. The results show that it is difficult to achieve smooth-blasting results when the angle between the natural rock structural planes and the blast-induced fracture planes ranges from 10° to 60°. Among these angles, 30° is the least desirable angle to produce a smooth wall. For angles less than 10° and greater than 60°, the influence of rock structural planes on blasting results can be ignored.

  3. Modification of rock mass permeability in the zone surrounding a shaft in fractured, welded tuff

    International Nuclear Information System (INIS)

    The excavation of a nuclear waste repository at Yucca Mountain, Nevada requires access through shafts and ramps from the ground surface to the repository horizon. To evaluate the need and performance of the sealing subsystem, it is necessary to predict the modifications in the rock immediately surrounding the shaft. The purpose of this study is to develop a model of permeability changes as a function of radial distance from a shaft. The model is based upon analyses which consider modification in rock mass permeability resulting from stress redistribution and blast damage due to excavation around a shaft. Elastic and elastoplastic stress analyses are performed to estimate the stress distribution for a wide range of rock properties and in situ stress conditions. Changes in stress are related to changes in rock mass permeability using stress-permeability relations for fractures obtained from laboratory and field testing. The effects of blast damage are estimated from case histories. The analyses indicate that rock mass permeability is expected to decline rapidly to the undisturbed value with greater permeability changes occurring at or near the shaft wall. For several conditions evaluated, the equivalent permeability of the modified permeability zone, averaged over an annulus one radius wide around the shaft, ranges from 15 to 80 times the undisturbed rock mass permeability. 61 refs., 24 figs., 6 tabs

  4. Monitoring hydrogeological conditions in fractured rock at the site of Canada's underground research laboratory

    International Nuclear Information System (INIS)

    Atomic Energy of Canada Limited is constructing an Underground Research Laboratory (URL) at a depth of 250 m in a plutonic rock body near Lac du Bonnet, Manitoba. The facility is being constructed to carry out a variety of in situ geotechnical experiments as part of the Canadian Nuclear Fuel Waste Management Program. A unique feature of the URL, in comparison to other similar facilities such as the Stripa Mine in Sweden, is that it is to be constructed below the groundwater table in a previously undisturbed plutonic rock body. One of the main research objectives of the project is to develop and validate comprehensive three-dimensional models of the hydrogeology of the rock mass encompassing the URL site. Measurements made in an array of boreholes extending to depths of 1000 m on the 4.8-km2 study area have established that the permeability distribution in three major extensive subhorizontal fracture zones controls the movement of groundwater within the rock mass. An automated, electronic, piezometric pressure-monitoring system has been designed to collect continuous measurements from 75 isolated hydrogeological monitoring positions within the rock mass. Piezometric data have been collected from this monitoring network to establish baseline conditions prior to any excavation into the rock mass. These data have also been used to determine the steady-state, three-dimensional, groundwater flow regimes that exist at the URL site under natural conditions

  5. Investigation of fracture permeability around an underground opening in metamorphic rocks

    International Nuclear Information System (INIS)

    This report is the fifth in a series describing experiments conducted by the Colorado School of Mines for the Office of Crystalline Repository Development (OCRD) to determine the extent of blast damage in rock surrounding an underground opening. The report describes the instrumentation and method for testing permeability in crystalline rock masses. We applied the instruments in the CSM/OCRD test room in the Colorado School of Mines Experimental Mine (Edgar Mine) in Idaho Springs, Colorado. Even though this mine will not be a repository site, the equipment and methodology developed in this research program is applicable to other sites. The results presented in this report consider the variation of permeability measured with injection techniques. Preliminary results of core logging and deterministic fracture mapping program are briefly discussed. An attempt has also been made to relate the permeability variations to the stress field modification due to removal of the supporting rock mass

  6. The Fracture Influence on the Energy Loss of Compressed Air Energy Storage in Hard Rock

    Directory of Open Access Journals (Sweden)

    Hehua Zhu

    2015-01-01

    Full Text Available A coupled nonisothermal gas flow and geomechanical numerical modeling is conducted to study the influence of fractures (joints on the complex thermohydromechanical (THM performance of underground compressed air energy storage (CAES in hard rock caverns. The air-filled chamber is modeled as porous media with high porosity, high permeability, and high thermal conductivity. The present analysis focuses on the CAES in hard rock caverns at relatively shallow depth, that is, ≤100 m, and the pressure in carven is significantly higher than ambient pore pressure. The influence of one discrete crack and multiple crackson energy loss analysis of cavern in hard rock media are carried out. Two conditions are considered during each storage and release cycle, namely, gas injection and production mass being equal and additional gas injection supplemented after each cycle. The influence of the crack location, the crack length, and the crack open width on the energy loss is studied.

  7. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Q. Zhou; Hui-Hai Liu; F.J. Molz; Y. Zhang; G.S. Bodvarsson

    2005-04-08

    Matrix diffusion is an important mechanism for solute transport in fractured rock. We recently conducted a literature survey on the effective matrix diffusion coefficient, D{sub m}{sup e}, a key parameter for describing matrix diffusion processes at the field scale. Forty field tracer tests at 15 fractured geologic sites were surveyed and selected for the study, based on data availability and quality. Field-scale D{sub m}{sup e} values were calculated, either directly using data reported in the literature or by reanalyzing the corresponding field tracer tests. Surveyed data indicate that the effective-matrix-diffusion-coefficient factor F{sub D} (defined as the ratio of D{sub m}{sup e} to the lab-scale matrix diffusion coefficient [D{sub m}] of the same tracer) is generally larger than one, indicating that the effective matrix diffusion coefficient in the field is comparatively larger than the matrix diffusion coefficient at the rock-core scale. This larger value can be attributed to the many mass-transfer processes at different scales in naturally heterogeneous, fractured rock systems. Furthermore, we observed a moderate trend toward systematic increase in the F{sub D} value with observation scale, indicating that the effective matrix diffusion coefficient is likely to be statistically scale dependent. The F{sub D} value ranges from 1 to 10,000 for observation scales from 5 to 2,000 m. At a given scale, the F{sub D} value varies by two orders of magnitude, reflecting the influence of differing degrees of fractured rock heterogeneity at different sites. In addition, the surveyed data indicate that field-scale longitudinal dispersivity generally increases with observation scale, which is consistent with previous studies. The scale-dependent field-scale matrix diffusion coefficient (and dispersivity) may have significant implications for assessing long-term, large-scale radionuclide and contaminant transport events in fractured rock, both for nuclear waste disposal

  8. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    Energy Technology Data Exchange (ETDEWEB)

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride

  9. Mechanical and hydraulic performance of sludge-mixed cement grout in rock fractures

    Directory of Open Access Journals (Sweden)

    Khomkrit Wetchasat

    2014-08-01

    Full Text Available The objective is to assess the performance of sludge mixed with commercial grade Portland cement type I for use in minimizing the permeability of fractured rock mass. The fractures were artificially made by applying a line load to sandstone block specimens. The sludge comprises over 80% of quartz with grain sizes less than 75 μm. The results indicate that the mixing ratios of sludge:cement (S:C of 1:10, 3:10, 5:10 with water:cement ratio of 1:1 by weight are suitable for fracture grouting. For S:C = 3:10, the compressive strength and elastic modulus are 1.22 MPa and 224 MPa which are comparable to those of bentonite mixed with cement. The shear strengths between the grouts and fractures surfaces are from 0.22 to 0.90 MPa. The S:C ratio of 5:10 gives the lowest permeability. The permeability of grouted fractures with apertures of 2, 10, and 20 mm range from 10-16 to 10-14 m2 and decrease with curing time.

  10. VSP in crystalline rocks - from downhole velocity profiling to 3-D fracture mapping

    International Nuclear Information System (INIS)

    VSP surveys have been carried out at several potential nuclear waste disposal sites in Finland since the mid 80s. To date, more than 200 three-component profiles have been measured. The main purpose of the surveys was to detect fracture zones in the crystalline bedrock and to determine their position. Most seismic events could be linked to zones of increased fracturing observed in the borehole logs. The more pronounced seismic reflectors could be correlated with hydrogeologically significant zones, which have been the main targets in the investigations. Processing and interpretation methods have been developed specifically for VSP surveys in crystalline rocks: Weak reflections from thin fracture zones are enhanced by multi-channel filtering techniques based on the Radon transform. The position and orientation of the fracture zones are determined by polarisation analysis and by combining data from several shot points. The compilation of the results from several boreholes gives a comprehensive image of the fracture zones at the scale of the whole site. The discussion of the methodology is based on examples from the Olkiluoto site, in SW Finland

  11. Deposition behavior of polystyrene latex particles on solid surfaces during migration through an artificial fracture in a granite rock sample

    International Nuclear Information System (INIS)

    The deposition behavior of colloids during transport through heterogeneous media was observed by conducting column experiments to study migration of polystyrene latex particles (diameter=309 nm) through columns packed with artificially fractured granite rock (length=300 and 150 mm). The experiments were conducted under conditions of different ionic strengths and flow rates. The results were similar to those for colloid deposition in columns packed with glass beads reported previously; the colloid breakthrough curves showed three stages, characterized by different rates of change in the concentration of effluent. Colloid deposition on the fracture surfaces was described by considering strong and weak deposition sites. Scanning Electron Microscopy (SEM) observations indicated the existence of strong and weak sites on the fracture surfaces regardless of mineral composition. The observations also showed that the strong deposition sites tended to exist on surface irregularities such as cracks or protrusions. The degree of colloid deposition increased with increasing ionic strength and decreasing flow rate. The dependencies on ionic strength and flow rate agreed qualitatively with the DLVO theory and the previous experimental results, respectively. (author)

  12. Inclusion-based effective medium models for the field-scale permeability of 3D fractured rock masses

    Science.gov (United States)

    Ebigbo, Anozie; Lang, Philipp S.; Paluszny, Adriana; Zimmerman, Robert W.

