WorldWideScience

Sample records for characterize plasmodium falciparum-infected

  1. Submicroscopic Plasmodium falciparum infections in pregnancy in Ghana

    NARCIS (Netherlands)

    Mockenhaupt, F. P.; Rong, B.; Till, H.; Eggelte, T. A.; Beck, S.; Gyasi-Sarpong, C.; Thompson, W. N.; Bienzle, U.

    2000-01-01

    Malarial parasitaemia below the threshold of microscopy but detectable by polymerase chain reaction (PCR) assays is common in endemic regions. This study was conducted to examine prevalence, predictors, and effects of submicroscopic Plasmodium falciparum infections in pregnancy. In a cross-sectional

  2. Fine-scale genetic characterization of Plasmodium falciparum ...

    Indian Academy of Sciences (India)

    RESEARCH ARTICLE. Fine-scale genetic characterization of Plasmodium falciparum .... Materials and methods. The DNA ... the order and location of genes (as per the PlasmoDB data resources, available at ... There is currently an. Figure 5.

  3. Impact of Plasmodium falciparum and hookworm infections on the ...

    African Journals Online (AJOL)

    abp

    2013-01-18

    Saharan Africa and they increase the prevalence of anaemia in pregnancy with resultant poor pregnancy outcomes. This study was carried out to assess the impact of Plasmodium falciparum and hookworm infections on.

  4. The persistence and oscillations of submicroscopic Plasmodium falciparum and Plasmodium vivax infections over time in Vietnam: an open cohort study.

    Science.gov (United States)

    Nguyen, Thuy-Nhien; von Seidlein, Lorenz; Nguyen, Tuong-Vy; Truong, Phuc-Nhi; Hung, Son Do; Pham, Huong-Thu; Nguyen, Tam-Uyen; Le, Thanh Dong; Dao, Van Hue; Mukaka, Mavuto; Day, Nicholas Pj; White, Nicholas J; Dondorp, Arjen M; Thwaites, Guy E; Hien, Tran Tinh

    2018-05-01

    A substantial proportion of Plasmodium species infections are asymptomatic with densities too low to be detectable with standard diagnostic techniques. The importance of such asymptomatic plasmodium infections in malaria transmission is probably related to their duration and density. To explore the duration of asymptomatic plasmodium infections and changes in parasite densities over time, a cohort of participants who were infected with Plasmodium parasites was observed over a 2-year follow-up period. In this open cohort study, inhabitants of four villages in Vietnam were invited to participate in baseline and subsequent 3-monthly surveys up to 24 months, which included the collection of venous blood samples. Samples were batch-screened using ultra-sensitive (u)PCR (lower limit of detection of 22 parasites per mL). Participants found to be infected by uPCR during any of these surveys were invited to join a prospective cohort and provide monthly blood samples. We estimated the persistence of Plasmodium falciparum and Plasmodium vivax infections and changes in parasite densities over a study period of 24 months. Between Dec 1, 2013, and Jan 8, 2016, 356 villagers participated in between one and 22 surveys. These study participants underwent 4248 uPCR evaluations (11·9 tests per participant). 1874 (32%) of 4248 uPCR tests indicated a plasmodium infection; 679 (36%) of 1874 tests were P falciparum monoinfections, 507 (27%) were P vivax monoinfections, 463 (25%) were co-infections with P falciparum and P vivax, and 225 (12%) were indeterminate species of Plasmodium. The median duration of P falciparum infection was 2 months (IQR 1-3); after accounting for censoring, participants had a 20% chance of having parasitaemia for 4 months or longer. The median duration of P vivax infection was 6 months (3-9), and participants had a 59% chance of having parasitaemia for 4 months or longer. The parasite densities of persistent infections oscillated; following ultralow

  5. Origin of the human malaria parasite Plasmodium falciparum in gorillas.

    Science.gov (United States)

    Liu, Weimin; Li, Yingying; Learn, Gerald H; Rudicell, Rebecca S; Robertson, Joel D; Keele, Brandon F; Ndjango, Jean-Bosco N; Sanz, Crickette M; Morgan, David B; Locatelli, Sabrina; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V; Muller, Martin N; Shaw, George M; Peeters, Martine; Sharp, Paul M; Rayner, Julian C; Hahn, Beatrice H

    2010-09-23

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.

  6. Chronic Plasmodium falciparum infections in an area of low intensity malaria transmission in the Sudan

    DEFF Research Database (Denmark)

    Hamad, A A; El Hassan, I M; El Khalifa, A A

    2000-01-01

    Chronic Plasmodium falciparum malaria infections in a Sudanese village, in an area of seasonal and unstable malaria transmission, were monitored and genetically characterized to study the influence of persistent infection on the immunology and epidemiology of low endemicity malaria. During...... the October-December malaria season of 1996, 51 individuals out of a population of 420 had confirmed and treated P. falciparum malaria in the village of Daraweesh in eastern Sudan. In a cross-sectional survey carried out in December 1996, an additional 6 individuals were found to harbour a microscopically...

  7. Peripheral blood cell signatures of Plasmodium falciparum infection during pregnancy

    DEFF Research Database (Denmark)

    Ibitokou, Samad; Oesterholt, Mayke; Brutus, Laurent

    2012-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes in placental intervillous spaces causes inflammation and pathology. Knowledge of the profiles of immune cells associated with the physiopathology of pregnancy-associated malaria (PAM) is scarce. We conducted a longitudinal, prospective ...

  8. Identification of Protein Markers in Patients Infected with Plasmodium knowlesi, Plasmodium falciparum and Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Alan Kang-Wai Mu

    2014-11-01

    Full Text Available Malaria is caused by parasitic protozoans of the genus Plasmodium and is one of the most prevalent infectious diseases in tropical and subtropical regions. For this reason, effective and practical diagnostic methods are urgently needed to control the spread of malaria. The aim of the current study was to identify a panel of new malarial markers, which could be used to diagnose patients infected with various Plasmodium species, including P. knowlesi, P. vivax and P. falciparum. Sera from malaria-infected patients were pooled and compared to control sera obtained from healthy individuals using the isobaric tags for relative and absolute quantitation (iTRAQ technique. Mass spectrometry was used to identify serum proteins and quantify their relative abundance. We found that the levels of several proteins were increased in pooled serum from infected patients, including cell adhesion molecule-4 and C-reactive protein. In contrast, the serum concentration of haptoglobin was reduced in malaria-infected individuals, which we verified by western blot assay. Therefore, these proteins might represent infectious markers of malaria, which could be used to develop novel diagnostic tools for detecting P. knowlesi, P. vivax and P. falciparum. However, these potential malarial markers will need to be validated in a larger population of infected individuals.

  9. Multiplicity of Plasmodium falciparum infection following intermittent preventive treatment in infants

    NARCIS (Netherlands)

    Buchholz, Ulrike; Kobbe, Robin; Danquah, Ina; Zanger, Philipp; Reither, Klaus; Abruquah, Harry H.; Grobusch, Martin P.; Ziniel, Peter; May, Jürgen; Mockenhaupt, Frank P.

    2010-01-01

    Intermittent preventive treatment in infants with sulphadoxine-pyrimethamine (IPTi-SP) reduces malaria morbidity by 20% to 33%. Potentially, however, this intervention may compromise the acquisition of immunity, including the tolerance towards multiple infections with Plasmodium falciparum.

  10. Real-time polymerase chain reaction assay for the rapid detection and characterization of chloroquine-resistant Plasmodium falciparum malaria in returned travelers.

    Science.gov (United States)

    Farcas, Gabriella A; Soeller, Rainer; Zhong, Kathleen; Zahirieh, Alireza; Kain, Kevin C

    2006-03-01

    Imported drug-resistant malaria is a growing problem in industrialized countries. Rapid and accurate diagnosis is essential to prevent malaria-associated mortality in returned travelers. However, outside of a limited number of specialized centers, the microscopic diagnosis of malaria is slow, unreliable, and provides little information about drug resistance. Molecular diagnostics have the potential to overcome these limitations. We developed and evaluated a rapid, real-time polymerase chain reaction (PCR) assay to detect Plasmodium falciparum malaria and chloroquine (CQ)-resistance determinants in returned travelers who are febrile. A real-time PCR assay based on detection of the K76T mutation in PfCRT (K76T) of P. falciparum was developed on a LightCycler platform (Roche). The performance characteristics of the real-time assay were compared with those of the nested PCR-restriction fragment-length polymorphism (RFLP) and the sequence analyses of samples obtained from 200 febrile returned travelers, who included 125 infected with P. falciparum (48 of whom were infected CQ-susceptible [K76] and 77 of whom were CQ-resistant [T76] P. falciparum), 22 infected with Plasmodium vivax, 10 infected with Plasmodium ovale, 3 infected with Plasmodium malariae malaria, and 40 infected with other febrile syndromes. All patient samples were coded, and all analyses were performed blindly. The real-time PCR assay detected multiple pfcrt haplotypes associated with CQ resistance in geographically diverse malaria isolates acquired by travelers. Compared with nested-PCR RFLP (the reference standard), the real-time assay was 100% sensitive and 96.2% specific for detection of the P. falciparum K76T mutation. This assay is rapid, sensitive, and specific for the detection and characterization of CQ-resistant P. falciparum malaria in returned travelers. This assay is automated, standardized, and suitable for routine use in clinical diagnostic laboratories.

  11. ABO Blood Groups Influence Macrophage-mediated Phagocytosis of Plasmodium falciparum-infected Erythrocytes

    Science.gov (United States)

    Branch, Donald R.; Hult, Annika K.; Olsson, Martin L.; Liles, W. Conrad; Cserti-Gazdewich, Christine M.; Kain, Kevin C.

    2012-01-01

    Erythrocyte polymorphisms associated with a survival advantage to Plasmodium falciparum infection have undergone positive selection. There is a predominance of blood group O in malaria-endemic regions, and several lines of evidence suggest that ABO blood groups may influence the outcome of P. falciparum infection. Based on the hypothesis that enhanced innate clearance of infected polymorphic erythrocytes is associated with protection from severe malaria, we investigated whether P. falciparum-infected O erythrocytes are more efficiently cleared by macrophages than infected A and B erythrocytes. We show that human macrophages in vitro and mouse monocytes in vivo phagocytose P. falciparum-infected O erythrocytes more avidly than infected A and B erythrocytes and that uptake is associated with increased hemichrome deposition and high molecular weight band 3 aggregates in infected O erythrocytes. Using infected A1, A2, and O erythrocytes, we demonstrate an inverse association of phagocytic capacity with the amount of A antigen on the surface of infected erythrocytes. Finally, we report that enzymatic conversion of B erythrocytes to type as O before infection significantly enhances their uptake by macrophages to observed level comparable to that with infected O wild-type erythrocytes. These data provide the first evidence that ABO blood group antigens influence macrophage clearance of P. falciparum-infected erythrocytes and suggest an additional mechanism by which blood group O may confer resistance to severe malaria. PMID:23071435

  12. Spatial variation and socio-economic determinants of Plasmodium falciparum infection in northeastern Tanzania

    DEFF Research Database (Denmark)

    Mmbando, Bruno P; Kamugisha, Mathias L; Lusingu, John P

    2011-01-01

    system (GPS) unit. The effects of risk factors were determined using generalized estimating equation and spatial risk of P. falciparum infection was modelled using a kernel (non-parametric) method. RESULTS: There was a significant spatial variation of P. falciparum infection, and urban areas were......ABSTRACT: BACKGROUND: Malaria due to Plasmodium falciparum is the leading cause of morbidity and mortality in Tanzania. According to health statistics, malaria accounts for about 30% and 15% of hospital admissions and deaths, respectively. The risk of P. falciparum infection varies across...... the country. This study describes the spatial variation and socio-economic determinants of P. falciparum infection in northeastern Tanzania. METHODS: The study was conducted in 14 villages located in highland, lowland and urban areas of Korogwe district. Four cross-sectional malaria surveys involving...

  13. The Relative Contribution of Symptomatic and Asymptomatic Plasmodium vivax and Plasmodium falciparum Infections to the Infectious Reservoir in a Low-Endemic Setting in Ethiopia.

    Science.gov (United States)

    Tadesse, Fitsum G; Slater, Hannah C; Chali, Wakweya; Teelen, Karina; Lanke, Kjerstin; Belachew, Mulualem; Menberu, Temesgen; Shumie, Girma; Shitaye, Getasew; Okell, Lucy C; Graumans, Wouter; van Gemert, Geert-Jan; Kedir, Soriya; Tesfaye, Addisu; Belachew, Feleke; Abebe, Wake; Mamo, Hassen; Sauerwein, Robert; Balcha, Taye; Aseffa, Abraham; Yewhalaw, Delenasaw; Gadisa, Endalamaw; Drakeley, Chris; Bousema, Teun

    2018-06-01

    The majority of Plasmodium vivax and Plasmodium falciparum infections in low-endemic settings are asymptomatic. The relative contribution to the infectious reservoir of these infections compared to clinical malaria cases is currently unknown. We assessed infectivity of passively recruited symptomatic malaria patients (n = 41) and community-recruited asymptomatic individuals with microscopy-detected (n = 41) and polymerase chain reaction (PCR)-detected infections (n = 82) using membrane feeding assays with Anopheles arabiensis mosquitoes in Adama, Ethiopia. Malaria incidence and prevalence data were used to estimate the contributions of these populations to the infectious reservoir. Overall, 34.9% (29/83) of P. vivax- and 15.1% (8/53) P. falciparum-infected individuals infected ≥1 mosquitoes. Mosquito infection rates were strongly correlated with asexual parasite density for P. vivax (ρ = 0.63; P < .001) but not for P. falciparum (ρ = 0.06; P = .770). Plasmodium vivax symptomatic infections were more infectious to mosquitoes (infecting 46.5% of mosquitoes, 307/660) compared to asymptomatic microscopy-detected (infecting 12.0% of mosquitoes, 80/667; P = .005) and PCR-detected infections (infecting 0.8% of mosquitoes, 6/744; P < .001). Adjusting for population prevalence, symptomatic, asymptomatic microscopy-detected, and PCR-detected infections were responsible for 8.0%, 76.2%, and 15.8% of the infectious reservoir for P. vivax, respectively. For P. falciparum, mosquito infections were sparser and also predominantly from asymptomatic infections. In this low-endemic setting aiming for malaria elimination, asymptomatic infections were highly prevalent and responsible for the majority of onward mosquito infections. The early identification and treatment of asymptomatic infections might accelerate elimination efforts.

  14. The dynamics of natural Plasmodium falciparum infections.

    Directory of Open Access Journals (Sweden)

    Ingrid Felger

    Full Text Available BACKGROUND: Natural immunity to Plasmodium falciparum has been widely studied, but its effects on parasite dynamics are poorly understood. Acquisition and clearance rates of untreated infections are key elements of the dynamics of malaria, but estimating these parameters is challenging because of frequent super-infection and imperfect detectability of parasites. Consequently, information on effects of host immune status or age on infection dynamics is fragmentary. METHODS: An age-stratified cohort of 347 individuals from Northern Ghana was sampled six times at 2 month intervals. High-throughput capillary electrophoresis was used to genotype the msp-2 locus of all P. falciparum infections detected by PCR. Force of infection (FOI and duration were estimated for each age group using an immigration-death model that allows for imperfect detection of circulating parasites. RESULTS: Allowing for imperfect detection substantially increased estimates of FOI and duration. Effects of naturally acquired immunity on the FOI and duration would be reflected in age dependence in these indices, but in our cohort data FOI tended to increase with age in children. Persistence of individual parasite clones was characteristic of all age-groups. Duration peaked in 5-9 year old children (average duration 319 days, 95% confidence interval 318;320. CONCLUSIONS: The main age-dependence is on parasite densities, with only small age-variations in the FOI and persistence of infections. This supports the hypothesis that acquired immunity controls transmission mainly by limiting blood-stage parasite densities rather than changing rates of acquisition or clearance of infections.

  15. From malaria parasite point of view – Plasmodium falciparum evolution

    Directory of Open Access Journals (Sweden)

    Agata Zerka

    2015-12-01

    Full Text Available Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies.

  16. Genetic characterization of an epidemic of Plasmodium falciparum malaria among Yanomami Amerindians.

    Science.gov (United States)

    Laserson, K F; Petralanda, I; Almera, R; Barker, R H; Spielman, A; Maguire, J H; Wirth, D F

    1999-12-01

    Malaria parasites are genetically diverse at all levels of endemicity. In contrast, the merozoite surface protein (MSP) alleles in samples from 2 isolated populations of Yanomami Amerindians during an epidemic of Plasmodium falciparum were identical. The nonvariable restriction fragment length polymorphism patterns further suggested that the sequential outbreak comprised only a single P. falciparum genotype. By examination of serial samples from single human infections, the MSP characteristics were found to remain constant throughout the course of infection. An apparent clonal population structure of parasites seemed to cause outbreaks in small isolated villages. The use of standard molecular epidemiologic methods to measure genetic diversity in malaria revealed the occurrence of a genetically monomorphic population of P. falciparum within a human community.

  17. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    KAUST Repository

    Huang, Honglei

    2014-02-10

    Background: Acute malarial anemia remains a major public health problem. Hepcidin, the major hormone controlling the availability of iron, is raised during acute and asymptomatic parasitemia. Understanding the role and mechanism of raised hepcidin and so reduced iron availability during infection is critical to establish evidence-based guidelines for management of malaria anemia. Our recent clinical evidence suggests a potential role of IL-10 in the regulation of hepcidin in patients with acute P. falciparum malaria. Methods: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings: We have observed that IL-10 and IL-6 production increased in primary macrophages when these cells were co-cultured with Plasmodium falciparum-infected erythrocytes. We found that IL-10 induced hepcidin secretion in primary macrophages in a dose-dependent manner but not in HepG2 cells. These effects were mediated through signal transducer and activator of transcription (STAT) 3-phosphorylation and completely abrogated by a specific STAT3 inhibitor. Conclusion: IL-10 can directly regulate hepcidin in primary macrophages but not in HepG2 cells. This effect can be modulated by Plasmodium falciparum. The results are consistent with a role for IL-10 in modulating iron metabolism during acute phase of infection. 2014 Huang et al.

  18. Biomarkers of Plasmodium falciparum infection during pregnancy in women living in northeastern Tanzania

    DEFF Research Database (Denmark)

    Boström, Stéphanie; Ibitokou, Samad; Oesterholt, Mayke

    2012-01-01

    In pregnant women, Plasmodium falciparum infections are an important cause of maternal morbidity as well as fetal and neonatal mortality. Erythrocytes infected by these malaria-causing parasites accumulate through adhesive interactions in placental intervillous spaces, thus evading detection in p...

  19. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria

    KAUST Repository

    Huang, Honglei; Lamikanra, Abigail A.; Alkaitis, Matthew S.; Thé zé nas, Marie L.; Ramaprasad, Abhinay; Moussa, Ehab; Roberts, David J.; Casals-Pascual, Climent

    2014-01-01

    . falciparum malaria. Methods: We have measured secretion of hepcidin by primary macrophages and the hepatoma cell line HepG2 stimulated with IL-10, IL-6 and Plasmodium falciparum-infected erythrocytes. Findings: We have observed that IL-10 and IL-6 production

  20. VAR2CSA expression on the surface of placenta-derived Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Magistrado, Pamela; Salanti, Ali; Tuikue Ndam, Nicaise G

    2008-01-01

    Malaria remains a major threat, in sub-Saharan Africa primarily, and the most deadly infections are those with Plasmodium falciparum. Pregnancy-associated malaria is a clinically important complication of infection; it results from a unique interaction between proteoglycans in the placental inter...

  1. Biomarkers of Plasmodium falciparum infection during pregnancy in women living in northeastern Tanzania.

    Directory of Open Access Journals (Sweden)

    Stéphanie Boström

    Full Text Available In pregnant women, Plasmodium falciparum infections are an important cause of maternal morbidity as well as fetal and neonatal mortality. Erythrocytes infected by these malaria-causing parasites accumulate through adhesive interactions in placental intervillous spaces, thus evading detection in peripheral blood smears. Sequestered infected erythrocytes induce inflammation, offering the possibility of detecting inflammatory mediators in peripheral blood that could act as biomarkers of placental infection. In a longitudinal, prospective study in Tanzania, we quantified a range of different cytokines, chemokines and angiogenic factors in peripheral plasma samples, taken on multiple sequential occasions during pregnancy up to and including delivery, from P. falciparum-infected women and matched uninfected controls. The results show that during healthy, uninfected pregnancies the levels of most of the panel of molecules we measured were largely unchanged except at delivery. In women with P. falciparum, however, both comparative and longitudinal assessments consistently showed that the levels of IL-10 and IP-10 increased significantly whilst that of RANTES decreased significantly, regardless of gestational age at the time the infection was detected. ROC curve analysis indicated that a combination of increased IL-10 and IP-10 levels and decreased RANTES levels might be predictive of P. falciparum infections. In conclusion, our data suggest that host biomarkers in peripheral blood may represent useful diagnostic markers of P. falciparum infection during pregnancy, but placental histology results would need to be included to verify these findings.

  2. Higher Complexity of Infection and Genetic Diversity of Plasmodium vivax Than Plasmodium falciparum across all Malaria Transmission Zones of Papua New Guinea

    Science.gov (United States)

    Fola, Abebe A.; Harrison, G. L. Abby; Hazairin, Mita Hapsari; Barnadas, Céline; Hetzel, Manuel W.; Iga, Jonah; Siba, Peter M.; Mueller, Ivo; Barry, Alyssa E.

    2017-01-01

    Plasmodium falciparum and Plasmodium vivax have varying transmission dynamics that are informed by molecular epidemiology. This study aimed to determine the complexity of infection and genetic diversity of P. vivax and P. falciparum throughout Papua New Guinea (PNG) to evaluate transmission dynamics across the country. In 2008–2009, a nationwide malaria indicator survey collected 8,936 samples from all 16 endemic provinces of PNG. Of these, 892 positive P. vivax samples were genotyped at PvMS16 and PvmspF3, and 758 positive P. falciparum samples were genotyped at Pfmsp2. The data were analyzed for multiplicity of infection (MOI) and genetic diversity. Overall, P. vivax had higher polyclonality (71%) and mean MOI (2.32) than P. falciparum (20%, 1.39). These measures were significantly associated with prevalence for P. falciparum but not for P. vivax. The genetic diversity of P. vivax (PvMS16: expected heterozygosity = 0.95, 0.85–0.98; PvMsp1F3: 0.78, 0.66–0.89) was higher and less variable than that of P. falciparum (Pfmsp2: 0.89, 0.65–0.97). Significant associations of MOI with allelic richness (rho = 0.69, P = 0.009) and expected heterozygosity (rho = 0.87, P < 0.001) were observed for P. falciparum. Conversely, genetic diversity was not correlated with polyclonality nor mean MOI for P. vivax. The results demonstrate higher complexity of infection and genetic diversity of P. vivax across the country. Although P. falciparum shows a strong association of these parameters with prevalence, a lack of association was observed for P. vivax and is consistent with higher potential for outcrossing of this species. PMID:28070005

  3. Controlled Human Malaria Infection of Tanzanians by Intradermal Injection of Aseptic, Purified, Cryopreserved Plasmodium falciparum Sporozoites

    NARCIS (Netherlands)

    Shekalaghe, S.; Rutaihwa, M.; Billingsley, P.F.; Chemba, M.; Daubenberger, C.A.; James, E.R.; Mpina, M.; Juma, O. Ali; Schindler, T.; Huber, E.; Gunasekera, A.; Manoj, A.; Simon, B.; Saverino, E.; Church, L.W.; Hermsen, C.C.; Sauerwein, R.W.; Plowe, C.; Venkatesan, M.; Sasi, P.; Lweno, O.; Mutani, P.; Hamad, A.; Mohammed, A.; Urassa, A.; Mzee, T.; Padilla, D.; Ruben, A.; Sim, B.K.; Tanner, M.; Abdulla, S.; Hoffman, S.L.

    2014-01-01

    Controlled human malaria infection (CHMI) by mosquito bite has been used to assess anti-malaria interventions in > 1,500 volunteers since development of methods for infecting mosquitoes by feeding on Plasmodium falciparum (Pf) gametocyte cultures. Such CHMIs have never been used in Africa. Aseptic,

  4. Plasmodium falciparum-Derived Uric Acid Precipitates Induce Maturation of Dendritic Cells

    Science.gov (United States)

    van de Hoef, Diana L.; Coppens, Isabelle; Holowka, Thomas; Ben Mamoun, Choukri; Branch, OraLee; Rodriguez, Ana

    2013-01-01

    Malaria is characterized by cyclical fevers and high levels of inflammation, and while an early inflammatory response contributes to parasite clearance, excessive and persistent inflammation can lead to severe forms of the disease. Here, we show that Plasmodium falciparum-infected erythrocytes contain uric acid precipitates in the cytoplasm of the parasitophorous vacuole, which are released when erythrocytes rupture. Uric acid precipitates are highly inflammatory molecules that are considered a danger signal for innate immunity and are the causative agent in gout. We determined that P. falciparum-derived uric acid precipitates induce maturation of human dendritic cells, increasing the expression of cell surface co-stimulatory molecules such as CD80 and CD86, while decreasing human leukocyte antigen-DR expression. In accordance with this, uric acid accounts for a significant proportion of the total stimulatory activity induced by parasite-infected erythrocytes. Moreover, the identification of uric acid precipitates in P. falciparum- and P. vivax-infected erythrocytes obtained directly from malaria patients underscores the in vivo and clinical relevance of our findings. Altogether, our data implicate uric acid precipitates as a potentially important contributor to the innate immune response to Plasmodium infection and may provide a novel target for adjunct therapies. PMID:23405174

  5. Anaemia caused by asymptomatic Plasmodium falciparum infection in semi-immune African schoolchildren

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Addae, M M; Akanmori, B D

    1999-01-01

    A cohort of 250 Ghanaian schoolchildren aged 5-15 years was followed clinically and parasitologically for 4 months in 1997/98 in order to study the effect of asymptomatic Plasmodium falciparum infections on haematological indices and bone-marrow responses. Of the 250 children 65 met the predefine...

  6. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  7. Non-falciparum malaria infections in pregnant women in West Africa

    DEFF Research Database (Denmark)

    Williams, John; Njie, Fanta; Cairns, Matthew

    2016-01-01

    BACKGROUND: Non-Plasmodium falciparum malaria infections are found in many parts of sub-Saharan Africa but little is known about their importance in pregnancy. METHODS: Blood samples were collected at first antenatal clinic attendance from 2526 women enrolled in a trial of intermittent screening...... and treatment of malaria in pregnancy (ISTp) versus intermittent preventive treatment (IPTp) conducted in Burkina Faso, The Gambia, Ghana and Mali. DNA was extracted from blood spots and tested for P. falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale using a nested PCR test. Risk factors...... for a non-falciparum malaria infection were investigated and the influence of these infections on the outcome of pregnancy was determined. RESULTS: P. falciparum infection was detected frequently (overall prevalence by PCR: 38.8 %, [95 % CI 37.0, 40.8]), with a prevalence ranging from 10.8 % in The Gambia...

  8. Aotus infulatus monkey is susceptible to Plasmodium falciparum infection and may constitute an alternative experimental model for malaria

    Directory of Open Access Journals (Sweden)

    Carvalho Leonardo JM

    2000-01-01

    Full Text Available Aotus is one of the WHO-recommended primate models for studies in malaria, and several species can be infected with Plasmodium falciparum or P. vivax. Here we describe the successful infection of the species A. infulatus from eastern Amazon with blood stages of P. falciparum. Both intact and splenectomized animals were susceptible to infection; the intact ones were able to keep parasitemias at lower levels for several days, but developed complications such as severe anemia; splenectomized monkeys developed higher parasitemias but no major complications. We conclude that A. infulatus is susceptible to P. falciparum infection and may represent an alternative model for studies in malaria.

  9. Fine-scale genetic characterization of Plasmodium falciparum

    Indian Academy of Sciences (India)

    We have initiated such a study and presented herewith the results from the in silico understanding of a seventh chromosomal region of the malarial parasite Plasmodium falciparum encompassing the antigenic var genes (coding pfemp1) and the drug-resistant gene pfcrt located at a specified region of the chromosome 7.

  10. Efficacy of Artemether in Unresolving Plasmodium Falciparum Malaria

    African Journals Online (AJOL)

    The emergence of possible resistant Plasmodium falciparum malaria to artemisinin known for its immense benefit in malaria chemotherapy is worrisome. We report a case of unresolving Plasmodium falciparum malaria to Artesunate treatment in a 29- year old man in Enugu Nigeria. Plasmodium falciparum count of Giemsa ...

  11. Piperaquine Resistance in Plasmodium falciparum, West Africa.

    Science.gov (United States)

    Inoue, Juliana; Silva, Miguel; Fofana, Bakary; Sanogo, Kassim; Mårtensson, Andreas; Sagara, Issaka; Björkman, Anders; Veiga, Maria Isabel; Ferreira, Pedro Eduardo; Djimde, Abdoulaye; Gil, José Pedro

    2018-08-17

    Dihydroartemisinin/piperaquine (DHA/PPQ) is increasingly deployed as antimalaria drug in Africa. We report the detection in Mali of Plasmodium falciparum infections carrying plasmepsin 2 duplications (associated with piperaquine resistance) in 7/65 recurrent infections within 2 months after DHA/PPQ treatment. These findings raise concerns about the long-term efficacy of DHA/PPQ treatment in Africa.

  12. Increased eosinophil activity in acute Plasmodium falciparum infection - association with cerebral malaria

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Reimert, C M; Tette, E

    1998-01-01

    To assess the eosinophil response to Plasmodium falciparum infection a cohort of initially parasite-free Ghanaian children was followed for 3 months. Seven of nine children who acquired an asymptomatic P. falciparum infection showed increase in eosinophil counts, while a decrease was found in seven...... of nine children with symptomatic malaria, and no change was observed in 14 children who remained parasite-free. In a hospital-based study, paediatric patients with cerebral malaria (CM), severe anaemia (SA), or uncomplicated malaria (UM) had uniformly low eosinophil counts during the acute illness...... followed by eosinophilia 30 days after cure. Plasma levels of eosinophil cationic protein (ECP) and eosinophil protein X (EPX) were measured as indicators of eosinophil activation. In spite of the low eosinophil counts, ECP levels were increased on day 0 and significantly higher in patients with CM...

  13. Plasmodium falciparum in the southeastern Atlantic forest: a challenge to the bromeliad-malaria paradigm?

    Science.gov (United States)

    Laporta, Gabriel Zorello; Burattini, Marcelo Nascimento; Levy, Debora; Fukuya, Linah Akemi; de Oliveira, Tatiane Marques Porangaba; Maselli, Luciana Morganti Ferreira; Conn, Jan Evelyn; Massad, Eduardo; Bydlowski, Sergio Paulo; Sallum, Maria Anice Mureb

    2015-04-25

    Recently an unexpectedly high prevalence of Plasmodium falciparum was found in asymptomatic blood donors living in the southeastern Brazilian Atlantic forest. The bromeliad-malaria paradigm assumes that transmission of Plasmodium vivax and Plasmodium malariae involves species of the subgenus Kerteszia of Anopheles and only a few cases of P. vivax malaria are reported annually in this region. The expectations of this paradigm are a low prevalence of P. vivax and a null prevalence of P. falciparum. Therefore, the aim of this study was to verify if P. falciparum is actively circulating in the southeastern Brazilian Atlantic forest remains. In this study, anophelines were collected with Shannon and CDC-light traps in seven distinct Atlantic forest landscapes over a 4-month period. Field-collected Anopheles mosquitoes were tested by real-time PCR assay in pools of ten, and then each mosquito from every positive pool, separately for P. falciparum and P. vivax. Genomic DNA of P. falciparum or P. vivax from positive anophelines was then amplified by traditional PCR for sequencing of the 18S ribosomal DNA to confirm Plasmodium species. Binomial probabilities were calculated to identify non-random results of the P. falciparum-infected anopheline findings. The overall proportion of anophelines naturally infected with P. falciparum was 4.4% (21/480) and only 0.8% (4/480) with P. vivax. All of the infected mosquitoes were found in intermixed natural and human-modified environments and most were Anopheles cruzii (22/25 = 88%, 18 P. falciparum plus 4 P. vivax). Plasmodium falciparum was confirmed by sequencing in 76% (16/21) of positive mosquitoes, whereas P. vivax was confirmed in only 25% (1/4). Binomial probabilities suggest that P. falciparum actively circulates throughout the region and that there may be a threshold of the forested over human-modified environment ratio upon which the proportion of P. falciparum-infected anophelines increases significantly. These results

  14. Mosquito Passage Dramatically Changes var Gene Expression in Controlled Human Plasmodium falciparum Infections.

    Science.gov (United States)

    Bachmann, Anna; Petter, Michaela; Krumkamp, Ralf; Esen, Meral; Held, Jana; Scholz, Judith A M; Li, Tao; Sim, B Kim Lee; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Duffy, Michael F; Tannich, Egbert

    2016-04-01

    Virulence of the most deadly malaria parasite Plasmodium falciparum is linked to the variant surface antigen PfEMP1, which is encoded by about 60 var genes per parasite genome. Although the expression of particular variants has been associated with different clinical outcomes, little is known about var gene expression at the onset of infection. By analyzing controlled human malaria infections via quantitative real-time PCR, we show that parasite populations from 18 volunteers expressed virtually identical transcript patterns that were dominated by the subtelomeric var gene group B and, to a lesser extent, group A. Furthermore, major changes in composition and frequency of var gene transcripts were detected between the parental parasite culture that was used to infect mosquitoes and Plasmodia recovered from infected volunteers, suggesting that P. falciparum resets its var gene expression during mosquito passage and starts with the broad expression of a specific subset of var genes when entering the human blood phase.

  15. Genetics of refractoriness to Plasmodium falciparum in the mosquito Anopheles stephensi

    NARCIS (Netherlands)

    Feldmann, A.M.; Gemert, Geert-Jan van; Vegte-Bolmer, Marga G. van de; Jansen, Ritsert C.

    1998-01-01

    We previously selected a line of the malaria vector mosquito Anopheles stephensi refractory (resistant) to the human malaria parasite Plasmodium falciparum, using in vitro infections with P. falciparum gametocytes. This report presents data on the genetic background of refractoriness. The results of

  16. Malaria rapid diagnostic tests: Plasmodium falciparum infections with high parasite densities may generate false positive Plasmodium vivax pLDH lines

    Directory of Open Access Journals (Sweden)

    van Esbroeck Marjan

    2010-07-01

    Full Text Available Abstract Background Most malaria rapid diagnostic tests (RDTs detect Plasmodium falciparum and an antigen common to the four species. Plasmodium vivax-specific RDTs target P. vivax-specific parasite lactate dehydrogenase (Pv-pLDH. Previous observations of false positive Pv-pLDH test lines in P. falciparum samples incited to the present study, which assessed P. vivax-specific RDTs for the occurrence of false positive Pv-pLDH lines in P. falciparum samples. Methods Nine P. vivax-specific RDTs were tested with 85 P. falciparum samples of high (≥2% parasite density. Mixed P. falciparum/P. vivax infections were ruled out by real-time PCR. The RDTs included two-band (detecting Pv-pLDH, three-band (detecting P. falciparum-antigen and Pv-pLDH and four-band RDTs (detecting P. falciparum, Pv-pLDH and pan-pLDH. Results False positive Pv-pLDH lines were observed in 6/9 RDTs (including two- three- and four-band RDTs. They occurred in the individual RDT brands at frequencies ranging from 8.2% to 29.1%. For 19/85 samples, at least two RDT brands generated a false positive Pv-pLDH line. Sixteen of 85 (18.8% false positive lines were of medium or strong line intensity. There was no significant relation between false positive results and parasite density or geographic origin of the samples. Conclusion False positive Pv-pLDH lines in P. falciparum samples with high parasite density occurred in 6/9 P. vivax-specific RDTs. This is of concern as P. falciparum and P. vivax are co-circulating in many regions. The diagnosis of life-threatening P. falciparum malaria may be missed (two-band Pv-pLDH RDT, or the patient may be treated incorrectly with primaquine (three- or four-band RDTs.

  17. Genetic polymorphism of Plasmodium falciparum isolates from Loreto, Peru.

    Science.gov (United States)

    Hijar, Gisely; Padilla, Carlos; Marquiño, Wilmer; Falconi, Eduardo; Montoya, Ysabel

    2002-04-01

    Eight genotypes of Plasmodium falciparum were detected after analysing blood samples obtained from 30 Peruvian jungle-dwelling patients in Loreto, a high transmission area for P. falciparum, using amplification of the polymorphic marker gene GLURP (glutamate-rich protein). Genotypes I (GLURP450) and VIII (GLURP800) were the most common (15/30 and 13/30, respectively). This single copy gene showed 15 patients to be infected with a single genotype of P. falciparum; the other 15 were infected with mixed genotypes, one of them with 4 genotypes. These findings are compatible with a high genetic complexity of P. falciparum. Further investigations are needed, using this and other markers, in order to design malaria control measures in Peru.

  18. A molecular survey of acute febrile illnesses reveals Plasmodium vivax infections in Kedougou, southeastern Senegal.

    Science.gov (United States)

    Niang, Makhtar; Thiam, Laty Gaye; Sow, Abdourahmane; Loucoubar, Cheikh; Bob, Ndeye Sakha; Diop, Fode; Diouf, Babacar; Niass, Oumy; Mansourou, Annick; Varela, Marie Louise; Perraut, Ronald; Sall, Amadou A; Toure-Balde, Aissatou

    2015-07-19

    Control efforts towards malaria due to Plasmodium falciparum significantly decreased the incidence of the disease in many endemic countries including Senegal. Surprisingly, in Kedougou (southeastern Senegal) P. falciparum malaria remains highly prevalent and the relative contribution of other Plasmodium species to the global malaria burden is very poorly documented, partly due to the low sensitivity of routine diagnostic tools. Molecular methods offer better estimate of circulating Plasmodium species in a given area. A molecular survey was carried out to document circulating malaria parasites in Kedougou region. A total of 263 long-term stored sera obtained from patients presenting with acute febrile illness in Kedougou between July 2009 and July 2013 were used for malaria parasite determination. Sera were withdrawn from a collection established as part of a surveillance programme of arboviruses infections in the region. Plasmodium species were characterized by a nested PCR-based approach targeting the 18S small sub-unit ribosomal RNA genes of Plasmodium spp. Of the 263 sera screened in this study, Plasmodium genomic DNA was amplifiable by nested PCR from 62.35% (164/263) of samples. P. falciparum accounted for the majority of infections either as single in 85.97% (141/164) of Plasmodium-positive samples or mixed with Plasmodium ovale (11.58%, 19/164) or Plasmodium vivax (1.21%, 2/164). All 19 (11.58%) P. ovale-infected patients were mixed with P. falciparum, while no Plasmodium malariae was detected in this survey. Four patients (2.43%) were found to be infected by P. vivax, two of whom were mixed with P. falciparum. P. vivax infections originated from Bandafassi and Ninefesha villages and concerned patients aged 4, 9, 10, and 15 years old, respectively. DNA sequences alignment and phylogenetic analysis demonstrated that sequences from Kedougou corresponded to P. vivax, therefore confirming the presence of P. vivax infections in Senegal. The results confirm the

  19. Mapping the binding site of a cross-reactive Plasmodium falciparum PfEMP1 monoclonal antibody inhibitory of ICAM-1 binding

    DEFF Research Database (Denmark)

    Lennartz, Frank; Bengtsson, Anja; Olsen, Rebecca W

    2015-01-01

    The virulence of Plasmodium falciparum is linked to the ability of infected erythrocytes (IE) to adhere to the vascular endothelium, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). In this article, we report the functional characterization of an mAb that recognizes a panel of P...

  20. Cryo scanning electron microscopy of Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Hempel, Casper

    2017-01-01

    Plasmodium falciparum invades erythrocytes as an essential part of their life cycle. While living inside erythrocytes, the parasite remodels the cell's intracellular organization as well as its outer surface. Late trophozoite-stage parasites and schizonts introduce numerous small protrusions...

  1. Antiplasmodial activity of two medicinal plants against clinical isolates of Plasmodium falciparum and Plasmodium berghei infected mice.

    Science.gov (United States)

    Attemene, Serge David Dago; Beourou, Sylvain; Tuo, Karim; Gnondjui, Albert Alloh; Konate, Abibatou; Toure, Andre Offianan; Kati-Coulibaly, Seraphin; Djaman, Joseph Alico

    2018-03-01

    Malaria is an infectious and deadly parasitic disease, associated with fever, anaemia and other ailments. Unfortunately the upsurge of plasmodium multidrug resistant constrained researchers to look for new effective drugs. Medicinal plants seem to be an unquenchable source of bioactive principles in the treatment of various diseases. The aim of this study was to assess the antiplasmodial activity of two Ivorian medicinal plants. The in vitro activity was evaluated against clinical isolates and Plasmodium falciparum K1 multidrug resistant strain using the fluorescence based SYBR green I assay. The in vivo bioassay was carried out using the classical 4 day suppressive and curative tests on Plasmodium berghei infected mice. Results showed that the in vitro bioassay of both plant extracts were found to exhibit a promising and moderate antiparasitic effects on clinical isolates (5 µg/mL plant extracts need to be investigated.

  2. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Goel, Suchi; Palmkvist, Mia; Moll, Kirsten

    2015-01-01

    Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum–encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs—preferentiall......Rosetting is a virulent Plasmodium falciparum phenomenon associated with severe malaria. Here we demonstrate that P. falciparum–encoded repetitive interspersed families of polypeptides (RIFINs) are expressed on the surface of infected red blood cells (iRBCs), where they bind to RBCs......—preferentially of blood group A—to form large rosettes and mediate microvascular binding of iRBCs. We suggest that RIFINs have a fundamental role in the development of severe malaria and thereby contribute to the varying global distribution of ABO blood groups in the human population....

  3. Plasmodium vivax and Plasmodium falciparum infections in the Republic of Djibouti: evaluation of their prevalence and potential determinants.

    Science.gov (United States)

    Khaireh, Bouh Abdi; Briolant, Sébastien; Pascual, Aurélie; Mokrane, Madjid; Machault, Vanessa; Travaillé, Christelle; Khaireh, Mohamed Abdi; Farah, Ismail Hassan; Ali, Habib Moussa; Abdi, Abdul-Ilah Ahmed; Ayeh, Souleiman Nour; Darar, Houssein Youssouf; Ollivier, Lénaïck; Waiss, Mohamed Killeh; Bogreau, Hervé; Rogier, Christophe; Pradines, Bruno

    2012-11-28

    Formerly known as a hypoendemic malaria country, the Republic of Djibouti declared the goal of pre-eliminating malaria in 2006. The aim of the present study was to evaluate the prevalence of Plasmodium falciparum, Plasmodium vivax and mixed infections in the Djiboutian population by using serological tools and to identify potential determinants of the disease and hotspots of malaria transmission within the country. The prevalence of P. falciparum and P. vivax within the districts of the capital city and the rest of the Republic of Djibouti were assessed using 13 and 2 serological markers, respectively. The relationship between the immune humeral response to P. falciparum and P. vivax and variables such as age, gender, wealth status, urbanism, educational level, distance to rivers/lakes, living area, having fever in the last month, and staying in a malaria-endemic country more than one year was estimated and analysed by questionnaires administered to 1910 Djiboutians. Multivariate ordinal logistic regression models of the immune humeral response were obtained for P. falciparum and P. vivax. The P. falciparum and P. vivax seroprevalence rates were 31.5%, CI95% [29.4-33.7] and 17.5%, CI95% [15.8-19.3], respectively. Protective effects against P. falciparum and P. vivax were female gender, educational level, and never having visited a malaria-endemic area for more than one year. For P. falciparum only, a protective effect was observed for not having a fever in the last month, living more than 1.5 km away from lakes and rivers, and younger ages. This is the first study that assessed the seroprevalence of P. vivax in the Republic of Djibouti. It is necessary to improve knowledge of this pathogen in order to create an effective elimination programme. As supported by recent observations on the subject, the Republic of Djibouti has probably demonstrated a real decrease in the transmission of P. falciparum in the past seven years, which should encourage authorities to

  4. Plasmodium vivax and Plasmodium falciparum infections in the Republic of Djibouti: evaluation of their prevalence and potential determinants

    Directory of Open Access Journals (Sweden)

    Khaireh Bouh Abdi

    2012-11-01

    Full Text Available Abstract Background Formerly known as a hypoendemic malaria country, the Republic of Djibouti declared the goal of pre-eliminating malaria in 2006. The aim of the present study was to evaluate the prevalence of Plasmodium falciparum, Plasmodium vivax and mixed infections in the Djiboutian population by using serological tools and to identify potential determinants of the disease and hotspots of malaria transmission within the country. Methods The prevalence of P. falciparum and P. vivax within the districts of the capital city and the rest of the Republic of Djibouti were assessed using 13 and 2 serological markers, respectively. The relationship between the immune humeral response to P. falciparum and P. vivax and variables such as age, gender, wealth status, urbanism, educational level, distance to rivers/lakes, living area, having fever in the last month, and staying in a malaria-endemic country more than one year was estimated and analysed by questionnaires administered to 1910 Djiboutians. Multivariate ordinal logistic regression models of the immune humeral response were obtained for P. falciparum and P. vivax. Results The P. falciparum and P. vivax seroprevalence rates were 31.5%, CI95% [29.4-33.7] and 17.5%, CI95% [15.8-19.3], respectively. Protective effects against P. falciparum and P. vivax were female gender, educational level, and never having visited a malaria-endemic area for more than one year. For P. falciparum only, a protective effect was observed for not having a fever in the last month, living more than 1.5 km away from lakes and rivers, and younger ages. Conclusions This is the first study that assessed the seroprevalence of P. vivax in the Republic of Djibouti. It is necessary to improve knowledge of this pathogen in order to create an effective elimination programme. As supported by recent observations on the subject, the Republic of Djibouti has probably demonstrated a real decrease in the transmission of P. falciparum

  5. Competitive endothelial adhesion between Plasmodium falciparum isolates under physiological flow conditions

    Directory of Open Access Journals (Sweden)

    Molyneux Malcolm

    2009-09-01

    Full Text Available Abstract Background Sequestration of parasitized red blood cells in the microvasculature of major organs involves a sequence of events that is believed to contribute to the pathogenesis of severe falciparum malaria. Plasmodium falciparum infections are commonly composed of multiple subpopulations of parasites with varied adhesive properties. A key question is: do these subpopulations compete for adhesion to endothelium? This study investigated whether, in a laboratory model of cytoadherence, there is competition in binding to endothelium between pRBC infected with P. falciparum of variant adhesive phenotypes, particularly under flow conditions. Methods Four different P. falciparum isolates, of known adherence phenotypes, were matched in pairs, mixed in different proportions and allowed to bind to cultured human endothelium. Using in vitro competitive static and flow-based adhesion assays, that allow simultaneous testing of the adhesive properties of two different parasite lines, adherence levels of paired P. falciparum isolates were quantified and analysed using either non-parametric Wilcoxon's paired signed rank test or Student paired test. Results Study findings show that P. falciparum parasite lines show marked differences in the efficiency of adhesion to endothelium. Conclusion Plasmodium falciparum variants will compete for adhesion to endothelia and variants can be ranked by their efficiency of binding. These findings suggest that variants from a mixed infection will not show uniform cytoadherence and so may vary in their ability to cause disease.

  6. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras.

    Science.gov (United States)

    Lopez, Ana Cecilia; Ortiz, Andres; Coello, Jorge; Sosa-Ochoa, Wilfredo; Torres, Rosa E Mejia; Banegas, Engels I; Jovel, Irina; Fontecha, Gustavo A

    2012-11-26

    Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite's circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77) for pvama-1; 23 (n = 84) for pvcsp; and 23 (n = 35) for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2) was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30) block 2 (K1, MAD20, and RO33), and both allelic families described for the central domain of pfmsp-2 (n = 11) (3D7 and FC27) were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission.

  7. The Severity of Plasmodium falciparum infection is associated with transcript levels of var genes encoding endothelial protein C receptor-binding P. falciparum erythrocyte membrane protein 1

    DEFF Research Database (Denmark)

    Mkumbaye, Sixbert I; Wang, Christian W; Lyimo, Eric

    2017-01-01

    By attaching infected erythrocytes to the vascular lining, Plasmodium falciparum parasites leave blood circulation and avoid splenic clearance. This sequestration is central to pathogenesis. Severe malaria is associated with parasites expressing an antigenically distinct P. falciparum erythrocyte...

  8. Increased prevalence of Plasmodium falciparum malaria in Honduras, Central America Aumento de la prevalencia de malaria por Plasmodium falciparum en Honduras, Centroamerica

    Directory of Open Access Journals (Sweden)

    Carol J. Palmer

    1998-07-01

    Full Text Available We report on our investigation of a malaria outbreak in Honduras, Central America, in January 1997. We tested 202 patients with fever and chills using thin and thick blood film microscopy. Sixteen patients lived in the city and the rest lived in rural areas. A total of 95 samples (47% were positive for malaria parasites. Seventy-nine percent (63/80 of the rural patients were infected with Plasmodium vivax and 21% (17/80 were infected with P. falciparum. In the urban area, all 15 infected patients had P. vivax malaria and none showed evidence of P. falciparum. Since previous reports indicate that falciparum malaria accounts for only 2% of the overall malaria infections in Honduras, the results reported here suggest that there is a dramatic increase in falciparum malaria in the area of Honduras investigated in this study.Notificamos los resultados de un estudio de un brote de malaria que se produjo en Honduras, Centroamérica, en enero de 1997. Sometimos a examen microscópico frotis delgados y frotis gruesos de la sangre de 202 pacientes con fiebre y escalofríos. Dieciséis pacientes eran habitantes de la zona urbana y el resto de la zona rural. Un total de 95 especímenes (47% fueron positivos a parásitos de la malaria. Setenta y ocho por ciento (62/80 de los pacientes del área rural estaban infestados con Plasmodium vivax y 22% (17/80 con P. falciparum. En la zona urbana, todos los 15 pacientes que estaban infestados tenían P. vivax y en ninguno se detectó P. falciparum. Ya que según informes previos la malaria de tipo falciparum representa solamente 2% de todos los casos de malaria en Honduras, nuestros resultados sugieren que hay un gran incremento del número de casos de malaria falciparum en la zona de Honduras en que se llevó a cabo esta investigación.

  9. High prevalence of Plasmodium falciparum malaria among Human ...

    African Journals Online (AJOL)

    Malaria and Human Immunodeficiency Virus (HIV) infections are major public health problems in Sub-Saharan Africa. Their overlapping geographical distribution and co-existence often result into high morbidity and mortality. This study was designed to establish the prevalence of Plasmodium falciparum malaria among HIV ...

  10. Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: a two-way pathway

    Directory of Open Access Journals (Sweden)

    F.T.M. Costa

    2006-12-01

    Full Text Available Malaria is undoubtedly the world's most devastating parasitic disease, affecting 300 to 500 million people every year. Some cases of Plasmodium falciparum infection progress to the deadly forms of the disease responsible for 1 to 3 million deaths annually. P. falciparum-infected erythrocytes adhere to host receptors in the deep microvasculature of several organs. The cytoadhesion of infected erythrocytes to placental syncytiotrophoblast receptors leads to pregnancy-associated malaria (PAM. This specific maternal-fetal syndrome causes maternal anemia, low birth weight and the death of 62,000 to 363,000 infants per year in sub-Saharan Africa, and thus has a poor outcome for both mother and fetus. However, PAM and non-PAM parasites have been shown to differ antigenically and genetically. After multiple pregnancies, women from different geographical areas develop adhesion-blocking antibodies that protect against placental parasitemia and clinical symptoms of PAM. The recent description of a new parasite ligand encoded by the var2CSA gene as the only gene up-regulated in PAM parasites renders the development of an anti-PAM vaccine more feasible. The search for a vaccine to prevent P. falciparum sequestration in the placenta by eliciting adhesion-blocking antibodies and a cellular immune response, and the development of new methods for evaluating such antibodies should be key priorities in mother-child health programs in areas of endemic malaria. This review summarizes the main molecular, immunological and physiopathological aspects of PAM, including findings related to new targets in the P. falciparum var gene family. Finally, we focus on a new methodology for mimicking cytoadhesion under blood flow conditions in human placental tissue.

  11. Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Hui Shi

    Full Text Available Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM. We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.

  12. Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.

    Science.gov (United States)

    Shi, Hui; Liu, Zhuo; Li, Ang; Yin, Jing; Chong, Alvin G L; Tan, Kevin S W; Zhang, Yong; Lim, Chwee Teck

    2013-01-01

    Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.

  13. Infants' Peripheral Blood Lymphocyte Composition Reflects Both Maternal and Post-Natal Infection with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Odilon Nouatin

    Full Text Available Maternal parasitoses modulate fetal immune development, manifesting as altered cellular immunological activity in cord blood that may be linked to enhanced susceptibility to infections in early life. Plasmodium falciparum typifies such infections, with distinct placental infection-related changes in cord blood exemplified by expanded populations of parasite antigen-specific regulatory T cells. Here we addressed whether such early-onset cellular immunological alterations persist through infancy. Specifically, in order to assess the potential impacts of P. falciparum infections either during pregnancy or during infancy, we quantified lymphocyte subsets in cord blood and in infants' peripheral blood during the first year of life. The principal age-related changes observed, independent of infection status, concerned decreases in the frequencies of CD4+, NKdim and NKT cells, whilst CD8+, Treg and Teff cells' frequencies increased from birth to 12 months of age. P. falciparum infections present at delivery, but not those earlier in gestation, were associated with increased frequencies of Treg and CD8+ T cells but fewer CD4+ and NKT cells during infancy, thus accentuating the observed age-related patterns. Overall, P. falciparum infections arising during infancy were associated with a reversal of the trends associated with maternal infection i.e. with more CD4+ cells, with fewer Treg and CD8+ cells. We conclude that maternal P. falciparum infection at delivery has significant and, in some cases, year-long effects on the composition of infants' peripheral blood lymphocyte populations. Those effects are superimposed on separate and independent age- as well as infant infection-related alterations that, respectively, either match or run counter to them.

  14. Plasmodium falciparum ookinete expression of plasmepsin VII and plasmepsin X.

    Science.gov (United States)

    Li, Fengwu; Bounkeua, Viengngeun; Pettersen, Kenneth; Vinetz, Joseph M

    2016-02-24

    Plasmodium invasion of the mosquito midgut is a population bottleneck in the parasite lifecycle. Interference with molecular mechanisms by which the ookinete invades the mosquito midgut is one potential approach to developing malaria transmission-blocking strategies. Plasmodium aspartic proteases are one such class of potential targets: plasmepsin IV (known to be present in the asexual stage food vacuole) was previously shown to be involved in Plasmodium gallinaceum infection of the mosquito midgut, and plasmepsins VII and plasmepsin X (not known to be present in the asexual stage food vacuole) are upregulated in Plasmodium falciparum mosquito stages. These (and other) parasite-derived enzymes that play essential roles during ookinete midgut invasion are prime candidates for transmission-blocking vaccines. Reverse transcriptase PCR (RT-PCR) was used to determine timing of P. falciparum plasmepsin VII (PfPM VII) and plasmepsin X (PfPM X) mRNA transcripts in parasite mosquito midgut stages. Protein expression was confirmed by western immunoblot and immunofluorescence assays (IFA) using anti-peptide monoclonal antibodies (mAbs) against immunogenic regions of PfPM VII and PfPM X. These antibodies were also used in standard membrane feeding assays (SMFA) to determine whether inhibition of these proteases would affect parasite transmission to mosquitoes. The Mann-Whitney U test was used to analyse mosquito transmission assay results. RT-PCR, western immunoblot and immunofluorescence assay confirmed expression of PfPM VII and PfPM X in mosquito stages. Whereas PfPM VII was expressed in zygotes and ookinetes, PfPM X was expressed in gametes, zygotes, and ookinetes. Antibodies against PfPM VII and PfPM X decreased P. falciparum invasion of the mosquito midgut when used at high concentrations, indicating that these proteases play a role in Plasmodium mosquito midgut invasion. Failure to generate genetic knockouts of these genes limited determination of the precise role of

  15. Acquisition and decay of antibodies to pregnancy-associated variant antigens on the surface of Plasmodium falciparum-infected erythrocytes that protect against placental parasitemia

    DEFF Research Database (Denmark)

    Staalsoe, T; Megnekou, R; Fievét, N

    2001-01-01

    Otherwise clinically immune women in areas endemic for malaria are highly susceptible to Plasmodium falciparum malaria during their first pregnancy. Pregnancy-associated malaria (PAM) is characterized by placental accumulation of infected erythrocytes that adhere to chondroitin sulfate A (CSA). S...... adhesion to CSA. Data suggest that VSA(CSA) is a target for vaccination against PAM....

  16. Proteomics methods applied to malaria: Plasmodium falciparum

    International Nuclear Information System (INIS)

    Cuesta Astroz, Yesid; Segura Latorre, Cesar

    2012-01-01

    Malaria is a parasitic disease that has a high impact on public health in developing countries. The sequencing of the plasmodium falciparum genome and the development of proteomics have enabled a breakthrough in understanding the biology of the parasite. Proteomics have allowed to characterize qualitatively and quantitatively the parasite s expression of proteins and has provided information on protein expression under conditions of stress induced by antimalarial. Given the complexity of their life cycle, this takes place in the vertebrate host and mosquito vector. It has proven difficult to characterize the protein expression during each stage throughout the infection process in order to determine the proteome that mediates several metabolic, physiological and energetic processes. Two dimensional electrophoresis, liquid chromatography and mass spectrometry have been useful to assess the effects of antimalarial on parasite protein expression and to characterize the proteomic profile of different p. falciparum stages and organelles. The purpose of this review is to present state of the art tools and advances in proteomics applied to the study of malaria, and to present different experimental strategies used to study the parasite's proteome in order to show the advantages and disadvantages of each one.

  17. The shape of the iceberg: quantification of submicroscopic Plasmodium falciparum and Plasmodium vivax parasitaemia and gametocytaemia in five low endemic settings in Ethiopia

    NARCIS (Netherlands)

    Tadesse, F.G.; Hoogen, L. van den; Lanke, K.H.; Schildkraut, J.; Tetteh, K.; Aseffa, A.; Mamo, H.; Sauerwein, R.; Felger, I.; Drakeley, C.; Gadissa, E.; Bousema, T.

    2017-01-01

    BACKGROUND: The widespread presence of low-density asymptomatic infections with concurrent gametocytes may be a stumbling block for malaria elimination. This study investigated the asymptomatic reservoir of Plasmodium falciparum and Plasmodium vivax infections in schoolchildren from five settings in

  18. Plasmodium Falciparum: Adhesion Phenotype of Infected Erythrocytes Using Classical and Mini-Column Cytoadherence Techniques

    Directory of Open Access Journals (Sweden)

    N Kalantari

    2013-03-01

    Full Text Available Background: Cytoadherence of Plasmodium falciparum- infected erythrocytes to host cells is an impor­tant trait for parasite survival and has a major role in pathology of malaria disease. Infections with P. falciparum usually consist of several subpopulations of parasites with different adhesive proper­ties. This study aimed to compare relative sizes of various binding subpopulations of different P. falciparum isolates. It also investigated the adhesive phenotype of a laboratory P. falciparum line, A4, using different binding techniques.Methods: Seven different P. falciparum isolates (ITG, A4, 3D7 and four field isolates were cultivated to late trophozoite and schizont and then cytoadherence to cell differentiation 36 (CD36, intercellu­lar cell adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecule (V-CAM and E-selectin were examined. The relative binding sizes of parasite subpopulations to human receptors were meas­ured by mini-column cytoadherence method. The adhesion phenotype of P. falciparum-A4 line was evaluated by in vitro static, flow-based and mini-column binding assays.Results: The relative binding size of ITG, A4 and 3D7 clones to a column made with CHO/ICAM-1 was 68%, 54% and 0%, respectively. The relative binding sizes of these lines to CHO/CD36 were 59.7%, 28.7% and 0%, respectively. Different field isolates had variable sizes of respective CD36 and ICAM1-binding subpopulations. A4 line had five different subpopulations each with different binding sizes.Conclusion: This study provided further evidence that P. falciparum isolates have different binding subpopulations sizes in an infection. Furthermore, measurement of ICAM-1 or CD36 binding subpopula­tions may practical to study the cytoadherence phenotypes of P. falciparum field isolates at the molecular level.

  19. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America.

    Science.gov (United States)

    Jovel, Irina T; Mejía, Rosa E; Banegas, Engels; Piedade, Rita; Alger, Jackeline; Fontecha, Gustavo; Ferreira, Pedro E; Veiga, Maria I; Enamorado, Irma G; Bjorkman, Anders; Ursing, Johan

    2011-12-19

    In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P

  20. Co-endemicity of Plasmodium falciparum and Intestinal Helminths Infection in School Age Children in Rural Communities of Kwara State Nigeria

    Science.gov (United States)

    Adedoja, Ayodele; Tijani, Bukola Deborah; Akanbi, Ajibola A.; Ojurongbe, Taiwo A.; Adeyeba, Oluwaseyi A.; Ojurongbe, Olusola

    2015-01-01

    Background Malaria and intestinal helminths co-infection are major public health problems particularly among school age children in Nigeria. However the magnitude and possible interactions of these infections remain poorly understood. This study determined the prevalence, impact and possible interaction of Plasmodium falciparum and intestinal helminths co-infection among school children in rural communities of Kwara State, Nigeria. Methods Blood, urine and stool samples were collected from 1017 primary school pupils of ages 4–15 years. Stool samples were processed using both Kato-Katz and formol-ether concentration techniques and microscopically examined for intestinal helminths infection. Urine samples were analyzed using sedimentation method for Schistosoma haematobium. Plasmodium falciparum was confirmed by microscopy using thick and thin blood films methods and packed cell volume (PCV) was determined using hematocrit reader. Univariate analysis and chi-square statistical tests were used to analyze the data. Results Overall, 61.2% of all school children had at least an infection of either P. falciparum, S. haematobium, or intestinal helminth. S. haematobium accounted for the largest proportion (44.4%) of a single infection followed by P. falciparum (20.6%). The prevalence of malaria and helminth co-infection in the study was 14.4%. Four species of intestinal helminths were recovered from the stool samples and these were hookworm (22.5%), Hymenolepis species (9.8%), Schistosoma mansoni (2.9%) and Enterobius vermicularis (0.6%). The mean densities of P. falciparum in children co-infected with S. haematobium and hookworm were higher compared to those infected with P. falciparum only though not statistically significant (p = 0.062). The age distribution of both S. haematobium (p = 0.049) and hookworm (p = 0.034) infected children were statistically significant with the older age group (10–15 years) recording the highest prevalence of 47.2% and 25% respectively

  1. Plasmodium falciparum multiplicity correlates with anaemia in symptomatic malaria

    NARCIS (Netherlands)

    Mockenhaupt, Frank P.; Ehrhardt, Stephan; Eggelte, Teunis A.; Markert, Miriam; Anemana, Sylvester; Otchwemah, Rowland; Bienzle, Ulrich

    2003-01-01

    In 366 Ghanaian children with symptomatic Plasmodium falciparum malaria, low haemoglobin levels and severe anaemia were associated with a high multiplicity of infection (MOI) and with distinct merozoite surface protein alleles. High MOI not only reflects premunition but may also contribute to

  2. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

    Science.gov (United States)

    Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O’Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis; Borrmann, Steffen; Kiara, Steven M.; Marsh, Kevin; Jiang, Hongying; Su, Xin-Zhuan; Amaratunga, Chanaki; Fairhurst, Rick; Socheat, Duong; Nosten, Francois; Imwong, Mallika; White, Nicholas J.; Sanders, Mandy; Anastasi, Elisa; Alcock, Dan; Drury, Eleanor; Oyola, Samuel; Quail, Michael A.; Turner, Daniel J.; Rubio, Valentin Ruano; Jyothi, Dushyanth; Amenga-Etego, Lucas; Hubbart, Christina; Jeffreys, Anna; Rowlands, Kate; Sutherland, Colin; Roper, Cally; Mangano, Valentina; Modiano, David; Tan, John C.; Ferdig, Michael T.; Amambua-Ngwa, Alfred; Conway, David J.; Takala-Harrison, Shannon; Plowe, Christopher V.; Rayner, Julian C.; Rockett, Kirk A.; Clark, Taane G.; Newbold, Chris I.; Berriman, Matthew; MacInnis, Bronwyn; Kwiatkowski, Dominic P.

    2013-01-01

    Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. 1,2 Here we describe methods for large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short term culture. Analysis of 86,158 exonic SNPs that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome. PMID:22722859

  3. Inactivation of Plasmodium falciparum in whole body by riboflavin ...

    African Journals Online (AJOL)

    Background Malaria parasites are frequently trans- mitted by unscreened blood transfusions in Africa. Pathogen reduction methods in whole blood would thus greatly improve blood safety. We aimed to determine the efficacy of riboflavin plus irradiation for treatment of whole blood infected with Plasmodium falciparum.

  4. The dynamics of naturally acquired immunity to Plasmodium falciparum infection.

    Directory of Open Access Journals (Sweden)

    Mykola Pinkevych

    Full Text Available Severe malaria occurs predominantly in young children and immunity to clinical disease is associated with cumulative exposure in holoendemic settings. The relative contribution of immunity against various stages of the parasite life cycle that results in controlling infection and limiting disease is not well understood. Here we analyse the dynamics of Plasmodium falciparum malaria infection after treatment in a cohort of 197 healthy study participants of different ages in order to model naturally acquired immunity. We find that both delayed time-to-infection and reductions in asymptomatic parasitaemias in older age groups can be explained by immunity that reduces the growth of blood stage as opposed to liver stage parasites. We found that this mechanism would require at least two components - a rapidly acting strain-specific component, as well as a slowly acquired cross-reactive or general immunity to all strains. Analysis and modelling of malaria infection dynamics and naturally acquired immunity with age provides important insights into what mechanisms of immune control may be harnessed by malaria vaccine strategists.

  5. Comparative population structure of Plasmodium malariae and Plasmodium falciparum under different transmission settings in Malawi

    Directory of Open Access Journals (Sweden)

    Molyneux Malcolm E

    2011-02-01

    Full Text Available Abstract Background Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures. Methods Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI, population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters. Results Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008 and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11 and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission

  6. Plasmodium falciparum transcriptome analysis reveals pregnancy malaria associated gene expression

    DEFF Research Database (Denmark)

    Tuikue Ndam, Nicaise; Bischoff, Emmanuel; Proux, Caroline

    2008-01-01

    BACKGROUND: Pregnancy-associated malaria (PAM) causing maternal anemia and low birth weight is among the multiple manifestations of Plasmodium falciparum malaria. Infected erythrocytes (iEs) can acquire various adhesive properties that mediate the clinical severity of malaria. Recent advances...

  7. Cytoadhesion of Plasmodium falciparum-infected erythrocytes to chondroitin-4-sulfate is cooperative and shear enhanced

    DEFF Research Database (Denmark)

    Rieger, Harden; Yoshikawa, Hiroshi Y; Quadt, Katharina

    2015-01-01

    Infections with the human malaria parasite Plasmodium falciparum during pregnancy can lead to severe complications for both mother and child, resulting from the cytoadhesion of parasitized erythrocytes in the intervillous space of the placenta. Cytoadherence is conferred by the specific interacti...... was cooperative and shear stress induced. These findings suggest that the CSA density, together with allosteric effects in VAR2CSA, aid in discriminating between different CSA milieus....

  8. Artemisinin resistance marker of Plasmodium falciparum in Osogbo ...

    African Journals Online (AJOL)

    Artemisinin derivatives constitute a key component of the present-day treatment for Plasmodium falciparum malaria. Resistance with artemisinins is generally associated with S769N point mutation in the sarco-endoplasmic reticulumdependant ATPase6 (SERCA ATPase6) gene of Plasmodium falciparum, few studies have ...

  9. Population genomics diversity of Plasmodium falciparum in malaria ...

    African Journals Online (AJOL)

    Background: Plasmodium falciparum, the most dangerous malaria parasite species to humans remains an important public health concern in Okelele, a rural community in Ilorin, Kwara State, Nigeria. There is however little information about the genetic diversity of Plasmodium falciparum in Nigeria. Objective: To determine ...

  10. Prevalence of molecular markers of anti-malarial drug resistance in Plasmodium vivax and Plasmodium falciparum in two districts of Nepal

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Schousboe, Mette L; Thomsen, Thomas

    2011-01-01

    ABSTRACT: BACKGROUND: Sulphadoxine-pyrimethamine (SP) and chloroquine (CQ) have been used in treatment of falciparum and vivax malaria in Nepal. Recently, resistance to both drugs have necessitated a change towards artemisinin combination therapy (ACT) against Plasmodium falciparum in highly...... endemic areas. However, SP is still used against P. falciparum infections in low endemic areas while CQ is used in suspected cases in areas with lack of diagnostic facilities. This study examines the prevalence of molecular markers of P. falciparum and Plasmodium vivax CQ and SP resistance to determine...... and P. vivax for CQ (Pfcrt, Pfmdr1, Pvmdr1) and SP (Pfdhfr, Pfdhps, Pvdhfr), using various PCR-based methods. RESULTS AND DISCUSSION: Positive P. vivax and P. falciparum infections were identified by PCR in 92 and 41 samples respectively. However, some of these were negative in subsequent PCRs. Based...

  11. Clinical and parasitological profiles of patients with non-complicated Plasmodium falciparum and Plasmodium vivax malaria in northwestern Colombia

    OpenAIRE

    Knudson-Ospina, Angélica; Sánchez-Pedraza, Ricardo; Pérez-Mazorra, Manuel Alberto; Cortés-Cortés, Liliana Jazmín; Guerra-Vega, Ángela Patricia; Nicholls-Orejuela, Rubén Santiago

    2015-01-01

    Antecedentes. En Colombia existen pocos estudios que buscan encontrar diferencias clínicas y parasitológicas en la malaria causada por Plasmodium falciparum y Plasmodium vivax. Objetivo. Describir el perfil clínico y parasitológico de las malarias por Plasmodium falciparum y Plasmodium vivax no complicadas en Tierralta, Córdoba, Colombia. Materiales y métodos. Se evaluaron pacientes con paludismo no complicado por Plasmodium falciparum y Plasmodium vivax según los protocolos estandarizados po...

  12. Reduced prevalence of Plasmodium falciparum infection and of concomitant anaemia in pregnant women with heterozygous G6PD deficiency

    NARCIS (Netherlands)

    Mockenhaupt, Frank P.; Mandelkow, Jantina; Till, Holger; Ehrhardt, Stephan; Eggelte, Teunis A.; Bienzle, Ulrich

    2003-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency confers protection against malaria in children, yet its role in malaria in pregnancy is unknown. In a cross-sectional study among 529 pregnant Ghanaian women, Plasmodium falciparum infection, anaemia and G6PD genotypes were assessed. Of these,

  13. Plasmodium falciparum malaria

    African Journals Online (AJOL)

    Durrheim, Karen Barnes. Objectives. To assess the therapeutic efficacy of sulfadoxine- pyrimethamine (SP) after 5 years of use as first-line treatment of uncomplicated Plasmodium falciparum malaria, and thus guide the selection of artemisinin-based combination therapy in Mpumalanga, South Africa. Design. An open-label ...

  14. Stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes by human monocytes Estágios da fagocitose in vitro por monócitos humanos de eritrócitos infectados por Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Maria Imaculada Muniz-Junqueira

    2009-04-01

    Full Text Available Monocytes/macrophages play a critical role in the defense mechanisms against malaria parasites, and are the main cells responsible for the elimination of malaria parasites from the blood circulation. We carried out a microscope-aided evaluation of the stages of in vitro phagocytosis of Plasmodium falciparum-infected erythrocytes, by human monocytes. These cells were obtained from healthy adult individuals by means of centrifugation through a cushion of Percoll density medium and were incubated with erythrocytes infected with Plasmodium falciparum that had previously been incubated with a pool of anti-plasmodial immune serum. We described the stages of phagocytosis, starting from adherence of infected erythrocytes to the phagocyte membrane and ending with their destruction within the phagolisosomes of the monocytes. We observed that the different erythrocytic forms of the parasite were ingested by monocytes, and that the process of phagocytosis may be completed in around 30 minutes. Furthermore, we showed that phagocytosis may occur continuously, such that different phases of the process were observed in the same phagocyte.Monócitos/macrófagos desempenham uma função crítica nos mecanismos de defesa antiplasmódio e constituem as principais células responsáveis pela eliminação das formas eritrocitárias do plasmódio da circulação sangüínea. Realizamos uma avaliação microscópica dos estágios da fagocitose in vitro de eritrócitos infectados por Plasmodium falciparum por monócitos humanos. Essas células foram obtidas de indivíduos adultos sadios por centrifugação em Percoll e incubadas com eritrócitos infectados por Plasmodium falciparum previamente incubados com um pool de soro imune contra plasmódio. Descrevemos os estágios da fagocitose, desde a aderência dos eritrócitos infectados até sua destruição nos fagolisossomas dos monócitos. Observou-se que eritrócitos infectados por todos os diferentes est

  15. Recruitment of human aquaporin 3 to internal membranes in the Plasmodium falciparum infected erythrocyte.

    Science.gov (United States)

    Bietz, Sven; Montilla, Irine; Külzer, Simone; Przyborski, Jude M; Lingelbach, Klaus

    2009-09-01

    The molecular mechanisms underlying the formation of the parasitophorous vacuolar membrane in Plasmodium falciparum infected erythrocytes are incompletely understood, and the protein composition of this membrane is still enigmatic. Although the differentiated mammalian erythrocyte lacks the machinery required for endocytosis, some reports have described a localisation of host cell membrane proteins at the parasitophorous vacuolar membrane. Aquaporin 3 is an abundant plasma membrane protein of various cells, including mammalian erythrocytes where it is found in distinct oligomeric states. Here we show that human aquaporin 3 is internalized into infected erythrocytes, presumably during or soon after invasion. It is integrated into the PVM where it is organized in novel oligomeric states which are not found in non-infected cells.

  16. High Levels of Genetic Diversity of Plasmodium falciparum Populations in Papua New Guinea despite Variable Infection Prevalence

    Science.gov (United States)

    Barry, Alyssa E.; Schultz, Lee; Senn, Nicholas; Nale, Joe; Kiniboro, Benson; Siba, Peter M.; Mueller, Ivo; Reeder, John C.

    2013-01-01

    High levels of genetic diversity in Plasmodium falciparum populations are an obstacle to malaria control. Here, we investigate the relationship between local variation in malaria epidemiology and parasite genetic diversity in Papua New Guinea (PNG). Cross-sectional malaria surveys were performed in 14 villages spanning four distinct malaria-endemic areas on the north coast, including one area that was sampled during the dry season. High-resolution msp2 genotyping of 2,147 blood samples identified 761 P. falciparum infections containing a total of 1,392 clones whose genotypes were used to measure genetic diversity. Considerable variability in infection prevalence and mean multiplicity of infection was observed at all of the study sites, with the area sampled during the dry season showing particularly striking local variability. Genetic diversity was strongly associated with multiplicity of infection but not with infection prevalence. In highly endemic areas, differences in infection prevalence may not translate into a decrease in parasite population diversity. PMID:23400571

  17. Estimated risk of placental infection and low birthweight attributable to Plasmodium falciparum malaria in Africa in 2010: a modelling study

    NARCIS (Netherlands)

    Walker, Patrick G. T.; ter Kuile, Feiko O.; Garske, Tini; Menendez, Clara; Ghani, Azra C.

    2014-01-01

    Plasmodium falciparum infection during pregnancy leads to adverse outcomes including low birthweight; however, contemporary estimates of the potential burden of malaria in pregnancy in Africa (in the absence of interventions) are poor. We aimed to estimate the need to protect pregnant women from

  18. Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind.

    Science.gov (United States)

    Sherman, Irwin W; Eda, Shigetoshi; Winograd, Enrique

    2003-08-01

    Infected erythrocytes containing the more mature stages of the human malaria Plasmodium falciparum may adhere to endothelial cells and uninfected red cells. These phenomena, called sequestration and rosetting, respectively, are involved in both host pathogenesis and parasite survival. This review provides a critical summary of recent advances in the characterization of the molecules of the infected red blood cell involved in adhesion, i.e. parasite-encoded molecules (PfEMP1, MESA, rifins, stevor, clag 9, histidine-rich protein), a modified host membrane protein (band 3) and exofacial exposure of phosphatidylserine, as well as receptors on the endothelium, i.e. thrombospondin, CD36, ICAM-1 (intercellular adhesion molecule), and chondroitin sulfate.

  19. Sharing of antigens between Plasmodium falciparum and Anopheles albimanus Antígenos compartidos entre Plasmodium falciparum y Anopheles albimanus

    Directory of Open Access Journals (Sweden)

    Albina Wide

    2006-12-01

    Full Text Available The presence of common antigens between Plasmodium falciparum and Anopheles albimanus was demonstrated. Different groups of rabbits were immunized with: crude extract from female An. albimanus (EAaF, red blood cells infected with Plasmodium falciparum (EPfs, and the SPf66 synthetic malaria vaccine. The rabbit's polyclonal antibodies were evaluated by ELISA, Multiple Antigen Blot Assay (MABA, and immunoblotting. All extracts were immunogenic in rabbits according to these three techniques, when they were evaluated against the homologous antigens. Ten molecules were identified in female mosquitoes and also in P. falciparum antigens by the autologous sera. The electrophoretic pattern by SDS-PAGE was different for the three antigens evaluated. Cross-reactions between An. albimanus and P. falciparum were found by ELISA, MABA, and immunoblotting. Anti-P. falciparum and anti-SPf66 antibodies recognized ten and five components in the EAaF crude extract, respectively. Likewise, immune sera against female An. albimanus identified four molecules in the P. falciparum extract antigen. As far as we know, this is the first work that demonstrates shared antigens between anophelines and malaria parasites. This finding could be useful for diagnosis, vaccines, and the study of physiology of the immune response to malaria.Epítopes de antígenos compartidos entre Plasmodium falciparum y Anopheles albimanus fueron identificados. Diferentes grupos de conejos fueron inmunizados con: extracto crudo de mosquito hembra de An. albimanus (EAaH, glóbulos rojos infectados con P. falciparum (EPfs y la vacuna antimalárica sintética SPf66. Los anticuerpos policlonales producidos en conejos fueron evaluados por ELISA, inmunoensayo simultáneo de múltiples antígenos (MABA e Immunoblotting. Todos los extractos resultaron inmunogénicos cuando se evaluaron por ELISA, MABA e Immunoblotting. Diez moléculas fueron identificadas en los mosquitos hembras y diez en los antígenos de

  20. Asymptomatic infection in individuals from the municipality of Barcelos (Brazilian Amazon is not associated with the anti-Plasmodium falciparum glycosylphosphatidylinositol antibody response

    Directory of Open Access Journals (Sweden)

    Larissa Rodrigues Gomes

    2013-09-01

    Full Text Available Anti-glycosylphosphatidylinositol (GPI antibodies (Abs may reflect and mediate, at least partially, anti-disease immunity in malaria by neutralising the toxic effect of parasitic GPI. Thus, we assessed the anti-GPI Ab response in asymptomatic individuals living in an area of the Brazilian Amazon that has a high level of malaria transmission. For comparative purposes, we also investigated the Ab response to a crude extract prepared from Plasmodium falciparum, the merozoite surface protein (MSP3 antigen of P. falciparum and the MSP 1 antigen of Plasmodium vivax (PvMSP1-19 in these individuals and in Angolan patients with acute malaria. Our data suggest that the Ab response against P. falciparum GPI is not associated with P. falciparum asymptomatic infection in individuals who have been chronically exposed to malaria in the Brazilian Amazon. However, this Ab response could be related to ongoing parasitaemia (as was previously shown in the Angolan patients. In addition, our data show that PvMSP1-19may be a good marker antigen to reflect previous exposure to Plasmodium in areas that have a high transmission rate of P. vivax.

  1. Nonimmune immunoglobulin binding and multiple adhesion characterize Plasmodium falciparum-infected erythrocytes of placental origin

    DEFF Research Database (Denmark)

    Rasti, Niloofar; Namusoke, Fatuma; Chêne, Arnaud

    2006-01-01

    The harmful effects of pregnancy-associated malaria (PAM) are engendered by the heavy sequestration of Plasmodium falciparum-parasitized RBCs in the placenta. It is well documented that this process is mediated by interactions of parasite-encoded variant surface antigens and placental receptors...... and adhesion to multiple receptors (IgG/IgM/HA/CSA) rather than the exclusive binding to CSA is a characteristic of fresh Ugandan placental isolates. These findings are of importance for the understanding of the pathogenesis of placental malaria and have implications for the ongoing efforts to develop a global...

  2. Plasmodium falciparum infection in febrile Congolese children: prevalence of clinical malaria 10 years after introduction of artemisinin-combination therapies.

    Science.gov (United States)

    Etoka-Beka, Mandingha Kosso; Ntoumi, Francine; Kombo, Michael; Deibert, Julia; Poulain, Pierre; Vouvoungui, Christevy; Kobawila, Simon Charles; Koukouikila-Koussounda, Felix

    2016-12-01

    To investigate the proportion of malaria infection in febrile children consulting a paediatric hospital in Brazzaville, to determine the prevalence of submicroscopic malaria infection, to characterise Plasmodium falciparum infection and compare the prevalence of uncomplicated P. falciparum malaria according to haemoglobin profiles. Blood samples were collected from children aged <10 years with an axillary temperature ≥37.5 °C consulting the paediatric ward of Marien Ngouabi Hospital in Brazzaville. Parasite density was determined and all samples were screened for P. falciparum by nested polymerase chain reaction (PCR) using the P. falciparum msp-2 marker to detect submicroscopic infections and characterise P. falciparum infection. Sickle cell trait was screened by PCR. A total of 229 children with fever were recruited, of whom 10% were diagnosed with uncomplicated malaria and 21% with submicroscopic infection. The mean parasite density in children with uncomplicated malaria was 42 824 parasites/μl of blood. The multiplicity of infection (MOI) was 1.59 in children with uncomplicated malaria and 1.69 in children with submicroscopic infection. The mean haemoglobin level was 10.1 ± 1.7 for children with uncomplicated malaria and 12.0 ± 8.6 for children with submicroscopic infection. About 13% of the children harboured the sickle cell trait (HbAS); the rest had normal haemoglobin (HbAA). No difference in prevalence of uncomplicated malaria and submicroscopic infection, parasite density, haemoglobin level, MOI and P. falciparum genetic diversity was observed according to haemoglobin type. The low prevalence of uncomplicated malaria in febrile Congolese children indicates the necessity to investigate carefully other causes of fever. © 2016 John Wiley & Sons Ltd.

  3. Protein O-fucosylation in Plasmodium falciparum ensures efficient infection of mosquito and vertebrate hosts.

    Science.gov (United States)

    Lopaticki, Sash; Yang, Annie S P; John, Alan; Scott, Nichollas E; Lingford, James P; O'Neill, Matthew T; Erickson, Sara M; McKenzie, Nicole C; Jennison, Charlie; Whitehead, Lachlan W; Douglas, Donna N; Kneteman, Norman M; Goddard-Borger, Ethan D; Boddey, Justin A

    2017-09-15

    O-glycosylation of the Plasmodium sporozoite surface proteins CSP and TRAP was recently identified, but the role of this modification in the parasite life cycle and its relevance to vaccine design remain unclear. Here, we identify the Plasmodium protein O-fucosyltransferase (POFUT2) responsible for O-glycosylating CSP and TRAP. Genetic disruption of POFUT2 in Plasmodium falciparum results in ookinetes that are attenuated for colonizing the mosquito midgut, an essential step in malaria transmission. Some POFUT2-deficient parasites mature into salivary gland sporozoites although they are impaired for gliding motility, cell traversal, hepatocyte invasion, and production of exoerythrocytic forms in humanized chimeric liver mice. These defects can be attributed to destabilization and incorrect trafficking of proteins bearing thrombospondin repeats (TSRs). Therefore, POFUT2 plays a similar role in malaria parasites to that in metazoans: it ensures the trafficking of Plasmodium TSR proteins as part of a non-canonical glycosylation-dependent endoplasmic reticulum protein quality control mechanism.The role of O-glycosylation in the malaria life cycle is largely unknown. Here, the authors identify a Plasmodium protein O-fucosyltransferase and show that it is important for normal trafficking of a subset of surface proteins, particularly CSP and TRAP, and efficient infection of mosquito and vertebrate hosts.

  4. Plasmodium falciparum population dynamics in a cohort of pregnant women in Senegal

    DEFF Research Database (Denmark)

    Guitard, Juliette; Andersen, Pernille; Ermont, Caroline

    2010-01-01

    Background: Pregnant women acquire protective antibodies that cross-react with geographically diverse placental Plasmodium falciparum isolates, suggesting that surface molecules expressed on infected erythrocytes by pregnancy-associated malaria (PAM) parasites have conserved epitopes and, that de...

  5. Plasmodium falciparum: genetic diversity and complexity of infections in an isolated village in western Thailand.

    Science.gov (United States)

    Tanabe, Kazuyuki; Zollner, Gabriela; Vaughan, Jefferson A; Sattabongkot, Jetsumon; Khuntirat, Benjawan; Honma, Hajime; Mita, Toshihiro; Tsuboi, Takafumi; Coleman, Russell

    2015-06-01

    Genetic diversity of Plasmodium falciparum is intimately associated with morbidity, mortality and malaria control strategies. It is therefore imperative to study genetic makeup and population structure of this parasite in endemic areas. In Kong Mong Tha, an isolated village in western Thailand, the majority of P. falciparum infections are asymptomatic. In this study we investigated complexity of infections and single nucleotide polymorphisms (SNPs) in the P. falciparum population of Kong Mong Tha, and compared results with those previously obtained from Mae Sod, in northwestern Thailand, where the majority of infections were symptomatic. Using PCR-based determination of the 5' merozoite surface protein 1 gene (msp1) recombinant types, we found that 39% of 59 P. falciparum isolates from Kong Mong Tha had multiple 5' recombinant types with a mean number of 1.54. These values were much lower than those obtained from Mae Sod: 96% for multiple infections and with a mean number of 3.61. Analysis of full-length sequences of two housekeeping genes, the P-type Ca(2+)-transporting ATPase gene (n=33) plus adenylosuccinate lyase gene (n=33), and three vaccine candidate antigen genes, msp1 (n=26), the circumsporozoite protein gene, csp (n=30) and the apical membrane antigen 1 gene, ama 1 (n=32), revealed that in all of these genes within-population SNP diversity was at similar levels between Kong Mong Tha and Mae Sod, suggesting that the extent of MOI and clinical manifestations of malaria are not strongly associated with genetic diversity. Additionally, we did not detect significant genetic differentiation between the two parasite populations, as estimated by the Wright's fixation index of inter-population variance in allele frequencies, suggesting that gene flow prevented the formation of population structuring. Thus, this study highlights unique features of P. falciparum populations in Thailand. The implications of these finding are discussed. © 2013.

  6. A versatile, high through-put, bead-based phagocytosis assay for Plasmodium falciparum

    DEFF Research Database (Denmark)

    Lloyd, Yukie M.; Ngati, Elise P.; Salanti, Ali

    2017-01-01

    Antibody-mediated phagocytosis is an important immune effector mechanism against Plasmodium falciparum-infected erythrocytes (IE); however, current phagocytosis assays use IE collected from infected individuals or from in vitro cultures of P. falciparum, making them prone to high variation....... A simple, high-throughput flow cytometric assay was developed that uses THP-1 cells and fluorescent beads covalently-coupled with the malarial antigen VAR2CSA. The assay is highly repeatable, provides both the overall percent phagocytosis and semi-quantitates the number of antigen-coupled beads...

  7. Relationship between the entomologic inoculation rate and the force of infection for Plasmodium falciparum malaria.

    Science.gov (United States)

    Smith, Thomas; Maire, Nicolas; Dietz, Klaus; Killeen, Gerry F; Vounatsou, Penelope; Molineaux, Louis; Tanner, Marcel

    2006-08-01

    We propose a stochastic model for the relationship between the entomologic inoculation rate (EIR) for Plasmodium falciparum malaria and the force of infection in endemic areas. The model incorporates effects of increased exposure to mosquito bites as a result of the growth in body surface area with the age of the host, naturally acquired pre-erythrocytic immunity, and the reduction in the proportion of entomologically assessed inoculations leading to infection, as the EIR increases. It is fitted to multiple datasets from field studies of the relationship between malaria infection and the EIR. We propose that this model can account for non-monotonic relationships between the age of the host and the parasite prevalence and incidence of disease. It provides a parsimonious explanation for the faster acquisition of natural immunity in adults than in children exposed to high EIRs. This forms one component of a new stochastic model for the entire transmission cycle of P. falciparum that we have derived to estimate the potential epidemiologic impact of malaria vaccines and other malaria control interventions.

  8. Plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Noone Cariosa

    2013-01-01

    Full Text Available Abstract Background Malaria is a major cause of morbidity and mortality worldwide with over one million deaths annually, particularly in children under five years. This study was the first to examine plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum from four semi-urban villages near Ile-Ife, Osun State, Nigeria. Methods Blood was obtained from 231 children (aged 39–73 months who were classified according to mean P. falciparum density per μl of blood (uninfected (n = 89, low density (10,000, n = 22. IL-12p70, IL-10, Nitric oxide, IFN-γ, TNF, IL-17, IL-4 and TGF-β, C-C chemokine RANTES, MMP-8 and TIMP-1 were measured in plasma. Peripheral blood mononuclear cells were obtained and examined markers of innate immune cells (CD14, CD36, CD56, CD54, CD11c AND HLA-DR. T-cell sub-populations (CD4, CD3 and γδTCR were intracellularly stained for IL-10, IFN-γ and TNF following polyclonal stimulation or stimulated with malaria parasites. Ascaris lumbricoides was endemic in these villages and all data were analysed taking into account the potential impact of bystander helminth infection. All data were analysed using SPSS 15 for windows and in all tests, p Results The level of P. falciparum parasitaemia was positively associated with plasma IL-10 and negatively associated with IL-12p70. The percentage of monocytes was significantly decreased in malaria-infected individuals while malaria parasitaemia was positively associated with increasing percentages of CD54+, CD11c+ and CD56+ cell populations. No association was observed in cytokine expression in mitogen-activated T-cell populations between groups and no malaria specific immune responses were detected. Although A. lumbricoides is endemic in these villages, an analysis of the data showed no impact of this helminth infection on P. falciparum parasitaemia or on immune responses associated with P. falciparum infection

  9. Expression of Plasmodium falciparum erythrocyte membrane protein 1 in experimentally infected humans

    DEFF Research Database (Denmark)

    Lavstsen, Thomas; Magistrado, Pamela; Hermsen, Cornelus C

    2005-01-01

    -encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, which is expressed on the surface of infected erythrocytes where it mediates binding to endothelial receptors. Thus, severe malaria may be caused by parasites expressing PfEMP1 variants that afford parasites optimal sequestration...... in immunologically naive individuals and high effective multiplication rates. METHODS: var gene transcription was analysed using real time PCR and PfEMP1 expression by western blots as well as immune plasma recognition of parasite cultures established from non-immune volunteers shortly after infection with NF54...... compared to parasites expressing other var genes. The differential expression of PfEMP1 was confirmed at the protein level by immunoblot analysis. In addition, serological typing showed that immune sera more often recognized second and third generation parasites than first generation parasites. CONCLUSION...

  10. The homeostasis of Plasmodium falciparum-infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jakob M A Mauritz

    2009-04-01

    Full Text Available The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15-32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before approximately 48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis. However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis.

  11. Plasmodium falciparum mutant haplotype infection during pregnancy associated with reduced birthweight, Tanzania

    DEFF Research Database (Denmark)

    Minja, Daniel T R; Schmiegelow, Christentze; Mmbando, Bruno

    2013-01-01

    Intermittent preventive treatment during pregnancy with sulfadoxine-pyrimethamine (IPTp-SP) is a key strategy in the control of pregnancy-associated malaria. However, this strategy is compromised by widespread drug resistance from single-nucleotide polymorphisms in the Plasmodium falciparum...

  12. Naturally acquired immunity to Plasmodium falciparum malaria in Africa

    DEFF Research Database (Denmark)

    Hviid, Lars

    2005-01-01

    Infection by Plasmodium falciparum parasites can lead to substantial protective immunity to malaria, and available evidence suggest that acquisition of protection against some severe malaria syndromes can be fairly rapid. Although these facts have raised hopes that the development of effective...... protective immunity to P. falciparum malaria is acquired following natural exposure to the parasites is beginning to emerge, not least thanks to studies that have combined clinical and epidemiological data with basic immunological research. This framework involves IgG with specificity for clonally variant...... antigens on the surface of the infected erythrocytes, can explain some of the difficulties in relating particular immune responses with specificity for well-defined antigenic targets to clinical protection, and suggests a radically new approach to controlling malaria-related morbidity and mortality...

  13. A molecular epidemiological study of var gene diversity to characterize the reservoir of Plasmodium falciparum in humans in Africa.

    Directory of Open Access Journals (Sweden)

    Donald S Chen

    2011-02-01

    Full Text Available The reservoir of Plasmodium infection in humans has traditionally been defined by blood slide positivity. This study was designed to characterize the local reservoir of infection in relation to the diverse var genes that encode the major surface antigen of Plasmodium falciparum blood stages and underlie the parasite's ability to establish chronic infection and transmit from human to mosquito.We investigated the molecular epidemiology of the var multigene family at local sites in Gabon, Senegal and Kenya which differ in parasite prevalence and transmission intensity. 1839 distinct var gene types were defined by sequencing DBLα domains in the three sites. Only 76 (4.1% var types were found in more than one population indicating spatial heterogeneity in var types across the African continent. The majority of var types appeared only once in the population sample. Non-parametric statistical estimators predict in each population at minimum five to seven thousand distinct var types. Similar diversity of var types was seen in sites with different parasite prevalences.Var population genomics provides new insights into the epidemiology of P. falciparum in Africa where malaria has never been conquered. In particular, we have described the extensive reservoir of infection in local African sites and discovered a unique var population structure that can facilitate superinfection through minimal overlap in var repertoires among parasite genomes. Our findings show that var typing as a molecular surveillance system defines the extent of genetic complexity in the reservoir of infection to complement measures of malaria prevalence. The observed small scale spatial diversity of var genes suggests that var genetics could greatly inform current malaria mapping approaches and predict complex malaria population dynamics due to the import of var types to areas where no widespread pre-existing immunity in the population exists.

  14. A Molecular Epidemiological Study of var Gene Diversity to Characterize the Reservoir of Plasmodium falciparum in Humans in Africa

    Science.gov (United States)

    Leliwa-Sytek, Aleksandra; Smith, Terry-Ann; Peterson, Ingrid; Brown, Stuart M.; Migot-Nabias, Florence; Deloron, Philippe; Kortok, Moses M.; Marsh, Kevin; Daily, Johanna P.; Ndiaye, Daouda; Sarr, Ousmane; Mboup, Souleymane; Day, Karen P.

    2011-01-01

    Background The reservoir of Plasmodium infection in humans has traditionally been defined by blood slide positivity. This study was designed to characterize the local reservoir of infection in relation to the diverse var genes that encode the major surface antigen of Plasmodium falciparum blood stages and underlie the parasite's ability to establish chronic infection and transmit from human to mosquito. Methodology/Principal Findings We investigated the molecular epidemiology of the var multigene family at local sites in Gabon, Senegal and Kenya which differ in parasite prevalence and transmission intensity. 1839 distinct var gene types were defined by sequencing DBLα domains in the three sites. Only 76 (4.1%) var types were found in more than one population indicating spatial heterogeneity in var types across the African continent. The majority of var types appeared only once in the population sample. Non-parametric statistical estimators predict in each population at minimum five to seven thousand distinct var types. Similar diversity of var types was seen in sites with different parasite prevalences. Conclusions/Significance Var population genomics provides new insights into the epidemiology of P. falciparum in Africa where malaria has never been conquered. In particular, we have described the extensive reservoir of infection in local African sites and discovered a unique var population structure that can facilitate superinfection through minimal overlap in var repertoires among parasite genomes. Our findings show that var typing as a molecular surveillance system defines the extent of genetic complexity in the reservoir of infection to complement measures of malaria prevalence. The observed small scale spatial diversity of var genes suggests that var genetics could greatly inform current malaria mapping approaches and predict complex malaria population dynamics due to the import of var types to areas where no widespread pre-existing immunity in the population

  15. Elimination of Plasmodium falciparum malaria in Tajikistan.

    Science.gov (United States)

    Kondrashin, Anatoly V; Sharipov, Azizullo S; Kadamov, Dilshod S; Karimov, Saifuddin S; Gasimov, Elkhan; Baranova, Alla M; Morozova, Lola F; Stepanova, Ekaterina V; Turbabina, Natalia A; Maksimova, Maria S; Morozov, Evgeny N

    2017-05-30

    Malaria was eliminated in Tajikistan by the beginning of the 1960s. However, sporadic introduced cases of malaria occurred subsequently probably as a result of transmission from infected mosquito Anopheles flying over river the Punj from the border areas of Afghanistan. During the 1970s and 1980s local outbreaks of malaria were reported in the southern districts bordering Afghanistan. The malaria situation dramatically changed during the 1990s following armed conflict and civil unrest in the newly independent Tajikistan, which paralyzed health services including the malaria control activities and a large-scale malaria epidemic occurred with more than 400,000 malaria cases. The malaria epidemic was contained by 1999 as a result of considerable financial input from the Government and the international community. Although Plasmodium falciparum constituted only about 5% of total malaria cases, reduction of its incidence was slower than that of Plasmodium vivax. To prevent increase in P. falciparum malaria both in terms of incidence and territory, a P. falciparum elimination programme in the Republic was launched in 200, jointly supported by the Government and the Global Fund for control of AIDS, tuberculosis and malaria. The main activities included the use of pyrethroids for the IRS with determined periodicity, deployment of mosquito nets, impregnated with insecticides, use of larvivorous fishes as a biological larvicide, implementation of small-scale environmental management, and use of personal protection methods by population under malaria risk. The malaria surveillance system was strengthened by the use of ACD, PCD, RCD and selective use of mass blood surveys. All detected cases were timely epidemiologically investigated and treated based on the results of laboratory diagnosis. As a result, by 2009, P. falciparum malaria was eliminated from all of Tajikistan, one year ahead of the originally targeted date. Elimination of P. falciparum also contributed towards

  16. Monkey-derived monoclonal antibodies against Plasmodium falciparum

    International Nuclear Information System (INIS)

    Stanley, H.A.; Reese, R.T.

    1985-01-01

    A system has been developed that allows efficient production of monkey monoclonal antibodies from owl monkeys. Splenocytes or peripheral blood lymphocytes from monkeys immune to the human malarial parasite, Plasmodium falciparum, were fused with P3X63 Ag8.653 mouse myelomas. The resulting hybridomas were screened by an indirect fluorescent antibody test for the production of monkey monoclonal antibodies (mAb) reactive with P. falciparum. Most of the mAb reacted with the P. falciparum merozoites and immunoprecipitated a parasite-derived glycoprotein having a relative molecular weight of 185,000. These mAb gave a minimum of five different immunoprecipitation patterns, thus demonstrating that a large number of polypeptides obtained when parasitized erythrocytes are solubilized share epitopes with this large glycoprotein. In addition, mAb were obtained that reacted with antigens associated with the infected erythrocyte membrane. One of these mAb bound a M/sub r/ 95,000 antigen. Radioimmunoprecipitation assays using 125 T-antibodies were done

  17. Minimal Impact by Antenatal Subpatent Plasmodium falciparum Infections on Delivery Outcomes in Malawian Women: A Cohort Study.

    Science.gov (United States)

    Taylor, Steve M; Madanitsa, Mwayiwawo; Thwai, Kyaw-Lay; Khairallah, Carole; Kalilani-Phiri, Linda; van Eijk, Anna M; Mwapasa, Victor; Ter Kuile, Feiko O; Meshnick, Steven R

    2017-08-01

    Antenatal malaria screening with a rapid diagnostic test (RDT) and treatment only of women with positive RDT findings may potentially prevent low birth weight resulting from malaria. The consequences of subpatent antenatal infections below the detection limit of RDTs are incompletely understood. In Malawi, pregnant women of any gravidity status were tested at each antenatal visit for Plasmodium falciparum, using an RDT and polymerase chain reaction analysis, and were followed until delivery. Associations between antenatal infections and delivery outcomes were assessed with Poisson regression or analysis of variance. Compared with women with no detected antenatal P. falciparum infection, women with positive RDT findings delivered babies with a lower mean birth weight (2960 vs 2867 g; mean difference, -93 g [95% confidence interval {CI}, -27 to -159]; P = .006); this was not observed among women with only subpatent infections (mean birth weight, 3013 g; mean difference, 54 [95% CI, -33-140]; P = .2268). These differences were apparent early in pregnancy, during the second trimester: compared with uninfected women, women with positive RDT findings delivered babies with a lower mean birth weight (mean difference, -94 g [95% CI, -31 to -156]; P = .003), but women with subpatent infections did not (mean difference, 36 g [95% CI, -49-122]; P = .409). Subpatent antenatal P. falciparum infections were not associated with adverse delivery outcomes. The association of patent infections at enrollment with low birth weight suggests the importance of preventing P. falciparum infection early in pregnancy. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  18. Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface

    DEFF Research Database (Denmark)

    Tibúrcio, Marta; Silvestrini, Francesco; Bertuccini, Lucia

    2013-01-01

    to ultrastructurally and biochemically analyse parasite-induced modifications on the red blood cell surface and to measure their functional consequences on adhesion to human endothelial cells. This work revealed that stage I gametocytes are able to deform the infected erythrocytes like asexual parasites, but do...... not modify its surface with adhesive 'knob' structures and associated proteins. Reduced levels of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins are exposed on the red blood cell surface bythese parasites, and the expression of the var gene family, which encodes 50-60 variants of PfEMP1......In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains...

  19. Computational identification of signalling pathways in Plasmodium falciparum.

    Science.gov (United States)

    Oyelade, Jelili; Ewejobi, Itunu; Brors, Benedikt; Eils, Roland; Adebiyi, Ezekiel

    2011-06-01

    Malaria is one of the world's most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge and urgent need to discover and validate new drug or vaccine targets to enable the development of new treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from our deep understanding of the detailed biology of the parasite, for example how cells function and how proteins organize into modules such as metabolic, regulatory and signal transduction pathways. It has been noted that the knowledge of signalling transduction pathways in Plasmodium is fundamental to aid the design of new strategies against malaria. This work uses a linear-time algorithm for finding paths in a network under modified biologically motivated constraints. We predicted several important signalling transduction pathways in Plasmodium falciparum. We have predicted a viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a signal transduction pathway that ends up on a chloroquine resistance marker protein, which indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine (via an efflux process). Furthermore, we also predicted a signalling pathway that may have been responsible for signalling the start of the invasion process of Red Blood Cell (RBC) by the merozoites. It has been noted that the understanding of this pathway will give insight into the parasite virulence and will facilitate rational vaccine design

  20. