WorldWideScience

Sample records for characterizing flameholding potentials

  1. Dual-Mode Scramjet Flameholding Operability Measurements

    Science.gov (United States)

    Donohue, James M.

    2012-01-01

    Flameholding measurements were made in two different direct connect combustor facilities that were designed to simulate a cavity flameholder in the flowfield of a hydrocarbon fueled dual-mode scramjet combustor. The presence of a shocktrain upstream of the flameholder has a significant impact on the inlet flow to the combustor and on the flameholding limits. A throttle was installed in the downstream end of the test rigs to provide the needed back-pressurization and decouple the operation of the flameholder from the backpressure formed by heat release and thermal choking, as in a flight engine. Measurements were made primarily with ethylene fuel but a limited number of tests were also performed with heated gaseous JP-7 fuel injection. The flameholding limits were measured by ramping inlet air temperature down until blowout was observed. The tests performed in the United Technologies Research Center (UTRC) facility used a hydrogen fueled vitiated air heater, Mach 2.2 and 3.3 inlet nozzles, a scramjet combustor rig with a 1.666 by 6 inch inlet and a 0.65 inch deep cavity. Mean blowout temperature measured at the baseline condition with ethylene fuel, the Mach 2.2 inlet and a cavity pressure of 21 psia was 1502 oR. Flameholding sensitivity to a variety of parameters was assessed. Blowout temperature was found to be most sensitive to fuel injection location and fuel flowrates and surprisingly insensitive to operating pressure (by varying both back-pressurization and inlet flowrate) and inlet Mach number. Video imaging through both the bottom and side wall windows was collected simultaneously and showed that the flame structure was quite unsteady with significant lateral movements as well as movement upstream of the flameholder. Experiments in the University of Virginia (UVa) test facility used a Mach 2 inlet nozzle with a 1 inch by 1.5 inch exit cross section, an aspect ratio of 1.5 versus 3.6 in the UTRC facility. The UVa facility tests were designed to measure the

  2. Impact of the Flame-Holder Heat-Transfer Characteristics on the Onset of Combustion Instability

    KAUST Repository

    Hong, Seunghyuck

    2013-10-03

    In this article, we investigate the impact of heat transfer between the flame and the flameholder on the dynamic stability characteristics of a 50-kW backward-facing step combustor. We conducted a series of tests where two backward step blocks were used, made of ceramic and stainless steel, whose thermal conductivities are 1.06 and 12 W/m/K, respectively. Stability characteristics of the two flame-holder materials were examined using measurements of the dynamic pressure and flame chemiluminescence over a range of operating conditions. Results show that with the ceramic flameholder, the onset of instability is significantly delayed in time and, for certain operating conditions, disappears altogether, whereas with the higher conductivity material, the combustor becomes increasingly unstable over a range of operating conditions. We explain these trends using the heat flux through the flameholder and the change in the burning velocity near the step wall. Results suggest a potential approach using low-thermal-conductivity material near the flame-holder as passive dynamics suppression methods. Copyright © Taylor & Francis Group, LLC.

  3. Impact of the Flameholder Heat Conductivity on Combustion Instability Characteristics

    KAUST Repository

    Hong, Seunghyuck

    2012-06-11

    In this paper, we investigate the impact of heat transfer between the flame and the flame-holder on the dynamic stability characteristics in a 50-kW backward facing step combustor. We conducted tests where we use a backward step block made of two different materials: ceramic and stainless steel whose thermal conductivities are 1.06 and 12 W/m/K, respectively. A set of experiments was conducted using a propane/air mixture at Re = 6500 for the inlet temperature of 300 - 500 K at atmospheric pressure. We measure the dynamic pressure and flame chemiluminescence to examine distinct stability characteristics using each flame-holder material over a range of operating conditions. We find that for tests with a flame-holder made of ceramic, the onset of instability is significantly delayed in time and, for certain operating conditions, disappears altogether. Stated differently, for certain operating conditions, the combustor can be stabilized by reducing the thermal conductivity of the flame-holder. As the thermal conductivity of the flame-holder increases, the combustor becomes increasingly unstable over a range of operating conditions. These results imply that the dynamic stability characteristics depend strongly on the heat transfer between the flame and the combustor wall near the flame anchoring region. Copyright © 2012 by ASME.

  4. Plasma-enhanced mixing and flameholding in supersonic flow.

    Science.gov (United States)

    Firsov, Alexander; Savelkin, Konstantin V; Yarantsev, Dmitry A; Leonov, Sergey B

    2015-08-13

    The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure P(st)=160-250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of W(pl)=3-24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air-fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  5. Hybrid Reynolds-Averaged/Large Eddy Simulation of the Flow in a Model SCRamjet Cavity Flameholder

    Science.gov (United States)

    Baurle, R. A.

    2016-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. Experimental data available for this configuration include velocity statistics obtained from particle image velocimetry. Several turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged/large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This e ort was undertaken to not only assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community, but to also begin to understand how this capability can best be used to augment standard Reynolds-averaged simulations. The numerical errors were quantified for the steady-state simulations, and at least qualitatively assessed for the scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results displayed a high degree of variability when comparing the flameholder fuel distributions obtained from each turbulence model. This prompted the consideration of applying the higher-fidelity scale-resolving simulations as a surrogate "truth" model to calibrate the Reynolds-averaged closures in a non-reacting setting prior to their use for the combusting simulations. In general, the Reynolds-averaged velocity profile predictions at the lowest fueling level matched the particle imaging measurements almost as well as was observed for the non-reacting condition. However, the velocity field predictions proved to be more sensitive to the flameholder fueling rate than was indicated in the measurements.

  6. Development of Criteria for Flameholding Tendencies within Premixer Passages for High Hydrogen Content Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Elliot Sullivan- [Univ. of California, Irvine, CA (United States); McDonell, Vincent G. [Univ. of California, Irvine, CA (United States)

    2014-12-01

    Due to increasingly stringent air quality requirements stationary power gas turbines have moved to lean-premixed operation, which reduces pollutant emissions but can result in flashback. Flashback can cause serious damage to the premixer hardware. Curtailing flashback can be difficult with hydrocarbon fuels and becomes even more challenging when hydrogen is used as the fuel. The two main approaches for coping with flashback are either to design a combustor that is resistant to flashback, or to design a premixer that will not anchor a flame if flashback occurs. Even with a well-designed combustor flashback can occur under certain circumstances, thus it is necessary to determine how to avoid flameholding within the premixer passageways of a gas turbine. To this end, an experiment was designed that would determine the flameholding propensities at elevated pressures and temperatures of three different classes of geometric features commonly found in gas turbine premixers, with both natural gas and hydrogen fuel. Experiments to find the equivalence ratio at blow off were conducted within an optically accessible test apparatus with four flameholders: 0.25 and 0.50 inch diameter cylinders, a reverse facing step with a height of 0.25 inches, and a symmetric airfoil with a thickness of 0.25 inches and a chord length of one inch. Tests were carried out at temperatures between 300 K and 750 K, at pressures up to 9 atmospheres. Typical bulk velocities were between 40 and 100 m/s. The effect of airfoil’s angle of rotation was also investigated. Blow off for hydrogen flames was found to occur at much lower adiabatic flame temperatures than natural gas flames. Additionally it was observed that at high pressures and high turbulence intensities, reactant velocity does not have a noticeable effect on the point of blow off due in large part to corresponding increases in turbulent flame speed. Finally a semi empirical correlation was developed that predicts flame extinction for both

  7. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    Science.gov (United States)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit

  8. Aquifer Characterization and Groundwater Potential Assessment

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Keywords: Aquifer Characterization, Groundwater Potential, Electrical Resistivity, Lithologic Logs ... State Water Corporation currently cannot meet the daily water ... METHOD OF STUDY ... sections which were constrained with the available.

  9. A Characterization of Ordinal Potential Games

    NARCIS (Netherlands)

    Voorneveld, M.; Norde, H.W.

    1996-01-01

    This note characterizes ordinal potential games by the absence of weak improvement cycles and an order condition on the strategy space.This order condition is automatically satisfied if the strategy space is countable.

  10. Characterization qualitative and potentialities of utilization of ...

    African Journals Online (AJOL)

    Characterization qualitative and potentialities of utilization of methacomposts of poultry in the nurseries aboveground. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN ... Journal of Fundamental and Applied Sciences.

  11. The influence of cavity parameters on the combustion oscillation in a single-side expansion scramjet combustor

    Science.gov (United States)

    Ouyang, Hao; Liu, Weidong; Sun, Mingbo

    2017-08-01

    Cavity has been validated to be efficient flameholders for scramjet combustors, but the influence of its parameters on the combustion oscillation in scramjet combustor has barely been studied. In the present work, a series of experiments focusing on this issue have been carried out. The influence of flameholding cavity position, its length to depth ratio L/D and aft wall angle θ and number on ethylene combustion oscillation characteristics in scramjet combustor has been researched. The obtained experimental results show that, as the premixing distance between ethylene injector and flameholding cavity varies, the ethylene combustion flame will take on two distinct forms, small-amplitude high frequency fluctuation, and large-amplitude low frequency oscillation. The dominant frequency of the large-amplitude combustion oscillation is in inverse proportion to the pre-mixing distance. Moreover, the influence of cavity length to depth ratio and the aft wall angleθexists diversity when the flameholding cavity position is different and can be recognized as unnoticeable compared to the impact of the premixing distance. In addition, we also find that, when the premixing distance is identical and sufficient, increasing the number of tandem flameholding cavities can change the dominant frequency of combustion oscillation hardly, let alone avoid the combustion oscillation. It is believed that the present investigation will provide a useful reference for the design of the scramjet combustor.

  12. Streaming Potential and Electroosmosis Measurements to Characterize Porous Materials

    NARCIS (Netherlands)

    Luong, D.T.; Sprik, R.

    2013-01-01

    Characterizing the streaming potential and electroosmosis properties of porous media is essential in applying seismoelectric and electroseismic phenomena for oil exploration. Some parameters such as porosity, permeability, formation factor, pore size, the number of pores, and the zeta potential of

  13. A Complete Characterization of Potential Compensation Tests of Hicksian Welfare Measures

    OpenAIRE

    Donald Keenan; Arthur Snow

    1999-01-01

    In this paper, the authors present complete characterizations of the compensation tests for potential Pareto superiority proposed by Kaldor, Hicks, and Samuelson in terms of the aggregate Hicksian measures of income compensation, including compensating and equivalent variations. The key to obtaining these characterizations lies in recognizing that each potential compensation test entails a search over possible outcomes, rather than a comparison of only the new and original outcomes, as with s...

  14. Characterization of wastes and their recycling potentials; A case ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    Key words: Solid waste, waste characterization, recycling potentials, waste scavengers. ABSTRACT: Wastes ... Waste management is the collection, transportation, processing ... wastes generated by household, commercial activities or other ...

  15. Reservoir Characterization for Unconventional Resource Potential, Pitsanulok Basin, Onshore Thailand

    Science.gov (United States)

    Boonyasatphan, Prat

    The Pitsanulok Basin is the largest onshore basin in Thailand. Located within the basin is the largest oil field in Thailand, the Sirikit field. As conventional oil production has plateaued and EOR is not yet underway, an unconventional play has emerged as a promising alternative to help supply the energy needs. Source rocks in the basin are from the Oligocene lacustrine shale of the Chum Saeng Formation. This study aims to quantify and characterize the potential of shale gas/oil development in the Chum Saeng Formation using advanced reservoir characterization techniques. The study starts with rock physics analysis to determine the relationship between geophysical, lithological, and geomechanical properties of rocks. Simultaneous seismic inversion is later performed. Seismic inversion provides spatial variation of geophysical properties, i.e. P-impedance, S-impedance, and density. With results from rock physics analysis and from seismic inversion, the reservoir is characterized by applying analyses from wells to the inverted seismic data. And a 3D lithofacies cube is generated. TOC is computed from inverted AI. Static moduli are calculated. A seismic derived brittleness cube is calculated from Poisson's ratio and Young's modulus. The reservoir characterization shows a spatial variation in rock facies and shale reservoir properties, including TOC, brittleness, and elastic moduli. From analysis, the most suitable location for shale gas/oil pilot exploration and development are identified. The southern area of the survey near the MD-1 well with an approximate depth around 650-850 m has the highest shale reservoir potential. The shale formation is thick, with intermediate brittleness and high TOC. These properties make it as a potential sweet spot for a future shale reservoir exploration and development.

  16. A Constructive Extension of the Characterization on Potentially Ks,t-Bigraphic Pairs

    Directory of Open Access Journals (Sweden)

    Guo Ji-Yun

    2017-02-01

    Full Text Available Let Ks,t be the complete bipartite graph with partite sets of size s and t. Let L1 = ([a1, b1], . . . , [am, bm] and L2 = ([c1, d1], . . . , [cn, dn] be two sequences of intervals consisting of nonnegative integers with a1 ≥ a2 ≥ . . . ≥ am and c1 ≥ c2 ≥ . . . ≥ cn. We say that L = (L1; L2 is potentially Ks,t (resp. As,t-bigraphic if there is a simple bipartite graph G with partite sets X = {x1, . . . , xm} and Y = {y1, . . . , yn} such that ai ≤ dG(xi ≤ bi for 1 ≤ i ≤ m, ci ≤ dG(yi ≤ di for 1 ≤ i ≤ n and G contains Ks,t as a subgraph (resp. the induced subgraph of {x1, . . . , xs, y1, . . . , yt} in G is a Ks,t. In this paper, we give a characterization of L that is potentially As,t-bigraphic. As a corollary, we also obtain a characterization of L that is potentially Ks,t-bigraphic if b1 ≥ b2 ≥ . . . ≥ bm and d1 ≥ d2 ≥ . . . ≥ dn. This is a constructive extension of the characterization on potentially Ks,t-bigraphic pairs due to Yin and Huang (Discrete Math. 312 (2012 1241–1243.

  17. Identification and summary characterization of materials potentially requiring vitrification: Background information

    International Nuclear Information System (INIS)

    Croff, A.G.

    1996-01-01

    This document contains background information for the Workshop in general and the presentation entitled 'Identification and Summary Characterization of Materials Potentially Requiring Vitrification' that was given during the first morning of the workshop. summary characteristics of 9 categories of US materials having some potential to be vitrified are given. This is followed by a 1-2 page elaborations for each of these 9 categories. References to more detailed information are included

  18. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    Science.gov (United States)

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  19. Solid waste characterization and recycling potential for a university campus

    International Nuclear Information System (INIS)

    Armijo de Vega, Carolina; Ojeda Benitez, Sara; Ramirez Barreto, Ma. Elizabeth

    2008-01-01

    Integrated waste management systems are one of the greatest challenges for sustainable development. For these systems to be successful, the first step is to carry out waste characterization studies. In this paper are reported the results of a waste characterization study performed in the Campus Mexicali I of the Autonomous University of Baja California (UABC). The aim of this study was to set the basis for implementation of a recovery, reduction and recycling waste management program at the campus. It was found that the campus Mexicali I produces 1 ton of solid wastes per day; more than 65% of these wastes are recyclable or potentially recyclable. These results showed that a program for segregation and recycling is feasible on a University Campus. The study also showed that the local market for recyclable waste, under present conditions - number of recycling companies and amounts of recyclables accepted - can absorb all of these wastes. Some alternatives for the potentially recyclables wastes are discussed. Finally some strategies that could be used to reduce waste at the source are discussed as well

  20. Surface characterization of hemodialysis membranes based on streaming potential measurements.

    Science.gov (United States)

    Werner, C; Jacobasch, H J; Reichelt, G

    1995-01-01

    Hemodialysis membranes made from cellulose (CUPROPHAN, HEMOPHAN) and sulfonated polyethersulfone (SPES) were characterized using the streaming potential technique to determine the zeta potential at their interfaces against well-defined aqueous solutions of varied pH and potassium chloride concentrations. Streaming potential measurements enable distinction between different membrane materials. In addition to parameters of the electrochemical double layer at membrane interfaces, thermodynamic characteristics of adsorption of different solved species were evaluated. For that aim a description of double layer formation as suggested by Börner and Jacobasch (in: Electrokinetic Phenomena, p. 231. Institut für Technologie der Polymere, Dresden (1989)) was applied which is based on the generally accepted model of the electrochemical double layer according to Stern (Z. Elektrochemie 30, 508 (1924)) and Grahame (Chem. Rev. 41, 441 (1947)). The membranes investigated show different surface acidic/basic and polar/nonpolar behavior. Furthermore, alterations of membrane interfaces through adsorption processes of components of biologically relevant solutions were shown to be detectable by streaming potential measurements.

  1. The monophasic action potential upstroke: a means of characterizing local conduction.

    Science.gov (United States)

    Levine, J H; Moore, E N; Kadish, A H; Guarnieri, T; Spear, J F

    1986-11-01

    The upstrokes of monophasic action potentials (MAPs) recorded with an extracellular pressure electrode were characterized in isolated canine tissue preparations in vitro. The characteristics of the MAP upstroke were compared with those of the local action potential foot as well as with the characteristics of approaching electrical activation during uniform and asynchronous conduction. The upstroke of the MAP was exponential during uniform conduction. The time constant of rise of the MAP upstroke (TMAP) correlated with that of the action potential foot (Tfoot): TMAP + 1.01 Tfoot + 0.50; r2 = .80. Furthermore, changes in Tfoot with alterations in cycle length were associated with similar changes in TMAP: Tfoot = 1.06 TMAP - 0.11; r2 = .78. In addition, TMAP and Tfoot both deviated from exponential during asynchronous activation; the inflections that developed in the MAP upstroke correlated in time with intracellular action potential upstrokes that were asynchronous in onset in these tissues. Finally, the field of view of the MAP was determined and was found to be dependent in part on tissue architecture and the space constant. Specifically, the field of view of the MAP was found to be greater parallel compared with transverse to fiber orientation (6.02 +/- 1.74 vs 3.03 +/- 1.10 mm; p less than .01). These data suggest that the MAP upstroke may be used to define and characterize local electrical activation. The relatively large field of view of the MAP suggests that this technique may be a sensitive means to record focal membrane phenomena in vivo.

  2. Hydrologic characterization of faults and other potentially conductive geologic features in the unsaturated zone

    International Nuclear Information System (INIS)

    Javandel, I.; Shan, C.

    1990-01-01

    The capability of characterizing near-vertical faults and other potentially highly conductive geologic features in the vicinity of a high-level-waste repository is of great importance in site characterization of underground waste-isolation projects. The possibility of using transient air pressure data at depth for characterizing these features in the unsaturated zone are investigated. Analytical solutions for calculating the pressure response of such systems are presented. Solutions are given for two types of barometric pressure fluctuations, step function and sinusoidal. 3 refs., 9 figs

  3. Evolution and characterization of eggshell as a potential candidate of raw material

    Directory of Open Access Journals (Sweden)

    T. Zaman

    Full Text Available Abstract Characterization of both uncalcined and calcined eggshells was done in this work. Raw eggshells turned out as a good source of calcite phase. Calcined eggshells had a mixture of lime and portlandite phase. A significant impact of calcination temperature on the percentage of generated phases was observed. Qualitative as well as semi-quantitative phase analysis, morphological characterization and physical property estimation was done for the produced powder. The influence of synthesized raw material on soil stabilization and biomaterial formation was further assessed. The eggshell turned out as a potential source of raw material for various sectors.

  4. Characterization and potential application of pataua vegetable oil in apatite flotation

    International Nuclear Information System (INIS)

    Oliveira, P.S. de; Mansur, H.S.; Peres, A.E.C.

    2016-01-01

    The present research characterizes the Pataua palm (Oenocarpus bataua) oil regarding to its fatty acids profile and acidity index, and evaluates its use for apatite flotation. The Pataua oil evaluated is unsaturated e predominantly composed of cis-9-octadecenoic acid (oleic acid). The mineral sample characterization revealed a material composed by a fluoroapatite deficient in fluorine, a possibly result of isomorphic substitution, and with quartz and monazite inclusions. The analysis of the mineral after reagent conditioning, by Fourier Transform Infrared Spectroscopy (FTIR), pointed to the presence of characteristic bands of carbon chains and carboxylate group, suggesting the collector adsorption through the mechanisms of chemisorption and insoluble calcium salts precipitation. Thus, it is proposed the Pataua oil potential use in flotation systems aiming apatite recovery. (author)

  5. Aquifer Characterization and Groundwater Potential Evaluation in Sedimentary Rock Formation

    Science.gov (United States)

    Ashraf, M. A. M.; Yusoh, R.; Sazalil, M. A.; Abidin, M. H. Z.

    2018-04-01

    This study was conducted to characterize the aquifer and evaluate the ground water potential in the formation of sedimentary rocks. Electrical resistivity and drilling methods were used to develop subsurface soil profile for determining suitable location for tube well construction. The electrical resistivity method was used to infer the subsurface soil layer by use of three types of arrays, namely, the pole–dipole, Wenner, and Schlumberger arrays. The surveys were conducted using ABEM Terrameter LS System, and the results were analyzed using 2D resistivity inversion program (RES2DINV) software. The survey alignments were performed with maximum electrode spreads of 400 and 800 m by employing two different resistivity survey lines at the targeted zone. The images were presented in the form of 2D resistivity profiles to provide a clear view of the distribution of interbedded sandstone, siltstone, and shale as well as the potential groundwater zones. The potential groundwater zones identified from the resistivity results were confirmed using pumping, step drawdown, and recovery tests. The combination among the three arrays and the correlation between the well log and pumping test are reliable and successful in identifying potential favorable zones for obtaining groundwater in the study area.

  6. Characterization of Bacterial Hydrocarbon Degradation Potential in the Red Sea Through Metagenomic and Cultivation Methods

    KAUST Repository

    Bianchi, Patrick

    2018-02-01

    Prokaryotes are the main actors in biogeochemical cycles that are fundamental in global nutrient cycling. The characterization of microbial communities and isolates can enhance the comprehension of such cycles. Potentially novel biochemical processes can be discovered in particular environments with unique characteristics. The Red Sea can be considered as a unique natural laboratory due to its peculiar hydrology and physical features including temperature, salinity and water circulation. Moreover the Red Sea is subjected to hydrocarbon pollution by both anthropogenic and natural sources that select hydrocarbon degrading prokaryotes. Due to its unique features the Red Sea has the potential to host uncharacterized novel microorganisms with hydrocarbondegrading pathways. The focus of this thesis is on the characterization at the metagenomic level of the water column of the Red Sea and on the isolation and characterization of novel hydrocarbon-degrading species and genomes adapted to the unique environmental characteristics of the basin. The presence of metabolic genes responsible of both linear and aromatic hydrocarbon degradation has been evaluated from a metagenomic survey and a meta-analysis of already available datasets. In parallel, water column-based microcosms have been established with crude oil as the sole carbon source, with aim to isolate potential novel bacterial species and provide new genome-based insights on the hydrocarbon degradation potential available in the Red Sea.

  7. Plans for characterization of the potential geologic repository site at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dobson, D.C.; Blanchard, M.B.; Voegele, M.D.; Younker, J.L.

    1990-01-01

    Site investigations in the vicinity of the potential repository site at Yucca Mountain, Nevada, have occurred for many years. Although information from previous site investigations was adequate to support preliminary evaluations by the US Department of Energy (DOE) in the Environmental Assessment and to develop conceptual repository and waste package designs, this information is insufficient to proceed to the advanced designs and performance assessments required for the license application to the US Nuclear Regulatory Commission (NRC). Therefore, intensive site characterization is planned, as described in the December 1988 Site Characterization Plan (SCP). The data acquisition activities described in the SCP are focused on obtaining information to allow evaluations of the natural and engineered barriers considered potentially relevant to repository performance. The site data base must be adequate to allow predictions of the range of expected variation in geologic conditions over the next 10,000 years, as well as predictions of the probabilities for catastrophic geologic events that could affect repository performance. 4 refs., 4 figs

  8. Characterization of Bacterial Hydrocarbon Degradation Potential in the Red Sea Through Metagenomic and Cultivation Methods

    KAUST Repository

    Bianchi, Patrick

    2018-01-01

    The focus of this thesis is on the characterization at the metagenomic level of the water column of the Red Sea and on the isolation and characterization of novel hydrocarbon-degrading species and genomes adapted to the unique environmental characteristics of the basin. The presence of metabolic genes responsible of both linear and aromatic hydrocarbon degradation has been evaluated from a metagenomic survey and a meta-analysis of already available datasets. In parallel, water column-based microcosms have been established with crude oil as the sole carbon source, with aim to isolate potential novel bacterial species and provide new genome-based insights on the hydrocarbon degradation potential available in the Red Sea.

  9. Potential hydrologic characterization wells in Amargosa Valley

    International Nuclear Information System (INIS)

    Lyles, B.; Mihevc, T.

    1994-09-01

    More than 500 domestic, agricultural, and monitoring wells were identified in the Amargosa Valley. From this list, 80 wells were identified as potential hydrologic characterization wells, in support of the US Department of Energy (DOE) Underground Test Area/Remedial Investigation and Feasibility Study (UGTA/RIFS). Previous hydrogeologic studies have shown that groundwater flow in the basin is complex and that aquifers may have little lateral continuity. Wells located more than 10 km or so from the Nevada Test Site (NTS) boundary may yield data that are difficult to correlate to sources from the NTS. Also, monitoring well locations should be chosen within the guidelines of a hydrologic conceptual model and monitoring plan. Since these do not exist at this time, recompletion recommendations will be restricted to wells relatively close (approximately 20 km) to the NTS boundary. Recompletion recommendations were made for two abandoned agricultural irrigation wells near the town of Amargosa Valley (previously Lathrop Wells), for two abandoned wildcat oil wells about 10 km southwest of Amargosa Valley, and for Test Well 5 (TW-5), about 10 km east of Amargosa Valley

  10. Micro- and macro-scale petrophysical characterization of potential reservoir units from the Northern Israel

    Science.gov (United States)

    Haruzi, Peleg; Halisch, Matthias; Katsman, Regina; Waldmann, Nicolas

    2016-04-01

    Lower Cretaceous sandstone serves as hydrocarbon reservoir in some places over the world, and potentially in Hatira formation in the Golan Heights, northern Israel. The purpose of the current research is to characterize the petrophysical properties of these sandstone units. The study is carried out by two alternative methods: using conventional macroscopic lab measurements, and using CT-scanning, image processing and subsequent fluid mechanics simulations at a microscale, followed by upscaling to the conventional macroscopic rock parameters (porosity and permeability). Comparison between the upscaled and measured in the lab properties will be conducted. The best way to upscale the microscopic rock characteristics will be analyzed based the models suggested in the literature. Proper characterization of the potential reservoir will provide necessary analytical parameters for the future experimenting and modeling of the macroscopic fluid flow behavior in the Lower Cretaceous sandstone.

  11. Synthesis and Characterization of Rhodamine B-ethylenediamine-hyaluronan Acid as Potential Biological Functional Materials

    Science.gov (United States)

    Li, Y. L.; Wang, W. X.; Wang, Y.; Zhang, W. B.; Gong, H. M.; Liu, M. X.

    2018-05-01

    The purpose of this study is to synthesize and characterize fluorescent polymers, rhodamine B-ethylenediamine-hyaluronan acid (RhB-EA-HA). RhB-EA-HA was successfully synthesized by ester ammonolysis reaction and amidation reaction. Moreover, the structural properties of RhB-EA-HA were characterized by 1H-NMR spectra, UV-vis spectrometry and Fourier transform infrared spectroscopy (FT-IR). RhB-EA-HA can be grafted on the surface of silica nanomaterials, which may be potential biological functional materials for drug delivery system.

  12. Environmental characterization of two potential locations at Hanford for a new production reactor

    Energy Technology Data Exchange (ETDEWEB)

    Watson, E.C.; Becker, C.D.; Fitzner, R.E.; Gano, K.A.; Imhoff, K.L.; McCallum, R.F.; Myers, D.A.; Page, T.L.; Price, K.R.; Ramsdell, J.V.; Rice D.G.; Schreiber D.L.; Skumatz L.A.; Sommer D.J.; Tawil J.J.; Wallace R.W.; Watson D.G.

    1984-09-01

    This report describes various environmental aspects of two areas on the Hanford Site that are potential locations for a New Production Reactor (NPR). The area known as the Skagit Hanford Site is considered the primary or reference site. The second area, termed the Firehouse Site, is considered the alternate site. The report encompasses an environmental characterization of these two potential NPR locations. Eight subject areas are covered: geography and demography; ecology; meteorology; hydrology; geology; cultural resources assessment; economic and social effects of station construction and operation; and environmental monitoring. 80 refs., 68 figs., 109 tabs.

  13. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review.

    Science.gov (United States)

    Liu, Jun; Pu, Huimin; Liu, Shuang; Kan, Juan; Jin, Changhai

    2017-10-15

    In recent years, increasing attention has been paid to the grafting of phenolic acid onto chitosan in order to enhance the bioactivity and widen the application of chitosan. Here, we present a comprehensive overview on the recent advances of phenolic acid grafted chitosan (phenolic acid-g-chitosan) in many aspects, including the synthetic method, structural characterization, biological activity, physicochemical property and potential application. In general, four kinds of techniques including carbodiimide based coupling, enzyme catalyzed grafting, free radical mediated grafting and electrochemical methods are frequently used for the synthesis of phenolic acid-g-chitosan. The structural characterization of phenolic acid-g-chitosan can be determined by several instrumental methods. The physicochemical properties of chitosan are greatly altered after grafting. As compared with chitosan, phenolic acid-g-chitosan exhibits enhanced antioxidant, antimicrobial, antitumor, anti-allergic, anti-inflammatory, anti-diabetic and acetylcholinesterase inhibitory activities. Notably, phenolic acid-g-chitosan shows potential applications in many fields as coating agent, packing material, encapsulation agent and bioadsorbent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Exploratory shaft facility: It's role in the characterization of the Yucca Mountain site for a potential nuclear repository

    International Nuclear Information System (INIS)

    Kalia, H.N.; Merson, T.J.

    1990-01-01

    The US Department of Energy is characterizing Yucca Mountain, Nevada, to assess its suitability as a potential site for the permanent disposal of high-level radioactive waste from nuclear power plants and defense related activities. The assessment activities include surface investigations, drill holes from the surface, and an underground facility for in situ characterization tests. This underground exploratory shaft facility is being designed to meet the criteria for characterizing the mountain as described in the Site Characterization Plan. 9 refs., 9 figs., 1 tab

  15. Exploratory shaft facility: It`s role in the characterization of the Yucca Mountain site for a potential nuclear repository

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, H.N.; Merson, T.J.

    1990-03-01

    The US Department of Energy is characterizing Yucca Mountain, Nevada, to assess its suitability as a potential site for the permanent disposal of high-level radioactive waste from nuclear power plants and defense related activities. The assessment activities include surface investigations, drill holes from the surface, and an underground facility for in situ characterization tests. This underground exploratory shaft facility is being designed to meet the criteria for characterizing the mountain as described in the Site Characterization Plan. 9 refs., 9 figs., 1 tab.

  16. Environmental characterization to assess potential impacts of thermal discharge to the Columbia River

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Dauble, D.D.; Page, T.L.; Greager, E.M.

    1990-01-01

    Laboratory and field studies were conducted to assess the potential impact of the N-Reactor thermal plume on fish from the Hanford Reach of the Columbia River. Discharge water temperatures were measured over a range of river flows and reactor operating conditions. Data were mathematically modeled to define spatial and thermal characteristics of the plume. Four species of Columbia River fish were exposed to thermal conditions expected in the plume. Exposed fish were subjected to predators and disease organisms to test for secondary effects from thermal stress. Spatial and temporal distribution of anadromous fish in the river near N-Reactor were also evaluated to define location relative to the plume. Potential thermal exposures were insufficient to kill or injure fish during operation of N-Reactor. These studies demonstrate that characterization of hydrological conditions and thermal tolerance can adequately assess potential impacts of a thermal discharge to fish

  17. Characterizing the transmission potential of zoonotic infections from minor outbreaks.

    Directory of Open Access Journals (Sweden)

    Adam J Kucharski

    2015-04-01

    Full Text Available The transmission potential of a novel infection depends on both the inherent transmissibility of a pathogen, and the level of susceptibility in the host population. However, distinguishing between these pathogen- and population-specific properties typically requires detailed serological studies, which are rarely available in the early stages of an outbreak. Using a simple transmission model that incorporates age-stratified social mixing patterns, we present a novel method for characterizing the transmission potential of subcritical infections, which have effective reproduction number R<1, from readily available data on the size of outbreaks. We show that the model can identify the extent to which outbreaks are driven by inherent pathogen transmissibility and pre-existing population immunity, and can generate unbiased estimates of the effective reproduction number. Applying the method to real-life infections, we obtained accurate estimates for the degree of age-specific immunity against monkeypox, influenza A(H5N1 and A(H7N9, and refined existing estimates of the reproduction number. Our results also suggest minimal pre-existing immunity to MERS-CoV in humans. The approach we describe can therefore provide crucial information about novel infections before serological surveys and other detailed analyses are available. The methods would also be applicable to data stratified by factors such as profession or location, which would make it possible to measure the transmission potential of emerging infections in a wide range of settings.

  18. Characterization of CNT-MnO_2 nanocomposite by electrophoretic deposition as potential electrode for supercapacitor

    International Nuclear Information System (INIS)

    Darari, Alfin; Rismaningsih, Nurmanita; Ardiansah, Hafidh Rahman; Arifin,; Ningrum, Andini Novia; Subagio, Agus

    2016-01-01

    Energy crisis that occured in Indonesia suggests that energy supply could not offset the high rate request and needs an electric energy saving device which can save high voltage, safety, and unlimited lifetime. The weakness of batteries is durable but has a low power density while the capacitor has a high power density but it doesn’t durable. The renewal of this study is CNT-MnO_2 thin film fabrication method using electrophoretic deposition. Electrophoretic deposition is a newest method to deposited CNT using power supply with cheap, and make a good result. The result of FTIR analysis showed that the best CNT-MnO_2 composition is 75:25 and C-C bond is detected in fingerprint area. The result is electrode thin film homogen and characterized by X-ray diffraction (XRD) peaks 2θ=26,63° is characterization of graphite, and 2θ=43,97° is characterization of diamond Carbon type and measured by Scherrer formula results 52,3 nm material average size .EIS test results its capacitance about 7,86 F. from the data it can be concluded that CNT-MnO_2 potential electrode very promising for further study and has a potential to be a high capacitance, and fast charge supercapacitor which can be applied for electronic devices, energy converter, even electric car.

  19. Exploring REACH as a potential data source for characterizing ecotoxicity in life cycle assessment.

    Science.gov (United States)

    Müller, Nienke; de Zwart, Dick; Hauschild, Michael; Kijko, Gaël; Fantke, Peter

    2017-02-01

    Toxicity models in life cycle impact assessment (LCIA) currently only characterize a small fraction of marketed substances, mostly because of limitations in the underlying ecotoxicity data. One approach to improve the current data situation in LCIA is to identify new data sources, such as the European Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) database. The present study explored REACH as a potential data source for LCIA based on matching reported ecotoxicity data for substances that are currently also included in the United Nations Environment Programme/Society for Environmental Toxicology and Chemistry (UNEP/SETAC) scientific consensus model USEtox for characterizing toxicity impacts. Data are evaluated with respect to number of data points, reported reliability, and test duration, and are compared with data listed in USEtox at the level of hazardous concentration for 50% of the covered species per substance. The results emphasize differences between data available via REACH and in USEtox. The comparison of ecotoxicity data from REACH and USEtox shows potential for using REACH ecotoxicity data in LCIA toxicity characterization, but also highlights issues related to compliance of submitted data with REACH requirements as well as different assumptions underlying regulatory risk assessment under REACH versus data needed for LCIA. Thus, further research is required to address data quality, pre-processing, and applicability, before considering data submitted under REACH as a data source for use in LCIA, and also to explore additionally available data sources, published studies, and reports. Environ Toxicol Chem 2017;36:492-500. © 2016 SETAC. © 2016 SETAC.

  20. Potentialities of some surface characterization techniques for the development of titanium biomedical alloys

    Directory of Open Access Journals (Sweden)

    P.S. Vanzillotta

    2004-09-01

    Full Text Available Bone formation around a metallic implant is a complex process that involves micro- and nanometric interactions. Several surface treatments, including coatings were developed in order to obtain faster osseointegration. To understand the role of these surface treatments on bone formation it is necessary to choose adequate characterization techniques. Among them, we have selected electron microscopy, profilometry, atomic force microscopy (AFM and X-ray photoelectron spectroscopy (XPS to describe them briefly. Examples of the potentialities of these techniques on the characterization of titanium for biomedical applications were also presented and discussed. Unfortunately more than one technique is usually necessary to describe conveniently the topography (scanning electron microsocopy, profilometry and/or AFM and the chemical state (XPS of the external layer of the material surface. The employment of the techniques above described can be useful especially for the development of new materials or products.

  1. Exploring REACH as a potential data source for characterizing ecotoxicity in life cycle assessment

    DEFF Research Database (Denmark)

    Müller, Nienke; de Zwart, Dick; Hauschild, Michael Zwicky

    2017-01-01

    Toxicity models in life cycle impact assessment (LCIA) currently only characterize a small fraction of marketed substances, mostly because of limitations in the underlying ecotoxicity data. One approach to improve the current data situation in LCIA is to identify new data sources, such as the Eur......Toxicity models in life cycle impact assessment (LCIA) currently only characterize a small fraction of marketed substances, mostly because of limitations in the underlying ecotoxicity data. One approach to improve the current data situation in LCIA is to identify new data sources......, such as the European Registration, Evaluation, Authorisation, and Restriction of Chemicals (REACH) database. The present study explored REACH as a potential data source for LCIA based on matching reported ecotoxicity data for substances that are currently also included in the United Nations Environment Programme....../Society for Environmental Toxicology and Chemistry (UNEP/SETAC) scientific consensus model USEtox for characterizing toxicity impacts. Data are evaluated with respect to number of data points, reported reliability, and test duration, and are compared with data listed in USEtox at the level of hazardous concentration for 50...

  2. Thermal and Ash Characterization of Indonesian Bamboo and Its Potential for Solid Fuel and Waste Valorization

    Directory of Open Access Journals (Sweden)

    Aprilina Purbasari

    2016-08-01

    Full Text Available Bamboo has been widely used in Indonesia for construction, handicrafts, furniture and other uses. However, the use of bamboo as a biomass for renewable energy source has not been extensively explored. This paper describes the thermal and ash characterization of three bamboo species found in Indonesia, i.e. Gigantochloa apus, Gigantochloa levis and Gigantochloa atroviolacea. Characterization of bamboo properties as a solid fuel includes proximate and ultimate analyses, calorific value measurement and thermogravimetric analysis. Ash characterization includes oxide composition analysis and phase analysis by X-Ray diffraction. The selected bamboo species have calorific value comparable with wood with low nitrogen and sulphur contents, indicating that they can be used as renewable energy sources. Bamboo ash contains high silicon so that bamboo ash has potential to be used further as building materials or engineering purposes. Ash composition analysis also indicates high alkali that can cause ash sintering and slag formation in combustion process. This implies that the combustion of bamboo requires the use of additives to reduce the risk of ash sintering and slag formation. Article History: Received May 15, 2016; Received in revised form July 2nd, 2016; Accepted July 14th, 2016; Available online How to Cite This Article: Purbasari, A., Samadhi, T.W. & Bindar, Y. (2016 Thermal and Ash Characterization of Indonesian Bamboo and its Potential for Solid Fuel and Waste Valorization. Int. Journal of Renewable Energy Development, 5(2, 95-100. http://dx.doi.org/10.14710/ijred.5.2.96-100 

  3. Characterization of serpentine. A potential nuclear shielding material

    International Nuclear Information System (INIS)

    Sengupta, A.; Rajeswari, B.; Kadam, R.M.; Kshirsagar, R.J.

    2012-01-01

    The use of serpentine as a potential nuclear shielding material necessitates a chemical quality control of the samples before its use in reactors. With this in view, characterization of these mineral samples was carried out using inductively coupled plasma atomic emission spectrometry (ICP-AES) and Instrumental neutron activation analysis (INAA) methods. The analytical results obtained by both ICP-AES and NAA techniques were found to be comparable. Na, Cr, Co, Zn, and Cu were found to be present in all samples of Indian origin while Ga, Ag, Ni, and Cd were found to below the limits of detection. A comparison on the detection limits of elements of interest was also carried out by both the analytical techniques and found to be in good agreement. An infrared spectroscopic investigation was also carried out on all the mineral samples. Bands at 3,689 and 3,648 cm -1 were attributed to inner and outer hydroxyl stretching of Mg-OH, respectively. The weak and broad band centered around 3,416 cm -1 was assigned due to the stretching vibrations of the adsorbed water molecules while three bands at 1076, 1022 and 968 cm -1 were prescribed to the vibrations of the SiO 4 tetrahedra. (author)

  4. Study on afterburner of aircraft engine

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1991-07-01

    Study on the afterburner for aircraft engines was reported which is used as an optimum means to produce the supersonic capability of military aircrafts. The basic principle and types of the afterburner were outlined, and as the major problem concerning turbofan afterburners, a combustion capacity at low temperature in fan air flow was discussed, in particular, flame stabilization and combustion efficiency. Basic studies were conducted by fuel spray test, combustion stability test, sector model combustion test and numerical analysis of afterburner internal flow. As a result, a mixing spray fuel injection system with injection of a small amount of fuel into flameholder wake resulted in broadening of a combustible region, and an original flameholder combined with a scoop and double gutters caused a high combustion efficiency. The prototype afterburner was developed for F3 turbofan engines in association with Japan Defence Agency, and a combustion efficiency of 74% was obtained in on-engine running test. 4 refs., 14 figs.

  5. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization.

    Science.gov (United States)

    Cimmino, Alessio; Masi, Marco; Evidente, Marco; Superchi, Stefano; Evidente, Antonio

    2015-12-19

    Covering: 2007 to 2015 Fungal phytotoxins are secondary metabolites playing an important role in the induction of disease symptoms interfering with host plant physiological processes. Although fungal pathogens represent a heavy constraint for agrarian production and for forest and environmental heritage, they can also represent an ecofriendly alternative to manage weeds. Indeed, the phytotoxins produced by weed pathogenic fungi are an efficient tool to design natural, safe bioherbicides. Their use could avoid that of synthetic pesticides causing resistance in the host plants and the long term impact of residues in agricultural products with a risk to human and animal health. The isolation and structural and biological characterization of phytotoxins produced by pathogenic fungi for weeds, including parasitic plants, are described. Structure activity relationships and mode of action studies for some phytotoxins are also reported to elucidate the herbicide potential of these promising fungal metabolites.

  6. Characterization of CNT-MnO{sub 2} nanocomposite by electrophoretic deposition as potential electrode for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Darari, Alfin, E-mail: alfindarari@st.fisika.undip.ac.id [Physics Department, Science and Mathematics Faculty, Diponegoro University (Indonesia); Rismaningsih, Nurmanita [Chemistry Department, Science and Mathematics Faculty, Diponegoro University (Indonesia); Ardiansah, Hafidh Rahman; Arifin,; Ningrum, Andini Novia; Subagio, Agus, E-mail: agus-fadhil@yahoo.com

    2016-04-19

    Energy crisis that occured in Indonesia suggests that energy supply could not offset the high rate request and needs an electric energy saving device which can save high voltage, safety, and unlimited lifetime. The weakness of batteries is durable but has a low power density while the capacitor has a high power density but it doesn’t durable. The renewal of this study is CNT-MnO{sub 2} thin film fabrication method using electrophoretic deposition. Electrophoretic deposition is a newest method to deposited CNT using power supply with cheap, and make a good result. The result of FTIR analysis showed that the best CNT-MnO{sub 2} composition is 75:25 and C-C bond is detected in fingerprint area. The result is electrode thin film homogen and characterized by X-ray diffraction (XRD) peaks 2θ=26,63° is characterization of graphite, and 2θ=43,97° is characterization of diamond Carbon type and measured by Scherrer formula results 52,3 nm material average size .EIS test results its capacitance about 7,86 F. from the data it can be concluded that CNT-MnO{sub 2} potential electrode very promising for further study and has a potential to be a high capacitance, and fast charge supercapacitor which can be applied for electronic devices, energy converter, even electric car.

  7. A Site Characterization Protocol for Evaluating the Potential for Triggered or Induced Seismicity Resulting from Wastewater Injection and Hydraulic Fracturing

    Science.gov (United States)

    Walters, R. J.; Zoback, M. D.; Gupta, A.; Baker, J.; Beroza, G. C.

    2014-12-01

    Regulatory and governmental agencies, individual companies and industry groups and others have recently proposed, or are developing, guidelines aimed at reducing the risk associated with earthquakes triggered by waste water injection or hydraulic fracturing. While there are a number of elements common to the guidelines proposed, not surprisingly, there are also some significant differences among them and, in a number of cases, important considerations that are not addressed. The goal of this work is to develop a comprehensive protocol for site characterization based on a rigorous scientific understanding of the responsible processes. Topics addressed will include the geologic setting (emphasizing faults that might be affected), historical seismicity, hydraulic characterization of injection and adjacent intervals, geomechanical characterization to identify potentially active faults, plans for seismic monitoring and reporting, plans for monitoring and reporting injection (pressure, volumes, and rates), other factors contributing to risk (potentially affected population centers, structures, and facilities), and implementing a modified Probabilistic Seismic Hazard Analysis (PSHA). The guidelines will be risk based and adaptable, rather than prescriptive, for a proposed activity and region of interest. They will be goal oriented and will rely, to the degree possible, on established best practice procedures, referring to existing procedures and recommendations. By developing a risk-based site characterization protocol, we hope to contribute to the development of rational and effective measures for reducing the risk posed by activities that potentially trigger earthquakes.

  8. Structural characterization and anti-cancerous potential of gallium bioactive glass/hydrogel composites.

    Science.gov (United States)

    Keenan, T J; Placek, L M; Coughlan, A; Bowers, G M; Hall, M M; Wren, A W

    2016-11-20

    A bioactive glass series (0.42SiO2-0.10Na2O-0.08CaO-(0.40-X)ZnO-(X)Ga2O3) was incorporated into carboxymethyl cellulose (CMC)/dextran (Dex) hydrogels in three different amounts (0.05, 0.10, and 0.25m(2)), and the resulting composites were characterized using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and (13)C Cross Polarization Magic Angle Spinning Nuclear Magnetic Resonance (CP MAS-NMR). Composite extracts were also evaluated in vitro against MG-63 osteosarcoma cells. TEM confirmed glass distribution throughout the composites, although some particle agglomeration was observed. DSC revealed that glass composition and content did have small effects on both Tg and Tm. MAS-NMR revealed that both CMC and Dex were successfully functionalized, that cross-linking occurred, and that glass addition did slightly alter bonding environments. Cell viability analysis suggested that extracts of the glass and composites with the largest Ga-content significantly decreased MG-63 osteosarcoma viability after 30days. This study successfully characterized this composite series, and demonstrated their potential for anti-cancerous applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Isolation of a potentially probiotic Lactobacillus plantarum from Siahmezgi cheese and its characterization as a potentially probiotic

    Directory of Open Access Journals (Sweden)

    Hojjatolah Zamani

    2016-03-01

    β- galactosidase and hemolytic activity as well as antibiotic susceptibility. In addition, antibacterial activity of the isolated strains against E. coli O157 and Salmonella enterica serovar typhimurium ATCC 14028 was determined. Results: One strain, labeled as Lb3 showed the highest tolerance to low pH, bile and simulated gastrointestinal tract conditions. This strain exhibited resistance to Streptomycin, Vancomycin and Polymixin B as well as effective antibacterial activity against two Gram negative pathogens, lacking hemolytic activity as well as high β- galactosidase activity. Finally, the strain Lb3 was identified as Lactobacillus plantarum CJLP55 using biochemical characterization and 16S rRNA sequencing assay. Discussion and conclusion: In the present work, a potentially probiotic Lactobacillus plantarum CJLP55 was isolated from traditionally produced Siahmezgi cheese. The bacterium displayed good probiotic properties and could be used in dairy industry.

  10. Screening of novel actinobacteria and characterization of the potential isolates from mangrove sediment of south coastal India.

    Science.gov (United States)

    Arumugam, T; Senthil Kumar, P; Kameshwar, R; Prapanchana, K

    2017-06-01

    The importance of the current research is to investigate the different types of samples from the various mangrove sediments; as source of actinobacteria from the mangrove wet soil. Potential isolate screening by antimicrobial activity and identified actinobacteria was characterized based on cultural morphology, physiological and biochemical characteristics. Three different types of media were used to isolate actinobacteria from various geographical region of mangrove soil sediment and the genotype locus was recognized by 16S rDNA. Totally 144 actinobacteria isolates were recovered from 10 samples using three media. The most active culture media in the isolation of actinobacteria were ISP2 and Glycerol Yeast Extract Agar. Among 144 isolates, 38 isolates (26.38%) exhibited antimicrobial activity. Out of 38 isolates, potentially active 2 cultures were further supported for morphological and biochemical characterization analysis. Most of the isolates were produced pharmaceutically important enzymes such as protease, amylase, lipase, cellulose and also revealed antimicrobial activity against tested microorganism. The enriched salt, pH and temperature tolerance of the actinobacteria isolates to discharge commercially valuable primary and secondary bioactive metabolites. The present results functionally characterize novel mangrove actinobacteria and their metabolites for commercial interest in pharmaceutical industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Characterization of the thrombogenic potential of surface oxides on stainless steel for implant purposes

    International Nuclear Information System (INIS)

    Shih, C.-C.; Shih, C.-M.; Su, Y.-Y.; Chang, M.-S.; Lin, S.-J.

    2003-01-01

    Marketed stents are manufactured from various metals and passivated with different degrees of surface oxidation. The functional surface oxides on the degree of antithrombotic potential were explored through a canine femoral extracorporeal circuit model. Related properties of these oxide films were studied by open-circuit potential, current density detected at open-circuit potential, the electrochemical impedance spectroscopy, transmission electron microscopy, Auger spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. Experimental evidences showed that blood clot weight after a 30-min follow-up was significantly lower for the stainless steel wire passivated with amorphous oxide (AO) compared to the wire passivated with polycrystalline oxide (PO) or commercial as-received wire coils (AS). Surface characterizations showed that a stable negative current density at open-circuit potential and a significant lower potential were found for the wire surface passivated with AO than for the surface passivated with PO. Time constant of AO is about 25 times larger than that of polycrystalline oxide. Significant difference in oxide grain sizes was found between PO and AO. Surface chemistries revealed by the AES and XPS spectra indicated the presence of a Cr- and oxygen-rich surface oxide for AO, and a Fe-rich and oxygen-lean surface oxide for PO. These remarkable characteristics of AO surface film might have a potential to provide for excellent antithrombotic characteristics for the 316L stainless steel stents

  12. The role of toxicology to characterize biomarkers for agrochemicals with potential endocrine activities.

    Science.gov (United States)

    Mantovani, Alberto; Maranghi, Francesca; La Rocca, Cinzia; Tiboni, Gian Mario; Clementi, Maurizio

    2008-09-01

    The paper discusses current knowledge and possible research priorities on biomarkers of exposure, effect and susceptibility for potential endocrine activities of agrochemicals (dicarboximides, ethylene bisdithiocarbammates, triazoles, etc.). Possible widespread, multiple-pathway exposure to agrochemicals highlights the need to assess internal exposure of animals or humans, which is the most relevant exposure measure for hazard and risk estimation; however, exposure data should be integrated by early indicators predictive of possible health effects, particularly for vulnerable groups such as mother-child pairs. Research need include: non-invasive biomarkers for children biomonitoring; novel biomarkers of total exposure to measure whole endocrine disrupter-related burden; characterization of biomarkers of susceptibility, including the role of markers of nutritional status; anchoring early molecular markers to established toxicological endpoints to support their predictivity; integrating "omics"-based approaches in a system-toxicology framework. As biomonitoring becomes increasingly important in the environment-and-health scenario, toxicologists can substantially contribute both to the characterization of new biomarkers and to the predictivity assessment and improvement of the existing ones.

  13. Development and Characterization of Nisin Nanoparticles as Potential Alternative for the Recurrent Vaginal Candidiasis Treatment.

    Science.gov (United States)

    de Abreu, Letícia Coli Louvisse; Todaro, Valerio; Sathler, Plinio Cunha; da Silva, Luiz Cláudio Rodrigues Pereira; do Carmo, Flávia Almada; Costa, Cleonice Marques; Toma, Helena Keiko; Castro, Helena Carla; Rodrigues, Carlos Rangel; de Sousa, Valeria Pereira; Cabral, Lucio Mendes

    2016-12-01

    The aim of this work was the development and characterization of nisin-loaded nanoparticles and the evaluation of its potential antifungal activity. Candidiasis is a fungal infection caused by Candida sp. considered as one of the major public health problem currently. The discovery of antifungal agents that present a reduced or null resistance of Candida sp. and the development of more efficient drug release mechanisms are necessary for the improvement of candidiasis treatment. Nisin, a bacteriocin commercially available for more than 50 years, exhibits antibacterial action in food products with potential antifungal activity. Among several alternatives used to modulate antifungal activity of bacteriocins, polymeric nanoparticles have received great attention due to an effective drug release control and reduction of therapeutic dose, besides the minimization of adverse effects by the preferential accumulation in specific tissues. The nisin nanoparticles were prepared by double emulsification and solvent evaporation methods. Nanoparticles were characterized by dynamic light scattering, zeta potential, Fourier transform infrared, X-ray diffraction, differential scanning calorimetry, and scanning electron microscopy. Antifungal activity was accessed by pour plate method and cell counting using Candida albicans strains. The in vitro release profile and in vitro permeation studies were performed using dialysis bag method and pig vaginal mucosa in Franz diffusion cell, respectively. The results revealed nisin nanoparticles (300 nm) with spherical shape and high loading efficiency (93.88 ± 3.26%). In vitro test results suggest a promising application of these nanosystems as a prophylactic agent in recurrent vulvovaginal candidiasis and other gynecological diseases.

  14. Corticotropin-releasing factor peptide antagonists: design, characterization and potential clinical relevance.

    Science.gov (United States)

    Rivier, Jean E; Rivier, Catherine L

    2014-04-01

    Elusive for more than half a century, corticotropin-releasing factor (CRF) was finally isolated and characterized in 1981 from ovine hypothalami and shortly thereafter, from rat brains. Thirty years later, much has been learned about the function and localization of CRF and related family members (Urocortins 1, 2 and 3) and their 2 receptors, CRF receptor type 1 (CRFR1) and CRF receptor type 2 (CRFR2). Here, we report the stepwise development of peptide CRF agonists and antagonists, which led to the CRFR1 agonist Stressin1; the long-acting antagonists Astressin2-B which is specific for CRFR2; and Astressin B, which binds to both CRFR1 and CRFR2.This analog has potential for the treatment of CRF-dependent diseases in the periphery, such as irritable bowel syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    OpenAIRE

    Yuji Nishi; Tsuneo Ishido

    2012-01-01

    In order to appraise the utility of self-potential (SP) measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulati...

  16. Characterization of Macrophomina phaseolina isolates by their response to different osmotic potentials and AFLP

    Directory of Open Access Journals (Sweden)

    Bárbara J. Gutiérrez Cedeño

    2014-01-01

    Full Text Available Charcoal rot of Phaseolus vulgaris is caused by the fungus Macrophomina phaseolina, the disease is associated with high temperature and water stress. The objective of this study was to characterize isolates of M. phaseolina by their response to different osmotic potentials and AFLP. The growth of 11 isolates was determined on potato dextrose agar at 48 and 72 h in a gradient of osmotic potential induced using NaCl as well as their effects on germination of sclerotia. Three water groups were statistically different indicating differential response to osmotic potential and all sclerotia grown under these conditions, germinated between 24 and 48h. There were groups of isolates that were tolerant to water stress induced. The AFLP genotyping allowed the formation of five genetic groups, showing a wide genetic variability. Of the nine starters CTA-AT showed a high degree of confidence in the identification of genotypes of M. phaseolina and CAA-AC had the lowest discriminatory power. These results show that M. phaseolina isolates responded differently to osmotic potential and are genetically different between them. Although there was a clear correspondence of genetic groups to water groups; these responses are important features in the search for alternative management in black bean pathosystem. Keywords: molecular marker, M. phaseolina, water deficit

  17. Characterization of potential fire regimes: applying landscape ecology to fire management in Mexico

    Science.gov (United States)

    Jardel, E.; Alvarado, E.; Perez-Salicrup, D.; Morfín-Rios, J.

    2013-05-01

    Knowledge and understanding of fire regimes is fundamental to design sound fire management practices. The high ecosystem diversity of Mexico offers a great challenge to characterize the fire regime variation at the landscape level. A conceptual model was developed considering the main factors controlling fire regimes: climate and vegetation cover. We classified landscape units combining bioclimatic zones from the Holdridge life-zone system and actual vegetation cover. Since bioclimatic conditions control primary productivity and biomass accumulation (potential fuel), each landscape unit was considered as a fuel bed with a particular fire intensity and behavior potential. Climate is also a determinant factor of post-fire recovery rates of fuel beds, and climate seasonality (length of the dry and wet seasons) influences fire probability (available fuel and ignition efficiency). These two factors influence potential fire frequency. Potential fire severity can be inferred from fire frequency, fire intensity and behavior, and vegetation composition and structure. Based in the conceptual model, an exhaustive literature review and expert opinion, we developed rules to assign a potential fire regime (PFR) defined by frequency, intensity and severity (i.e. fire regime) to each bioclimatic-vegetation landscape unit. Three groups and eight types of potential fire regimes were identified. In Group A are fire-prone ecosystems with frequent low severity surface fires in grasslands (PFR type I) or forests with long dry season (II) and infrequent high-severity fires in chaparral (III), wet temperate forests (IV, fire restricted by humidity), and dry temperate forests (V, fire restricted by fuel recovery rate). Group B includes fire-reluctant ecosystems with very infrequent or occasional mixed severity surface fires limited by moisture in tropical rain forests (VI) or fuel availability in seasonally dry tropical forests (VII). Group C and PFR VIII include fire-free environments

  18. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses.

    Science.gov (United States)

    Zago, Miriam; Fornasari, Maria Emanuela; Carminati, Domenico; Burns, Patricia; Suàrez, Viviana; Vinderola, Gabriel; Reinheimer, Jorge; Giraffa, Giorgio

    2011-08-01

    Ninety-eight Lactobacillus plantarum strains isolated from Italian and Argentinean cheeses were evaluated for probiotic potential. After a preliminary subtractive screening based on the presence of msa and bsh genes, 27 strains were characterized. In general, the selected strains showed high resistance to lysozyme, good adaptation to simulated gastric juice, and a moderate to low bile tolerance. The capacity to agglutinate yeast cells in a mannose-specific manner, as well as the cell surface hydrophobicity was found to be variable among strains. Very high β-galactosidase activity was shown by a considerable number of the tested strains, whereas variable prebiotic utilization ability was observed. Only tetracycline resistance was observed in two highly resistant strains which harbored the tetM gene, whereas none of the strains showed β-glucuronidase activity or was capable of inhibiting pathogens. Three strains (Lp790, Lp813, and Lp998) were tested by in vivo trials. A considerable heterogeneity was found among a number of L. plantarum strains screened in this study, leading to the design of multiple cultures to cooperatively link strains showing the widest range of useful traits. Among the selected strains, Lp790, Lp813, and Lp998 showed the best probiotic potential and would be promising candidates for inclusion as starter cultures for the manufacture of probiotic fermented foods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Chemical Characterization and Antioxidant Potential of Wild Ganoderma Species from Ghana.

    Science.gov (United States)

    Obodai, Mary; Mensah, Deborah L Narh; Fernandes, Ângela; Kortei, Nii Korley; Dzomeku, Matilda; Teegarden, Matthew; Schwartz, Steven J; Barros, Lillian; Prempeh, Juanita; Takli, Richard K; Ferreira, Isabel C F R

    2017-01-25

    The chemical characterization and antioxidant potential of twelve wild strains of Ganoderma sp. from Ghana, nine (LS1-LS9) of which were found growing wild simultaneously on the same dying Delonix regia tree, were evaluated. Parameters evaluated included the nutritional value, composition in sugars, fatty acids, phenolic and other organic compounds and some vitamins and vitamin precursors. Antioxidant potential was evaluated by investigating reducing power, radical scavenging activity and lipid peroxidation inhibition using five in vitro assays. Protein, carbohydrate, fat, ash and energy contents ranged between 15.7-24.5 g/100 g·dw, 73.31-81.90 g/100 g, 0.48-1.40 g/100 g, 0.68-2.12 g/100 g ash and 396.1-402.02 kcal/100 g, respectively. Fatty acids such as linoleic, oleic and palmitic acids were relatively abundant. Free sugars included rhamnose, fructose, mannitol, sucrose and trehalose. Total tocopherols, organic acids and phenolic compounds' content ranged between 741-3191 µg/100 g, 77-1003 mg/100 g and 7.6-489 µg/100 g, respectively. There were variations in the β-glucans, ergosterol and vitamin D₂ contents. The three major minerals in decreasing order were K > P > S. Ganoderma sp. strain AM1 showed the highest antioxidant activity. This study reveals, for the first time, chemical characteristics of Ganoderma spp. which grew simultaneously on the same tree.

  20. Characterization of polyphenols and antioxidant potential of white grape pomace byproducts (Vitis vinifera L.).

    Science.gov (United States)

    González-Centeno, María Reyes; Jourdes, Michael; Femenia, Antoni; Simal, Susana; Rosselló, Carmen; Teissedre, Pierre-Louis

    2013-11-27

    A detailed assessment of the total phenolic and total tannin contents, the monomeric and oligomeric flavan-3-ol composition, the proanthocyanidin profile, and the antioxidant potential of the grape pomace byproducts (considered as a whole, both skins and seeds), derived from four white grape varieties (Vitis vinifera L.), was performed. Significant differences (p grape pomace byproducts were observed among the different grape varieties studied. For the first time in the literature, the particular flavan-3-ol composition of the four grape varieties investigated was described for the whole fraction of their grape pomace byproducts. The phenolic composition and antioxidant capacity of grape pomaces were compared to those of their corresponding stems. The global characterization of these white grape varieties provided a basis for an integrated exploitation of both winemaking byproducts as potential, inexpensive, and easily available sources of bioactive compounds for the pharmaceutical, cosmetic, and food industries.

  1. Characterization and assessment of potential European and Japanese competition in photovoltaics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-10-01

    This study is an assessment of the potential of European and Japanese firms to produce and market photovoltaic (PV) power systems internationally in competition with firms in the United States. It consists of three distinct parts: (1) an overview of worldwide export activity which describes the general posture of selected European countries and Japan; (2) an assessment of European competition focusing on Germany, France, and the United Kingdom; and (3) an assessment of Japanese competition. All research was conducted within the United States relying on published reports in the scientific, trade, and business press; a firm's annual reports; and telephone interviews with representatives of European and Japanese firms. European and Japanese government representatives were also contacted and government-sponsored programs evaluated. European competition is addressed in three areas: characterization of the PV industry; current and potential marketing activity; and the status of PV and related technological developments. The same areas are addressed for depicting Japanese competition except that greater emphasis is placed on past industrial experience and related semiconductor sales.

  2. Characterization of rue extract and its potential for controlling rice blast

    Directory of Open Access Journals (Sweden)

    Karinna Bannach Reis

    2015-12-01

    Full Text Available Abstract: The objective of this work was to purify and standardize the rue (Ruta graveolens extract and evaluate its effect on Magnaporthe oryzae as an alternative to the integrated management of rice blast. The drug was characterized, the liquid extract was obtained, and the methodology for quantifying the standard markers psoralen and bergapten was validated. Rue extract and the markers, solely or in combination, were assayed in vitro, as well as in greenhouse conditions, for their ability to suppress leaf blast, by the evaluation of mycelial growth, conidial germination, and appressorium formation. Rue extract inhibited M. oryzae mycelial growth (100%, conidial germination (LD50=0.237 mg, and the appressorium formation (LD50=0.121 mg; besides, the extract reduced leaf blast severity by 80.84%. Fluorescence microscopy showed that rue extract did not damage M. oryzae cell wall and plasma membrane, indicating another mode of action. Rue extract has a great potential for controlling rice leaf blast.

  3. Characterization the potential of biochar from cow and pig manure for geoecology application

    Science.gov (United States)

    Gunamantha, I. M.; Widana, G. A. B.

    2018-03-01

    Biochar is a solid product generated from the carbonization of biomass with various potential benefits. The utilisation of biochar should be adapted to its characteristic which is mainly influenced by its feedstock. In this study, cow and pig manure biochar generated by a conventional process, were characterized by its physical and chemical analysis and its potential to be used as soil amendment. For this purpose, several main parameters were analyzed: organic carbon, Nutrient (total-N, available P and K) status, Cation Exchange Capacity (CEC), proximate data analysis (moisture content, ash, volatile matter and fixed carbon) and its ash composition. The comparison between biochar and feedstock will be based on these parameters. The results of this study show that the organic carbon, available P, ash, and fixed carbon content of pig-manure biochar is higher than cow manure-derived biochar; while total-N, available K, CEC and volatile matter is lower. On its ash composition, the pig manure-derived biochar is dominated by SiO2, Al2O3, Fe2O3, P2O5, and CaO while the cow manure-derived biochar is dominated by SiO2, CaO, Al2O3, K2O, and P2O5. However, both biochar show potential for improving soil quality and reducing carbon emission from animal manure.

  4. Primary intraosseous smooth muscle tumor of uncertain malignant potential: original report and molecular characterization

    Directory of Open Access Journals (Sweden)

    Lauren Kropp

    2016-11-01

    Full Text Available We report the first case of primary intraosseous smooth muscle tumor of uncertain malignant potential (STUMP which is analogous to borderline malignant uterine smooth muscle tumors so designated. The tumor presented in the femur of an otherwise healthy 30-year-old woman. Over a 3-year period, the patient underwent 11 biopsies or resections and 2 cytologic procedures. Multiple pathologists reviewed the histologic material including musculoskeletal pathologists but could not reach a definitive diagnosis. However, metastases eventually developed and were rapidly progressive and responsive to gemcitabine and docetaxel. Molecular characterization and ultrastructural analysis was consistent with smooth muscle origin, and amplification of unmutated chromosome 12p and 12q segments appears to be the major genomic driver of this tumor. Primary intraosseous STUMP is thought to be genetically related to leiomyosarcoma of bone, but likely representing an earlier stage of carcinogenesis. Wide excision and aggressive followup is warranted for this potentially life-threatening neoplasm.

  5. Primary Intraosseous Smooth Muscle Tumor of Uncertain Malignant Potential: Original Report and Molecular Characterization.

    Science.gov (United States)

    Kropp, Lauren; Siegal, Gene P; Frampton, Garrett M; Rodriguez, Michael G; McKee, Svetlana; Conry, Robert M

    2016-11-17

    We report the first case of primary intraosseous smooth muscle tumor of uncertain malignant potential (STUMP) which is analogous to borderline malignant uterine smooth muscle tumors so designated. The tumor presented in the femur of an otherwise healthy 30-year-old woman. Over a 3-year period, the patient underwent 11 biopsies or resections and 2 cytologic procedures. Multiple pathologists reviewed the histologic material including musculoskeletal pathologists but could not reach a definitive diagnosis. However, metastases eventually developed and were rapidly progressive and responsive to gemcitabine and docetaxel. Molecular characterization and ultrastructural analysis was consistent with smooth muscle origin, and amplification of unmutated chromosome 12p and 12q segments appears to be the major genomic driver of this tumor. Primary intraosseous STUMP is thought to be genetically related to leiomyosarcoma of bone, but likely representing an earlier stage of carcinogenesis. Wide excision and aggressive follow-up is warranted for this potentially life-threatening neoplasm.

  6. Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children’s potential exposures

    Science.gov (United States)

    Tulve, Nicolle S.; Stefaniak, Aleksandr B.; Vance, Marina E.; Rogers, Kim; Mwilu, Samuel; LeBouf, Ryan F.; Schwegler-Berry, Diane; Willis, Robert; Thomas, Treye A.; Marr, Linsey C.

    2015-01-01

    Due to their antifungal, antibacterial, antiviral, and antimicrobial properties, silver nanoparticles (AgNPs) are used in consumer products intended for use by children or in the home. Children may be especially affected by the normal use of consumer products because of their physiological functions, developmental stage, and activities and behaviors. Despite much research to date, children’s potential exposures to AgNPs are not well characterized. Our objectives were to characterize selected consumer products containing AgNPs and to use the data to estimate a child’s potential non-dietary ingestion exposure. We identified and cataloged 165 consumer products claiming to contain AgNPs that may be used by or near children or found in the home. Nineteen products (textile, liquid, plastic) were selected for further analysis. We developed a tiered analytical approach to determine silver content, form (particulate or ionic), size, morphology, agglomeration state, and composition. Silver was detected in all products except one sippy cup body. Among products in a given category, silver mass contributions were highly variable and not always uniformly distributed within products, highlighting the need to sample multiple areas of a product. Electron microscopy confirmed the presence of AgNPs. Using this data, a child’s potential non-dietary ingestion exposure to AgNPs when drinking milk formula from a sippy cup is 1.53 μg Ag/kg. Additional research is needed to understand the number and types of consumer products containing silver and the concentrations of silver in these products in order to more accurately predict children’s potential aggregate and cumulative exposures to AgNPs. PMID:25747543

  7. Procedure for the characterization of radon potential in existing dwellings and to assess the annual average indoor radon concentration

    International Nuclear Information System (INIS)

    Collignan, Bernard; Powaga, Emilie

    2014-01-01

    Risk assessment due to radon exposure indoors is based on annual average indoor radon activity concentration. To assess the radon exposure in a building, measurement is generally performed during at least two months during heating period in order to be representative of the annual average value. This is because radon presence indoors could be very variable during time. This measurement protocol is fairly reliable but may be a limiting in the radon risk management, particularly during a real estate transaction due to the duration of the measurement and the limitation of the measurement period. A previous field study defined a rapid methodology to characterize radon entry in dwellings. The objective of this study was at first, to test this methodology in various dwellings to assess its relevance with a daily test. At second, a ventilation model was used to assess numerically the air renewal of a building, the indoor air quality all along the year and the annual average indoor radon activity concentration, based on local meteorological conditions, some building characteristics and in-situ characterization of indoor pollutant emission laws. Experimental results obtained on thirteen individual dwellings showed that it is generally possible to obtain a representative characterization of radon entry into homes. It was also possible to refine the methodology defined in the previous study. In addition, numerical assessments of annual average indoor radon activity concentration showed generally a good agreement with measured values. These results are encouraging to allow a procedure with a short measurement time to be used to characterize long-term radon potential in dwellings. - Highlights: • Test of a daily procedure to characterize radon potential in dwellings. • Numerical assessment of the annual radon concentration. • Procedure applied on thirteen dwellings, characterization generally satisfactory. • Procedure useful to manage radon risk in dwellings, for real

  8. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications

    International Nuclear Information System (INIS)

    Santos, Maria Helena; Silva, Rafael M.; Dumont, Vitor C.; Neves, Juliana S.; Mansur, Herman S.; Heneine, Luiz Guilherme D.

    2013-01-01

    Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering. - Highlights: ► Type I collagen was obtained from bovine pericardium, an abundant tissue resource. ► A simple and feasible processing technique was developed to purify bovine collagen. ► The appropriate process may be performed on industrial scale. ► The pure collagen presented appropriate morphological and molecular characteristics. ► The purify collagen has shown potential use as a biomaterial in tissue engineering.

  9. Isolation, characterization and exploring biotechnological potential of halophilic archaea from salterns of western India.

    Science.gov (United States)

    Singh, Aparna; Singh, Anil Kumar

    2018-01-01

    Thirteen halophilic archaea were isolated from Kandla and Bhayander salt pans. These isolates were grouped into three different genera Halobacterium, Haloferax and Haloarcula based on morphological and biochemical characterization, polar lipid analysis, Amplified 16S rDNA restriction analysis (ARDRA) and 16S rDNA sequence analysis. Biochemical characterization suggested the ability of isolates to produce protease, amylase and poly-hydroxybutyrate (PHB) indicating their biotechnological potential. The isolates were further screened for the amount of extracellular protease produced. Halobacterium sp. SP1(1) showed significant protease production compared to other isolates. Protease producing ability of the isolate was influenced by several factors such as NaCl concentration, type of protein source, metal ions and surfactants, and presence of amino acid supplements in the production medium. Soybean flour, FeCl 3 and dicotylsulfosuccinate were found to increase protease production by 2.36, 1.54 and 1.26 folds, respectively compared to production in basal medium. Effect of organic solvents used in paints (n-decane, n-undecane and n-dodecane) was also investigated on protease production by the isolate. Protease production by Halobacterium sp. SP1(1) was enhanced by 1.2 folds in presence of n-decane compared to control. Furthermore, the ability of isolate to hydrolyse fish protein was investigated using three different edible fishes (Pomfret, Flat fish and Seer fish) as sole protein source. Pomfret was found to be a good protein source for protease production by the isolate. These results revealed that Halobacterium sp. SP1(1) may have potential for paint-based antifouling coating preparations and fish sauce preparation by virtue of its extracellular protease.

  10. Microbial communities in low permeability, high pH uranium mine tailings: characterization and potential effects.

    Science.gov (United States)

    Bondici, V F; Lawrence, J R; Khan, N H; Hill, J E; Yergeau, E; Wolfaardt, G M; Warner, J; Korber, D R

    2013-06-01

    To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability. To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture-based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple-metal resistant, with 15% exhibiting dual-metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, P tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0-20 m) and middle (20-40 m) tailings zones being highly significant (P tailings zone being significant (P tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long-term geochemistry of the tailings. This study is the first investigation of the diversity and functional potential of micro-organisms present in low permeability, high pH uranium mine tailings. © 2013 The Society for Applied Microbiology.

  11. Characterization of Electrostatic Potential and Trapped Charge in Semiconductor Nanostructures using Off-Axis Electron Holography

    Science.gov (United States)

    Gan, Zhaofeng

    Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/Li xGe core/shell NW. The mean inner potential (MIP) and inelastic mean free path (IMFP) of ZnO NWs have been measured to be 15.3V+/-0.2V and 55+/-3nm, respectively, for 200keV electrons. These values were then used to characterize the thickness of a ZnO nano-sheet and gave consistent values. The MIP and IMFP for ZnTe thin films were measured to be 13.7+/-0.6V and 46+/-2nm, respectively, for 200keV electrons. A thin film expected to have a p-n junction was studied, but no signal due to the junction was observed. The importance of dynamical effects was systematically studied using Bloch wave simulations. The built-in potentials in Si NWs across the doped p-n junction and the Schottky junction due to Au catalyst were measured to be 1.0+/-0.3V and 0.5+/-0.3V, respectively. Simulations indicated that the dopant concentrations were ~1019cm-3 for donors and ~1017 cm-3 for acceptors. The effects of positively charged Au catalyst, a possible n+-n --p junction transition region and possible surface charge, were also systematically studied using simulations. Si-Ge heterojunction NWs were studied. Dopant concentrations were extracted by atom probe tomography. The built-in potential offset was measured to be 0.4+/-0.2V, with the Ge side lower. Comparisons with simulations indicated that Ga present in the Si region was only partially activated. In situ EH biasing experiments combined with simulations indicated the B dopant in Ge was mostly activated but not the P dopant in Si. I-V characteristic curves were measured and explained using simulations. The Ge/LixGe core/shell structure was studied during lithiation. The MIP for LixGe decreased with time due to increased Li

  12. Morphological and mechanical characterization of chitosan-calcium phosphate composites for potential application as bone-graft substitutes

    Directory of Open Access Journals (Sweden)

    Guilherme Maia Mulder van de Graaf

    Full Text Available Introduction: Bone diseases, aging and traumas can cause bone loss and lead to bone defects. Treatment of bone defects is challenging, requiring chirurgical procedures. Bone grafts are widely used for bone replacement, but they are limited and expensive. Due to bone graft limitations, natural, semi-synthetic, synthetic and composite materials have been studied as potential bone-graft substitutes. Desirable characteristics of bone-graft substitutes are high osteoinductive and angiogenic potentials, biological safety, biodegradability, bone-like mechanical properties, and reasonable cost. Herein, we prepared and characterized potential bone-graft substitutes composed of calcium phosphate (CP - a component of natural bone, and chitosan (CS - a biocompatible biopolymer. Methods CP-CS composites were synthetized, molded, dried and characterized. The effect of drying temperatures (38 and 60 °C on the morphology, porosity and chemical composition of the composites was evaluated. As well, the effects of drying temperature and period of drying (3, 24, 48 and 72 hours on the mechanical properties - compressive strength, modulus of elasticity and relative deformation-of the demolded samples were investigated. Results Scanning electron microscopy and gas adsorption-desorption analyses of the CS-CP composites showed interconnected pores, indicating that the drying temperature played an important role on pores size and distribution. In addition, drying temperature have altered the color (brownish at 60 °C due to Maillard reaction and the chemical composition of the samples, confirmed by FTIR. Conclusion Particularly, prolonged period of drying have improved mechanical properties of the CS-CP composites dried at 38 °C, which can be designed according to the mechanical needs of the replaceable bone.

  13. Synthesis, characterization, and potential use of 2-dodecylcyclobutanone as a marker for irradiated chicken

    International Nuclear Information System (INIS)

    Boyd, D.R.; Crone, A.V.J.; Hamilton, J.T.G.; Hand, M.V.; Stevenson, M.H.; Stevenson, P.J.

    1991-01-01

    The synthesis and characterization of 2-dodecylcyclobutanone is described. Solvent extraction techniques for the isolation of this compound from irradiated minced chicken meat and its detection by selected ion monitoring are outlined. The compound was not detected in either raw or cooked nonirradiated minced chicken meat by the methods used, but its presence was confirmed in the irradiated samples. 2-Dodecylcyclobutanone was detectable for 20 days postirradiation. The dose (4.7 kGy) of irradiation applied was below the recommended upper limit for food (10 kGy), and this compound may have potential as a marker for irradiated chicken meat and for other foods containing lipid

  14. Characterization of the glass transition of water predicted by molecular dynamics simulations using nonpolarizable intermolecular potentials.

    Science.gov (United States)

    Kreck, Cara A; Mancera, Ricardo L

    2014-02-20

    Molecular dynamics simulations allow detailed study of the experimentally inaccessible liquid state of supercooled water below its homogeneous nucleation temperature and the characterization of the glass transition. Simple, nonpolarizable intermolecular potentials are commonly used in classical molecular dynamics simulations of water and aqueous systems due to their lower computational cost and their ability to reproduce a wide range of properties. Because the quality of these predictions varies between the potentials, the predicted glass transition of water is likely to be influenced by the choice of potential. We have thus conducted an extensive comparative investigation of various three-, four-, five-, and six-point water potentials in both the NPT and NVT ensembles. The T(g) predicted from NPT simulations is strongly correlated with the temperature of minimum density, whereas the maximum in the heat capacity plot corresponds to the minimum in the thermal expansion coefficient. In the NVT ensemble, these points are instead related to the maximum in the internal pressure and the minimum of its derivative, respectively. A detailed analysis of the hydrogen-bonding properties at the glass transition reveals that the extent of hydrogen-bonds lost upon the melting of the glassy state is related to the height of the heat capacity peak and varies between water potentials.

  15. Molecular characterization of Giardia intestinalis haplotypes in marine animals: variation and zoonotic potential.

    Science.gov (United States)

    Lasek-Nesselquist, Erica; Bogomolni, Andrea L; Gast, Rebecca J; Welch, David Mark; Ellis, Julie C; Sogin, Mitchell L; Moore, Michael J

    2008-08-19

    Giardia intestinalis is a microbial eukaryotic parasite that causes diarrheal disease in humans and other vertebrates worldwide. The negative effect on quality of life and economics caused by G. intestinalis may be increased by its potential status as a zoonosis, or a disease that can be transmitted from animals to humans. The zoonotic potential of G. intestinalis has been implied for over 2 decades, with human-infecting genotypes (belonging to the 2 major subgroups, Assemblages A and B) occurring in wildlife and domesticated animals. There are recent reports of G. intestinalis in shellfish, seals, sea lions and whales, suggesting that marine animals are also potential reservoirs of human disease. However, the prevalence, genetic diversity and effect of G. intestinalis in marine environments and the role that marine animals play in transmission of this parasite to humans are relatively unexplored. Here, we provide the first thorough molecular characterization of G. intestinalis in marine vertebrates. Using a multi-locus sequencing approach, we identify human-infecting G. intestinalis haplotypes of both Assemblages A and B in the fecal material of dolphins, porpoises, seals, herring gulls Larus argentatus, common eiders Somateria mollissima and a thresher shark Alopias vulpinus. Our results indicate that G. intestinalis is prevalent in marine ecosystems, and a wide range of marine hosts capable of harboring zoonotic forms of this parasite exist. The presence of G. intestinalis in marine ecosystems raises concerns about how this disease might be transmitted among different host species.

  16. Characterizing Ductile Damage and Failure: Application of the Direct Current Potential Drop Method to Uncracked Tensile Specimens

    OpenAIRE

    Brinnel, V.; Döbereiner, B.; Münstermann, Sebastian

    2014-01-01

    Modern high-strength steels exhibit excellent ductility properties but their application is hindered by traditional design rules. A characterization of necessary safety margins for the ductile failure of these steels is therefore required. Direct observation of ductile damage within tests is currently not possible, only limited measurements can be made with synchrotron or X-ray radiation facilities. The direct current potential drop (DCPD) method can determine ductile crack propagation with l...

  17. Drug discrimination: A versatile tool for characterization of CNS safety pharmacology and potential for drug abuse.

    Science.gov (United States)

    Swedberg, Michael D B

    2016-01-01

    Drug discrimination studies for assessment of psychoactive properties of drugs in safety pharmacology and drug abuse and drug dependence potential evaluation have traditionally been focused on testing novel compounds against standard drugs for which drug abuse has been documented, e.g. opioids, CNS stimulants, cannabinoids etc. (e.g. Swedberg & Giarola, 2015), and results are interpreted such that the extent to which the test drug causes discriminative effects similar to those of the standard training drug, the test drug would be further characterized as a potential drug of abuse. Regulatory guidance for preclinical assessment of abuse liability by the European Medicines Agency (EMA, 2006), the U.S. Food and Drug Administration (FDA, 2010), the International Conference of Harmonization (ICH, 2009), and the Japanese Ministry of Health Education and Welfare (MHLW, 1994) detail that compounds with central nervous system (CNS) activity, whether by design or not, need abuse and dependence liability assessment. Therefore, drugs with peripheral targets and a potential to enter the CNS, as parent or metabolite, are also within scope (see Swedberg, 2013, for a recent review and strategy). Compounds with novel mechanisms of action present a special challenge due to unknown abuse potential, and should be carefully assessed against defined risk criteria. Apart from compounds sharing mechanisms of action with known drugs of abuse, compounds intended for indications currently treated with drugs with potential for abuse and or dependence are also within scope, regardless of mechanism of action. Examples of such compounds are analgesics, anxiolytics, cognition enhancers, appetite control drugs, sleep control drugs and drugs for psychiatric indications. Recent results (Swedberg et al., 2014; Swedberg & Raboisson, 2014; Swedberg, 2015) on the metabotropic glutamate receptor type 5 (mGluR5) antagonists demonstrate that compounds causing hallucinatory effects in humans did not exhibit

  18. Fertirrigation with sugarcane vinasse: Foreseeing potential impacts on soil and water resources through vinasse characterization.

    Science.gov (United States)

    Fuess, Lucas T; Rodrigues, Isabella J; Garcia, Marcelo L

    2017-09-19

    This paper reports the characterization of the polluting potential of sugarcane vinasse, the main wastewater from ethanol production. Compositional data from vinasse samples collected from sugarcane biorefineries were used to predict negative effects on the soil, water resources and crops potentially associated with fertirrigation, the primary final destination of vinasse in Brazil. High risks of soil salinization were associated with the land disposal of vinasse, as evidenced by the high levels of total dissolved solids (TDS; >4,000 mg L -1 ) and electrical conductivity (>6.7 dS m -1 ). The high TDS levels coupled with the high biodegradable organic content of vinasse (>14 g L -1 ) also favor organic overloading events, leading to local anaerobiosis conditions. Conversely, soil sodification should not be observed in areas fertirrigated with sugarcane vinasse, given the low Na concentrations (145.1 mg L -1 ) and Ca (>458.4 mg L -1 ) levels. Priority pollutants (Cu, Cr, Ni, Pb and Zn) and phytotoxic elements (Al and Fe) were also found in the analyzed samples; however, relevant environmental impacts should not be associated with these particular constituents. Overall, the relatively simple methodology used herein could efficiently replace massive field data collection to provide a basic understanding of the fate of vinasse in the environment in order to highlight the priority points to be considered in the management of this effluent. In summary, the prompt implementation of treatment plants in distilleries, in addition to a continuous and broad compositional characterization of vinasse, is essential to guarantee its adequate reuse.

  19. Spontaneous ignition in afterburner segment tests at an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM jet-A fuel

    Science.gov (United States)

    Schultz, D. F.; Branstetter, J. R.

    1973-01-01

    A brief testing program was undertaken to determine if spontaneous ignition and stable combustion could be obtained in a jet engine afterburning operating with an inlet temperature of 1240 K and a pressure of 1 atmosphere with ASTM Jet-A fuel. Spontaneous ignition with 100-percent combustion efficiency and stable burning was obtained using water-cooled fuel spraybars as flameholders.

  20. Synthesis, characterization and potential utility of doped ceramics based catalysts

    Science.gov (United States)

    Sharma, Ritika; Yadav, Deepshikha; Singh, G. P.; Vyas, G.; Bhojak, N.

    2018-05-01

    Excessive utilization of petrol, diesel and other fossil fuels, continuous increase in their prices, and the big problem of carbon dioxide mission have encouraged scientists and technologist to find either new sources of energy or to develop technologies for the sustainable utilization of fuel. Biofuels are the only energy technologies that can resolve the problem of carbon dioxide emission in the atmosphere as well as reduce the amount of fossil fuel burned. Bio ethanol and biodiesel are the most common types of biofuel which are being used at present. Biodiesel has become more interesting for all the researchers in present scenario. Various feedstock viz. edible, nonedible oils, waste cooking oil, animal fat, algae etc, are using for the production of biodiesel worldwide according to their availability. Selection of efficient heterogeneous catalysts for biodiesel preparation still needs more attention of researchers. The present investigation deals with determination of synthesis, characterization and applications of doped ceramic based materials in different medium. Two of doped ceramic based catalysts which has been potentially used for the production of biodiesel. The Engine performance of biodiesel samples, made from industrial waste oils and ceramic based catalyst, have also been investigated and found up to satisfactory levels.

  1. Extraction and characterization of highly purified collagen from bovine pericardium for potential bioengineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maria Helena, E-mail: mariahelena.santos@gmail.com [Department of Dentistry, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Silva, Rafael M.; Dumont, Vitor C. [Department of Dentistry, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Neves, Juliana S. [Center for Assessment and Development of Biomaterials-BioMat, Federal University of Vales do Jequitinhonha e Mucuri-UFVJM, Diamantina/MG 39100-000 (Brazil); Mansur, Herman S. [Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais-UFMG, Belo Horizonte/MG 31270-901 (Brazil); Heneine, Luiz Guilherme D. [Department of Health Science, Ezequiel Dias Foundation-FUNED, Belo Horizonte/MG 30510-010 (Brazil)

    2013-03-01

    Bovine pericardium is widely used as a raw material in bioengineering as a source of collagen, a fundamental structural molecule. The physical, chemical, and biocompatibility characteristics of these natural fibers enable their broad use in several areas of the health sciences. For these applications, it is important to obtain collagen of the highest possible purity. The lack of a method to produce these pure biocompatible materials using simple and economically feasible techniques presents a major challenge to their production on an industrial scale. This study aimed to extract, purify, and characterize the type I collagen protein originating from bovine pericardium, considered to be an abundant tissue resource. The pericardium tissue was collected from male animals at slaughter age. Pieces of bovine pericardium were enzymatically digested, followed by a novel protocol developed for protein purification using ion-exchange chromatography. The material was extensively characterized by electrophoresis, scanning electron microscopy, energy dispersive X-ray spectroscopy, and infrared spectroscopy. The results showed a purified material with morphological properties and chemical functionalities compatible with type I collagen and similar to a highly purified commercial collagen. Thus, an innovative and relatively simple processing method was developed to extract and purify type I collagen from bovine tissue with potential applications as a biomaterial for regenerative tissue engineering. - Highlights: Black-Right-Pointing-Pointer Type I collagen was obtained from bovine pericardium, an abundant tissue resource. Black-Right-Pointing-Pointer A simple and feasible processing technique was developed to purify bovine collagen. Black-Right-Pointing-Pointer The appropriate process may be performed on industrial scale. Black-Right-Pointing-Pointer The pure collagen presented appropriate morphological and molecular characteristics. Black-Right-Pointing-Pointer The purify

  2. Characterization of Grewia Gum, a Potential Pharmaceutical Excipient

    Directory of Open Access Journals (Sweden)

    Elijah.I.Nep

    2010-03-01

    Full Text Available Grewia gum was extracted from the inner stem bark of Grewia mollis and characterized by several techniques such as gas chromatography (GC, gel permeation chromatography (GPC, scanning electron microscopy (SEM, differential scanning calorimetry (DSC and thermogravimetric analysis of the extracted sample. Spectroscopic techniques such as x-ray photoelectron spectroscopy (XPS, fourier-transformed infrared (FT-IR, solid-state nuclear magnetic resonance (NMR, and 1H and 13C NMR techniques were also used to characterize the gum. The results showed that grewia gum is a typically amorphous polysaccharide gum containing glucose, rhamnose, galactose, arabinose and xylose as neutral sugars. It has an average molecular weight of 5925 kDa expressed as the pullulan equivalent. The gum slowly hydrated in water, dispersing and swelling to form a highly viscous dispersion exhibiting pseudoplastic flow behaviour. The polysaccharide gum is thermally stable and may have application as stabilizer or suspending agent in foods, cosmetics and in pharmaceuticals. It may have application as a binder or sustained-release polymer matrix in tablets or granulations.

  3. Characterization of air freshener emission: the potential health effects.

    Science.gov (United States)

    Kim, Sanghwa; Hong, Seong-Ho; Bong, Choon-Keun; Cho, Myung-Haing

    2015-01-01

    Air freshener could be one of the multiple sources that release volatile organic compounds (VOCs) into the indoor environment. The use of these products may be associated with an increase in the measured level of terpene, such as xylene and other volatile air freshener components, including aldehydes, and esters. Air freshener is usually used indoors, and thus some compounds emitted from air freshener may have potentially harmful health impacts, including sensory irritation, respiratory symptoms, and dysfunction of the lungs. The constituents of air fresheners can react with ozone to produce secondary pollutants such as formaldehyde, secondary organic aerosol (SOA), oxidative product, and ultrafine particles. These pollutants then adversely affect human health, in many ways such as damage to the central nervous system, alteration of hormone levels, etc. In particular, the ultrafine particles may induce severe adverse effects on diverse organs, including the pulmonary and cardiovascular systems. Although the indoor use of air freshener is increasing, deleterious effects do not manifest for many years, making it difficult to identify air freshener-associated symptoms. In addition, risk assessment recognizes the association between air fresheners and adverse health effects, but the distinct causal relationship remains unclear. In this review, the emitted components of air freshener, including benzene, phthalate, and limonene, were described. Moreover, we focused on the health effects of these chemicals and secondary pollutants formed by the reaction with ozone. In conclusion, scientific guidelines on emission and exposure as well as risk characterization of air freshener need to be established.

  4. Biochemical and Functional Characterization of Parawixia bistriata Spider Venom with Potential Proteolytic and Larvicidal Activities

    Science.gov (United States)

    Gimenez, Gizeli S.; Coutinho-Neto, Antonio; Kayano, Anderson M.; Simões-Silva, Rodrigo; Trindade, Frances; de Almeida e Silva, Alexandre; Marcussi, Silvana; da Silva, Saulo L.; Fernandes, Carla F. C.; Zuliani, Juliana P.; Calderon, Leonardo A.; Soares, Andreimar M.; Stábeli, Rodrigo G.

    2014-01-01

    Toxins purified from the venom of spiders have high potential to be studied pharmacologically and biochemically. These biomolecules may have biotechnological and therapeutic applications. This study aimed to evaluate the protein content of Parawixia bistriata venom and functionally characterize its proteins that have potential for biotechnological applications. The crude venom showed no phospholipase, hemorrhagic, or anti-Leishmania activities attesting to low genotoxicity and discrete antifungal activity for C. albicans. However the following activities were observed: anticoagulation, edema, myotoxicity and proteolysis on casein, azo-collagen, and fibrinogen. The chromatographic and electrophoretic profiles of the proteins revealed a predominance of acidic, neutral, and polar proteins, highlighting the presence of proteins with high molecular masses. Five fractions were collected using cation exchange chromatography, with the P4 fraction standing out as that of the highest purity. All fractions showed proteolytic activity. The crude venom and fractions P1, P2, and P3 showed larvicidal effects on A. aegypti. Fraction P4 showed the presence of a possible metalloprotease (60 kDa) that has high proteolytic activity on azo-collagen and was inhibited by EDTA. The results presented in this study demonstrate the presence of proteins in the venom of P. bistriata with potential for biotechnological applications. PMID:24895632

  5. Development and characterization of hyaluronic acid-lysine nanoparticles with potential as innovative dermal filling

    Directory of Open Access Journals (Sweden)

    Jaqueline Carneiro

    Full Text Available ABSTRACT Skin aging causes changes such as wrinkles and flaccidity leading to a large demand for aesthetic procedures, including dermal filling. A key agent in dermal filling is hyaluronic acid (HA, which is a naturally occurring glycosaminoglycan. However, it is a hydrophilic macromolecule that experiences great difficulty in crossing the skin barrier causing most commercial formulations containing it to be injectable, which in turn brings risks since they involve an invasive technique. In that sense, the aim of this study was to develop and characterize nanoparticles obtained from ionic interaction between HA and lysine (Lys for use as a potential agent of dermal filling for topical application, increasing and improving its applicability and safety. To this end, nanoparticles were obtained by dripping of Lys over HA under magnetic stirring. A nanometric size was confirmed and a suitable surface charge was obtained by zeta potential. Nanoparticles were almost spherical in shape with a smooth surface. Interaction between raw materials for preparing nanoparticles was studied by FTIR and NMR spectroscopy and an ionic interaction was confirmed. These physicochemical features suggest that obtained nanoparticles can be further used as a topical dermal filling.

  6. Effect of von Karman Vortex Shedding on Regular and Open-slit V-gutter Stabilized Turbulent Premixed Flames

    Science.gov (United States)

    2012-04-01

    Both flame lengths shrink and large scale disruptions occur downstream with vortex shedding carrying reaction zones. Flames in both flameholders...9) the flame structure changes dramatically for both regular and open-slit V-gutter. Both flame lengths shrink and large scale disruptions occur...reduces the flame length . However, qualitatively the open-slit V-gutter appears to be more sensitive than the regular V-gutter. Both flames remain

  7. Profiles in fibromyalgia: algometry, auditory evoked potentials and clinical characterization of different subtypes.

    Science.gov (United States)

    Triñanes, Yolanda; González-Villar, Alberto; Gómez-Perretta, Claudio; Carrillo-de-la-Peña, María T

    2014-11-01

    The heterogeneity found in fibromyalgia (FM) patients has led to the investigation of disease subgroups, mainly based on clinical features. The aim of this study was to test the hypothesis that clinical FM subgroups are associated with different underlying pathophysiological mechanisms. Sixty-three FM patients were classified in type I or type II, according to the Fibromyalgia Impact Questionnaire (FIQ), and in mild/moderate versus severe FM, according to the severity of three cardinal symptoms considered in the American College of Rheumatology (ACR) 2010 criteria (unrefreshed sleep, cognitive problems and fatigue). To validate the subgroups obtained by these two classifications, we calculated the area under the receiver operating characteristic curves for various clinical variables and for two potential biomarkers of FM: Response to experimental pressure pain (algometry) and the amplitude/intensity slopes of the auditory evoked potentials (AEPs) obtained to stimuli of increasing intensity. The variables that best discriminated type I versus type II were those related to depression, while the indices of clinical or experimental pain (threshold or tolerance) did not significantly differ between them. The variables that best discriminated the mild/moderate versus severe subgroups were those related to the algometry. The AEPs did not allow discrimination among the generated subsets. The FIQ-based classification allows the identification of subgroups that differ in psychological distress, while the index based on the ACR 2010 criteria seems to be useful to characterize the severity of FM mainly based on hyperalgesia. The incorporation of potential biomarkers to generate or validate classification criteria is crucial to advance in the knowledge of FM and in the understanding of pathophysiological pathways.

  8. Characterizing U.S. Heat Demand for Potential Application of Geothermal Direct Use: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Kevin; Gleason, Michael; Reber, Tim; Young, Katherine R.

    2016-10-01

    In this paper, we assess the U.S. demand for low-temperature thermal energy at the county resolution for four major end-use sectors: residential buildings, commercial buildings, manufacturing facilities, and agricultural facilities. Existing, publicly available data on the U.S. thermal demand market are characterized by coarse spatial resolution, with assessments typically at the state-level or larger. For many uses, these data are sufficient; however, our research was motivated by an interest in assessing the potential demand for direct use (DU) of low-temperature (30 degrees to 150 degrees C) geothermal heat. The availability and quality of geothermal resources for DU applications are highly spatially heterogeneous; therefore, to assess the potential market for these resources, it is necessary to understand the spatial variation in demand for low-temperature resources at a local resolution. This paper presents the datasets and methods we used to develop county-level estimates of the thermal demand for the residential, commercial, manufacturing, and agricultural sectors. Although this analysis was motivated by an interest in geothermal energy deployment, the results are likely to have broader applications throughout the energy industry. The county-resolution thermal demand data developed in this study for four major U.S. sectors may have far-reaching implications for building technologies, industrial processes, and various distributed renewable energy thermal resources (e.g. biomass, solar).

  9. Characterizing U.S. Heat Demand Market for Potential Application of Geothermal Direct Use

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Kevin; Gleason, Michael; Reber, Tim; Young, Katherine R.

    2017-05-01

    In this paper, we assess the U.S. demand for low-temperature thermal energy at the county resolution for four major end-use sectors: residential buildings, commercial buildings, manufacturing facilities, and agricultural facilities. Existing, publicly available data on the U.S. thermal demand market are characterized by coarse spatial resolution, with assessments typically at the state-level or larger. For many uses, these data are sufficient; however, our research was motivated by an interest in assessing the potential demand for direct use (DU) of low-temperature (30 degrees to 150 degrees C) geothermal heat. The availability and quality of geothermal resources for DU applications are highly spatially heterogeneous; therefore, to assess the potential market for these resources, it is necessary to understand the spatial variation in demand for low-temperature resources at a local resolution. This paper presents the datasets and methods we used to develop county-level estimates of the thermal demand for the residential, commercial, manufacturing, and agricultural sectors. Although this analysis was motivated by an interest in geothermal energy deployment, the results are likely to have broader applications throughout the energy industry. The county-resolution thermal demand data developed in this study for four major U.S. sectors may have far-reaching implications for building technologies, industrial processes, and various distributed renewable energy thermal resources (e.g. biomass, solar).

  10. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Federica; Wurth, Roberto [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Thellung, Stefano [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Daga, Antonio [Laboratory of Translational Oncology, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Cilli, Michele [Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Ferrari, Angelo [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Florio, Tullio, E-mail: tullio.florio@unige.it [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy)

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  11. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    International Nuclear Information System (INIS)

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina; Thellung, Stefano; Daga, Antonio; Cilli, Michele; Ferrari, Angelo; Florio, Tullio

    2012-01-01

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell–like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-α and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: ► Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 ► These grow as spheres in serum-free medium and self-renew ► Isolated stem-like cancer cells initiate tumor in immunodeficient mice ► Xenografted tumors are phenotypically similar to the original tumor ► Upon differentiation, cells grow as monolayers, loosing the tumorigenic potential

  12. Characterization of nasal potential difference in cftr knockout and F508del-CFTR mice.

    Directory of Open Access Journals (Sweden)

    Emilie Lyne Saussereau

    Full Text Available BACKGROUND: Treatments designed to correct cystic fibrosis transmembrane conductance regulator (CFTR defects must first be evaluated in preclinical experiments in the mouse model of cystic fibrosis (CF. Mice nasal mucosa mimics the bioelectric defect seen in humans. The use of nasal potential difference (V(TE to assess ionic transport is a powerful test evaluating the restoration of CFTR function. Nasal V(TE in CF mice must be well characterized for correct interpretation. METHODS: We performed V(TE measurements in large-scale studies of two mouse models of CF--B6;129 cftr knockout and FVB F508del-CFTR--and their respective wild-type (WT littermates. We assessed the repeatability of the test for cftr knockout mice and defined cutoff points distinguishing between WT and F508del-CFTR mice. RESULTS: We determined the typical V(TE values for CF and WT mice and demonstrated the existence of residual CFTR activity in F508del-CFTR mice. We characterized intra-animal variability in B6;129 mice and defined the cutoff points for F508del-CFTR chloride secretion rescue. Hyperpolarization of more than -2.15 mV after perfusion with a low-concentration Cl(- solution was considered to indicate a normal response. CONCLUSIONS: These data will make it possible to interpret changes in nasal V(TE in mouse models of CF, in future preclinical studies.

  13. Low Mach Scramjet Cavity Flameholder Stabilization, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses a NASA solicitation topic A2.06 need for propulsion system flow control. A dual mode ram/scram engine is the most likely cycle for the...

  14. How to characterize a potential site for CO2 storage with sparse data coverage - a Danish onshore site case

    International Nuclear Information System (INIS)

    Nielsen, Carsten Moller; Frykman, Peter; Dalhoff, Finn

    2015-01-01

    The paper demonstrates how a potential site for CO 2 storage can be evaluated up to a sufficient level of characterization for compiling a storage permit application, even if the site is only sparsely explored. The focus of the paper is on a risk driven characterization procedure. In the initial state of a site characterization process with sparse data coverage, the regional geological and stratigraphic understanding of the area of interest can help strengthen a first model construction for predictive modeling. Static and dynamic modeling in combination with a comprehensive risk assessment can guide the different elements needed to be evaluated for fulfilling a permit application. Several essential parameters must be evaluated; the storage capacity for the site must be acceptable for the project life of the operation, the trap configuration must be efficient to secure long term containment, the injectivity must be sufficient to secure a longstanding stable operation and finally a satisfactory and operational measuring strategy must be designed. The characterization procedure is demonstrated for a deep onshore aquifer in the northern part of Denmark, the Vedsted site. The site is an anticlinal structural closure in an Upper Triassic - Lower Jurassic sandstone formation at 1 800-1 900 m depth. (authors)

  15. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  16. Experimental study of the stabilization process of a non-premixed flame via the destabilization analysis of the blue ring flame

    Energy Technology Data Exchange (ETDEWEB)

    Pinguet, Guillaume; Escudie, Dany [Centre de Thermique de Lyon (CETHIL) UMR 5008 CNRS-INSA-UCBL, INSA de Lyon, 20 av. A. Einstein, 69621 Villeurbanne cedex (France)

    2007-04-15

    The flame stabilization phenomenon remains a crucial issue. The experimental study of flame stabilization behind a tulip-shaped flame-holder is addressed in this paper. The process leading to the transition between specific modes - the blue ring flame and the instable ring - of a non-premixed flame stabilized on a tulip-shaped bluff-body is detailed. The aim of this study is to provide an accurate description of the destabilization of specific combustion modes, which enables a further understanding of the entire stabilization mechanism. The aerodynamic and mixing fields are described by laser Doppler anemometry and concentration measurements by sampling probe respectively. The behaviour of shear layers developing at the wake and jet boundaries are characterized by means of a spectral analysis of the fluctuating radial velocity. Results show that the destabilization process is related to the intensification of hot gas recirculation, inducing an upheaval of the dynamical condition of stabilization and a transition of mixing phenomena. (author)

  17. Molecular characterization and serodiagnostic potential of a novel dithiol glutaredoxin 1 from Echinococcus granulosus.

    Science.gov (United States)

    Song, Xingju; Yan, Min; Hu, Dandan; Wang, Yu; Wang, Ning; Gu, Xiaobin; Peng, Xuerong; Yang, Guangyou

    2016-08-17

    The larval stage of Echinococcus granulosus is the etiological agent of cystic echinococcosis (CE), which causes serious morbidity and mortality in many areas. There is no reliable method to monitor sheep CE. Here, we characterize E. granulosus glutaredoxin 1 (Eg-Grx1) and report an improved immunodiagnostic method for CE. We cloned and expressed recombinant Eg-Grx1 and generated antibodies. We analyzed the location of the protein in different parasite stages by fluorescence immunohistochemistry, detected the immunogenicity of recombinant Eg-Grx1, and developed an indirect ELISA (iELISA) for CE serodiagnosis. Eg-Grx1 is a classic dithiol Grx with several GSH-binding motifs. Native Eg-Grx1 protein was distributed in the tegument of protoscoleces, the whole germinal layer, and the parenchymatous tissue of adult worms. Recombinant Eg-Grx1 exhibited good immunoreactivity to CE-infected sheep serum. An iELISA using this antigen showed specificity of 64.3 % (9/14) and sensitivity of 1:3200, and the diagnostic accordance rate was 97.9 % (47/48) compared with the results of necropsy. We characterized a novel Grx (Eg-Grx1) from a parasitic helminth and present a comprehensive analysis of the sequence and structure of this protein. The recombinant Eg-Grx1 protein showed good potential serodiagnostic performance, and we established an iELISA method, which may contribute to the surveillance of sheep CE in epidemic areas.

  18. Characterization and antimicrobial potential of extremely halophilic archaea isolated from hypersaline environments of the Algerian Sahara.

    Science.gov (United States)

    Quadri, Inès; Hassani, Imene Ikrame; l'Haridon, Stéphane; Chalopin, Morgane; Hacène, Hocine; Jebbar, Mohamed

    2016-01-01

    Halophilic archaea were isolated from different chotts and sebkha, dry salt lakes and salt flat respectively, of the Algerian Sahara and characterized using phenotypic and phylogenetic approaches. From 102 extremely halophilic strains isolated, forty three were selected and studied. These strains were also screened for their antagonistic potential and the production of hydrolytic enzymes. Sequencing of the 16S rRNA genes and phylogenetic analysis allowed the identification of 10 archaeal genera within the class Halobacteria: Natrinema (13 strains), Natrialba (12 strains), Haloarcula (4 strains), Halopiger (4 strains), Haloterrigena (3 strains), Halorubrum (2 strains), Halostagnicola (2 strains), Natronococcus, Halogeometricum and Haloferax (1 strain each). The most common producers of antimicrobial compounds belong to the genus Natrinema while the most hydrolytic isolates, with combined production of several enzymes, belong to the genus Natrialba. The strain affiliated to Halopiger djelfamassilliensis was found to produce some substances of interest (halocins, anti-Candida, enzymes). After partial purification and characterization of one of the strains Natrinema gari QI1, we found similarities between the antimicrobial compound and the halocin C8. Therefore, the gene encoding halocin C8 was amplified and sequenced. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Remote Sensing-Based Characterization of Settlement Structures for Assessing Local Potential of District Heat

    Directory of Open Access Journals (Sweden)

    Michael Nast

    2011-07-01

    Full Text Available In Europe, heating of houses and commercial areas is one of the major contributors to greenhouse gas emissions. When considering the drastic impact of an increasing emission of greenhouse gases as well as the finiteness of fossil resources, the usage of efficient and renewable energy generation technologies has to be increased. In this context, small-scale heating networks are an important technical component, which enable the efficient and sustainable usage of various heat generation technologies. This paper investigates how the potential of district heating for different settlement structures can be assessed. In particular, we analyze in which way remote sensing and GIS data can assist the planning of optimized heat allocation systems. In order to identify the best suited locations, a spatial model is defined to assess the potential for small district heating networks. Within the spatial model, the local heat demand and the economic costs of the necessary heat allocation infrastructure are compared. Therefore, a first and major step is the detailed characterization of the settlement structure by means of remote sensing data. The method is developed on the basis of a test area in the town of Oberhaching in the South of Germany. The results are validated through detailed in situ data sets and demonstrate that the model facilitates both the calculation of the required input parameters and an accurate assessment of the district heating potential. The described method can be transferred to other investigation areas with a larger spatial extent. The study underlines the range of applications for remote sensing-based analyses with respect to energy-related planning issues.

  20. Microscopic and spectroscopic characterization of humic substances from a compost amended copper contaminated soil: main features and their potential effects on Cu immobilization.

    Science.gov (United States)

    Medina, Jorge; Monreal, Carlos; Chabot, Denise; Meier, Sebastián; González, María Eugenia; Morales, Esteban; Parillo, Rita; Borie, Fernando; Cornejo, Pablo

    2017-06-01

    We characterized humic substances (HS) extracted from a Cu-contaminated soil without compost addition (C) or amended with a wheat straw-based compost (WSC) (H1), co-composted with Fe 2 O 3 (H2), or co-composted with an allophane-rich soil (H3). Extracted HS were characterized under electron microscopy (SEM/TEM), energy-dispersive X-ray (X-EDS), and Fourier transform infrared (FTIR) spectroscopy. In addition, HS extracted from WSC (H4) were characterized at pH 4.0 and 8.0 with descriptive purposes. At pH 4.0, globular structures of H4 were observed, some of them aggregating within a large network. Contrariwise, at pH 8.0, long tubular and disaggregated structures prevailed. TEM microscopy suggests organo-mineral interactions at scales of 1 to 200 nm with iron oxide nanoparticles. HS extracted from soil-compost incubations showed interactions at nanoscale with minerals and crystal compounds into the organic matrix of HS. Bands associated to acidic functional groups of HS may suggest potential sorption interactions with transition metals. We conclude that metal ions and pH have an important role controlling the morphology and configuration of HS from WSC. Characterization of H4 extracted from WSC showed that physicochemical protection of HS could be present in composting systems treated with inorganic materials. Finally, the humified fractions obtained from compost-amended soils may have an important effect on metal-retention, supporting their potential use in metal-contaminated soils.

  1. Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion of Phyllomedusa hypochondrialis.

    Science.gov (United States)

    Conceição, Katia; Konno, Katsuhiro; de Melo, Robson Lopes; Antoniazzi, Marta M; Jared, Carlos; Sciani, Juliana M; Conceição, Isaltino M; Prezoto, Benedito C; de Camargo, Antônio Carlos Martins; Pimenta, Daniel C

    2007-03-01

    Bradykinin potentiating peptides (BPPs) from Bothrops jararaca venom were first described in the middle of 1960s and were the first natural inhibitors of the angiotensin-converting enzyme (ACE). BPPs present a classical motif and can be recognized by their typical pyroglutamyl (Pyr)/proline rich sequences presenting, invariably, a proline residue at the C-terminus. In the present study, we describe the isolation and biological characterization of a novel BPP isolated from the skin secretion of the Brazilian tree-frog Phyllomedusa hypochondrialis. This new BPP, named Phypo Xa presents the sequence Pyr-Phe-Arg-Pro-Ser-Tyr-Gln-Ile-Pro-Pro and is able to potentiate bradykinin activities in vivo and in vitro, as well as efficiently and competitively inhibit ACE. This is the first canonical BPP (i.e. Pyr-Aaa(n)-Gln-Ile-Pro-Pro) to be found not only in the frog skin but also in any other natural source other than the snake venoms.

  2. Lipids Characterization and Industrial Potentials of Pumpkin Seeds (Telfairia occidentalis and Cashew Nuts (Anacardium occidentale

    Directory of Open Access Journals (Sweden)

    E. O. Eddy

    2011-01-01

    Full Text Available Oil from Telfaria occidentalis and Anarcardium occidentale has been extracted and characterized. The lipid content of the Telfaria occidentalis and Anarcardium occidentalis were 58.41% and 42.15% respectively. The physicochemical parameters of Telfaria occidentalis and Anarcardium occidentale seeds were; boiling point; (58.90, 62.60 °C, melting point; (18.50, 21.80 °C, refractive index; (1.462, 1.498, specific gravity; (0.87, 0.69 saponification value; (91.16, 92.57 iodine value; (51.52, 47.20, acid value; (0.76, 3.74 ester value; (90.40, 88.87, % free fatty acid; (.38, 1.88 and peroxide value; (11.75, 15.23 respectively. Oils from these seeds were found to exhibit the needed potentials for utilization in paint and food industries and as biofuel.

  3. Four-point potential drop measurements for materials characterization

    International Nuclear Information System (INIS)

    Bowler, Nicola

    2011-01-01

    The technique of measuring the voltage difference (potential drop) between two of the four electrodes of a four-point probe, in order to determine conductivity or surface resistivity of a test piece, is well established in the direct-current (dc) or quasi-dc regime. The technique finds wide usage in the semiconductor industry for the purpose of measuring surface resistivity of semiconductors, and also in the measurement of conductivity of metals, particularly of ferromagnetic metals for which conductivity cannot be easily measured using eddy-current nondestructive evaluation (NDE). In these applications, the conductivity of the test piece is deduced from an analytic formula that depends on the geometry of the probe and test piece. Such a formula requires, as an input, the measured value of the potential drop. Several analytical expressions exist for a variety of test-piece geometries and probe arrangements. Recently, it has been shown that broadband measurements of the potential drop, known as 'alternating current potential drop' (ac PD) measurements, can be used not only to obtain the conductivity of a test piece, but also its linear permeability μ. The beauty of this measurement is that the two parameters are completely decoupled in the quasi-static regime. In fact, μ does not appear in the quasi-static expression for σ. Hence, σ may be obtained from low-frequency ac PD measurements and then μ may be deduced as the frequency increases beyond the quasi-static regime, once σ is known. In this review, both dc and ac solutions that are useful in determining the conductivity of metals and semiconductors, and the permeability of ferromagnetic conductors, are summarized. In particular, flat test pieces with arbitrary thickness are considered. At the next level of complexity, a solution for a half-space coated with a surface layer is given, along with a discussion of the use of the four-point potential drop method for determining thickness of a surface layer, such

  4. Potential spoilage yeasts in winery environments: Characterization and proteomic analysis of Trigonopsis cantarellii.

    Science.gov (United States)

    Portugal, Cauré; Pinto, Luís; Ribeiro, Miguel; Tenorio, Carmen; Igrejas, Gilberto; Ruiz-Larrea, Fernanda

    2015-10-01

    Wine microbiota is complex and includes a wide diversity of yeast species. Few of them are able to survive under the restrictive conditions of dry red wines. In our study we detected and identified seven yeast species of the order Saccharomycetales that can be considered potential spoilers of wines due to physiological traits such as acidogenic metabolism and off-odor generation: Arthroascus schoenii, Candida ishiwadae, Meyerozyma guilliermondii, Pichia holstii, Pichia manshurica, Trigonopsis cantarellii, and Trigonopsis variabilis. Based on the prevalence of T. cantarellii isolates in the wine samples of our study, we further characterized this species, determined molecular and phenotypic features, and performed a proteomic analysis to identify differentially expressed proteins at mid-exponential growth phase in the presence of ethanol in the culture broth. This yeast species is shown to be able to grow in the presence of ethanol by expressing heat shock proteins (Hsp70, Hsp71) and a DNA damage-related protein (Rad24), and to be able to confer spoilage characteristics on wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA

    Science.gov (United States)

    Boucher, P.; Saenz, E.; Li, Z.

    2018-01-01

    Contemporary terrestrial laser scanning (TLS) is being used widely in forest ecology applications to examine ecosystem properties at increasing spatial and temporal scales. Harvard Forest (HF) in Petersham, MA, USA, is a long-term ecological research (LTER) site, a National Ecological Observatory Network (NEON) location and contains a 35 ha plot which is part of Smithsonian Institution's Forest Global Earth Observatory (ForestGEO). The combination of long-term field plots, eddy flux towers and the detailed past historical records has made HF very appealing for a variety of remote sensing studies. Terrestrial laser scanners, including three pioneering research instruments: the Echidna Validation Instrument, the Dual-Wavelength Echidna Lidar and the Compact Biomass Lidar, have already been used both independently and in conjunction with airborne laser scanning data and forest census data to characterize forest dynamics. TLS approaches include three-dimensional reconstructions of a plot over time, establishing the impact of ice storm damage on forest canopy structure, and characterizing eastern hemlock (Tsuga canadensis) canopy health affected by an invasive insect, the hemlock woolly adelgid (Adelges tsugae). Efforts such as those deployed at HF are demonstrating the power of TLS as a tool for monitoring ecological dynamics, identifying emerging forest health issues, measuring forest biomass and capturing ecological data relevant to other disciplines. This paper highlights various aspects of the ForestGEO plot that are important to current TLS work, the potential for exchange between forest ecology and TLS, and emphasizes the strength of combining TLS data with long-term ecological field data to create emerging opportunities for scientific study. PMID:29503723

  6. The potential to characterize ecological data with terrestrial laser scanning in Harvard Forest, MA.

    Science.gov (United States)

    Orwig, D A; Boucher, P; Paynter, I; Saenz, E; Li, Z; Schaaf, C

    2018-04-06

    Contemporary terrestrial laser scanning (TLS) is being used widely in forest ecology applications to examine ecosystem properties at increasing spatial and temporal scales. Harvard Forest (HF) in Petersham, MA, USA, is a long-term ecological research (LTER) site, a National Ecological Observatory Network (NEON) location and contains a 35 ha plot which is part of Smithsonian Institution's Forest Global Earth Observatory (ForestGEO). The combination of long-term field plots, eddy flux towers and the detailed past historical records has made HF very appealing for a variety of remote sensing studies. Terrestrial laser scanners, including three pioneering research instruments: the Echidna Validation Instrument, the Dual-Wavelength Echidna Lidar and the Compact Biomass Lidar, have already been used both independently and in conjunction with airborne laser scanning data and forest census data to characterize forest dynamics. TLS approaches include three-dimensional reconstructions of a plot over time, establishing the impact of ice storm damage on forest canopy structure, and characterizing eastern hemlock ( Tsuga canadensis ) canopy health affected by an invasive insect, the hemlock woolly adelgid ( Adelges tsugae ). Efforts such as those deployed at HF are demonstrating the power of TLS as a tool for monitoring ecological dynamics, identifying emerging forest health issues, measuring forest biomass and capturing ecological data relevant to other disciplines. This paper highlights various aspects of the ForestGEO plot that are important to current TLS work, the potential for exchange between forest ecology and TLS, and emphasizes the strength of combining TLS data with long-term ecological field data to create emerging opportunities for scientific study.

  7. HabEx: Finding and characterizing Habitable Exoplanets with a potential future flagship astrophysics mission

    Science.gov (United States)

    Domagal-Goldman, S. D.; Gaudi, B. S.; Seager, S.; Mennesson, B.; Warfield, K.; Cahoy, K.; Feinberg, L. D.; Guyon, O.; Kasdin, N. J.; Mawet, D.; Robinson, T. D.; Rogers, L.; Scowen, P. A.; Somerville, R. S.; Stapelfeldt, K. R.; Stern, D.; Turnbull, M. C.; Marois, C.; Mouillet, D.; Prusti, T.; Quirrenbach, A.; Tamura, M.; Still, M.; Hudgins, D.

    2016-12-01

    HabEx - the Habitable Exoplanet Imager - is one of four flagship missions that NASA is studying in advance of the next Astrophysics Decadal Survey. The primary goal of HabEx will be to directly image and characterize rocky planets in the habitable zones of other stars. Specifically, HabEx aims to search for signs of liquid water oceans and biological activity on such worlds. Additionally, HabEx will also be able to pursue a range of other astrophysics investigations, including the study of non-habitable exoplanets, the study of Solar System objects, and observations of galaxies. The technical drivers for HabEx will be determined by the significant challenges associated with the direct imaging and characterization of potentially habitable exoplanets. This requires a large enough collecting area to collect light from these very dim targets, and the ability to block light from the dramatically brighter host star the planet orbits. There are multiple approaches to these challenges, and the goal of the HabEx study is to demonstrate that at least one can be executed with technologies that can be matured in time for a lunch in the 2030s. In this presentation, we will discuss the top-level exoplanet science goals of HabEx, and how those goals led to basic and preliminary architectural properties such as aperture size, starlight suppression technique, wavelength range, etc. We will then discuss how these architectural properties could allow for the astronomical study of other targets in and beyond the Solar System.

  8. Saccharomyces cerevisiae variety diastaticus friend or foe?-spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization.

    Science.gov (United States)

    Meier-Dörnberg, Tim; Kory, Oliver Ingo; Jacob, Fritz; Michel, Maximilian; Hutzler, Mathias

    2018-06-01

    Saccharomyces cerevisiae variety diastaticus is generally considered to be an obligatory spoilage microorganism and spoilage yeast in beer and beer-mixed beverages. Their super-attenuating ability causes increased carbon dioxide concentrations, beer gushing and potential bottle explosion along with changes in flavor, sedimentation and increased turbidity. This research shows clear differences in the super-attenuating properties of S. cerevisiae var. diastaticus yeast strains and their potential for industrial brewing applications. Nineteen unknown spoilage yeast cultures were obtained as isolates and characterized using a broad spectrum of genetic and phenotypic methods. Results indicated that all isolates represent genetically different S. cerevisiae var. diastaticus strains except for strain TUM PI BA 124. Yeast strains were screened for their super-attenuating ability and sporulation. Even if the STA1 gene responsible for super-attenuation by encoding for the enzyme glucoamylase could be verified by real-time polymerase chain reaction, no correlation to the spoilage potential could be demonstrated. Seven strains were further characterized focusing on brewing and sensory properties according to the yeast characterization platform developed by Meier-Dörnberg. Yeast strain TUM 3-H-2 cannot metabolize dextrin and soluble starch and showed no spoilage potential or super-attenuating ability even when the strain belongs to the species S. cerevisiae var. diastaticus. Overall, the beer produced with S. cerevisiae var. diastaticus has a dry and winey body with noticeable phenolic off-flavors desirable in German wheat beers.

  9. Tuned apatitic materials: Synthesis, characterization and potential antimicrobial applications

    Science.gov (United States)

    Fierascu, Irina; Fierascu, Radu Claudiu; Somoghi, Raluca; Ion, Rodica Mariana; Moanta, Adriana; Avramescu, Sorin Marius; Damian, Celina Maria; Ditu, Lia Mara

    2018-04-01

    Inorganic antimicrobial materials can be viable for multiple applications (related to its use for new buildings with special requirements related to microbiological loading, such as hospital buildings and for consolidation of cultural heritage constructions); also the use of substituted hydroxyapatites for protection of stone artefacts against environmental factors (acidic rain) and biodeterioration it's an option to no longer use of toxic substances. This paper presents methods of synthesis and characterization of the material from the point of view of the obtained structures and final applications. The materials were characterized in terms of composition and morphology (using X-ray Diffraction, X-ray Fluorescence, Inductively coupled plasma-atomic emission spectrometry, Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy, Surface area and pore size determination). Antimicrobial activity was tested against filamentous fungi strains and pathogenic bacteria strains, using both spot on lawn qualitative method (on agar medium) and serial microdilution quantitative method (in broth medium). Further, it was evaluated the anti-biofilm activity of the tested samples toward the most important microbial strains implicated in biofilm development, using crystal violet stained biofilms microtiter assay, followed by spectrophotometric quantitative evaluation.

  10. Characterizing potential heart agents with an isolated perfused heart system

    International Nuclear Information System (INIS)

    Pendleton, D.B.; Sands, H.; Gallagher, B.M.; Camin, L.L.

    1984-01-01

    The authors have used an isolated perfused heart system for characterizing potential myocardial perfusion radiopharamaceuticals. Rabbit or guinea pig (GP) hearts are removed and perfused through the aorta with a blood-free buffer. Heart rate and ventricular pressure are monitored as indices of viability. Tc-99m-MAA is 96-100% retained in these hearts, and Tc-99m human serum albumin shows less than 5% extraction. Tl-201 is 30-40% extracted. It is known that in-vivo, Tc-99m(dmpe)/sub 2/Cl/sub 2//sup +/ is taken up by rabbit heart but not by GP or human heart. Analogous results are obtained with the isolated perfused heart model, where the complex is extracted well by the isolated rabbit heart (24%) but not by the GP heart (<5%). Values are unchanged if human, rabbit or GP blood is mixed and co-injected with the complex. Tc-99m)dmpe)/sub 3//sup +/ is also taken up by rabbit but not by GP hearts in-vivo. However, isolated perfused hearts of both species extract this complex well (45-52%). Heart uptake is diminished to <7% if the complex is pre-equilibrated with human blood. GP blood produces a moderate inhibition (in GP hearts only) and rabbit blood has no effect. This suggests that a human or GP blood factor may have a significant effect on heart uptake of this complex. Tc-99m(CN-t-butyl)/sub 6//sup +/ is taken up well by both rabbit and GP hearts in-vivo, and is extracted 100% by both isolated perfused hearts. Heart retention remains high (73-75%) in the presence of human blood

  11. Development and analytical characterization of vitamin(s)-loaded chitosan nanoparticles for potential food packaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Aresta, Antonella, E-mail: antonellamaria.aresta@uniba.it; Calvano, Cosima Damiana [University of Bari, Department of Chemistry (Italy); Trapani, Adriana; Cellamare, Saverio [University of Bari, Department of Pharmacy-Drug Sciences (Italy); Zambonin, Carlo Giorgio; De Giglio, Elvira [University of Bari, Department of Chemistry (Italy)

    2013-04-15

    Most vitamins are well-known natural antioxidant agents which can be usefully employed for foods preservation to increase their shelf life. In the present study, we aimed to investigate the potential of vitamin-based chitosan nanoparticles (CSNPs) for novel food packaging application. In particular, Vitamin C- and/or E-loaded CSNPs were formulated following the ionic gelation technique and using sulfobutylether-{beta}-cyclodextrin as cross-linking agent. The obtained CSNPs were characterized in terms of size and zeta potential measurements, leading to size range of 375-503 nm and zeta range values from +16.0 to +33.8 mV. At the solid-state, the same particles were subjected to X-ray photoelectron spectroscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. Then, the antioxidant potential of the produced vitamin(s) nanoparticulate formulations has been evaluated through 1,1-diphenyl-2-picrylhydrazyl test, a rapid spectrophotometric assay. The standardized procedure was used on vitamin(s)-modified CSNPs systems to determine both the amount of active vitamin(s) loaded in CSNPs and their release performances by in vitro release studies. Of all, high vitamins association efficiency along with an improvement of their shelf life (also under light exposure up to 7 days) were achieved. Altogether, the results suggest that Vitamin E is available in a hydrophilic delivery system able to replace organic solvents usually used for the solubilization of this antioxidant agent. In conclusion, these nanocarriers represent a promising strategy for the co-administration of Vitamin E and Vitamin C in packaging materials intended for a better storage of hydrophilic and/or lipophilic food.

  12. Characterization of potential zones of dust generation at eleven stations in the southern Sahara

    Science.gov (United States)

    Clark, I.; Assamoi, P.; Bertrand, J.; Giorgi, F.

    Synoptic wind data for multi-decadal periods at eleven stations located in the southern Sahara region (Agadez, Atar, Bilma, Dori, Gao, Kayes, Nema, Niamey, Nouadhibou, Ouagadougou and Tessalit) are used to study the monthly dust deflation power over the region. We found that, regardless of the conditions of the soil, the deflation power (or wind efficiency) is not sufficient to generate significant amounts of aerosols south of 15°N. North of this latitude, the deflation power is much larger, with potential zones of either very strong deflation (Nouadhibou and Bilma) or severe deflation (Gao, Tessalit, Nema, Atar, Agadez). Stations in the Sahel region such as Gao, Agadez and Tessalit are characterized by a gradual reinforcement of the deflation power between 1970 and 1984 in correspondence of increasing desertification over the region. During this same period, Bilma, a well know region of dust source, experienced a major reduction in deflation power due to shifts in large scale wind patterns.

  13. Characterizing the potential energy surface of the water dimer with DFT: failures of some popular functionals for hydrogen bonding.

    Science.gov (United States)

    Anderson, Julie A; Tschumper, Gregory S

    2006-06-08

    Ten stationary points on the water dimer potential energy surface have been examined with ten density functional methods (X3LYP, B3LYP, B971, B98, MPWLYP, PBE1PBE, PBE, MPW1K, B3P86, and BHandHLYP). Geometry optimizations and vibrational frequency calculations were carried out with the TZ2P(f,d)+dif basis set. All ten of the density functionals correctly describe the relative energies of the ten stationary points. However, correctly describing the curvature of the potential energy surface is far more difficult. Only one functional (BHandHLYP) reproduces the number of imaginary frequencies from CCSD(T) calculations. The other nine density functionals fail to correctly characterize the nature of at least one of the ten (H(2)O)(2) stationary points studied here.

  14. Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential.

    Science.gov (United States)

    Rehman, Abdul; Farooq, Muhammad; Nawaz, Ahmad; Al-Sadi, Abdullah M; Al-Hashmi, Khalid S; Nadeem, Faisal; Ullah, Aman

    2018-03-15

    Zinc (Zn) is essential for all life forms and its deficiency is a major issue of malnutrition in humans. This study was carried out to characterize 28 wheat genotypes of Pakistani origin for grain zinc biofortification potential, genetic diversity and relatedness. There was low genetic differentiation among the tested genotypes. However, they differed greatly in yield-related traits, grain mineral (Zn, calcium (Ca) and protein) concentrations and Zn bioavailability. Zinc application increased the concentration of Zn in wheat grain (32.1%), embryo (19.8%), aleurone (47%) and endosperm (23.7%), with an increase in bioavailable Zn (22.2%) and a reduction in phytate concentration (6.8%). Application of Zn also enhanced grain protein and Ca concentrations. Among wheat genotypes, Blue Silver had the highest concentration of Zn in grain, embryo, aleurone and endosperm, with high bioavailable Zn, while Kohinoor-83 had low phytate concentration. Wheat genotypes of Pakistan are genetically less diverse owing to continuous focus on the development of high-yielding varieties only. Therefore genetically diverse wheat genotypes with high endospermic Zn concentration and better grain yield should be used in breeding programs approaches, aiming at improving Zn bioavailability. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Isolation and characterization of antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties.

    Science.gov (United States)

    Valan Arasu, M; Jung, M-W; Ilavenil, S; Jane, M; Kim, D-H; Lee, K-D; Park, H-S; Hur, T-Y; Choi, G-J; Lim, Y-C; Al-Dhabi, N A; Choi, K-C

    2013-11-01

    The purpose of this study was to isolate, identify and characterize an antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties. The 16S rRNA gene-based phylogenetic affiliation was determined using bioinformatic tools and identified as Lactobacillus sp. KCC-10 with 100% sequence similarity to L. plantarum. The antifungal substances were extracted with ethyl acetate from spent medium in which Lactobacillus sp. KCC-10 was cultivated. Antifungal activity was assessed using the broth microdilution technique. The compounds were obtained by eluting the crude extract with various concentrations of solvents followed by chromatographic purification. Based on the infrared, (13) C nuclear magnetic resonance (NMR) and (1) H NMR spectral data, the compound was identified as a phenolic-related antibiotic. The minimum inhibitory concentration of the compound against Aspergillus clavatus, A. oryzae, Botrytis elliptica and Scytalidium vaccinii was 2.5 mg ml(-1) and that against A. fumigatus, A. niger and S. fusca was 5.0 mg ml(-1) , respectively. In addition, Lactobacillus sp. KCC-10 was highly sensitive towards oxgall (0.3%) but grew well in the presence of sodium taurocholate (0.3%). An antimicrobial susceptibility pattern was an intrinsic feature of this strain; thus, consumption does not represent a health risk to humans or animals. Novel L. plantarum KCC-10 with antifungal and potential probiotic properties was characterized for use in animal food. This study revealed that L. plantarum KCC-10 exhibited good antifungal activity similar to that of probiotic Lactobacillus strains. © 2013 The Society for Applied Microbiology.

  16. Physical and chemical characterization of the pulp of different varieties of avocado targeting oil extraction potential

    Directory of Open Access Journals (Sweden)

    Edinéia Dotti Mooz

    2012-06-01

    Full Text Available The aim of this study was to evaluate the physicochemical properties of avocado pulp of four different varieties (Avocado, Guatemala, Dickinson, and Butter pear and to identify which has the greatest potential for oil extraction. Fresh avocado pulp was characterized by moisture, protein, fat, ash, carbohydrates and energy contents were determined. The carotenoids and chlorophyll contents were determined by the organic solvent extraction method. The results showed significant differences in the composition of the fruit when varieties are compared. However, the striking feature in all varieties is high lipid content; Avocado and Dickinson are the most suitable varieties for oil extraction, taking into account moisture content and the levels of lipids in the pulp. Moreover, it could be said that the variety Dickinson is the most affected by the parameters evaluated in terms of overall quality. Chlorophyll and carotenoids, fat-soluble pigments, showed a negative correlation with respect to lipids since it could be related to its function in the fruit. The varieties Avocado and Dickinson are an alternative to oil extraction having great commercial potential to be exploited thus avoiding waste and increasing farmers’ income.

  17. The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential.

    Science.gov (United States)

    Janero, David R

    2014-08-01

    Technology often serves as a handmaiden and catalyst of invention. The discovery of safe, effective medications depends critically upon experimental approaches capable of providing high-impact information on the biological effects of drug candidates early in the discovery pipeline. This information can enable reliable lead identification, pharmacological compound differentiation and successful translation of research output into clinically useful therapeutics. The shallow preclinical profiling of candidate compounds promulgates a minimalistic understanding of their biological effects and undermines the level of value creation necessary for finding quality leads worth moving forward within the development pipeline with efficiency and prognostic reliability sufficient to help remediate the current pharma-industry productivity drought. Three specific technologies discussed herein, in addition to experimental areas intimately associated with contemporary drug discovery, appear to hold particular promise for strengthening the preclinical valuation of drug candidates by deepening lead characterization. These are: i) hydrogen-deuterium exchange mass spectrometry for characterizing structural and ligand-interaction dynamics of disease-relevant proteins; ii) activity-based chemoproteomics for profiling the functional diversity of mammalian proteomes; and iii) nuclease-mediated precision gene editing for developing more translatable cellular and in vivo models of human diseases. When applied in an informed manner congruent with the clinical understanding of disease processes, technologies such as these that span levels of biological organization can serve as valuable enablers of drug discovery and potentially contribute to reducing the current, unacceptably high rates of compound clinical failure.

  18. Characterization of Chlorhexidine-Loaded Calcium-Hydroxide Microparticles as a Potential Dental Pulp-Capping Material

    Directory of Open Access Journals (Sweden)

    Balasankar M. Priyadarshini

    2017-06-01

    Full Text Available This study explores the delivery of novel calcium hydroxide [Ca(OH2] microparticles loaded with chlorhexidine (CHX for potential dental therapeutic and preventive applications. Herein, we introduce a new approach for drug-delivery to deep dentin-surfaces in the form of drug-loaded microparticles. Unloaded Ca(OH2 [Ca(OH2/Blank] and CHX-loaded/Ca(OH2 microparticles were fabricated by aqueous chemical-precipitation technique. The synthesized-microparticles were characterized in vitro for determination of surface-morphology, crystalline-features and thermal-properties examined by energy-dispersive X-ray scanning and transmission electron-microscopy (EDX-SEM/TEM, Fourier-transform infrared-spectroscopy (FTIR, X-ray diffraction (XRD, thermogravimetric analysis (TGA and differential scanning-calorimetry (DSC. Time-related pH changes, initial antibacterial/biofilm-abilities and cytotoxicity of CHX-loaded/Ca(OH2 microparticles were evaluated. Microparticles were delivered to dentin-surfaces with subsequent SEM examination of treated dentin-substrates. The in vitro and ex vivo CHX-release profiles were characterized. Ca(OH2/Blank were hexagonal-shaped with highest z-average diameter whereas CHX-inclusion evidenced micro-metric spheres with distinguishable surface “rounded deposits” and a negative-shift in diameter. CHX:Ca(OH2/50 mg exhibited maximum encapsulation-efficiency with good antibacterial and cytocompatible properties. SEM examination revealed an intact layer of microparticles on exposed dentin-surfaces with retention of spherical shape and smooth texture. Microparticles loaded on dentin-surfaces showed prolonged release of CHX indicating substantial retention on dentin-substrates. This study validated the inherent-applicability of this novel drug-delivery approach to dentin-surfaces using micro-metric CHX-loaded/Ca(OH2 microparticles.

  19. Separation, Characterization and Fouling Potential of Sludge Waters from Different Biological Wastewater Treatment Processes

    KAUST Repository

    Xue, Jinkai

    2011-07-01

    The major limitation, which hinders the wider application of membrane technology and increases the operating costs of membranes involved in wastewater treatment plants, is membrane fouling induced by organic matter. Extracellular polymeric products (EPS) and soluble microbial products (SMP) are the two most mentioned major foulants in publications, for which the debate on precise definitions seems to be endless. Therefore, a concept of sludge water, which conceptually covers both EPS and SMP, has been developed in this research. A standard procedure of sludge water separation, which is centrifugation at 4000g for 15 min followed by 1.2μm glass fiber filter filtration, was established based on separation experiments with membrane tank sludge from the KAUST MBR wastewater treatment plant. Afterwards, sludge waters from the KAUST MBR WWTP anoxic tank, aerobic tank and membrane tank as well as sludge waters from the Jeddah WWTP anoxic tank, aerobic tank and secondary effluent were produced through the previously developed standard procedure. The obtained sludge water samples were thereafter characterized with TOC/COD, LC-­‐OCD and F-­‐EEM, which showed that KAUST anoxic/ aerobic /membrane tank sludge waters had similar characteristics for all investigated parameters, yet the influent naturally had a higher DOC and biopolymer concentration. Moreover, lower TOC/COD, negligible biopolymers and low levels of humics were found in KAUST effluent. Compared with the KAUST MBR WWTP, the Jeddah WWTP’s sludge waters generally had higher DOC and biopolymer concentrations. To investigate sludge water fouling potential, the KAUST membrane tank sludge water as well as the Jeddah secondary effluent were filtrated through a membrane array consisting of an ultrafiltration (UF) Millipore RC10kDa at the first step followed by a nanofiltration (NF) KOCH Acid/Base stable NF200 at the second step. It was found that cake layer and standard blocking occurred simultaneously during both

  20. Evolution and characterization of eggshell as a potential candidate of raw material

    OpenAIRE

    Zaman, T.; Mostari, Mst. S.; Mahmood, Md. A. Al; Rahman, Md. S.

    2018-01-01

    Abstract Characterization of both uncalcined and calcined eggshells was done in this work. Raw eggshells turned out as a good source of calcite phase. Calcined eggshells had a mixture of lime and portlandite phase. A significant impact of calcination temperature on the percentage of generated phases was observed. Qualitative as well as semi-quantitative phase analysis, morphological characterization and physical property estimation was done for the produced powder. The influence of synthesize...

  1. Development and analytical characterization of vitamin(s)-loaded chitosan nanoparticles for potential food packaging applications

    International Nuclear Information System (INIS)

    Aresta, Antonella; Calvano, Cosima Damiana; Trapani, Adriana; Cellamare, Saverio; Zambonin, Carlo Giorgio; De Giglio, Elvira

    2013-01-01

    Most vitamins are well-known natural antioxidant agents which can be usefully employed for foods preservation to increase their shelf life. In the present study, we aimed to investigate the potential of vitamin-based chitosan nanoparticles (CSNPs) for novel food packaging application. In particular, Vitamin C- and/or E-loaded CSNPs were formulated following the ionic gelation technique and using sulfobutylether-β-cyclodextrin as cross-linking agent. The obtained CSNPs were characterized in terms of size and zeta potential measurements, leading to size range of 375–503 nm and zeta range values from +16.0 to +33.8 mV. At the solid-state, the same particles were subjected to X-ray photoelectron spectroscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. Then, the antioxidant potential of the produced vitamin(s) nanoparticulate formulations has been evaluated through 1,1-diphenyl-2-picrylhydrazyl test, a rapid spectrophotometric assay. The standardized procedure was used on vitamin(s)-modified CSNPs systems to determine both the amount of active vitamin(s) loaded in CSNPs and their release performances by in vitro release studies. Of all, high vitamins association efficiency along with an improvement of their shelf life (also under light exposure up to 7 days) were achieved. Altogether, the results suggest that Vitamin E is available in a hydrophilic delivery system able to replace organic solvents usually used for the solubilization of this antioxidant agent. In conclusion, these nanocarriers represent a promising strategy for the co-administration of Vitamin E and Vitamin C in packaging materials intended for a better storage of hydrophilic and/or lipophilic food.

  2. Physical-chemical characterization of bovine bone ash for evaluating its potential agricultural use

    Directory of Open Access Journals (Sweden)

    Eduardo Pacca Luna Mattar

    2014-03-01

    Full Text Available The manufacturing of bovine bone ash is a low cost and easy production process which can be adopted for making good use of animal residues, in locations without infrastructure, such as the family production units. This study aimed at describing the manufacturing process of bone ash and characterizing the physical and chemical parameters of the resulting material for organic fertilization. The experiment was performed with three replications, being evaluated the bovine bone ash manufacturing process yield, as well as its density, water retention capacity, pH of the resulting material after burning and contents of total calcium, calcium soluble in water, total phosphorus and phosphorus soluble in citric acid and in ammonium citrate. The process resulted in an average yield of 24.4% and the bovine bone ash presented 33.07% of total calcium, 15.6% of total phosphorus, 10.4% of phosphorus soluble in citric acid, pH of 9.94, density of 0.89 g cm-3 and water retention capacity of 73.3%. The bovine bone ash showed promising characteristics, with potential for being used as source of phosphorus and calcium in the organic fertilization process.

  3. Functionalized polypyrrole film: synthesis, characterization, and potential applications in chemical and biological sensors.

    Science.gov (United States)

    Dong, Hua; Cao, Xiaodong; Li, Chang Ming

    2009-07-01

    In this paper, we report the synthesis of a carboxyl-functionalized polypyrrole derivative, a poly(pyrrole-N-propanoic acid) (PPPA) film, by electrochemical polymerization, and the investigation of its basic properties via traditional characterization techniques such as confocal-Raman, FTIR, SEM, AFM, UV-vis, fluorescence microscopy, and contact-angle measurements. The experimental data show that the as-prepared PPPA film exhibits a hydrophilic nanoporous structure, abundant -COOH functional groups in the polymer backbone, and high fluorescent emission under laser excitation. On the basis of these unique properties, further experiments were conducted to demonstrate three potential applications of the PPPA film in chemical and biological sensors: a permeable and permselective membrane, a membrane with specific recognition sites for biomolecule immobilization, and a fluorescent conjugated polymer for amplification of fluorescence quenching. Specifically, the permeability and permselectivity of ion species through the PPPA film are detected by means of rotating-disk-electrode voltammetry; the specific recognition sites on the film surface are confirmed with protein immobilization, and the amplification of fluorescence quenching is measured by the addition of a quenching agent with fluorescence microscopy. The results are in good agreement with our expectations.

  4. Characterization of the Potential Hazards Associated with Potential RCRA Treatment Noncompliances

    Energy Technology Data Exchange (ETDEWEB)

    Clark, David Lewis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-20

    The purpose of this document is to provide a hazard evaluation of the noncompliances and whether any new actions are required to mitigate potential risk to the worker or the public. In short, we have reviewed the noncompliances and have concluded that the possibility of exothermic reactions leading to radioactive release is not credible, and in one case, inconceivable, stemming from the fact that the majority fraction of the waste is compatible with organic absorbents and neutralizers. It is not expected that the noncompliances would generate or produce uncontrolled flammable fumes, gases, extreme heat, pressure, fire, explosions, or violent reactions.

  5. Isolation and characterization of butachlor-catabolizing bacterial strain Stenotrophomonas acidaminiphila JS-1 from soil and assessment of its biodegradation potential.

    Science.gov (United States)

    Dwivedi, S; Singh, B R; Al-Khedhairy, A A; Alarifi, S; Musarrat, J

    2010-07-01

    Isolation, characterization and assessment of butachlor-degrading potential of bacterial strain JS-1 in soil. Butachlor-degrading bacteria were isolated using enrichment culture technique. The morphological, biochemical and genetic characteristics based on 16S rDNA sequence homology and phylogenetic analysis confirmed the isolate as Stenotrophomonas acidaminiphila strain JS-1. The strain JS-1 exhibited substantial growth in M9 mineral salt medium supplemented with 3.2 mmol l(-1) butachlor, as a sole source of carbon and energy. The HPLC analysis revealed almost complete disappearance of butachlor within 20 days in soil at a rate constant of 0.17 day(-1) and half-life (t((1/2))) of 4.0 days, following the first-order rate kinetics. The strain JS-1 in stationary phase of culture also produced 21.0 microg ml(-1) of growth hormone indole acetic acid (IAA) in the presence of 500 microg ml(-1) of tryptophan. The IAA production was stimulated at lower concentrations of butachlor, whereas higher concentrations above 0.8 mmol l(-1) were found inhibitory. The isolate JS-1 characterized as Stenotrophomonas acidaminiphila was capable of utilizing butachlor as sole source of carbon and energy. Besides being an efficient butachlor degrader, it substantially produces IAA. The bacterial strain JS-1 has a potential for butachlor remediation with a distinctive auxiliary attribute of plant growth stimulation.

  6. Characterization of structure and development of models to quantify wood potential of an unmanaged Araucaria angustifolia stand

    Directory of Open Access Journals (Sweden)

    Rafaella De Angeli Curto

    2014-12-01

    Full Text Available The objective of this study was to characterize of an unmanaged stand of Araucaria angustifolia and to development of models to quantify the wood potential, aiming to support the development of forest management plans in stands with similar conditions. The work was developed into a stand established in 1946, in National Forest of Açungui, in Campo Largo County, Paraná State, Brazil. There was only one thinning in the stand, between 1970 and 1980. From the frequency of individuals in each diametric class, it was observed the condition of stagnation and competition with cohort in the beginning of class distribution. With the application of the probability density function of Weibull-3P, Trorey model, and the 5th polynomial by diameter class, it was possible to confirm the stock estimative of timber volume of the stand. This analysis indicated that the stand presents average annual wood production smaller than the species potential. So it is recommended the thinning to promote growth of remnant trees. With the probability density function of Weibull-3p, that was selected, it is possible to project the diametric distribution of the stand, when analyzed complementarily with growth diameter information, if the stand remains unmanaged. Certainly, the optimum potential of timber production could have been manifested if the stand were managed during the cycle planed.

  7. Determination of import process during Yucca Mountain Site characterization

    International Nuclear Information System (INIS)

    Hastings, P.S.; Gwyn, D.W.; Wemheuer, R.F.

    1996-01-01

    Construction of an underground Exploratory Studies Facility (ESF) for characterizing the Yucca Mountain site precedes the design of a potential repository, with site characterization testing and ESF construction conducted as parallel activities. As a result of this fact, a program is required to: (1) provide for inclusion of the underground excavation into a potential repository, (2) minimize the potential impact of ESF construction on site characterization test results, and (3) minimize the potential impact of ESF construction and site characterization testing on the waste isolation capabilities of the site. At Yucca Mountain, the Determination of Importance (DI) process fulfills these goals. This paper addresses the evolution of the DI process; describes how the DI process fits into design, testing, and construction programs: and discusses how the process is implemented through specification requirements

  8. Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Bräuner-Osborne, Hans

    2004-01-01

    We have expressed the human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 stably in HEK293 cells and characterized the transporters pharmacologically in a conventional [(3) H]-d-aspartate uptake assay and in a fluorescence-based membrane potential assay, the FLIPR Membrane Potential...... (FMP) assay. The K(m) and K(i) values obtained for 12 standard EAAT ligands at EAAT1, EAAT2 and EAAT3 in the FMP assay correlated well with the K(i) values obtained in the [(3) H]-d-aspartate assay (r(2) values of 0.92, 0.92, and 0.95, respectively). Furthermore, the pharmacological characteristics...

  9. Characterization of the thermolysis products of Nafion membrane: A potential source of perfluorinated compounds in the environment

    Science.gov (United States)

    Feng, Mingbao; Qu, Ruijuan; Wei, Zhongbo; Wang, Liansheng; Sun, Ping; Wang, Zunyao

    2015-05-01

    The thermal decomposition of Nafion N117 membrane, a typical perfluorosulfonic acid membrane that is widely used in various chemical technologies, was investigated in this study. Structural identification of thermolysis products in water and methanol was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). The fluoride release was studied using an ion-chromatography system, and the membrane thermal stability was characterized by thermogravimetric analysis. Notably, several types of perfluorinated compounds (PFCs) including perfluorocarboxylic acids were detected and identified. Based on these data, a thermolysis mechanism was proposed involving cleavage of both the polymer backbone and its side chains by attack of radical species. This is the first systematic report on the thermolysis products of Nafion by simulating its high-temperature operation and disposal process via incineration. The results of this study indicate that Nafion is a potential environmental source of PFCs, which have attracted growing interest and concern in recent years. Additionally, this study provides an analytical justification of the LC/ESI-MS/MS method for characterizing the degradation products of polymer electrolyte membranes. These identifications can substantially facilitate an understanding of their decomposition mechanisms and offer insight into the proper utilization and effective management on these membranes.

  10. Automated quantitative micro-mineralogical characterization for environmental applications

    Science.gov (United States)

    Smith, Kathleen S.; Hoal, K.O.; Walton-Day, Katherine; Stammer, J.G.; Pietersen, K.

    2013-01-01

    Characterization of ore and waste-rock material using automated quantitative micro-mineralogical techniques (e.g., QEMSCAN® and MLA) has the potential to complement traditional acid-base accounting and humidity cell techniques when predicting acid generation and metal release. These characterization techniques, which most commonly are used for metallurgical, mineral-processing, and geometallurgical applications, can be broadly applied throughout the mine-life cycle to include numerous environmental applications. Critical insights into mineral liberation, mineral associations, particle size, particle texture, and mineralogical residence phase(s) of environmentally important elements can be used to anticipate potential environmental challenges. Resources spent on initial characterization result in lower uncertainties of potential environmental impacts and possible cost savings associated with remediation and closure. Examples illustrate mineralogical and textural characterization of fluvial tailings material from the upper Arkansas River in Colorado.

  11. Materials Characterization of Feraheme/Ferumoxytol and Preliminary Evaluation of Its Potential for Magnetic Fluid Hyperthermia

    Directory of Open Access Journals (Sweden)

    Jon Dobson

    2013-08-01

    Full Text Available Feraheme, is a recently FDA-cleared superparamagnetic iron oxide nanoparticle (SPION-based MRI contrast agent that is also employed in the treatment of iron deficiency anemia. Feraheme nanoparticles have a hydrodynamic diameter of 30 nm and consist of iron oxide crystallites complexed with a low molecular weight, semi-synthetic carbohydrate. These features are attractive for other potential biomedical applications such as magnetic fluid hyperthermia (MFH, since the carboxylated polymer coating affords functionalization of the particle surface and the size allows for accumulation in highly vascularized tumors via the enhanced permeability and retention effect. This work presents morphological and magnetic characterization of Feraheme by transmission electron microscopy (TEM, Energy dispersive X-ray spectroscopy (EDX, and superconducting quantum interference device (SQUID magnetometry. Additionally, the results of an initial evaluation of the suitability of Feraheme for MFH applications are described, and the data indicate the particles possess promising properties for this application.

  12. Management of scientific and engineering data collected during site characterization of a potential high-level waste repository

    International Nuclear Information System (INIS)

    Newbury, C.M.; Heitland, G.W.

    1992-01-01

    This paper discusses the characterization of Yucca Mountain as a potential site for a high-level nuclear waste repository encompasses many diverse investigations to determine the nature of the site. Laboratory and on-site investigations are being conducted of the geology, hydrology, mineralogy, paleoclimate, geotechnical properties, and past use of the area, to name a few. Effective use of the data from these investigations requires development of a system for the collection, storage, and dissemination of those scientific and engineering data needed to support model development, design, and performance assessment. The time and budgetary constraints associated with this project make sharing of technical data within the geoscience community absolutely critical to the successful solution of the complex scientific problem challenging us

  13. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    OpenAIRE

    Ghazaleh Esmaeelzade; Mohammad Reza Khani; Rouzbeh Riazi; Mohammad Hossein Sabour

    2017-01-01

    The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of ...

  14. Potential application of machine vision technology to saffron (Crocus sativus L.) quality characterization.

    Science.gov (United States)

    Kiani, Sajad; Minaei, Saeid

    2016-12-01

    Saffron quality characterization is an important issue in the food industry and of interest to the consumers. This paper proposes an expert system based on the application of machine vision technology for characterization of saffron and shows how it can be employed in practical usage. There is a correlation between saffron color and its geographic location of production and some chemical attributes which could be properly used for characterization of saffron quality and freshness. This may be accomplished by employing image processing techniques coupled with multivariate data analysis for quantification of saffron properties. Expert algorithms can be made available for prediction of saffron characteristics such as color as well as for product classification. Copyright © 2016. Published by Elsevier Ltd.

  15. Physicochemical characterization of cement kiln dust for potential reuse in acidic wastewater treatment

    International Nuclear Information System (INIS)

    Mackie, A.; Boilard, S.; Walsh, M.E.; Lake, C.B.

    2010-01-01

    Cement kiln dust (CKD) is a fine-grained material produced during the manufacture of cement. Current reuse options are limited and the bulk of CKD not reused in the cement manufacturing process is sent to landfills or stored on-site. Due to the calcium oxide (CaO) content of CKD, it has the potential to be used as a replacement for lime in treating acidic wastewaters such as acid rock drainage (ARD). This paper outlines the results of an examination of the physical and chemical properties of CKD samples collected from six cement plants. The CKD samples were analyzed for major oxides using X-ray diffraction (XRD), available lime, specific surface area, particle size, and morphology using scanning electron microscope (SEM) and compared with a commercial quicklime product. Conductivity, pH, and calcium concentrations of slaked CKD and quicklime solutions were used as indicators of reactivity of the CKD. Slaking of two of the CKD samples with the highest free lime contents (e.g., 34 and 37% free CaO) gave elevated pH values statistically comparable to those of the commercial quicklime sample that was characterized as having 87% available CaO. Acid neutralization trials indicate that even CKD samples with low free lime contents could be effective at neutralizing acidic wastewaters.

  16. The model of evaluation of innovative potential of enterprise

    Directory of Open Access Journals (Sweden)

    Ганна Ігорівна Заднєпровська

    2015-06-01

    Full Text Available The basic components of the enterprise’s innovative potential evaluation process are investigated. It is offered the conceptual model of evaluation of the innovative potential that includes: subjects, objects, purpose, provision of information, principles, methods, criteria, indicators. It is noted that the innovative capacity characterizes the transition from the current to the strategic level of innovation potential and, thus, characterizes the composition of objects from position of user

  17. Characterizing arsenic in preserved hair for assessing exposure potential and discriminating poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Kempson, Ivan M.; Henry, Dermot; Francis, James; (Museum Vic.); (U. South Australia); (UWO)

    2009-05-21

    Advanced analytical techniques have been used to characterize arsenic in taxidermy specimens. Arsenic was examined to aid in discriminating its use as a preservative from that incorporated by ingestion and hence indicate poisoning (in the case of historical figures). The results are relevant to museum curators, occupational and environmental exposure concerns, toxicological and anthropological investigations. Hair samples were obtained from six taxidermy specimens preserved with arsenic in the late 1800s and early 1900s to investigate the arsenic incorporation. The presence of arsenic poses a potential hazard in museum and private collections. For one sample, arsenic was confirmed to be present on the hair with time-of-flight secondary ion mass spectrometry and then measured with neutron activation analysis to comprise 176 {mu}g g{sup -1}. The hair cross section was analysed with synchrotron micro-X-ray fluorescence to investigate the transverse distribution of topically applied arsenic. It was found that the arsenic had significantly penetrated all hair samples. Association with melanin clusters and the medulla was observed. Lead and mercury were also identified in one sample. X-ray absorption near-edge spectroscopy of the As K-edge indicated that an arsenate species predominantly existed in all samples; however, analysis was hindered by very rapid photoreduction of the arsenic. It would be difficult to discriminate arsenic consumption from topically applied arsenic based on the physical transverse distribution. Longitudinal distributions and chemical speciation may still allow differentiation.

  18. Potential Application of Environmental Noise Recordings in Geoarchaeological Site Characterization

    Science.gov (United States)

    Di Luzio, E.

    2015-12-01

    Environmental noise recordings are commonly applied in seismic microzonation studies. By calculating the H/V spectral ratio, the fundamental frequency of soft terrains overlying a rigid bedrock can be determined (Nakamura (1989). In such a simple two-layer system, equation f = n Vs/4H (1) links the resonance frequency "f" to the thickness "H" and shear waves velocity "Vs "of the resonating layer. In recent years, this methodology has been applied generally to obtain information on the seismostratigraphy of an investigated site in different environmental context. In this work, its potential application in the characterization of archaeological features hosted in shallow geological levels is discussed. Field cases are identified in the Appia Antica archaeological site which is placed in central Italy. Here, acknowledged targets correspond to: i) empty tanks carved by the Romans into Cretaceous limestone in the IV-III cen. BC and ii): the basaltic stone paving of the ancient road track which is locally buried beneath colluvial deposits. Narrowly-spaced recordings of environmental noise were carried using a portable digital seismograph equipped with three electrodynamic orthogonal sensors (velocimeters) responding in the band 0.1 ÷1024 Hz and adopting a sampling frequency of 256 Hz.. Results are discussed in terms of absolute H/V values and related distribution maps in the very high-frequency interval of 10-40Hz. In the tanks hosting area, interpolation of H/V maximum values around 13Hz matches caves location and alignment, which is also evidenced by clear inversions (H/V<1) at lower frequencies (10-1Hz). Correlation between H/V peaks and the top surface of the buried stone paving along the prosecution of the road track is even more straightforward. Finally, the depth variations of the tank roofs and the basaltic paving were reconstructed combining in equation (1) results of noise recordings with borehole data and geophysical surveys (SASW analysis).

  19. Characterization and pyrolysis of Chlorella vulgaris and Arthrospira platensis: potential of bio-oil and chemical production by Py-GC/MS analysis.

    Science.gov (United States)

    Almeida, Hanna N; Calixto, Guilherme Q; Chagas, Bruna M E; Melo, Dulce M A; Resende, Fabio M; Melo, Marcus A F; Braga, Renata Martins

    2017-06-01

    Biofuels have been seen as potential sources to meet future energy demand as a renewable and sustainable energy source. Despite the fact that the production technology of first-generation biofuels is consolidated, these biofuels are produced from foods crops such as grains, sugar cane, and vegetable oils competing with food for crop use and agricultural land. In recent years, it was found that microalgae have the potential to provide a viable alternative to fossil fuels as source of biofuels without compromising food supplies or arable land. On this scenario, this paper aims to demonstrate the energetic potential to produce bio-oil and chemicals from microalgae Chlorella vulgaris and Arthrospira platensis. The potential of these biomasses was evaluated in terms of physical-chemical characterization, thermogravimetric analysis, and analytical pyrolysis interfaced with gas chromatograph (Py-GC/MS). The results show that C. vulgaris and A. platensis are biomasses with a high heating value (24.60 and 22.43 MJ/kg) and low ash content, showing a high percentage of volatile matter (72.49 and 79.42%). These characteristics confirm their energetic potential for conversion process through pyrolysis, whereby some important aromatic compounds such as toluene, styrene, and phenol were identified as pyrolysis products, which could turn these microalgae a potential for biofuels and bioproduct production through the pyrolysis.

  20. Characterization of potential plasma biomarkers related to cognitive impairment by untargeted profiling of phospholipids using the HILIC-ESI-IT-TOF-MS system.

    Science.gov (United States)

    Song, Shuang; Cheong, Ling-Zhi; Man, Qing-Qing; Pang, Shao-Jie; Li, Yue-Qi; Ren, Biao; Zhang, Jian

    2018-05-01

    Early diagnosis of neural changes causing cognitive impairment is critical for development of preventive therapies for dementia. Biomarkers currently characterized cannot be extensively applied due to the invasive sampling of cerebrospinal fluid. The other imaging approaches are either expensive or require a high technique. Phospholipids (PLs), which are basic constituents of neurons, might be a key variable in the pathogenesis of cognitive impairment. Changes in plasma PL provide the possibility for development of novel biomarkers with minimal invasion and high patient acceptance. In this work, a HILIC-ESI-IT-TOF-MS system was introduced for untargeted profiling of plasma PLs to investigate the relationship between changes of plasma PL profiles and cognitive impairment. A total of 272 types of PL molecular structures were characterized in human plasma and quantified through the internal standard method. Univariate analysis shows 29 PLs were significantly different between the control (n = 41) and the cognitive impairment (CI) group (n = 41). Multivariate analysis (PCA and OPLS-DA) was conducted based on these 29 potential PL biomarkers. Both univariate and multivariate analyses show abnormality of PL metabolism in the CI group, and the downregulation of ethanolamine plasmalogen (pPE) supply, especially those with PUFAs, in the circulation system should be strongly associated with neurodegeneration. A discriminative model was established with satisfied fit (R2) and prediction (Q2) abilities, and the classification test showed better recognition of the CI group than the control group indicating that this model of PL biomarkers could be used as indicators for screening of CI. Graphical abstract Characterization of potential plasma biomarkers related to cognitive impairment by untargeted profiling of phospholipids.

  1. Combined 18F-Fluciclovine PET/MRI Shows Potential for Detection and Characterization of High-Risk Prostate Cancer.

    Science.gov (United States)

    Elschot, Mattijs; Selnæs, Kirsten M; Sandsmark, Elise; Krüger-Stokke, Brage; Størkersen, Øystein; Giskeødegård, Guro F; Tessem, May-Britt; Moestue, Siver A; Bertilsson, Helena; Bathen, Tone F

    2018-05-01

    The objective of this study was to investigate whether quantitative imaging features derived from combined 18 F-fluciclovine PET/multiparametric MRI show potential for detection and characterization of primary prostate cancer. Methods: Twenty-eight patients diagnosed with high-risk prostate cancer underwent simultaneous 18 F-fluciclovine PET/MRI before radical prostatectomy. Volumes of interest (VOIs) for prostate tumors, benign prostatic hyperplasia (BPH) nodules, prostatitis, and healthy tissue were delineated on T2-weighted images, using histology as a reference. Tumor VOIs were marked as high-grade (≥Gleason grade group 3) or not. MRI and PET features were extracted on the voxel and VOI levels. Partial least-squared discriminant analysis (PLS-DA) with double leave-one-patient-out cross-validation was performed to distinguish tumors from benign tissue (BPH, prostatitis, or healthy tissue) and high-grade tumors from other tissue (low-grade tumors or benign tissue). The performance levels of PET, MRI, and combined PET/MRI features were compared using the area under the receiver-operating-characteristic curve (AUC). Results: Voxel and VOI features were extracted from 40 tumor VOIs (26 high-grade), 36 BPH VOIs, 6 prostatitis VOIs, and 37 healthy-tissue VOIs. PET/MRI performed better than MRI and PET alone for distinguishing tumors from benign tissue (AUCs of 87%, 81%, and 83%, respectively, at the voxel level and 96%, 93%, and 93%, respectively, at the VOI level) and high-grade tumors from other tissue (AUCs of 85%, 79%, and 81%, respectively, at the voxel level and 93%, 93%, and 91%, respectively, at the VOI level). T2-weighted MRI, diffusion-weighted MRI, and PET features were the most important for classification. Conclusion: Combined 18 F-fluciclovine PET/multiparametric MRI shows potential for improving detection and characterization of high-risk prostate cancer, in comparison to MRI and PET alone. © 2018 by the Society of Nuclear Medicine and Molecular

  2. Improved Characterization and Modeling of Tight Oil Formations for CO2 Enhanced Oil Recovery Potential and Storage Capacity Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, James [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Smith, Steven [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Kurz, Bethany [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Hawthorne, Steven [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Jin, Lu [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Bosshart, Nicholas [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Torres, Jose [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Nyberg, Carolyn [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Heebink, Loreal [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC); Hurley, John [Univ. of North Dakota, Grand Forks, ND (United States). Energy & Environmental Research Center (EERC)

    2018-03-09

    Tight oil formations such as those in the Bakken petroleum system are known to hold hundreds of billions of barrels of oil in place; however, the primary recovery factor for these plays is typically less than 10%. Tight oil formations, including the Bakken Formation, therefore, may be attractive candidates for enhanced oil recovery (EOR) using CO2. Multiphase fluid behavior and flow in fluid-rich shales can vary substantially depending on the size of pore throats, and properties such as fluid viscosity and density are much different in nanoscale pores than in macroscale pores. Thus it is critical to understand the nature and distribution of nano-, micro-, and macroscale pores and fracture networks. To address these issues, the Energy & Environmental Research Center (EERC) has been conducting a research program entitled “Improved Characterization and Modeling of Tight Oil Formations for CO2 Enhanced Oil Recovery Potential and Storage Capacity Estimation.” The objectives of the project are 1) the use of advanced characterization methods to better understand and quantify the petrophysical and geomechanical factors that control CO2 and oil mobility within tight oil formation samples, 2) the determination of CO2 permeation and oil extraction rates in tight reservoir rocks and organic-rich shales of the Bakken, and 3) the integration of the laboratory-based CO2 permeation and oil extraction data and the characterization data into geologic models and dynamic simulations to develop predictions of CO2 storage resource and EOR in the Bakken tight oil formation. A combination of standard and advanced petrophysical characterization techniques were applied to characterize samples of Bakken Formation tight reservoir rock and shales from multiple wells. Techniques included advanced computer tomography (CT) imaging, scanning electron microscopy (SEM) techniques, whole-core and micro x-ray CT imaging, field

  3. Characterization of the cerebral activity by time–frequency representation of evoked EEG potentials

    International Nuclear Information System (INIS)

    Clariá, Francesc; Vallverdú, Montserrat; Romero, Sergio; Caminal, Pere; Riba, Jordi; Barbanoj, Manuel J

    2011-01-01

    Event-related brain potentials (ERPs) are the electrical response of the brain while performing a particular task. Methods traditionally used to study ERPs measure the amplitude and duration of the waveform in order to quantify the changes, being signal morphology dependent. However, the frequency characteristics of those events remain uncovered. The aim of this work was the study of new measures to characterize, by means of time–frequency representation (TFR) techniques, the ERPs recorded while subjects conducted a choice reaction time task (Ericksen flanker task) following the administration of different alprazolam doses. Several measures defined from energy, instantaneous frequency and group delay functions were obtained by means of TFR techniques applied to the Choi–Williams distribution (CWD) of EEG signals. These measures, which are signal morphology independent, were studied in four frequency bands, δ (0–4 Hz), θ (4–8 Hz), α (8–15 Hz), β (15–30 Hz), and for certain time periods. Based on these measures, differences between ERPs were analyzed by comparing the different response types (successes or successfully corrected failures) of the subject performing the task, and comparing the applied drug doses. For each subject, the CWD of EEG signals was applied in two different ways: (a) all ERPs were averaged per channel, and then the CWD was applied; (b) the CWD was applied to each one of the ERPs. When the CWD was applied to each ERP, the energy measures in the δ, θ and β bands, the instantaneous frequency measures in the α and β bands, and the group delay measures in the δ, θ and α bands showed a statistically significant level p < 0.0005 in the analysis of the response type. Also, the energy measures in the θ and β bands and the instantaneous frequency measures in the α band showed statistically significant differences (p < 0.0005) between placebo and low and high drug doses. In contrast, poor results were obtained when all epochs of

  4. Physicochemical Characterization of Potential Mobile Organic Matter In Five Typical German Agricultural Soils

    Science.gov (United States)

    Séquaris, J.-M.; Lewandowski, H.; Vereecken, H.

    Organic matter (OM) in soils plays an important role, i.e., in maintaining soil structure or as source of nutrients. OM is mainly adsorbed at the surface of clay minerals and oxides and remains mostly immobile. However, mobile OM in dissolved form (DOM) or associated with water dispersible colloids (WDC) in soil water may influence trans- port of pollutants. The goal of this study is to compare 5 typical German agricultural soils in terms of distribution and quality of OM in the top soil (0-15 cm). The present report focuses on the physicochemical characterization of potential mobile OM so- lutions obtained after physical fractionation of soil materials based on sedimentation after a prolonged shaking in water or electrolyte solutions. Three soil fractions dif- fering in particle size were separated in function of sedimentation time: a colloidal fraction: 20 ţm. The soil electrolyte phase containing the DOM fraction was obtained by a high-speed centrifugation of the colloidal phase. After a water or low electrolyte concentration (« 1 mM Ca2+) extraction, it can be shown that the mobile fraction of OM or OC (organic carbon) is distributed between the colloidal and the electrolyte phases in a concentration ratio range of 10-40 to 1. A less mobile OC fraction is associated with the microaggregate fraction while immobile OC remains adsorbed in the sediment fraction. An increasing OC and total-N content with diminishing particle-size of soil (colloidal and microaggregate fractions) has been confirmed. A higher OC input due to special soil management is sensitively detected in fractions with a greater particle size (sediment fraction). Increasing the Ca2+ concentration up to 10 mM during the water extraction diminishes the DOC concentration by an average factor of 3 while the OC associated with the dispersed colloids (OCWDC) vanished almost completely. Thus, a critical coagulation concentration of about 1-2 mM Ca2+ can be estimated which increases the stability of soil

  5. Tunable resistive pulse sensing: potential applications in nanomedicine.

    Science.gov (United States)

    Sivakumaran, Muttuswamy; Platt, Mark

    2016-08-01

    An accurate characterization of nanomaterials used in clinical diagnosis and therapeutics is of paramount importance to realize the full potential of nanotechnology in medicine and to avoid unexpected and potentially harmful toxic effects due to these materials. A number of technical modalities are currently in use to study the physical, chemical and biological properties of nanomaterials but they all have advantages and disadvantages. In this review, we discuss the potential of a relative newcomer, tunable resistive pulse sensing, for the characterization of nanomaterials and its applications in nanodiagnostics.

  6. Characterization Ag/AgCl reference electrode by U/U3+ equilibrium potential measurements in LiCl-KCl eutectic melt

    International Nuclear Information System (INIS)

    Kobayashi, Fumiaki; Kitawaki, Shinichi; Amamoto, Ippei; Igarashi, Miyuki

    1999-02-01

    The Ag/ AgCl reference electrode is often used in electrochemical measurements of molten chloride system. By measuring the U/U 3+ equilibrium potential in the cell, U(s) | UCl 3 , LiCl-KCl parallel LiCl-KCl, Ag + | Ag (s), the characterization of the Ag/AgCl reference electrode was made. The behavior of two types of reference electrode having either a mullite or a Pyrex-glass membrane bridge was examined. It was confirmed that the two types of reference electrode can be regarded as almost equivalent. The reproducibility of the reading from the electrodes having the identical construction was showing to be within 0.003 V. (author)

  7. Characterization of tetraaza-AC8, a surfactant with cation complexing potential

    International Nuclear Information System (INIS)

    Arleth, Lise

    1995-01-01

    Being a surfactant with cation complexing potential, the Tetraaza-AC8 can, in the long term, possibly be applied for the selection and extraction of specific cations. This can be of interest for the handling of radioactive waste or in the chemical industries for extraction of rare earth molecules as for example Rhodium. A thorough characterization of the behavior and abilities of Tetraaza-AC8 is necessary before one can even think of taking it into a larger production with sight of a specific application. This project deals with the characterization of the behavior and abilities of Tetraaza- AC8. In order to make use of the surface active properties of Tetraaza-AC8 it is necessary to dissolve it in some kind of solvent. As water is an important solvent which is, in addition, both inexpensive and non-polluting it is the natural choice. The aim of the project can then precised as follows: To study the micelle formation of dilute aqueous solutions of Tetraaza- AC8 and to determine how the micelle formation is influenced by the addition of respectively CsF, CuF_2 and RhCl_3 to the solutions The primary method of analysis is small-angle scattering. As small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS) emphasizes different parts of the micellar structure, the combination of the methods allows a good determination of the micellar shape. In order to support the interpretation of scattering data, density measurements, surface tension measurements and UV/visible light spectroscopy are also performed. The scattering data have been analyzed according to two fundamentally different methods of analysis namely the method of indirect Fourier transform and the method of fitting molecular based models of the micelles to the scattering spectra. The first chapter contains a short introduction to the field of surfactants and complexing macrocycles. The chemical structure of Tetraaza-AC8 will be explained and motivated. A short description of the synthesis

  8. Physico-Chemical Characterization and Pollution Index ...

    African Journals Online (AJOL)

    Physico-Chemical Characterization and Pollution Index Determination of Leachates from Warri Waste Dumpsite, Southern Nigeria. ... This study characterizes the leachates quality of an active dumpsite in Warri, Delta State and also analyses its contamination or pollution potential. Leachate Pollution Index (LPI) - a tool for ...

  9. In-vitro characterization of a cochlear implant system for recording of evoked compound action potentials

    Science.gov (United States)

    2012-01-01

    Background Modern cochlear implants have integrated recording systems for measuring electrically evoked compound action potentials of the auditory nerve. The characterization of such recording systems is important for establishing a reliable basis for the interpretation of signals acquired in vivo. In this study we investigated the characteristics of the recording system integrated into the MED-EL PULSARCI100 cochlear implant, especially its linearity and resolution, in order to develop a mathematical model describing the recording system. Methods In-vitro setup: The cochlear implant, including all attached electrodes, was fixed in a tank of physiologic saline solution. Sinusoidal signals of the same frequency but with different amplitudes were delivered via a signal generator for measuring and recording on a single electrode. Computer simulations: A basic mathematical model including the main elements of the recording system, i.e. amplification and digitalization stage, was developed. For this, digital output for sinusoidal input signals of different amplitudes were calculated using in-vitro recordings as reference. Results Using an averaging of 100 measurements the recording system behaved linearly down to approximately -60 dB of the input signal range. Using the same method, a system resolution of 10 μV was determined for sinusoidal signals. The simulation results were in very good agreement with the results obtained from in-vitro experiments. Conclusions The recording system implemented in the MED-EL PULSARCI100 cochlear implant for measuring the evoked compound action potential of the auditory nerve operates reliably. The developed mathematical model provides a good approximation of the recording system. PMID:22531599

  10. Lactobacillus crispatus L1: high cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens.

    Science.gov (United States)

    Donnarumma, Giovanna; Molinaro, Antonio; Cimini, Donatella; De Castro, Cristina; Valli, Vivien; De Gregorio, Vincenza; De Rosa, Mario; Schiraldi, Chiara

    2014-05-30

    Vaginal lactic acid bacteria defend the host against pathogens through a combination of competitive exclusion, competition for nutrients, production of antimicrobial substances and through the activation of the immune system. A new human isolate named Lactobacillus crispatus L1 was characterized in this work, and a preliminary evaluation of its probiotic potential is described together with a process to obtain a high productivity of viable biomass. In a simulated digestion process 1.8⋅10(10) cells∙ml(-1) survived the gastric environment with 80% viability, without being affected by small intestine juices. Experiments on six different C sources were performed to analyze growth and organic acids production and, glucose, provided the best performances. A microfiltration strategy was exploited to improve the cellular yield in 2 L-fermentation processes, reaching 27 g · l(-1) of dry biomass. Moreover, L. crispatus L1 demonstrated a greater stability to high concentrations of lactic acid, compared to other lactobacilli. The specific L. crispatus L1 exopolysaccharide was purified from the fermentation broth and characterized by NMR showing structural features and similarity to exopolysaccharides produced by pathogenic strains. Live L. crispatus L1 cells strongly reduced adhesion of a yeast pathogenic strain, Candida albicans in particular, in adherence assays. Interestingly a higher expression of the human defensin HBD-2 was also observed in vaginal cells treated with the purified exopolysaccharide, indicating a possible correlation with C. albicans growth inhibition. The paper describes the evaluation of L. crispatus L1 as potential vaginal probiotic and the fermentation processes to obtain high concentrations of viable cells.

  11. Characterization of Fractured Reservoirs Using a Combination of Downhole Pressure and Self-Potential Transient Data

    Directory of Open Access Journals (Sweden)

    Yuji Nishi

    2012-01-01

    Full Text Available In order to appraise the utility of self-potential (SP measurements to characterize fractured reservoirs, we carried out continuous SP monitoring using multi Ag-AgCl electrodes installed within two open holes at the Kamaishi Mine, Japan. The observed ratio of SP change to pressure change associated with fluid flow showed different behaviors between intact host rock and fractured rock regions. Characteristic behavior peculiar to fractured reservoirs, which is predicted from numerical simulations of electrokinetic phenomena in MINC (multiple interacting continua double-porosity media, was observed near the fractures. Semilog plots of the ratio of SP change to pressure change observed in one of the two wells show obvious transition from intermediate time increasing to late time stable trends, which indicate that the time required for pressure equilibration between the fracture and matrix regions is about 800 seconds. Fracture spacing was estimated to be a few meters assuming several micro-darcies (10-18 m2 of the matrix region permeability, which is consistent with geological and hydrological observations.

  12. Characterization and degradation potential of diesel-degrading bacterial strains for application in bioremediation.

    Science.gov (United States)

    Balseiro-Romero, María; Gkorezis, Panagiotis; Kidd, Petra S; Van Hamme, Jonathan; Weyens, Nele; Monterroso, Carmen; Vangronsveld, Jaco

    2017-10-03

    Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17-26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.

  13. Molecular Characterization of Brevibacillus laterosporus and Its Potential Use in Biological Control

    Science.gov (United States)

    de Oliveira, Edmar Justo; Rabinovitch, Leon; Monnerat, Rose Gomes; Passos, Liana Konovaloff Jannotti; Zahner, Viviane

    2004-01-01

    Thirty-three strains of Brevibacillus laterosporus, including three novel strains isolated from Brazilian soil samples, were examined for genetic variability by the use of different PCR-based methods. Molecular markers that could characterize bacterial strains with regards to their pathogenic potential were investigated. In addition, toxicity was assessed by the use of insects belonging to the orders Lepidoptera and Coleoptera and the mollusk Biomphalaria glabrata. Among the targets tested, Biomphalaria glabrata demonstrated the highest degree of sensitivity to B. laterosporus, with some strains inducing 90 to 100% mortality in snails aged 3 and 12 days posteclosion. Larvae of the coleopteron Anthonomus grandis were also susceptible, presenting mortality levels of between 33 and 63%. Toxicity was also noted towards the lepidopteron Anticarsia gemmatalis. In contrast, no mortality was recorded among test populations of Tenebrio molitor or Spodoptera frugiperda. The application of intergenic transcribed spacer PCR and BOX-PCR generated 15 and 17 different genotypes, respectively. None of the molecular techniques allowed the identification of a convenient marker that was associated with any entomopathogenic phenotype. However, a 1,078-bp amplicon was detected for all strains of B. laterosporus when a primer for amplification of the BOXA1R region was used. Similarly, a 900-bp amplicon was generated from all isolates by use of the primer OPA-11 for randomly amplified polymorphic DNA analysis. These amplicons were not detected for other phenotypically related Brevibacillus species, indicating that they represent markers that are specific for B. laterosporus, which may prove useful for the isolation and identification of new strains of this species. PMID:15528531

  14. CHARACTERIZATION QUALITATIVE OF SOEL FOR A ...

    African Journals Online (AJOL)

    15 janv. 2015 ... ABSTRACT. The main objective of this study was to qualitatively characterize biomass of Solanum elaeagnifolium Cav. (or SOEL) to highlight the essential alternatives its valorization. At first, we studied the potential of composting biomass of this plant. The physico-chemical characterization of biomass ...

  15. Nitric Oxide and Oxygen Air-Contamination Effects on Extinction Limits of Non-Premixed Hydrocarbon-Air Flames for a HIFiRE Scramjet

    Science.gov (United States)

    Pellett, Gerald L.; Dawson, Lucy C.; Vaden, Sarah N.; Wilson, Lloyd G.

    2009-01-01

    Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen

  16. Preparation and physico-chemical characterization of β-cyclodextrin incorporated chitosan biosorbent beads with potential environmental applications

    Science.gov (United States)

    Munim, Somayyah Abdul; Tahir Saddique, Muhammad; Raza, Zulfiqar Ali; Majeed, Muhammad Irfan

    2018-06-01

    Biosorption is one of the most efficient and feasible methods for eliminating noxious wastes from the aqueous systems. The use of non-hazardous, low-cost and biodegradable chitosan as a biosorbent is of significant importance in the above context. Present study was aimed to develop a β-cyclodextrin (β-CD) incorporated chitosan biosorbent in the form of beads. The prepared biosorbent beads were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR), x-ray diffraction (XRD) analysis, and thermo gravimetric analysis (TGA). The values of point of zero charge (PZC) of chitosan and β-CD incorporated chitosan beads were determined in the presence of an electrolyte by means of different methods including mass titration, salt addition and zeta potential ones. The SEM images exhibited roughened and porous morphologies which could enhance the adsorption of metal ions. The values of PZC of chitosan and β-CD incorporated chitosan biosorbent beads were found to be 6.38 and 7.12, respectively.

  17. Characterization of polyethylene terephthalate/polyaniline blends as potential antioxidant materials

    International Nuclear Information System (INIS)

    Nand, Ashveen V.; Ray, Sudip; Travas-Sejdic, Jadranka; Kilmartin, Paul A.

    2012-01-01

    Highlights: ► Successful incorporation of particulate polyaniline, consisting of nanorods, in PET was achieved. ► Interactions between PET and polyaniline in the blends were characterized using FTIR, XPS, DSC and DMTA. ► Polyaniline introduced free radical scavenging capacity in PET. - Abstract: Polyethylene terephthalate (PET) blends with a nanorod form of polyaniline (NR-PANI), formed by a falling pH synthesis, were prepared by dispersion in a melt of PET at 265 °C. Blends with 1, 2 and 3 wt% NR-PANI loading were prepared. Optical microscopy revealed an even distribution of NR-PANI particles within the PET matrix. The blends were characterized using FTIR, XPS, DSC and DMTA. Melt flow index values suggested hydrolysis of PET chains to lower molecular weight units when NR-PANI was blended. Some PET hydrolysis was also evident from the increasing oxygen to carbon ratios with an increased NR-PANI content in the blends. While the PET glass transition temperature remained relatively unaffected, the degree of PET crystallinity was increased with the addition of NR-PANI. The electrical conductivity as well as the free radical scavenging capacity of PET increased with greater NR-PANI loading in the matrix. The mechanical properties of PET, however, declined with NR-PANI loading suggesting a lack of adequate interfacial adhesion between the NR-PANI particles and the PET matrix.

  18. High-Spatial-Resolution OH PLIF Visualization in a Cavity-Stabilized Ethylene-Air Turbulent Flame

    Science.gov (United States)

    Geipel, Clayton M.; Rockwell, Robert D.; Chelliah, Harsha K.; Cutler, Andrew D.; Spelker, Christopher A.; Hashem, Zeid; Danehy, Paul M.

    2017-01-01

    High-spatial-resolution OH planar laser-induced fluorescence was measured for a premixed ethylene-air turbulent flame in an electrically-heated Mach 2 continuous-flow facility (University of Virginia Supersonic Combustion Facility, Configuration E.) The facility comprised a Mach 2 nozzle, an isolator with flush-wall fuel injectors, a combustor with optical access, and an extender. The flame was anchored at a cavity flameholder with a backward-facing step of height 9 mm. The temperature-insensitive Q1(8) transition of OH was excited using laser light of wavelength 283.55 nm. A spatial filter was used to create a laser sheet approximately 25 microns thick based on full-width at half maximum (FWHM). Extension tubes increased the magnification of an intensified camera system, achieving in-plane resolution of 40 microns based on a 50% modulation transfer function (MTF). The facility was tested with total temperature 1200 K, total pressure 300 kPa, local fuel/air equivalence ratios of approximately 0.4, and local Mach number of approximately 0.73 in the combustor. A test case with reduced total temperature and another with reduced equivalence ratio were also tested. PLIF images were acquired along a streamwise plane bisecting the cavity flameholder, from the backward facing step to 120 mm downstream of the step. The smallest observed features in the flow had width of approximately 110 microns. Flame surface density was calculated for OH PLIF images.

  19. Characterization and potential application of pataua vegetable oil in apatite flotation; Caracterizacao e potencial aplicacao do oleo vegetal de pataua na floracao de apatita

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, P.S. de; Mansur, H.S.; Peres, A.E.C., E-mail: eng.priscila.oliveira@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2016-07-01

    The present research characterizes the Pataua palm (Oenocarpus bataua) oil regarding to its fatty acids profile and acidity index, and evaluates its use for apatite flotation. The Pataua oil evaluated is unsaturated e predominantly composed of cis-9-octadecenoic acid (oleic acid). The mineral sample characterization revealed a material composed by a fluoroapatite deficient in fluorine, a possibly result of isomorphic substitution, and with quartz and monazite inclusions. The analysis of the mineral after reagent conditioning, by Fourier Transform Infrared Spectroscopy (FTIR), pointed to the presence of characteristic bands of carbon chains and carboxylate group, suggesting the collector adsorption through the mechanisms of chemisorption and insoluble calcium salts precipitation. Thus, it is proposed the Pataua oil potential use in flotation systems aiming apatite recovery. (author)

  20. Isolation and Characterization of phiLLS, a Novel Phage with Potential Biocontrol Agent against Multidrug-Resistant Escherichia coli

    Directory of Open Access Journals (Sweden)

    Luis Amarillas

    2017-07-01

    Full Text Available Foodborne diseases are a serious and growing problem, and the incidence and prevalence of antimicrobial resistance among foodborne pathogens is reported to have increased. The emergence of antibiotic-resistant bacterial strains demands novel strategies to counteract this epidemic. In this regard, lytic bacteriophages have reemerged as an alternative for the control of pathogenic bacteria. However, the effective use of phages relies on appropriate biological and genomic characterization. In this study, we present the isolation and characterization of a novel bacteriophage named phiLLS, which has shown strong lytic activity against generic and multidrug-resistant Escherichia coli strains. Transmission electron microscopy of phiLLS morphology revealed that it belongs to the Siphoviridae family. Furthermore, this phage exhibited a relatively large burst size of 176 plaque-forming units per infected cell. Phage phiLLS significantly reduced the growth of E. coli under laboratory conditions. Analyses of restriction profiles showed the presence of submolar fragments, confirming that phiLLS is a pac-type phage. Phylogenetic analysis based on the amino acid sequence of large terminase subunits confirmed that this phage uses a headful packaging strategy to package their genome. Genomic sequencing and bioinformatic analysis showed that phiLLS is a novel bacteriophage that is most closely related to T5-like phages. In silico analysis indicated that the phiLLS genome consists of 107,263 bp (39.0 % GC content encoding 160 putative ORFs, 16 tRNAs, several potential promoters and transcriptional terminators. Genome analysis suggests that the phage phiLLS is strictly lytic without carrying genes associated with virulence factors and/or potential immunoreactive allergen proteins. The bacteriophage isolated in this study has shown promising results in the biocontrol of bacterial growth under in vitro conditions, suggesting that it may prove useful as an alternative

  1. Characterization of the In Vitro Kinetic Interaction of Chlorpyrifos-Oxon with Rat Salivary Cholinesterase: A Potential Biomonitoring Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Kousba, Ahmed A.(BATTELLE (PACIFIC NW LAB)); Poet, Torka S.(BATTELLE (PACIFIC NW LAB)); Timchalk, Charles (Pacific Northwest National Laboratory)

    2003-02-12

    Chlorpyrifos (CPF) is a commonly used organophosphate insecticide (OP). The primary mechanism of action for CPF involves the inhibition of acetylcholinesterase (AChE) by the active metabolite, CPF-oxon, with subsequent accumulation of acetylcholine (ACh) resulting in a wide range of neutotoxicity. CPF-oxon, can likewise inhibit other non-target cholinesterases (ChE) such as butyrylcholinesterase (BuChE), which represents a detoxification mechanism and a potential biomarker of exposure/response. Biological monitoring for OPs has focused on measuring parent chemical or metabolite in blood and urine or blood ChE inhibition. Salivary biomonitoring has recently been explored as a practical method for examination of chemical exposure; however, there are a limited number of studies exploring its use for OPs. To evaluate the use of salivary ChE as a biological monitor for OP exposure, the current study characterized salivary ChE activity in Sprague-Dawley rats through its comparison with brain and plasma ChE using BW284C51 and iso-OMPA as selective inhibitors of AChE and BuChE, respectively. The study also estimated the kinetic constants describing BuChE interaction with CPF-oxon. A modified Ellman assay in conjunction with pharmacodynamic (PD) modeling was used to characterize the in vitro titration of diluted rat salivary ChE enzyme with CPF-oxon. The results indicated that, more than 95% of rat salivary ChE activity was associated with BuChE activity, total BuChE active site concentration was 0.0012 0.00013 nmol/ml saliva, reactivation rate constant (Kr) was 0.068 0.008 h-1 and inhibitory (Ki) rate constant of 8.825 and 9.80 nM-1h-1 determined experimentally and using model optimization respectively. These study results would be helpful for further evaluating the potential utility of salivary ChE as a practical tool for biological monitor of OP exposures.

  2. Characterization of the Ionic Liquid/Electrode Interfacial Relaxation Processes Under Potential Polarization for Ionic Liquid Amperometric Gas Sensor Method Development.

    Science.gov (United States)

    Lin, Lu; Zhao, Peng; Mason, Andrew J; Zeng, Xiangqun

    2018-06-04

    Electrochemical amperometric sensors require a constant or varying potential at the working electrode that drives redox reactions of the analyte for detection. The interfacial redox reaction(s) can result in the formation of new chemical products that could change the initial condition of the electrode/electrolyte interface. If the products are not inert and/or cannot be removed from the system such that the initial condition of the electrode/electrolyte interface cannot be restored, the sensor signal baseline would consequently drift, which is problematic for the continuous and real-time sensors. By setting the electrode potential with the periodical ON-OFF mode, electrolysis can be forestalled during the off mode which can minimize the sensor signal baseline drift and reduce the power consumption of the sensor. However, it is known that the relaxation of the structure in the electrical double layer at the ionic liquid/electrode interface to the steps of the electrode potential is slow. This work characterized the electrode/electrolyte interfacial relaxation process of an ionic liquid based electrochemical gas (IL-EG) sensor by performing multiple potential step experiments in which the potential is stepped from an open circuit potential (OCP) to the amperometric sensing potential at various frequencies with different time periods. Our results showed that by shortening the sensing period as well as extending the idle period (i.e., enlarge the ratio of idle period versus sensing period) of the potential step experiments, the electrode/electrolyte interface is prone to relax to its original state, and thus reduces the baseline drift. Additionally, the high viscosity of the ionic liquids is beneficial for electrochemical regeneration via the implementation of a conditioning step at zero volts at the electrode/electrolyte. By setting the working electrode at zero volts instead of OCP, our results showed that it could further minimize the baseline drift, enhance the

  3. The energetic characterization of pineapple crown leaves.

    Science.gov (United States)

    Braga, R M; Queiroga, T S; Calixto, G Q; Almeida, H N; Melo, D M A; Melo, M A F; Freitas, J C O; Curbelo, F D S

    2015-12-01

    Energetic characterization of biomass allows for assessing its energy potential for application in different conversion processes into energy. The objective of this study is to physicochemically characterize pineapple crown leaves (PC) for their application in energy conversion processes. PC was characterized according to ASTM E871-82, E1755-01, and E873-82 for determination of moisture, ash, and volatile matter, respectively; the fixed carbon was calculated by difference. Higher heating value was determined by ASTM E711-87 and ash chemical composition was determined by XRF. The thermogravimetric and FTIR analyses were performed to evaluate the thermal decomposition and identify the main functional groups of biomass. PC has potential for application in thermochemical processes, showing high volatile matter (89.5%), bulk density (420.8 kg/m(3)), and higher heating value (18.9 MJ/kg). The results show its energy potential justifying application of this agricultural waste into energy conversion processes, implementing sustainability in the production, and reducing the environmental liabilities caused by its disposal.

  4. Molecular methods for pathogen and microbial community detection and characterization: current and potential application in diagnostic microbiology.

    Science.gov (United States)

    Sibley, Christopher D; Peirano, Gisele; Church, Deirdre L

    2012-04-01

    Clinical microbiology laboratories worldwide have historically relied on phenotypic methods (i.e., culture and biochemical tests) for detection, identification and characterization of virulence traits (e.g., antibiotic resistance genes, toxins) of human pathogens. However, limitations to implementation of molecular methods for human infectious diseases testing are being rapidly overcome allowing for the clinical evaluation and implementation of diverse technologies with expanding diagnostic capabilities. The advantages and limitation of molecular techniques including real-time polymerase chain reaction, partial or whole genome sequencing, molecular typing, microarrays, broad-range PCR and multiplexing will be discussed. Finally, terminal restriction fragment length polymorphism (T-RFLP) and deep sequencing are introduced as technologies at the clinical interface with the potential to dramatically enhance our ability to diagnose infectious diseases and better define the epidemiology and microbial ecology of a wide range of complex infections. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Molecular characterization of gluten hydrolysing Bacillus sp. and their efficacy and biotherapeutic potential as probiotics using Caco-2 cell line.

    Science.gov (United States)

    Rashmi, B S; Gayathri, D

    2017-09-01

    To isolate and characterize indigenous gluten hydrolysing bacteria from wheat sourdough and curd samples and further evaluation of their probiotic potentiality. Indigenous gluten hydrolysing isolates GS 33, GS 143, GS 181 and GS 188 were identified as Bacillus sp. by molecular-typing methods and studied extensively for their functional and probiotic attributes. All the tested isolates could survive at pH 2 and toxicity of 0·3% bile and also exhibited cell surface hydrophobicity and autoaggregation phenotype. The isolates were adhered strongly to Caco-2 cells and coaggregated with Escherichia coli MTCC 433 and Listeria monocytogenes MTCC 1143 preventing pathogen invasion into Caco-2 cells in vitro. In addition, the minimum inhibitory concentration of selected antibiotics for all the investigated gluten hydrolysing isolates was within the breakpoint values as recommended by the European Food Safety Authority. The indigenous high intensity gluten hydrolysing bacteria exhibited high resistance to gastric and pancreatic stress and possessed antibacterial, aggregation, adhesion and pathogen exclusion properties, and as a potential probiotics, either alone or in consortium would be useful in the development of gluten-free wheat foods. Exploring new indigenous gluten hydrolysing bacteria from wheat sourdough and curd samples would be beneficial in developing gluten-free wheat foods using potential indigenous probiotics. © 2017 The Society for Applied Microbiology.

  6. Characterization of Pectinase from Bacillus subtilis Strain Btk 27 and Its Potential Application in Removal of Mucilage from Coffee Beans

    Directory of Open Access Journals (Sweden)

    Oliyad Jeilu Oumer

    2017-01-01

    Full Text Available The demand for enzymes in the global market is projected to rise at a fast pace in recent years. There has been a great increase in industrial applications of pectinase owing to their significant biotechnological uses. For applying enzymes at industrial scale primary it is important to know the features of the enzyme. Thus, this study was undertaken with aims of characterizing the pectinase enzyme from Bacillus subtilis strain Btk27 and proving its potential application in demucilisation of coffee. In this study, the maximum pectinase activity was achieved at pH 7.5 and 50°C. Also, the enzyme activity was found stimulated with Mg2+ and Ca2+ metal ions. Moreover, it was stable on EDTA, Trixton-100, Tween 80, and Tween 20. Since Bacillus subtilis strain Btk27 was stable in most surfactants and inhibitors it could be applicable in various industries whenever pectin degradation is needed. The enzyme Km and Vmax values were identified as 1.879 mg/ml and 149.6 U, respectively. The potential application of the enzyme for coffee processing was studied, and it is found that complete removal of mucilage from coffee beans within 24 hours of treatment indicates the potential application in coffee processing.

  7. Characterization of calpastatin gene in fish: its potential role in muscle growth and fillet quality.

    Science.gov (United States)

    Salem, Mohamed; Yao, Jianbo; Rexroad, Caird E; Kenney, P Brett; Semmens, Kenneth; Killefer, John; Nath, Joginder

    2005-08-01

    Calpastatin (CAST), the specific inhibitor of the calpain proteases, plays a role in muscle growth and meat quality. In rainbow trout (RBT), we identified cDNAs coding for two CAST isoforms, a long (CAST-L) and a short isoform (CAST-S), apparently derived from two different genes. Zebrafish and pufferfish CAST cDNA and genomic sequences were retrieved from GenBank and their exon/intron structures were characterized. Fish CASTs are novel in that they have fewer repetitive inhibitory domains as compared to their mammalian counterparts (one or two vs. four). The expressions of CAST mRNAs were measured in three RBT strains with different growth rates and fillet firmness that were fed either high energy or control diets. CAST-L and S expressions were significantly lower (pfillet. Strain or diet did not affect level of calpain mRNAs. However, the decrease in the CAST/calpain ratio at the mRNA level did not lead to a corresponding change in the calpain catalytic activity. Further investigation should reveal a potential use of the CAST gene as a tool to monitor fish muscle growth and fillet firmness.

  8. Comparative genotyping of Clostridium thermocellum strains isolated from biogas plants: genetic markers and characterization of cellulolytic potential.

    Science.gov (United States)

    Koeck, Daniela E; Zverlov, Vladimir V; Liebl, Wolfgang; Schwarz, Wolfgang H

    2014-07-01

    Clostridium thermocellum is among the most prevalent of known anaerobic cellulolytic bacteria. In this study, genetic and phenotypic variations among C. thermocellum strains isolated from different biogas plants were determined and different genotyping methods were evaluated on these isolates. At least two C. thermocellum strains were isolated independently from each of nine different biogas plants via enrichment on cellulose. Various DNA-based genotyping methods such as ribotyping, RAPD (Random Amplified Polymorphic DNA) and VNTR (Variable Number of Tandem Repeats) were applied to these isolates. One novel approach - the amplification of unknown target sequences between copies of a previously discovered Random Inserted Mobile Element (RIME) - was also tested. The genotyping method with the highest discriminatory power was found to be the amplification of the sequences between the insertion elements, where isolates from each biogas plant yielded a different band pattern. Cellulolytic potentials, optimal growth conditions and substrate spectra of all isolates were characterized to help identify phenotypic variations. Irrespective of the genotyping method used, the isolates from each individual biogas plant always exhibited identical patterns. This is suggestive of a single C. thermocellum strain exhibiting dominance in each biogas plant. The genotypic groups reflect the results of the physiological characterization of the isolates like substrate diversity and cellulase activity. Conversely, strains isolated across a range of biogas plants differed in their genotyping results and physiological properties. Both strains isolated from one biogas plant had the best specific cellulose-degrading properties and might therefore achieve superior substrate utilization yields in biogas fermenters. Copyright © 2014 Elsevier GmbH. All rights reserved.

  9. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, characterization and potential applications

    International Nuclear Information System (INIS)

    Srinivasan, Prakash; Sarmah, Ajit K.; Smernik, Ron; Das, Oisik; Farid, Mohammed; Gao, Wei

    2015-01-01

    In this study, we pyrolysed six waste derived biomass: pine sawdust (PSD), paunch grass (PG), broiler litter (BL), sewage sludge (SS), dewatered pond sludge (DWP), and dissolved air-floatation sludge (DAF) into biochar. Biochars were characterized using scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, Fourier transform infrared spectroscopy, inductively-coupled plasma mass spectrometry, 13 C-solid-state nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy to evaluate their feasibility for potential agronomic and environmental applications. Syngas produced during the pyrolysis process was also analyzed to determine the energy values. Results show that PSD biochar has the utmost potential for carbon sequestration and contaminant remediation due to its high surface area, aromaticity and carbon content. Additionally given its low ash content, PSD biochar could also potentially be used as filler in wood plastic biocomposites. Low levels of heavy metals (Cr, Cu, Zn, As, Cd, Hg, and Pb) in all biochars suggest that biochars are also applicable for land application according to the United States Environmental Protection Agency regulation 40 CFR part 503. The composition of syngas evolved during the pyrolysis of feedstocks showed little difference in the calorific values, ranging from 12–16 MJ/dsm with PSD having the maximum calorific value of 16 MJ/dsm. - Highlights: • PSD biochar was found to have the highest surface, carbon content and lowest ash content. • PSD biochar is suitable for carbon sequestration, remediation and biocomposite construction. • Syngas from PSD and PG pyrolysis yielded syngas having highest calorific values (15-16 MJ/dsm). • BL, PG and SS derived biochars have potential as liming agents due to their high ash content

  10. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: Production, characterization and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Prakash [Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Smernik, Ron [School of Earth and Environmental Sciences, The University of Adelaide, Adelaide 5005 (Australia); Das, Oisik [Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland (New Zealand); Farid, Mohammed; Gao, Wei [Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, 20 Symonds Street, Auckland (New Zealand)

    2015-04-15

    In this study, we pyrolysed six waste derived biomass: pine sawdust (PSD), paunch grass (PG), broiler litter (BL), sewage sludge (SS), dewatered pond sludge (DWP), and dissolved air-floatation sludge (DAF) into biochar. Biochars were characterized using scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, Fourier transform infrared spectroscopy, inductively-coupled plasma mass spectrometry, {sup 13}C-solid-state nuclear magnetic resonance spectroscopy, and X-ray photoelectron spectroscopy to evaluate their feasibility for potential agronomic and environmental applications. Syngas produced during the pyrolysis process was also analyzed to determine the energy values. Results show that PSD biochar has the utmost potential for carbon sequestration and contaminant remediation due to its high surface area, aromaticity and carbon content. Additionally given its low ash content, PSD biochar could also potentially be used as filler in wood plastic biocomposites. Low levels of heavy metals (Cr, Cu, Zn, As, Cd, Hg, and Pb) in all biochars suggest that biochars are also applicable for land application according to the United States Environmental Protection Agency regulation 40 CFR part 503. The composition of syngas evolved during the pyrolysis of feedstocks showed little difference in the calorific values, ranging from 12–16 MJ/dsm with PSD having the maximum calorific value of 16 MJ/dsm. - Highlights: • PSD biochar was found to have the highest surface, carbon content and lowest ash content. • PSD biochar is suitable for carbon sequestration, remediation and biocomposite construction. • Syngas from PSD and PG pyrolysis yielded syngas having highest calorific values (15-16 MJ/dsm). • BL, PG and SS derived biochars have potential as liming agents due to their high ash content.

  11. wFlu: characterization and evaluation of a native Wolbachia from the mosquito Aedes fluviatilis as a potential vector control agent.

    Directory of Open Access Journals (Sweden)

    Luke Anthony Baton

    Full Text Available There is currently considerable interest and practical progress in using the endosymbiotic bacteria Wolbachia as a vector control agent for human vector-borne diseases. Such vector control strategies may require the introduction of multiple, different Wolbachia strains into target vector populations, necessitating the identification and characterization of appropriate endosymbiont variants. Here, we report preliminary characterization of wFlu, a native Wolbachia from the neotropical mosquito Aedes fluviatilis, and evaluate its potential as a vector control agent by confirming its ability to cause cytoplasmic incompatibility, and measuring its effect on three parameters determining host fitness (survival, fecundity and fertility, as well as vector competence (susceptibility for pathogen infection. Using an aposymbiotic strain of Ae. fluviatilis cured of its native Wolbachia by antibiotic treatment, we show that in its natural host wFlu causes incomplete, but high levels of, unidirectional cytoplasmic incompatibility, has high rates of maternal transmission, and no detectable fitness costs, indicating a high capacity to rapidly spread through host populations. However, wFlu does not inhibit, and even enhances, oocyst infection with the avian malaria parasite Plasmodium gallinaceum. The stage- and sex-specific density of wFlu was relatively low, and with limited tissue distribution, consistent with the lack of virulence and pathogen interference/symbiont-mediated protection observed. Unexpectedly, the density of wFlu was also shown to be specifically-reduced in the ovaries after bloodfeeding Ae. fluviatilis. Overall, our observations indicate that the Wolbachia strain wFlu has the potential to be used as a vector control agent, and suggests that appreciable mutualistic coevolution has occurred between this endosymbiont and its natural host. Future work will be needed to determine whether wFlu has virulent host effects and/or exhibits pathogen

  12. Surface modification and characterization of basalt fibers as potential reinforcement of concretes

    Science.gov (United States)

    Iorio, M.; Santarelli, M. L.; González-Gaitano, G.; González-Benito, J.

    2018-01-01

    Basalt fibers were surface treated with silane coupling agents as a method to enhance the adhesion and durability of fiber-matrix interfaces in concrete based composite materials. In particular, this work has been focused on the study of basalt fibers chemical coatings with aminosilanes and their subsequent characterization. Surface treatments were carried out after removing the original sizing applied by manufacturer and pretreating them with an activation process of surface silanol regeneration. Different samples were considered to make convenient comparisons: as received fibers (commercial), calcinated fibers (without commercial sizing), activated samples (calcinated fibers subjected to an acid process for hydroxyl regeneration), and silanized fibers with γ-aminopropiltriethoxysilane, γ-aminopropilmethyldiethoxysilane and a mixture of 50% by weight of both silanes. A deep characterization was carried out in terms of structure using X-ray diffraction, XRD, and Fourier transform infrared spectroscopy, FTIR, thermal properties by thermogravimetric analysis, TGA, coupled with single differential thermal analysis, SDTA, and morphology by scanning electron microscopy, SEM, and atomic force microscopy, AFM.

  13. Synthesis and Characterization of Cobalt Containing Nanoparticles on Alumina A Potential Catalyst for Gas to Liquid Fuels Production

    Science.gov (United States)

    Cowen, Jonathan; Hepp, Aloysius F.

    2016-01-01

    Fisher-Tröpsch synthesis (FTS) is a century-old gas-to-liquid (GTL) technology that commonly employs cobalt (Co, on an oxide support) or iron (supported or not) species catalysts. It has been well established that the activity of the Co catalyst depends directly upon the number of surface Co atoms. The addition of promoter (mainly noble) metals has been widely utilized to increase the fraction of Co that is available for surface catalysis. Direct synthesis of Co nanoparticles is a possible alternative approach; our preliminary synthesis and characterization efforts are described. Materials were characterized by various transmission microscopies and energy dispersive spectroscopy. Tri-n-octylphosphine oxide (TOPO) and dicobalt octacarbonyl were heated under argon to a temperature of 180 deg with constant stirring for 1 hr. Quenching the reaction in toluene produced Co-containing nanoparticles with a diameter of 5 to 10 nm. Alternatively, an alumina support (SBA-200 Al2O3) was added; the reaction was further stirred and the temperature was decreased to 140 deg to reduce the rate of further growth/ripening of the nucleated Co nanoparticles. A typical size of Co-containing NPs was also found to be in the range of 5 to 10 nm. This can be contrasted with a range of 50 to 200 nm for conventionally-produced Co-Al2O3 Fischer-Tröpsch catalysts. This method shows great potential for production of highly dispersed catalysts that are either supported or unsupported.

  14. Redox potential distribution of an organic-rich contaminated site obtained by the inversion of self-potential data

    Science.gov (United States)

    Abbas, M.; Jardani, A.; Soueid Ahmed, A.; Revil, A.; Brigaud, L.; Bégassat, Ph.; Dupont, J. P.

    2017-11-01

    Mapping the redox potential of shallow aquifers impacted by hydrocarbon contaminant plumes is important for the characterization and remediation of such contaminated sites. The redox potential of groundwater is indicative of the biodegradation of hydrocarbons and is important in delineating the shapes of contaminant plumes. The self-potential method was used to reconstruct the redox potential of groundwater associated with an organic-rich contaminant plume in northern France. The self-potential technique is a passive technique consisting in recording the electrical potential distribution at the surface of the Earth. A self-potential map is essentially the sum of two contributions, one associated with groundwater flow referred to as the electrokinetic component, and one associated with redox potential anomalies referred to as the electroredox component (thermoelectric and diffusion potentials are generally negligible). A groundwater flow model was first used to remove the electrokinetic component from the observed self-potential data. Then, a residual self-potential map was obtained. The source current density generating the residual self-potential signals is assumed to be associated with the position of the water table, an interface characterized by a change in both the electrical conductivity and the redox potential. The source current density was obtained through an inverse problem by minimizing a cost function including a data misfit contribution and a regularizer. This inversion algorithm allows the determination of the vertical and horizontal components of the source current density taking into account the electrical conductivity distribution of the saturated and non-saturated zones obtained independently by electrical resistivity tomography. The redox potential distribution was finally determined from the inverted residual source current density. A redox map was successfully built and the estimated redox potential values correlated well with in

  15. Readiness to proceed: Characterization planning basis

    International Nuclear Information System (INIS)

    Adams, M.R.

    1998-01-01

    This report summarizes characterization requirements, data availability, and data acquisition plans in support of the Phase 1 Waste Feed Readiness to Proceed Mid-Level Logic. It summarizes characterization requirements for the following program planning documents: Waste Feed Readiness Mid-Level Logic and Decomposition (in development); Master blue print (not available); Tank Waste Remediation System (TWRS) Operations and Utilization Plan and Privatization Contract; Enabling assumptions (not available); Privatization low-activity waste (LAW) Data Quality Objective (DQO); Privatization high-level waste (HLW) DQO (draft); Problem-specific DQOs (in development); Interface control documents (draft). Section 2.0 defines the primary objectives for this report, Section 3.0 discusses the scope and assumptions, and Section 4.0 identifies general characterization needs and analyte-specific characterization needs or potential needs included in program documents and charts. Section 4.0 also shows the analyses that have been conducted, and the archive samples that are available for additional analyses. Section 5.0 discusses current plans for obtaining additional samples and analyses to meet readiness-to-proceed requirements. Section 6.0 summarizes sampling needs based on preliminary requirements and discusses other potential characterization needs. Many requirements documents are preliminary. In many cases, problem-specific DQOs have not been drafted, and only general assumptions about the document contents could be obtained from the authors. As a result, the readiness-to-proceed characterization requirements provided in this document are evolving and may change

  16. Characterization of a New Heat Dissipation Matric Potential Sensor

    Directory of Open Access Journals (Sweden)

    Rolf Krebs

    2013-01-01

    Full Text Available Soil moisture sensors can help to reduce the amount of water needed for irrigation. In this paper we describe the PlantCare soil moisture sensor as a new type of heat dissipation sensor, its calibration and the correction for temperature changes. With the PlantCare sensor it is possible to measure the matric potential indirectly to monitor or control irrigation. This sensor is based on thermal properties of a synthetic felt. After a defined heating phase the cooling time to a threshold temperature is a function of the water content in the synthetic felt. The water content in this porous matrix is controlled by the matric potential in the surrounding soil. Calibration measurements have shown that the sensor is most sensitive to −400 hPa and allows lower sensitivity measurements to −800 hPa. The disturbing effect of the temperature change during the measurement on the cooling time can be corrected by a linear function and the differences among sensors are minimized by a two point calibration.

  17. Characterization of Burkholderia cepacia genomovar I as a potential ...

    African Journals Online (AJOL)

    From the phylogenetic tree, UPM B3 is a specific strain within B. cepacia complex species that belong to genovomar I which is associated with strains nonpathogenic to humans. Thus, B. cepacia strain UPM B3 has the potential to be used against G. boninense, the causal pathogen of basal stem rot (BSR) in oil palm.

  18. Tank 241-AW-101 tank characterization plan

    International Nuclear Information System (INIS)

    Sathyanarayana, P.

    1994-01-01

    The first section gives a summary of the available information for Tank AW-101. Included in the discussion are the process history and recent sampling events for the tank, as well as general information about the tank such as its age and the risers to be used for sampling. Tank 241-AW-101 is one of the 25 tanks on the Flammable Gas Watch List. To resolve the Flammable Gas safety issue, characterization of the tanks, including intrusive tank sampling, must be performed. Prior to sampling, however, the potential for the following scenarios must be evaluated: the potential for ignition of flammable gases such as hydrogen-air and/or hydrogen-nitrous oxide; and the potential for secondary ignition of organic-nitrate/nitrate mixtures in crust layer initiated by the burning of flammable gases or by a mechanical in-tank energy source. The characterization effort applicable to this Tank Characterization Plan is focused on the resolution of the crust burn flammable gas safety issue of Tank AW-101. To evaluate the potential for a crust burn of the waste material, calorimetry tests will be performed on the waste. Differential Scanning Calorimetry (DSC) will be used to determine whether an exothermic reaction exists

  19. Preparation and characterization of tetrandrine-phospholipid complex loaded lipid nanocapsules as potential oral carriers

    Directory of Open Access Journals (Sweden)

    Zhao YQ

    2013-10-01

    Full Text Available Yi-qing Zhao, Li-ping Wang, Chao Ma, Kun Zhao, Ying Liu, Nian-ping FengSchool of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of ChinaBackground: Tetrandrine is an active constituent that is extracted from the root tuber of the Chinese herb Stephania tetrandra S. Moore. It has shown various pharmacological effects, such as antitumor activity, multidrug resistance reversal, and hepatic fibrosis resistance. In clinical applications, it has been used to treat hypertension, pneumosilicosis, and lung cancer. However, the poor water solubility of tetrandrine has limited its application. In this study, a newly emerging oral drug carrier of phospholipid complex loaded lipid nanocapsules was developed to improve the oral bioavailability of tetrandrine.Methods: The phospholipid complex was prepared with the solvent-evaporation method to enhance the liposolubility of tetrandrine. The formation of the phospholipid complex was confirmed with a solubility study, infrared spectroscopy, and a differential scanning calorimetry (DSC analysis. The tetrandrine-phospholipid complex loaded lipid nanocapsules (TPC-LNCs were prepared using the phase inversion method. Lyophilization was performed with mannitol (10% as a cryoprotectant. TPC-LNCs were characterized according to their particle size, zeta potential, encapsulation efficiency, morphology by transmission electron microscopy, and crystallinity by DSC. In addition, the in vitro release of tetrandrine from TPC-LNCs was examined to potentially illustrate the in vivo release behavior. The in vivo bioavailability of TPC-LNCs was studied and compared to tetrandrine tablets in rats.Results: The liposolubility of tetrandrine in n-octanol improved from 8.34 µg/mL to 35.64 µg/mL in the tetrandrine-phospholipid complex. The prepared TPC-LNCs were spherical-shaped particles with a small size of 40 nm and a high encapsulation efficiency of 93.9%. DSC measurements revealed

  20. Production and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity

    Directory of Open Access Journals (Sweden)

    Francesco Baino

    2017-12-01

    Full Text Available Multicomponent silicate glasses and their corresponding glass-ceramic derivatives were prepared and tested for potential applications in dentistry. The glasses were produced via a melting-quenching process, ground and sieved to obtain fine-grained powders that were pressed in the form of small cylinders and thermally treated to obtain sintered glass-ceramic samples. X-ray diffraction investigations were carried out on the materials before and after sintering to detect the presence of crystalline phases. Thermal analyses, mechanical characterizations (assessment of bending strength, Young’s modulus, Vickers hardness, fracture toughness, and in vitro bioactivity tests in simulated body fluid were performed. On the basis of the acquired results, different potential applications in the dental field were discussed for the proposed glass-ceramics. The use of such materials can be suggested for either restorative dentistry or dental implantology, mainly depending on their peculiar bioactive and mechanical properties. At the end of the work, the feasibility of a novel full-ceramic bilayered implant was explored and discussed. This implant, comprising a highly bioactive layer expected to promote osteointegration and another one mimicking the features of tooth enamel, can have an interesting potential for whole tooth substitution.

  1. Characterization and assessment of potential environmental risk of tailings stored in seven impoundments in the Aries river basin, Western Romania

    Science.gov (United States)

    2013-01-01

    Background The objective of this study was to examine the potential environmental risk of tailings resulted after precious and base metal ores processing, stored in seven impoundments located in the Aries river basin, Romania. The tailings were characterized by mineralogical and elemental composition, contamination indices, acid rock drainage generation potential and water leachability of hazardous/priority hazardous metals and ions. Multivariate statistical methods were used for data interpretation. Results Tailings were found to be highly contaminated with several hazardous/priority hazardous metals (As, Cu, Cd, Pb), and pose potential contamination risk for soil, sediments, surface and groundwater. Two out of the seven studied impoundments does not satisfy the criteria required for inert wastes, shows acid rock drainage potential and thus can contaminate the surface and groundwater. Three impoundments were found to be highly contaminated with As, Pb and Cd, two with As and other two with Cu. The tailings impoundments were grouped based on the enrichment factor, geoaccumulation index, contamination factor and contamination degree of 7 hazardous/priority hazardous metals (As, Cd, Cr, Cu, Ni, Pb, Zn) considered typical for the studied tailings. Principal component analysis showed that 47% of the elemental variability was attributable to alkaline silicate rocks, 31% to acidic S-containing minerals, 12% to carbonate minerals and 5% to biogenic elements. Leachability of metals and ions was ascribed in proportion of 61% to silicates, 11% to acidic minerals and 6% to the organic matter. A variability of 18% was attributed to leachability of biogenic elements (Na, K, Cl-, NO3-) with no potential environmental risk. Pattern recognition by agglomerative hierarchical clustering emphasized the grouping of impoundments in agreement with their contamination degree and acid rock drainage generation potential. Conclusions Tailings stored in the studied impoundments were found to

  2. Characterization and assessment of potential environmental risk of tailings stored in seven impoundments in the Aries river basin, Western Romania

    Directory of Open Access Journals (Sweden)

    Levei Erika

    2013-01-01

    Full Text Available Abstract Background The objective of this study was to examine the potential environmental risk of tailings resulted after precious and base metal ores processing, stored in seven impoundments located in the Aries river basin, Romania. The tailings were characterized by mineralogical and elemental composition, contamination indices, acid rock drainage generation potential and water leachability of hazardous/priority hazardous metals and ions. Multivariate statistical methods were used for data interpretation. Results Tailings were found to be highly contaminated with several hazardous/priority hazardous metals (As, Cu, Cd, Pb, and pose potential contamination risk for soil, sediments, surface and groundwater. Two out of the seven studied impoundments does not satisfy the criteria required for inert wastes, shows acid rock drainage potential and thus can contaminate the surface and groundwater. Three impoundments were found to be highly contaminated with As, Pb and Cd, two with As and other two with Cu. The tailings impoundments were grouped based on the enrichment factor, geoaccumulation index, contamination factor and contamination degree of 7 hazardous/priority hazardous metals (As, Cd, Cr, Cu, Ni, Pb, Zn considered typical for the studied tailings. Principal component analysis showed that 47% of the elemental variability was attributable to alkaline silicate rocks, 31% to acidic S-containing minerals, 12% to carbonate minerals and 5% to biogenic elements. Leachability of metals and ions was ascribed in proportion of 61% to silicates, 11% to acidic minerals and 6% to the organic matter. A variability of 18% was attributed to leachability of biogenic elements (Na, K, Cl-, NO3- with no potential environmental risk. Pattern recognition by agglomerative hierarchical clustering emphasized the grouping of impoundments in agreement with their contamination degree and acid rock drainage generation potential. Conclusions Tailings stored in the studied

  3. Intact glycopeptide characterization using mass spectrometry.

    Science.gov (United States)

    Cao, Li; Qu, Yi; Zhang, Zhaorui; Wang, Zhe; Prytkova, Iya; Wu, Si

    2016-05-01

    Glycosylation is one of the most prominent and extensively studied protein post-translational modifications. However, traditional proteomic studies at the peptide level (bottom-up) rarely characterize intact glycopeptides (glycosylated peptides without removing glycans), so no glycoprotein heterogeneity information is retained. Intact glycopeptide characterization, on the other hand, provides opportunities to simultaneously elucidate the glycan structure and the glycosylation site needed to reveal the actual biological function of protein glycosylation. Recently, significant improvements have been made in the characterization of intact glycopeptides, ranging from enrichment and separation, mass spectroscopy (MS) detection, to bioinformatics analysis. In this review, we recapitulated currently available intact glycopeptide characterization methods with respect to their advantages and limitations as well as their potential applications.

  4. Geophysical methods for fracture characterization in and around potential sites for nuclear waste disposal

    International Nuclear Information System (INIS)

    Majer, E.L.; Lee, K.H.; Morrison, H.F.

    1992-08-01

    Historically, geophysical methods have been used extensively to successfully explore the subsurface for petroleum, gas, mineral, and geothermal resources. Their application, however, for site characterization, and monitoring the performance of near surface waste sites or repositories has been somewhat limited. Presented here is an overview of the geophysical methods that could contribute to defining the subsurface heterogeneity and extrapolating point measurements at the surface and in boreholes to volumetric descriptions in a fractured rock. In addition to site characterization a significant application of geophysical methods may be in performance assessment and in monitoring the repository to determine if the performance is as expected

  5. Transmutation potential of reactor WWER-440

    International Nuclear Information System (INIS)

    Darilek, P.; Sebian, V.; Necas, V.

    2001-01-01

    Theoretical evaluation of WWER-440 transmutation potential by HELIOS - code is presented. Transmutation method proposal comprising special transmutation pins, combined FA and simple reprocessing is described. Transmutation efficiency of the method is characterized (Authors)

  6. Enterprise’s employment potential: concept, components and evaluation methods

    Directory of Open Access Journals (Sweden)

    Korbut K.Ye.

    2017-06-01

    Full Text Available The present study deals with the main interpretations and views of scientists on the economic category «labor potential». The conditions and factors affecting the labor potential are given. The author makes the classification and provides the general characteristic to the factors, which characterize the mechanism of formation of the labor potential. The detailed description of the main components and the components of the labor potential at the enterprise has been determined, analyzed and provided. The levels of the labor potential manifestation are summarized, and examined, and the explanation is given to each of them. The general characteristic of the constituent elements of workers’ labor potential is provided. The principal data of the labor potential at the micro level are provided. The main types of the labor potential at the enterprise are singled out and characterized in detail by the level of aggregated estimates, by the range of coverage of opportunities, by the nature of participation in the production and economic process and by the place in the socio-economic system of the enterprise. Considerable attention is paid to the views of scientists on the main methods of assessing the labor potential of the enterprise.

  7. Characterization of thyroid hormone effects on Na-K pump and membrane potential of cultured rat skeletal myotubes

    International Nuclear Information System (INIS)

    Brodie, C.; Sampson, S.R.

    1988-01-01

    The purpose of this study was to characterize the effects of thyroid hormone on the Na-K pump and resting membrane potential (EM) of rat skeletal myotubes in culture. Myotubes were obtained from fetal (19-21 day) or neonatal rats (1-2 day) by serial trypsinization and maintained in culture for up to 10 days. Cells were treated with T4 or T3 on day 6 or 7, and measurements were made of EM, [ 3 H]ouabain binding, and ouabain-sensitive 86 Rb uptake at various times thereafter. Hormone treatment increased the values of all three variables within 24 h, plateau levels being attained by 48-72 h. Cycloheximide and actinomycin D totally blocked the effects of thyroid hormone when added together to the cells, thus suggesting that protein synthesis is necessary for the effects of these hormones. Scatchard analysis showed that the new receptors have lower ouabain affinity than those in control. Blockade of spontaneously occurring action potentials with tetrodotoxin, which blocks voltage-dependent Na channels, or Na/H antiporter with amiloride, abolished the hormone effects seen after 24 h and significantly reduced those obtained after 48 h of hormone treatment. The results demonstrate that thyroid hormone-induced increased amount and activity of the electrogenic Na-K pump in cultured myotubes occurs, at least in part, in response to an initial effect to increase Na influx. Moreover, the findings are consistent with the concept that the Na-K pump plays an important role in regulation of EM in this preparation

  8. Characterization of membrane potential-dependent uptake of the novel PET tracer 18F-fluorobenzyl triphenylphosphonium cation

    International Nuclear Information System (INIS)

    Madar, Igal; Ravert, Hayden; Abro, Masroor; Pomper, Martin; Dannals, Robert; Frost, James J.; Nelkin, Barry

    2007-01-01

    Mitochondrial dysfunction has been attributed a critical role in the etiology and pathogenesis of numerous diseases, and is manifested by alterations of the organelle's membrane potential (Δψ m ). This suggests that Δψ m measurement can be highly useful for diagnostic purposes. In the current study, we characterized the capability of the novel PET agent 18 F-fluorobenzyl triphenylphosphonium ( 18 F-FBnTP) to assess Δψ m , compared with the well-established voltage sensor 3 H-tetraphenylphosphonium ( 3 H-TPP). 18 F-FBnTP and 3 H-TPP uptake under conditions known to alter Δψ m and plasma membrane potential (Δψ p ) was assayed in the H345 lung carcinoma cell line. 18 F-FBnTP biodistribution was assessed in CD1 mice using dynamic PET and ex vivo gamma well counting. 18 F-FBnTP and 3 H-TPP demonstrated similar uptake kinetics and plateau concentrations in H345 cells. Stepwise membrane depolarization resulted in a linear decrease in 18 F-FBnTP cellular uptake, with a slope (-0.58±0.06) and correlation coefficient (0.94±0.07) similar (p>0.17) to those measured for 3 H-TPP (-0.63±0.06 and 0.96±0.05, respectively). Selective collapse of Δψ m caused a substantial decrease in cellular uptake for 18 F-FBnTP (81.6±8.1%) and 3 H-TPP (85.4±6.7%), compared with control. Exposure to the proapoptotic staurosporine, known to collapse Δψ m , resulted in a decrease of 68.7±10.1% and 71.5±8.4% in 18 F-FBnTP and 3 H-TPP cellular uptake, respectively. 18 F-FBnTP accumulated mainly in kidney, heart and liver. 18 F-FBnTP is a mitochondria-targeting PET radiopharmaceutical responsive to alterations in membrane potential with voltage-dependent performance similar to that of 3 H-TPP. 18 F-FBnTP is a promising new voltage sensor for detection of physiological and pathological processes associated with mitochondrial dysfunction, such as apoptosis, using PET. (orig.)

  9. Sustainability Characterization for Additive Manufacturing.

    Science.gov (United States)

    Mani, Mahesh; Lyons, Kevin W; Gupta, S K

    2014-01-01

    Additive manufacturing (AM) has the potential to create geometrically complex parts that require a high degree of customization, using less material and producing less waste. Recent studies have shown that AM can be an economically viable option for use by the industry, yet there are some inherent challenges associated with AM for wider acceptance. The lack of standards in AM impedes its use for parts production since industries primarily depend on established standards in processes and material selection to ensure the consistency and quality. Inability to compare AM performance against traditional manufacturing methods can be a barrier for implementing AM processes. AM process sustainability has become a driver due to growing environmental concerns for manufacturing. This has reinforced the importance to understand and characterize AM processes for sustainability. Process characterization for sustainability will help close the gaps for comparing AM performance to traditional manufacturing methods. Based on a literature review, this paper first examines the potential environmental impacts of AM. A methodology for sustainability characterization of AM is then proposed to serve as a resource for the community to benchmark AM processes for sustainability. Next, research perspectives are discussed along with relevant standardization efforts.

  10. Seasonal characterization of sugarcane vinasse: Assessing environmental impacts from fertirrigation and the bioenergy recovery potential through biodigestion.

    Science.gov (United States)

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro; Zaiat, Marcelo

    2018-09-01

    Sugarcane vinasse has been widely used as a soil fertilizer in the Brazilian sucro-alcohol industry for recycling potassium and water. However, the potential negative effects from long-term soil fertirrigation represent a major drawback regarding this practice, whereas the application of biodigestion represents an efficient method for reducing the polluting organic load and recovering bioenergy from vinasse. Regardless of the predicted use for vinasse, an understanding of the potential of each option is imperative, as the seasonal alterations in the inorganic/organic fractions of vinasse directly affect its management. In this context, this study presents a detailed compositional characterization of sugarcane vinasse from a large-scale Brazilian biorefinery throughout the 2014/2015 harvest to assess the environmental effects (due to fertirrigation) and to estimate the biogas energetic potential. Calculated inputs of organic matter into soils due to vinasse land application were equivalent to the polluting load of populations (117-257inhabha -1 ) at least 2-fold greater than the largest Brazilian capital cities (78-70inhabha -1 ). Two-phase biodigestion could efficiently reduce the polluting load of vinasse (23-52inhabha -1 ) and eliminate the negative effects from direct sulfide emissions in the environment. However, a high risk of soil sodification could result from using high doses of Na-based alkalizing compounds in biodigestion plants. Finally, the optimized recovery of bioenergy through biogas (13.3-26.7MW as electricity) could supply populations as large as 305 thousand inhabitants, so that over 30% of the surplus electricity produced by the studied biorefinery could be obtained from biogas. Overall, applying biodigestion in the treatment of vinasse provides important environmental and energetic gains. However, the benefits of reducing the polluting organic load of vinasse through bioenergy recovery may lose their effect depending on the alkalizing strategy

  11. Identification and Initial Characterization of the Effectors of an Anther Smut Fungus and Potential Host Target Proteins

    Directory of Open Access Journals (Sweden)

    Venkata S. Kuppireddy

    2017-11-01

    Full Text Available (1 Background: Plant pathogenic fungi often display high levels of host specificity and biotrophic fungi; in particular, they must manipulate their hosts to avoid detection and to complete their obligate pathogenic lifecycles. One important strategy of such fungi is the secretion of small proteins that serve as effectors in this process. Microbotryum violaceum is a species complex whose members infect members of the Caryophyllaceae; M. lychnidis-dioicae, a parasite on Silene latifolia, is one of the best studied interactions. We are interested in identifying and characterizing effectors of the fungus and possible corresponding host targets; (2 Methods: In silico analysis of the M. lychnidis-dioicae genome and transcriptomes allowed us to predict a pool of small secreted proteins (SSPs with the hallmarks of effectors, including a lack of conserved protein family (PFAM domains and also localized regions of disorder. Putative SSPs were tested for secretion using a yeast secretion trap method. We then used yeast two-hybrid analyses for candidate-secreted effectors to probe a cDNA library from a range of growth conditions of the fungus, including infected plants; (3 Results: Roughly 50 SSPs were identified by in silico analysis. Of these, 4 were studied further and shown to be secreted, as well as examined for potential host interactors. One of the putative effectors, MVLG_01732, was found to interact with Arabidopsis thaliana calcium-dependent lipid binding protein (AtCLB and with cellulose synthase interactive protein 1 orthologues; and (4 Conclusions: The identification of a pool of putative effectors provides a resource for functional characterization of fungal proteins that mediate the delicate interaction between pathogen and host. The candidate targets of effectors, e.g., AtCLB, involved in pollen germination suggest tantalizing insights that could drive future studies.

  12. Electrodeposition of nickel particles and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G. T. [Centro de Investigacion en Quimica Aplicada, Laboratorio de Microscopia. Blvd. Enrique Reyna No. 140, Saltillo 25253, Coahuila (Mexico); Zavala, G.; Videa, M. [ITESM, Campus Monterrey, Depto. de Fisica, Av. Garza Sada 2501 Sur, Monterrey 64849, N. L. (Mexico)], e-mail: gtadeo@ciqa.mx

    2009-07-01

    Electrodeposition of nickel particles on ITO substrates is achieved by current pulse reduction. A comparison between potential pulse and current pulse experiments presents differences in particle size and particle size distribution. The latter shows smaller particle size dispersion than what is found with potential pulses. Characterization of the particles carried out by Atomic Force Microscopy shows particles with average sizes between 100 to 300 nm. Magnetic characterization by Magnetic Force Microscopy and SQUID shows that particles of {approx} 300 nm were ferromagnetic with a coercive field of 200 Oe and a saturation magnetization of 40 x 10{sup -6} emu at 300 K. (Author)

  13. Characterization of radioactive waste forms and packages

    International Nuclear Information System (INIS)

    1997-01-01

    This publication provides a compendium of waste form, container and waste package properties which are potential importance for waste characterization to support approval for treatment/conditioning, storage and disposal methods and for predicting both short and long term waste behaviour in the repository environment. The properties to be characterized are defined in terms of the technical rationale for their control and characterization. Characterization methods for each property are described in general with reference to detailed discussions existing in the literature. Guidance as to the advantages and disadvantages of individual methods from a technical perspective is also provided where appropriate. This report deals with the characterization of all types of radioactive wastes except spent fuel intended for direct disposal. 115 refs, 17 figs, 12 tabs

  14. Evaluation of possible host rocks for China's high level radioactive waste repository and the progress in site characterization at the Beishan potential site in NW China's Gansu province

    International Nuclear Information System (INIS)

    Wang Ju; Jin Yuanxin; Chen Zhangru; Chen Weiming; Wang Wenguang

    2000-01-01

    Evaluation of possible host rocks for China's high level radioactive waste repository is summarized in this paper. The distribution and characteristics of granite, tuff, clay stone, salt and loess in China are described, while maps showing the distribution of host rocks are presented. Because of the wide distribution, large scale, good heat conductivity and suitable mechanical properties, granite is considered as the most potential host rock. Some granite bodies distributed in NW China, SW China, South China and Inner Mongolia have been selected as potential areas. Detailed site characterization at Beishan area, Gansu Province NW China is in progress

  15. Characterizing the Estrogenic Potential of 1060 Environmental ...

    Science.gov (United States)

    In order to detect environmental chemicals that pose a risk of endocrine disruption, high-throughput screening (HTS) tests capable of testing thousands of environmental chemicals are needed. Alteration of estrogen signaling has been implicated in a variety of adverse health effects including cancer promotion, reproductive deficits, and vascular effects. Here we investigate the estrogenic potential of 1060 chemicals of environmental relevance using a real-time measure of growth kinetics by electrode impedance in the estrogen-responsive human ductal carcinoma, T47D cell line. Cells were treated in concentration response and measurements of cellular impedance were recorded every hour for six days. Progestens, androgens, and mineralocortocoids (progesterone, dihydrotestosterone, aldosterone) invoked a biphasic impedance signature that contrasted with the anticipated exponential impedance observed in response to known estrogen receptor agonists (17β-estradiol, genestein, bisphenol-A, nonylphenol, 4-tert-octylphenol). Several compounds, including bisphenol-A, and genestein caused impedance comparable to that of 17β-estradiol, although at much higher concentrations. Additionally, trenbolone and cyproterone acetate invoked the characteristic biphasic signature observed with other endogenous steroid hormones. The continuous real-time nature of this assay allows for the rapid detection of differential growth characteristics not easily detected by traditional cell prol

  16. Characterization of Intestinal Lactobacillus reuteri Strains as Potential Probiotics.

    Science.gov (United States)

    Singh, Tejinder Pal; Kaur, Gurpreet; Malik, Ravinder Kumar; Schillinger, Ulrich; Guigas, Claudia; Kapila, Suman

    2012-03-01

    This study was conducted to evaluate the probiotic properties of Lactobacillus reuteri isolated from human infant feces (less than 3 months). Out of thirty-two representative L. reuteri strains isolated from the infant human feces, nine isolates (i.e. LR5, LR6, LR9, LR11, LR19, LR20, LR25, LR26 and LR34) showed survival in acid, bile and simulated stomach-duodenum passage conditions, indicating their high tolerance to gastric juice, duodenal juice and bile environments. The nine isolates did not show strong hydrophobic properties because the percentages of adhesion to the apolar solvent, n-hexadecane, did not exceed 40%, showing that their surfaces were rather hydrophilic. Functionality of these nine probiotic isolates was supported by their antagonistic activity and their ability to deconjugate bile salts. The safety of the nine indigenous L. reuteri isolates was supported by the absence of transferable antibiotic resistance determinants, DNase activity, gelatinase activity and hemolysis. The results obtained so far suggest that the nine strains are resistant to low pH, bile salts and duodenum juice, so they could survive when passing through the upper part of the gastrointestinal tract and fulfill their potential probiotic action in the host organism. According to these results, the L. reuteri strains isolated from human infant feces possess interesting probiotic properties that make them potentially good candidates for probiotics.

  17. Spatially resolved characterization in thin-film photovoltaics

    CERN Document Server

    Bokalic, Matevz

    2015-01-01

    The book is devoted to the spatial characterization of solar cells and PV modules. It is written both as a monograph as well as a succinct guide for the state-of-the-art spatial characterization techniques and approaches. Amongst the approaches discussed are visual imaging, electro- and photo-luminescence imaging, thermography, and light beam induced mapping techniques. Emphasis is given on the luminescence image acquisition and interpretation due to its great potential. Characterization techniques are accompanied by simulation tools. The contents are aimed at a readership of students and s

  18. Dendrimer-stabilized bismuth sulfide nanoparticles: synthesis, characterization, and potential computed tomography imaging applications.

    Science.gov (United States)

    Fang, Yi; Peng, Chen; Guo, Rui; Zheng, Linfeng; Qin, Jinbao; Zhou, Benqing; Shen, Mingwu; Lu, Xinwu; Zhang, Guixiang; Shi, Xiangyang

    2013-06-07

    We report here a general approach to synthesizing dendrimer-stabilized bismuth sulfide nanoparticles (Bi2S3 DSNPs) for potential computed tomography (CT) imaging applications. In this study, ethylenediamine core glycidol hydroxyl-terminated generation 4 poly(amidoamine) dendrimers (G4.NGlyOH) were used as stabilizers to first complex the Bi(III) ions, followed by reaction with hydrogen sulfide to generate Bi2S3 DSNPs. By varying the molar ratio of Bi atom to dendrimer, stable Bi2S3 DSNPs with an average size range of 5.2-5.7 nm were formed. The formed Bi2S3 DSNPs were characterized via different techniques. X-ray absorption coefficient measurements show that the attenuation of Bi2S3 DSNPs is much higher than that of iodine-based CT contrast agent at the same molar concentration of the active element (Bi versus iodine). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay and hemolysis assay reveal that the formed Bi2S3 DSNPs are noncytotoxic and have a negligible hemolysis effect in the studied concentration range. Furthermore, we show that cells incubated with the Bi2S3 DSNPs are able to be imaged using CT, a prominent enhancement at the point of rabbit injected subcutaneously with the Bi2S3 DSNPs is able to be visualized via CT scanning, and the mouse's pulmonary vein can be visualized via CT after intravenous injection of the Bi2S3 DSNPs. With the good biocompatibility, enhanced X-ray attenuation property, and tunable dendrimer chemistry, the designed Bi2S3 DSNPs should be able to be further functionalized, allowing them to be used as a highly efficient contrast agent for CT imaging of different biological systems.

  19. Socioeconomic monitoring and mitigation plan for site characterization: Revision 1

    International Nuclear Information System (INIS)

    1988-01-01

    The objective of the SMMP is to document compliance with the NWPA. In order to do so, a summary description of site characterization activities based on the consultation draft of the Site Characterization Plan and the final EA is provided. Subsequent chapters identify issues related to the potential for significant adverse impacts and the monitoring plans proposed to determine whether those impacts occur. Should monitoring confirm the potential for significant adverse impact, mitigative maesures will be developed. In the context of site characterization, mitigation is defined as those changes in site characterization activities that serve to avoid or minimize, to the maximum extent practicable, any significant adverse environmental impacts. Proposed site characterization activites involve a variety of surface and subsurface activities including site preparation, access road construction and improvment, exploratory drilling and testing, geophysical surveys, geological mapping, and construction of the exploratory shaft facility. It is not anticipated that any significant adverse socioeconomic impacts will result form any of the proposed site characterization activities. However, the assessment of impacts in the EA, especially impacts related to employment and population growth, was based on assumptions concerning activities and conditions during the site characterization phase

  20. Establishment and characterization of a new human pancreatic adenocarcinoma cell line with high metastatic potential to the lung

    International Nuclear Information System (INIS)

    Kalinina, Tatyana; Simon, Ronald; Otto, Benjamin; Dierlamm, Judith; Schwarzenbach, Heidi; Effenberger, Katharina E; Bockhorn, Maximilian; Izbicki, Jakob R; Yekebas, Emre F; Güngör, Cenap; Thieltges, Sabrina; Möller-Krull, Maren; Murga Penas, Eva Maria; Wicklein, Daniel; Streichert, Thomas; Schumacher, Udo; Kalinin, Viacheslav

    2010-01-01

    Pancreatic cancer is still associated with devastating prognosis. Real progress in treatment options has still not been achieved. Therefore new models are urgently needed to investigate this deadly disease. As a part of this process we have established and characterized a new human pancreatic cancer cell line. The newly established pancreatic cancer cell line PaCa 5061 was characterized for its morphology, growth rate, chromosomal analysis and mutational analysis of the K-ras, EGFR and p53 genes. Gene-amplification and RNA expression profiles were obtained using an Affymetrix microarray, and overexpression was validated by IHC analysis. Tumorigenicity and spontaneous metastasis formation of PaCa 5061 cells were analyzed in pfp -/- /rag2 -/- mice. Sensitivity towards chemotherapy was analysed by MTT assay. PaCa 5061 cells grew as an adhering monolayer with a doubling time ranging from 30 to 48 hours. M-FISH analyses showed a hypertriploid complex karyotype with multiple numerical and unbalanced structural aberrations. Numerous genes were overexpressed, some of which have previously been implicated in pancreatic adenocarcinoma (GATA6, IGFBP3, IGFBP6), while others were detected for the first time (MEMO1, RIOK3). Specifically highly overexpressed genes (fold change > 10) were identified as EGFR, MUC4, CEACAM1, CEACAM5 and CEACAM6. Subcutaneous transplantation of PaCa 5061 into pfp -/- /rag2 -/- mice resulted in formation of primary tumors and spontaneous lung metastasis. The established PaCa 5061 cell line and its injection into pfp -/- /rag2 -/- mice can be used as a new model for studying various aspects of the biology of human pancreatic cancer and potential treatment approaches for the disease

  1. Application of the zeta potential for stationary phase characterization in ion chromatography.

    Science.gov (United States)

    Buszewski, Bogusław; Jaćkowska, Magdalena; Bocian, Szymon; Dziubakiewicz, Ewelina

    2013-01-01

    Two series of homemade stationary bonded phases for ion chromatography were investigated according to their zeta potential. One set of dendrimer anion exchanger was synthesized on the polymer support whereas the second material was prepared on the silica gel. The zeta potential data in water environment as well as buffered water solution were obtained. The influence of the length of anion-exchanger chains, the type of the support of the modified surface, and charge distribution on these data was investigated. Additionally, the zeta potential was correlated with retention factor of inorganic ions to describe their influence on the retention mechanism in ion chromatography. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Excitation and characterization of image potential state electrons on quasi-free-standing graphene

    Science.gov (United States)

    Lin, Yi; Li, Yunzhe; Sadowski, Jerzy T.; Jin, Wencan; Dadap, Jerry I.; Hybertsen, Mark S.; Osgood, Richard M.

    2018-04-01

    We investigate the band structure of image potential states in quasi-free-standing graphene (QFG) monolayer islands using angle-resolved two-photon-photoemission spectroscopy. Direct probing by low-energy electron diffraction shows that QFG is formed following oxygen intercalation into the graphene-Ir(111) interface. Despite the apparent decoupling of the monolayer graphene from the Ir substrate, we find that the binding energy of the n =1 image potential state on these QFG islands increases by 0.17 eV, as compared to the original Gr/Ir(111) interface. We use calculations based on density-functional theory to construct an empirical, one-dimensional potential that quantitatively reproduces the image potential state binding energy and links the changes in the interface structure to the shift in energy. Specifically, two factors contribute comparably to this energy shift: a deeper potential well arising from the presence of intercalated oxygen adatoms and a wider potential well associated with the increase in the graphene-Ir distance. While image potential states have not been observed previously on QFG by photoemission, our paper now demonstrates that they may be strongly excited in a well-defined QFG system produced by oxygen intercalation. This opens an opportunity for studying the surface electron dynamics in QFG systems, beyond those found in typical nonintercalated graphene-on-substrate systems.

  3. Technical Overview of Ecological Risk Assessment - Analysis Phase: Exposure Characterization

    Science.gov (United States)

    Exposure Characterization is the second major component of the analysis phase of a risk assessment. For a pesticide risk assessment, the exposure characterization describes the potential or actual contact of a pesticide with a plant, animal, or media.

  4. Characterization study of industrial waste glass as starting material ...

    African Journals Online (AJOL)

    In present study, an industrial waste glass was characterized and the potential to assess as starting material in development of bioactive materials was investigated. A waste glass collected from the two different glass industry was grounded to fine powder. The samples were characterized using X-ray fluorescence (XRF), ...

  5. Characterization of silver nanoparticles synthesized using an endophytic fungus, Penicillium oxalicum having potential antimicrobial activity

    Science.gov (United States)

    Bhattacharjee, Sukla; Debnath, Gopal; Das, Aparajita Roy; Krishna Saha, Ajay; Das, Panna

    2017-12-01

    The aim of the present study was to test the efficacy of the extracellular mycelium extract of Penicillium oxalicum isolated from Phlogacanthus thyrsiflorus to biosynthesize silver nanoparticles. It was characterized using ultraviolet-visible absorption spectroscopy, atomic force microscopy, transmission electron microscopy and Fourier transforms infrared spectroscopy. The silver nanoparticles were evaluated for antimicrobial activity. The characterization confirms the synthesis of silver nanoparticles. Both silver nanoparticles and combination of silver nanoparticles with streptomycin showed activity against the four bacteria. The results suggested that P. oxalicum offers eco-friendly production of silver nanoparticles and the antibacterial activity may find application in biomedicine.

  6. Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development.

    Directory of Open Access Journals (Sweden)

    Tiffany M Mott

    Full Text Available In this study, a Burkholderia mallei tonB mutant (TMM001 deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis.Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 10(4 CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001.Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis.

  7. Characterization of high exopolysaccharide-producing Lactobacillus strains isolated from mustard pickles for potential probiotic applications.

    Science.gov (United States)

    Huang, Jing-Yao; Kao, Cheng-Yen; Liu, We-Sin; Fang, Tony J

    2017-06-01

    The aim of this study was to characterize high exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) isolated from mustard pickles in Taiwan for potential probiotic applications. Among 39 collected LAB strains, four most productive EPS-producing strains were selected for further analysis. Comparative analyses of 16S rDNA genes rpoA and pheS sequences demonstrated that these strains were members of Lactobacillus plantarum-group (LPG). NCD 2, NLD 4, SLC 13, and NLD 16 showed survival rates of 95.83% ± 0.49%, 95.07% ± 0.64%, 105.84% ± 0.82%, and 99.65% ± 0.31% under simulated gastrointestinal conditions, respectively. No cytotoxic effects on macrophage RAW 264.7 cells were observed when they were treated with a low dose (1 μg/ml) of stimulants extracted from the tested LAB strains. The production of nitric oxide in RAW 264.7 cells incubated with various LAB stimulants showed a dose-dependent increase. Among the four strains, SLC 13 showed higher inhibitory activity on growth of Enterococcus faecalis (BCRC 12302) and Yersinia enterocolitica (BCRC 10807). NLD 4 showed strong inhibitory activity against Escherichia coli O157:H7 (ATCC 43894) as compared with the other three strains. In summary, our results suggest that Lactobacillus pentosus SLC 13 may be a good candidate for probiotic applications and for development of antibacterial compounds. [Int Microbiol 20(2):75-84 (2017)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  8. Characterization of a novel protease from Aeribacillus pallidus strain VP3 with potential biotechnological interest.

    Science.gov (United States)

    Mechri, Sondes; Ben Elhoul Berrouina, Mouna; Omrane Benmrad, Maroua; Zaraî Jaouadi, Nadia; Rekik, Hatem; Moujehed, Emna; Chebbi, Alif; Sayadi, Sami; Chamkha, Mohamed; Bejar, Samir; Jaouadi, Bassem

    2017-01-01

    The present study investigates the purification and physico-chemical characterization of an extracellular protease from the Aeribacillus pallidus strain VP3 previously isolated from a geothermal oil-field (Sfax, Tunisia). The maximum protease activity recorded after 22h of incubation at 45°C was 3000U/ml. Pure enzyme, designated as SPVP, was obtained after ammonium sulfate fractionation (40-60%)-dialysis followed by heat-treatment (70°C for 30min) and UNO Q-6 FPLC anion-exchange chromatography. The purified enzyme is a monomer of molecular mass about 29kDa. The sequence of the 25 NH 2 -terminal residues of SPVP showed a high homology with those of Bacillus proteases. The almost complete inhibition by PMSF and DIFP confirmed that SPVP is a member of serine protease family. Its optima of pH and temperature were pH 10 and 60°C, respectively. Its half-life times at 70 and 80°C were 8 and 4h, respectively. Its catalytic efficiency was higher than those of SAPCG, Alcalase Ultra 2.5L, and Thermolysin type X. SPVP exhibited excellent stability to detergents and wash performance analysis revealed that it could remove blood-stains effectively and high resistance against organic solvents. These properties make SPVP a potential candidate for applications in detergent formulations and non-aqueous peptide biocatalysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Potential targets for lung squamous cell carcinoma

    Science.gov (United States)

    Researchers have identified potential therapeutic targets in lung squamous cell carcinoma, the second most common form of lung cancer. The Cancer Genome Atlas (TCGA) Research Network study comprehensively characterized the lung squamous cell carcinoma gen

  10. A Lipidomics Approach in the Characterization of Zika-Infected Mosquito Cells: Potential Targets for Breaking the Transmission Cycle.

    Directory of Open Access Journals (Sweden)

    Carlos Fernando Odir Rodrigues Melo

    Full Text Available Recent outbreaks of Zika virus in Oceania and Latin America, accompanied by unexpected clinical complications, made this infection a global public health concern. This virus has tropism to neural tissue, leading to microcephaly in newborns in a significant proportion of infected mothers. The clinical relevance of this infection, the difficulty to perform accurate diagnosis and the small amount of data in literature indicate the necessity of studies on Zika infection in order to characterize new biomarkers of this infection and to establish new targets for viral control in vertebrates and invertebrate vectors. Thus, this study aims at establishing a lipidomics profile of infected mosquito cells compared to a control group to define potential targets for viral control in mosquitoes. Thirteen lipids were elected as specific markers for Zika virus infection (Brazilian strain, which were identified as putatively linked to the intracellular mechanism of viral replication and/or cell recognition. Our findings bring biochemical information that may translate into useful targets for breaking the transmission cycle.

  11. Characterization of in vitro phenotypes of Burkholderia pseudomallei and Burkholderia mallei strains potentially associated with persistent infection in mice.

    Science.gov (United States)

    Bernhards, R C; Cote, C K; Amemiya, K; Waag, D M; Klimko, C P; Worsham, P L; Welkos, S L

    2017-03-01

    Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the agents of melioidosis and glanders, respectively, are Tier 1 biothreats. They infect humans and animals, causing disease ranging from acute and fatal to protracted and chronic. Chronic infections are especially challenging to treat, and the identification of in vitro phenotypic markers which signal progression from acute to persistent infection would be extremely valuable. First, a phenotyping strategy was developed employing colony morphotyping, chemical sensitivity testing, macrophage infection, and lipopolysaccharide fingerprint analyses to distinguish Burkholderia strains. Then mouse spleen isolates collected 3-180 days after infection were characterized phenotypically. Isolates from long-term infections often exhibited increased colony morphology differences and altered patterns of antimicrobial sensitivity and macrophage infection. Some of the Bp and Bm persistent infection isolates clearly displayed enhanced virulence in mice. Future studies will evaluate the potential role and significance of these phenotypic markers in signaling the establishment of a chronic infection.

  12. Characterizing the surface charge of synthetic nanomembranes by the streaming potential method

    OpenAIRE

    Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo

    2010-01-01

    The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt conc...

  13. Methodology for characterizing potential adversaries of Nuclear Material Safeguards Systems

    International Nuclear Information System (INIS)

    Kirkwood, C.W.; Pollock, S.M.

    1978-11-01

    The results are described of a study by Woodward--Clyde Consultants to assist the University of California Lawrence Livermore Laboratory in the development of methods to analyze and evaluate Nuclear Material Safeguards (NMS) Systems. The study concentrated on developing a methodology to assist experts in describing, in quantitative form, their judgments about the characteristics of potential adversaries of NMS Systems

  14. Methodology for characterizing potential adversaries of Nuclear Material Safeguards Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirkwood, C.W.; Pollock, S.M.

    1978-11-01

    The results are described of a study by Woodward--Clyde Consultants to assist the University of California Lawrence Livermore Laboratory in the development of methods to analyze and evaluate Nuclear Material Safeguards (NMS) Systems. The study concentrated on developing a methodology to assist experts in describing, in quantitative form, their judgments about the characteristics of potential adversaries of NMS Systems.

  15. Potentials for commercial production of biogas from domestic food ...

    African Journals Online (AJOL)

    The work reported in this paper investigated the potentials of commercial biogas production from biodegradable waste in Benin metropolis. The study was carried out in two phases. The first phase involved characterization of solid waste generated and determination of the quantity of potential feed stock for biogas ...

  16. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Le, Thi Duy Hanh [Department of Industrial Engineering, University of Trento, Trento (Italy); BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento (Italy); Bonani, Walter [Department of Industrial Engineering, University of Trento, Trento (Italy); BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento (Italy); Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento (Italy); Speranza, Giorgio [Center for Materials and Microsystems, PAM-SE, Fondazione Bruno Kessler, Trento (Italy); Sglavo, Vincenzo; Ceccato, Riccardo [Department of Industrial Engineering, University of Trento, Trento (Italy); Maniglio, Devid; Motta, Antonella [Department of Industrial Engineering, University of Trento, Trento (Italy); BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento (Italy); Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento (Italy); Migliaresi, Claudio, E-mail: claudio.migliaresi@unitn.it [Department of Industrial Engineering, University of Trento, Trento (Italy); BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Trento (Italy); Interuniversity Consortium for Science and Technology of Materials, Trento Research Unit, Trento (Italy)

    2016-02-01

    Silicon plays an important role in bone formation and maintenance, improving osteoblast cell function and inducing mineralization. Often, bone deformation and long bone abnormalities have been associated with silica/silicon deficiency. Diatomite, a natural deposit of diatom skeleton, is a cheap and abundant source of biogenic silica. The aim of the present study is to validate the potential of diatom particles derived from diatom skeletons as silicon-donor materials for bone tissue engineering applications. Raw diatomite (RD) and calcined diatomite (CD) powders were purified by acid treatments, and diatom microparticles (MPs) and nanoparticles (NPs) were produced by fragmentation of purified diatoms under alkaline conditions. The influence of processing on the surface chemical composition of purified diatomites was evaluated by X-ray photoelectron spectroscopy (XPS). Diatoms NPs were also characterized in terms of morphology and size distribution by transmission electron microscopy (TEM) and Dynamic light scattering (DLS), while diatom MPs morphology was analyzed by scanning electron microscopy (SEM). Surface area and microporosity of the diatom particles were evaluated by nitrogen physisorption methods. Release of silicon ions from diatom-derived particles was demonstrated using inductively coupled plasma optical emission spectrometry (ICP/OES); furthermore, silicon release kinetic was found to be influenced by diatomite purification method and particle size. Diatom-derived microparticles (MPs) and nanoparticles (NPs) showed limited or no cytotoxic effect in vitro depending on the administration conditions. - Highlights: • Diatomite is a natural source of silica and has a potential as silicon-donor for bone regenerative applications. • Diatom particles derived from purified diatom skeletons were prepared by fragmentation under extreme alkaline condition. • Dissolution of diatom particles derived from diatom skeletons in DI water depend on purification method

  17. Analysis of the portfolio of sites to characterize for selecting a nuclear repository

    International Nuclear Information System (INIS)

    Keeney, R.L.

    1987-01-01

    The US Department of Energy has selected three sites, from five nominated, to characterize for a nuclear repository to permanently dispose of nuclear waste. This decision was made without the benefit of an analysis of this portfolio problem. This paper analyzes different portfolios of three sites for simultaneous characterization and strategies for sequential characterization. Characterization of each site, which involves significant subsurface excavation, is now estimated to cost $1 billion. Mainly because of the high characterization costs, sequential characterization strategies are identified which are the equivalent of $1.7-2.0 billion less expensive than the selected DOE simultaneous characterization of the three sites. If three sites are simultaneously characterized, one portfolio is estimated to be the equivalent of $100-400 million better than the selected DOE portfolio. Because of these potential savings and several other complicating factors that may influence the relative desirability of characterization strategies, a thorough analysis of characterization strategies that addresses the likelihood of finding disqualifying conditions during site characterization, uncertainties, and dependencies in forecast site repository costs, preclosure and postclosure health and safety impacts, potential delays of both sequential and simultaneous characterization strategies, and the environmental, socioeconomic, and health and safety impacts of characterization activities is recommended

  18. Commercial squids: characterization, assessment of potential health benefits/risks and discrimination based on mineral, lipid and vitamin E concentrations.

    Science.gov (United States)

    Torrinha, A; Gomes, F; Oliveira, M; Cruz, R; Mendes, E; Delerue-Matos, C; Casal, S; Morais, S

    2014-05-01

    The most consumed squid species worldwide were characterized regarding their concentrations of minerals, fatty acids, cholesterol and vitamin E. Interspecific comparisons were assessed among species and geographical origin. The health benefits derived from squid consumption were assessed based on daily minerals intake and on nutritional lipid quality indexes. Squids contribute significantly to daily intake of several macro (Na, K, Mg and P) and micronutrients (Cu, Zn and Ni). Despite their low fat concentration, they are rich in long-chain omega-3 fatty acids, particularly docosahexaenoic (DHA) and eicosapentanoic (EPA) acids, with highly favorable ω-3/ω-6 ratios (from 5.7 to 17.7), reducing the significance of their high cholesterol concentration (140-549 mg/100g ww). Assessment of potential health risks based on minerals intake, non-carcinogenic and carcinogenic risks indicated that Loligo gahi (from Atlantic Ocean), Loligo opalescens (from Pacific Ocean) and Loligo duvaucelii (from Indic Ocean) should be eaten with moderation due to the high concentrations of Cu and/or Cd. Canonical discriminant analysis identified the major fatty acids (C14:0, C18:0, C18:1, C18:3ω-3, C20:4ω-6 and C22:5ω-6), P, K, Cu and vitamin E as chemical discriminators for the selected species. These elements and compounds exhibited the potential to prove authenticity of the commercially relevant squid species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Bathyphotometer bioluminescence potential measurements: A framework for characterizing flow agitators and predicting flow-stimulated bioluminescence intensity

    Science.gov (United States)

    Latz, Michael I.; Rohr, Jim

    2013-07-01

    Bathyphotometer measurements of bioluminescence are used as a proxy for the abundance of luminescent organisms for studying population dynamics; the interaction of luminescent organisms with physical, chemical, and biological oceanographic processes; and spatial complexity especially in coastal areas. However, the usefulness of bioluminescence measurements has been limited by the inability to compare results from different bathyphotometer designs, or even the same bathyphotometer operating at different volume flow rates. The primary objective of this study was to compare measurements of stimulated bioluminescence of four species of cultured dinoflagellates, the most common source of bioluminescence in coastal waters, using two different bathyphotometer flow agitators as a function of bathyphotometer volume flow rate and dinoflagellate concentration. For both the NOSC and BIOLITE flow agitators and each species of dinoflagellate tested, there was a critical volume flow rate, above which average bioluminescence intensity, designated as bathyphotometer bioluminescence potential (BBP), remained relatively constant and scaled directly with dinoflagellate cell concentration. At supra-critical volume flow rates, the ratio of BIOLITE to NOSC BBP was nearly constant for the same species studied, but varied between species. The spatial pattern and residence time of flash trajectories within the NOSC flow agitator indicated the presence of dominant secondary recirculating flows, where most of the bioluminescence was detected. A secondary objective (appearing in the Appendix) was to study the feasibility of using NOSC BBP to scale flow-stimulated bioluminescence intensity across similar flow fields, where the contributing composition of luminescent species remained the same. Fully developed turbulent pipe flow was chosen because it is hydrodynamically well characterized. Average bioluminescence intensity in a 2.54-cm i.d. pipe was highly correlated with wall shear stress and

  20. Characterization of a desert soil sequence at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Guertal, W.R.; Hofmann, L.L. Hudson, D.B.; Flint, A.L.

    1994-01-01

    Yucca Mountain, Nevada, is currently being evaluated as a potential site for a geologic repository for high level radioactive waste. Hydrologic evaluation of the unsaturated zone of Yucca Mountain is being conducted as an integrated set of surface and subsurface-based activities with a common objective to characterize the temporal and spatial distribution of water flux through the potential repository. Yucca Mountain is covered with a thin to thick layer of colluvial/alluvial materials, where there are not bedrock outcrops. It is across this surface boundary that all infiltration and all exfiltration occurs. This surface boundary effects water movement through the unsaturated zone. Characterization of the hydrologic properties of surficial materials is then a necessary step for short term characterization goals and for long term modeling

  1. Optical characterization of epitaxial semiconductor layers

    CERN Document Server

    Richter, Wolfgang

    1996-01-01

    The last decade has witnessed an explosive development in the growth of expitaxial layers and structures with atomic-scale dimensions. This progress has created new demands for the characterization of those stuctures. Various methods have been refined and new ones developed with the main emphasis on non-destructive in-situ characterization. Among those, methods which rely on the interaction of electromagnetic radiation with matter are particularly valuable. In this book standard methods such as far-infrared spectroscopy, ellipsometry, Raman scattering, and high-resolution X-ray diffraction are presented, as well as new advanced techniques which provide the potential for better in-situ characterization of epitaxial structures (such as reflection anistropy spectroscopy, infrared reflection-absorption spectroscopy, second-harmonic generation, and others). This volume is intended for researchers working at universities or in industry, as well as for graduate students who are interested in the characterization of ...

  2. Characterization of electrical conductivity of carbon fiber reinforced plastic using surface potential distribution

    Science.gov (United States)

    Kikunaga, Kazuya; Terasaki, Nao

    2018-04-01

    A new method of evaluating electrical conductivity in a structural material such as carbon fiber reinforced plastic (CFRP) using surface potential is proposed. After the CFRP was charged by corona discharge, the surface potential distribution was measured by scanning a vibrating linear array sensor along the object surface with a high spatial resolution over a short duration. A correlation between the weave pattern of the CFRP and the surface potential distribution was observed. This result indicates that it is possible to evaluate the electrical conductivity of a material comprising conducting and insulating regions.

  3. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    Science.gov (United States)

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. Copyright © 2011 Wiley-Liss, Inc.

  4. Characterization and uniqueness of distinguished self-adjoint extensions of dirac operators

    International Nuclear Information System (INIS)

    Klaus, M.; Wuest, R.; Princeton Univ., NJ

    1979-01-01

    Distinguished self-adjoint extensions of Dirac operators are characterized by Nenciu and constructed by means of cut-off potentials by Wuest. In this paper it is shown that the existence and a more explicit characterization of Nenciu's self-adjoint extensions can be obtained as a consequence from results of the cut-off method, that these extensions are the same as the extensions constructed with cut-off potentials and that they are unique in some sense. (orig.) [de

  5. Extraction and characterization of collagen from Antarctic and Sub-Antarctic squid and its potential application in hybrid scaffolds for tissue engineering.

    Science.gov (United States)

    Coelho, Rui C G; Marques, Ana L P; Oliveira, Sara M; Diogo, Gabriela S; Pirraco, Rogério P; Moreira-Silva, Joana; Xavier, José C; Reis, Rui L; Silva, Tiago H; Mano, João F

    2017-09-01

    Collagen is the most abundant protein found in mammals and it exhibits a low immunogenicity, high biocompatibility and biodegradability when compared with others natural polymers. For this reason, it has been explored for the development of biologically instructive biomaterials with applications for tissue substitution and regeneration. Marine origin collagen has been pursued as an alternative to the more common bovine and porcine origins. This study focused on squid (Teuthoidea: Cephalopoda), particularly the Antarctic squid Kondakovia longimana and the Sub-Antarctic squid Illex argentinus as potential collagen sources. In this study, collagen has been isolated from the skins of the squids using acid-based and pepsin-based protocols, with the higher yield being obtained from I. argentinus in the presence of pepsin. The produced collagen has been characterized in terms of physicochemical properties, evidencing an amino acid profile similar to the one of calf collagen, but exhibiting a less preserved structure, with hydrolyzed portions and a lower melting temperature. Pepsin-soluble collagen isolated from I. argentinus was selected for further evaluation of biomedical potential, exploring its incorporation on poly-ε-caprolactone (PCL) 3D printed scaffolds for the development of hybrid scaffolds for tissue engineering, exhibiting hierarchical features. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Synthesis, X-ray crystallography characterization, vibrational spectroscopic, molecular electrostatic potential maps, thermodynamic properties studies of N,N'-di(p-thiazole)formamidine.

    Science.gov (United States)

    Rofouei, M K; Fereyduni, E; Sohrabi, N; Shamsipur, M; Attar Gharamaleki, J; Sundaraganesan, N

    2011-01-01

    In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of N,N'-di(p-thiazole)formamidine (DpTF). DpTF has been synthesized and characterized by elemental analysis, FT-IR, FT-Raman, 1H NMR, 13C NMR spectroscopy and X-ray single crystal diffraction. The FT-IR and FT-Raman spectra of DpTF were recorded in the solid phase. The optimized geometry was calculated by HF and B3LYP methods using 6-31G(d) basis set. The FT-IR and FT-Raman spectra of DpTF was calculated at the HF/B3LYP/6-31G(d) level and were interpreted in terms of potential energy distribution (PED) analysis. The scaled theoretical wavenumber showed very good agreement with the experimental values. A detailed interpretation of the infrared and Raman spectra of DpTF was reported. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between Cp,m°, Sm°, Hm° and temperatures. Furthermore, molecular electrostatic potential maps (MESP) and total dipole moment properties of the compound have been calculated. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Hexadimethrine-montmorillonite nanocomposite: Characterization and application as a pesticide adsorbent

    International Nuclear Information System (INIS)

    Gámiz, B.; Hermosín, M.C.; Cornejo, J.; Celis, R.

    2015-01-01

    Graphical abstract: - Highlights: • Characterization of hexadimethrine-montmorillonite nanocomposite was appraised. • Comparative studies with traditional HDTMA-montmorillonite were performed. • We investigated the pesticide adsorption mechanisms displayed by the nanocomposites. • Hexadimethrine-nanocomposite showed selective affinity for anionic pesticides. - Abstract: The goal of this work was to prepare and characterize a novel functional material by the modification of SAz-1 montmorillonite with the cationic polymer hexadimethrine (SA-HEXAD), and to explore the potential use of this nanocomposite as a pesticide adsorbent. Comparative preparation and characterization with the well-known hexadecyltrimethylammonium-modified SAz-1 montmorillonite (SA-HDTMA) was also assessed. The characterization was performed by elemental analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), physisorption of N 2 , scanning electron microscopy (SEM) and Z potential measurements. The characterization and adsorption experiments showed that the extent of pesticide adsorption was markedly subjected to the structure and features of the surface of each organo-clay and also to the nature of the considered pesticide. SA-HEXAD displayed a high affinity for anionic pesticides which, presumably, were adsorbed by electrostatic attraction on positively-charged ammonium groups of the polymer not directly interacting with the clay. In contrast, SA-HDTMA displayed great adsorption of both uncharged and anionic pesticides with predominance of hydrophobic interactions. This work provided information about the surface properties of a new organic–inorganic nanohybrid material, SA-HEXAD, and its potential as an adsorbent for the removal of anionic organic pollutants from aqueous solutions

  8. Exploring a potential energy surface by machine learning for characterizing atomic transport

    Science.gov (United States)

    Kanamori, Kenta; Toyoura, Kazuaki; Honda, Junya; Hattori, Kazuki; Seko, Atsuto; Karasuyama, Masayuki; Shitara, Kazuki; Shiga, Motoki; Kuwabara, Akihide; Takeuchi, Ichiro

    2018-03-01

    We propose a machine-learning method for evaluating the potential barrier governing atomic transport based on the preferential selection of dominant points for atomic transport. The proposed method generates numerous random samples of the entire potential energy surface (PES) from a probabilistic Gaussian process model of the PES, which enables defining the likelihood of the dominant points. The robustness and efficiency of the method are demonstrated on a dozen model cases for proton diffusion in oxides, in comparison with a conventional nudge elastic band method.

  9. Characterization of fruit development and potential health benefits of arrayan (Luma apiculata), a native berry of South America.

    Science.gov (United States)

    Fuentes, Lida; Valdenegro, Mónika; Gómez, María-Graciela; Ayala-Raso, Aníbal; Quiroga, Evelyn; Martínez, Juan-Pablo; Vinet, Raúl; Caballero, Eduardo; Figueroa, Carlos R

    2016-04-01

    The arrayan berry (Luma apiculata) is a native fruit from South America that belongs to the Myrtaceae family. To elucidate and characterize the developmental process and the potential health benefits of this edible fruit, quality and physiological parameters, along with antioxidant capacity, were evaluated during four clearly defined developmental stages of the fruit in two seasons. Fruit firmness slowly decreases during fruit development, whereas the solid soluble content/titratable acidity ratio (SSC/TA) increases significantly in the final stages of development. The measurement of low respiration rates and low ethylene production during growth and ripening suggested that the arrayan berry should be classified as a non-climacteric fruit. Arrayan berries show a significant increase in their antioxidant capacity from small green to black ripe fruit. FRAP and TEAC assays showed high correlations with total polyphenolic content (TPC) during ripening and high antioxidant capacity at all fruit stages, showing greater values in ripe fruit (FRAP: 24 ± 2 and 28 ± 3 μM FeSO4/gFW; TEAC: 18 ± 2 and 20 ± 1 Eq. Trolox/gFW for each season, respectively) than those observed in the blueberry (FRAP: 10 ± 2 and 19 ± 3 μM FeSO4/gFW; TEAC: 10 ± 2 and 17 ± 3). In addition, bioactive assays using ripe fruit extracts show presence of flavonol and anthocyanins, a high ORAC value (62,500 ± 7000 μmol/gDW) and a concentration-dependent vascular protection under high glucose conditions. The results obtained show that these endemic berry fruits have a promising potential as functional food. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Liquid-Rich Shale Potential of Utah’s Uinta and Paradox Basins: Reservoir Characterization and Development Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Vanden Berg, Michael [Utah Geological Survey, Salt Lake City, UT (United States); Morgan, Craig [Utah Geological Survey, Salt Lake City, UT (United States); Chidsey, Thomas [Utah Geological Survey, Salt Lake City, UT (United States); McLennan, John [Univ. of Utah, Salt Lake City, UT (United States). Energy & Geoscience Inst.; Eby, David [Eby Petrography & Consulting, Littleton, CO (United States); Machel, Hans [Univ. of Alberta, Edmonton, AB (Canada); Schamel, Steve [GeoX Consulting, Salt Lake City, UT (United States); Birdwell, Justin [U.S. Geological Survey, Boulder, CO (United States); Johnson, Ron [U.S. Geological Survey, Boulder, CO (United States); Sarg, Rick [Colorado School of Mines, Golden, CO (United States)

    2017-08-31

    the undiscovered oil resource in the Cane Creek shale of the Paradox Basin at 103 million barrels at a 95 percent confidence level and 198 million barrels at a 50 percent confidence level. Nonetheless, limited research was available or published to further define the play and the reservoir characteristics. The specific objectives of the enclosed research were to (1) characterize geologic, geochemical, and geomechanical rock properties of target zones in the two designated basins by compiling data and by analyzing available cores, cuttings, and well logs; (2) describe outcrop reservoir analogs of GRF plays (Cane Creek shale is not exposed) and compare them to subsurface data; (3) map major regional trends for targeted intervals and identify “sweet spots” that have the greatest oil potential; (4) reduce exploration costs and drilling risks, especially in environmentally sensitive areas; (5) improve drilling and fracturing effectiveness by determining optimal well completion design; and (6) reduce field development costs, maximize oil recovery, and increase reserves. These objectives are all addressed in a series of nine publications that resulted from this extensive research project. Each publication is included in this report as an independent appendix.

  11. CVD diamond metallization and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Fraimovitch, D., E-mail: dimitryf@mail.tau.ac.il [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Adelberd, A.; Marunko, S. [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel); Lefeuvre, G. [Micron Semiconductor Ltd. Royal Buildings, Marlborough Road, Lancing Business Park, BN15 8SJ (United Kingdom); Ruzin, A. [Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv (Israel)

    2017-02-11

    In this study we compared three diamond substrate grades: polycrystalline, optical grade single crystal, and electronic grade single crystal for detector application. Beside the bulk type, the choice of contact material, pre-treatment, and sputtering process details have shown to alter significantly the diamond detector performance. Characterization of diamond substrate permittivity and losses indicate grade and crystallinity related, characteristic differences for frequencies in 1 kHz–1 MHz range. Substantial grade related variations were also observed in surface electrostatic characterization performed by contact potential difference (CPD) mode of an atomic force microscope. Study of conductivity variations with temperature reveal that bulk trap energy levels are also dependent on the crystal grade.

  12. CVD diamond metallization and characterization

    International Nuclear Information System (INIS)

    Fraimovitch, D.; Adelberd, A.; Marunko, S.; Lefeuvre, G.; Ruzin, A.

    2017-01-01

    In this study we compared three diamond substrate grades: polycrystalline, optical grade single crystal, and electronic grade single crystal for detector application. Beside the bulk type, the choice of contact material, pre-treatment, and sputtering process details have shown to alter significantly the diamond detector performance. Characterization of diamond substrate permittivity and losses indicate grade and crystallinity related, characteristic differences for frequencies in 1 kHz–1 MHz range. Substantial grade related variations were also observed in surface electrostatic characterization performed by contact potential difference (CPD) mode of an atomic force microscope. Study of conductivity variations with temperature reveal that bulk trap energy levels are also dependent on the crystal grade.

  13. Characterization of a noncytotoxic bacteriocin from probiotic Lactobacillus plantarum DM5 with potential as a food preservative.

    Science.gov (United States)

    Das, Deeplina; Goyal, Arun

    2014-10-01

    The aim of this work was to purify and characterize the bacteriocin produced by probiotic Lactobacillus plantarum DM5 in order to evaluate its potential as nutraceuticals. Lb. plantarum DM5 exhibited in vitro probiotic properties such as high resistance to gastric juice and bile salt, adherence to human adenocarcinoma (HT-29) cells, bile salt hydrolase and cholesterol assimilation activity. Moreover, Lb. plantarum DM5 showed bacteriocin activity against several major food borne pathogens. Zymogram analysis of purified bacteriocin (plantaricin DM5) showed a molecular size of ∼15.2 kDa. Plantaricin DM5 was sensitive to proteolytic enzymes but stable in the pH range of 2.0-10.0, and it was heat resistant (121 °C for 15 min) and remained active upon treatment with surfactants and detergents. Cytotoxicity analysis of plantaricin DM5 on human embryonic kidney 293 (HEK 293) and human cervical cancer (HeLa) cell lines revealed its nontoxic and biocompatible nature. To the best of our knowledge, this is the first study on the isolated strain expressing probiotic properties and broad antimicrobial activity without any cytotoxic effect on mammalian cells from indigenous fermented beverage Marcha from India, and thus contributes to the food industry as a novel bio-preservant.

  14. Characterization of subsurface geologic structure for potential water resources near the Villages of Moenkopi, Arizona, 2009--2010

    Science.gov (United States)

    Macy, Jamie P.

    2012-01-01

    The Hopi Tribe depends on groundwater as their primary drinking-water source in the area of the Villages of Moenkopi, in northeastern Arizona. Growing concerns of the potential for uranium contamination at the Moenkopi water supply wells from the Tuba City Landfill prompted the need for an improved understanding of subsurface geology and groundwater near Moenkopi. Information in this report provides the Hopi Tribe with new hydrogeologic information that provides a better understanding of groundwater resources near the Villages of Moenkopi. The U.S. Geological Survey in cooperation with the U.S. Bureau of Reclamation and the Hopi Tribe used the controlled source audio-frequency magnetotelluric (CSAMT) geophysical technique to characterize the subsurface near Moenkopi from December 2009 to September 2010. A total of six CSAMT profiles were surveyed to identify possible fracturing and faulting in the subsurface that provides information about the occurrence and movement of groundwater. Inversion results from the six CSAMT lines indicated that north to south trending fractures are more prevalent than east to west. CSAMT Lines A and C showed multiple areas in the Navajo Sandstone where fractures are present. Lines B, D, E, and F did not show the same fracturing as Lines A and C.

  15. Characterization of CobB kinetics and inhibition by nicotinamide.

    Directory of Open Access Journals (Sweden)

    Julia Gallego-Jara

    Full Text Available Lysine acetylation has emerged as a global protein regulation system in all domains of life. Sirtuins, or Sir2-like enzymes, are a family of histone deacetylases characterized by their employing NAD+ as a co-substrate. Sirtuins can deacetylate several acetylated proteins, but a consensus substrate recognition sequence has not yet been established. Product inhibition of many eukaryotic sirtuins by nicotinamide and its analogues has been studied in vitro due to their potential role as anticancer agents. In this work, the kinetics of CobB, the main Escherichia coli deacetylase, have been characterized. To our knowledge, this is the first kinetic characterization of a sirtuin employing a fully acetylated and natively folded protein as a substrate. CobB deacetylated several acetyl-CoA synthetase acetylated lysines with a single kinetic rate. In addition, in vitro nicotinamide inhibition of CobB has been characterized, and the intracellular nicotinamide concentrations have been determined under different growth conditions. The results suggest that nicotinamide can act as a CobB regulator in vivo. A nicotinamidase deletion strain was thus phenotypically characterized, and it behaved similarly to the ΔcobB strain. The results of this work demonstrate the potential regulatory role of the nicotinamide metabolite in vivo.

  16. Characterization of CobB kinetics and inhibition by nicotinamide.

    Science.gov (United States)

    Gallego-Jara, Julia; Écija Conesa, Ana; de Diego Puente, Teresa; Lozano Terol, Gema; Cánovas Díaz, Manuel

    2017-01-01

    Lysine acetylation has emerged as a global protein regulation system in all domains of life. Sirtuins, or Sir2-like enzymes, are a family of histone deacetylases characterized by their employing NAD+ as a co-substrate. Sirtuins can deacetylate several acetylated proteins, but a consensus substrate recognition sequence has not yet been established. Product inhibition of many eukaryotic sirtuins by nicotinamide and its analogues has been studied in vitro due to their potential role as anticancer agents. In this work, the kinetics of CobB, the main Escherichia coli deacetylase, have been characterized. To our knowledge, this is the first kinetic characterization of a sirtuin employing a fully acetylated and natively folded protein as a substrate. CobB deacetylated several acetyl-CoA synthetase acetylated lysines with a single kinetic rate. In addition, in vitro nicotinamide inhibition of CobB has been characterized, and the intracellular nicotinamide concentrations have been determined under different growth conditions. The results suggest that nicotinamide can act as a CobB regulator in vivo. A nicotinamidase deletion strain was thus phenotypically characterized, and it behaved similarly to the ΔcobB strain. The results of this work demonstrate the potential regulatory role of the nicotinamide metabolite in vivo.

  17. Final Report Phase I Study to Characterize the Market Potential for Non-Motorized Travel

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho-Ling [ORNL; Reuscher, Tim [Macrosys; Wilson, Daniel W [ORNL; Schmoyer, Richard L [ORNL

    2012-06-01

    The idea of livable communities suggests that people should have the option to utilize non-motorized travel (NMT), specifically walking and bicycling, to conduct their daily tasks. Forecasting personal travel by walk and bike is necessary as part of regional transportation planning, and requires fine detail not only about individual travel, but also on transportation and neighborhood infrastructure. In an attempt to characterize the 'market' potential for NMT, the Office of Planning, Federal Highway Administration (FHWA) funded the Center for Transportation Analysis (CTA) of the Oak Ridge National Laboratory (ORNL) to conduct a study. The objectives of this effort were to identify factors that influence communities to walk and bike and to examine why, or why not, travelers walk and bike in their communities. This study relied on information collected under the 2009 National Household Travel Survey (NHTS) as the major source of data, and was supplemented with data from the American Community Survey (ACS), educational survey, health, employment, and others. Initial statistical screening methods were applied to sort through over 400 potential predictor variables, and examined with various measures (e.g., walk trip per person, walk mileage per person, bike trip per person, bike mileage per person) as the dependent variables. The best geographic level of detail used in the modeling for this study was determined to be the Census block group level for walking and Census tract level for biking. The need for additional supplemental private data (i.e., Walk Scores and Nielsen employment data), and geospatial information that reflects land use and physical environments, became evident after an examination of findings from the initial screening models. To be feasible, in terms of costs and time, the geographic scale of the study region was scaled down to nine selected NHTS add-on regions. These regions were chosen based on various criteria including transit

  18. Potential of high isostatic pressure and pulsed electric fields for the processing of potato and pea proteins:structural and techno-functional characterization in model solutions and plant tissue

    OpenAIRE

    Baier, Anne Kathrin

    2016-01-01

    The aim of this thesis was to evaluate the potential of high isostatic pressure and pulsed electric fields for the production of high quality plant proteins. Induced changes in protein solutions and plant tissue of potato and pea were analyzed by means of structural and techno-functional characterization as well as by investigation of diffusion and extractions procedures. The application of high isostatic pressure provides a gentle alternative to conventional heat preservation. Especially ...

  19. Characterization of Peripheral Activity States and Cortical Local Field Potentials of Mice in an Elevated Plus Maze Test.

    Science.gov (United States)

    Okonogi, Toya; Nakayama, Ryota; Sasaki, Takuya; Ikegaya, Yuji

    2018-01-01

    Elevated plus maze (EPM) tests have been used to assess animal anxiety levels. Little information is known regarding how physiological activity patterns of the brain-body system are altered during EPM tests. Herein, we monitored cortical local field potentials (LFPs), electrocardiograms (ECGs), electromyograms (EMGs), and respiratory signals in individual mice that were repeatedly exposed to EPM tests. On average, mouse heart rates were higher in open arms. In closed arms, the mice occasionally showed decreased heart and respiratory rates lasting for several seconds or minutes, characterized as low-peripheral activity states of peripheral signals. The low-activity states were observed only when the animals were in closed arms, and the frequencies of the states increased as the testing days proceeded. During the low-activity states, the delta and theta powers of cortical LFPs were significantly increased and decreased, respectively. These results demonstrate that cortical oscillations crucially depend on whether an animal exhibits low-activity states in peripheral organs rather than the EPM arm in which the animal is located. These results suggest that combining behavioral tests with physiological makers enables a more accurate evaluation of rodent mental states.

  20. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule

    Directory of Open Access Journals (Sweden)

    Edyta Petters

    2015-08-01

    Full Text Available Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer.

  1. Characterization of Peripheral Activity States and Cortical Local Field Potentials of Mice in an Elevated Plus Maze Test

    Directory of Open Access Journals (Sweden)

    Toya Okonogi

    2018-04-01

    Full Text Available Elevated plus maze (EPM tests have been used to assess animal anxiety levels. Little information is known regarding how physiological activity patterns of the brain-body system are altered during EPM tests. Herein, we monitored cortical local field potentials (LFPs, electrocardiograms (ECGs, electromyograms (EMGs, and respiratory signals in individual mice that were repeatedly exposed to EPM tests. On average, mouse heart rates were higher in open arms. In closed arms, the mice occasionally showed decreased heart and respiratory rates lasting for several seconds or minutes, characterized as low-peripheral activity states of peripheral signals. The low-activity states were observed only when the animals were in closed arms, and the frequencies of the states increased as the testing days proceeded. During the low-activity states, the delta and theta powers of cortical LFPs were significantly increased and decreased, respectively. These results demonstrate that cortical oscillations crucially depend on whether an animal exhibits low-activity states in peripheral organs rather than the EPM arm in which the animal is located. These results suggest that combining behavioral tests with physiological makers enables a more accurate evaluation of rodent mental states.

  2. Chimeric rabbit/human Fab antibodies against the hepatitis Be-antigen and their potential applications in assays, characterization, and therapy.

    Science.gov (United States)

    Zhuang, Xiaolei; Watts, Norman R; Palmer, Ira W; Kaufman, Joshua D; Dearborn, Altaira D; Trenbeath, Joni L; Eren, Elif; Steven, Alasdair C; Rader, Christoph; Wingfield, Paul T

    2017-10-06

    Hepatitis B virus (HBV) infection afflicts millions worldwide, causing cirrhosis and liver cancer. HBV e-antigen (HBeAg), a clinical marker for disease severity, is a soluble variant of the viral capsid protein. HBeAg is not required for viral replication but is implicated in establishing immune tolerance and chronic infection. The structure of recombinant e-antigen (rHBeAg) was recently determined, yet to date, the exact nature and quantitation of HBeAg still remain uncertain. Here, to further characterize HBeAg, we used phage display to produce a panel of chimeric rabbit/human monoclonal antibody fragments (both Fab and scFv) against rHBeAg. Several of the Fab/scFv, expressed in Escherichia coli , had unprecedentedly high binding affinities ( K d ∼10 -12 m) and high specificity. We used Fab/scFv in the context of an enzyme-linked immunosorbent assay (ELISA) for HBeAg quantification, which we compared with commercially available kits and verified with seroconversion panels, the WHO HBeAg standard, rHBeAg, and patient plasma samples. We found that the specificity and sensitivity are superior to those of existing commercial assays. To identify potential fine differences between rHBeAg and HBeAg, we used these Fabs in microscale immunoaffinity chromatography to purify HBeAg from individual patient plasmas. Western blotting and MS results indicated that rHBeAg and HBeAg are essentially structurally identical, although HBeAg from different patients exhibits minor carboxyl-terminal heterogeneity. We discuss several potential applications for the humanized Fab/scFv.

  3. Synthesis and In Vitro Characterization of Fe3+-Doped Layered Double Hydroxide Nanorings as a Potential Imageable Drug Delivery System

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2017-09-01

    Full Text Available Highly dispersed Fe3+-doped layered double hydroxide (LDH-Fe nanorings were obtained by a simple coprecipitation-acid etching approach. The morphology, structure, magnetic resonance imaging (MRI performance in vitro, drug loading and releasing, Fe3+ leakage, and cytotoxicity of the as-prepared LDH-Fe nanorings were characterized. The LDH-Fe nanorings showed good water dispersity and a well-crystallized structure. The DLS average size of nanoparticles was measured to be 94.5 nm. Moreover, the MRI tests showed a favourable T1-weighted MRI performance of the LDH-Fe nanoring with r1 values of 0.54 and 1.68, and low r2/r1 ratios of 10.1 and 6.3, pre- and after calcination, respectively. The nanoparticles also showed high model drug (ibuprofen loading capacities, low Fe3+ leakage, and negligible cytotoxicity. All these results demonstrate the potential of LDH-Fe nanorings as an imageable drug delivery system.

  4. Genome characterization of Turkey Rotavirus G strains from the United States identifies potential recombination events with human Rotavirus B strains.

    Science.gov (United States)

    Chen, Fangzhou; Knutson, Todd P; Porter, Robert E; Ciarlet, Max; Mor, Sunil Kumar; Marthaler, Douglas G

    2017-12-01

    Rotavirus G (RVG) strains have been detected in a variety of avian species, but RVG genomes have been published from only a single pigeon and two chicken strains. Two turkey RVG strains were identified and characterized, one in a hatchery with no reported health issues and the other in a hatchery with high embryo/poult mortality. The two turkey RVG strains shared only an 85.3 % nucleotide sequence identity in the VP7 gene while the other genes possessed high nucleotide identity among them (96.3-99.9 %). Low nucleotide percentage identities (31.6-87.3 %) occurred among the pigeon and chicken RVG strains. Interestingly, potential recombination events were detected between our RVG strains and a human RVB strain, in the VP6 and NSP3 segments. The epidemiology of RVG in avian flocks and the pathogenicity of the two different RVG strains should be further investigated to understand the ecology and impact of RVG in commercial poultry flocks.

  5. Characterization of Merbau Extractives as a Potential Wood-Impregnating Material

    Directory of Open Access Journals (Sweden)

    Jamaludin Malik

    2016-08-01

    Full Text Available This study aimed to investigate the major content of merbau extractives (ME and their potential use as an impregnating material for low-quality timber. Extraction was done by maceration with ethanol, ethyl-acetate, and hot-water. Physico-chemical, phyto-chemical, UV-visible, and infrared spectroscopy, as well as py-GCMS analysis were then performed on dried extract. The results showed that organic solvent extractions resulted in much higher yields, by 12.50% than that of hot water (1.10%. The merbau extractives liquid obtained had a low acidity, with a pH ranging from 5 to 6, which is typical of phenolic compounds. Flavonoids and phenolics were found as the major compounds. UV-vis spectra showed that ME (λ=279 nm consists of conjugated or aromatic systems, similar to standard resorcinol, which was used as the reference (λ=274 nm. The FTIR spectra showed the absorption bands at 3369 cm-1 that represent the functional group of hydroxyl (OH bonds, and 1619 and 1510 cm-1, representing the aromatic ring (C=C, which could be associated with resorcinol. The Py-GCMS showed that ME is predominated by resorcinol (C6H6O2 with a 79% concentration. The ME could be potentially used for producing phenolic/resorcinolic resin through polymerization, which could be applied for wood impregnation.

  6. Atom-surface potentials and atom interferometry

    International Nuclear Information System (INIS)

    Babb, J.F.

    1998-01-01

    Long-range atom-surface potentials characterize the physics of many actual systems and are now measurable spectroscopically in deflection of atomic beams in cavities or in reflection of atoms in atomic fountains. For a ground state, spherically symmetric atom the potential varies as -1/R 3 near the wall, where R is the atom-surface distance. For asymptotically large distances the potential is weaker and goes as -1/R 4 due to retardation arising from the finite speed of light. This diminished interaction can also be interpreted as a Casimir effect. The possibility of measuring atom-surface potentials using atomic interferometry is explored. The particular cases studied are the interactions of a ground-state alkali-metal atom and a dielectric or a conducting wall. Accurate descriptions of atom-surface potentials in theories of evanescent-wave atomic mirrors and evanescent wave-guided atoms are also discussed. (author)

  7. Electrokinetic characterization of whey protein separation

    DEFF Research Database (Denmark)

    Keiding, Kristian; Stougård, Anders; Christensen, Morten Lykkegaard

    Cross flow filtration of whey protein has been performed on 3 different membranes. The rejections have been determined by HPLC analysis of the feed and permeate. The pure membranes as well as the fouled membranes have been characterized by measurements of the streaming potential along the membrane...

  8. Status of Gulf Coast salt dome characterization

    International Nuclear Information System (INIS)

    Swanson, O.E.; Gibbons, M.G.; Deyling, M.A.; McPherson, R.B.

    1982-01-01

    Screening and characterization for a potential nuclear waste repository have progressed through the area phase in these Gulf Coast Salt Basins. The domes studied during the area phase are described briefly. The area characterization studies are outlined, and the resulting reports are listed. Geologic and environmental studies resulted in elimination of four domes from further consideration. The remaining domes were judged acceptable and were classified as to their favorability to license. Site characterization planning for location phase activities deals primarily with technical, environmental, and socioeconomic issues of concern to the states and/or to the Office of Nuclear Waste Isolation (ONWI), Department of Energy (DOE). These issues are listed and discussed. 16 references, 9 figures

  9. Structuring a cost-effective site characterization

    International Nuclear Information System (INIS)

    Berven, B.A.; Little, C.A.; Swaja, R.E.

    1990-01-01

    Successful chemical and radiological site characterizations are complex activities which require meticulously detailed planning. Each layer of investigation is based upon previously generated information about the site. Baseline historical, physical, geological, and regulatory information is prerequisite for preliminary studies at a site. Preliminary studies then provide samples and measurements which define the identity of potential contaminants and define boundaries around the area to be investigated. The goal of a full site characterization is to accurately determine the extent and magnitude of contaminants and carefully define the site conditions such that the future movements of site contaminants can be assessed for potential exposure to human occupants and/or environmental impacts. Critical to this process is the selection of appropriate measurement and sampling methodology, selection and use of appropriate instrumentation and management/interpretation of site information. Site investigations require optimization between the need of information to maximize the understanding of site conditions and the cost of acquiring that information. 5 refs., 1 tab

  10. Investigating transfer gate potential barrier by feed-forward effect measurement

    NARCIS (Netherlands)

    Xu, Y.; Ge, X.; Theuwissen, A.J.P.

    2015-01-01

    In a 4T pixel, the transfer gate (TG) “OFF” surface potential is one of the important parameters, which determines the pinned photodiode (PPD) full well capacity. The feed-forward effect measurement is a powerful tool to characterize the relationship of the PPD injection potential and the

  11. Synthesis characterization and biological evaluation of a novel mixed ligand 99mTc complex as potential brain imaging agent

    International Nuclear Information System (INIS)

    Rey, A.; Manta, E.; Leon, A.; Papadopoulos, M.; Pirmettis, Y.; Raptopoulou, C.; Chiotellis, E.; Leon, E.; Mallo, L.

    1998-01-01

    One approach in the design of neutral oxotechnetium complexes is based on the simultaneous substitution of a tridentate dianionic ligand and a monodentate monoanionic coligand on a [Tc(V)O] +3 precursor. Following this ''mixed ligand'' concept, a novel 99m Tc complex with N,N-bis(2-mercaptoethyl)-N'N'-diethylethylenediamine as ligand and 1-octanethiol as coligand is prepared and evaluated as potential brain radiopharmaceutical. Preparation of the complex at tracer level was accomplished by using 99m Tc-glucoheptonate as precursor. The substitution was optimized and a coligand/ligand ratio of 5 was selected. Under this conditions the labeling yield was over 80% and a major product (with radiochemical purity > 80%) was isolated by HPLC methods and used for biological evaluation. Chemical characterization at carrier level was developed using the corresponding rhenium complex as structural model. The Re complex was also prepared by substitution method and isolated as a crystalline product. The crystals were characterized by UV-vis and IR spectra and elemental analysis. Results were consistent with the expected ReOLC structure. X ray crystallographic study demonstrated that the complex adopts a distorted trigonal bipyramidal geometry. The basal plane is defined by the SS atoms of the ligand and the oxo group, while the N of the ligand and the S of the colligand occupy the two apical positions. All sulphur atoms underwent ionization leading to the formation of a neutral compound. 99 Tc complex was also prepared. Although it was not isolated due to the small amount of reagents employed, the HPLC profile was identical to the one observed for the rhenium complex suggesting the same chemical structure. Biodistribution in mice demonstrated early brain uptake, fast blood clearance, excretion through hepatobiliary system and a brain/blood ratio that increased significantly with time. (author)

  12. Development, Characterization and Evaluation of Solid Lipid Nanoparticles as a potential Anticancer Drug Delivery System

    Science.gov (United States)

    Patel, Meghavi

    Solid lipid nanoparticles (SLNs) consist of spherical solid lipid particles in the nanometer size range, which are dispersed in water or in an aqueous surfactant solution. SLN technology represents a promising new approach to deliver hydrophilic as well as lipophilic drugs. The commercialization of SLN technology remains limited despite numerous efforts from researchers. The purpose of this research was to advance SLN preparation methodology by investigating the feasibility of preparing glyceryl monostearate (GMS) nanoparticles by using three preparation methods namely microemulsion technique, magnetic stirring technique and temperature modulated solidification technique of which the latter two were developed in our laboratory. An anticancer drug 5-fluorouracil was incorporated in the SLNs prepared via the temperature modulated solidification process. Optimization of the magnetic stirring process was performed to evaluate how the physicochemical properties of the SLN was influenced by systematically varying process parameters including concentration of the lipid, concentration of the surfactant, type of surfactant, time of stirring and temperature of storage. The results demonstrated 1:2 GMS to tween 80 ratio, 150 ml dispersion medium and 45 min stirring at 4000 RPM speed provided an optimum formulation via the temperature modulated solidification process. SLN dispersions were lyophilized to stabilize the solid lipid nanoparticles and the lyophilizates exhibited good redispersibility. The SLNs were characterized by particle size analysis via dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), differential scanning calorimetry (DSC), drug encapsulation efficiency and in vitro drug release studies. Particle size of SLN dispersion prepared via the three preparation techniques was approximately 66 nm and that of redispersed lyophilizates was below 500 nm. TEM images showed spherical to oval particles that were less dense in the core

  13. Characterization of Green Liquor Dregs, Potentially Useful for Prevention of the Formation of Acid Rock Drainage

    Directory of Open Access Journals (Sweden)

    Maria Mäkitalo

    2014-04-01

    Full Text Available Using alternative materials such as residual products from other industries to mitigate the negative effects of acid rock drainage would simultaneously solve two environmental problems. The main residual product still landfilled by sulphate paper mills is the alkaline material green liquor dregs (GLD. A physical, mineralogical and chemical characterization of four batches of GLD was carried out to evaluate the potential to use it as a sealing layer in the construction of dry covers on sulphide-bearing mine waste. GLD has relatively low hydraulic conductivity (10−8 to 10−9 m/s, a high water retention capacity (WRC and small particle size. Whilst the chemical and mineralogical composition varied between the different batches, these variations were not reflected in properties such as hydraulic conductivity and WRC. Due to relatively low trace element concentrations, leaching of contaminants from the GLD is not a concern for the environment. However, GLD is a sticky material, difficult to apply on mine waste deposits and the shear strength is insufficient for engineering applications. Therefore, improving the mechanical properties is necessary. In addition, GLD has a high buffering capacity indicating that it could act as an alkaline barrier. Once engineering technicalities have been overcome, the long-term effectiveness of GLD should be studied, especially the effect of aging and how the sealing layer would be engineered in respect to topography and climatic conditions.

  14. The Development Potential in the System of Potentials of an Industrial Enterprise

    Directory of Open Access Journals (Sweden)

    Shpak Sergiy O.

    2018-03-01

    Full Text Available The aim of the article is to clarify the content and formulate a methodologically rigorous definition of the concept of enterprise development as a key category of management theory for restructuring industrial enterprises that provides the basis for a constructive definition of the concept of development potential and its place in the system of enterprise potentials. It is substantiated that the interpretation of the concept of enterprise development that is consistent with the philosophical concept of development should accumulate the concepts of competitiveness of an enterprise, as the ability to generate an acceptable profit on a long-term basis; the potential of an enterprise, as the ability to perform its basic activity characterizing the cumulative result of such activity, its marginal opportunities; the role of the structure of the enterprise as a system in the formation of its ultimate capabilities (potentials. It is shown that these requirements are met by the definition of the development process as a process of a purposeful transfer of the enterprise to a qualitatively new state described by broader opportunities for generating profits under the forecast conditions. At the same time, the structural adaptation of the enterprise to the new operating conditions is a tool for realizing the development process, which indicates the equivalence of the concepts of structural adaptability of an enterprise and its development potential. It is substantiated that the competitiveness of an enterprise is determined by its economic potential and development potential, which form the highest level of the hierarchy of potentials, the construction of which is possible in the course of decomposition of these potentials into their components according to the type of activity of the enterprise.

  15. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1996-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate

  16. Characterization of tea polyphenols as potential environment-friendly fire retardants

    Science.gov (United States)

    Yao, Fengqi; Zhai, Chunjie; Wang, Haihui; Tao, Junjun

    2018-02-01

    In this work we investigated the oxidation properties of tea polyphenols and their potential as the fire retardants. Two types of tea polyphenols were adopted, which were extracted from red tea and green tea leaves, respectively. Their macroscopic performance during pyrolysis and oxidation at elevated temperatures were examined by using a heating furnace. Mass change, heat evolution and gas products of tea polyphenols during heating in air were also monitored by using a thermo-gravimetric analyzer (TGA) integrated with a differential scanning calorimeter (DSC) in conjunction with online Fourier Transform Infrared Spectroscopy (FTIR) and mass spectroscopy (MS). A tea polyphenol sample first becomes a brown semi-fluid after heating, and gradually turns into highly-porous black chars with significantly expanded volume. By raising the temperature to ∼550 °C at a rate of 10 °C/min, the mass of a sample reduces by nearly 70% to form a large quantity of inert gases that are mainly composed of H2O and CO2. It was found that the aerial oxidation products of tea polyphenols in the solid phase possess good heat insulation property; meanwhile, the substantial release of a lot of water and its evaporation during oxidation of tea polyphenols removes a large amount of heat from a sample located in a heating environment. The heat insulation of tea polyphenols may withstand up to 550 °C. The present work confirms tea polyphenols as potential superior and environment-friendly fire retardants.

  17. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 1, Introduction, history, and current candidates

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

    1995-08-01

    The purpose of the Yucca Mountain Site Characterization Project is to evaluate Yucca Mountain for its suitability as a potential site for the nation's first high-level nuclear waste repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) has been occupied for a number of years with developing and evaluating the performance of waste packages for the potential repository. In recent years this work has been carried out under the guidance of and in collaboration with the Management and Operating contractor for the Civilian Radioactive Waste Management System, TRW Environmental Safety Systems, Inc., which in turn reports to the Office of Civilian Radioactive Waste Management of the US Department of Energy. This report summarizes the history of the selection and characterization of materials to be used in the engineered barrier system for the potential repository at Yucca Mountain, describes the current candidate materials, presents a compilation of their properties, and summarizes available corrosion data and modeling. The term ''engineered materials'' is intended to distinguish those materials that are used as part of the engineered barrier system from the natural, geologic materials of the site

  18. Hydrocarbonoclastic bacteria isolated from petroleum contaminated sites in Tunisia: isolation, identification and characterization of the biotechnological potential.

    Science.gov (United States)

    Mahjoubi, Mouna; Jaouani, Atef; Guesmi, Amel; Ben Amor, Sonia; Jouini, Ahlem; Cherif, Hanen; Najjari, Afef; Boudabous, Abdellatif; Koubaa, Nedra; Cherif, Ameur

    2013-09-25

    Petroleum hydrocarbons are important energy resources used by industry and in our daily life, whose production contributes highly to environmental pollution. To control such risk, bioremediation constitutes an environmentally friendly alternative technology that has been established and applied. It constitutes the primary mechanism for the elimination of hydrocarbons from contaminated sites by natural existing populations of microorganisms. In this work, a collection of 125 strains, adapted to grow on minimal medium supplemented with crude oil, was obtained from contaminated sediments and seawater from a refinery harbor of the Bizerte coast in the North of Tunisia. The diversity of the bacterial collection was analyzed by amplification of the internal transcribed spacers between the 16S and the 23S rRNA genes (ITS-PCR) and by 16S rRNA sequencing. A total of 36 distinct ITS haplotypes were detected on agarose matrix. Partial 16S rRNA gene sequencing performed on 50 isolates showed high level of identity with known sequences. Strains were affiliated to Ochrabactrum, Sphingobium, Acinetobacter, Gordonia, Microbacterium, Brevundimonas, Novosphingobium, Stenotrophomonas, Luteibacter, Rhodococcus, Agrobacterium, Achromobacter, Bacilllus, Kocuria and Pseudomonas genera. Acinetobacter and Stenotrophomons were found to be the most abundant species characterized by a marked microdiversity as shown through ITS typing. Culture-independent approach (DGGE) showed high diversity in the microbial community in all the studied samples with a clear correlation with the hydrocarbon pollution rate. Sequencing of the DGGE bands revealed a high proportion of Proteobacteria represented by the Alpha and Gamma subclasses. The predominant bacterial detected by both dependent and independent approaches were the Proteobacteria. The biotechnological potential of the isolates revealed a significant production of biosurfactants with important emulsification activities useful in bioremediation

  19. Quantum-Accurate Molecular Dynamics Potential for Tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Mitchell; Thompson, Aidan P.

    2017-03-01

    The purpose of this short contribution is to report on the development of a Spectral Neighbor Analysis Potential (SNAP) for tungsten. We have focused on the characterization of elastic and defect properties of the pure material in order to support molecular dynamics simulations of plasma-facing materials in fusion reactors. A parallel genetic algorithm approach was used to efficiently search for fitting parameters optimized against a large number of objective functions. In addition, we have shown that this many-body tungsten potential can be used in conjunction with a simple helium pair potential1 to produce accurate defect formation energies for the W-He binary system.

  20. Chemical characterization by GC-MS and phytotoxic potential of non-polar and polar fractions of seeds of Dioteryx odorata (Aubl. Willd. from Venezuelan regions

    Directory of Open Access Journals (Sweden)

    Alberto de J. Oliveros-Bastidas

    2013-01-01

    Full Text Available Dipteryx odorata (Aubl. Willd. is a tall arboreal species native to Central and Northern South America. This paper describes the chemical characterization and phytotoxic potential of polar and non-polar extracts from D. odorata seeds. Structural determinations were accomplished by chemical derivatization and analyzed by GC/MS. The chemical composition of the non-polar fraction (hexane and dichloromethane presented fatty acids as major constituent. Medium polar and polar fractions (ethyl acetate and ethanol: water contained carboxylic acid and high 6,7-Dyhidroxycoumarin-β-D-glucopyranoside content, not previously reported for seeds of D. odorata. Extracts showed a significant level of phytotoxic activity, correlated to the content of coumarin derivatives, predominantly in the polar fraction.

  1. Neutron activation analysis on sediments from Victoria Land, Antarctica. Multi-elemental characterization of potential atmospheric dust sources

    International Nuclear Information System (INIS)

    Baccolo, G.; Maggi, V.; Baroni, C.; Clemenza, M.; Motta, A.; Nastasi, M.; Previtali, E.; University of Milano-Bicocca, Milan; Delmonte, B.; Salvatore, M.C.

    2014-01-01

    The elemental composition of 40 samples of mineral sediments collected in Victoria Land, Antarctica, in correspondence of ice-free sites, is presented. Concentration of 36 elements was determined by instrumental neutron activation analysis, INAA. The selection of 6 standard reference materials and the development of a specific analytical procedure allowed to reduce measurements uncertainties and to verify the reproducibility of the results. The decision to analyze sediment samples from Victoria Land ice-free areas is related to recent investigations regarding mineral dust content in the TALos Dome ICE core (159deg11'E; 72deg49'S, East Antarctica, Victoria Land), in which a coarse local fraction of dust was recognized. The characterization of Antarctic potential source areas of atmospheric mineral dust is the first step to identify the active sources of dust for the Talos Dome area and to reconstruct the atmospheric pathways followed by air masses in this region during different climatic periods. Principal components analysis was used to identify elements and samples correlations; attention was paid specially to rare earth elements (REE) and incompatible/compatible elements (ICE) in respect to iron, which proved to be the most discriminating elemental groups. The analysis of REE and ICE concentration profiles supported evidences of chemical weathering in ice-free areas of Victoria Land, whereas cold and dry climate conditions of the Talos Dome area and in general of East Antarctica. (author)

  2. Investigation and Sensory Characterization of 1,4-Cineole: A Potential Aromatic Marker of Australian Cabernet Sauvignon Wine.

    Science.gov (United States)

    Antalick, Guillaume; Tempère, Sophie; Šuklje, Katja; Blackman, John W; Deloire, Alain; de Revel, Gilles; Schmidtke, Leigh M

    2015-10-21

    This work reports the quantitation and sensory characterization of 1,4-cineole in red wine for the first time. A headspace-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method was developed to quantitate 1,4-cineole and 1,8-cineole in 104 commercial Australian red wines. 1,4-Cineole was detected in all of the wines analyzed, with concentrations ranging from 0.023 to 1.6 μg/L. An important varietal effect was observed, with concentrations of 1,4-cineole in Cabernet Sauvignon wines (mean of 0.6 ± 0.3 μg/L) significantly higher than in Shiraz (0.07 ± 0.04 μg/L) and Pinot Noir (0.2 ± 0.2 μg/L) wines. Regional variations of both cineole isomer concentrations have been measured between wines originating from different Australian regions. Sensory studies demonstrated that the addition of 0.54 μg/L 1,4-cineole in a Cabernet Sauvignon wine, to produce a final concentration of 0.63 μg/L, was perceived significantly by a sensory panel (p < 0.05). Descriptive analyses revealed that 1,4-cineole and 1,8-cineole may contribute to the hay, dried herbs, and blackcurrant aromas reported in Australian Cabernet Sauvignon wines and may be potential markers of regional typicality of these wines.

  3. Environmental Regulatory Compliance Plan for site: Draft characterization of the Yucca Mountain site:Draft

    International Nuclear Information System (INIS)

    1988-01-01

    The objective of the EMMP is to document compliance with the NWPA. To do so, a summary description of site characterization activites is provided, based on the consultation draft of the SCP. Subsequent chpaters identify those technical areas having the potential to be impacted by site characterization activities and the monitoring plans proposed to identify whether those impacts acutally occur. Should monitoring confirm the potential for significant adverse impact, mitigative measures will be developed. In the context of site characterization, mitigation is defined as those changes in site characterization activities that serve to avoid or minimize, to the maximum extent practicle, any significant adverse environmental impacts. Although site characterization activies involve both surface and subsurface activities, it is the surface-based aspect of site characterization that is addressed in detailed by the EMMP. The schedule and duration of these activities is given in the consultation draft of the SCP. A breif summary of all proposed activities is given in the EMMP. 10 refs., 8 figs

  4. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  5. Isoprenoid-phospholipid conjugates as potential therapeutic agents: Synthesis, characterization and antiproliferative studies.

    Directory of Open Access Journals (Sweden)

    Anna Gliszczyńska

    Full Text Available The aim of this research was to extend application field of isoprenoid compounds by their introduction into phospholipid structure as the transport vehicle. The series of novel isoprenoid phospholipids were synthesized in high yields (24-97%, their structures were fully characterized and its anticancer activity was investigated in vitro towards several cell lines of different origin. Most of synthesized compounds showed a significantly higher antiproliferative effect on tested cell lines than free terpene acids. The most active phosphatidylcholine analogue, containing 2,3-dihydro-3-vinylfarnesoic acids instead of fatty acids in both sn-1 and sn-2 position, inhibits the proliferation of colon cancer cells at 13.6 μM.

  6. Surface Complexation Modeling of Calcite Zeta Potential Measurement in Mixed Brines for Carbonate Wettability Characterization

    Science.gov (United States)

    Song, J.; Zeng, Y.; Biswal, S. L.; Hirasaki, G. J.

    2017-12-01

    We presents zeta potential measurements and surface complexation modeling (SCM) of synthetic calcite in various conditions. The systematic zeta potential measurement and the proposed SCM provide insight into the role of four potential determining cations (Mg2+, SO42- , Ca2+ and CO32-) and CO2 partial pressure in calcite surface charge formation and facilitate the revealing of calcite wettability alteration induced by brines with designed ionic composition ("smart water"). Brines with varying potential determining ions (PDI) concentration in two different CO2 partial pressure (PCO2) are investigated in experiments. Then, a double layer SCM is developed to model the zeta potential measurements. Moreover, we propose a definition for contribution of charged surface species and quantitatively analyze the variation of charged species contribution when changing brine composition. After showing our model can accurately predict calcite zeta potential in brines containing mixed PDIs, we apply it to predict zeta potential in ultra-low and pressurized CO2 environments for potential applications in carbonate enhanced oil recovery including miscible CO2 flooding and CO2 sequestration in carbonate reservoirs. Model prediction reveals that pure calcite surface will be positively charged in all investigated brines in pressurized CO2 environment (>1atm). Moreover, the sensitivity of calcite zeta potential to CO2 partial pressure in the various brine is found to be in the sequence of Na2CO3 > Na2SO4 > NaCl > MgCl2 > CaCl2 (Ionic strength=0.1M).

  7. Field and electric potential of conductors with fractal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Thiago A de; Mota, Fernando de B; Miranda, Jose G V; Andrade, Roberto F S; Castilho, Caio M C de [Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao, 40210-340, Salvador (Brazil)

    2007-11-28

    In this study, the behavior of the electric field and its potential are investigated in a region bounded by a rough fractal surface and a distant plane. Both boundaries, maintained at distinct potential values, are assumed to be conductors and, as such, the electric potential is obtained by numerically solving Laplace's equation subject to the appropriate Dirichlet's condition. The rough boundaries, generated by the ballistic deposition and fractal Brownian motion methods, are characterized by the values of the surface roughness W and the local fractal dimension df = 3-{alpha}, where {alpha} is the usual roughness exponent. The equipotential surfaces, obtained from Laplace's equation, are characterized by these same parameters. Results presented show how df depends on the potential value, on the method used to generate the boundary and on W. The behavior of the electric field with respect to the equipotential surface is also considered. Its average intensity was found to increase as a function of the average distance from the equipotential to the fractal boundary; however, its intensity reaches a maximum before decreasing towards an asymptotic constant value, an effect that increases as the value of W increases.

  8. Field and electric potential of conductors with fractal geometry

    International Nuclear Information System (INIS)

    Assis, Thiago A de; Mota, Fernando de B; Miranda, Jose G V; Andrade, Roberto F S; Castilho, Caio M C de

    2007-01-01

    In this study, the behavior of the electric field and its potential are investigated in a region bounded by a rough fractal surface and a distant plane. Both boundaries, maintained at distinct potential values, are assumed to be conductors and, as such, the electric potential is obtained by numerically solving Laplace's equation subject to the appropriate Dirichlet's condition. The rough boundaries, generated by the ballistic deposition and fractal Brownian motion methods, are characterized by the values of the surface roughness W and the local fractal dimension df = 3-α, where α is the usual roughness exponent. The equipotential surfaces, obtained from Laplace's equation, are characterized by these same parameters. Results presented show how df depends on the potential value, on the method used to generate the boundary and on W. The behavior of the electric field with respect to the equipotential surface is also considered. Its average intensity was found to increase as a function of the average distance from the equipotential to the fractal boundary; however, its intensity reaches a maximum before decreasing towards an asymptotic constant value, an effect that increases as the value of W increases

  9. Characterization of snakehead fish protein that’s potential as antihyperglikemik

    Directory of Open Access Journals (Sweden)

    Cindytia Prastari

    2017-08-01

    Full Text Available Snakehead fish has been sources that have high protein content and can be used as antioxidant and anti-diabetes. To increase the level of protein content and amino acid in snakehead fish, the treatment of hydrolysis and fermentation were chosen in this study. Therefore, the purpose of this study was to evaluate the characteristics of snakehead fish protein and its potential as antihyperglycemic. Three samples were used in this study, i.e., hydrolysate, fermented and non-fermented isolates. The experimental design used was completely randomized design. Data were analyzed by analysis of variance (ANOVA and continued by Duncan multiple range test (DMRT (α = 5%.  The current study reported that the hydrolysate had higherprotein content 90.43%, as compared to the fermented and non-fermented isolates were 84.43% and 78.69%, respectively. At a concentration of 10.000 ppm, hydrolysate showed highest inhibition activity (74%, as compared to fermented isolate inhibited 59% and none-fermentation isolate inhibited 56%. Hydrolysate also had higher amino acid content than fermented and non-fermented isolates of 51.15, 44.34, and 32.00 %w/w, respectively. Hydrolysate had the lowest molecular weight (<10 kDa, while fermented and non-fermented isolates were <10 kDa. This probably due to the hydrolysis process using an enzyme was capable to break the peptide fractions of snakehead fish protein. Hence, it increased the levels of protein, amino acids, there by protein hydrolysate had high inhibitory potential than fermented and non-fermented isolates.

  10. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, R.E. [Pacific Northwest Lab., Richland, WA (United States); Weiss, S.G.; Stegen, J.A. [Westinghouse Hanford Co., Richland, WA (United States)

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  11. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 3: Corrosion and data modeling

    International Nuclear Information System (INIS)

    Van Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

    1995-08-01

    This three-volume report serves several purposes. The first volume provides an introduction to the engineered materials effort for the Yucca Mountain Site Characterization Project. It defines terms and outlines the history of selection and characterization of these materials. A summary of the recent engineered barrier materials characterization workshop is presented, and the current candidate materials are listed. The second volume tabulates design data for engineered materials, and the third volume is devoted to corrosion data, radiation effects on corrosion, and corrosion modeling. The second and third volumes are intended to be evolving documents, to which new data will be added as they become available from additional studies. The initial version of Volume 3 is devoted to information currently available for environments most similar to those expected in the potential Yucca Mountain repository. This is volume three

  12. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of

  13. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D ampersand D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D ampersand D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations

  14. Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Maia Merabishvili

    Full Text Available Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively, high burst size (125 and 145, respectively, stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.

  15. Mapping the geogenic radon potential: methodology and spatial analysis for central Hungary

    International Nuclear Information System (INIS)

    Szabó, Katalin Zsuzsanna; Jordan, Gyozo; Horváth, Ákos; Szabó, Csaba

    2014-01-01

    A detailed geogenic radon potential (GRP) mapping based on field soil gas radon and soil gas permeability measurements was carried out in this study. A conventional continuous variable approach was used in this study for GRP determination and to test its applicability to the selected area of Hungary. Spatial pattern of soil gas radon concentration, soil permeability and GRP and the relationship between geological formations and these parameters were studied by performing detailed spatial analysis. Exploratory data analysis revealed that higher soil gas radon activity concentration and GRP characterizes the mountains and hills than the plains. The highest values were found in the proluvial–deluvial sediments, rock debris on the downhill slopes eroded from hills. Among the Quaternary sediments, which characterize the study area, the fluvial sediment has the highest values, which are also located in the hilly areas. The lowest values were found in the plain areas covered by drift sand, fluvioeolic sand, fluvial sand and loess. As a conclusion, radon is related to the sediment cycle in the study area. A geogenic radon risk map was created, which assists human health risk assessment and risk reduction since it indicates the potential of the source of indoor radon. The map shows that low and medium geogenic radon potential characterizes the study area in central Hungary. High risk occurs only locally. The results reveal that Quaternary sediments are inhomogeneous from a radon point of view, fluvial sediment has medium GRP, whereas the other rock formations such as drift sand, fluioeolic sand, fluvial sand and loess, found in the study area, have low GRP. - Highlights: • First geogenic radon potential map in Hungary. • Low and medium GRP characterizes the study area (Middle Hungary). • Mainly quaternary sediments characterizes the study area. • Radon is related to the erosion and deposition of the sediment cycle

  16. Area 5 Site characterization project report, FY 1994

    International Nuclear Information System (INIS)

    Albright, W.; Tyler, S.; Chapman, J.; Miller, M.; Estrella, R.

    1994-09-01

    The Area 5 Site Characterization Project is designed to determine the suitability of the Radioactive Waste Management Site (RWMS) for disposal of low-level waste (LLW), mixed waste (MW) and transuranic waste (TRU). The Desert Research institute (DRI) has conducted this study for the Area 5 Site Characterization Project for the US Department of Energy, Nevada Operations Office (DOE/NV), Waste Management Division (WMD). The purpose of DRI's Area 5 Site Characterization Project is to characterize important properties of the upper vadose zone which influence infiltration and redistribution of water and transport of solutes as well as to characterize the water quality and hydrologic conditions of the uppermost aquifer. This report describes methods and presents a summary of all data and results from laboratory physical and chemical testing from borehole samples through September 1994. DRI laboratories performed soil water content, soil water potential, soil bulk density, and soil water extract isotope analyses

  17. A numerical study of candidate transverse fuel injector configurations in the Langley scramjet engine

    Science.gov (United States)

    Drummond, J. P.

    1980-01-01

    A computer program has been developed that numerically solves the two-dimensional Navier-Stokes and species equations near one or more transverse hydrogen fuel injectors in a scramjet engine. The program currently computes the turbulent mixing and reaction of hydrogen fuel and air, and allows the study of separated regions of the flow immediately preceding and following the injectors. The complex shock-expansion structure produced by the injectors in this region of the engine can also be represented. Results are presented that describe the flow field near two opposing transverse fuel injectors and two opposing staged (multiple) injectors, and comparisons between the two configurations are made to assess their mixing and flameholding qualities.

  18. Wettability and ζ potentials of a series of methacrylate polymers and copolymers

    NARCIS (Netherlands)

    Hogt, A.H.; Gregonis, D.E.; Andrade, J.D.; Kim, S.W.; Dankert, J.; Feijen, Jan

    1985-01-01

    Polymers and copolymers of different methacrylates were synthesized and coated on glass slides. The surfaces of the polymer films were characterized by their water contact angles and potentials using the Wilhelmy plate technique and streaming potential measurements, respectively. From contact-angle

  19. Preparation, process optimization and characterization of core-shell polyurethane/chitosan nanofibers as a potential platform for bioactive scaffolds.

    Science.gov (United States)

    Maleknia, Laleh; Dilamian, Mandana; Pilehrood, Mohammad Kazemi; Sadeghi-Aliabadi, Hojjat; Hekmati, Amir Houshang

    2018-06-01

    In this paper, polyurethane (PU), chitosan (Cs)/polyethylene oxide (PEO), and core-shell PU/Cs nanofibers were produced at the optimal processing conditions using electrospinning technique. Several methods including SEM, TEM, FTIR, XRD, DSC, TGA and image analysis were utilized to characterize these nanofibrous structures. SEM images exhibited that the core-shell PU/Cs nanofibers were spun without any structural imperfections at the optimized processing conditions. TEM image confirmed the PU/Cs core-shell nanofibers were formed apparently. It that seems the inclusion of Cs/PEO to the shell, did not induce the significant variations in the crystallinity in the core-shell nanofibers. DSC analysis showed that the inclusion of Cs/PEO led to the glass temperature of the composition increased significantly compared to those of neat PU nanofibers. The thermal degradation of core-shell PU/Cs was similar to PU nanofibers degradation due to the higher PU concentration compared to other components. It was hypothesized that the core-shell PU/Cs nanofibers can be used as a potential platform for the bioactive scaffolds in tissue engineering. Further biological tests should be conducted to evaluate this platform as a three dimensional scaffold with the capabilities of releasing the bioactive molecules in a sustained manner.

  20. Synthesis and characterization of mesoporous silica modified with chiral auxiliaries for their potential application as chiral stationary phase.

    Science.gov (United States)

    Mayani, Vishal J; Abdi, S H R; Kureshy, R I; Khan, N H; Agrawal, Santosh; Jasra, R V

    2008-05-16

    Novel chiral stationary phase (CSP) based on chiral aminoalcohol immobilized on ordered mesoporous silica SBA-15 1a and standard silica 1b and their copper complexes 1a' and 1b', respectively, was synthesized as potential material for chiral ligand exchange chromatography (CLEC). Microanalysis, inductively coupled plasma spectroscopy (ICP), thermo-gravimetric analysis (TGA), cross polarized magic angle spinning (CP-MAS) (13)C NMR, Powder X-ray diffraction (PXRD), FTIR, N(2) adsorption isotherm, scanning electron microscopy (SEM), transmitted electron microscope (TEM) and solid reflectance UV-vis spectroscopy were used to characterize these materials. All the chiral stationary phases thus synthesized were used for the separation of different racemic compounds such as mandelic acid, 2,2'-dihydroxy-1,1'-binaphthalene BINOL) and diethyl tartrate by simple medium-pressure column chromatography. Successful enantio-separation of racemic mandelic acid was achieved with all the stationary phases but 1a and 1b gave slightly better resolution than their copper complexes 1a' and 1b'. Remarkably these materials are stable under the given experimental conditions and can be used repeatedly for several cycles of enantioresolution. It was observed that the porosity and surface area of the stationary phase play an important role in the chiral separation.

  1. Functional characterization of a competitive peptide antagonist of p65 in human macrophage-like cells suggests therapeutic potential for chronic inflammation

    Directory of Open Access Journals (Sweden)

    Srinivasan M

    2014-12-01

    Full Text Available Mythily Srinivasan,1 Corinne Blackburn,1 Debomoy K Lahiri2,3 1Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, 2Institute of Psychiatry Research, Department of Psychiatry, 3Department of Medical and Molecular Genetics, School of Medicine, Indiana University-Purdue University, Indianapolis, IN, USA Abstract: Glucocorticoid-induced leucine zipper (GILZ is a glucocorticoid responsive protein that links the nuclear factor-kappa B (NFκB and the glucocorticoid signaling pathways. Functional and binding studies suggest that the proline-rich region at the carboxy terminus of GILZ binds the p65 subunit of NFκB and suppresses the immunoinflammatory response. A widely-used strategy in the discovery of peptide drugs involves exploitation of the complementary surfaces of naturally occurring binding partners. Previously, we observed that a synthetic peptide (GILZ-P derived from the proline-rich region of GILZ bound activated p65 and ameliorated experimental encephalomyelitis. Here we characterize the secondary structure of GILZ-P by circular dichroic analysis. GILZ-P adopts an extended polyproline type II helical conformation consistent with the structural conformation commonly observed in interfaces of transient intermolecular interactions. To determine the potential application of GILZ-P in humans, we evaluated the toxicity and efficacy of the peptide drug in mature human macrophage-like THP-1 cells. Treatment with GILZ-P at a wide range of concentrations commonly used for peptide drugs was nontoxic as determined by cell viability and apoptosis assays. Functionally, GILZ-P suppressed proliferation and glutamate secretion by activated macrophages by inhibiting nuclear translocation of p65. Collectively, our data suggest that the GILZ-P has therapeutic potential in chronic CNS diseases where persistent inflammation leads to neurodegeneration such as multiple sclerosis and Alzheimer’s disease. Keywords

  2. Strong Nash Equilibria and the Potential Maimizer

    NARCIS (Netherlands)

    van Megen, F.J.C.; Facchini, G.; Borm, P.E.M.; Tijs, S.H.

    1996-01-01

    A class of non cooperative games characterized by a `congestion e ect' is studied, in which there exists a strong Nash equilibrium, and the set of Nash equilibria, the set of strong Nash equilibria and the set of strategy pro les maximizing the potential function coincide.The structure of the class

  3. Development and characterization of a 99m Tc-tricarbonyl-labelled estradiol derivative obtained by "Click Chemistry" with potential application in estrogen receptors imaging.

    Science.gov (United States)

    Tejería, María Emilia; Giglio, Javier; Dematteis, Silvia; Rey, Ana

    2017-09-01

    Assessment of the presence of estrogen receptors in breast cancer is crucial for treatment planning. With the objective to develop a potential agent for estrogen receptors imaging, we present the development and characterization of a 99m Tc-tricarbonyl-labelled estradiol derivative. Using ethinylestradiol as starting material, an estradiol derivative bearing a 1,4-disubstituted 1,2,3-triazole-containing tridentate ligand system was synthesized by "Click Chemistry" and fully characterized. Labelling with high yield and radiochemical purity was achieved through the formation of a 99m Tc-tricarbonyl complex. The radiolabelled compound was stable, exhibited moderate binding to plasma protein (approximately 33%) and lipophilicity in the adequate range (logP 1.3 ± 0.1 at pH 7.4). Studies in MCF7 showed promising uptake values (approximately 2%). However, more than 50% of the activity is quickly released from the cell. Biodistribution experiments in normal rats confirmed the expected "in vivo" stability of the radiotracer but showed very high gastrointestinal and liver activity, which is inconvenient for in vivo applications. Taking into consideration the well-documented influence of the chelating system in the physicochemical and biological behaviour of technetium-labelled small biomolecules, research will be continued using the same pharmacophore but different complexation modalities of technetium. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Cosmetic Potential of Marine Fish Skin Collagen

    Directory of Open Access Journals (Sweden)

    Ana L. Alves

    2017-10-01

    Full Text Available Many cosmetic formulations have collagen as a major component because of its significant benefits as a natural humectant and moisturizer. This industry is constantly looking for innovative, sustainable, and truly efficacious products, so marine collagen based formulations are arising as promising alternatives. A solid description and characterization of this protein is fundamental to guarantee the highest quality of each batch. In the present study, we present an extensive characterization of marine-derived collagen extracted from salmon and codfish skins, targeting its inclusion as component in cosmetic formulations. Chemical and physical characterizations were performed using several techniques such as sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE, Fourier Transformation Infrared (FTIR spectroscopy rheology, circular dichroism, X-ray diffraction, humidity uptake, and a biological assessment of the extracts regarding their irritant potential. The results showed an isolation of type I collagen with high purity but with some structural and chemical differences between sources. Collagen demonstrated a good capacity to retain water, thus being suitable for dermal applications as a moisturizer. A topical exposure of collagen in a human reconstructed dermis, as well as the analysis of molecular markers for irritation and inflammation, exhibited no irritant potential. Thus, the isolation of collagen from fish skins for inclusion in dermocosmetic applications may constitute a sustainable and low-cost platform for the biotechnological valorization of fish by-products.

  5. Polyamine Metabolites Profiling for Characterization of Lung and Liver Cancer Using an LC-Tandem MS Method with Multiple Statistical Data Mining Strategies: Discovering Potential Cancer Biomarkers in Human Plasma and Urine

    Directory of Open Access Journals (Sweden)

    Huarong Xu

    2016-08-01

    Full Text Available Polyamines, one of the most important kind of biomarkers in cancer research, were investigated in order to characterize different cancer types. An integrative approach which combined ultra-high performance liquid chromatography—tandem mass spectrometry detection and multiple statistical data processing strategies including outlier elimination, binary logistic regression analysis and cluster analysis had been developed to discover the characteristic biomarkers of lung and liver cancer. The concentrations of 14 polyamine metabolites in biosamples from lung (n = 50 and liver cancer patients (n = 50 were detected by a validated UHPLC-MS/MS method. Then the concentrations were converted into independent variables to characterize patients of lung and liver cancer by binary logic regression analysis. Significant independent variables were regarded as the potential biomarkers. Cluster analysis was engaged for further verifying. As a result, two values was discovered to identify lung and liver cancer, which were the product of the plasma concentration of putrescine and spermidine; and the ratio of the urine concentration of S-adenosyl-l-methionine and N-acetylspermidine. Results indicated that the established advanced method could be successfully applied to characterize lung and liver cancer, and may also enable a new way of discovering cancer biomarkers and characterizing other types of cancer.

  6. Identification and characterization of secreted proteins in Eimeria tenella

    Science.gov (United States)

    Ramlee, Intan Azlinda; Firdaus-Raih, Mohd; Wan, Kiew-Lian

    2015-09-01

    Eimeria tenella is a protozoan parasite that causes coccidiosis, an economically important disease in the poultry industry. The characterization of proteins that are secreted by parasites have been shown to play important roles in parasite invasion and are considered to be potential control agents. In this study, 775 proteins potentially secreted by E. tenella were identified. These proteins were further filtered to remove mitochondrial proteins. Out of 763 putative secreted proteins, 259 proteins possess transmembrane domains while another 150 proteins have GPI (Glycosylphosphatidylinositol) anchors. Homology search revealed that 315 and 448 proteins have matches with known and hypothetical proteins in the database, respectively. Within this data set, previously characterized secretory proteins such as micronemes, rhoptry kinases and dense granules were detected.

  7. Molecular characterization, transcriptional profiling, and antibacterial potential of G-type lysozyme from seahorse (Hippocampus abdominalis).

    Science.gov (United States)

    Ko, Jiyeon; Wan, Qiang; Bathige, S D N K; Lee, Jehee

    2016-11-01

    Lysozymes are a family of enzymes that catalyze the hydrolysis of bacterial cell wall, acting as antimicrobial effectors of the innate immune system. In the present study, an ortholog of goose-type lysozyme (ShLysG) from the big-belly seahorse (Hippocampus abdominalis) was identified and characterized structurally and functionally. The full-length cDNA sequence (1213 bp) of ShLysG is comprised of an open reading frame made up of 552 bp, encoding a polypeptide of 184 amino acid (aa) with a predicted molecular mass of 20 kDa. In silico analysis of ShLysG revealed the absence of signal peptide and the presence of a characteristic bacterial soluble lytic transglycosylase (SLT) domain bearing three catalytic residues (Glu 71 , Asp 84 , and Asp 95 ) and seven N-acetyl-d-glucosamine binding sites (Glu 71 , Asp 95 , Tyr 98 , His 99 , Ile 117 , Tyr 145 , and Asn 146 ). Homology analysis demonstrated that the aa sequence of ShLysG shared 60.7-67.4% identity and 72.6-79.3% similarity with the orthologs of other teleosts. Phylogenetic analysis of ShLysG indicated a closest relationship with the ortholog from Gadus morhua. In healthy seahorse, ShLysG mRNA showed a constitutive expression in all the tissues examined, with the highest expression in kidney and the least expression in liver. The ShLysG mRNA levels were also shown significant elevation upon the bacterial and pathogen-associated molecular pattern (PAMPs) challenges. Furthermore, lytic activities of ShLysG recombinant protein were detected against several Gram-negative and Gram-positive bacterial species. Taken together, these results suggest that ShLysG might possess a potential immune defensive role against invading microbial pathogens in seahorse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Electromagnetic potentials without gauge transformations

    International Nuclear Information System (INIS)

    Chubykalo, A; Espinoza, A; Alvarado Flores, R

    2011-01-01

    In this paper, we show that the use of the Helmholtz theorem enables the derivation of uniquely determined electromagnetic potentials without the necessity of using gauge transformation. We show that the electromagnetic field comprises two components, one of which is characterized by instantaneous action at a distance, whereas the other propagates in retarded form with the velocity of light. In our attempt to show the superiority of the new proposed method to the standard one, we argue that the action-at-a-distance components cannot be considered as a drawback of our method, because the recommended procedure for eliminating the action at a distance in the Coulomb gauge leads to theoretical subtleties that allow us to say that the needed gauge transformation is not guaranteed. One of the theoretical consequences of this new definition is that, in addition to the electric E and magnetic B fields, the electromagnetic potentials are real physical quantities. We show that this property of the electromagnetic potentials in quantum mechanics is also a property of the electromagnetic potentials in classical electrodynamics.

  9. Characterization of potential ionizing radiation biomarkers by a proteomic approach

    Energy Technology Data Exchange (ETDEWEB)

    Guipaud, O; Vereycken-Holler, V; Benderitter, M [Institut de Radioprotection et de Surete Nucleaire, Lab. de Radiopathologie, 92 - Fontenay aux Roses (France); Royer, N; Vinh, J [Ecole Superieure de Physique et de Chimie Industrielles, 75 - Paris (France)

    2006-07-01

    Radio-induced lesions are tissue specific, hardly predictable, and can arise months or years later. The finding of prognostic bio-markers is of fundamental relevance for the settlement of therapeutic or preventive strategies. Using two-dimensional gel electrophoresis and mass spectrometry, a proteomic study was applied to look for differentially expressed proteins, i.e. potential bio-markers candidates, in mouse serums after a local irradiation of the dorsal skin. Our results clearly indicated that serum protein content was dynamically modified after a local skin irradiation. A set of specific proteins were early down- or up-regulated and could turn out to be good candidates as diagnostic or prognostic bio-markers. (author)

  10. Characterization of potential ionizing radiation biomarkers by a proteomic approach

    International Nuclear Information System (INIS)

    Guipaud, O.; Vereycken-Holler, V.; Benderitter, M.; Royer, N.; Vinh, J.

    2006-01-01

    Radio-induced lesions are tissue specific, hardly predictable, and can arise months or years later. The finding of prognostic bio-markers is of fundamental relevance for the settlement of therapeutic or preventive strategies. Using two-dimensional gel electrophoresis and mass spectrometry, a proteomic study was applied to look for differentially expressed proteins, i.e. potential bio-markers candidates, in mouse serums after a local irradiation of the dorsal skin. Our results clearly indicated that serum protein content was dynamically modified after a local skin irradiation. A set of specific proteins were early down- or up-regulated and could turn out to be good candidates as diagnostic or prognostic bio-markers. (author)

  11. Molecular Characterization and Antioxidant Potential of Three Wild Culinary-Medicinal Mushrooms from Tripura, Northeast India.

    Science.gov (United States)

    Das, Aparajita Roy; Borthakur, Madhusmita; Saha, Ajay Krishna; Joshi, Santa Ram; Das, Panna

    2017-01-01

    The aim of this study was to characterize 3 wild culinary-medicinal mushrooms using molecular tools and to analyze their antioxidant activity. Antioxidant properties were studied by evaluating free radical scavenging, reducing power, and chelating effect. The mushrooms were identified as Lentinus squarrosulus, L. tuber-regium, and Macrocybe gigantean by amplifying internal transcribed spacer regions of ribosomal DNA. The results demonstrated that the methanolic extract of M. gigantean has the highest free radical scavenging effect and chelating effect, whereas the methanolic extract of L. squarrosulus has the highest reducing power. The highest total phenol content and the most ascorbic acid were found in the M. gigantean extracts. Among the 3 mushroom extracts, M. gigantean displayed the most potent antioxidant activity. Molecular characterization using the nuclear ribosomal internal transcribed spacer region as a universal DNA marker was an effective tool in the identification and phylogenetic analysis of the studied mushrooms. The study also indicated that these wild macrofungi are rich sources of natural antioxidants.

  12. Characterization of a novel and potentially lethal designer drug (±)-cis-para-methyl-4-methylaminorex (4,4'-DMAR, or 'Serotoni').

    Science.gov (United States)

    Brandt, Simon D; Baumann, Michael H; Partilla, John S; Kavanagh, Pierce V; Power, John D; Talbot, Brian; Twamley, Brendan; Mahony, Olivia; O'Brien, John; Elliott, Simon P; Archer, Roland P; Patrick, Julian; Singh, Kuldip; Dempster, Nicola M; Cosbey, Simon H

    2014-01-01

    During the second half of 2013, a total of 26 deaths involving para-methyl-4-methylaminorex (4,4'-DMAR) were reported to the European Monitoring Centre for Drugs and Drug Addiction. While aminorex and 4-methylaminorex (4-MAR) are known psychostimulants, nothing is known about the comparatively new para-methyl analog. Analytical characterization of two independent samples obtained from online vendors confirmed the presence of the (±)-cis isomer that also appeared to be associated with at least 18 of the 26 deaths. Extensive characterizations included crystal structure analysis, single, tandem, and high-resolution mass spectrometry, liquid and gas chromatography, and nuclear magnetic resonance spectroscopy. For the work described here, both the (±)-cis and (±)-trans racemates were also synthesized, confirming that the differentiation between these two forms was straight-forward. Monoamine transporter activity was studied using rat brain synaptosomes which included the comparison with d-amphetamine, aminorex and (±)-cis-4-MAR. (±)-cis-4,4'-DMAR was a potent, efficacious substrate-type releaser at transporters for dopamine, norepinephrine and serotonin with EC50 values of 8.6 ± 1.1 nM (DAT), 26.9 ± 5.9 nM (NET) and 18.5 ± 2.8 nM (SERT), respectively. The potency of (±)-cis-4,4'-DMAR at DAT and NET rivalled that of other psychomotor stimulant drugs like d-amphetamine and aminorex. However, (±)-cis-4,4'-DMAR had much more potent actions at SERT and activity at SERT varied more than 100-fold across the four drugs. The potent releasing activity of (±)-cis-4,4'-DMAR at all three monoamine transporters predicts a potential for serious side-effects such as psychotic symptoms, agitation, hyperthermia and cardiovascular stimulation, especially after high-dose exposure or following combination with other psychostimulants. Copyright © 2014 John Wiley & Sons, Ltd.

  13. The Potential of Perspectivism for Science Education

    Science.gov (United States)

    Pearce, Jacob V.

    2013-01-01

    Many science teachers are presented with the challenge of characterizing science as a dynamic, human endeavour. Perspectivism, as a hermeneutic philosophy of science, has the potential to be a learning tool for teachers as they elucidate the complex nature of science. Developed earlier by Nietzsche and others, perspectivism has recently re-emerged…

  14. Strain characterization of West African Dwarf Goats of Ogun State I ...

    African Journals Online (AJOL)

    Characterization of West African Dwarf goat is an approach to a sustainable use of its great potentials. In this study, strains of WAD goat were characterized using linear body measurement. The WAD goat included the gold (brown), black, buckskin and chaimose of ages 1, 2, 3 and 4 years,raised under extensive system of ...

  15. Characterization optimization for the National TRU waste system

    International Nuclear Information System (INIS)

    Basabilvazo, George T.; Countiss, S.; Moody, D.C.; Jennings, S.G.; Lott, S.A.

    2002-01-01

    On March 26, 1999, the Waste Isolation Pilot Plant (WIPP) received its first shipment of transuranic (TRU) waste. On November 26, 1999, the Hazardous Waste Facility Permit (HWFP) to receive mixed TRU waste at WIPP became effective. Having achieved these two milestones, facilitating and supporting the characterization, transportation, and disposal of TRU waste became the major challenges for the National TRU Waste Program. Significant challenges still remain in the scientific, engineering, regulatory, and political areas that need to be addressed. The National TRU Waste System Optimization Project has been established to identify, develop, and implement cost-effective system optimization strategies that address those significant challenges. Fundamental to these challenges is the balancing and prioritization of potential regulatory changes with potential technological solutions. This paper describes some of the efforts to optimize (to make as functional as possible) characterization activities for TRU waste.

  16. Highly excited bound-state resonances of short-range inverse power-law potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Academic College, Jerusalem (Israel)

    2017-11-15

    We study analytically the radial Schroedinger equation with long-range attractive potentials whose asymptotic behaviors are dominated by inverse power-law tails of the form V(r) = -β{sub n}r{sup -n} with n > 2. In particular, assuming that the effective radial potential is characterized by a short-range infinitely repulsive core of radius R, we derive a compact analytical formula for the threshold energy E{sub l}{sup max} = E{sub l}{sup max}(n, β{sub n}, R), which characterizes the most weakly bound-state resonance (the most excited energy level) of the quantum system. (orig.)

  17. Characterizing water-metal interfaces and machine learning potential energy surfaces

    Science.gov (United States)

    Ryczko, Kevin

    In this thesis, we first discuss the fundamentals of ab initio electronic structure theory and density functional theory (DFT). We also discuss statistics related to computing thermodynamic averages of molecular dynamics (MD). We then use this theory to analyze and compare the structural, dynamical, and electronic properties of liquid water next to prototypical metals including platinum, graphite, and graphene. Our results are built on Born-Oppenheimer molecular dynamics (BOMD) generated using density functional theory (DFT) which explicitly include van der Waals (vdW) interactions within a first principles approach. All calculations reported use large simulation cells, allowing for an accurate treatment of the water-electrode interfaces. We have included vdW interactions through the use of the optB86b-vdW exchange correlation functional. Comparisons with the Perdew-Burke-Ernzerhof (PBE) exchange correlation functional are also shown. We find an initial peak, due to chemisorption, in the density profile of the liquid water-Pt interface not seen in the liquid water-graphite interface, liquid watergraphene interface, nor interfaces studied previously. To further investigate this chemisorption peak, we also report differences in the electronic structure of single water molecules on both Pt and graphite surfaces. We find that a covalent bond forms between the single water molecule and the platinum surface, but not between the single water molecule and the graphite surface. We also discuss the effects that defects and dopants in the graphite and graphene surfaces have on the structure and dynamics of liquid water. Lastly, we introduce artificial neural networks (ANNs), and demonstrate how they can be used to machine learn electronic structure calculations. As a proof of principle, we show the success of an ANN potential energy surfaces for a dimer molecule with a Lennard-Jones potential.

  18. Bioelectric potentials in the soil-plant system

    Science.gov (United States)

    Pozdnyakov, A. I.

    2013-07-01

    A detailed study of the electric potentials in the soil-plant system was performed. It was found that the electric potential depends on the plant species and the soil properties. A theoretical interpretation of the obtained data was given. All the plants, independently from their species and their state, always had a negative electric potential relative to the soil. The electric potential of the herbaceous plants largely depended on the leaf area. In some plants, such as burdock ( Arctium lappa) and hogweed ( Heracleum sosnowskyi), the absolute values of the negative electric potential exceeded 100 mV. The electric potential was clearly differentiated by the plant organs: in the flowers, it was lower than in the leaves; in the leaves, it was usually lower than in the leaf rosettes and stems. The electric potentials displayed seasonal dynamics. As a rule, the higher the soil water content, the lower the electric potential of the plants. However, an inverse relationship was observed for dandelions ( Taraxacum officinale). It can be supposed that the electric potential between the soil and the plant characterizes the vital energy of the plant.

  19. Beyond platinum: synthesis, characterization, and in vitro toxicity of Cu(II-releasing polymer nanoparticles for potential use as a drug delivery vector

    Directory of Open Access Journals (Sweden)

    Harris Alesha

    2011-01-01

    Full Text Available Abstract The field of drug delivery focuses primarily on delivering small organic molecules or DNA/RNA as therapeutics and has largely ignored the potential for delivering catalytically active transition metal ions and complexes. The delivery of a variety of transition metals has potential for inducing apoptosis in targeted cells. The chief aims of this work were the development of a suitable delivery vector for a prototypical transition metal, Cu2+, and demonstration of the ability to impact cancer cell viability via exposure to such a Cu-loaded vector. Carboxylate-functionalized nanoparticles were synthesized by free radical polymerization and were subsequently loaded with Cu2+ via binding to particle-bound carboxylate functional groups. Cu loading and release were characterized via ICP MS, EDX, XPS, and elemental analysis. Results demonstrated that Cu could be loaded in high weight percent (up to 16 wt.% and that Cu was released from the particles in a pH-dependent manner. Metal release was a function of both pH and the presence of competing ligands. The toxicity of the particles was measured in HeLa cells where reductions in cell viability greater than 95% were observed at high Cu loading. The combined pH sensitivity and significant toxicity make this copper delivery vector an excellent candidate for the targeted killing of disease cells when combined with an effective cellular targeting strategy.

  20. Preliminary characterization of abandoned septic tank systems. Volume 1

    International Nuclear Information System (INIS)

    1995-12-01

    This report documents the activities and findings of the Phase I Preliminary Characterization of Abandoned Septic Tank Systems. The purpose of the preliminary characterization activity was to investigate the Tiger Team abandoned septic systems (tanks and associated leachfields) for the purpose of identifying waste streams for closure at a later date. The work performed was not to fully characterize or remediate the sites. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. A total of 20 sites were investigated for the preliminary characterization of identified abandoned septic systems. Of the 20 sites, 19 were located and characterized through samples collected from each tank(s) and, where applicable, associated leachfields. The abandoned septic tank systems are located in Areas 5, 12, 15, 25, and 26 on the Nevada Test Site

  1. Site characterization activities at Stripa and other Swedish projects

    International Nuclear Information System (INIS)

    Ahlstroehm, P.E.

    1991-01-01

    The Swedish research programme concerning spent nuclear fuel disposal aims for submitting a siting license application around the year 2000. An important step towards that goal will be the detailed characterization of at least two potential sites in late 1990s. In preparation for such characterization several research projects are conducted. One is the international Stripa Project that includes a site characterization and validation project for a small size granite rock body. The Stripa work also includes further development of instrumentation and measurement techniques. Another project is the Finnsjoen Fracture Zone Project, which is characterizing a subhorizontal zone at depths from 100 to 350 meters. The third project is the new Swedish Hard Rock Laboratory planned at the site of the Oskarshamn nuclear power plant. The preinvestigations and construction of this laboratory include major efforts in development, application and validation of site characterization methodology. (author) 6 figs., 9 refs

  2. Characterization of OAZ1 and its potential functions in goose follicular development

    Directory of Open Access Journals (Sweden)

    Bo Kang

    2017-03-01

    Conclusions: The goose OAZ1 structure confirms that OAZ1 plays an important role in ornithine decarboxylase-mediated regulation of polyamine homeostasis. Our findings provide an evidence for a potential function of OAZ1 in follicular development, ovulation and regression.

  3. Characterizing food waste substrates for co-digestion through biochemical methane potential (BMP) experiments.

    Science.gov (United States)

    Lisboa, Maria Sol; Lansing, Stephanie

    2013-12-01

    Co-digestion of food waste with dairy manure is increasingly utilized to increase energy production and make anaerobic digestion more affordable; however, there is a lack of information on appropriate co-digestion substrates. In this study, biochemical methane potential (BMP) tests were conducted to determine the suitability of four food waste substrates (meatball, chicken, cranberry and ice cream processing wastes) for co-digestion with flushed dairy manure at a ratio of 3.2% food waste and 96.8% manure (by volume), which equated to 14.7% (ice-cream) to 80.7% (chicken) of the VS being attributed to the food waste. All treatments led to increases in methane production, ranging from a 67.0% increase (ice cream waste) to a 2940% increase (chicken processing waste) compared to digesting manure alone, demonstrating the large potential methane production of food waste additions compared to relatively low methane production potential of the flushed dairy manure, even if the overall quantity of food waste added was minimal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Molecular characterization of genetic diversity in some durum wheat ...

    African Journals Online (AJOL)

    Molecular characterization of genetic diversity in some durum wheat ... African Journal of Biotechnology ... Thus, RAPD offer a potentially simple, rapid and reliable method to evaluate genetic variation and relatedness among ten wheat ...

  5. Determination of quark-antiquark potentials and meson spectra

    International Nuclear Information System (INIS)

    Semay, C.; Silvestre-Brac, B.

    1999-01-01

    We determine two different sets of quark-antiquark potential to be used in a Schroedinger or a Salpeter type of equation. The central part contains QCD inspired components: the Coulomb like interaction, the confinement potential and an instanton interaction. It is supplemented with phenomenological relativistic corrections. The constituent quarks are characterized by a colour charge density. The parameters are determined by a minimization procedure on representative samples of mesons and the full spectra are calculated. Refs. 6, tabs. 2 (author)

  6. Introduction to heat potential theory

    CERN Document Server

    Watson, Neil A

    2012-01-01

    This book is the first to be devoted entirely to the potential theory of the heat equation, and thus deals with time dependent potential theory. Its purpose is to give a logical, mathematically precise introduction to a subject where previously many proofs were not written in detail, due to their similarity with those of the potential theory of Laplace's equation. The approach to subtemperatures is a recent one, based on the Poisson integral representation of temperatures on a circular cylinder. Characterizations of subtemperatures in terms of heat balls and modified heat balls are proved, and thermal capacity is studied in detail. The generalized Dirichlet problem on arbitrary open sets is given a treatment that reflects its distinctive nature for an equation of parabolic type. Also included is some new material on caloric measure for arbitrary open sets. Each chapter concludes with bibliographical notes and open questions. The reader should have a good background in the calculus of functions of several vari...

  7. Electric Potential and Electric Field Imaging with Applications

    Science.gov (United States)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  8. Characterization data on the topical carrier DDC642

    Directory of Open Access Journals (Sweden)

    Eline Desmet

    2016-06-01

    Full Text Available This article contains original data, figures and methods used in the characterization of the liposomal carrier ‘DDC642’ for topical applications, described in “An elastic liposomal formulation for RNAi-based topical treatment of skin disorders: proof-of-concept in the treatment of psoriasis” (Desmet et al., 2016 [1]. Several elastic liposomal formulations have been evaluated for their ability to encapsulate and deliver RNA interference (RNAi molecules to cultured primary skin cells. The efficiency and effectiveness of these liposomes were compared to that of our previously characterized liposomes, the ‘SECosomes’ (SEC (Geusens et al., 2010 [2]. After selection of a potential superior carrier, based on encapsulation and transfection efficiency data (Desmet et al., 2016 [1], the selected DDC642 liposomes were characterized more in-depth. Herein, a detailed characterization of the DDC642 liposome and RNAi-loaded lipoplexes is given, including the matching protocols.

  9. Characterization of radioactively contaminated sites for remediation purposes

    International Nuclear Information System (INIS)

    1998-05-01

    Characterization of the contaminated site is essential before embarking on a programme for its remediation and ultimate restoration. Reliable and suitable data must be obtained regarding the distribution and physical, chemical and nuclear properties of all radioactive contaminants. Characterization data is necessary for assessing the associated radiation risks and is used in support of the required engineering design and project planning for the environmental restoration. In addition, continuing characterization can provide information regarding efficiency of the cleanup methods and influence possible redirection of work efforts. Similarly, at the end of the remediation phase, characterization and ongoing monitoring can be used to demonstrate completion and success of the cleanup process. The suggested methodology represents a contribution attempting to solve the issue of preremediation characterization in a general manner. However, a number of difficulties might make this methodology unsuitable for general application across the diverse social, environmental and political systems in the IAEA Member States. This TECDOC covers the methodologies used to characterize radioactively contaminated sites for the purpose of remediating the potential sources of radiation exposure and assessing the hazards to human health and the environment

  10. Three dimensional characterization and archiving system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.L.; Clark, R.; Gallman, P. [Coleman Research Corp., Springfield, VA (United States)] [and others

    1995-10-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.

  11. Facilitating the selection and creation of accurate interatomic potentials with robust tools and characterization

    Science.gov (United States)

    Trautt, Zachary T.; Tavazza, Francesca; Becker, Chandler A.

    2015-10-01

    The Materials Genome Initiative seeks to significantly decrease the cost and time of development and integration of new materials. Within the domain of atomistic simulations, several roadblocks stand in the way of reaching this goal. While the NIST Interatomic Potentials Repository hosts numerous interatomic potentials (force fields), researchers cannot immediately determine the best choice(s) for their use case. Researchers developing new potentials, specifically those in restricted environments, lack a comprehensive portfolio of efficient tools capable of calculating and archiving the properties of their potentials. This paper elucidates one solution to these problems, which uses Python-based scripts that are suitable for rapid property evaluation and human knowledge transfer. Calculation results are visible on the repository website, which reduces the time required to select an interatomic potential for a specific use case. Furthermore, property evaluation scripts are being integrated with modern platforms to improve discoverability and access of materials property data. To demonstrate these scripts and features, we will discuss the automation of stacking fault energy calculations and their application to additional elements. While the calculation methodology was developed previously, we are using it here as a case study in simulation automation and property calculations. We demonstrate how the use of Python scripts allows for rapid calculation in a more easily managed way where the calculations can be modified, and the results presented in user-friendly and concise ways. Additionally, the methods can be incorporated into other efforts, such as openKIM.

  12. Facilitating the selection and creation of accurate interatomic potentials with robust tools and characterization

    International Nuclear Information System (INIS)

    Trautt, Zachary T; Tavazza, Francesca; Becker, Chandler A

    2015-01-01

    The Materials Genome Initiative seeks to significantly decrease the cost and time of development and integration of new materials. Within the domain of atomistic simulations, several roadblocks stand in the way of reaching this goal. While the NIST Interatomic Potentials Repository hosts numerous interatomic potentials (force fields), researchers cannot immediately determine the best choice(s) for their use case. Researchers developing new potentials, specifically those in restricted environments, lack a comprehensive portfolio of efficient tools capable of calculating and archiving the properties of their potentials. This paper elucidates one solution to these problems, which uses Python-based scripts that are suitable for rapid property evaluation and human knowledge transfer. Calculation results are visible on the repository website, which reduces the time required to select an interatomic potential for a specific use case. Furthermore, property evaluation scripts are being integrated with modern platforms to improve discoverability and access of materials property data. To demonstrate these scripts and features, we will discuss the automation of stacking fault energy calculations and their application to additional elements. While the calculation methodology was developed previously, we are using it here as a case study in simulation automation and property calculations. We demonstrate how the use of Python scripts allows for rapid calculation in a more easily managed way where the calculations can be modified, and the results presented in user-friendly and concise ways. Additionally, the methods can be incorporated into other efforts, such as openKIM. (paper)

  13. Spectroscopic characterization of exoplanets : from LOUPE to SINFONI

    NARCIS (Netherlands)

    Hoeijmakers, H.J.

    2017-01-01

    Over the past years it has been discovered that the population of extra-solar planets is large and diverse. This fact feeds expectations for finding habitable Earth-like planets and potentially extra-terrestrial life. However without a reliable characterization, the fundamental nature of

  14. Characterization and phylogenetic affiliation of Actinobacteria from tropical soils with potential uses for agro-industrial processes.

    Science.gov (United States)

    Dornelas, J C M; Figueiredo, J E F; de Abreu, C S; Lana, U G P; Oliveira, C A; Marriel, I E

    2017-08-31

    Secondary metabolites produced by Actinobacteria of tropical soils represent a largely understudied source of novel molecules with relevant application in medicine, pharmaceutical and food industries, agriculture, and environmental bioremediation. The present study aimed to characterize sixty-nine Actinobacteria isolated from compost and tropical soils using morphological, biochemical, and molecular methods. All the isolates showed high variation for morphological traits considering the color of pigments of the aerial and vegetative mycelium and spore chain morphology. The enzymatic activity of amylase, cellulase, and lipase was highly variable. The amylase activity was detected in 53 (76.81%) isolates. Eighteen isolates showed enzymatic index (EI) > 4.0, and the isolates ACJ 45 (Streptomyces curacoi) and ACSL 6 (S. hygroscopicus) showed the highest EI values (6.44 and 6.42, respectively). The cellulase activity varied significantly (P ≤ 0.05) among the isolates. Twenty-nine isolates (42.02%) showed high cellulase activity, and the isolates ACJ 48 (S. chiangmaiensis) and ACJ 53 (S. cyslabdanicus) showed the highest EI values (6.56 for both isolates). The lipase activity varied statistically (P ≤ 0.05) with fourteen isolates (20.29%) considered good lipase producers (EI > 2.0). The isolate ACSL 6 (S. hygroscopicus) showed the highest EI value of 2.60. Molecular analysis of partial 16S rRNA gene sequencing revealed the existence of 49 species, being 38 species with only one representative member and 11 species represented by one or more strains. All species belonged to three genera, namely Streptomyces (82.61%), Amycolatopsis (7.25%), and Kitasatospora (10.14%). The present results showed the high biotechnological potential of different Actinobacteria from tropical soils.

  15. Pharmacological characterization of VIP and PACAP receptors in the human meningeal and coronary artery

    DEFF Research Database (Denmark)

    Chan, Kayi Y; Baun, Michael; de Vries, René

    2011-01-01

    We pharmacologically characterized pituitary adenylate cyclase-activating polypeptides (PACAPs), vasoactive intestinal peptide (VIP) and the VPAC(1), VPAC(2) and PAC(1) receptors in human meningeal (for their role in migraine) and coronary (for potential side effects) arteries.......We pharmacologically characterized pituitary adenylate cyclase-activating polypeptides (PACAPs), vasoactive intestinal peptide (VIP) and the VPAC(1), VPAC(2) and PAC(1) receptors in human meningeal (for their role in migraine) and coronary (for potential side effects) arteries....

  16. Newtonian potential and geodesic completeness in infinite derivative gravity

    Science.gov (United States)

    Edholm, James; Conroy, Aindriú

    2017-08-01

    Recent study has shown that a nonsingular oscillating potential—a feature of infinite derivative gravity theories—matches current experimental data better than the standard General Relativity potential. In this work, we show that this nonsingular oscillating potential can be given by a wider class of theories which allows the defocusing of null rays and therefore geodesic completeness. We consolidate the conditions whereby null geodesic congruences may be made past complete, via the Raychaudhuri equation, with the requirement of a nonsingular Newtonian potential in an infinite derivative gravity theory. In doing so, we examine a class of Newtonian potentials characterized by an additional degree of freedom in the scalar propagator, which returns the familiar potential of General Relativity at large distances.

  17. Passive film growth on carbon steel and its nanoscale features at various passivating potentials

    International Nuclear Information System (INIS)

    Li, Yuan; Cheng, Y. Frank

    2017-01-01

    Highlights: • Imaged the topography of passivated steel at various film-forming potentials. • Characterized the nanoscale features of passive films. • Determined the composition of passive films formed at various potentials. - Abstract: In this work, the passivation and topographic sub-structure of passive films on a carbon steel in a carbonate/bicarbonate solution was characterized by electrochemical measurements, atomic force microscopy and X-ray photoelectron spectroscopy. When passivating at a potential near the active-passive transition, the film contains the mixture of Fe_3O_4, Fe_2O_3 and FeOOH, with numerous nanoscale features. As the film-forming potential shifts positively, the passive film becomes more compact and the nanoscale features disappear. When the film is formed at a passive potential where the oxygen evolution is enabled, the content of FeOOH in the film increases, resulting in an amorphous topography and reduced corrosion resistance.

  18. Potential of semiautomated, synoptic geologic studies for characterization of hazardous waste sites

    International Nuclear Information System (INIS)

    Foley, M.G.; Beaver, D.E.; Glennon, M.A.; Eliason, J.R.

    1988-01-01

    Siting studies for licensing hazardous facilities require three-dimensional characterization of site geology including lithology, structure, and tectonics. The scope of these studies depends on the type of hazardous facility and its associated regulations. This scope can vary from a pro forma literature review to an extensive, multiyear research effort. Further, the regulatory environment often requires that the credibility of such studies be established in administrative and litigative proceedings, rather than solely by technical peer review. Pacific Northwest Laboratory (PNL) has developed a technology called remote geologic analysis (RGA). This technology provides reproducible photogeologic maps, determinations of three- dimensional faults and fracture sets expressed as erosional lineaments or planar topographic features, planar feature identification in seismic hypocenter data, and crustal- stress/tectonic analyses. Results from the RGA establish a foundation for interpretations that are defensible in licensing proceedings

  19. Characterization of potential mineralization in Afghanistan: four permissive areas identified using imaging spectroscopy data

    Science.gov (United States)

    King, Trude V.V.; Berger, Byron R.; Johnson, Michaela R.

    2014-01-01

    As part of the U.S. Geological Survey and Department of Defense Task Force for Business and Stability Operations natural resources revitalization activities in Afghanistan, four permissive areas for mineralization, Bamyan 1, Farah 1, Ghazni 1, and Ghazni 2, have been identified using imaging spectroscopy data. To support economic development, the areas of potential mineralization were selected on the occurrence of selected mineral assemblages mapped using the HyMap™ data (kaolinite, jarosite, hydrated silica, chlorite, epidote, iron-bearing carbonate, buddingtonite, dickite, and alunite) that may be indicative of past mineralization processes in areas with limited or no previous mineral resource studies. Approximately 30 sites were initially determined to be candidates for areas of potential mineralization. Additional criteria and material used to refine the selection and prioritization process included existing geologic maps, Landsat Thematic Mapper data, and published literature. The HyMapTM data were interpreted in the context of the regional geologic and tectonic setting and used the presence of alteration mineral assemblages to identify areas with the potential for undiscovered mineral resources. Further field-sampling, mapping, and supporting geochemical analyses are necessary to fully substantiate and verify the specific deposit types in the four areas of potential mineralization.

  20. Long-term characterization of residential runoff and assessing potential surrogates of fecal indicator organisms.

    Science.gov (United States)

    Reano, Dane C; Haver, Darren L; Oki, Lorence R; Yates, Marylynn V

    2015-05-01

    Investigations into the microbiological impacts of urban runoff on receiving water bodies, especially during storm conditions, have yielded general paradigms that influence runoff abatement and control management strategies. To determine whether these trends are present in other runoff sources, the physical, chemical, and microbiological components of residential runoff from eight neighborhoods in Northern and Southern California were characterized over the course of five years. Sampling occurred regularly and during storm events, resulting in 833 data sets. Analysis of runoff data assisted in characterizing residential runoff, elucidating differences between dry and storm conditions, and identifying surrogates capable of assessing microbiological quality. Results indicate that although microbial loading increases during storm events similar to urban runoff, annual microbial loading in these study sites principally occurs during dry conditions (24% storm, 76% dry). Generated artificial neural network and multiple linear regression models assessed surrogate performance by accurately predicting Escherichia coli concentrations from validation data sets (R(2) = 0.74 and 0.77, respectively), but required input from other fecal indicator organism (FIO) variables to maintain performance (R(2) = 0.27 and 0.18, respectively, without FIO). This long-term analysis of residential runoff highlights characteristics distinct from urban runoff and establishes necessary variables for determining microbiological quality, thus better informing future management strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Energy Savings Potential and RD&D Opportunities for Commercial Building HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Shandross, Richard [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Petritchenko, Oxana [Navigant Consulting, Burlington, MA (United States); Ringo, Decker [Navigant Consulting, Burlington, MA (United States); McClive, Sam [Navigant Consulting, Burlington, MA (United States)

    2017-12-01

    The Building Technologies Office (BTO) commissioned this characterization and technology assessment of heating, ventilation, and air-conditioning (HVAC) systems for commercial buildings. The main objectives of this study: Identify a wide range of technology options in varying stages of development that could reduce commercial HVAC energy consumption; Characterize these technology options based on their technical energy-savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and the ability to compete with conventional HVAC technologies; Make specific recommendations to DOE and other stakeholders on potential research, development, and demonstration (RD&D) activities that would support further development of the most promising technology options.

  2. Space potential profiles in ELMO Bumpy Torus (EBT) experiment

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Connor, K.A.

    1983-01-01

    Spatially resolved measurements of the electric space potential in the ELMO Bumpy Torus (EBT) have been made by a heavy ion beam probe. The EBT-I device is characterized by positive potentials in the surface plasma the order of 100 V and by a nearly symmetric potential well in the core plasma of up to 300 V with respect to the surface potential. The EBT-S device has a similar potential structure with well depth and peak potential similar to or greater than that of EBT-I. Peak potential and well depth increase as the edge gas pressure is lowered and as the microwave power is increased. The potential structure is strongly linked to the specific heating geometry. The ambipolar electric field is large enough generally to dominate the core electron neoclassical diffusion. The potential profile is approximately parabolic in the core, which is shown to be a natural consequence of the spatially uniform plasma source function

  3. Egg white hybrid nanoflower (EW-hNF) with biomimetic polyphenol oxidase reactivity: Synthesis, characterization and potential use in decolorization of synthetic dyes.

    Science.gov (United States)

    Altinkaynak, Cevahir; Kocazorbaz, Ebru; Özdemir, Nalan; Zihnioglu, Figen

    2018-04-01

    In this study, for the first time, we described organic-inorganic hybrid nanoflowers using crude egg white as the organic component and copper (II) ions as the inorganic component under the mild conditions. The synthesized egg white-inorganic hybrid nanoflowers (EW-hNFs) were characterized using SEM, EDX, XRD and FTIR analysis. The biomimetic Polyphenol/Peroxidase like activities of synthesized egg white-inorganic hybrid nanoflowers (EW-hNFs) were determined by using various phenolics with or without H 2 O 2 . Optimum pH and temperature, kinetic parameters, reusability, pH and thermal stability of EW-hNFs were also studied. The most noteworthy aspect of our study is that synthesized EW-hNFs which consist of only egg white proteins, showed polyphenol oxidase activity. Furthermore, potential use of the EW-hNFs in the discoloration of the some synthetic dyes was also evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Application of Network Analysis for Characterizing Service Modularity

    DEFF Research Database (Denmark)

    Frandsen, Thomas

    2012-01-01

    The purpose of this paper is to explore the potential of the application of network analytical techniques to identify and characterize modularity of service processes. Services can be conceptualized as systems of interrelated components which can be decomposed in order to achieve a modular design...

  5. Characterization of mixed CH-TRU waste at Argonne-West

    International Nuclear Information System (INIS)

    Dwight, C.C.; Guay, K.P.; Courtney, J.C.; Higgins, P.J.

    1993-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Argonne's initial activities in the Program were described last year at Waste Management '92. Since then, additional waste has been characterized and repackaged, resulting in six bins ready for shipment to WIPP upon the initiation of the bin tests. Lessons learned from these operations are being factored in the design and installation of a new characterization facility, the Enhanced Waste Characterization Facility (EWCF). The objectives of the WIPP Experimental Test Program have also undergone change since last year leading to an accelerated effort to factor sludge sampling capability into the EWCF. Consequently, the initiation of non-sludge operations in the waste characterization chamber has been delayed to Summer 1993 while the sludge sampling modifications are incorporated into the facility. Benefits in operational flexibility, effectiveness, and efficiency and reductions in potential facility and personnel contamination and exposure are expected from the enhanced waste characterization facility within the Hot Fuel Examination Facility at Argonne-West. This paper summarizes results and lessons learned from recent characterization and repackaging efforts and future plans for characterization. It also describes design features and status of the EWCF

  6. Capacitive technology for energy extraction from chemical potential differences

    NARCIS (Netherlands)

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.

  7. The electromagnetic potentials without the gauge transformations

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, Augusto; Chubykalo, Andrey; Rodriguez, Alejandro Gutierrez; Hernandez, Maria de los Angeles [Universidad Autonoma de Zacatecas (Mexico). Unidad Academica de Fisica

    2011-07-01

    In this note we show that the use of the Helmholtz theorem lead to derivation of uniquely determined electromagnetic potentials without making use of the gauge transformation. These potentials correspond to the potentials obtained by imposing so-called Coulomb condition (gauge) in the traditional approach. We show that the electromagnetic field comprises two components, one of which is characterized by its instantaneous action at a distance, whereas another one propagates in the retarded form with the velocity of light. One of the theoretical consequences of this new definition is that the electromagnetic potentials are real physical quantities as well as the electric and magnetic fields. We show that the reality of the electromagnetic potentials in quantum-mechanics is also a property of these potentials in the classical electrodynamics. Equations for potentials obtained in our approach are already separated with respect to vector and scalar potentials, so there is no necessity in using the gauge transformations and, accordingly, in making use of either Lorentz or Coulomb condition. The vector potential and scalar potential introduced thus are uniquely defined. The scalar potential is a generator of the so called instantaneous action at a distance, whereas the solenoidal vector potential can propagate with the velocity of light and it is responsible for the retarded action of the electromagnetic field. (author)

  8. Synthesis, Characterization and DNA Binding Activity of a Potential DNA Intercalator

    International Nuclear Information System (INIS)

    Siti Norain Harun; Yaakob Razak; Haslina Ahmad

    2016-01-01

    A novel complex, (Ru(dppz) 2 (p-MOPIP)) 2+ (dppz = dipyrido-(3,2-a:20,30-c]phenazine, p-MOPIP = 2-(4-methoxyphenyl) imidazo(4,5-f)(1,10]phenanthroline) has been synthesized and characterized by elemental analysis, 1 H Nuclear Magnetic Resonance spectroscopy, mass spectrometry, Fourier Transform Infrared analysis, Ultra Violet visible and fluorescence spectroscopy. Herein, the complex was designed by adding p-MOPIP as an intercalating ligand and dppz as the ancillary ligand. The DNA binding properties of the complex with Calf Thymus DNA (CT-DNA) were investigated using spectroscopic methods. The UV-visible absorption band observed at 460 nm corresponded to the metal-to-ligand charge transfer (MLCT) while bands at 358 and 281 nm corresponded to intra-ligand (IL) π-π * transitions of the ligand scaffold in p-MOPIP and dppz. The intrinsic binding constant, K b for this complex was 1.67x10 6 M -1 and this suggested that this complex, (Ru(dppz) 2 (p-MOPIP)) 2+ bound to DNA via the intercalative mode. Interestingly, the interaction of this complex with CT-DNA also had a molecular light switch effect. (author)

  9. Molecular-based approaches to characterize coastal microbial community and their potential relation to the trophic state of Red Sea

    KAUST Repository

    Ansari, Mohd Ikram

    2015-03-11

    Molecular-based approaches were used to characterize the coastal microbiota and to elucidate the trophic state of Red Sea. Nutrient content and enterococci numbers were monitored, and used to correlate with the abundance of microbial markers. Microbial source tracking revealed the presence of >1 human-associated Bacteroides spp. at some of the near-shore sampling sites and at a heavily frequented beach. Water samples collected from the beaches had occasional exceedances in enterococci numbers, higher total organic carbon (TOC, 1.48-2.18 mg/L) and nitrogen (TN, 0.15-0.27 mg/L) than that detected in the near-shore waters. Enterococci abundances obtained from next-generation sequencing did not correlate well with the cultured enterococci numbers. The abundance of certain genera, for example Arcobacter, Pseudomonas and unclassified Campylobacterales, was observed to exhibit slight correlation with TOC and TN. Low abundance of functional genes accounting for up to 41 copies/L of each Pseudomonas aeruginosa and Campylobacter coli were detected. Arcobacter butzleri was also detected in abundance ranging from 111 to 238 copies/L. Operational taxonomic units (OTUs) associated with cyanobacteria, Prochlorococcus, Ostreococcus spp. and Gramella were more prevalent in waters that were likely impacted by urban runoffs and recreational activities. These OTUs could potentially serve as quantifiable markers indicative of the water quality.

  10. Nanoparticles for intravascular applications: physicochemical characterization and cytotoxicity testing

    NARCIS (Netherlands)

    Matuszak, J.; Baumgartner, J.; Zaloga, J.; Juenet, M.; Da Silva, A.E.; Franke, D.; Almer, G.; Texier, I.; Faivre, D.; Metselaar, Josbert Maarten; Navarro, F.P.; Chauvierre, C.; Prassl, R.; Dézsi, L.; Urbanics, R.; Alexiou, C.; Mangge, H.; Szebeni, J.; Letourneur, D.; Cicha, I.

    2016-01-01

    Aim: We report the physicochemical analysis of nanosystems intended for cardiovascular applications and their toxicological characterization in static and dynamic cell culture conditions. Methods: Size, polydispersity and ζ-potential were determined in 10 nanoparticle systems including liposomes,

  11. Determining Recovery Potential of Dredged Material for Beneficial Use - Site Characterization; Prescriptive Approach

    National Research Council Canada - National Science Library

    Olin-Estes, Trudy

    2000-01-01

    ... of physical separation. The first technical note(Olin-Estes and Palermo 2000) introduces physical separation concepts and presents mathematical relationships for estimating material recovery potential (MRP...

  12. Synthesis, SAR and pharmacological characterization of novel anthraquinone cation compounds as potential anticancer agents.

    Science.gov (United States)

    Zheng, Yanyan; Zhu, Li; Fan, Lulu; Zhao, Wenna; Wang, Jianlong; Hao, Xianxiao; Zhu, Yunhui; Hu, Xiufang; Yuan, Yaofeng; Shao, Jingwei; Wang, Wenfeng

    2017-01-05

    Emodin, a natural anthraquinone derivative isolated from Rheum palmatum L., has been demonstrated to exhibit good anti-cancer effect. In this study, a series of novel quaternary ammonium salts of emodin, anthraquinone and anthrone were synthesized and their anticancer activities were tested in vitro. The effects of emodin quaternary ammonium salts on cell viability, apoptosis, intracellular ROS, and mitochondrial membrane potential were investigated in A375, BGC-823, HepG2 and HELF cells. The results demonstrated that compound 4a induced morphological changes and decreased cell viability. Apoptosis triggered by compound 4a was visualized using DAPI staining and Annexin V-FITC/PI staining. Compound 4a-induced apoptosis of A375 cells were showed to be associated with the dissipation of mitochondrial membrane potential (ΔΨm) as a result of the up-regulation of P53 and Caspase-3. When cancer cells were treated with emodin derivative, their ability to generate reactive oxygen species (ROS) rose significantly and the mitochondrial membrane potential decreased. Additionally, confocal microscopy assay confirmed that compound 4a was primarily located in the mitochondria of A375 cells. These results suggested that compound 4a has the potential for use in cancer therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. A study of production and characterization of Manketti (Ricinodendron rautonemii methyl ester and its blends as a potential biodiesel feedstock

    Directory of Open Access Journals (Sweden)

    A.E. Atabani

    2014-12-01

    Full Text Available Globally, more than 350 oil-bearing crops are known as potential biodiesel feedstocks. This study reports on production and characterization of Manketti (Ricinodendron rautonemii methyl ester and its blends with diesel. The effect of Manketti biodiesel (B5 on engine and emissions performance was also investigated. The cloud, pour and cold filter plugging points of the produced biodiesel were measured at 1, 3 and 5 °C, respectively. However, the kinematic viscosity of the biodiesel generated was found to be 8.34 mm2/s which was higher than the limit described by ASTM D6751 and EN 14214. This can be attributed to the high kinematic viscosity of the parent oil (132.75 mm2/s. Nevertheless, blending with diesel improved this attribute. Moreover, it is observed that at all engine speeds, B5 produced lower brake power (1.18% and higher brake specific fuel consumption (2.26% compared to B0 (neat diesel. B5 increased the CO and HC emissions by 32.27% and 37.5%, respectively, compared to B0. However, B0 produced 5.26% higher NO emissions than B5.

  14. Environmental Restoration Program pollution prevention checklist guide for the facility characterization project phase

    International Nuclear Information System (INIS)

    1993-09-01

    A facility characterization (FC) is conducted to determine the nature and extent contamination at a potential hazardous facility waste site. The information gathered during an FC includes (1) data on the volume and chemical nature of the waste, (2) information on the extent of contamination and the migration potential of the contaminants, (3) preliminary information on evaluation of alternative concepts that can or cannot be considered, and (4)supportive technical and cost data. For the purposes of identification, the following operational phases will be used for definition for this phase of the decommissioning and decontamination process (1) facility characterization before clean up, (2) characterization during clean up, (3) characterization of waste materials, and (4) site characterization after clean up. A key consideration in this process is the prevention of any waste to be generated from these characterization activities. The purpose of this checklist guide is to assist users with incorporating pollution prevention/waste minimization (PP/WM) in all FC phase projects of the Environmental Restoration (ER) Program. This guide will help users document PP/WM activities for technology transfer and reporting requirements. Automated computer screens will be created from the checklist data to assist users with implementing and evaluating waste reduction

  15. Investigation of the groundwater composition at potential radioactive waste disposal sites in Sweden

    International Nuclear Information System (INIS)

    Wikberg, P.T.

    1984-02-01

    Within an investigation program of sites suitable for an underground repository for spent nuclear fuel the groundwater has been characterized. Until now seven areas have been investigated. The groundwater has been pumped up from several isolated sections at depth of 100 m to 600 m in boreholes in each area. Each test section has been pumped continuously for at least two weeks. During the pumping period the water was characterized in the field and sampled for later analysis. Most of the characterized waters are non saline and the concentration of the different constituents varies within a rather narrow interval. Saline waters with much higher concentrations of chloride, sulphate, sodium and calcium have been encountered. The groundwater characterization includes field monitoring of the physico-chemical parameters pH, redox potential, free sulphide concentration, dissolved oxygen concentration and conductivity. These parameters are measured in a flow through cell where the water passes before coming in contact with the air. The redox potential measurements have been successful. A new equipment for measurements in the sampling section has been constructed. Preliminary tests have given very promising results

  16. Electrochemical characterization of FeMnO3 microspheres as potential material for energy storage applications

    Science.gov (United States)

    Saravanakumar, B.; Ramachandran, S. P.; Ravi, G.; Ganesh, V.; Guduru, Ramesh K.; Yuvakkumar, R.

    2018-01-01

    In this study, uniform iron manganese trioxide (FeMnO3) microspheres were characterized as electrode for supercapacitor applications. The microspheres were synthesized by hydrothermal method in the presence of different molar ratios of sucrose. X-ray diffraction pattern confirmed that the obtained microsphere has body-centered lattice structure of space group 1213(199). The Raman peak observed at 640 cm-1 might be attributed to the stretching mode of vibration of Mn-O bonds perpendicular to the direction of MnO6 octahedral double chains. The photoluminescence peak at the 536 nm corresponded to Fe2+ ions in FeMnO3 lattice point of body-centered cubic structure. The characteristic strong infrared (IR) bands observed at 669 cm-1 corresponded to Fe-O stretching. The electrochemical characterization of the obtained FeMnO3 products could be understood by carrying out cyclic voltammeter, electroimpedance spectra, and galvanostatic charging and discharge studies in a three-cell setup that demonstrates the exceptional specific capacitance of 773.5 F g-1 at a scan rate of 10 mV s-1 and 763.4 F g-1 at a current density of 1 A g-1.

  17. Synthesis and Characterization of the Hybrid Clay- Based Material Montmorillonite-Melanoidin: A Potential Soil Model

    Energy Technology Data Exchange (ETDEWEB)

    V Vilas; B Matthiasch; J Huth; J Kratz; S Rubert de la Rosa; P Michel; T Schäfer

    2011-12-31

    The study of the interactions among metals, minerals, and humic substances is essential in understanding the migration of inorganic pollutants in the geosphere. A considerable amount of organic matter in the environment is associated with clay minerals. To understand the role of organic matter in the environment and its association with clay minerals, a hybrid clay-based material (HCM), montmorillonite (STx-1)-melanoidin, was prepared from L-tyrosine and L-glutamic acid by the Maillard reaction. The HCM was characterized by elemental analysis, nuclear magnetic resonance, x-ray photoelectron spectroscopy (XPS), scanning transmission x-ray microscopy (STXM), and thermal analysis. The presence of organic materials on the surface was confirmed by XPS and STXM. The STXM results showed the presence of organic spots on the surface of the STx-1 and the characterization of the functional groups present in those spots. Thermal analysis confirmed the existence of organic materials in the montmorillonite interlayer, indicating the formation of a composite of melanoidin and montmorillonite. The melanoidin appeared to be located partially between the layers of montmorillonite and partially at the surface, forming a structure that resembles the way a cork sits on the top of a champagne bottle.

  18. Passive film growth on carbon steel and its nanoscale features at various passivating potentials

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuan; Cheng, Y. Frank, E-mail: fcheng@ucalgary.ca

    2017-02-28

    Highlights: • Imaged the topography of passivated steel at various film-forming potentials. • Characterized the nanoscale features of passive films. • Determined the composition of passive films formed at various potentials. - Abstract: In this work, the passivation and topographic sub-structure of passive films on a carbon steel in a carbonate/bicarbonate solution was characterized by electrochemical measurements, atomic force microscopy and X-ray photoelectron spectroscopy. When passivating at a potential near the active-passive transition, the film contains the mixture of Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3} and FeOOH, with numerous nanoscale features. As the film-forming potential shifts positively, the passive film becomes more compact and the nanoscale features disappear. When the film is formed at a passive potential where the oxygen evolution is enabled, the content of FeOOH in the film increases, resulting in an amorphous topography and reduced corrosion resistance.

  19. Gas-Fired Distributed Energy Resource Technology Characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  20. Fractionation, characterization and speciation of heavy metals in ...

    African Journals Online (AJOL)

    Speciation of heavy metals in soils determines the availability for metals for plant uptake and potential for contamination of groundwater following application of composts to agricultural lands. Methods used to characterize heavy metals in solid phase of composts and compost amended soils include physical fractionation ...

  1. Cultivation, isolation and characterization of bacteriocin from fresh ...

    African Journals Online (AJOL)

    This study focus on cultivation, isolation and characterization of Bacteriocin from fresh cow milk (FCM) and fresh cow meat (FMS) samples obtained from Lapai Market in Niger State, Nigeria. Potential bacteriocinogenic bacteria were screened with agar diffusion method on culture plates seeded with Staphylococcus and ...

  2. Biochemical characterization of cholesterol-reducing Eubacterium.

    OpenAIRE

    Mott, G E; Brinkley, A W; Mersinger, C L

    1980-01-01

    We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addit...

  3. Laboratory characterization of shale pores

    Science.gov (United States)

    Nur Listiyowati, Lina

    2018-02-01

    To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.

  4. A review on marine based nanoparticles and their potential ...

    African Journals Online (AJOL)

    Infonet

    2015-05-06

    May 6, 2015 ... potential applications (Table 1) and current information about research on ... easily available source for nanoparticle synthesis with broad variability of ... of marine ecosystem and characterization of marine plants are extremely different ... to develop non-toxic and environment friendly methods to synthesize ...

  5. Characterization of organic photovoltaic devices using femtosecond laser induced breakdown spectroscopy

    Science.gov (United States)

    Banerjee, S. P.; Sarnet, Thierry; Siozos, Panayiotis; Loulakis, Michalis; Anglos, Demetrios; Sentis, Marc

    2017-10-01

    The potential of laser induced breakdown spectroscopy (LIBS) as a non-contact probe, for characterizing organic photovoltaic devices during selective laser scribing, was investigated. Samples from organic solar cells were studied, which consisted of several layers of materials including a top electrode (Al, Mg or Mo), organic layer, bottom electrode (indium tin oxide), silicon nitride barrier layer and substrate layer situated from the top consecutively. The thickness of individual layers varies from 115 to 250 nm. LIBS measurements were performed by use of a 40 femtosecond Ti:Sapphire laser operated at very low pulse energy (solar cell structure, demonstrating the potential of LIBS for fast, non-contact characterization of organic photovoltaic coatings.

  6. Molecular, biochemical, and morphometric characterization of Fasciola species potentially causing zoonotic disease in Egypt.

    Science.gov (United States)

    El-Rahimy, Hoda H; Mahgoub, Abeer M A; El-Gebaly, Naglaa Saad M; Mousa, Wahid M A; Antably, Abeer S A E

    2012-09-01

    Fascioliasis is an important disease caused by Fasciola hepatica and Fasciola gigantica. The distributions of both species overlap in many areas of Asia and Africa including Egypt. Fifty adult Fasciola worms were collected from livers of cattle and sheep slaughtered in abattoirs, Cairo, Egypt. They were subjected to morphological and metric assessment of external features of fresh adults, morphological and metric assessment of internal anatomy of stained mounted worms, determination of electrophorezed bands of crude adult homogenates using SDS-PAGE, and molecular characterization of species-specific DNA segments using RFLP-PCR. It was found that the correlation between conventional morphology and its morphotype was statistically significant (P value = 0.00). Using SDS-PAGE, 13 bands were detected among both genotypes of Fasciola (35.7, 33.6, 32.4, 29.3, 27.5, 26, 24.4, 23, 21.45, 19, 16.75, 12.5, and 9.1 kDa).The most prevalent bands were that with a molecular weight of 29.3, 26, and 19 kDa. Bands detected were common for both species, but protein bands could not distinguish between F. hepatica and F. gigantica. The result of PCR for the amplification of the selected 28S rDNA fragment with the designed primer set yielded 618 bp long PCR products for F. hepatica and F. gigantica. Different band patterns generated after digestion of the 618 bp segment by the enzyme AvaII obtained with F. hepatica showed segments of the length 529, 62, 27 bp, while with F. gigantica 322, 269, 27 bp bands were obtained. Genotyping revealed no equivocal results. The conventional morphological parameters for species determination of Fasciola spp. endemic in Egypt were evaluated versus protein bands characterization and genotyping. It was concluded that conventional morphological and metric assessments were not useful for differentiation between F. gigantica and F. hepatica due to extensive overlap in the relative ranges. Similar conclusion was reached concerning protein band

  7. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer.

    Science.gov (United States)

    Babauta, Jerome T; Nguyen, Hung Duc; Harrington, Timothy D; Renslow, Ryan; Beyenal, Haluk

    2012-10-01

    The limitation of pH inside electrode-respiring biofilms is a well-known concept. However, little is known about how pH and redox potential are affected by increasing current inside biofilms respiring on electrodes. Quantifying the variations in pH and redox potential with increasing current is needed to determine how electron transfer is tied to proton transfer within the biofilm. In this research, we quantified pH and redox potential variations in electrode-respiring Geobacter sulfurreducens biofilms as a function of respiration rates, measured as current. We also characterized pH and redox potential at the counter electrode. We concluded that (1) pH continued to decrease in the biofilm through different growth phases, showing that the pH is not always a limiting factor in a biofilm and (2) decreasing pH and increasing redox potential at the biofilm electrode were associated only with the biofilm, demonstrating that G. sulfurreducens biofilms respire in a unique internal environment. Redox potential inside the biofilm was also compared to the local biofilm potential measured by a graphite microelectrode, where the tip of the microelectrode was allowed to acclimatize inside the biofilm. Copyright © 2012 Wiley Periodicals, Inc.

  8. Chitosan-magnesium aluminum silicate composite dispersions: characterization of rheology, flocculate size and zeta potential.

    Science.gov (United States)

    Khunawattanakul, Wanwisa; Puttipipatkhachorn, Satit; Rades, Thomas; Pongjanyakul, Thaned

    2008-03-03

    Composite dispersions of chitosan (CS), a positively charged polymer, and magnesium aluminum silicate (MAS), a negatively charged clay, were prepared and rheology, flocculate size and zeta potential of the CS-MAS dispersions were investigated. High and low molecular weights of CS (HCS and LCS, respectively) were used in this study. Moreover, the effects of heat treatment at 60 degrees C on the characteristics of the CS-MAS dispersions and the zeta potential of MAS upon addition of CS at different pHs were examined. Incorporation of MAS into CS dispersions caused an increase in viscosity and a shift of CS flow type from Newtonian to pseudoplastic flow with thixotropic properties. Heat treatment brought about a significant decrease in viscosity and hysteresis area of the composite dispersions. Microscopic studies showed that flocculation of MAS occurred after mixing with CS. The size and polydispersity index of the HCS-MAS flocculate were greater than those of the LCS-MAS flocculate. However, a narrower size distribution and the smaller size of the HCS-MAS flocculate were found after heating at 60 degrees C. Zeta potentials of the CS-MAS flocculates were positive and slightly increased with increasing MAS content. In the zeta potential studies, the negative charge of the MAS could be neutralized by the addition of CS. Increasing the pH and molecular weight of CS resulted in higher CS concentrations required to neutralize the charge of MAS. These findings suggest that the electrostatic interaction between CS and MAS caused a change in flow behavior and flocculation of the composite dispersions, depending on the molecular weight of CS. Heat treatment affected the rheological properties and the flocculate size of the composite dispersions. Moreover, pH of medium and molecular weight of CS influence the zeta potential of MAS.

  9. Ultra low injection angle fuel holes in a combustor fuel nozzle

    Science.gov (United States)

    York, William David

    2012-10-23

    A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

  10. Characterization Plan for Soils Around Drain Line PLA-100115

    Energy Technology Data Exchange (ETDEWEB)

    D. Shanklin

    2006-05-24

    This Characterization Plan supports the Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) closure of soils that may have been contaminated by releases from drain line PLA-100115, located within the Idaho Nuclear Technology and Engineering Center at the Idaho National Laboratory Site. The requirements to address the closure of soils contaminated by a potential release from this line in a characterization plan was identified in the "HWMA/RCRA Less Than 90-day Generator Closure Report for the VES-SFE-126."

  11. The role of transient receptor potential channels in metabolic syndrome

    DEFF Research Database (Denmark)

    Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2008-01-01

    Metabolic syndrome is correlated with increased cardiovascular risk and characterized by several factors, including visceral obesity, hypertension, insulin resistance, and dyslipidemia. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential (TRP...

  12. Characterizing sources of emissions from wildland fires

    Science.gov (United States)

    Roger D. Ottmar; Ana Isabel Miranda; David V. Sandberg

    2009-01-01

    Smoke emissions from wildland fire can be harmful to human health and welfare, impair visibility, and contribute to greenhouse gas emissions. The generation of emissions and heat release need to be characterized to estimate the potential impacts of wildland fire smoke. This requires explicit knowledge of the source, including size of the area burned, burn period,...

  13. Effect of potential steps on porous silicon formation

    International Nuclear Information System (INIS)

    Cheng Xuan; Feng Zude; Luo Guangfeng

    2003-01-01

    Porous silicon microstructures were fabricated by applying potential steps through which both anodic and cathodic potentials were periodically applied to silicon wafers. The electrochemical behaviors of porous silicon layers were examined by performing polarization measurements, followed by analyzing the open-circuit potential (E ocp ) and the reaction rate in terms of corrosion current density (j corr ). The surface morphologies and surface products of porous silicon were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). It was found that the values of E ocp and j corr varied more significantly and irregularly during different polarization stages when the potentials were continuously applied to the wafer surface, while virtually unchanged after 2 min of periodic potential application. In addition, slower reaction rates were observed with applying potential steps, as indicated by smaller values of j corr . The enhancement on refreshment of silicon surfaces by periodic potential polarization significantly accelerated the growth of porous silicon. The microstructures became more uniformed and better defined due to the improved passivating nature of wafer surfaces

  14. Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression.

    Science.gov (United States)

    Keren, Alon S; Yuval-Greenberg, Shlomit; Deouell, Leon Y

    2010-02-01

    Analysis of high-frequency (gamma-band) neural activity by means of non-invasive EEG is gaining increasing interest. However, we have recently shown that a saccade-related spike potential (SP) seriously confounds the analysis of EEG induced gamma-band responses (iGBR), as the SP eludes traditional EEG artifact rejection methods. Here we provide a comprehensive profile of the SP and evaluate methods for its detection and suppression, aiming to unveil true cerebral gamma-band activity. The SP appears consistently as a sharp biphasic deflection of about 22 ms starting at the saccade onset, with a frequency band of approximately 20-90 Hz. On the average, larger saccades elicit higher SP amplitudes. The SP amplitude gradually changes from the extra-ocular channels towards posterior sites with the steepest gradients around the eyes, indicating its ocular source. Although the amplitude and the sign of the SP depend on the choice of reference channel, the potential gradients remain the same and non-zero for all references. The scalp topography is modulated almost exclusively by the direction of saccades, with steeper gradients ipsilateral to the saccade target. We discuss how the above characteristics impede attempts to remove these SPs from the EEG by common temporal filtering, choice of different references, or rejection of contaminated trials. We examine the extent to which SPs can be reliably detected without an eye tracker, assess the degree to which scalp current density derivation attenuates the effect of the SP, and propose a tailored ICA procedure for minimizing the effect of the SP. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  15. Challenges in the Management of Potentially Contaminated Scrap Metal

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, R.W., E-mail: meehanrw@em.doe.gov [US Department of Energy, National Nuclear Security Administration, Washington, DC (United States)

    2011-07-15

    This paper describes the background and current status of the management of potentially contaminated metals and materials at the US Department of Energy (DOE) sites across the USA. The current DOE policy prohibiting the release of metal scrap for recycling from radiation areas is explained. Finally, a potential path forward to competently assess, characterize and clear material from radiological control is proposed that uses a combination of administrative processes and empirical techniques that are valid irrespective of the standard used for clearance. (author)

  16. Lactosylated poly(ethylene oxide)-poly(propylene oxide) block copolymers for potential active targeting: synthesis and physicochemical and self-aggregation characterization

    Energy Technology Data Exchange (ETDEWEB)

    Cuestas, Maria L.; Glisoni, Romina J. [University of Buenos Aires, Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry (Argentina); Mathet, Veronica L. [National Science Research Council (CONICET) (Argentina); Sosnik, Alejandro, E-mail: alesosnik@gmail.com [University of Buenos Aires, The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry (Argentina)

    2013-01-15

    Aiming to develop polymeric self-assembly nanocarriers with potential applications in active drug targeting to the liver, linear and branched poly(ethylene oxide)-poly(propylene oxide) amphiphiles were conjugated to lactobionic acid (LA), a disaccharide of galactose and gluconic acid, by the conventional Steglich esterification reaction. The conjugation was confirmed by ATR/FT-IR, {sup 1}H-NMR, and {sup 13}C-NMR spectroscopy. Elemental analysis and MALDI-TOF mass spectrometry were employed to elucidate the conjugation extent and the final molecular weight, respectively. The critical micellar concentration (CMC), the size and size distribution and zeta potential of the pristine and modified polymeric micelles under different conditions of pH and temperature were characterized by dynamic light scattering (DLS). Conjugation with LA favored the micellization process, leading to a decrease of the CMC with respect to the pristine counterpart, this phenomenon being independent of the pH and the temperature. At 37 Degree-Sign C, micelles made of pristine copolymers showed a monomodal size distribution between 12.8 and 24.4 nm. Conversely, LA-conjugated micelles showed a bimodal size pattern that comprised a main fraction of relatively small size (11.6-22.2 nm) and a second one with remarkably larger sizes of up to 941.4 nm. The former corresponded to single micelles, while the latter would indicate a secondary aggregation phenomenon. The spherical morphology of LA-micelles was visualized by transmission electron microscopy (TEM). Finally, to assess the ability of the LA-conjugated micelles to interact with lectin-like receptors, samples were incubated with concanavalin A at 37 Degree-Sign C and the size and size distribution were monitored by DLS. Findings indicated that regardless of the relatively weak affinity of this vegetal lectin for galactose, micelles underwent agglutination probably through the interaction of a secondary site in the lectin with the gluconic acid

  17. Molecular characterization of severin from Clonorchis sinensis excretory/secretory products and its potential anti-apoptotic role in hepatocarcinoma PLC cells.

    Directory of Open Access Journals (Sweden)

    Xueqing Chen

    Full Text Available BACKGROUND: Clonorchiasis, caused by the infection of Clonorchis sinensis (C. sinensis, is a kind of neglected tropical disease, but it is highly related to cholangiocarcinoma and hepatocellular carcinoma (HCC. It has been well known that the excretory/secretory products of C. sinensis (CsESPs play key roles in clonorchiasis associated carcinoma. From genome and transcriptome of C. sinensis, we identified one component of CsESPs, severin (Csseverin, which had three putative gelsolin domains. Its homologues are supposed to play a vital role in apoptosis resistance of tumour cell. METHODOLOGY/PRINCIPAL FINDINGS: There was significant similarity in tertiary structures between human gelsolin and Csseverin by bioinformatics analysis. We identified that Csseverin expressed at life stage of adult worm, metacercaria and egg by the method of quantitative real-time PCR and western blotting. Csseverin distributed in vitellarium and intrauterine eggs of adult worm and tegument of metacercaria by immunofluorence assay. We obtained recombinant Csseverin (rCsseverin and confirmed that rCsseverin could bind with calciumion in circular dichroism spectrum analysis. It was demonstrated that rCsseverin was of the capability of actin binding by gel overlay assay and immunocytochemistry. Both Annexin V/PI assay and mitochondrial membrane potential assay of human hepatocarcinoma cell line PLC showed apoptosis resistance after incubation with different concentrations of rCsseverin. Morphological analysis, apoptosis-associated changes of mitochondrial membrane potential and Annexin V/PI apoptosis assay showed that co-incubation of PLC cells with rCsseverin in vitro led to an inhibition of apoptosis induced by serum-starved for 24 h. CONCLUSIONS/SIGNIFICANCE: Collectively, the molecular properties of Csseverin, a molecule of CsESPs, were characterized in our study. rCsseverin could cause obvious apoptotic inhibition in human HCC cell line. Csseverin might exacerbate the

  18. Molecular Characterization of Severin from Clonorchis sinensis Excretory/Secretory Products and Its Potential Anti-apoptotic Role in Hepatocarcinoma PLC Cells

    Science.gov (United States)

    He, Lei; Wang, Xiaoyun; Liang, Pei; Chen, Wenjun; Bian, Meng; Ren, Mengyu; Lin, Jinsi; Liang, Chi; Xu, Jin; Wu, Zhongdao; Li, Xuerong; Huang, Yan; Yu, Xinbing

    2013-01-01

    Background Clonorchiasis, caused by the infection of Clonorchis sinensis (C. sinensis), is a kind of neglected tropical disease, but it is highly related to cholangiocarcinoma and hepatocellular carcinoma (HCC). It has been well known that the excretory/secretory products of C. sinensis (CsESPs) play key roles in clonorchiasis associated carcinoma. From genome and transcriptome of C. sinensis, we identified one component of CsESPs, severin (Csseverin), which had three putative gelsolin domains. Its homologues are supposed to play a vital role in apoptosis resistance of tumour cell. Methodology/Principal Findings There was significant similarity in tertiary structures between human gelsolin and Csseverin by bioinformatics analysis. We identified that Csseverin expressed at life stage of adult worm, metacercaria and egg by the method of quantitative real-time PCR and western blotting. Csseverin distributed in vitellarium and intrauterine eggs of adult worm and tegument of metacercaria by immunofluorence assay. We obtained recombinant Csseverin (rCsseverin) and confirmed that rCsseverin could bind with calciumion in circular dichroism spectrum analysis. It was demonstrated that rCsseverin was of the capability of actin binding by gel overlay assay and immunocytochemistry. Both Annexin V/PI assay and mitochondrial membrane potential assay of human hepatocarcinoma cell line PLC showed apoptosis resistance after incubation with different concentrations of rCsseverin. Morphological analysis, apoptosis-associated changes of mitochondrial membrane potential and Annexin V/PI apoptosis assay showed that co-incubation of PLC cells with rCsseverin in vitro led to an inhibition of apoptosis induced by serum-starved for 24 h. Conclusions/Significance Collectively, the molecular properties of Csseverin, a molecule of CsESPs, were characterized in our study. rCsseverin could cause obvious apoptotic inhibition in human HCC cell line. Csseverin might exacerbate the process of HCC

  19. Isolation, characterization and transcriptome analysis of a novel Antarctic Aspergillus sydowii strain MS-19 as a potential lignocellulosic enzyme source.

    Science.gov (United States)

    Cong, Bailin; Wang, Nengfei; Liu, Shenghao; Liu, Feng; Yin, Xiaofei; Shen, Jihong

    2017-05-30

    With the growing demand for fossil fuels and the severe energy crisis, lignocellulose is widely regarded as a promising cost-effective renewable resource for ethanol production, and the use of lignocellulose residues as raw material is remarkable. Polar organisms have important value in scientific research and development for their novelty, uniqueness and diversity. In this study, a fungus Aspergillus sydowii MS-19, with the potential for lignocellulose degradation was screened out and isolated from an Antarctic region. The growth profile of Aspergillus sydowii MS-19 was measured, revealing that Aspergillus sydowii MS-19 could utilize lignin as a sole carbon source. Its ability to synthesize low-temperature lignin peroxidase (Lip) and manganese peroxidase (Mnp) enzymes was verified, and the properties of these enzymes were also investigated. High-throughput sequencing was employed to identify and characterize the transcriptome of Aspergillus sydowii MS-19. Carbohydrate-Active Enzymes (CAZyme)-annotated genes in Aspergillus sydowii MS-19 were compared with those in the brown-rot fungus representative species, Postia placenta and Penicillium decumbens. There were 701CAZymes annotated in Aspergillus sydowii MS-19, including 17 cellulases and 19 feruloyl esterases related to lignocellulose-degradation. Remarkably, one sequence annotated as laccase was obtained, which can degrade lignin. Three peroxidase sequences sharing a similar structure with typical lignin peroxidase and manganese peroxidase were also found and annotated as haem-binding peroxidase, glutathione peroxidase and catalase-peroxidase. In this study, the fungus Aspergillus sydowii MS-19 was isolated and shown to synthesize low-temperature lignin-degrading enzymes: lignin peroxidase (Lip) and manganese peroxidase (Mnp). These findings provide useful information to improve our understanding of low-temperature lignocellulosic enzyme production by polar microorganisms and to facilitate research and

  20. Sampling and Characterization of 618-2 Anomalous Material

    International Nuclear Information System (INIS)

    Zacharias, A.E.

    2006-01-01

    This as low as reasonably achievable (ALARA) Level II review documents radiological engineering and administrative controls necessary for the sampling and characterization of anomalous materials discovered during the remediation of the 618-2 solid waste burial ground. The goals of these engineering and administrative controls are to keep personnel exposure ALARA, control contamination levels, and minimize potential for airborne contamination. Excavation of the 618-2 Burial Ground has produced many items of anomalous waste. Prior to temporary packaging and/or storage, these items have been characterized in the field to identify radiological and industrial safety conditions. Further sampling and characterization of these items, as well as those remaining from an excavated combination safe, is the subject of this ALARA Level II review. An ALARA in-progress review will also be performed prior to sampling and characterization of 618-2 anomalous materials offering risks of differing natures. General categories of anomalies requiring further characterization include the following: (1) Containers of unknown liquids and/or solids and powders (excluding transuranics); (2) Drums containing unknown liquids and/or solids; (3) Metal containers with unknown contents; and (4) Known or suspected transuranic material.

  1. Assessment of dairy wastewater treatment and its potential for ...

    African Journals Online (AJOL)

    The extent of pollution of dairy wastewater treated in a septic tank and its potential for biogas production was investigated. Performance of the existing treatment system was assessed through characterization of both raw and treated effluents. From the analysis parameters likeChemical Oxygen Demand (COD), Biochemical ...

  2. Characterization of geometrical random uncertainty distribution for a group of patients in radiotherapy

    International Nuclear Information System (INIS)

    Munoz Montplet, C.; Jurado Bruggeman, D.

    2010-01-01

    Geometrical random uncertainty in radiotherapy is usually characterized by a unique value in each group of patients. We propose a novel approach based on a statistically accurate characterization of the uncertainty distribution, thus reducing the risk of obtaining potentially unsafe results in CTV-PTV margins or in the selection of correction protocols.

  3. Preliminary site characterization at Beishan northwest China-A potential site for China's high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Wang Ju; Su Rui; Xue Weiming; Zheng Hualing

    2004-01-01

    Chinese nuclear power plants,radioactive waste and radioactive waste disposal are introduced. Beishan region (Gansu province,Northwest China)for high-level radioactive waste repository and preliminary site characterization are also introduced. (Zhang chao)

  4. Uranium potentialities of precambrian from Goias State

    International Nuclear Information System (INIS)

    Danni, J.C.M.; Marini, O.J.; Faria, A. de; Dardenne, M.A.

    1983-01-01

    A chrono-stratigraphy synthesis of geological unities from Precambrian, with emphasis on characterization of its depositional region, tectonics and or lithology is presented. The main ideas relating to uranium metallogeny in precambrian ages referring to geologic situation in Goias is described. The uranium occurrence associated to precambrian unities from region and some interpretations for evaluation the potentialities of uranium metallotect are also cited. (C.G.C.)

  5. Characterization and ethanol potential from giant cassava (Manihot esculenta) stem waste biomass

    Science.gov (United States)

    Septia, E.; Supriadi; Suwinarti, W.; Amirta, R.

    2018-04-01

    Manihot esculenta stem waste biomass is promising material for ethanol production since it is unutilized substance from cassava production. Nowadays, cassava is the most common food in Indonesian society. The aims of this study were to identify availability and characteristic of giant cassava (M. esculenta) stem waste biomass for ethanol feedstock. In term of that, four plots with the size of 5m x 5m were made to calculate the total stem biomass obtained after harvesting process. In this study, various concentrations of alkaline were used to degrade lignin from the substrate. The effects of alkaline pretreatment were investigated using TAPPI method and the ethanol yield was estimated using modified NREL protocol. The results showed that the potential dry stem waste biomass from harvesting of M. esculenta was approximately 10.5 ton/ha. Further, alkaline pretreatment of stem waste biomass with 2% of NaOH coupled with the enzymatic saccharification process using meicelase was showed the highest production of sugar to reach of 38.49 % of total reduction sugar and estimated potentially converted to 2,62 L/ha of ethanol. We suggested M. esculenta stem waste biomass could be used as sustainable feedstock for ethanol production in Indonesia.

  6. Brainstem Auditory Evoked Potential in HIV-Positive Adults.

    Science.gov (United States)

    Matas, Carla Gentile; Samelli, Alessandra Giannella; Angrisani, Rosanna Giaffredo; Magliaro, Fernanda Cristina Leite; Segurado, Aluísio C

    2015-10-20

    To characterize the findings of brainstem auditory evoked potential in HIV-positive individuals exposed and not exposed to antiretroviral treatment. This research was a cross-sectional, observational, and descriptive study. Forty-five HIV-positive individuals (18 not exposed and 27 exposed to the antiretroviral treatment - research groups I and II, respectively - and 30 control group individuals) were assessed through brainstem auditory evoked potential. There were no significant between-group differences regarding wave latencies. A higher percentage of altered brainstem auditory evoked potential was observed in the HIV-positive groups when compared to the control group. The most common alteration was in the low brainstem. HIV-positive individuals have a higher percentage of altered brainstem auditory evoked potential that suggests central auditory pathway impairment when compared to HIV-negative individuals. There was no significant difference between individuals exposed and not exposed to antiretroviral treatment.

  7. Experimental characterization of graphene by electrostatic resonance frequency tuning

    NARCIS (Netherlands)

    Sajadi, B.; Alijani, F.; Davidovikj, D.; Goosen, J.F.L.; Steeneken, P.G.; van Keulen, A.

    2017-01-01

    In the last decade, graphene membranes have drawn tremendous attention due to their potential application in Nano-Electro-Mechanical Systems. In this paper, we show that the frequency response curves of graphene resonators are powerful tools for their dynamic characterization and for extracting

  8. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  9. Characterization of biological particulate loads in metropolitan air

    Science.gov (United States)

    J. A. Snow; R. D. Schein; W. J. Moroz

    1977-01-01

    The atmospheric particulate load includes a wide range of naturally occurring particles of biological origin that serve as a reservoir of allergenic agents in respiratory disease. Improved knowledge of potential aeroallergens is needed by medical clinicians. Aims are to better characterize air spora, qualitatively and quantitatively, and determine daily (by hour)...

  10. Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization

    Science.gov (United States)

    Wang, K. F.; Wang, B. L.

    2018-06-01

    Determining the electric potential in a bent piezoelectric nanowire (NW) is a fundamental issue of nanogenerators and nanopiezotronics. The combined influence of the flexoelectric effect, the semiconducting performance and the angle of atomic force microscope (AFM) tip has never been studied previously and will be investigated in this paper. The exact solution for the electric potential of a bent piezoelectric semiconductor NW is derived. The electric potential of the present model with consideration of flexoelectric effect varies along the length of the NW and is different from that of the classical piezoelectric model. Flexoelectric effect enhances but the semiconducting performance reduces the electric potential of the NW. In addition, it is found that if the angle of the AFM tip reaches 30°, the error of the electric potential obtained from the model ignored the effect of the angle of the AFM tip is almost 16%, which is unacceptable.

  11. Characterization of microbiota in Arapaima gigas intestine and isolation of potential probiotic bacteria.

    Science.gov (United States)

    do Vale Pereira, G; da Cunha, D G; Pedreira Mourino, J L; Rodiles, A; Jaramillo-Torres, A; Merrifield, D L

    2017-11-01

    The aim of this study was to determine the intestinal microbiota of pirarucu (Arapaima gigas) in different growth stages (adult and fingerlings) and to isolate and identify potential probiotic bacteria. High-throughput sequencing analysis of the intestinal contents revealed that the majority of sequences belonged to the Proteobacteria, Fusobacteria and Firmicutes phyla. At the genus level, the greatest number of sequences belonged to Bradyrhizobium in adult fish, while Cetobacterium was the most abundant in juvenile fish. Twenty-three lactic-acid bacteria (LABs) were isolated on MRS agar from healthy juvenile fish. The isolates were tested in vitro for probiotic properties. Two isolates (identified as strains of Lactococcus lactis subsp. lactis and Enterococcus faecium) displayed antagonism against all 10 pathogens tested, were nonhaemolytic and maintained good viability for at least 3 weeks when supplemented to fish diets. The presence of a number of antibiotic resistance genes (ARGs), conferring resistance to erythromycin, tetracycline and chloramphenicol, was investigated by PCR. The absence of ARGs investigated the potential to antagonize pathogens, and favourable growth and survival characteristics indicate that these autochthonous isolates have the potential to be considered probiotics, which will be studied in future in vivo experiments. This study has demonstrated, for the first time, the normal microbiota in the A. gigas intestine during different life stages and the presence of LAB strains. It also demonstrated LAB antibiotic resistance and antagonistic behaviour against pathogens isolated from the same fish. © 2017 The Society for Applied Microbiology.

  12. Characterization of MicroRNA Expression Profiles and Identification of Potential Biomarkers in Leprosy.

    Science.gov (United States)

    Jorge, Karina T O S; Souza, Renan P; Assis, Marieta T A; Araújo, Marcelo G; Locati, Massimo; Jesus, Amélia M R; Dias Baptista, Ida M F; Lima, Cristiano X; Teixeira, Antônio L; Teixeira, Mauro M; Soriani, Frederico M

    2017-05-01

    Leprosy is an important cause of disability in the developing world. Early diagnosis is essential to allow for cure and to interrupt transmission of this infection. MicroRNAs (miRNAs) are important factors for host-pathogen interaction and they have been identified as biomarkers for various infectious diseases. The expression profile of 377 microRNAs were analyzed by TaqMan low-density array (TLDA) in skin lesions of tuberculoid and lepromatous leprosy patients as well as skin specimens from healthy controls. In a second step, 16 microRNAs were selected for validation experiments with reverse transcription-quantitative PCR (qRT-PCR) in skin samples from new individuals. Principal-component analysis followed by logistic regression model and receiver operating characteristic (ROC) curve analyses were performed to evaluate the diagnostic potential of selected miRNAs. Four patterns of differential expression were identified in the TLDA experiment, suggesting a diagnostic potential of miRNAs in leprosy. After validation experiments, a combination of four miRNAs (miR-101, miR-196b, miR-27b, and miR-29c) was revealed as able to discriminate between healthy control and leprosy patients with 80% sensitivity and 91% specificity. This set of miRNAs was also able to discriminate between lepromatous and tuberculoid patients with a sensitivity of 83% and 80% specificity. In this work, it was possible to identify a set of miRNAs with good diagnostic potential for leprosy. Copyright © 2017 American Society for Microbiology.

  13. Evolutionary potential games on lattices

    Energy Technology Data Exchange (ETDEWEB)

    Szabó, György, E-mail: szabo@mfa.kfki.hu; Borsos, István, E-mail: borsos@mfa.kfki.hu

    2016-04-05

    Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the “equilibrium state” by adding non-potential components representing games of cyclic dominance.

  14. Evolutionary potential games on lattices

    International Nuclear Information System (INIS)

    Szabó, György; Borsos, István

    2016-01-01

    Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the “equilibrium state” by adding non-potential components representing games of cyclic dominance.

  15. Evolutionary potential games on lattices

    Science.gov (United States)

    Szabó, György; Borsos, István

    2016-04-01

    Game theory provides a general mathematical background to study the effect of pair interactions and evolutionary rules on the macroscopic behavior of multi-player games where players with a finite number of strategies may represent a wide scale of biological objects, human individuals, or even their associations. In these systems the interactions are characterized by matrices that can be decomposed into elementary matrices (games) and classified into four types. The concept of decomposition helps the identification of potential games and also the evaluation of the potential that plays a crucial role in the determination of the preferred Nash equilibrium, and defines the Boltzmann distribution towards which these systems evolve for suitable types of dynamical rules. This survey draws parallel between the potential games and the kinetic Ising type models which are investigated for a wide scale of connectivity structures. We discuss briefly the applicability of the tools and concepts of statistical physics and thermodynamics. Additionally the general features of ordering phenomena, phase transitions and slow relaxations are outlined and applied to evolutionary games. The discussion extends to games with three or more strategies. Finally we discuss what happens when the system is weakly driven out of the "equilibrium state" by adding non-potential components representing games of cyclic dominance.

  16. Agaricus bohusii from Serbia: chemical characterization, antioxidant potential and antifungal preserving properties in cream cheese

    OpenAIRE

    Reis, Filipa S.; Stojković, Dejan; Soković, Marina; Glamočlija, Jasmina; Ćirić, Ana; Barros, Lillian; Ferreira, Isabel C.F.R.

    2012-01-01

    Mushrooms are widely appreciated all over the world for their nutritional and bioactive properties. They have been considered valuable health foods being a source of many different nutraceuticals, including antioxidant and antimicrobial compounds [1,2]. Agaricus bohusii Bon is an edible and prized mushroom especially common in Serbia and southern Europe. As far as we know, there are no studies about this species. In the present work, a detailed chemical characterization of A. bohusii was ...

  17. Isolation and characterization of microsatellite markers in Acca sellowiana (Berg) Burret.

    Science.gov (United States)

    Santos, K L; Santos, M O; Laborda, P R; Souza, A P; Peroni, N; Nodari, R O

    2008-11-01

    Acca sellowiana has commercial potential because of the quality and the unique flavor of its fruit. Conservation of natural populations and management of breeding programmes would benefit from the availability of molecular markers that could be used to characterize levels and distribution of genetic variability. Thus, 13 microsatellite markers were developed from an enriched genomic library of A. sellowiana. They were characterized using 40 samples. The expected and observed heterozygosities ranged from 0.513 to 0.913 and from 0.200 to 0.889, respectively. These are the first microsatellite loci characterized from A. sellowiana that will contribute to improve researches on the genetic conservation, characterization and breeding. Journal compilation © 2008 Blackwell Publishing Ltd. No claim to original US government works.

  18. Characterization of the potential impact of retention tank emptying on wastewater primary treatment: a new element for CSO management.

    Science.gov (United States)

    Maruejouls, T; Lessard, P; Wipliez, B; Pelletier, G; Vanrolleghem, P A

    2011-01-01

    Theoretical studies have shown that discharges from retention tanks could have a negative impact on the WWTP's (Wastewater Treatment Plant) effluent. Characterization of such discharges is necessary to better understand these impacts. This study aims at: (1) characterizing water quality during emptying of a tank; and (2) characterizing the temporal variation of settling velocities of the waters released to the WWTP. Two full-scale sampling campaigns (18 rain events) have been realized in Quebec City and laboratory analyses have shown a wide variability of total suspended solids (TSS) and Chemical Oxygen Demand (COD) concentrations in the water released from the tank. Suspended solids seem to settle quickly because they are only found in large amounts during the first 15 min of pumping to the WWTP. These solids are hypothesized to come from the pumping in which solids remained after a previous event. When these solids are evacuated, low TSS containing waters are pumped from the retention tank. A second concentration peak occurs at the end of the emptying period when the tank is cleaned with wash water. Finally, settling velocity studies allowed characterizing combined sewer wastewaters by separating three main fractions of pollutants which correspond to the beginning, middle and end of emptying. In most cases, it is noticed that particle settling velocities increase as the pollutant load increases.

  19. Characterization of the system MoS2 + C, HAADF vs Tem conventional

    International Nuclear Information System (INIS)

    Reza, C.; Cruz, G.; Santiago, P.; Rendon, L.

    2004-01-01

    A study is presented about the synthesis and characterization of unidimensional nano systems composed of MoS 2 and C with potential use as solid lubricant. The synthesis process was developed for the mold method, via thermal decomposition, which uses a film of nano porous aluminium oxide. Such systems were characterized by two analysis methods that involve Transmission Electron Microscopy, HRTEM (Conventional TEM) and HAADF (Z Contrast). The results obtained in the structural and morphological characterization were supplemented to determine the structure type obtained in the unidimensional systems. (Author)

  20. Optimization and characterization of liposome formulation by mixture design.

    Science.gov (United States)

    Maherani, Behnoush; Arab-tehrany, Elmira; Kheirolomoom, Azadeh; Reshetov, Vadzim; Stebe, Marie José; Linder, Michel

    2012-02-07

    This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((¬)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.

  1. Yucca Mountain Site Characterization Project exploratory studies facilities construction status

    International Nuclear Information System (INIS)

    Allan, J.N.; Leonard, T.M.

    1993-01-01

    This paper discusses the progress to date on the construction planning and development of the Yucca Mountain Site Characterization Project (YMP) Exploratory Studies Facilities (ESF). The purpose of the ESF is to determine early site suitability and to characterize the subsurface of the Yucca Mountain site to assess its suitability for a potential high level nuclear waste repository. The present ESF configuration concept is for two main ramps to be excavated by tunnel boring machines (TBM) from the surface to the Topopah Spring Member of the Paintbrush Tuff Formation. From the main ramps, slightly above Topopah Spring level, supplemental ramps will be penetrated to the Calico Hills formation below the potential repository. There will be exploratory development drifts driven on both levels with the Main Test Area being located on the Topopah Spring level, which is the level of the proposed repository. The Calico Hills formation lies below the Topopah Spring member and is expected to provide the main geo-hydrologic barrier between the potential repository and the underlying saturated zones in the Crater Flat Tuff

  2. Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization.

    Science.gov (United States)

    Wang, Kaifa; Wang, Baolin

    2018-03-26

    Determining the electric potential in a bent piezoelectric nanowire (NW) is a fundamental issue of nanogenerators and nanopiezotronics. The combined influence of the flexoelectric effect, the semiconducting performance and the angle of atomic force microscope (AFM) tip has never been studied previously and will be investigated in this paper. The exact solution for the electric potential of a bent piezoelectric semiconductor NW is derived. The electric potential of the present model with consideration of flexoelectric effect varies along the length of the NW and is different from that of the classical piezoelectric model. Flexoelectric effect enhances but the semiconducting performance reduces the electric potential of the NW. In addition, it is found that if the angle of the AFM tip reaches 30 degrees, the error of the electric potential obtained from the model ignored the effect of the angle of the AFM tip is almost 16%, which is unacceptable. © 2018 IOP Publishing Ltd.

  3. Long-term effect of set potential on biocathodes in microbial fuel cells: electrochemical and phylogenetic characterization.

    Science.gov (United States)

    Xia, Xue; Sun, Yanmei; Liang, Peng; Huang, Xia

    2012-09-01

    The long-term effect of set potential on oxygen reducing biocathodes was investigated in terms of electrochemical and biological characteristics. Three biocathodes were poised at 200, 60 and -100 mV vs. saturated calomel electrode (SCE) for 110 days, including the first 17 days for startup. Electrochemical analyses showed that 60 mV was the optimum potential during long-term operation. The performance of all the biocathodes kept increasing after startup, suggesting a period longer than startup time needed to make potential regulation more effective. The inherent characteristics without oxygen transfer limitation were studied. Different from short-term regulation, the amounts of biomass were similar while the specific electrochemical activity was significantly influenced by potential. Moreover, potential showed a strong selection for cathode bacteria. Clones 98% similar with an uncultured Bacteroidetes bacterium clone CG84 accounted for 75% to 80% of the sequences on the biocathodes that showed higher electrochemical activity (60 and -100 mV). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Density of states in an optical speckle potential

    International Nuclear Information System (INIS)

    Falco, G. M.; Fedorenko, A. A.; Giacomelli, J.; Modugno, M.

    2010-01-01

    We study the single-particle density of states of a one-dimensional speckle potential, which is correlated and non-Gaussian. We consider both the repulsive and the attractive cases. The system is controlled by a single dimensionless parameter determined by the mass of the particle, the correlation length, and the average intensity of the field. Depending on the value of this parameter, the system exhibits different regimes, characterized by the localization properties of the eigenfunctions. We calculate the corresponding density of states using the statistical properties of the speckle potential. We find good agreement with the results of numerical simulations.

  5. Heat Stress in Tunisia: Effects on dairy cows and potential means ...

    African Journals Online (AJOL)

    Heat Stress in Tunisia: Effects on dairy cows and potential means. ... The objectives of this work were to characterize the environmental conditions to which Holstein ... Maintaining cow performance under hot conditions requires the adoption of ...

  6. Hydrogen utilization potential in subsurface sediments

    Directory of Open Access Journals (Sweden)

    Rishi Ram Adhikari

    2016-01-01

    Full Text Available Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material.We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i increasing importance of fermentation in successively deeper biogeochemical zones and (ii adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones.

  7. Structural characterization of Bacillus licheniformis Dahb1 exopolysaccharide-antimicrobial potential and larvicidal activity on malaria and Zika virus mosquito vectors.

    Science.gov (United States)

    Abinaya, Muthukumar; Vaseeharan, Baskaralingam; Divya, Mani; Vijayakumar, Sekar; Govindarajan, Marimuthu; Alharbi, Naiyf S; Khaled, Jamal M; Al-Anbr, Mohammed N; Benelli, Giovanni

    2018-04-27

    Microbial polysaccharides produced by marine species play a key role in food and cosmetic industry, as they are nontoxic and biodegradable polymers. This investigation reports the isolation of exopolysaccharide from Bacillus licheniformis Dahb1 and its biomedical applications. Bacillus licheniformis Dahb1 exopolysaccharide (Bl-EPS) was extracted using the ethanol precipitation method and structurally characterized. FTIR and 1 H-NMR pointed out the presence of various functional groups and primary aromatic compounds, respectively. Bl-EPS exhibited strong antioxidant potential confirmed via DPPH radical, reducing power and superoxide anion scavenging assays. Microscopic analysis revealed that the antibiofilm activity of Bl-EPS (75 μg/ml) was higher against Gram-negative (Pseudomonas aeruginosa and Proteus vulgaris) bacteria over Gram-positive species (Bacillus subtilis and Bacillus pumilus). Bl-EPS led to biofilm inhibition against Candida albicans when tested at 75 μg/ml. The hemolytic assay showed low cytotoxicity of Bl-EPS at 5 mg/ml. Besides, Bl-EPS achieved LC 50 values < 80 μg/ml against larvae of mosquito vectors Anopheles stephensi and Aedes aegypti. Overall, our findings pointed out the multipurpose bioactivity of Bl-EPS, which deserves further consideration for pharmaceutical, environmental and entomological applications.

  8. Structural, morphological, and optical characterizations of Mo, CrN and Mo:CrN sputtered coatings for potential solar selective applications

    Science.gov (United States)

    Ibrahim, Khalil; Mahbubur Rahman, M.; Taha, Hatem; Mohammadpour, Ehsan; Zhou, Zhifeng; Yin, Chun-Yang; Nikoloski, Aleksandar; Jiang, Zhong-Tao

    2018-05-01

    Mo, CrN, and Mo:CrN sputtered coatings synthesized onto silicon Si(100) substrates were investigated as solar selective surfaces and their potential applications in optical devices. These coatings were characterized using XRD, SEM, UV-vis, and FTIR techniques. XRD investigation, showed a change in CrN thin film crystallite characteristic due to Mo doping. Compared to the CrN coating, the Mo:CrN film has a higher lattice parameter and lower grain size of 4.19 nm and 106.18 nm, respectively. FESEM morphology confirmed the decrement in Mo:CrN crystal size due to Mo doping. Optical analysis showed that in the visible range of the solar spectrum, the CrN coatings exhibit the highest solar absorptance of 66% while the lowest thermal emittance value of 5.67 was recorded for the CrN coating doped with Mo. Consequently, the highest solar selectivity of 9.6, and the energy band-gap of 2.88 eV were achieved with the Mo-doped CrN coatings. Various optical coefficients such as optical absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constants, and energy loss functions of these coatings were also estimated from the optical reflectance data recorded in the wavelength range of 190-2300 nm.

  9. Potential of laser-induced breakdown spectroscopy for discrimination of nano-sized carbon materials. Insights on the optical characterization of graphene

    Science.gov (United States)

    Serrano, J.; Cabalín, L. M.; Moros, J.; Laserna, J. J.

    2014-07-01

    Since its invention in 2004, graphene has attracted considerable interest worldwide. Advances in the use of graphene in materials science and engineering require important increases in the quality of the final product for integration in photonic and electronic devices. To meet this demand, which will become increasingly strict in the future, analytical techniques capable of differentiating between the starting materials and graphene need to be developed. The interest in the use of laser-induced breakdown spectroscopy (LIBS) for this application rests on the rapid progress experienced by this technology for identification of carbon-based materials of close chemical composition. The potential of LIBS has been explored here by a careful investigation of the spectral properties of both multi-layer and few-layer graphene, graphite and graphene oxide. Results reveal significant differences in the specific optical emission responses of these materials, expressly reflected on the behavior of CN and C2 molecular emissions. These differences result from the particularities of the materials, such as the number of carbon layers and the carbon hybridization in the bonding structure, together with the post-ablation evolution of the concerned plasma plume. In short, this interconnection between ablation and emission events generated from each material allows its characterization and its differentiation from other materials with highly similar chemical composition.

  10. Selection and Characterization of Potential Baker's Yeast from Indigenous Resources of Nepal.

    Science.gov (United States)

    Karki, Tika B; Timilsina, Parash Mani; Yadav, Archana; Pandey, Gyanu Raj; Joshi, Yogesh; Bhujel, Sahansila; Adhikari, Rojina; Neupane, Katyayanee

    2017-01-01

    The study aims to isolate the yeast strains that could be used effectively as baker's yeast and compare them with the commercial baker's yeast available in the market of Nepal. A total of 10 samples including locally available sources like fruits, Murcha, and a local tree "Dar" were collected from different localities of Bhaktapur, Kavre, and Syangja districts of Nepal, respectively. Following enrichment and fermentation of the samples, 26 yeast strains were isolated using selective medium Wallerstein Laboratory Nutrient Agar. From the differential tests which included morphological and microscopic observation and physiological and biochemical characterization such as nitrate reduction and lactose utilization tests, 8 strains were selected as possible Saccharomyces strain. The selected strains were further assessed for their efficient leavening ability by tests such as ethanol tolerance, osmotolerance, invertase test, and stress exclusion test. The three most potent strains ENG, MUR3B, and SUG1 isolated from grape, Murcha, and sugarcane, respectively, were used in the fermentation and baking of dough. These strains also carried a possibility of being used as industrial baker's yeast.

  11. Synthesis, and Characterization, and Evaluation of Cellular Effects of the FOL-PEG-g-PEI-GAL Nanoparticles as a Potential Non-Viral Vector for Gene Delivery

    International Nuclear Information System (INIS)

    Ghiamkazemi, S.; Amanzadeh, A.; Dinarvand, R.; Rafiee-Tehrani, M.; Amini, M.; Ghiamkazemi, S.; Dinarvand, R.; Rafiee-Tehrani, M.; Ghiamkazemi, S.; Rafiee-Tehrani, M.; Amanzadeh, A.; Rafiee-Tehrani, M.

    2010-01-01

    In this manuscript, we synthesized the potential non viral vector for gene delivery with proper transfection efficiency and low cytotoxicity. Polyethylenimine (PEI) is a well-known cationic polymer which has high positive surface charge for condensing plasmid DNA. However; it is highly cytotoxic in many cell lines because of the high surface charge, non-biodegradability and non-biocompatibility. To enhance PEI biodegradability, the graft copolymer PEG-g-PEI was synthesized. To target cancer liver cells, two targeting ligands folic acid and galactose (lactobionic acid) which are over expressed on human hepatocyte carcinoma were attached to graft copolymer and FOL-PEG-g-PEI-GAL copolymer was synthesized. Composition of this grafted copolymer was characterized using 1H-NMR and FTIR spectra. The molecular weight and zeta potential of this copolymer was compared to PEI. The particle size and zeta potential of FOL-PEG-g-PEI-GAL/DNA complexes at various N/P ratio were measured using dynamic light scattering (DLS). Cytotoxicity of the copolymer was also studied in cultured HepG2 human hepatoblastoma cell line. The FOL-PEG-g-PEI-GAL/DNA complexes at various N/P ratios exhibited no cytotoxicity in HepG2 cell line compared to PEI 25K as a control. The novel copolymer showed enhanced biodegradability in physiological conditions in compared with PEI and targeted cultured HepG2 cells. More importantly, significant transfection efficiency was exhibited in cancer liver cells. Together, our results showed that FOL-PEG-g-PEI-GAL nanoparticles could be considered as a useful non-viral vector for targeted gene delivery.

  12. Strategies towards an optimized use of the shallow geothermal potential

    Science.gov (United States)

    Schelenz, S.; Firmbach, L.; Kalbacher, T.; Goerke, U.; Kolditz, O.; Dietrich, P.; Vienken, T.

    2013-12-01

    Thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies, e.g. in the course of German energy transition, with application shifting from isolated to intensive use. The planning and dimensioning of (geo-)thermal applications is strongly influenced by the availability of exploration data. Hence, reliable site-specific dimensioning of systems for the thermal use of the shallow subsurface will contribute to an increase in resource efficiency, cost reduction during installation and operation, as well as reduction of environmental impacts and prevention of resource over-exploitation. Despite large cumulative investments that are being made for the utilization of the shallow thermal potential, thermal energy is in many cases exploited without prior on-site exploration and investigation of the local geothermal potential, due to the lack of adequate and cost-efficient exploration techniques. We will present new strategies for an optimized utilization of urban thermal potential, showcased at a currently developed residential neighborhood with high demand for shallow geothermal applications, based on a) enhanced site characterization and b) simulation of different site specific application scenarios. For enhanced site characterization, surface geophysics and vertical high resolution direct push-profiling were combined for reliable determination of aquifer structure and aquifer parameterization. Based on the site characterization, different site specific geothermal application scenarios, including different system types and system configurations, were simulated using OpenGeoSys to guarantee an environmental and economic sustainable thermal use of the shallow subsurface.

  13. CHARACTERIZATION QUALITATIVE OF SOEL FOR A VALORIZATION BEST OF THE BIOMASS PRODUCED

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-03-01

    Full Text Available The main objective of this study was to qualitatively characterize biomass of Solanum elaeagnifolium Cav. (or SOEL to highlight the essential alternatives its valorization. At first, we studied the potential of composting biomass of this plant. The physico-chemical characterization of biomass silverleaf nightshade has detected a wealth in organic carbon, which highlighted the potential value of this plant in the Co-composting with other biodegradable waste. In a second step, we assessed the possibility to develop this plant in the area of treatment in textile effluents by biosorption of dyes on fibers from the biomass of this plant, especially after the discovery of high levels of cellulose in its different organs.

  14. CHARACTERIZATION QUALITATIVE OF SOEL FOR A VALORIZATION BEST OF THE BIOMASS PRODUCED

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-01-01

    Full Text Available The main objective of this study was to qualitatively characterize biomass of Solanum elaeagnifolium Cav. (or SOEL to highlight the essential alternatives its valorization. At first, we studied the potential of composting biomass of this plant. The physico-chemical characterization of biomass silverleaf nightshade has detected a wealth in organic carbon, which highlighted the potential value of this plant in the Co-composting with other biodegradable waste. In a second step, we assessed the possibility to develop this plant in the area of treatment in textile effluents by biosorption of dyes on fibers from the biomass of this plant, especially after the discovery of high levels of cellulose in its different organs.

  15. Gulf of Mexico miocene CO₂ site characterization mega transect

    Energy Technology Data Exchange (ETDEWEB)

    Meckel, Timothy [Univ. of Austin, Austin, TX (United Staes); Trevino, Ramon [Univ. of Austin, Austin, TX (United Staes)

    2014-12-01

    This project characterized the Miocene-age sub-seafloor stratigraphy in the near-offshore portion of the Gulf of Mexico adjacent to the Texas coast. The large number of industrial sources of carbon dioxide (CO₂) in coastal counties and the high density of onshore urbanization and environmentally sensitive areas make this offshore region extremely attractive for long-term storage of carbon dioxide emissions from industrial sources (CCS). The study leverages dense existing geologic data from decades of hydrocarbon exploration in and around the study area to characterize the regional geology for suitability and storage capacity. Primary products of the study include: regional static storage capacity estimates, sequestration “leads” and prospects with associated dynamic capacity estimates, experimental studies of CO₂-brine-rock interaction, best practices for site characterization, a large-format ‘Atlas’ of sequestration for the study area, and characterization of potential fluid migration pathways for reducing storage risks utilizing novel high-resolution 3D (HR3D) seismic surveys. In addition, three subcontracted studies address source-to-sink matching optimization, offshore well bore management and environmental aspects. The various geologic data and interpretations are integrated and summarized in a series of cross-sections and maps, which represent a primary resource for any near-term commercial deployment of CCS in the area. The regional study characterized and mapped important geologic features (e.g., Clemente-Tomas fault zone, the regionally extensive Marginulina A and Amphistegina B confining systems, etc.) that provided an important context for regional static capacity estimates and specific sequestration prospects of the study. A static capacity estimate of the majority of the Study area (14,467 mi2) was estimated at 86 metric Gigatonnes. While local capacity estimates are likely to be lower due to reservoir-scale characteristics, the

  16. Characterization of the inclusion complex ropivacaine: β-cyclodextrin

    International Nuclear Information System (INIS)

    Fraceto, Leonardo Fernandes; Moraes, Carolina Morales; Araujo, Daniele Ribeiro de; Zanella, Luciana; Paula, Eneida de; Pertinhez, Thelma de Aguiar

    2007-01-01

    Ropivacaine (RVC) is a widely used local anesthetic. The complexation of RVC with β-cyclodextrin (β-CD) is of great interest for the development of more efficient local anesthetic formulations. The present work focuses on the characterization of the RVC:β-CD complex by nuclear magnetic resonance (NMR). The stoichiometry of the complex is 1:2 RVC:β-CD. DOSY-NMR shows that the association constant is 55.5 M -1 . Longitudinal relaxation time results show that RVC changes its mobility in the presence of β-CD. This study is focused on the physicochemical characterization of inclusion complexes that are potentials options for pain treatment. (author)

  17. Characterization of core/shell Cu/Ag nanopowders synthesized by electrochemistry and assessment of their impact on hemolysis, platelet aggregation, and coagulation on human blood for potential wound dressing use

    Science.gov (United States)

    Laloy, Julie; Haguet, Hélène; Alpan, Lutfiye; Mancier, Valérie; Mejia, Jorge; Levi, Samuel; Dogné, Jean-Michel; Lucas, Stéphane; Rousse, Céline; Fricoteaux, Patrick

    2017-08-01

    Copper/silver core/shell nanopowders with different metal ratio have been elaborated by electrochemistry (ultrasound-assisted electrolysis followed by a displacement reaction). Characterization was performed by several methods (X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, centrifugal liquid sedimentation, and zeta potential measurements). The mean diameter of all nanoparticles is around 10 nm. The impact of each nanopowder on hemolysis, platelet aggregation, and coagulation has been studied on whole human blood. Hemolysis assays were performed with spectrophotometric measurement and platelet aggregation, with light transmission aggregometry and was compared to Cu/Pt core/shell nanoparticles with similar size as negative control. Calibrated thrombin generation test has been used for a coagulation study. They neither impact platelet aggregation nor hemolysis and have a procoagulant effect whatever their composition (i.e., metal ratio). These results highlight that such nanopowders have a potential use in medical applications (e.g., wound dressing).

  18. Biomass characterization of Buddleja davidii: a potential feedstock for biofuel production.

    Science.gov (United States)

    Hallac, Bassem B; Sannigrahi, Poulomi; Pu, Yunqiao; Ray, Michael; Murphy, Richard J; Ragauskas, Arthur J

    2009-02-25

    A compositional analysis was performed on Buddleja davidii to determine its general biomass characteristics and provide detailed analysis of the chemical structures of its cellulose and lignin using NMR. B. davidii is a new potential lignocellulosic bioresource for producing bioethanol because it has several attractive agroenergy features. The biomass composition of B. davidii is 30% lignin, 35% cellulose, and 34% hemicellulose. Solid-state CP/MAS (13)C NMR showed that 33% of the cellulose is para-crystalline and 41% is at inaccessible surfaces. Both quantitative (13)C and (31)P NMR were used to examine the structure of lignin. The lignin was determined to be guaiacyl and syringyl with an h:g:s ratio of 0:81:19.

  19. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed

    Science.gov (United States)

    Biancarosa, Irene; Belghit, Ikram; Bruckner, Christian G; Liland, Nina S; Waagbø, Rune; Amlund, Heidi; Heesch, Svenja

    2018-01-01

    Abstract BACKGROUND In the past few years, much effort has been invested into developing a new blue economy based on harvesting, cultivating and processing marine macroalgae in Norway. Macroalgae have high potential for a wide range of applications, e.g. as source of pharmaceuticals, production of biofuels or as food and feed. However, data on the chemical composition of macroalgae from Norwegian waters are scant. This study was designed to characterize the chemical composition of 21 algal species. Both macro‐ and micronutrients were analysed. Concentrations of heavy metals and the metalloid arsenic in the algae were also quantified. RESULTS The results confirm that marine macroalgae contain nutrients which are relevant for both human and animal nutrition, the concentrations whereof are highly dependent on species. Although heavy metals and arsenic were detected in the algae studied, concentrations were mostly below maximum allowed levels set by food and feed legislation in the EU. CONCLUSION This study provides chemical data on a wide range of algal species covering the three taxonomic groups (brown, red and green algae) and discusses both benefits of and potential limitations to their use for food and feed purposes. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29193189

  20. Unsteady Extinction of Opposed Jet Ethylene/Methane HIFiRE Surrogate Fuel Mixtures vs Air

    Science.gov (United States)

    Vaden, Sarah N.; Debes, Rachel L.; Lash, E. Lara; Burk, Rachel S.; Boyd, C. Merritt; Wilson, Lloyd G.; Pellett, Gerald L.

    2009-01-01

    to inputs) in the oscillating flames, and caused maximum weakening. At 20 to 150 Hz, diffusion-rate-limited effects diminished, causing flames to "regain strengnth," and eventually become completely insensitive beyond 300 Hz. Detailed mechanistic understanding is needed. Overall, ethylene flames are remarkably resilient to dynamic extinction by oscillating inflows. They are the strongest, with the notable exception of H2. For HIFiRE tests, the 64%/36% surrogate disproportionally retains the high dynamic FS of ethylene, so the potential for loss of scramjet flameholding (flameout) due to low frequency oscillations is significantly mitigated.

  1. Identification and Characterization of Adult Porcine Muscle Stem Cells

    NARCIS (Netherlands)

    Wilschut, K.J.

    2009-01-01

    In the past decade, tissue-specific stem cell research has been emerging. Stem cells are characterized by a long-term expansion and a broad developmental potential in vitro. Pre-clinical studies appear promising, but still many limitations have to be overcome before broad therapeutic use of stem

  2. Derivation and characterization of monkey embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Wolf Don P

    2004-06-01

    Full Text Available Abstract Embryonic stem (ES cell based therapy carries great potential in the treatment of neurodegenerative diseases. However, before clinical application is realized, the safety, efficacy and feasibility of this therapeutic approach must be established in animal models. The rhesus macaque is physiologically and phylogenetically similar to the human, and therefore, is a clinically relevant animal model for biomedical research, especially that focused on neurodegenerative conditions. Undifferentiated monkey ES cells can be maintained in a pluripotent state for many passages, as characterized by a collective repertoire of markers representing embryonic cell surface molecules, enzymes and transcriptional factors. They can also be differentiated into lineage-specific phenotypes of all three embryonic germ layers by epigenetic protocols. For cell-based therapy, however, the quality of ES cells and their progeny must be ensured during the process of ES cell propagation and differentiation. While only a limited number of primate ES cell lines have been studied, it is likely that substantial inter-line variability exists. This implies that diverse ES cell lines may differ in developmental stages, lineage commitment, karyotypic normalcy, gene expression, or differentiation potential. These variables, inherited genetically and/or induced epigenetically, carry obvious complications to therapeutic applications. Our laboratory has characterized and isolated rhesus monkey ES cell lines from in vitro produced blastocysts. All tested cell lines carry the potential to form pluripotent embryoid bodies and nestin-positive progenitor cells. These ES cell progeny can be differentiated into phenotypes representing the endodermal, mesodermal and ectodermal lineages. This review article describes the derivation of monkey ES cell lines, characterization of the undifferentiated phenotype, and their differentiation into lineage-specific, particularly neural, phenotypes

  3. Polydimethylsiloxane films doped with NdFeB powder: magnetic characterization and potential applications in biomedical engineering and microrobotics.

    Science.gov (United States)

    Iacovacci, V; Lucarini, G; Innocenti, C; Comisso, N; Dario, P; Ricotti, L; Menciassi, A

    2015-12-01

    This work reports the fabrication, magnetic characterization and controlled navigation of film-shaped microrobots consisting of a polydimethylsiloxane-NdFeB powder composite material. The fabrication process relies on spin-coating deposition, powder orientation and permanent magnetization. Films with different powder concentrations (10 %, 30 %, 50 % and 70 % w/w) were fabricated and characterized in terms of magnetic properties and magnetic navigation performances (by exploiting an electromagnet-based platform). Standardized data are provided, thus enabling the exploitation of these composite materials in a wide range of applications, from MEMS/microrobot development to biomedical systems. Finally, the possibility to microfabricate free-standing polymeric structures and the biocompatibility of the proposed composite materials is demonstrated.

  4. Synthesis and characterization of castor oil-based polyurethane

    Indian Academy of Sciences (India)

    Polyurethane (PU) based on polyol, derived from castor oil has been synthesized and characterized for potential use as a base material for electrolytes. Transesterification process of castor oil formed a polyol with hydroxyl value of 190 mg KOH g–1 and molecular weight of 2786 g mol–1. The polyols together with 4 ...

  5. Yucca Mountain transportation routes: Preliminary characterization and risk analysis

    International Nuclear Information System (INIS)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-01-01

    In this study, rail and highway routes which may be used for shipments of high-level nuclear waste to a proposed repository at Yucca Mountain, Nevada are characterized. This characterization facilitates three types of impact analysis: comparative study, limited worst-case assessment, and more sophisticated probabilistic risk assessment techniques. Data for relative and absolute impact measures are provided to support comparisons of routes based on selected characteristics. A worst-case scenario assessment is included to determine potentially critical and most likely places for accidents or incidents to occur. The assessment facilitated by the data in this study is limited because impact measures are restricted to the identification of potential areas or persons affected. No attempt is made to quantify the magnitude of these impacts. Most likely locations for accidents to occur are determined relative to other locations within the scope of this study. Independent factors and historical trends used to identify these likely locations are only proxies for accident probability

  6. Fern extracts potentiate fluconazole activity and inhibit morphological changes in Candida species

    Directory of Open Access Journals (Sweden)

    Maria A. Freitas

    2017-11-01

    Conclusions: The extracts obtained from the fern species L. venustum and P. calomelanos dose not present significant antifungal activity. However, P. calomelanos potentiates the activity of fluconazole and both extracts inhibits the morphological changes in Candida species, indicating that they have potential pharmacological activity as modulators of fungal biology. Therefore, novel studies are required to characterize the interference of these extracts in the virulence and pathogenicity of Candida species as well as the potential of fern species to treat fungal infections.

  7. Photocatalytic semiconductors synthesis, characterization, and environmental applications

    CERN Document Server

    Hernández-Ramírez, Aracely

    2014-01-01

    This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.

  8. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  9. Techniques for physicochemical characterization of nanomaterials

    Science.gov (United States)

    Lin, Ping-Chang; Lin, Stephen; Wang, Paul C.; Sridhar, Rajagopalan

    2014-01-01

    Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics. PMID:24252561

  10. Characterization of TEMPO-oxidized bacterial cellulose

    International Nuclear Information System (INIS)

    Nascimento, Eligenes S.; Pereira, Andre L.S.; Lima, Helder L.; Barroso, Maria K. de A.; Barros, Matheus de O.; Morais, Joao P.S.; Borges, Maria de F.; Rosa, Morsyleide de F.

    2015-01-01

    The aim of this study was to characterize the TEMPO-oxidized bacterial cellulose, as a preliminary research for further application in nanocomposites. Bacterial cellulose (BC) was selectively oxidized at C-6 carbon by TEMPO radical. Oxidized bacterial cellulose (BCOX) was characterized by TGA, FTIR, XRD, and zeta potential. BCOX suspension was stable at pH 7.0, presented a crystallinity index of 83%, in spite of 92% of BC, because of decrease in the free hydroxyl number. FTIR spectra showed characteristic BC bands and, in addition, band of carboxylic group, proving the oxidation. BCOX DTG showed, in addition to characteristic BC thermal events, a maximum degradation peak at 233 °C, related to sodium anhydro-glucuronate groups formed during the cellulose oxidation. Thus, BC can be TEMPO-oxidized without great loss in its structure and properties. (author)

  11. Towards a Transferable UAV-Based Framework for River Hydromorphological Characterization.

    Science.gov (United States)

    Rivas Casado, Mónica; González, Rocío Ballesteros; Ortega, José Fernando; Leinster, Paul; Wright, Ros

    2017-09-26

    The multiple protocols that have been developed to characterize river hydromorphology, partly in response to legislative drivers such as the European Union Water Framework Directive (EU WFD), make the comparison of results obtained in different countries challenging. Recent studies have analyzed the comparability of existing methods, with remote sensing based approaches being proposed as a potential means of harmonizing hydromorphological characterization protocols. However, the resolution achieved by remote sensing products may not be sufficient to assess some of the key hydromorphological features that are required to allow an accurate characterization. Methodologies based on high resolution aerial photography taken from Unmanned Aerial Vehicles (UAVs) have been proposed by several authors as potential approaches to overcome these limitations. Here, we explore the applicability of an existing UAV based framework for hydromorphological characterization to three different fluvial settings representing some of the distinct ecoregions defined by the WFD geographical intercalibration groups (GIGs). The framework is based on the automated recognition of hydromorphological features via tested and validated Artificial Neural Networks (ANNs). Results show that the framework is transferable to the Central-Baltic and Mediterranean GIGs with accuracies in feature identification above 70%. Accuracies of 50% are achieved when the framework is implemented in the Very Large Rivers GIG. The framework successfully identified vegetation, deep water, shallow water, riffles, side bars and shadows for the majority of the reaches. However, further algorithm development is required to ensure a wider range of features (e.g., chutes, structures and erosion) are accurately identified. This study also highlights the need to develop an objective and fit for purpose hydromorphological characterization framework to be adopted within all EU member states to facilitate comparison of results.

  12. Characterization of granite waste for use in red ceramic

    International Nuclear Information System (INIS)

    Aguiar, M.C.; Monteiro, S.N.; Vieira, C.M.F.; Borlini, M.C.

    2011-01-01

    This work aims to study the characterization of the granite waste from the city of Santo Antonio de Padua-RJ for the use in red ceramic. The chemical, physical and morphological characterization of the waste was performed by chemical analysis, X-ray diffraction, particle size distribution, thermal analysis and scanning electron microscopy (SEM). The results indicated that this waste is a material with great potential to be used as a component of ceramic body due to its capacity to act as flux during the firing, and to improve the properties of the ceramic when is incorporate. (author)

  13. Characterizing time series: when Granger causality triggers complex networks

    Science.gov (United States)

    Ge, Tian; Cui, Yindong; Lin, Wei; Kurths, Jürgen; Liu, Chong

    2012-08-01

    In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIHMassachusetts Institute of Technology-Beth Israel Hospital. human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.

  14. Characterizing time series: when Granger causality triggers complex networks

    International Nuclear Information System (INIS)

    Ge Tian; Cui Yindong; Lin Wei; Liu Chong; Kurths, Jürgen

    2012-01-01

    In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIH human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length. (paper)

  15. Characterization of selected LDEF polymer matrix resin composite materials

    Science.gov (United States)

    Young, Philip R.; Slemp, Wayne S.; Witte, William G., Jr.; Shen, James Y.

    1991-01-01

    The characterization of selected graphite fiber reinforced epoxy (934 and 5208) and polysulfone (P1700) matrix resin composite materials which received 5 years and 10 months of exposure to the LEO environment on the Long Duration Exposure Facility is reported. Resin loss and a decrease in mechanical performance as well as dramatic visual effects were observed. However, chemical characterization including infrared, thermal, and selected solution property measurements showed that the molecular structure of the polymeric matrix had not changed significantly in response to this exposure. The potential effect of a silicon-containing molecular contamination of these specimens is addressed.

  16. Inversion of potential-field data for layers with uneven thickness

    OpenAIRE

    Caratori Tontini, F.; Cocchi, L.; Carmisciano, C.; Stefanelli, P.

    2008-01-01

    AB: Inversion of large-scale potential-field anomalies, aimed at determining density or magnetization, is usually made in the Fourier domain. The commonly adopted geometry is based on a layer of constant thickness, characterized by a bottom surface at a fixed distance from the top surface.....

  17. Characterizing heterogeneous cellular responses to perturbations.

    Science.gov (United States)

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-09

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  18. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  19. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    Energy Technology Data Exchange (ETDEWEB)

    Aponte, C.I.

    2000-02-17

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events.

  20. Dose potential of sludge contaminated and/or TRU contaminated waste in B-25s for tornado and straight wind events

    International Nuclear Information System (INIS)

    Aponte, C.I.

    2000-01-01

    F and H Tank Farms generate supernate and sludge contaminated Low-Level Waste. The waste is collected, characterized, and packaged for disposal. Before the waste can be disposed of, however, it must be properly characterized. Since the radionuclide distribution in typical supernate is well known, its characterization is relatively straight forward and requires minimal effort. Non-routine waste, including potentially sludge contaminated, requires much more effort to effectively characterize. The radionuclide distribution must be determined. In some cases the waste can be contaminated by various sludge transfers with unique radionuclide distributions. In these cases, the characterization can require an extensive effort. Even after an extensive characterization effort, the container must still be prepared for shipping. Therefore a significant amount of time may elapse from the time the waste is generated until the time of disposal. During the time it is possible for a tornado or high wind scenario to occur. The purpose of this report is to determine the effect of a tornado on potential sludge contaminated waste, or Transuranic (TRU) waste in B-25s [large storage containers], to evaluate the potential impact on F and H Tank Farms, and to help establish a B-25 control program for tornado events

  1. Wettability and ζ potentials of a series of methacrylate polymers and copolymers

    OpenAIRE

    Hogt, A.H.; Gregonis, D.E.; Andrade, J.D.; Kim, S.W.; Dankert, J.; Feijen, Jan

    1985-01-01

    Polymers and copolymers of different methacrylates were synthesized and coated on glass slides. The surfaces of the polymer films were characterized by their water contact angles and potentials using the Wilhelmy plate technique and streaming potential measurements, respectively. From contact-angle measurements information was also obtained about mobility of surface polymer chains. Receding contact angles of methyl methacrylate (MMA) copolymers containing hydrophilic or charged units were dec...

  2. Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils.

    Science.gov (United States)

    Deng, Zujun; Zhang, Renduo; Shi, Yang; Hu, Li'ao; Tan, Hongming; Cao, Lixiang

    2014-02-01

    The aim of this study was to characterize the features of a Cd-, Pb-, and Zn-resistant endophytic fungus Lasiodiplodia sp. MXSF31 and to investigate the potential of MXSF31 to remove metals from contaminated water and soils. The endophytic fungus was isolated from the stem of Portulaca oleracea growing in metal-contaminated soils. The maximum biosorption capacities of MXSF31 were 3.0 × 10(3), 1.1 × 10(4), and 1.3 × 10(4) mg kg(-1) for Cd, Pb, and Zn, respectively. The biosorption processes of Cd, Pb, and Zn by MXSF31 were well characterized with the pseudo-second-order kinetic model. The biosorption isotherm processes of Pb and Zn by the fungus were fitted better with the Langmuir model, while the biosorption processes of Cd was better fitted with the Freundlich model. The biosorption process of MXSF31 was attributed to the functional groups of hydroxyl, amino, carbonyl, and benzene ring on the cell wall. The active biomass of the strain removed more Cd, Pb, and Zn (4.6 × 10(4), 5.6 × 10(5), and 7.0 × 10(4) mg kg(-1), respectively) than the dead biomass. The inoculation of MXSF31 increased the biomass of rape (Brassica napus L.), the translocation factor of Cd, and the extraction amount of Cd by rape in the Cd+Pb-contaminated soils. The results indicated that the endophytic fungus strain had the potential to remove heavy metals from water and soils contaminated by multiple heavy metals, and plants accumulating multiple metals might harbor diverse fungi suitable for bioremediation of contaminated media.

  3. The potential role of open source software in overcoming digital poverty

    CSIR Research Space (South Africa)

    Kinyondo, J

    2012-09-01

    Full Text Available Developing countries, such as Tanzania, are characterized by digital poverty and a lack of information and communication technology (ICT) acceptance. The use of open source software (OSS) has been proposed as a potential strategy for addressing ICT...

  4. Evaluation of the environmental potential of the resources, soil, water, mineral and forests in the Cardique jurisdiction

    International Nuclear Information System (INIS)

    Velasquez Monsalve, Elkin; Viana Rios, Ricardo; Perez Ceron, Rosalbina

    1999-01-01

    The general objective of the study is to obtain a global vision of the potential of the soils, of the water, of the forests, of the construction materials and of the recharge areas of aquifer, as well as of the existent forests in the territory understood inside the Cardique jurisdiction to scale 1:100.000 with base in the existent secondary information and a general revision of field. The potential of the soils was determined to produce cultivations and to characterize this resource like basic element in the ecosystems operation. The hydrological and climatologically characterization was elaborated. It was determined with base in properties like the primary and secondary porosity of the rocks, the areas with potential of recharge of the aquifers. They were characterized and they evaluated the present forests in the Cardique jurisdiction, and some aspects of the structure and flora composition and their relationship were known with some physiographic elements; finally the areas were determined with possibility of use of construction materials

  5. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities*

    Energy Technology Data Exchange (ETDEWEB)

    Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov [Science and Research Staff, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993–0002 (United States); Cross, Kevin P. [Leadscope, Inc., 1393 Dublin Road, Columbus, OH, 43215–1084 (United States)

    2012-05-01

    Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describe the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive

  6. Preparation, characterization of silver phyto nanoparticles and their impact on growth potential of Lupinus termis L. seedlings

    Directory of Open Access Journals (Sweden)

    Asma A. Al-Huqail

    2018-02-01

    Full Text Available The current study reports rapid and easy method for synthesis of eco-friendly silver nanoparticles (AgNPs using Coriandrum sativum leaves extract as a reducing and covering agent. The bio-reductive synthesis of AgNPs was monitored using a scanning double beam UV-vis spectrophotometer. Transmission electron microscopy (TEM was used to characterize the morphology of AgNPs obtained from plant extracts. X-ray diffraction (XRD patterns of AgNPs indicate that the structure of AgNPs is the face centered cubic structure of metallic silver. The surface morphology and topography of the AgNPs were examined by scanning electron microscopy and the energy dispersive spectrum revealed the presence of elemental silver in the sample. The silver phyto nanoparticles were collected from plant extract and tested growth potential and metabolic pattern in (Lupinus termis L. seedlings upon exposure to different concentrations of AgNPs. The seedlings were exposed to various concentrations of (0, 0.1, 0.3 and 0.5 mg L−1 AgNPs for ten days. Significant reduction in shoot and root elongation, shoot and root fresh weights, total chlorophyll and total protein contents were observed under the higher concentrations of AgNPs. Exposure to 0.5 mg L−1 of AgNPs decreased sugar contents and caused significant foliar proline accumulation which considered as an indicator of the stressful effect of AgNPs on seedlings. AgNPs exposure resulted in a dose dependent decrease in different growth parameters and also caused metabolic disorders as evidenced by decreased carbohydrates and protein contents. Further studies needed to find out the efficacy, longevity and toxicity of AgNPs toward photosynthetic system and antioxidant parameters to improve the current investigation.

  7. Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities*

    International Nuclear Information System (INIS)

    Valerio, Luis G.; Cross, Kevin P.

    2012-01-01

    Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describe the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive performance.

  8. Characterizing recent and projecting future potential patterns of mountain pine beetle outbreaks in the Southern Rocky Mountains

    Science.gov (United States)

    Liang, Lu; Hawbaker, Todd J.; Chen, Yanlei; Zhu, Zhi-Liang; Gong, Peng

    2014-01-01

    The recent widespread mountain pine beetle (MPB) outbreak in the Southern Rocky Mountains presents an opportunity to investigate the relative influence of anthropogenic, biologic, and physical drivers that have shaped the spatiotemporal patterns of the outbreak. The aim of this study was to quantify the landscape-level drivers that explained the dynamic patterns of MPB mortality, and simulate areas with future potential MPB mortality under projected climate-change scenarios in Grand County, Colorado, USA. The outbreak patterns of MPB were characterized by analysis of a decade-long Landsat time-series stack, aided by automatic attribution of change detected by the Landsat-based Detection of Trends in Disturbance and Recovery algorithm (LandTrendr). The annual area of new MPB mortality was then related to a suite of anthropogenic, biologic, and physical predictor variables under a general linear model (GLM) framework. Data from years 2001–2005 were used to train the model and data from years 2006–2011 were retained for validation. After stepwise removal of non-significant predictors, the remaining predictors in the GLM indicated that neighborhood mortality, winter mean temperature anomaly, and residential housing density were positively associated with MPB mortality, whereas summer precipitation was negatively related. The final model had an average area under the curve (AUC) of a receiver operating characteristic plot value of 0.72 in predicting the annual area of new mortality for the independent validation years, and the mean deviation from the base maps in the MPB mortality areal estimates was around 5%. The extent of MPB mortality will likely expand under two climate-change scenarios (RCP 4.5 and 8.5) in Grand County, which implies that the impacts of MPB outbreaks on vegetation composition and structure, and ecosystem functioning are likely to increase in the future.

  9. Characterization of lacunar defects by positrons annihilation

    CERN Document Server

    Barthe, M F; Blondiaux, G

    2003-01-01

    Among the nondestructive methods for the study of matter, the positrons annihilation method allows to sound the electronic structure of materials by measuring the annihilation characteristics. These characteristics depend on the electronic density as seen by the positon, and on the electron momentums distribution which annihilate with the positon. The positon is sensible to the coulombian potential variations inside a material and sounds preferentially the regions away from nuclei which represent potential wells. The lacunar-type defects (lack of nuclei) represent deep potential wells which can trap the positon up to temperatures close to the melting. This article describes the principles of this method and its application to the characterization of lacunar defects: 1 - positrons: matter probes (annihilation of electron-positon pairs, annihilation characteristics, positrons sources); 2 - positrons interactions in solids (implantation profiles, annihilation states, diffusion and trapping, positon lifetime spec...

  10. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    International Nuclear Information System (INIS)

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult

  11. Physico-Chemical Characterizations of Sawdust-Derived Bio char as Potential Solid Fuels

    International Nuclear Information System (INIS)

    Wan Azlina Wan Ab Karim Ghani

    2014-01-01

    Characterization Malaysian rubber-wood sawdust derived bio char (MRWSB) produced in the fixed bed pyrolysis under different temperatures (450 to 850 degree Celsius) were studied for its applicability as a solid fuel. A range of analyses were carried out, including bio char oxidation reactivity , inorganic species, oxygen and hydrogen contents in the bio chars, release of heteroatoms in bio char as the gaseous product, and bio char structural evolution during pyrolysis process. The results show that the optimum temperature for carbonization to obtain a char having moderately high yield was found as 450 degree Celsius. Thermogravimetric analyses (TG) shows that temperatures induces a progressively more ordered carbonaceous structure and leads to a significant changes in the bio char reactivity. The process is coupled with the loss of heteroatoms, released as dominantly carbon dioxide (C0 2 ) and carbon dioxide (CO). In addition, the elemental study of wood-derived bio char shows the higher carbon content but with low H/C and 0/C ratio suggested this material was dominated by highly aromatic structures and this were revealed in the Fourier transform infra-red (FTIR). More importantly, insignificant amount of inorganic species is evidenced in the samples. (author)

  12. Characterization of Uranium Tolerance and Biomineralization Potential of Caulobacter crescentus

    Science.gov (United States)

    Park, D.

    2015-12-01

    Due to its high toxicity and mobility, U(VI) poses a major environmental threat to ecosystems. The ubiquitous aerobic bacterium Caulobacter cresecentus is an attractive candidate for U(VI) bioremediation because of its ability to survive in low-nutrient environments (5, 6), tolerate high U concentrations and mineralize U(VI) aerobically through the formation of uranyl phosphate (U-Pi) precipitates. Despite these attractive environmental properties, both a systems level understanding of the adaptive response pathways involved in U tolerance and the environmental conditions affecting the biomineralization process and stability of biogenic U-Pi minerals remain limited. By measuring changes in both mRNA and protein expression during exposure to high U levels, we have identified the core stress response pathways involved in U tolerance. Pathways associated with heat shock, lipospolysaccharide biosynthesis and transport, outer membrane lipoprotein transport and outermembrane assembly were highly induced at both the RNA and protein levels. Correspondingly, removal of integral components of proteolysis pathways including clpA, clpS and degP significantly reduced U tolerance under biomineralization conditions. Surprisingly, in contrast to many other heavy metals, U did not cause oxidative stress or DNA damage. Together, these analyses indicate that U predominately targets the outermembrane and causes mis-folding of both cytoplasmic and extracytoplasmic proteins. Efforts are currently underway to characterize the morphological and structural properties of biogenic U-Pi minerals and the environmental factors that influence their production and stability. Preliminary AFM studies suggest that U-Pi minerals formed under biomineralization conditions appear morphologically distinct from those formed abiotically between U(VI) and inorganic phosphate. Additionally, we observed that biomineralization tolerates a wide pH range (pH 6-9). Our long-range goal is the development of a

  13. Isolation of Pantoea ananatis from sugarcane and characterization of its potential for plant growth promotion.

    Science.gov (United States)

    da Silva, J F; Barbosa, R R; de Souza, A N; da Motta, O V; Teixeira, G N; Carvalho, V S; de Souza, A L S R; de Souza Filho, G A

    2015-11-30

    Each year, approximately 170 million metric tons of chemical fertilizer are consumed by global agriculture. Furthermore, some chemical fertilizers contain toxic by-products and their long-term use may contaminate groundwater, lakes, and rivers. The use of plant growth-promoting bacteria may be a cost-effective strategy for partially replacing conventional chemical fertilizers, and may become an integrated plant nutrient solution for sustainable crop production. The main direct bacteria-activated mechanisms of plant growth promotion are based on improvement of nutrient acquisition, siderophore biosynthesis, nitrogen fixation, and hormonal stimulation. The aim of this study was to isolate and identify bacteria with growth-promoting activities from sugarcane. We extracted the bacterial isolate SCB4789F-1 from sugarcane leaves and characterized it with regard to its profile of growth-promoting activities, including its ability to colonize Arabidopsis thaliana. Based on its biochemical characteristics and 16S rDNA sequence analysis, this isolate was identified as Pantoea ananatis. The bacteria were efficient at phosphate and zinc solubilization, and production of siderophores and indole-3-acetic acid in vitro. The isolate was characterized by Gram staining, resistance to antibiotics, and use of carbon sources. This is the first report on zinc solubilization in vitro by this bacterium, and on plant growth promotion following its inoculation into A. thaliana. The beneficial effects to plants of this bacterium justify future analysis of inoculation of economically relevant crops.

  14. Characterization of Novel PI3Kδ Inhibitors as Potential Therapeutics for SLE and Lupus Nephritis in Pre-Clinical Studies.

    Science.gov (United States)

    Haselmayer, Philipp; Camps, Montserrat; Muzerelle, Mathilde; El Bawab, Samer; Waltzinger, Caroline; Bruns, Lisa; Abla, Nada; Polokoff, Mark A; Jond-Necand, Carole; Gaudet, Marilène; Benoit, Audrey; Bertschy Meier, Dominique; Martin, Catherine; Gretener, Denise; Lombardi, Maria Stella; Grenningloh, Roland; Ladel, Christoph; Petersen, Jørgen Søberg; Gaillard, Pascale; Ji, Hong

    2014-01-01

    SLE is a complex autoimmune inflammatory disease characterized by pathogenic autoantibody production as a consequence of uncontrolled T-B cell activity and immune-complex deposition in various organs, including kidney, leading to tissue damage and function loss. There is a high unmet need for better treatment options other than corticosteroids and immunosuppressants. Phosphoinositol-3 kinase δ (PI3Kδ) is a promising target in this respect as it is essential in mediating B- and T-cell function in mouse and human. We report the identification of selective PI3Kδ inhibitors that blocked B-, T-, and plasmacytoid dendritic cell activities in human peripheral blood and in primary cell co-cultures (BioMAP(®)) without detecting signs of undesired toxicity. In an IFNα-accelerated mouse SLE model, our PI3Kδ inhibitors blocked nephritis development, whether administered at the onset of autoantibody appearance or the onset of proteinuria. Disease amelioration correlated with normalized immune cell numbers in the spleen, reduced immune-complex deposition as well as reduced inflammation, fibrosis, and tissue damage in the kidney. Improvements were similar to those achieved with a frequently prescribed drug for lupus nephritis, the potent immunosuppressant mycophenolate mofetil. Finally, we established a pharmacodynamics/pharmacokinetic/efficacy model that revealed that a sustained PI3Kδ inhibition of 50% is sufficient to achieve full efficacy in our disease model. These data demonstrate the therapeutic potential of PI3Kδ inhibitors in SLE and lupus nephritis.

  15. Marine bacterial transparent exopolymer particles (TEP) and TEP precursors: Characterization and RO fouling potential

    KAUST Repository

    Li, Sheng; Winters, Harvey; Jeong, Sanghyun; Emwas, Abdul-Hamid M.; Vigneswaran, Saravanamuthu; Amy, Gary L.

    2015-01-01

    This paper investigated the characteristics and membrane fouling potential of bacterial transparent exopolymer particles (TEP)/TEP precursors released from two marine bacteria, Pseudidiomarina homiensis (P. homiensis) and Pseudoalteromonas atlantica

  16. Fuel characterization requirements for cofiring biomass in coal-fired boilers

    International Nuclear Information System (INIS)

    Prinzing, D.E.; Tillman, D.A.; Harding, N.S.

    1993-01-01

    The cofiring of biofuels with coal in existing boilers, or the cofiring of biofuels in combined cycle combustion turbine (CCCT) systems presents significant potential benefits to utilities, including reductions in SO 2 and NO x emissions as a function of reducing the mass flow of sulfur and nitrogen to the boiler, reducing CO 2 emissions from the combustion of fossil fuels; potentially reducing fuel costs both by the availability of wood residues and by the fact that biofuels are exempt from the proposed BTU tax; and providing support to industrial customers from the forest products industry. At the same time, cofiring requires careful attention to the characterization of the wood and coal, both singly and in combination. This paper reviews characterization requirements associated with cofiring biofuels and fossil fuels in boilers and CCCT installations with particular attention not only to such concerns as sulfur, nitrogen, moisture, and Btu content, but also to such issues as total ash content, base/acid ratio of the wood ash and the coal ash, alkali metal content in the wood ash and wood fuel (including converted fuels such as low Btu gas or pyrolytic oil), slagging and fouling indices, ash fusion temperature, and trace metal contents in the wood and coal. The importance of each parameter is reviewed, along with potential consequences of a failure to adequately characterize these parameters. The consequences of these parameters are reviewed with attention to firing biofuels with coal in pulverized coal (PC) and cyclone boilers, and firing biofuels with natural gas in CCCT installations

  17. Chromatographic Characterization and GC-MS Evaluation of the Bioactive Constituents with Antimicrobial Potential from the Pigmented Ink of Loligo duvauceli

    OpenAIRE

    Girija, Smiline; Duraipandiyan, Veeramuthu; Kuppusamy, Pandi Suba; Gajendran, Hariprasad; Rajagopal, Raghuraman

    2014-01-01

    Chromatographic characterization and the GC-MS evaluation of the black pigmented ink of Loligo duvauceli in the present study have yielded an array of bioactive compounds with potent antimicrobial property. Facing an alarm of antimicrobial resistance globally, a need for elucidating antimicrobial agents from natural sources will be the need for the hour. In this view, this study is aimed at characterizing the black pigmented ink of the Indian squid L. duvauceli. The squid ink was subjected to...

  18. Action potentials in retinal ganglion cells are initiated at the site of maximal curvature of the extracellular potential.

    Science.gov (United States)

    Eickenscheidt, Max; Zeck, Günther

    2014-06-01

    The initiation of an action potential by extracellular stimulation occurs after local depolarization of the neuronal membrane above threshold. Although the technique shows remarkable clinical success, the site of action and the relevant stimulation parameters are not completely understood. Here we identify the site of action potential initiation in rabbit retinal ganglion cells (RGCs) interfaced to an array of extracellular capacitive stimulation electrodes. We determine which feature of the extracellular potential governs action potential initiation by simultaneous stimulation and recording RGCs interfaced in epiretinal configuration. Stimulation electrodes were combined to areas of different size and were presented at different positions with respect to the RGC. Based on stimulation by electrodes beneath the RGC soma and simultaneous sub-millisecond latency measurement we infer axonal initiation at the site of maximal curvature of the extracellular potential. Stimulation by electrodes at different positions along the axon reveals a nearly constant threshold current density except for a narrow region close to the cell soma. These findings are explained by the concept of the activating function modified to consider a region of lower excitability close to the cell soma. We present a framework how to estimate the site of action potential initiation and the stimulus required to cross threshold in neurons tightly interfaced to capacitive stimulation electrodes. Our results underscore the necessity of rigorous electrical characterization of the stimulation electrodes and of the interfaced neural tissue.

  19. Streaming potential near a rotating porous disk.

    Science.gov (United States)

    Prieve, Dennis C; Sides, Paul J

    2014-09-23

    Theory and experimental results for the streaming potential measured in the vicinity of a rotating porous disk-shaped sample are described. Rotation of the sample on its axis draws liquid into its face and casts it from the periphery. Advection within the sample engenders streaming current and streaming potential that are proportional to the zeta potential and the disk's major dimensions. When Darcy's law applies, the streaming potential is proportional to the square of the rotation at low rate but becomes invariant with rotation at high rate. The streaming potential is invariant with the sample's permeability at low rate and is proportional to the inverse square of the permeability at high rate. These predictions were tested by determining the zeta potential and permeability of the loop side of Velcro, a sample otherwise difficult to characterize; reasonable values of -56 mV for zeta and 8.7 × 10(-9) m(2) for the permeability were obtained. This approach offers the ability to determine both the zeta potential and the permeability of materials having open structures. Compressing them into a porous plug is unnecessary. As part of the development of the theory, a convenient formula for a flow-weighted volume-averaged space-charge density of the porous medium, -εζ/k, was obtained, where ε is the permittivity, ζ is the zeta potential, and k is the Darcy permeability. The formula is correct when Smoluchowski's equation and Darcy's law are both valid.

  20. Determination of Importance Evaluation for the ESF Enhanced Characterization of the Repository Block Cross Drift

    International Nuclear Information System (INIS)

    S. Goodin

    2002-01-01

    The objective of this DIE is to determine whether the ECRB-Cross-Drift-related activities, as identified in Section 6.0, could potentially impact (1) Yucca Mountain Site Characterization Project (YMP) testing or (2) the waste isolation capabilities of a potential repository at the Yucca Mountain site. Any controls necessary to limit such potential impacts are also identified herein

  1. Characterizing the thermal effects of High Energy Arc Faults

    Energy Technology Data Exchange (ETDEWEB)

    Putorti, Anthony; Bareham, Scott; Praydis, Joseph Jr. [National Institute of Standards and Technology (NIST), Gaithersburg, MD (United States); Melly, Nicholas B. [U.S. Nuclear Regulatory Commission (NRC), Washington, DC (United States)

    2015-12-15

    International and domestic operating experience involving High Energy Arc Faults (HEAF) in Nuclear Power Plant (NPP) electrical power systems have demonstrated the potential to cause extensive damage to electrical components and distribution systems along with damage to adjacent equipment and cables. An international study by the Committee on the Safety of Nuclear Installations (CSNI) gOECD Fire Project. Topical Report No. 1: Analysis of High Energy Arcing Fault (HEAF) Fire Events h published June 25, 2013 [1], illustrates that HEAF events have the potential to be major risk contributors with significant safety consequences and substantial economic loss. In an effort to better understand and characterize the threats posed by HEAF related phenomena, an international project has been chartered; the Joint Analysis of Arc Faults (Joan of ARC) OECD International Testing Program for High Energy Arc Faults. One of the major challenges of this research is how to properly measure and characterize the risk and influence of these events. Methods are being developed to characterize relevant parameters such as; temperature, heat flux, and heat release rate of fires resulting from HEAF events. Full scale experiments are being performed at low (≤ 1000 V) and medium (≤ 35 kV) voltages in electrical components. This paper introduces the methods being developed to measure thermal effects and discusses preliminary results of full scale HEAF experiments.

  2. Novel biosynthesis of Ag-hydroxyapatite: Structural and spectroscopic characterization

    Directory of Open Access Journals (Sweden)

    Álvaro de Jesús Ruíz-Baltazar

    2018-06-01

    Full Text Available Silver-doped hydroxyapatite (Ag-HAP was obtained by green synthesis route. The dopant silver nanoparticles (AgNPs were obtained by biosynthesis based on Melissa officinalis extract. This research is focused on the characterization and the use of the nontoxic and environment-friendly Ag-HAP nanocomposite. The structural and morphological characterization of Ag-HAP nanocomposite was carried out by scanning electron microscopy (SEM, X-ray diffraction, Fourier-transform infrared (FT-IR and Raman spectroscopy. The obtained nanoparticles exhibited a great interaction with the HAP matrix, performing an Ag-HAP nanocomposite. Changes in the structure of the Ag-HAP nanocomposite were corroborated by the different characterization techniques. Additionally, a homogeneous distribution of the AgNPs on the HAP structure was observed. The heterogeneous nucleation process employed to doping the HAP, offer a functional route to obtain a green composite with potentials applications in multiple fields, such as tissue engineering, bone repair as well as protein. These properties can be evaluated in subsequent studies. Keywords: Green synthesis, Ag nanoparticles, Hydroxyapatite, Structural characterization, Spectroscopy

  3. Measurement and characterization techniques for thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Tritt, T M

    1997-07-01

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  4. Estimations of the extent of migration of surficially applied water for various surface conditions near the potential repository perimeter

    International Nuclear Information System (INIS)

    Sobolik, S.R.; Fewell, M.E.

    1993-12-01

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to support the design of site characterization activities so to have minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. Two examples of site characterization activities are the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and surface-based testing activities, which may require borehole drilling, excavation of test pits, and road watering for dust control. The information in this report pertains to two-dimensional numerical calculations modeling the movement of surficially applied water and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing recommendations for two Yucca Mountain Site Characterization Project documents: Appendix I of the Exploratory Studies Facility Design Requirements document, and the Surface-Based Testing Field Requirements Document

  5. Residual stress characterization of welds using x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Pineault, J.A.; Brauss, M.E.

    1996-01-01

    Neglect of residual stresses created during processes lead to stress corrosion cracking, distortion, fatigue cracking, premature failures in components, and instances of over design. Automated residual stress mapping and truly portable equipment have now made the characterization of residual stresses using x-ray diffraction (XRI) practical. The nondestructive nature of the x-ray diffraction technique has made the tile residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. This paper illustrates the importance of residual stress characterization in welds and presents examples where x-ray diffraction techniques were applied in the characterization of various kinds of welds. arc welds, TIG welds, resistance welds, laser welds and electron beam welds. Numerous techniques are available to help manage potentially harmfull residual stresses created during the welding process thus, the effects of a few example post weld processes such as grinding, heat treating and shot peening are also addressed

  6. The melt-growth and characterization of cadmium telluride

    International Nuclear Information System (INIS)

    Mullin, J.B.; Straughan, B.W.

    1977-01-01

    Developments in the melt-growth of CdTe are reviewed particularly with respect to techniques for controlling the dissociation pressure. The potential merits of Pressure Balancing are considered together with the results of a preliminary LEC growth investigation. The characterization, dislocations, precipitates, impurities and impurity defects-together with a discussion on their origin, and experience and suggestions for their elimination or control

  7. Mound facility physical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tonne, W.R.; Alexander, B.M.; Cage, M.R.; Hase, E.H.; Schmidt, M.J.; Schneider, J.E.; Slusher, W.; Todd, J.E.

    1993-12-01

    The purpose of this report is to provide a baseline physical characterization of Mound`s facilities as of September 1993. The baseline characterizations are to be used in the development of long-term future use strategy development for the Mound site. This document describes the current missions and alternative future use scenarios for each building. Current mission descriptions cover facility capabilities, physical resources required to support operations, current safety envelope and current status of facilities. Future use scenarios identify potential alternative future uses, facility modifications required for likely use, facility modifications of other uses, changes to safety envelope for the likely use, cleanup criteria for each future use scenario, and disposition of surplus equipment. This Introductory Chapter includes an Executive Summary that contains narrative on the Functional Unit Material Condition, Current Facility Status, Listing of Buildings, Space Plans, Summary of Maintenance Program and Repair Backlog, Environmental Restoration, and Decontamination and Decommissioning Programs. Under Section B, Site Description, is a brief listing of the Site PS Development, as well as Current Utility Sources. Section C contains Site Assumptions. A Maintenance Program Overview, as well as Current Deficiencies, is contained within the Maintenance Program Chapter.

  8. Characterization of the bacterial community in shower water before and after chlorination

    KAUST Repository

    Peters, Marjolein C. F. M.

    2017-12-22

    Bathers release bacteria in swimming pool water, but little is known about the fate of these bacteria and potential risks they might cause. Therefore, shower water was characterized and subjected to chlorination to identify the more chlorine-resistant bacteria that might survive in a chlorinated swimming pool and therefore could form a potential health risk. The total community before and after chlorination (1 mg Cl2 L−1 for 30 s) was characterized. More than 99% of the bacteria in the shower water were Gram-negative. The dominant bacterial families with a relative abundance of ≥10% of the total (non-chlorinated and chlorinated) communities were Flavobacteriaceae (24–21%), Xanthomonadaceae (23–24%), Moraxellaceae (12–11%) and Pseudomonadaceae (10–22%). The relative abundance of Pseudomonadaceae increased after chlorination and increased even more with longer contact times at 1 mg Cl2L−1. Therefore, Pseudomonadaceae were suggested to be relatively more chlorine resistant than the other identified bacteria. To determine which bacteria could survive chlorination causing a potential health risk, the relative abundance of the intact cell community was characterized before and after chlorination. The dominant bacterial families in the intact community (non-chlorinated and chlorinated) were Xanthomonadaceae (21–17%) and Moraxellaceae (48–57%). Moraxellaceae were therefore more chlorine resistant than the other identified intact bacteria present.

  9. Preparation and Characterization of Potentially Antimicrobial Polymer Films Containing Starch Nano- and Microparticles

    Directory of Open Access Journals (Sweden)

    Paulius Pavelas DANILOVAS

    2014-09-01

    Full Text Available The forming conditions of biodegradable polymer films containing iodine-modified starch particles as well as the properties of the obtained films were investigated. Cationic cross-linked starch microparticles and cationic starch nanoparticles were dispersed in cellulose acetate and hydroxyethyl cellulose solution, respectively, and composite films were spin-casted. The obtained films were characterized and their mechanical properties were assessed. The cellulose acetate solution has been found to be an appropriate matrix for the dispersion of dry modified starch microparticles, but not in the case of nanoparticles. Starch nanoparticles were obtained in an aqueous medium, and the mechanical properties of the formed cellulose acetate films are significantly reduced by water present in the casting solution. It has been estimated that a fairly high amount of nanoparticles (18 wt% can be immobilized into films of water-soluble hydroxyethyl cellulose without markedly affecting the mechanical properties of the films. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.5426

  10. Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed.

    Science.gov (United States)

    Biancarosa, Irene; Belghit, Ikram; Bruckner, Christian G; Liland, Nina S; Waagbø, Rune; Amlund, Heidi; Heesch, Svenja; Lock, Erik-Jan

    2018-03-01

    In the past few years, much effort has been invested into developing a new blue economy based on harvesting, cultivating and processing marine macroalgae in Norway. Macroalgae have high potential for a wide range of applications, e.g. as source of pharmaceuticals, production of biofuels or as food and feed. However, data on the chemical composition of macroalgae from Norwegian waters are scant. This study was designed to characterize the chemical composition of 21 algal species. Both macro- and micronutrients were analysed. Concentrations of heavy metals and the metalloid arsenic in the algae were also quantified. The results confirm that marine macroalgae contain nutrients which are relevant for both human and animal nutrition, the concentrations whereof are highly dependent on species. Although heavy metals and arsenic were detected in the algae studied, concentrations were mostly below maximum allowed levels set by food and feed legislation in the EU. This study provides chemical data on a wide range of algal species covering the three taxonomic groups (brown, red and green algae) and discusses both benefits of and potential limitations to their use for food and feed purposes. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  11. Molecular and biochemical characterization of Iranian surfactin-producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gloeosporioides.

    Science.gov (United States)

    Mohammadipour, Matin; Mousivand, Maryam; Salehi Jouzani, Gholamreza; Abbasalizadeh, Saeed

    2009-04-01

    The characterization of surfactin-producing Bacillus subtilis isolates collected from different ecological zones of Iran is presented. Characterization was performed using blood agar, PCR, drop-collapse, and reverse-phase high-performance liquid chromatography (HPLC) analyses, and the isolates' biocontrol effects against the aflatoxin-producing agent Aspergillus flavus and the citrus antracnosis agent Colletotrichum gloeosporioides were studied. In total, 290 B. subtilis isolates were isolated from phylosphere and rhizosphere samples collected from fields and gardens of 5 provinces of Iran. Blood agar assays showed that 185 isolates produced different biosurfactants. Isolates containing the sfp gene, coding for surfactin, were detected using the PCR method. It was found that 14 different isolates contained the sfp gene. Drop-collapse assays, which detect isolates with high production of surfactin, showed that 7 isolates produced high levels of surfactin. It was found from HPLC analysis that the isolates containin the sfp gene produced between 55 and 1610 mg of surfactin per litre of broth medium. Four isolates, named BS119m, BS116l, N3dn, and BS113c, produced more than 1000 mg of surfactin per litre of broth. The highest surfactin production level was observed for isolate BS119m (1610 mg/L). The antagonistic potential of the sfp gene-containing isolates was determined using dual culture and chloroform vapour methods. Our bioassay results indicated that isolate BS119m showed high inhibitory effects against A. flavus (100%) and C. gloeosporioides (88%). Furthermore, the effect of purified surfactin on the growth of A. flavus was evaluated. Mycelia growth was considerably reduced with increasing concentration of surfactin, and 36%, 54%, 84%, and 100% inhibitions of mycelia growth were, respectively, observed at 20, 40, 80, and 160 mg/L after 7 days of incubation.

  12. Characterization of particle morphology of biochanin A molecularly imprinted polymers and their properties as a potential sorbent for solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowska, Anna M.; Poliwoda, Anna, E-mail: Anna.Poliwoda@uni.opole.pl; Wieczorek, Piotr P.

    2015-04-01

    Molecularly imprinted polymers (MIPs) with biochanin A as a template were obtained using a bulk polymerization with non-covalent imprinting approach. The polymers were prepared in acetonitrile as porogen, using ethylene glycol dimethacrylate (EDMA) as cross-linking agent. The synthesis, with an application of 1′,1′-azobis(cyclohexanecarbonitrile) (ACHN) as an initiator, has been performed thermally. During the synthesis process the effect of different functional monomers such as methacrylic acid (MAA), acrylamide (AA) and 4-vinylpyridine (4-VP) was investigated. The application of nitrogen sorption porosimetry, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) permitted the characterization and evaluation of synthesized polymers. The adsorption capacity of obtained MIPs was checked by using the binding testing. All synthesized polymers were evaluated as solid-phase extraction (SPE) sorbents for isolation and preconcentration of biochanin A and its analogues, daidzein and genistein. The MIPs exhibited higher affinity for biochanin A over competitive compounds. - Highlights: • The molecularly imprinted polymers with biochanin A as a template were synthesized. • The surface of synthesized monoliths was formed mainly from mesopores (73–77%). • Biochanin A was effectively concentrated in each of the synthesized polymers (recovery > 89.8%). • The results show potential ability of synthesized MIPs in analysis of phytoestrogens in real samples.

  13. Asymptotic properties of solvable PT-symmetric potentials

    International Nuclear Information System (INIS)

    Levai, G.

    2010-01-01

    Compete text of publication follows. The introduction of PT-symmetric quantum mechanics generated renewed interest in non-hermitian quantum mechanical systems in the past decade. PT symmetry means the invariance of a Hamiltonian under the simultaneous P space and T time reflection, the latter understood as complex conjugation. Considering the Schroedinger equation in one dimension, this corresponds to a potential with even real and odd imaginary components. This implies a delicate balance of emissive and absorptive regions that eventually manifests itself in properties that typically characterize real potentials, i.e. hermitian systems. These include partly or fully real energy spectrum and conserved (pseudo-)norm. A particularly notable feature of these systems is the spontaneous breakdown of PT symmetry, which typically occurs when the magnitude of the imaginary potential component exceeds a certain limit. At this point the real energy eigenvalues begin to merge pairwise and re-emerge as complex conjugate pairs. Another unusual property of PT-symmetric potentials is that they can, or sometimes have to be defined off the real x axis on trajectories that are symmetric with respect to the imaginary x axis. After more than a decade of theoretical investigations a remarkable recent development was the experimental verification of the existence of PT-symmetric systems in nature and the occurrence of spontaneous PT symmetry breaking in them. The experimental setup was a waveguide containing regions where loss and gain of flux occurred in a set out prescribed by PT symmetry. These experimental developments require the study of PT -symmetric potentials with various asymptotics, in which, furthermore, the complex potential component is finite in its range and/or its magnitude. Having in mind that PT symmetry allows for a wider variety of asymptotic properties than hermeticity, we studied three exactly solvable PT-symmetric potentials and compared their scattering and bound

  14. Proteomics-Based Characterization of the Humoral Immune Response in Sporotrichosis: Toward Discovery of Potential Diagnostic and Vaccine Antigens.

    Science.gov (United States)

    Rodrigues, Anderson Messias; Fernandes, Geisa Ferreira; Araujo, Leticia Mendes; Della Terra, Paula Portella; dos Santos, Priscila Oliveira; Pereira, Sandro Antonio; Schubach, Tânia Maria Pacheco; Burger, Eva; Lopes-Bezerra, Leila Maria; de Camargo, Zoilo Pires

    2015-01-01

    Sporothrix schenckii and associated species are agents of human and animal sporotrichosis that cause large sapronoses and zoonoses worldwide. Epidemiological surveillance has highlighted an overwhelming occurrence of the highly pathogenic fungus Sporothrix brasiliensis during feline outbreaks, leading to massive transmissions to humans. Early diagnosis of feline sporotrichosis by demonstrating the presence of a surrogate marker of infection can have a key role for selecting appropriate disease control measures and minimizing zoonotic transmission to humans. We explored the presence and diversity of serum antibodies (IgG) specific against Sporothrix antigens in cats with sporotrichosis and evaluated the utility of these antibodies for serodiagnosis. Antigen profiling included protein extracts from the closest known relatives S. brasiliensis and S. schenckii. Enzyme-linked immunosorbent assays and immunoblotting enabled us to characterize the major antigens of feline sporotrichosis from sera from cats with sporotrichosis (n = 49), healthy cats (n = 19), and cats with other diseases (n = 20). Enzyme-linked immunosorbent assay-based quantitation of anti-Sporothrix IgG exhibited high sensitivity and specificity in cats with sporotrichosis (area under the curve, 1.0; 95% confidence interval, 0.94-1; Psporotrichosis. Two-dimensional immunoblotting revealed six IgG-reactive isoforms of gp60 in the S. brasiliensis proteome, similar to the humoral response found in human sporotrichosis. A convergent IgG-response in various hosts (mice, cats, and humans) has important implications for our understanding of the coevolution of Sporothrix and its warm-blooded hosts. We propose that 3-carboxymuconate cyclase has potential for the serological diagnosis of sporotrichosis and as target for the development of an effective multi-species vaccine against sporotrichosis in animals and humans.

  15. Proteomic analysis of PBMCs: characterization of potential HIV-associated proteins

    Directory of Open Access Journals (Sweden)

    Yin Lin

    2010-03-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 pandemic has continued unabated for nearly 30 years. To better understand the influence of virus on host cells, we performed the differential proteome research of peripheral blood mononuclear cells (PBMCs from HIV-positive patients and healthy controls. Results 26 protein spots with more than 1.5-fold difference were detected in two dimensional electrophoresis (2DE gels. 12 unique up-regulated and one down-regulated proteins were identified in HIV-positive patients compared with healthy donors. The mRNA expression of 10 genes was analyzed by real time RT-PCR. It shows that the mRNA expression of talin-1, vinculin and coronin-1C were up-regulated in HIV positive patients and consistent with protein expression. Western blotting analysis confirmed the induction of fragments of vinculin, talin-1 and filamin-A in pooled and most part of individual HIV-positive clinical samples. Bioinformatic analysis showed that a wide host protein network was disrupted in HIV-positive patients. Conclusions Together, this work provided useful information to facilitate further investigation of the underlying mechanism of HIV and host cell protein interactions, and discovered novel potential biomarkers such as fragment of vinculin, filamin-A and talin-1 for anti-HIV research.

  16. Characterization of Biosurfactant Produced by Bacillus licheniformis TT42 Having Potential for Enhanced Oil Recovery.

    Science.gov (United States)

    Suthar, Harish; Nerurkar, Anuradha

    2016-09-01

    Bacillus licheniformis TT42 produced a low-molecular weight anionic biosurfactant that reduced the surface tension of water from 72 to 27 mN/m and the interfacial tension from 12 to 0.05 mN/m against crude oil. We have earlier reported significant enhancement in oil recovery in laboratory sand pack columns and core flood studies, by biosurfactant-TT42 compared to standard strain, Bacillus mojavensis JF2. In the context of this application of the biosurfactant-TT42, its characterization was deemed important. In the preliminary studies, the biosurfactant-TT42 was found to be functionally stable at under conditions of temperature, pH, and salinity generally prevalent in oil reservoirs. Furthermore, the purified biosurfactant-TT42 was found to have a CMC of 22 mg/l. A newly developed activity staining TLC method was used for the purification of biosurfactant-TT42. Structural characterization of biosurfactant-TT42 using TLC, Fourier transform infrared spectroscopy (FTIR), GC-MS, and matrix-assisted laser desorption ionization time of flight (MALDI-TOF)/TOF suggested that it was a mixture of lipopeptide species, all having a common hydrophilic cyclic heptapeptide head with the sequence, Gln-Leu/Ileu-Leu/Ileu-Val-Asp-Leu/Ileu-Leu/Ileu linked to hydrophobic tails of different lengths of 3β-OH-fatty acids bearing 1043, 1057 and 1071 Da molecular weight, where 3β-OH-C19 fatty acid was predominant. This is the longest chain length of fatty acids reported in a lipopeptide.

  17. Characterization and evaluation of residue 'grits' of the cellulose industry

    International Nuclear Information System (INIS)

    Destefani, A.Z.; Santos, M.M.; Holanda, J.N.F.

    2010-01-01

    The cellulose industry generates huge amounts of solid waste residue called 'grits'. These wastes have been willing over time in landfills near the mills. However, this type of disposal is not environmentally friendly and can cause degradation and environmental pollution. In addition, environmental legislation increasingly severe and the high costs of landfill have led the search for new alternatives for final disposition of this abundant waste. In this context, this study is to characterize waste grits, generated by the cellulose industry in the region of Aracruz-ES. The residue samples were characterized in terms of chemical composition, X-ray diffraction, particle size distribution and thermal analysis (DTA and TGA). The characterization of the residual 'grits' demonstrated its potential as a feedstock for production of soil-cement bricks. (author)

  18. Monitoring Genetic and Metabolic Potential for In-Site Bioremediation: Mass Spectrometry

    International Nuclear Information System (INIS)

    Buchanan, M.V.

    2000-01-01

    A number of DOE sites are contaminated with mixtures of dense non-aqueous phase liquids (DNAPLs) such as carbon tetrachloride, chloroform, perchloroethylene, and trichloroethylene. At many of these sites, in situ microbial bioremediation is an attractive strategy for cleanup, since it has the potential to degrade DNAPLs in situ without the need for pump-and-treat or soil removal procedures, and without producing toxic byproducts. A rapid screening method to determine broad range metabolic and genetic potential for contaminant degradation would greatly reduce the cost and time involved in assessment for in situ bioremediation, as well as for monitoring ongoing bioremediation treatment. The objective of this project was the development of mass-spectrometry-based methods to screen for genetic potential for both assessment and monitoring of in situ bioremediation of DNAPLs. These methods were designed to provide more robust and routine methods for DNA-based characterization of the genetic potential of subsurface microbes for degrading pollutants. Specifically, we sought to (1) Develop gene probes that yield information equivalent to conventional probes, but in a smaller size that is more amenable to mass spectrometric detection, (2) Pursue improvements to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) methodology in order to allow its more general application to gene probe detection, and (3) Increase the throughput of microbial characterization by integrating gene probe preparation, purification, and MALDI-MS analysis

  19. Construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, A-type integral and beyond

    Science.gov (United States)

    Zhou, Peijie; Li, Tiejun

    2016-03-01

    Motivated by the famous Waddington's epigenetic landscape metaphor in developmental biology, biophysicists and applied mathematicians made different proposals to construct the landscape for multi-stable complex systems. We aim to summarize and elucidate the relationships among these theories from a mathematical point of view. We systematically investigate and compare three different but closely related realizations in the recent literature: the Wang's potential landscape theory from steady state distribution of stochastic differential equations (SDEs), the Freidlin-Wentzell quasi-potential from the large deviation theory, and the construction through SDE decomposition and A-type integral. We revisit that the quasi-potential is the zero noise limit of the potential landscape, and the potential function in the third proposal coincides with the quasi-potential. We compare the difference between local and global quasi-potential through the viewpoint of exchange of limit order for time and noise amplitude. We argue that local quasi-potentials are responsible for getting transition rates between neighboring stable states, while the global quasi-potential mainly characterizes the residence time of the states as the system reaches stationarity. The difference between these two is prominent when the transitivity property is broken. The most probable transition path by minimizing the Onsager-Machlup or Freidlin-Wentzell action functional is also discussed. As a consequence of the established connections among different proposals, we arrive at the novel result which guarantees the existence of SDE decomposition while denies its uniqueness in general cases. It is, therefore, clarified that the A-type integral is more appropriate to be applied to the decomposed SDEs rather than its primitive form as believed by previous researchers. Our results contribute to a deeper understanding of landscape theories for biological systems.

  20. Construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, A-type integral and beyond

    International Nuclear Information System (INIS)

    Zhou, Peijie; Li, Tiejun

    2016-01-01

    Motivated by the famous Waddington’s epigenetic landscape metaphor in developmental biology, biophysicists and applied mathematicians made different proposals to construct the landscape for multi-stable complex systems. We aim to summarize and elucidate the relationships among these theories from a mathematical point of view. We systematically investigate and compare three different but closely related realizations in the recent literature: the Wang’s potential landscape theory from steady state distribution of stochastic differential equations (SDEs), the Freidlin-Wentzell quasi-potential from the large deviation theory, and the construction through SDE decomposition and A-type integral. We revisit that the quasi-potential is the zero noise limit of the potential landscape, and the potential function in the third proposal coincides with the quasi-potential. We compare the difference between local and global quasi-potential through the viewpoint of exchange of limit order for time and noise amplitude. We argue that local quasi-potentials are responsible for getting transition rates between neighboring stable states, while the global quasi-potential mainly characterizes the residence time of the states as the system reaches stationarity. The difference between these two is prominent when the transitivity property is broken. The most probable transition path by minimizing the Onsager-Machlup or Freidlin-Wentzell action functional is also discussed. As a consequence of the established connections among different proposals, we arrive at the novel result which guarantees the existence of SDE decomposition while denies its uniqueness in general cases. It is, therefore, clarified that the A-type integral is more appropriate to be applied to the decomposed SDEs rather than its primitive form as believed by previous researchers. Our results contribute to a deeper understanding of landscape theories for biological systems.

  1. Construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, A-type integral and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Peijie, E-mail: cliffzhou@pku.edu.cn; Li, Tiejun, E-mail: tieli@pku.edu.cn [LMAM and School of Mathematical Sciences, Peking University, Beijing 100871 (China)

    2016-03-07

    Motivated by the famous Waddington’s epigenetic landscape metaphor in developmental biology, biophysicists and applied mathematicians made different proposals to construct the landscape for multi-stable complex systems. We aim to summarize and elucidate the relationships among these theories from a mathematical point of view. We systematically investigate and compare three different but closely related realizations in the recent literature: the Wang’s potential landscape theory from steady state distribution of stochastic differential equations (SDEs), the Freidlin-Wentzell quasi-potential from the large deviation theory, and the construction through SDE decomposition and A-type integral. We revisit that the quasi-potential is the zero noise limit of the potential landscape, and the potential function in the third proposal coincides with the quasi-potential. We compare the difference between local and global quasi-potential through the viewpoint of exchange of limit order for time and noise amplitude. We argue that local quasi-potentials are responsible for getting transition rates between neighboring stable states, while the global quasi-potential mainly characterizes the residence time of the states as the system reaches stationarity. The difference between these two is prominent when the transitivity property is broken. The most probable transition path by minimizing the Onsager-Machlup or Freidlin-Wentzell action functional is also discussed. As a consequence of the established connections among different proposals, we arrive at the novel result which guarantees the existence of SDE decomposition while denies its uniqueness in general cases. It is, therefore, clarified that the A-type integral is more appropriate to be applied to the decomposed SDEs rather than its primitive form as believed by previous researchers. Our results contribute to a deeper understanding of landscape theories for biological systems.

  2. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  3. Solution of Schroedinger Equation for Two-Dimensional Complex Quartic Potentials

    International Nuclear Information System (INIS)

    Singh, Ram Mehar; Chand, Fakir; Mishra, S. C.

    2009-01-01

    We investigate the quasi-exact solutions of the Schroedinger wave equation for two-dimensional non-hermitian complex Hamiltonian systems within the frame work of an extended complex phase space characterized by x = x 1 + ip 3 , y = x 2 + ip 4 , p x = p 1 + ix 3 , p y = p 2 + ix 4 . Explicit expressions of the energy eigenvalues and the eigenfunctions for ground and first excited states for a complex quartic potential are obtained. Eigenvalue spectra of some variants of the complex quartic potential, including PT-symmetric one, are also worked out. (general)

  4. Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites.

    Science.gov (United States)

    Djordjevic, Aleksandar; Ignjatovic, Nenad; Seke, Mariana; Jovic, Danica; Uskokovic, Dragan; Rakocevic, Zlatko

    2015-02-01

    Fullerenols are polyhydroxylated, water soluble derivatives of fullerene C60, with potential application in medicine as diagnostic agents, antioxidants or nano drug carriers. This paper describes synthesis and physical characterization of a new nanocomposite hydroxyapatite/fullerenol. Surface of the nanocomposite hydroxyapatite/fullerenol is inhomogeneous with the diameter of the particles in the range from 100 nm to 350 nm. The ζ potential of this nanocomposite is ten times lower when compared to hydroxyapatite. Surface phosphate groups of hydroxyapatite are prone to forming hydrogen bonds, when in close contact with hydroxyl groups, which could lead to formation of hydrogen bonds between hydroxyapatite and hydroxyl groups of fullerenol. The surface of hydroxyapatite particles (-2.5 mV) was modified by fullerenol particles, as confirmed by the obtained ζ potential value of the nanocomposite biomaterial hydroxyapatite/fullerenol (-25.0 mV). Keywords: Hydroxyapatite, Fullerenol, Nanocomposite, Surface Analysis.

  5. Characterization of Brucella abortus mutant strain Δ22915, a potential vaccine candidate.

    Science.gov (United States)

    Bao, Yanqing; Tian, Mingxing; Li, Peng; Liu, Jiameng; Ding, Chan; Yu, Shengqing

    2017-04-04

    Brucellosis, caused by Brucella spp., is an important zoonosis worldwide. Vaccination is an effective strategy for protection against Brucella infection in livestock in developing countries and in wildlife in developed countries. However, current vaccine strains including S19 and RB51 are pathogenic to humans and pregnant animals, limiting their use. In this study, we constructed the Brucella abortus (B. abortus) S2308 mutant strain Δ22915, in which the putative lytic transglycosylase gene BAB_RS22915 was deleted. The biological properties of mutant strain Δ22915 were characterized and protection of mice against virulent S2308 challenge was evaluated. The mutant strain Δ22915 showed reduced survival within RAW264.7 cells and survival in vivo in mice. In addition, the mutant strain Δ22915 failed to escape fusion with lysosomes within host cells, and caused no observable pathological damage. RNA-seq analysis indicated that four genes associated with amino acid/nucleotide transport and metabolism were significantly upregulated in mutant strain Δ22915. Furthermore, inoculation of ∆22915 at 10 5 colony forming units induced effective host immune responses and long-term protection of BALB/c mice. Therefore, mutant strain ∆22915 could be used as a novel vaccine candidate in the future to protect animals against B. abortus infection.

  6. Purification and characterization of enterocin 62-6, a two-peptide bacteriocin produced by a vaginal strain of Enterococcus faecium: Potential significance in bacterial vaginosis

    Science.gov (United States)

    Dezwaan, Diane C.; Mequio, Michael J.; Littell, Julia S.; Allen, Jonathan P.; Rossbach, Silvia; Pybus, Vivien

    2009-01-01

    A bacteriocin produced by a vaginal isolate of Enterococcus faecium strain 62-6, designated enterocin 62-6, was characterized following purification and DNA sequence analysis and compared to previously described bacteriocins. Enterocin 62-6 was isolated from brain heart infusion (BHI) culture supernatants using ammonium sulfate precipitation followed by elution from a Sepharose cation exchange column using a continuous salt gradient (0.1–0.7 M NaCl). SDS-PAGE of an active column fraction resulted in an electrophoretically pure protein, which corresponded to the growth inhibition of the sensitive Lactobacillus indicator strain in the gel overlay assay. Purified enterocin 62-6 was shown to be heat- and pH-stable, and sensitive to the proteolytic enzymes α-chymotrypsin and pepsin. Results from mass spectrometry suggested that it comprised two peptides of 5206 and 5219±1 Da, which was confirmed by DNA sequence analysis. The characteristics of enterocin 62-6 as a small, heat- and pH-stable, cationic, hydrophobic, two-peptide, plasmid-borne bacteriocin, with an inhibitory spectrum against a broad range of Gram-positive but not Gram-negative bacteria, were consistent with its classification as a class IIc bacteriocin. Furthermore, its wide spectrum of growth inhibitory activity against Gram-positive bacteria of vaginal origin including lactobacilli, and stability under the acidic conditions of the vagina, are consistent with our hypothesis that it could have potential significance in disrupting the ecology of the vaginal tract and pave the way for the establishment of the abnormal microbiota associated with the vaginal syndrome bacterial vaginosis. This is the first class IIc bacteriocin produced by a strain of E. faecium of vaginal origin to be characterized. PMID:19578555

  7. Analytical local electron-electron interaction model potentials for atoms

    International Nuclear Information System (INIS)

    Neugebauer, Johannes; Reiher, Markus; Hinze, Juergen

    2002-01-01

    Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the computational effort in electronic structure calculations. The development of such potentials has a long history, but some promising ideas have not yet been taken into account for further improvements. We determine a local electron-electron interaction potential akin to those suggested by Green et al. [Phys. Rev. 184, 1 (1969)], which are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calculations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent local potentials, because the origin behavior of such potentials is different for different shells as has been explicated analytically [J. Neugebauer, M. Reiher, and J. Hinze, Phys. Rev. A 65, 032518 (2002)]. It is found that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number of fit parameters. It turns out that the shell-dependent form of Green's potential, which we also derive, yields results of comparable accuracy using only one shell-dependent parameter

  8. OWL: A code for the two-center shell model with spherical Woods-Saxon potentials

    Science.gov (United States)

    Diaz-Torres, Alexis

    2018-03-01

    A Fortran-90 code for solving the two-center nuclear shell model problem is presented. The model is based on two spherical Woods-Saxon potentials and the potential separable expansion method. It describes the single-particle motion in low-energy nuclear collisions, and is useful for characterizing a broad range of phenomena from fusion to nuclear molecular structures.

  9. Microelectronics materials characterization studies at the Cornell TRIGA Reactor

    International Nuclear Information System (INIS)

    McGuire, Stephen C.

    1992-01-01

    The Cornell program of microelectronics materials characterization by neutron activation analysis (NAA) is described. Experimental details and results from the successful application of NAA to silicon germanium circuit structures and nickel silicide layers are presented. In doing so, the potential for using X rays from isotopes that decay by electron capture is demonstrated. (author)

  10. Experimental characterization of Raman overlaps between mode-groups

    DEFF Research Database (Denmark)

    Christensen, Erik Nicolai; Koefoed, Jacob Gade; Friis, Søren Michael Mørk

    2016-01-01

    Mode-division multiplexing has the potential to further increase data transmission capacity through optical fibers. In addition, distributed Raman amplification is a promising candidate for multi-mode signal amplification due to its desirable noise properties and the possibility of mode-equalized......Mode-division multiplexing has the potential to further increase data transmission capacity through optical fibers. In addition, distributed Raman amplification is a promising candidate for multi-mode signal amplification due to its desirable noise properties and the possibility of mode......-equalized gain. In this paper, we present an experimental characterization of the intermodal Raman intensity overlaps of a few-mode fiber using backward-pumped Raman amplification. By varying the input pump power and the degree of higher order mode-excitation for the pump and the signal in a 10km long two......-mode fiber, we are able to characterize all intermodal Raman intensity overlaps. Using these results, we perform a Raman amplification measurement and demonstrate a mode-differential gain of only 0.25dB per 10dB overall gain. This is, to the best of our knowledge, the lowest mode differential gain achieved...

  11. Opuntia spp.: Characterization and Benefits in Chronic Diseases.

    Science.gov (United States)

    Del Socorro Santos Díaz, María; Barba de la Rosa, Ana-Paulina; Héliès-Toussaint, Cécile; Guéraud, Françoise; Nègre-Salvayre, Anne

    2017-01-01

    Opuntia species have been used for centuries as food resources and in traditional folk medicine for their nutritional properties and their benefit in chronic diseases, particularly diabetes, obesity, cardiovascular diseases, and cancer. These plants are largely distributed in America, Africa, and the Mediterranean basin. Opuntia spp. have great economic potential because they grow in arid and desert areas, and O. ficus-indica , the domesticated O . species, is used as a nutritional and pharmaceutical agent in various dietary and value-added products. Though differences in the phytochemical composition exist between wild and domesticated ( O. ficus-indica ) Opuntia spp., all Opuntia vegetatives (pear, roots, cladodes, seeds, and juice) exhibit beneficial properties mainly resulting from their high content in antioxidants (flavonoids, ascorbate), pigments (carotenoids, betalains), and phenolic acids. Other phytochemical components (biopeptides, soluble fibers) have been characterized and contribute to the medicinal properties of Opuntia spp. The biological properties of Opuntia spp. have been investigated on cellular and animal models and in clinical trials in humans, allowing characterization and clarification of the protective effect of Opuntia -enriched diets in chronic diseases. This review is an update on the phytochemical composition and biological properties of Opuntia spp. and their potential interest in medicine.

  12. Characterization of Extruded Poly(lactic acid/Pecan Nutshell Biocomposites

    Directory of Open Access Journals (Sweden)

    C. R. Álvarez-Chávez

    2017-01-01

    Full Text Available Pecan nutshells are a solid form of waste obtained from the pecan nut production and they have been explored as an inexpensive filler for incorporation by melt blending into the poly(lactic acid (PLA matrix. The pecan nutshells contain polyphenols, proteins, tannins, sugars, and lipids; some of these components must be released in order to improve adhesion with a polymeric matrix. The physicochemical characterization of the extruded biocomposites of pecan nutshell powder (PNSP at 0, 5, and 7.5% wt. with two treatments (untreated and defatted into PLA is presented in this work. The incorporation of PNSP into the PLA matrix caused a variation in color and density and increased the water absorption. However, some mechanical and thermal parameters of the biocomposites showed a significant decrease. The morphological analysis showed good dispersion and adhesion of the PNSP to the PLA matrix. Based on the results of the characterization, biocomposites formulated with defatted PNSP have a potential to be used as sustainable fillers in PLA biocomposites. These biocomposites have a potential application as food containers, packaging trays, or disposable items.

  13. BNFL Report Glass Formers Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

  14. BNFL Report Glass Formers Characterization

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    2000-01-01

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling

  15. Streaming potential of superhydrophobic microchannels.

    Science.gov (United States)

    Park, Hung Mok; Kim, Damoa; Kim, Se Young

    2017-03-01

    For the purpose of gaining larger streaming potential, it has been suggested to employ superhydrophobic microchannels with a large velocity slip. There are two kinds of superhydrophobic surfaces, one having a smooth wall with a large Navier slip coefficient caused by the hydrophobicity of the wall material, and the other having a periodic array of no- shear slots of air pockets embedded in a nonslip wall. The electrokinetic flows over these two superhydrophobic surfaces are modelled using the Navier-Stokes equation and convection-diffusion equations of the ionic species. The Navier slip coefficient of the first kind surfaces and the no-shear slot ratio of the second kind surfaces are similar in the sense that the volumetric flow rate increases as these parameter values increase. However, although the streaming potential increases monotonically with respect to the Navier slip coefficient, it reaches a maximum and afterward decreases as the no-shear ratio increases. The results of the present investigation imply that the characterization of superhydrophobic surfaces employing only the measurement of volumetric flow rate against pressure drop is not appropriate and the fine structure of the superhydrophobic surfaces must be verified before predicting the streaming potential and electrokinetic flows accurately. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Gas Diffusivity-Based Design and Characterization of Greenhouse Growth Substrates

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Møldrup, Per; Tuller, Markus

    2013-01-01

    combinations thereof, are commonly used as growth media, detailed and comparable physical characterization is key to identify the best performing media. In this study, five potential growth media and two mixtures thereof were characterized based on soil gas diffusivity (Dp/Do, where Dp and Do are gas diffusion...... coefficients in soil air and free air, respectively) and an operationally defined critical window of diffusivity (CWD) representing the interval of air-filled porosity between critical air filled porosity where Dp/Do ≈ 0.02 and interaggregate porosity. The Dp measurements were conducted with 100-cm3 samples...

  17. Characterization of sugarcane bagasse ash for use in ceramic bodies

    Energy Technology Data Exchange (ETDEWEB)

    Faria, K.C.P.; Gurgel, R.F.; Holanda, J.N.F., E-mail: katiacpf@terra.com.br, E-mail: rfguenf2009@hotmail.com, E-mail: holanda@uenf.br [Universidade Estadual do Norte Fluminense (LAMAV/GMCer/UENF), Campos dos Goytacazes-RJ (Brazil)

    2009-07-01

    The objective of this work is to characterization of sugarcane bagasse ash waste aiming the use it in red ceramic industry. The characterization was done in terms of chemical composition, X-ray diffraction, particle size distribution, morphology, and plasticity. The results show that the cane bagasse ash waste is a non plastic material, which contains high content of silica and minor amounts of Al, Fe, Ca, Mg, and K oxides. Thus, the sugar cane bagasse ash waste presents high potential for application in the manufacture of ceramic products such as bricks, roofing tiles, and ceramic tiles. (author)

  18. Characterization of sugarcane bagasse ash for use in ceramic bodies

    International Nuclear Information System (INIS)

    Faria, K.C.P.; Gurgel, R.F.; Holanda, J.N.F.

    2009-01-01

    The objective of this work is to characterization of sugarcane bagasse ash waste aiming the use it in red ceramic industry. The characterization was done in terms of chemical composition, X-ray diffraction, particle size distribution, morphology, and plasticity. The results show that the cane bagasse ash waste is a non plastic material, which contains high content of silica and minor amounts of Al, Fe, Ca, Mg, and K oxides. Thus, the sugar cane bagasse ash waste presents high potential for application in the manufacture of ceramic products such as bricks, roofing tiles, and ceramic tiles. (author)

  19. Metalorganic chemical vapor deposition and characterization of ZnO materials

    Science.gov (United States)

    Sun, Shangzu; Tompa, Gary S.; Hoerman, Brent; Look, David C.; Claflin, Bruce B.; Rice, Catherine E.; Masaun, Puneet

    2006-04-01

    Zinc oxide is attracting growing interest for potential applications in electronics, optoelectronics, photonics, and chemical and biochemical sensing, among other applications. We report herein our efforts in the growth and characterization of p- and n-type ZnO materials by metalorganic chemical vapor deposition (MOCVD), focusing on recent nitrogen-doped films grown using diethyl zinc as the zinc precursor and nitric oxide (NO) as the dopant. Characterization results, including resistivity, Hall measurements, photoluminescence, and SIMS, are reported and discussed. Electrical behavior was observed to be dependent on illumination, atmosphere, and heat treatment, especially for p-type material.

  20. Handbook methane potential; Handbok metanpotential

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My (AnoxKaldnes AB (Sweden)); Schnurer, Anna (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden))

    2011-07-15

    Before using a organic material for biogas production it is essential to evaluate the methane production potential. The methane potential is one important tool possible to use during planning of new plants but also when new materials are considered for already running biogas plants. The chemical composition of different organic material varies extensively and this will have an impact on both the degradability and the methane potential. Information about the methane potential of a specific material can sometimes be found in the literature or can be calculated after a chemical/ physical or biological characterization. Here, the BMP test (Biochemical Methane Potential) is a commonly used method. Today the BMP test is a commonly used method to determine the methane potential. Many national and international research groups, consultants as well as personal at biogas plants are using this method and there is a lot of data available in the literature from such tests. In addition there are several protocols giving guidelines on how to execute a BMP-test. The BMP-test is performed in many different ways, not always under optimized conditions, and there is a lack of information on how to interpret the obtained data. This report summarizes knowledge from the literature and the experience from a Swedish referee group, consisting of persons being active performers of BMP-tests. The report does not include a standardized protocol as the procedure can be performed in different ways depending on available equipment and on the type of material to be tested. Instead the report discusses different factors of great importance for a successful test giving reliable results. The report also summarizes important information concerning the interpretation and how to present results in order to allow comparison of data from different test.

  1. Characterization strategy report for the organic safety issues

    International Nuclear Information System (INIS)

    Goheen, S.C.; Campbell, J.A.; Fryxell, G.E.

    1997-08-01

    This report describes a logical approach to resolving potential safety issues resulting from the presence of organic components in hanford tank wastes. The approach uses a structured logic diagram (SLD) to provide a pathway for quantifying organic safety issue risk. The scope of the report is limited to selected organics (i.e., solvents and complexants) that were added to the tanks and their degradation products. The greatest concern is the potential exothermic reactions that can occur between these components and oxidants, such as sodium nitrate, that are present in the waste tanks. The organic safety issue is described in a conceptual model that depicts key modes of failure-event reaction processes in tank systems and phase domains (domains are regions of the tank that have similar contents) that are depicted with the SLD. Applying this approach to quantify risk requires knowing the composition and distribution of the organic and inorganic components to determine (1) how much energy the waste would release in the various domains, (2) the toxicity of the region associated with a disruptive event, and (3) the probability of an initiating reaction. Five different characterization options are described, each providing a different level of quality in calculating the risks involved with organic safety issues. Recommendations include processing existing data through the SLD to estimate risk, developing models needed to link more complex characterization information for the purpose of estimating risk, and examining correlations between the characterization approaches for optimizing information quality while minimizing cost in estimating risk

  2. Nondestructive materials characterization with applications to aerospace materials

    CERN Document Server

    Nagy, Peter; Rokhlin, Stanislav

    2004-01-01

    With an emphasis on aircraft materials, this book describes techniques for the material characterization to detect and quantify degradation processes such as corrosion and fatigue. It introduces readers to these techniques based on x-ray, ultrasonic, optical and thermal principles and demonstrates the potential of the techniques for a wide variety of applications concerning aircraft materials, especially aluminum and titanium alloys. The advantages and disadvantages of various techniques are evaluated. An introductory chapter describes the typical degradation mechanisms that must be considered and the microstructure features that have to be detected by NDE methods. Finally, some approaches for making lifetime predictions are discussed. It is suitable as a textbook in special training courses in advanced NDE and aircraft materials characterization.

  3. Municipal solid waste combustion: Fuel testing and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  4. Identification and characterization of serovar-independent immunogens in Actinobacillus pleuropneumoniae

    DEFF Research Database (Denmark)

    Antenucci, Fabio; Fougeroux, Cyrielle; Bosse, Janine T.

    2017-01-01

    and further characterized, both in silico and in vitro. Additionally, we analysed outer membrane vesicles (OMVs) of A. pleuropneumoniae MIDG2331 as potential immunogens, and compared deletions in degS and nlpI for increasing yields of OMVs compared to the parental strain. Our results indicated that Apf...

  5. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    International Nuclear Information System (INIS)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P.; Courtney, J.C.; Duff, M.J.

    1992-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m 3 (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein

  6. Characterization of an aged WESF capsule

    International Nuclear Information System (INIS)

    Kenna, B.T.; Schultz, F.J.

    1983-07-01

    A joint effort by SNLA and ORNL was initiated for a detailed characterization of an 18-year-old WESF 137 Cs source which has been used in the Sandia Irradiator for Dried Sewage Solids. The study included evaluation of the inner and outer stainless steel capsules by optical metallography, electron microprobe, and physical testing. Analysis of the residual atmospheres within the two containers was also done. The CsCl was analyzed for isotopic content and impurities. No potential problem areas, including corrosion, were found

  7. Preparation, characterization and in vitro antioxidative potential of synbiotic fermented dairy products.

    Science.gov (United States)

    Shah, C; Mokashe, N; Mishra, V

    2016-04-01

    The present study, evaluates the antioxidative potential of two synbiotic dairy products viz. synbiotic lassi with honey and whey based synbiotic drink with inulin and orange juice, along with their physicochemical and microbiological activity during storage period. Antioxidative potential of raw ingredients and probiotic cultures used to prepare synbiotic products was also evaluated. Synbiotic lassi with honey was prepared using Streptococcus thermophilus MTCC 5460 (MD2) and Lactobacillus helveticus MTCC 5463 (V3) as probiotics and honey as prebiotic. For preparation of whey based synbiotic drink, Lactobacillus helveticus MTCC 5463 and inulin were used as probiotic and prebiotic, respectively and orange juice was also incorporated. Titratable acidity and pH of both synbiotic products followed a similar pattern of increase or decrease during storage. Furthermore, no major changes were observed in viability of probiotic cultures under storage conditions adapted. The hydroxyl radical scavenging activity of synbiotic lassi with honey was found to significantly decrease from 107.76 to 79.41 % at the end of storage whereas, the activity of whey based synbiotic drink was 100.32 % which declined sharply to 79.21 % on 7th day but further increased to 102.59 % on 14th day. The DPPH (α, α-Diphenyl-β-Picrylhydrazyl) radical scavenging activity of freshly prepared synbiotic lassi with honey was 28.43 % which decreased to 23.03 % on 7th day while for whey based synbiotic drink decreased from 26.85 % (0 day) to 17.12 % (7th day) and continued to decline. Moreover, probiotic strains used for synbiotic preparation also demonstrated good antioxidative activity.

  8. Xenognosin methylation is critical in defining the chemical potential gradient that regulates the potential distribution in Striga pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Fate, G.D.; Lynn, D.G. [Univ. of Chicago, IL (United States)

    1996-11-20

    Striga asiatica (Scrophulariaceae) is a parasitic plant requiring a host-derived signal, xenognosin, to initiate a cascade of events necessary for the establishment of host contact. By attempting to model the distribution of the xenognosin around the host, the activity of the signal is shown to be strongly dependent on the presence of another component in the host exudate. Surprisingly this component, characterized as 4,6-dimethoxy-2-[(8`Z.11`Z)-8`,11`, -14`-pentadecatriene]resorcinol, is structurally related and shares the same biosynthetic pathway as the xenognosin. This compound is shown to function as an antioxidant and its ability to enhance the activity of the xenognosin is consistent with its ability to extend its lifetime in the exudate. This endogenous antioxidant activity is required to explain the spatial sensing in the establishment of the host-parasite interface and its characterization provides insight into how chemical potential may be regulated within and around plant tissues. 23 refs., 7 figs., 1 tab.

  9. Synthesis and characterization of zinc adeninate metal-organic frameworks (bioMOF1) as potential anti-inflammatory drug delivery material

    Science.gov (United States)

    Usman, Ken Aldren S.; Buenviaje, Salvador C.; Razal, Joselito M.; Conato, Marlon T.; Payawan, Leon M.

    2018-05-01

    Zn8(ad)4(BPDC)6O•2Me2NH2 (bioMOF1), a porous metal-organic framework with zinc-adeninate secondary building units (SBUs), interconnected via biphenyldicarboxylate linkers, shows great potential for drug delivery applications due to its non-toxic and biocompatible components (zinc and adenine). In this study, bioMOF1 crystals synthesized solvothermally at 130°C for 24 hours, were characterized thoroughly and loaded with a known anti-inflammatory drug, nimesulide (NIM). The crystalline nature of the material was confirmed using powder x-ray diffraction crystallography (PXRD) along with morphology assessment using focused-ion beam/field emission scanning electron microscopy (FIB/FESEM). NIM was introduced to the crystals via solvent exchange accompanied with vigorous stirring and quantified using thermogravimetric analysis (TGA) with loading saturation of ˜30% attained during the 2nd to 3rd day of drug immersion. Drug release in phosphate buffer saline and in deionized water was done to monitor the kinetic of drug release in vitro. The drug release showed a controlled discharge profile which slowed down at the 24th and 48th hour of release. Drug release in buffer showed a faster release of drug from the material, which means that the presence of cations in the solution could further trigger the release of drug. Slow drug release was observed for all of the set-ups with maximum % drug release of 24.47%, and 16.14% for the bioMOF1 in buffer and bioMOF1 in water respectively for the span of 48 hours.

  10. Characteristics of potential repository wastes

    International Nuclear Information System (INIS)

    Notz, K.J.

    1989-01-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the spent fuels and other wastes that will be disposed of in a geologic repository. The two major sources of these materials are commercial light-water reactor (LWR) spent fuel and immobilized high-level waste (HLW). Other wastes that may require long-term isolation include non-LWR spent fuels and miscellaneous sources such as activated metals. Detailed characterizations are required for all of these potential repository wastes. These characterizations include physical, chemical, and radiological properties. The latter must take into account decay as a function of time. This information has been extracted from primary data sources, evaluated, and assembled in a Characteristics Data Base which provides data in four formats: hard copy standard reports, menu-driven personal computer (PC) data bases, program-level PC data bases, and mainframe computer files. The Characteristics Data Base provides a standard set of self-consistent data to the various areas of responsibility including systems integration and waste stream analysis, storage, transportation, and geologic disposal. The data will be used for design studies, evaluation of alternatives, and system optimization by OCRWM and supporting contractors. 7 refs., 5 figs., 7 tabs

  11. Genomic signatures characterize leukocyte infiltration in myositis muscles

    Science.gov (United States)

    2012-01-01

    Background Leukocyte infiltration plays an important role in the pathogenesis and progression of myositis, and is highly associated with disease severity. Currently, there is a lack of: efficacious therapies for myositis; understanding of the molecular features important for disease pathogenesis; and potential molecular biomarkers for characterizing inflammatory myopathies to aid in clinical development. Methods In this study, we developed a simple model and predicted that 1) leukocyte-specific transcripts (including both protein-coding transcripts and microRNAs) should be coherently overexpressed in myositis muscle and 2) the level of over-expression of these transcripts should be correlated with leukocyte infiltration. We applied this model to assess immune cell infiltration in myositis by examining mRNA and microRNA (miRNA) expression profiles in muscle biopsies from 31 myositis patients and 5 normal controls. Results Several gene signatures, including a leukocyte index, type 1 interferon (IFN), MHC class I, and immunoglobulin signature, were developed to characterize myositis patients at the molecular level. The leukocyte index, consisting of genes predominantly associated with immune function, displayed strong concordance with pathological assessment of immune cell infiltration. This leukocyte index was subsequently utilized to differentiate transcriptional changes due to leukocyte infiltration from other alterations in myositis muscle. Results from this differentiation revealed biologically relevant differences in the relationship between the type 1 IFN pathway, miR-146a, and leukocyte infiltration within various myositis subtypes. Conclusions Results indicate that a likely interaction between miR-146a expression and the type 1 IFN pathway is confounded by the level of leukocyte infiltration into muscle tissue. Although the role of miR-146a in myositis remains uncertain, our results highlight the potential benefit of deconvoluting the source of

  12. Characterization of goat milk and potentially symbiotic non-fat yogurt

    Directory of Open Access Journals (Sweden)

    Noelia Fernanda Paz

    2014-09-01

    Full Text Available Combining prebiotics and probiotic microorganisms improve quality in the formulation of foods. In this paper, the characteristics of goat milk and symbiotic yogurt were studied. Raw goat milk was analyzed and the skimming process was optimized. For the formulation of a potentially non-fat symbiotic yogurt made with skimmed goat milk, inulin, gelatin, sugar, and Streptococcus salivarius subsp. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus casei subsp. rhamnoshus. Chemical characteristics, acceptability, and viability of lactic acid bacteria and probiotic culture were assessed. The protein and fat content of the raw milk was 2.90 and 3.56 g/100 mL, respectively. The optimum skimming process was obtained at 9,800 rpm and 4 °C for 15 minutes. The product formulated had a protein and fat content of 4.04 to 0.04 g/100 mL, good sensory properties, and acceptability of 95%. The lactic bacteria count was 9 × 10(7 CFU mL- 1, and probiotic culture count was higher than 1 × 10(6 CFU mL- 1, which guarantees their effect and capacity to survive in the digestive tract and spread in the intestine. The yogurt was stable during the 21 days of storage. Therefore, this study shows that goat milk yogurt is an adequate delivery vehicle of the probiotic culture L. casei and inulin.

  13. In vivo evaluation of the mutagenic potential and phytochemical characterization of oleoresin from Copaifera duckei Dwyer

    Directory of Open Access Journals (Sweden)

    Edson Luis Maistro

    2005-12-01

    Full Text Available We characterized the chemical constituents of Copaifera duckei oleoresin and used dermal application to Wistar rats to evaluated its possible mutagenic and cytotoxic activities on peripheral blood reticulocytes and bone marrow cells. Chemical characterization of the oleoresin revealed the presence of sesquiterpene hydrocarbons, an unidentified neutral diterpene and diterpene acids. To evaluate mutagenicity evaluation the rats were treated with 10, 25 and 50% of the LD50 dose of the oleoresin for three consecutive days and peripheral blood collected after 0, 24, 48 and 72 h for micronucleus analysis. The rats were humanly sacrificed 24 hours after the last treatment and chromosome preparations made using standard techniques. At the three concentrations and the three time intervals tested we found that there were no statistically significant differences in either the mean number of micronucleated reticulocytes (MNRETs or the number of chromosomal aberrations as to the negative control. However, at 25 and 50% of the LD50 dose of the oleoresin there was a significant decrease in the mitotic index (MI as compared to the negative control. Under our experimental conditions, C. duckei V11 oleoresin produced no mutagenic effects on bone marrow cells or in peripheral reticulocytes as assessed by chromosome aberrations and the micronucleus test respectively, but showed cytotoxic activity at high doses.

  14. Analysis of Self-Potential Response beyond the Fixed Geometry Technique

    Science.gov (United States)

    Mahardika, Harry

    2018-03-01

    The self-potential (SP) method is one of the oldest geophysical methods that are still available for today’s application. Since its early days SP data interpretation has been done qualitatively until the emerging of the fixed geometry analysis that was used to characterize the orientation and the electric-dipole properties of a mineral ore structure. Through the expansion of fundamental theories, computational methods, field-and-lab experiments in the last fifteen years, SP method has emerge from its low-class reputation to become more respectable. It became a complementary package alongside electric-resistivity tomography (ERT) for detecting groundwater flow in the subsurface, and extends to the hydrothermal flow in geothermal areas. As the analysis of SP data becomes more quantitative, its potential applications become more diverse. In this paper, we will show examples of our current SP studies such as the groundwater flow characterization inside a fault area. Lastly we will introduce the application of the "active" SP method - that is the seismoelectric method - which can be used for 4D real-time monitoring systems.

  15. The Detection and Characterization of Extrasolar Planets

    Directory of Open Access Journals (Sweden)

    Ken Rice

    2014-09-01

    Full Text Available We have now confirmed the existence of > 1800 planets orbiting stars other thanthe Sun; known as extrasolar planets or exoplanets. The different methods for detectingsuch planets are sensitive to different regions of parameter space, and so, we are discoveringa wide diversity of exoplanets and exoplanetary systems. Characterizing such planets isdifficult, but we are starting to be able to determine something of their internal compositionand are beginning to be able to probe their atmospheres, the first step towards the detectionof bio-signatures and, hence, determining if a planet could be habitable or not. Here, Iwill review how we detect exoplanets, how we characterize exoplanetary systems and theexoplanets themselves, where we stand with respect to potentially habitable planets and howwe are progressing towards being able to actually determine if a planet could host life or not.

  16. Characterization of plasma thiol redox potential in a common marmoset model of aging

    Directory of Open Access Journals (Sweden)

    James R. Roede

    2013-01-01

    Full Text Available Due to its short lifespan, ease of use and age-related pathologies that mirror those observed in humans, the common marmoset (Callithrix jacchus is poised to become a standard nonhuman primate model of aging. Blood and extracellular fluid possess two major thiol-dependent redox nodes involving cysteine (Cys, cystine (CySS, glutathione (GSH and glutathione disulfide (GSSG. Alteration in these plasma redox nodes significantly affects cellular physiology, and oxidation of the plasma Cys/CySS redox potential (EhCySS is associated with aging and disease risk in humans. The purpose of this study was to determine age-related changes in plasma redox metabolites and corresponding redox potentials (Eh to further validate the marmoset as a nonhuman primate model of aging. We measured plasma thiol redox states in marmosets and used existing human data with multivariate adaptive regression splines (MARS to model the relationships between age and redox metabolites. A classification accuracy of 70.2% and an AUC of 0.703 were achieved using the MARS model built from the marmoset redox data to classify the human samples as young or old. These results show that common marmosets provide a useful model for thiol redox biology of aging.

  17. Strategy and methodology for radioactive waste characterization

    International Nuclear Information System (INIS)

    2007-03-01

    Over the past decade, significant progress has been achieved in the development of waste characterization as well as control procedures and equipment. This has been as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. This publication discusses the strategy and methodology to be adopted in conceiving a characterization programme for the various kinds of radioactive waste fluxes or packages. No international publications have dealt with this topic in such depth. The strategy elaborated here takes into account the international State of the art in the different characterization methodologies. The strategy and methodology of the characterization programme will depend on the type of radioactive waste. In addition, the accuracy and quality of the characterization programme very much depends on the requirements to demonstrate compliance with the waste acceptance criteria. This publication presents a new subdivision of radioactive waste based on its physicochemical composition and its time dependence: simple/stable, complex/stable, simple/variable and complex/variable. Decommissioning and historical waste deserve special attention in this publication, and they can belong to any of the four categories. Identifying the life cycle of the radioactive waste is a cornerstone in defining the strategy for radioactive waste characterization. The waste acceptance criteria and the performance assessment of the repository are other key factors in the strategy and

  18. Continuous, environmental radon monitoring program at the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Liu, N.; Sorensen, C.D.; Tung, C.H.; Orchard, C.R.

    1995-01-01

    A continuous, environmental radon monitoring program has been established in support of the Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP). The monitoring program is to characterize the natural radon emissions at the YMP site, to understand the existing radon concentrations in the environmental background, and to assess and control the potential work exposure. Based upon a study of the monitoring results, this paper presents a preliminary understanding of the magnitudes, characteristics, and exposure levels of radon at the YMP site

  19. Laboratory determined suction potential of Topopah Spring tuff at high temperatures

    International Nuclear Information System (INIS)

    Daily, W.; Lin, Wunan.

    1991-01-01

    The purpose of this work is to experimentally determine the capillary suction potential of Topopah Spring tuff from Yucca Mountain, Nye County, Nevada. This data can be used to help characterize the unsaturated hydraulic properties of the densely welded tuff at this site. 7 refs., 4 figs., 1 tab

  20. KARAKTERISASI TEPUNG UBI JALAR (Ipomoea batata L. VARIETAS SHIROYUTAKA SERTA KAJIAN POTENSI PENGGUNAANNYA SEBAGAI SUMBER PANGAN KARBOHIDRAT ALTERNATIF [Characterization of Sweet Potato Flour (Ipomea batatas L. var. Shiroyutaka and Assesment of the potential as Alternative Carbohydrate Source For Food Product

    Directory of Open Access Journals (Sweden)

    Beni Hidayat 1

    2007-06-01

    Full Text Available This research was aimed to characterize sweet potato flour var. shiroyutaka and assessment of its potential as alternative carbohydrate source on food product. Characterization was conducted on flour processed from sweet potato var. shiroyutaka harvested at four months was characteristic, these included whiteness degree and water absorption of the flour, ratio of amylase-amylopectin, form and size of starch granule, and starch digestibility.The research showed that whiteness degree and water absorption of the flour were 78,82% ( 0,52 and 1,25 g/g ( 0,12 respectively. The ratio of amylase-amylopectin, gelatinization temperature, maximum viscosity and invitro starch digest ability were 69.82%: 30.18%, 78-900C and 84,78% respectively. The granule of its starch was round form and with size 2-4 micron.The main potential of the flour is related with its specific characteristics which were the amylose-amylopectin ratio, the starch amylograph profile, form and size of starch granule, and the starch digest ability. These parameters implied that, the flour should be utilized in the production specific food products.