    2016-04-01

    Fractures that are more permeable than their host rock can act as preferential, or at least additional, pathways for fluid to flow through the rock. The additional transmissivity contributed by these fractures will be of great relevance in several areas of earth science and engineering, such as radioactive waste disposal in crystalline rock, exploitation of fractured hydrocarbon and geothermal reservoirs, or hydraulic fracturing. In describing or predicting flow through fractured rock, the effective permeability of the rock mass, comprising both the rock matrix and a network of fractures, is a crucial parameter, and will depend on several geometric properties of the fractures/networks, such as lateral extent, aperture, orientation, and fracture density. This study investigates the ability of classical inclusion-based effective medium models (following the work of Sævik et al., Transp. Porous Media, 2013) to predict this permeability. In these models, the fractures are represented as thin, spheroidal inclusions, the interiors of which are treated as porous media having a high (but finite) permeability. The predictions of various effective medium models, such as the symmetric and asymmetric self-consistent schemes, the differential scheme, and Maxwell's method, are tested against the results of explicit numerical simulations of mono- and polydisperse isotropic fracture networks embedded in a permeable rock matrix. Comparisons are also made with the Hashin-Shrikman bounds, Snow's model, and Mourzenko's heuristic model (Mourzenko et al., Phys. Rev. E, 2011). This problem is characterised mathematically by two small parameters, the aspect ratio of the spheroidal fractures, α, and the ratio between matrix and fracture permeability, κ. Two different regimes can be identified, corresponding to α/κ 1. The lower the value of α/κ, the more significant is flow through the matrix. Due to differing flow patterns, the dependence of effective permeability on fracture

  13. Engineering biomineralised groundwater flow barriers for inhibiting radionuclide transport in fractured rocks

    Science.gov (United States)

    Blundell, N.; Cuthbert, M. O.; Riley, M. S.; Handley-Sidhu, S.; Renshaw, J. C.

    2012-04-01

    Microbially induced carbonate precipitation (MICP) is a promising engineering solution for inhibiting pollution transport in fractured rocks through permeability reduction of fine aperture fractures surrounding nuclear decommissioning sites or repositories. However, although many batch and column studies of MICP within porous media have been carried out, the method has yet to be successfully applied within fractured materials and upscaled to block and field scales to demonstrate its potential utility. This paper presents results of laboratory MICP experiments within artificial granite-perspex fractures (30 cm x 10 cm x 150 µm) under flowing conditions using ureolytic bacteria and a 'cementing solution' comprising dissolved urea and calcium chloride. A variety of injection combinations and bacterial/solute concentrations were trialled and changes in hydraulic conductivity of the fractures were measured over time. Injected bacteria were successfully 'fixed' by adding sufficient calcium chloride to encourage flocculation and hence mechanical filtration to trap the bacteria. Observed reductions in hydraulic conductivity of up to 3 orders of magnitude were achieved after 4 x 4 hour phases of injection with a decreasing mass of precipitate with distance from the inlet manifold. Although the results are very promising, a remaining challenge for successful upscaling of the technique to the field scale is in controlling the spatial distribution of bacterial fixing and precipitation to enable sealing of fractures at larger distances from the point of injection. In comparison to existing grouting techniques, MICP has the advantage of being low viscosity and is therefore potentially useful for very fine scale fractures while also potentially providing greater mechanical strength.

  14. Hydrogeology characterization of roto-translational slides in flysch rock masses

    Science.gov (United States)

    Ronchetti, F.; Borgatti, L.; Cervi, F.; Corsini, A.; Piccinini, L.; Vincenzi, V.; Truffelli, G.

    2009-04-01

    The hydrogeological characteristics of roto-traslational slides in flysch are complex, due to the inherent anisotropy and heterogeneity of such rock masses. The paper deals with the hydrogeological characterization of a reactivated roto-translational slide affecting Cretaceous flysch, located in the Northern Apennines of Italy. In situ permeability and pumping test, continuous monitoring of groundwater levels, hydrochemical and isotope analyses, and finally uranine tracers were the adopted prospecting methods. The landslide sector classified as rock slide extends for about 0.5 km2 and is characterized by a marked active sliding surface at 40 m depth. Borehole cores showed an upper 10-20 m landslide layer made of clayey debris, and a lower 20 m landslide layer made of highly fractured sandstone-rich flysch. Below sliding surface the flysch is much less fractured and it is overlying a clayey mélange. The hydraulic conductivity of both layers of the rock slide body was estimated with more than ten borehole permeability tests and by 5 slug-tests in open-pipe piezometers. Results highlighted a variability of permeability at different depths and locations, between 10-6 to 10-8 m/s, linked to fracturing of rock masses and to clay fraction. Groundwater levels were monitored for more than 3 years by means of transducers in 5 standpipe piezometers, fissured above or below the sliding surface. Results showed that two overlaying aquifers exist at the slope scale: an unconfined one, in the fractured flysch of the rock slide; a confined one, in the undisturbed flysch below sliding surface. Pore pressure in the unconfined aquifer is controlled by rainfall, with fluctuation of several meters occurring hours or days from onset of precipitation. On the contrary, pore pressure in the confined aquifer shows little response to precipitation events, has fluctuations of few meters related to seasonal trends, and maintains pressure head higher than that in the unconfined one. This makes

  15. Effects of Host-rock Fracturing on Deflation-related Volcano Deformation Sources

    Science.gov (United States)

    Holohan, Eoghan; Sudhaus, Henriette; Schöpfer, Martin; Walter, Thomas; Walsh, John

    2015-04-01

    Insights into the plumbing systems of active volcanoes are commonly gained by using continuum-based elastic modeling to resolve sources of volcano deformation. The geometries and depths of such deformation sources are commonly equated with those of volcano plumbing system elements, such as sills, dykes or magma chambers. We here examine how fracturing of the host rock - i.e. discontinuous inelastic deformation - may affect deformation source geometry and depth. We use two-dimensional Distinct Element Method (DEM) models to explicitly simulate fracture nucleation and development around a deflating magma body, and we then 'blindly' run the DEM model surface displacements through a typical elastic modelling scheme. The results show that host-rock fracturing may induce an asymmetric surface displacement profile that gives rise to an inclined deformation source geometry, even if the original magma body itself was not inclined. In addition, upward propagation of deformation toward the surface can, under certain conditions, cause a related upward movement of the deformation source. Consequently, the true magma body depth may be increasingly underestimated. These results may help explain upward migration and shape change in volcano deformation sources, as for example inferred for the March-April 2007 activity at Piton de la Fournaise volcano, La Reunion.

  16. A critical review of the data requirements for fluid flow models through fractured rock

    International Nuclear Information System (INIS)

    The report is a comprehensive critical review of the data requirements for ten models of fluid flow through fractured rock, developed in Europe and North America. The first part of the report contains a detailed review of rock discontinuities and how their important geometrical properties can be quantified. This is followed by a brief summary of the fundamental principles in the analysis of fluid flow through two-dimensional discontinuity networks and an explanation of a new approach to the incorporation of variability and uncertainty into geotechnical models. The report also contains a review of the geological and geotechnical properties of anhydrite and granite. Of the ten fluid flow models reviewed, only three offer a realistic fracture network model for which it is feasible to obtain the input data. Although some of the other models have some valuable or novel features, there is a tendency to concentrate on the simulation of contaminant transport processes, at the expense of providing a realistic fracture network model. Only two of the models reviewed, neither of them developed in Europe, have seriously addressed the problem of analysing fluid flow in three-dimensional networks. (author)

  17. Testing study of subcritical crack growth rate and fracture toughness in different rocks

    Institute of Scientific and Technical Information of China (English)

    CAO Ping; LI Jiang-teng; YUAN Hai-ping

    2006-01-01

    Subcritical crack growth of double torsion specimens made of ore, lherzolite, marble and granite was studied using Instron1342 type electro hydraulic servo test machine. The relations of the mode-Ⅰ stress intensity factor KI versus the subcritical crack growth velocity v and the fracture toughness KIC were obtained by the double torsion constant displacement load relaxation method. The behavior of subcritical crack growth was analyzed for different rocks. The results show that lgKI-lgv relations of four kinds of rocks measured by this method accord with linear rule, i.e. the relations between subcritical crack growth velocity and stress intensity factor have a power law, which is in good agreement with CHARLES theory. lgKI-lgv curves move to top left corner with the decrease of the elastic modulus, which implies that the subcritical crack growth velocity speeds up. The maximum subcritical crack growth velocity exhibits negative exponential increase, and mode-Ⅰ fracture toughness KIC decreases with the decrease of elastic modulus. The testing results provide a basis for time-dependence of rock engineering stability.

  18. Flow heterogeneity in a fractured rock: a case study from the Stripa project

    International Nuclear Information System (INIS)

    Part of the on going research of the international Stripa Project, based at the Stripa Mine in Sweden, involves the Site Characterisation and Validation Programme (SCV). This comprises investigation of a block of fractured crystalline rock approximately 250 m long, 250 m wide and 100m deep penetrated by 12 angled boreholes drilled from tunnels in the mine. The SCV is intended to represent the type of investigation which might be carried out at a repository site, during construction, to identify significant flow pathways and delineate volumes of poorly permeable good rock. The investigation has been staged allowing periods of measurement to alternate with periods of conceptual and mathematical modelling. A variety of techniques, including single borehole geophysics (radar and seismic), geological mapping, geochemical and hydrogeological (a novel focused packer system) studies, were employed in the early stages to gather basic data from which a conceptual model of how groundwater flowed within the rock mass was constructed. This was used to prepare mathematical models, based on a fracture-network approach, which were used to predict groundwater flux into purpose built boreholes and tunnels. Measured flows and data on transmissivity distribution, derived from inter-borehole hydraulic interference testing, were then compared with the predictions. They showed good agreement and allowed confidence in this approach to increase. New models of flux and transport were developed which incorporate the additional measurements. Predictions of these models will be evaluated using tracer tests. 4 figs., 2 tabs., 9 refs

  19. A Coupled Model for Natural Convection and Condensation in Heated Subsurface Enclosures Embedded in Fractured Rock

    International Nuclear Information System (INIS)

    In heated tunnels such as those designated for emplacement of radioactive waste at Yucca Mountain, axial temperature gradients may cause natural convection processes that can significantly influence the moisture conditions in the tunnels and in the surrounding fractured rock. Large-scale convection cells would provide an effective mechanism for axial vapor transport, driving moisture out of the formation away from the heated tunnel section into cool end sections (where no waste is emplaced). To study such processes, we have developed and applied an enhanced version of TOUGH2 (Pruess et al., 1999) adding a new module that solves for natural convection in open cavities. The new TOUGH2 simulator simultaneously handles (1) the flow and energy transport processes in the fractured rock; (2) the flow and energy transport processes in the cavity; and (3) the heat and mass exchange at the rock-cavity interface. The new module is applied to simulate the future thermal-hydrological (TH) conditions within and near a representative waste emplacement tunnel at Yucca Mountain. Particular focus is on the potential for condensation along the emplacement section, a possible result of heat output differences between individual waste packages

  20. Modeling the Fracturing of Rock by Fluid Injection - Comparison of Numerical and Experimental Results

    Science.gov (United States)

    Heinze, Thomas; Galvan, Boris; Miller, Stephen

    2013-04-01

    Fluid-rock interactions are mechanically fundamental to many earth processes, including fault zones and hydrothermal/volcanic systems, and to future green energy solutions such as enhanced geothermal systems and carbon capture and storage (CCS). Modeling these processes is challenging because of the strong coupling between rock fracture evolution and the consequent large changes in the hydraulic properties of the system. In this talk, we present results of a numerical model that includes poro-elastic plastic rheology (with hardening, softening, and damage), and coupled to a non-linear diffusion model for fluid pressure propagation and two-phase fluid flow. Our plane strain model is based on the poro- elastic plastic behavior of porous rock and is advanced with hardening, softening and damage using the Mohr- Coulomb failure criteria. The effective stress model of Biot (1944) is used for coupling the pore pressure and the rock behavior. Frictional hardening and cohesion softening are introduced following Vermeer and de Borst (1984) with the angle of internal friction and the cohesion as functions of the principal strain rates. The scalar damage coefficient is assumed to be a linear function of the hardening parameter. Fluid injection is modeled as a two phase mixture of water and air using the Richards equation. The theoretical model is solved using finite differences on a staggered grid. The model is benchmarked with experiments on the laboratory scale in which fluid is injected from below in a critically-stressed, dry sandstone (Stanchits et al. 2011). We simulate three experiments, a) the failure a dry specimen due to biaxial compressive loading, b) the propagation a of low pressure fluid front induced from the bottom in a critically stressed specimen, and c) the failure of a critically stressed specimen due to a high pressure fluid intrusion. Comparison of model results with the fluid injection experiments shows that the model captures most of the experimental

  1. Geophysical methods for fracture characterization in and around potential sites for nuclear waste disposal

    International Nuclear Information System (INIS)

    Historically, geophysical methods have been used extensively to successfully explore the subsurface for petroleum, gas, mineral, and geothermal resources. Their application, however, for site characterization, and monitoring the performance of near surface waste sites or repositories has been somewhat limited. Presented here is an overview of the geophysical methods that could contribute to defining the subsurface heterogeneity and extrapolating point measurements at the surface and in boreholes to volumetric descriptions in a fractured rock. In addition to site characterization a significant application of geophysical methods may be in performance assessment and in monitoring the repository to determine if the performance is as expected

  2. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.

    2001-08-15

    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  3. Determination of Transport Properties From Flowing Fluid Temperature Logging In Unsaturated Fractured Rocks: Theory And Semi-Analytical Solution

    International Nuclear Information System (INIS)

    Flowing fluid temperature logging (FFTL) has been recently proposed as a method to locate flowing fractures. We argue that FFTL, backed up by data from high-precision distributed temperature sensors, can be a useful tool in locating flowing fractures and in estimating the transport properties of unsaturated fractured rocks. We have developed the theoretical background needed to analyze data from FFTL. In this paper, we present a simplified conceptualization of FFTL in unsaturated fractured rock, and develop a semianalytical solution for spatial and temporal variations of pressure and temperature inside a borehole in response to an applied perturbation (pumping of air from the borehole). We compare the semi-analytical solution with predictions from the TOUGH2 numerical simulator. Based on the semi-analytical solution, we propose a method to estimate the permeability of the fracture continuum surrounding the borehole. Using this proposed method, we estimated the effective fracture continuum permeability of the unsaturated rock hosting the Drift Scale Test (DST) at Yucca Mountain, Nevada. Our estimate compares well with previous independent estimates for fracture permeability of the DST host rock. The conceptual model of FFTL presented in this paper is based on the assumptions of single-phase flow, convection-only heat transfer, and negligible change in system state of the rock formation. In a sequel paper (Mukhopadhyay et al., 2008), we extend the conceptual model to evaluate some of these assumptions. We also perform inverse modeling of FFTL data to estimate, in addition to permeability, other transport parameters (such as porosity and thermal conductivity) of unsaturated fractured rocks

  4. Consideration of water pressure change at a hydraulic test in a sparsely fractured rock

    International Nuclear Information System (INIS)

    At the intervals with few fractures, those from the constant head withdrawal test are ∼ 1 order smaller than those from the recovery test. Several phenomena can be suspected as the cause of this observation, but the nonlinear groundwater flow in a fracture due to a highly imposed hydraulic gradient and trapping zone effect from the directional anisotropy of flow cannot be the reason, because the imposed hydraulic gradient and groundwater flow direction are equal between the constant head withdrawal and recovery tests. Considering that the water pressure decreases during the constant head withdrawal test while it increases during the recovery test, the change of water pressure may lead to a small change in aperture, and it may make the difference between the hydraulic test results. The difference between them then increases as the number of fractures in the packed-off interval decreases, which indicates the possibility that the influence of the water pressure change on the aperture decreases in the intervals with many fractures because it diffuses into many fractures. To verify this idea, a change in an aperture is directly observed in this study when the water pressure is changed. In KURT, whose host rock is massive granite, there is a 500m long borehole, and the hydraulic tests such as constant head withdrawal and recovery tests such as constant head withdrawal and recovery tests were conducted at several packed-off intervals of the borehole. In the intervals with many fractures, the estimated transmissivity from the constant head withdrawal test is similar to that from the recovery test

  5. Estimation of Fracture Toughness of Anisotropic Rocks by Semi-Circular Bend (SCB) Tests Under Water Vapor Pressure

    Science.gov (United States)

    Kataoka, M.; Obara, Y.; Kuruppu, M.

    2015-07-01

    In order to investigate the influence of water vapor pressure in the surrounding environment on mode I fracture toughness ( K Ic) of rocks, semi-circular bend (SCB) tests under various water vapor pressures were conducted. Water vapor is one of the most effective agents which promote stress corrosion of rocks. The range of water vapor pressure used was 10-2 to 103 Pa, and two anisotropic rock types, African granodiorite and Korean granite, were used in this work. The measurement of elastic wave velocity and observation of thin sections of these rocks were performed to investigate the microstructures of the rocks. It was found that the distribution of inherent microcracks and grains have a preferred orientation. Two types of specimens in different orientations, namely Type-1 and Type-3, were prepared based on the anisotropy identified by the differences in the elastic wave velocity. K Ic of both rock types was dependent on the water vapor pressure in the surrounding environment and decreased with increasing water vapor pressure. It was found that the degree of the dependence is influenced by the orientation and density of inherent microcracks. The experimental results also showed that K Ic depended on the material anisotropy. A fracture process was discussed on the basis of the geometry of fractures within fractured specimens visualized by the X-ray computed tomography (CT) method. It was concluded that the dominant factor causing the anisotropy of K Ic is the distribution of grains rather than inherent microcracks in these rocks.

  6. Fractured rock modeling in the National Waste Terminal Storage Program: a review of requirements and status

    International Nuclear Information System (INIS)

    Generalized computer codes capable of forming the basis for numerical models of fractured rock masses are being used within the NWTS program. Little additional development of these codes is considered justifiable, except in the area of representation of discrete fractures. On the other hand, model preparation requires definition of medium-specific constitutive descriptions and site characteristics and is therefore legitimately conducted by each of the media-oriented projects within the National Waste Terminal Storage program. However, it is essential that a uniform approach to the role of numerical modeling be adopted, including agreement upon the contribution of modeling to the design and licensing process and the need for, and means of, model qualification for particular purposes. This report discusses the role of numerical modeling, reviews the capabilities of several computer codes that are being used to support design or performance assessment, and proposes a framework for future numerical modeling activities within the NWTS program

  7. Fractured rock modeling in the National Waste Terminal Storage Program: a review of requirements and status

    Energy Technology Data Exchange (ETDEWEB)

    St. John, C.; Krug, A.; Key, S.; Monsees, J.

    1983-05-01

    Generalized computer codes capable of forming the basis for numerical models of fractured rock masses are being used within the NWTS program. Little additional development of these codes is considered justifiable, except in the area of representation of discrete fractures. On the other hand, model preparation requires definition of medium-specific constitutive descriptions and site characteristics and is therefore legitimately conducted by each of the media-oriented projects within the National Waste Terminal Storage program. However, it is essential that a uniform approach to the role of numerical modeling be adopted, including agreement upon the contribution of modeling to the design and licensing process and the need for, and means of, model qualification for particular purposes. This report discusses the role of numerical modeling, reviews the capabilities of several computer codes that are being used to support design or performance assessment, and proposes a framework for future numerical modeling activities within the NWTS program.

  8. Reactive transport modeling of the interaction between water and a cementitious grout in a fractured rock. Application to ONKALO (Finland)

    International Nuclear Information System (INIS)

    Highlights: → It is planned to seal conductive fractures near a repository with cementitious grout. → Modeling includes simultaneous hydration and leaching of the grout. → Modeling results show a very limited formation of the high-pH plume. → Results are in qualitative agreement with borehole monitoring data. - Abstract: Grouting of water-conducting fractures with low-alkali cement is foreseen for the potential future repository for spent nuclear fuel in Finland (ONKALO). A possible consequence of the interaction between groundwater and grout is the formation of high-pH solutions which will be able to react with the host rock (gneisses) and alter its mineralogy and porosity. A reactive transport modeling study of this possible alteration has been conducted. First, the hydration of the low-alkali cementitious grout has been modeled, using results from the literature as a guide. The hydrated cement is characterized by the absence of portlandite and the presence of a C-S-H gel with a Ca/Si ratio about 0.8 after tens of years (Ca/Si is about 1.7 in Ordinary Portland Cement). Second, calculations have simulated the interaction between flowing water and grout and the formation of an alkalinity plume, which flows beyond the grouted section of the fracture. The calculations include the hydration and simultaneous leaching of the grout through diffusive exchange between the porewater in the grout and the flowing water in the fracture. The formation of an alkaline plume is extremely limited when the low-pH grout is used. Even when using a grout with a lower silica fume content, the extent and magnitude of the alkaline plume is quite minor. These results are in qualitative agreement with monitoring at ONKALO.

  9. Heat induced fracturing of rock in an existing uniaxial stress field

    International Nuclear Information System (INIS)

    This study was initiated under the premise that it may be possible to determine the state of stress in the earth's crust by heat induced fracturing of the rock surrounding a borehole. The theory involved is superficially simple, involving the superposition of the stress field around a borehole due to the existing virgin stresses and the uniform stress field of thermally loaded rock as induced by a heater. Since the heat stress field is uniform, varying only in magnitude and gradient as a function of heater input, fracturing should be controlled by the non-uniform virgin stress field. To determine if the method was, in fact, feasible, a series of laboratory test were conducted. These tests consisted of physically loading center drilled cubes of rock, 0.3 m on a side, uniaxially from 0 to 25 MPa. The blocks were then thermally loaded with a nominally rated 3.7 kW heater until failure occurred. Results from these laboratory tests were then compared to analytical studies of the problem, i.e., finite element and discrete theoretical analysis. Overall, results were such that the method is likely eliminated as a stress measurement technique. The immediate development of a thermal compressive zone on the borehole wall overlaps the tensile zone created by the uniaxial stress field, forcing the failure is thus controlled largely by the power input of the heater, being retarded by the small compressive stresses genrated by the uniaxial stress field. This small retardation effect is of such low magnitude that the retardation effect is of such low magnitude that the fracture time is relatively insensitive to the local virgin stress field. (authors)

  10. Displacement and stress fields around rock fractures opened by irregular overpressure variations

    Science.gov (United States)

    Kusumoto, Shigekazu; Gudmundsson, Agust

    2014-05-01

    Many rock fractures are entirely driven open by fluids such as ground water, geothermal water, gas, oil, and magma. These are a subset of extension fractures (mode I cracks; e.g., dikes, mineral veins and joints) referred to as hydrofractures. Field measurements show that many hydrofractures have great variations in aperture. However, most analytical solutions for fracture displacement and stress fields assume the loading to be either constant or with a linear variation. While these solutions have been widely used, it is clear that a fracture hosted by heterogeneous and anisotropic rock is normally subject to loading that is neither constant nor with a linear variation. Here we present new general solutions for the displacement and stress fields around hydrofractures, modelled as two-dimensional elastic cracks, opened by irregular overpressure variations given by the Fourier cosine series. Each solution has two terms. The first term gives the displacement and stress fields due to the average overpressure acting inside the crack; it is given by the initial term of the Fourier coefficients expressing the overpressure variation. The second term gives the displacement and stress fields caused by the overpressure variation; it is given by general terms of the Fourier coefficients and solved through numerical integration. Our numerical examples show that the crack aperture variation closely reflects the overpressure variation. Also, that the general displacement and stress fields close to the crack follow the overpressure variation but tend to be more uniform far from the crack. The present solutions can be used to estimate the displacement and stress fields around any fluid-driven crack, that is, any hydrofracture, as well as its aperture, provided the variation in overpressure can be described by Fourier series. The solutions add to our understanding of local stresses, displacements, and fluid transport associated with hydrofractures in the crust.

  11. Displacement and stress fields around rock fractures opened by irregular overpressure variations

    Directory of Open Access Journals (Sweden)

    Shigekazu eKusumoto

    2014-05-01

    Full Text Available Many rock fractures are entirely driven open by fluids such as ground water, geothermal water, gas, oil, and magma. These are a subset of extension fractures (mode I cracks; e.g., dikes, mineral veins and joints referred to as hydrofractures. Field measurements show that many hydrofractures have great variations in aperture. However, most analytical solutions for fracture displacement and stress fields assume the loading to be either constant or with a linear variation. While these solutions have been widely used, it is clear that a fracture hosted by heterogeneous and anisotropic rock is normally subject to loading that is neither constant nor with a linear variation. Here we present new general solutions for the displacement and stress fields around hydrofractures, modelled as two-dimensional elastic cracks, opened by irregular overpressure variations given by the Fourier cosine series. Each solution has two terms. The first term gives the displacement and stress fields due to the average overpressure acting inside the crack; it is given by the initial term of the Fourier coefficients expressing the overpressure variation. The second term gives the displacement and stress fields caused by the overpressure variation; it is given by general terms of the Fourier coefficients and solved through numerical integration. Our numerical examples show that the crack aperture variation closely reflects the overpressure variation. Also, that the general displacement and stress fields close to the crack follow the overpressure variation but tend to be more uniform far from the crack. The present solutions can be used to estimate the displacement and stress fields around any fluid-driven crack, that is, any hydrofracture, as well as its aperture, provided the variation in overpressure can be described by Fourier series. The solutions add to our understanding of local stresses, displacements, and fluid transport associated with hydrofractures in the crust.

  12. CHARACTERIZATION OF FRACTURED BEDROCK FOR STEAM INJECTION

    Science.gov (United States)

    The most difficult setting in which to conduct groundwater remediation is that where chlorinated solvents have penetrated fractured bedrock. To demonstrate the potential viability of steam injection as a means of groundwater clean-up in this type of environment, steam will be in...

  13. Radon in a fractured bedrock aquifer: Relationships with rock type and distribution of parent radionuclides

    International Nuclear Information System (INIS)

    Ground-water samples collected from 35 domestic water wells in the Elk Creek drainage 30 miles southwest of Denver, Colorado, show a strong relationship between dissolved Rn-222 concentration and host-rock lithology. Wells completed in Precambrian Pikes Peak Granite (Ypp) average 11,000 pCi/L, whereas wells completed in Precambrian migmatitic rocks (Xm) average 4,000 pCi/L. Geophysical logs of three boreholes completed in the same rock type (Ypp) show significant differences in natural gamma traces and correspondingly different radon concentrations. One well shows a monotonous gamma response with depth, averaging 500 counts per second (cps); water from this well contains 5,300 pCi/L Rn-222. Water from the second well contains 11,000 pCi/L and the third well contain over 20,000 pCi/L. If Rn-222 parent radionuclides are homogeneously distributed along fracture walls, then Rn-222 concentration should decrease with an increasing water-volume-to-rock surface-area ratio. An inverse relationship between transmissivity and Rn-222 concentration is not observed for these 3 wells. The 2 wells with 5,300 pCi/L and 20,000 pCi/L Rn-222 in water have transmissivities of 26 and 75 gallons per day per foot (gpd/ft), respectively, whereas transmissivity for the well with 11,000 pCi/L is 195 gpd/ft. Single-well pumping tests on 29 other wells belie a systematic correlation between transmissivity and Rn-222 concentration, suggesting that local heterogeneous accumulations of Rn-222 parent radionuclides on fracture walls may strongly affect Rn-222 concentration in these wells

  14. Evolution of fracture permeability of ultramafic rocks at hydrothermal conditions: An experimental study on serpentinization reactions

    Science.gov (United States)

    Farough, A.; Moore, D. E.; Lockner, D. A.; Lowell, R. P.

    2014-12-01

    Serpentinization of ultramafic rocks, during which olivine and pyroxene minerals are replaced by serpentine, magnetite, brucite and talc, is associated with hydrothermal activity at slow and ultraslow mid-ocean ridges. Serpentinization reactions affect hydrothermal fluid circulation by changing permeability of the oceanic crust. To advance our understanding of the evolution of permeability accompanying serpentinization reactions, we performed a series of flow-through experiments at a temperature of 260˚C, a confining pressure of 50 MPa, and a pore pressure of 20±2 MPa on cylindrical cores of ultramafic rocks (18 mm in diameter and 23 mm length) containing a single through-going tensile fracture. Pore fluid flow was in one direction and was collected routinely for chemical analysis. A 7.5 mm thick layer of the same rock, crushed and sieved (0.18-1.0 mm) was placed on the inlet end of the sample to produce a reactive heated reservoir for the pore fluid before entering the fracture. Multiple peridotite samples were tested, to investigate the effect of mineral assemblage on fluid-rock interaction and permeability. The initial effective permeability of the samples varied between 10-(15-18)m2, and it decreased by about 2 orders of magnitude in 7-10 days, showing that serpentinization reactions result in an initially rapid decrease in permeability. The best fit equation for the observed rate of change in permeability (k) is in the form of dk/dt=Ae-0.01t, where A is a constant and t is time. This result suggests that the rate of serpentine formation is largely controlled by the initial permeability rather than the properties of the reacting rock. Assuming flow between parallel plates, we find the effective crack width decreases by approximately 2 orders of magnitude during the experiments. The fluid chemistry and mineralogy data support the occurrence of serpentinization reactions. The early peak and monotonic decrease in the concentration of Mg, and Si in pore fluid

  15. A channel-network-model for radionuclide transport in fractured rock -- Testing against field data

    International Nuclear Information System (INIS)

    A new model concept for describing flow and transport in fractured rock has been tested on some field tracer experiments. The flowing water in the rock is envisaged to take place in a three-dimensional network of channels with stochastic properties. For times of interest for deep geological repositories for nuclear waste it has been found that the volume of the channels, i.e. the flow porosity of the rock, has no practical influence on the Residence Time Distribution of the nuclides. It is totally dominated by the matrix diffusion effects. The specific Flow Wetted Surface, FWS, of the channels therefore needs to be known. A method to evaluate the FWS from hydraulic measurements in boreholes is presented. Tracer tests at the swedish Aespoe rock laboratory have been predicted using this model and data obtained in the way outlined in the paper. The main tracer test was predicted reasonably well without using any adjustable parameters. Some other tracers also used were not detected in the tests as they were expected to be. The authors discuss some of the possible reasons for this in relation to geological observations made in the expected pathways for these tracers. The sensitivity of results to uncertainties in parameter values is also discussed

  16. Search for a geomagnetic signal produced by the movement of groundwater in fractured carbonate rocks

    Science.gov (United States)

    Henry, Sam; Pozzo di Borgo, Elizabeth; Danquigny, Charles; Cavaillou, Alain; Cottle, Amy; Gaffet, Stéphane; Pipe, Mark

    2014-05-01

    It is known that the groundwater circulation within the Earth's crust will contribute to fluctuations in the geomagnetic field due to currents generated by the electrokinetic effect at the rock-water interface. In principle this offers a new way to study the flow of water through rock, and identify the origin of self-potential anomalies. However these signals are masked by the much larger fluctuations due to ionospheric currents. We have carried out an experimental search for a magnetic signal correlated with groundwater flow in fractured carbonate rocks, by taking simultaneous measurements with two SQUID magnetometers. This was done at the low background noise interdisciplinary underground research laboratory in Rustrel (LSBB, France). There, a network of artificial tunnels arbitrarily intersects tectonics and karstified features in depth of a typical Cretaceous karstified carbonate platform. Groundwater drains through some of these features. Where the tunnel cuts a water flow, the rate of flow is monitored. The background geomagnetic fluctuations were monitored using the [SQUID]2 (SQUID with Shielding QUalified for Ionosphere Detection) magnetometer, situated in a shielded cell beneath 518m of karstic rock. A second 3-axis SQUID magnetometer was set up at a point of monitored water flow in a tunnel 363m below the surface. From data taken over a period of several weeks, we set the first limit on the magnitude of such a magnetic signal.

  17. Characterization of fracture toughness of epoxy resin after hygrothermal aging

    KAUST Repository

    Quispe, Gustavo Q.

    2013-07-01

    Characterization of fracture toughness of epoxy resin after hygrothermal ageing Gustavo Quino Quispe The aim of this work is to characterize the e ects of hygrothermal aging in the plain strain fracture toughness of the epoxy system composed by cycloaliphatic epoxy resin and diglycidyl ether of bisphenol-A (DGEBA). For this, after having been under hygrothermal aging in a climatic chamber, epoxy samples were studied using ASTM D5045 fracture toughness test, and micrography and roughness measurements of the fracture surface. It is reported a rapid decrease of GIc and KIc during the rst 2 days. Moreover, a numerical model [13] was used to simulate and see with more detail the water absorption in the aged samples. From that, it was observed the heterogeneous distribution of water. Accordingly, it was proposed that the results should be correlated with the water content at the vicinity of the crack tip. Consequently, it was possible to obtain, by quasi-static simulations, the ideal load-displacement curves of crack propagation in the heterogeneous samples. Finally, another contribution of this work is the study of the fracture surface, that gives a clue of the relationship among the fracture energy, the appearance of microcracks in the fracture surface, and the roughness (Ra).

  18. Mechanism of evolution on winter-time natural convection cooling effect of fractured-rock embankment in permafrost regions

    Institute of Scientific and Technical Information of China (English)

    SUN Binxiang; XU Xuezu; LAI Yuanming; WANG Shuangjie; ZHANG Jinzhao

    2005-01-01

    Mechanism and evolution of the pore-air natural convection cooling effect in fractured-rock embankments in permafrost regions are studied using a numerical representation of the non-dimensional governing equations in variable permeability porous media. The analyses show that winter-time natural convection in fractured-rock embankments begins to occur in the side slope portions and gradually develops from the left and right side slope portions to the middle portion of embankment. The more significant distortion of isotherms from their initial orientations due to heat conduction alone is that the cooling effect of winter-time natural convection on the fractured-rock embankment is stronger. The minimum critical Rayleigh numbers triggering natural convection of the pore-air in the side slope portions and the middle portion of embankment were obtained. The factors of influence on triggering winter-time convection cooling effect in fractured-rock embankments were analyzed.Finally, the assertion that the techniques of the fractured-rock revetment and berm are the effective measures to maintain the heat stability of the roadbed in permafrost regions is theoretically demonstrated.

  19. The Influence of Shale Rock Fracturing Equipment Operation on Atmospheric Air Quality

    Science.gov (United States)

    Bogacki, Marek; Macuda, Jan

    2014-12-01

    The hydraulic fracturing jobs performed on shale rocks are connected with atmospheric emissions of dusts and exhaust gases from high-power motors supplying pump aggregates used for fracturing operations and from other technological devices. The total power of motors driving technological systems depends on the specific character of deposit and well and may range between a dozen to tens of thousands kW. An exemplary set of technological systems used for frac jobs is presented in figure 1. The following substances are emitted to the atmosphere during engine operation, e.g. nitrogen oxides (NOx), sulfur dioxide (SO2), carbon oxide (CO), dust PM10, ammonia, benzo(a)pyrene (B(a)P), benzene, toluene, xylene, formaldehyde, acetaldehyde, acrolein. As a consequence admissible concentrations of these substances in air can be exceeded. The influence of dust and gaseous emissions accompanying shale rock fracturing jobs is addressed in this paper. Model analyses were performed. An exemplary model of a process used for simulating propagation of atmospheric emissions in a specified calculation area (1,150 m × 1,150 m) were based on the analysis of hydraulic fracturing jobs performed in wells in Poland and abroad. For making calculations more actual, the model was located in the Gdańsk area and was ascribed its typical meteorological and orographic parameters. In the center of this area a rig site 150 m x 150 m was distinguished. The emission field was generated by 12 high-power engines supplying pump aggregates, 1680 kW each. The time of work of particular engines was established for 52 hrs (13 frac jobs, each lasting 4 hrs). It was assumed that all engines will operate simultaneously and using 100% of their power. Attention was paid to the correct modelling of the real emission field. Technical parameters of motors and the applied fuels were characterized. Emission indices were worked out by, e.g. U.S. Environmental Protection Agency or European Environment Agency. The

  20. Experimental study on time-dependent stress and strain of in-plane shear(ModeⅡ) fracture process of rock

    Institute of Scientific and Technical Information of China (English)

    王志; 饶秋华; 谢海峰

    2008-01-01

    Shear-box test with strain measurement was used to study time-dependent stress and strain of in-plane shear(Mode Ⅱ) fracture process of rock and to reveal the mechanism of Mode Ⅱ fracture.Numerical results show that the maximum shear stress τmax at the crack tip is much larger than the maximum tensile stress σ1 and the ratio of τmax/σ1 is about 5,which favors Mode Ⅱ fracture of rock.Test results indicate that the strain-time curve comprises three stages:the linear deformation stage,the micro-cracking stage and the macroscopic crack propagation.The strain in the direction of the original notch plane is negative,due to restraining effect of compressive loading applied to the original notch plane.Both σ1 and τmax are increased as the load increases,but the slope of τmax is larger than that of σ1 and the value of τmax is always larger than that of σ1.Therefore,τmax reaches its limited value at peak load before σ1 and results in Mode Ⅱ fracture of rock.Shear-box(i.e.compression-shear) test becomes a potential standard method for achieving the true Mode Ⅱ fracture and determining Mode Ⅱ fracture toughness of rock.

  1. THERMO-HYDRO-MECHANICAL MODELING OF WORKING FLUID INJECTION AND THERMAL ENERGY EXTRACTION IN EGS FRACTURES AND ROCK MATRIX

    Energy Technology Data Exchange (ETDEWEB)

    Robert Podgorney; Chuan Lu; Hai Huang

    2012-01-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing), to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid-heat system and our ability to reliably predict how reservoirs behave under stimulation and production. Reliable performance predictions of EGS reservoirs require accurate and robust modeling for strongly coupled thermal-hydrological-mechanical (THM) processes. Conventionally, these types of problems have been solved using operator-splitting methods, usually by coupling a subsurface flow and heat transport simulators with a solid mechanics simulator via input files. An alternative approach is to solve the system of nonlinear partial differential equations that govern multiphase fluid flow, heat transport, and rock mechanics simultaneously, using a fully coupled, fully implicit solution procedure, in which all solution variables (pressure, enthalpy, and rock displacement fields) are solved simultaneously. This paper describes numerical simulations used to investigate the poro- and thermal- elastic effects of working fluid injection and thermal energy extraction on the properties of the fractures and rock matrix of a hypothetical EGS reservoir, using a novel simulation software FALCON (Podgorney et al., 2011), a finite element based simulator solving fully coupled multiphase fluid flow, heat transport, rock deformation, and fracturing using a global implicit approach. Investigations are also conducted on how these poro- and thermal-elastic effects are related to fracture permeability

  2. A simplified fracture network model for studying the efficiency of a single well semi open loop heat exchanger in fractured crystalline rock

    Science.gov (United States)

    de La Bernardie, Jérôme; de Dreuzy, Jean-Raynald; Bour, Olivier; Thierion, Charlotte; Ausseur, Jean-Yves; Lesuer, Hervé; Le Borgne, Tanguy

    2016-04-01

    Geothermal energy is a renewable energy source particularly attractive due to associated low greenhouse gas emission rates. Crystalline rocks are in general considered of poor interest for geothermal applications at shallow depths (energy storage at these shallow depths is still remaining very challenging because of the complexity of fractured media. The purpose of this study is to test the possibility of efficient thermal energy storage in shallow fractured rocks with a single well semi open loop heat exchanger (standing column well). For doing so, a simplified numerical model of fractured media is considered with few fractures. Here we present the different steps for building the model and for achieving the sensitivity analysis. First, an analytical and dimensional study on the equations has been achieved to highlight the main parameters that control the optimization of the system. In a second step, multiphysics software COMSOL was used to achieve numerical simulations in a very simplified model of fractured media. The objective was to test the efficiency of such a system to store and recover thermal energy depending on i) the few parameters controlling fracture network geometry (size and number of fractures) and ii) the frequency of cycles used to store and recover thermal energy. The results have then been compared to reference shallow geothermal systems already set up for porous media. Through this study, relationships between structure, heat exchanges and storage may be highlighted.

  3. Hydraulic sealing due to pressure solution contact zone growth in siliciclastic rock fractures

    Science.gov (United States)

    Lang, P. S.; Paluszny, A.; Zimmerman, R. W.

    2015-06-01

    Thermo-hydro-mechanical-chemical simulations at the pore scale are conducted to study the hydraulic sealing of siliciclastic rock fractures as contact zones grow driven by pressure dissolution. The evolving fluid-saturated three-dimensional pore space of the fracture results from the elastic contact between self-affine, randomly rough surfaces in response to the effective confining pressure. A diffusion-reaction equation controls pressure solution over contact zones as a function of their emergent geometry and stress variations. Results show that three coupled processes govern the evolution of the fracture's hydraulic properties: (1) the dissolution-driven convergence of the opposing fracture walls acts to compact the pore space; (2) the growth of contact zones reduces the elastic compression of the pore space; and (3) the growth of contact zones leads to flow channeling and the presence of stagnant zones in the flow field. The dominant early time compaction mechanism is the elastic compression of the fracture void space, but this eventually becomes overshadowed by the irreversible process of pressure dissolution. Growing contact zones isolate void space and cause an increasing disproportion between average and hydraulic aperture. This results in the loss of hydraulic conductivity when the mean aperture is a third of its initial value and the contact ratio approaches the characteristic value of one half. Convergence rates depend on small-wavelength roughness initially and on long-wavelength roughness in the late time. The assumption of a characteristic roughness length scale, therefore, leads to a characteristic time scale with an underestimation of dissolution rates before and an overestimation thereafter.

  4. Measurement system for systematic hydrological characterization of unsaturated fractured welded tuff in a mined underground tunnel.

    Science.gov (United States)

    Cook, P J; Salve, R; Freifeld, B M; Tsang, Y T

    2003-01-01

    A field investigation of unsaturated flow through a lithophysal unit of fractured welded tuff containing lithophysal cavities has been initiated. To characterize flow in this spatially heterogeneous medium, a systematic approach has been developed to perform tests in boreholes drilled at regular intervals in an underground tunnel (drift). The purpose of the testing is to quantify the amounts of water seeping into the drift versus the amount of water moving around the drift when released into boreholes at many equidistant locations along the drift. In this paper, we describe the test equipment system that has been built for this purpose. Because the field-scale measurements--of liquid flow in the unsaturated, fractured rocks--require continuous testing for periods of days to weeks, the control of test equipment has been fully automated, allowing operation with no human presence at the field site. Preliminary results from the first set of tests indicate that, while the effects of evaporation on characterization of hydrological properties of the rock can be significant, these effects can be controlled and quantified. These tests give insight into the role of the cavities as potential storage during the initial transient flow prior to the breakthrough of water at the drift crown, as well as the role of connected fractures that provide the subsequent quasi-steady flow. In addition to the stated purpose of realizing the flow partitioning, the results yield values for the effective porosity in the pathways for liquid flow in the regions tested thus far. PMID:12873008

  5. Study of fractures in Precambrian crystalline rocks using field technique in and around Balarampur, Purulia district, West Bengal, India

    Indian Academy of Sciences (India)

    Monalisa Mitra; Tapas Acharya

    2015-12-01

    Location of recharge zone in Precambrian crystalline rock is still unclear. The present study attempts to perform a detailed analysis of the joints/fractures developed in a Precambrian metamorphic terrain in and around Balarampur in Purulia district of West Bengal, India using bedrock data. The analysis shows that the orientations of major fracture trends are variable along with varying lithological units and structural affinities. The application of lithology-based analysis technique identifies highly predominant fracture frequency and fracture aperture in mica schist and phyllite in the area. This property is not evident in the granite gneiss and epidiorite. The moderate to high fracture permeability value is also associated with the fractures occurring in the shear zone. Mica schist and phyllite associated with the shear zone may represent a permeable recharge zone in the region.

  6. Random Neighborhood Graphs as Models of Fracture Networks on Rocks: Structural and Dynamical Analysis

    CERN Document Server

    Estrada, Ernesto

    2016-01-01

    We propose a new model to account for the main structural characteristics of rock fracture networks (RFNs). The model is based on a generalization of the random neighborhood graphs to consider fractures embedded into rectangular spaces. We study a series of 29 real-world RFNs and find the best fit with the random rectangular neighborhood graphs (RRNGs) proposed here. We show that this model captures most of the structural characteristics of the RFNs and allows a distinction between small and more spherical rocks and large and more elongated ones. We use a diffusion equation on the graphs in order to model diffusive processes taking place through the channels of the RFNs. We find a small set of structural parameters that highly correlates with the average diffusion time in the RFNs. In particular, the second smallest eigenvalue of the Laplacian matrix is a good predictor of the average diffusion time on RFNs, showing a Pearson correlation coefficient larger than $0.99$ with the average diffusion time on RFNs. ...

  7. Influence of the interaction between fluid and rock on the convective flow in fractures

    International Nuclear Information System (INIS)

    This paper presents some results on the convection flow in the fractures of a rock massif. When there is a horizontal gradient of temperature the fluid in the fissures of a rock massif is unstable. In the case of a vertical gradient, the fluid is unstable above a critical value of this gradient. This value corresponds to the critical Rayleigh number and depends on the geometric, thermic and hydraulic characteristics of the medium. The fluid tends to be less stable as the fracture horizontal is larger compared to the vertical extension. The evolution of a convective solution in contact with minerals in a medium where physical and geochemical parameters is very complex. The balance mass equation of only one substance was solved analytically and from these solutions (calculations were made to simulate the precipitation of amorphous silica in the vicinity of a radioactive waste disposal vault placed into a granitic massif at a depth of 1000 m. Taking only into account the temperature variation and its consequences on the solubility and the kinetics of dissolution, the sealing is not yet obtained after 10,000 years.) 3 refs

  8. Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s-1. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm3. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s-1), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model

  9. Discrete fracture modelling for the Stripa site characterization and validation drift inflow predictions

    International Nuclear Information System (INIS)

    Groundwater flow through three-dimensional networks of discrete fractures was modeled to predict the flux into a fifty meter long drift, as part of the site characterization and validation project conducted during phase 3 of the Stripa project. Predictions were made on the basis of a site scale discrete fracture conceptual model developed by synthesis of geological, geophysical, and hydrological site characterization data. Individual fractures were treated as stochastic features, described by probability distributions of geometric and hydrologic properties. Fractures were divided into three populations: Fractures within fracture zones near the drift, non-fracture zone fractures near the drift, and fractures in fracture zones over 20 meters from the drift. Fractures outside fracture zones are not modelled beyond 20 meters from the drift. Both data analysis and flow predictions were produced using the FracMan discrete fracture modelling package. Probabilistic flow predictions were produced in seven formats specified by the Stripa task force on fracture flow modelling. (au)

  10. Hot dry rock reservoir characterization and modeling. Progress report, October 1, 1978-September 30, 1979. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, J.D.; Bazant, Z.P.; Dundurs, J.; Keer, L.M.; Nemat-Nasser, S.; Mura, T.; Weertman, J.

    1980-02-01

    Resuls of analytical and experimental studies on hydraulic fracturing and on the characterization and modeling of hot dry rock geothermal energy reservoirs are presented. The first four Chapters are concerned with problems of thermal cracking and heat transfer, with fluid flow through large cracks, and with the stable and unstable growth of water-filled cracks under internal pressure and thermal loading. Experiments are reported, which present visually observable hydraulic fractures in transparent materials to demonstrate the interaction between hydraulic fractures and the development of thermal cracks. Seismic detection of hydraulic fractures is discussed, and a method to invert crack-scattering data is presented. Separate abstracts were prepared for each of the six chapters.

  11. Fracture detection in crystalline rock using ultrasonic reflection techniques: Volume 1

    International Nuclear Information System (INIS)

    This research was initiated to investigate using ultrasonic seismic reflection techniques to detect fracture discontinuities in a granitic rock. Initial compressional (P) and shear (SH) wave experiments were performed on a 0.9 x 0.9 x 0.3 meter granite slab in an attempt to detect seismic energy reflected from the opposite face of the slab. It was found that processing techniques such as deconvolution and array synthesis could improve the standout of the reflection event. During the summers of 1979 and 1980 SH reflection experiments were performed at a granite quarry near Knowles, California. The purpose of this study was to use SH reflection methods to detect an in situ fracture located one to three meters behind the quarry face. These SH data were later analyzed using methods similar to those applied in the laboratory. Interpretation of the later-arriving events observed in the SH field data as reflections from a steeply-dipping fracture was inconclusive. 41 refs., 43 figs., 7 tabs

  12. Investigated conductive fracture in the granitic rocks by flow-meter logging

    International Nuclear Information System (INIS)

    Test of the use of a measurement technique for the hydraulic conductivity of geological structures which act as flow paths or are impermeable to groundwater flow. In order to prove the value of flow-meter logging as an in-situ technique for detecting conductive fractures in granitic rocks, the method has been applied to a borehole near the Tono uranium mine, Gifu, Japan. This study in involved with detecting a conductive fracture and calculating the hydraulic conductivities. The results were as follows: (1) In a zone of groundwater inflow into the borehole, the hydraulic conductivity was calculated to be of the order of the 10-3 - 10-4 (cm/sec) from flow-meter logging. This value agreed with the results of a in-situ borehole permeability test carried out with a similar depth interval. (2) The study showed that flow-meter logging is effective for detecting the distribution of high conductivity fractures and calculating the hydraulic conductivity. (author)

  13. Rock deformation in hydrothermal systems: the nature of fractures in plutons and their host rocks. Technical progress report

    International Nuclear Information System (INIS)

    The purpose of this program is to accumulate the types of field data which are important for the analysis of magma-hydrothermal systems. The structural effects of thermal processes were identified in order to distinguish the thermally induced deformations from the deformations that occurred subsequent to complete cooling of the system. Mapping techniques were developed to record the structural data on the ground from local domains characteristic of larger areas in the magma chamber, and in the air from low-angle oblique aerial photography of the entire region. The ground system is complete and preliminary testing is currently being carried out to verify the method. The results indicate that granitic crystalline rocks have no structural resistance to thermal perturbations. If nuclear wastes are to be stored in granite, precautionary buffers would have to be incorporated into the system. A total of 30 fossil magma chambers have been studied over the past 2 years. An extensive set of fracture imagery has been collected, together with information related to the geological history of the plutons. Fossil magma chambers in Arizona, Utah, California, Washington, Montana, and British Columbia have been studied

  14. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    International Nuclear Information System (INIS)

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features

  15. Aespoe Hard Rock Laboratory. Analysis of fracture networks based on the integration of structural and hydrogeological observations on different scales

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Geotechnical Inst. Ltd., Bern (Switzerland); Hermanson, Jan [Golder Associates, Stockholm (Sweden); Mazurek, M. [Univ. of Bern (Switzerland)

    2001-05-01

    Fracture networks at Aespoe have been studied for several rock types exhibiting different degrees of ductile and brittle deformation, as well as on different scales. Mesoscopic fault systems have been characterised and classified in an earlier report, this report focuses mainly on fracture networks derived on smaller scales, but also includes mesoscopic and larger scales. The TRUE-1 block has been selected for detailed structural analysis on a small scale due to the high density of relevant information. In addition to the data obtained from core materials, structural maps, BIP data and the results of hydro tests were synthesised to derive a conceptual structural model. The approach used to derive this conceptual model is based on the integration of deterministic structural evidence, probabilistic information and both upscaling and downscaling of observations and concepts derived on different scales. Twelve fracture networks mapped at different sites and scales and exhibiting various styles of tectonic deformation were analysed for fractal properties and structural and hydraulic interconnectedness. It was shown that these analysed fracture networks are not self-similar. An important result is the structural and hydraulic interconnectedness of fracture networks on all scales in the Aespoe rocks, which is further corroborated by geochemical evidence. Due to the structural and hydraulic interconnectedness of fracture systems on all scales at Aespoe, contaminants from waste canisters placed in tectonically low deformation environments would be transported - after having passed through the engineered barriers -from low-permeability fractures towards higher permeability fractures and may thus eventually reach high-permeability features.

  16. Hydraulic Anisotropy Characterization Using Azimuthal Self Potential Gradient [ASPG]: Results from Pneumatic Fracturing of Tight Clay Soils

    Science.gov (United States)

    Slater, L.; Wishart, D.; Schnell, D.; Hermann, G.

    2008-12-01

    Recent studies have shown that bulk hydraulic anisotropy associated with fractures in fractured rock aquifers can be inferred from Azimuthal Self Potential Gradient (ASPG) measurements. This extremely simple technique involves measuring the self potential gradient as a function of azimuth with a pair of non polarizing electrodes connected to a voltmeter. The electrokinetic effect associated with the flow of fluids within fractures is the source of the ASPG signal. Fracture strike mapping at multiple sites has repeatedly demonstrated the effectiveness of the method at the field scale and indicated that the direction of flow can be determined from the polarity of relatively large ASPG signals. A laboratory study was conducted to determine whether ASPG could also be used to characterize the hydraulic anisotropy associated with the enhancement of permeability and porosity of tight unconsolidated soils (e.g. clays) as a result of pneumatic fracturing, a technique to improve the effectiveness of remediation efforts. Compressed kaolinite sediments were pneumatically fractured following industry procedures. The resulting fracture geometry was quantified from strike analysis of visible fractures combined with strike data from optical borehole televiewer (BHTV) imaging. ASPG measurements were then made during injection of a simulated remedial treatment (electrolyte/dye) under an applied gas pressure. Consistent with previous findings in fractured rock aquifers, ASPG lobes are well correlated with azimuths of high fracture strike density suggesting that the ASPG anisotropy is a proxy measure of hydraulic anisotropy created by the pneumatic fracturing. The magnitude of the ASPG signal scales linearly (linear correlation coefficients > 0.74) with the applied gas pressure gradient for any particular hydraulically-active fracture set and the positive lobe of the ASP anomaly denotes the flow direction within that fracture set. These findings demonstrate that applications of the

  17. New perspectives on the transition between discrete fracture, fragmentation, and pulverization during brittle failure of rocks

    Science.gov (United States)

    Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.

    2015-12-01

    The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a

  18. Localization and characterization of hydrothermal alteration zones in a geothermal reservoir and their significance for rock mechanics

    OpenAIRE

    Meller, Carola

    2014-01-01

    The present thesis introduces a method to localize hydrothermally altered zones in a crystalline geothermal reservoir. On the basis of synthetic clay content logs, the geomechanical significance of clay zones is demonstrated. It is shown that clay zones reduce the rock strength, thus creating aseismic slips on fractures and affecting the evolution of induced seismicity. The results of the thesis highlight the importance of hydrothermal alteration for hydro-mechanical reservoir characterization.

  19. Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems

    Science.gov (United States)

    Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.

    2014-06-01

    This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.

  20. Solute transport through fractured rock: Radial diffusion into the rock matrix with several geological layers for an arbitrary length decay chain

    Science.gov (United States)

    Mahmoudzadeh, Batoul; Liu, Longcheng; Moreno, Luis; Neretnieks, Ivars

    2016-05-01

    The paper presents a model development to derive a semi-analytical solution to describe reactive solute transport through a single channel in a fracture with cylindrical geometry. The model accounts for advection through the channel, radial diffusion into the adjacent heterogeneous rock matrix comprising different geological layers, adsorption on both the channel surface, and the geological layers of the rock matrix and radioactive decay chain. Not only an arbitrary-length decay chain, but also as many number of the rock matrix layers with different properties as observed in the field can be handled. The solution, which is analytical in the Laplace domain, is transformed back to the time domain numerically e.g. by use of de Hoog algorithm. The solution is verified against experimental data and analytical solutions of limiting cases of solute transport through porous media. More importantly, the relative importance and contribution of different processes on solute transport retardation in fractured rocks are investigated by simulating several cases of varying complexity. The simulation results are compared with those obtained from rectangular model with linear matrix diffusion. It is found that the impact of channel geometry on breakthrough curves increases markedly as the transport distance along the flow channel and away into the rock matrix increase. The effect of geometry is more pronounced for transport of a decay chain when the rock matrix consists of a porous altered layer.

  1. Numerical Simulation of the Process of Fracture of Echelon Rock Joints

    Science.gov (United States)

    Sarfarazi, V.; Ghazvinian, A.; Schubert, W.; Blumel, M.; Nejati, H. R.

    2014-07-01

    The effect of joint overlap on the full failure behavior of a rock bridge in the shear-box test was numerically investigated by means of the particle flow code in two dimensions (PFC2D). Initially, the PFC2D was calibrated by use of data obtained from experimental laboratory tests to ensure the conformity of the simulated numerical model's response. Furthermore, validation of the simulated models was cross-checked with the results from direct shear tests performed on non-persistent jointed physical models. By use of numerical direct shear tests, the failure process was visually observed and the failure patterns were seen to be in reasonable accordance with experimental results. Discrete element simulations demonstrated that macro shear fractures in rock bridges are because of microscopic tensile breakage of a large number of bonded discs. The failure pattern is mostly affected by joint overlap whereas the shear strength is closely related to the failure pattern. The results show that non-overlapping joints lost their loading capacity when nearly 50 % of total cracks developed within the rock bridge whereas the overlapping joints lost their loading capacity as soon as cracks initiated from the joint walls. Furthermore, progressive failure or stable crack growth was seen to develop for non-overlapped joints whereas brittle failure or unstable crack growth was seen to develop in overlapped joints.

  2. U–Pb, Rb–Sr, and U-series isotope geochemistry of rocks and fracture minerals from the Chalk River Laboratories site, Grenville Province, Ontario, Canada

    International Nuclear Information System (INIS)

    Highlights: • AECL evaluates Chalk River Laboratories site as potential nuclear waste repository. • Isotope-geochemical data for rocks and fracture minerals at CRL site are reported. • Zircons from gneiss and granite yielded U–Pb ages of 1472 ± 14 and 1045 ± 6 Ma. • WR Rb–Sr and Pb–Pb systems do not show substantial large-scale isotopic mobility. • U-series and REE data do not support oxidizing conditions at depth in the past 1 Ma. - Abstract: As part of the Geologic Waste Management Facility feasibility study, Atomic Energy of Canada Ltd. (AECL) is evaluating the suitability of the Chalk River Laboratories (CRL) site in Ontario, situated in crystalline rock of the southwestern Grenville Province, for the possible development of an underground repository for low- and intermediate-level nuclear waste. This paper presents petrographic and trace element analyses, U–Pb zircon dating results, and Rb–Sr, U–Pb and U-series isotopic analyses of gneissic drill core samples from the deep CRG-series characterization boreholes at the CRL site. The main rock types intersected in the boreholes include hornblende–biotite (±pyroxene) gneisses of granitic to granodioritic composition, leucocratic granitic gneisses with sparse mafic minerals, and garnet-bearing gneisses with variable amounts of biotite and/or hornblende. The trace element data for whole-rock samples plot in the fields of within-plate, syn-collision, and volcanic arc-type granites in discrimination diagrams used for the tectonic interpretation of granitic rocks. Zircons separated from biotite gneiss and metagranite samples yielded SHRIMP-RG U–Pb ages of 1472 ± 14 (2σ) and 1045 ± 6 Ma, respectively, in very good agreement with widespread Early Mesoproterozoic plutonic ages and Ottawan orogeny ages in the Central Gneiss Belt. The Rb–Sr, U–Pb, and Pb–Pb whole-rock errorchron apparent ages of most of the CRL gneiss samples are consistent with zircon U–Pb age and do not indicate

  3. Effects of crustal stresses on fluid transport in fractured rock: Case studies from northeastern and southwestern USA

    Science.gov (United States)

    Morin, R.H.; Savage, W.Z.

    2003-01-01

    The link between stress and hydrologic properties was examined at two sites that are distinguished by different rock types and different stress states. This investigation is based upon the analysis and interpretation of geophysical logs obtained in water wells at the two locations. At the northeast site (Newark Basin), the hydrologic characteristics of sedimentary rocks are dependent upon the relationship to the current regional stress field of two primary types of orthogonal features that serve as preferential pathways for fluid flow. Subhorizontal bedding-plane partings are highly transmissive near the surface and delineate transversely isotropic fluid flow at shallow depths. With increasing depth, the subhorizontal planes become less dominant and steeply dipping fractures become more influential hydrologically. These high-angle features define anisotropic flow pathways that are preferentially oriented along strike. At the southwest site (west Texas), extrusive rocks are subjected to topographically modified tectonic and gravitational stresses that vary spatially within a valley setting. The attendant changes in stress invariants cause fracture connectivity within the rock mass to systematically increase with depth along the valley flanks, but to remain relatively low in the central valley. The degree of fracture connectivity predicted within this valley configuration is consistent with variations in transmissivity determined at several well locations. In each of these cases, the idealized understanding of the hydrologic system is enhanced by considering the effects of regional and local stresses that act upon the fractured-rock aquifer.

  4. Blended head analyses to reduce uncertainty in packer testing in fractured-rock boreholes

    Science.gov (United States)

    Quinn, Patryk; Parker, Beth L.; Cherry, John A.

    2016-02-01

    Open boreholes in fractured rock often cross-connect fractures with differing hydraulic head and the head differences between these fractures cause vertical flow in the water column. This cross-connection has potential to bias transmissivity ( T) values obtained from straddle packer tests. This study demonstrates how measurements of the blended head in the open-hole segments above and below the straddle-packer test interval can be used to correct packer tests for cross-connection effects. A pressure response observed in the open-hole segment above and/or below the packers isolating a test interval during a hydraulic test indicates short-circuiting of water from the injection interval through the vertically connected fracture network to the open-hole segments, resulting in the overestimation of T. A method is presented using blended head concepts to minimize this error using a trial-and-error procedure to determine the short-circuiting flow rate to account for the head conditions in the open-hole segments during each hydraulic test. Observed differences between the measured head and the calculated blended head in the open-hole segments above and below the test interval are attributed to cross-connection effects around the 1-m-long packers. The head and corrected T values determined from packer tests are used to estimate the flow in and out of the open hole at each of the intervals tested for assessing the cross-connection effects under open borehole conditions. Understanding open-hole flow dynamics gives insight about the potential for vertical cross connection of chemical constituents caused by the open hole.

  5. Permeability of intact and fractured rocks in Krafla geothermal reservoir, Iceland

    Science.gov (United States)

    Eggertsson, Gudjon; Lavallée, Yan; Markusson, Sigurdur

    2016-04-01

    pressure and discuss the permeability of the fluid reservoir as a function of effective pressure (i.e., = confining pressure - pore pressure) to constrain fluid flow during different pressurisation events. Complementary Brazilian tests were also performed to induce a fracture in the samples and the permeability of these fractured rocks will be measured to describe the role of macrofractures in controlling fluid flow. Permeability measurements at high temperature (up to ~500 C) will be performed on selected rocks. The aim of these experiments will be to discover the relative role of the various lithologies on the permeability of the reservoir, which will inform us how to improve the geothermal productivity of the proposed deep well through thermo-mechanical stimulations.

  6. A composite material model for investigation of micro-fracture mechanism of brittle rock subjected to uniaxial compression

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A two-phase model of rock was proposed in order to investigate the mechanism of brittle fracture due to uniaxial compression, in which rock was considered to be a composite material consisting of hard grains and colloids. The stress state in colloid region near grains was calculated using Finite Element Metnod ( FEM). The influence of the tensile stresses on the crack initiation and failure process of brittle rock subjected to uniaxial compression was investigated by numerical experiments. The FE results show that tensile stresses are induced easily in the neighboring area of hard grains with the maximum value near grain boundaries. The distribution of tensile stresses depends on the relative position of hard grains. The cracks initiated just near the boundary area of hare grains, which was governed by tensile stress. These results dearly reveal the micro-fracture mechanism of brittle rock loaded by uniaxial compression. It can be concluded that the failure mode of brittle rock under uniaxial compression is still tensile fracture from the point view of microstructure. However,since the wide colloid region is still under compressive stress state, further propagation of boundary, cracks through this region obviously needs more external load, thus causing the uniaxial compressive strength of rock much higher than its tensile strength obtained via Brazilian (splitting) experiment.

  7. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Barr, Deborah; Birkholzer, Jens T.; Fujisaki, Kiyoshi; Kolditz, Olf; Liu, Quan-Shen; Fujita, tomoo; Wang, Wenqing; Zhang, Cheng-Yuan

    2008-10-23

    This paper presents an international, multiple-code, simulation study of coupled thermal, hydrological, and mechanical (THM) processes and their effect on permeability and fluid flow in fractured rock around heated underground nuclear waste emplacement drifts. Simulations were conducted considering two types of repository settings: (a) open emplacement drifts in relatively shallow unsaturated volcanic rock, and (b) backfilled emplacement drifts in deeper saturated crystalline rock. The results showed that for the two assumed repository settings, the dominant mechanism of changes in rock permeability was thermal-mechanically-induced closure (reduced aperture) of vertical fractures, caused by thermal stress resulting from repository-wide heating of the rock mass. The magnitude of thermal-mechanically-induced changes in permeability was more substantial in the case of an emplacement drift located in a relatively shallow, low-stress environment where the rock is more compliant, allowing more substantial fracture closure during thermal stressing. However, in both of the assumed repository settings in this study, the thermal-mechanically-induced changes in permeability caused relatively small changes in the flow field, with most changes occurring in the vicinity of the emplacement drifts.

  8. Characterizing flow in oil reservoir rock using SPH: absolute permeability

    Science.gov (United States)

    Holmes, David W.; Williams, John R.; Tilke, Peter; Leonardi, Christopher R.

    2016-04-01

    In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including flows related to permeable rock for both groundwater and petroleum reservoir research. While previous approaches to such problems using SPH have involved the use of idealized pore geometries (cylinder/sphere packs etc), in this paper we detail the characterization of flow in models with geometries taken from 3D X-ray microtomographic imaging of actual porous rock; specifically 25.12 % porosity dolomite. This particular rock type has been well characterized experimentally and described in the literature, thus providing a practical `real world' means of verification of SPH that will be key to its acceptance by industry as a viable alternative to traditional reservoir modeling tools. The true advantages of SPH are realized when adding the complexity of multiple fluid phases, however, the accuracy of SPH for single phase flow is, as yet, under developed in the literature and will be the primary focus of this paper. Flow in reservoir rock will typically occur in the range of low Reynolds numbers, making the enforcement of no-slip boundary conditions an important factor in simulation. To this end, we detail the development of a new, robust, and numerically efficient method for implementing no-slip boundary conditions in SPH that can handle the degree of complexity of boundary surfaces, characteristic of an actual permeable rock sample. A study of the effect of particle density is carried out and simulation results for absolute permeability are presented and compared to those from experimentation showing good agreement and validating the method for such applications.

  9. The El Berrocal project: Geological characterization and radionuclide migration studies in a fractured granitic environment

    International Nuclear Information System (INIS)

    El Berrocal is an abandoned uranium mine in a mineralized quartz vein hosted by a Hyercynian granite in central Spain. This mine is the focus of an international project to characterize and model natural elemental migration in a fractured-rock environment as an aid to understanding and predicting processes that may occur in a geological repository for radioactive wastes. Uranium in the mineralized quartz vein has been shown to have originated from the orthomagmatic uraninite in the granite with the elemental removal and migration occurring predominantly by hydrothermal fluids. Mobilization of uranium from the mineralized quartz vein and from granite adjacent to hydraulically-active fractures away from the vein occurred over the geologically-recent past and in the present-day. The most recent mobilization is evidenced by dissolution features seen in SEM photomicrographs; mineral growth and sorption signatures identified by enhanced uranium concentrations on the surfaces of preexisting minerals; and measured disequilibrium in the uranium series for whole rock close to fracture walls. Present-day groundwaters in the studied area are young meteoric waters. They are generally calcium-sulfate enriched, oxidizing and mildly acidic near the surface, becoming more bicarbonate-rich with near neutral pH in the deeper zones, except around the mineralized vein where the waters are acid (pH around 3) due to oxidation of the sulfide minerals. No deep, chemically-reducing groundwaters have yet been identified in the El Berrocal boreholes

  10. Permeability and tracer test with using laboratory hydrology testing system on mass transport in fractured rock. Results until 2001 years

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Naoto [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan). Tokai Works; Sato, Hisashi [Inspection Development Co. Ltd., Tokai, Ibaraki (Japan)

    2002-03-01

    We have carried out the permeability tests and tracer tests using LABROCK (LABoratory test on mass transport in fractured ROCK) which was developed in order to get basic information relevant to the HLW geological disposal program. We have been focusing on the parallel single fracture and natural single fracture. Much knowledge about permeability and tracer transport was acquired as a result of examinations. This report summarize these knowledge. In future, we will measure the aperture of natural single fracture. If we will be able to develop the model of natural fracture based on measured aperture distribution and to explain permeability and tracer transport character described in this report, this research will play an important role in the HLW geological disposal program. (author)

  11. MODELING OF HYDRAULIC FRACTURING PRESSURE IN RESERVOIR ROCK FOR AN OIL SAND RESERVOIR IN SOUTH WEST OF IRAN

    Directory of Open Access Journals (Sweden)

    Masoomi R.

    2016-04-01

    Full Text Available Fracture geometry depends on stresses and rock properties in hydraulic fracturing operation. Poisson’s ratio imports directly in the calculations related to formation stresses. The most important reason for limiting fracture height is the natural stresses contrast resulting from the differences with Poisson ratios. Without this difference, fracture would have largely uncontrolled height. The goal of this study is mathematical investigation of the effect of Poisson’s ratio on the formation stresses that is necessary to select value of breakdown pressure in hydraulic fracturing operation. In this article, a mathematical model has been coded using “MATLAB” software for prediction of stresses in the various layers. This designed program is able to present both digital and graphical output results for different values of Poisson’s ratio. At the end, stresses exerted on the different layers of the several real oil reservoirs have simulated and breakdown pressures have determined

  12. Permeability and tracer test with using laboratory hydrology testing system on mass transport in fractured rock. Results until 2001 years

    International Nuclear Information System (INIS)

    We have carried out the permeability tests and tracer tests using LABROCK (LABoratory test on mass transport in fractured ROCK) which was developed in order to get basic information relevant to the HLW geological disposal program. We have been focusing on the parallel single fracture and natural single fracture. Much knowledge about permeability and tracer transport was acquired as a result of examinations. This report summarize these knowledge. In future, we will measure the aperture of natural single fracture. If we will be able to dev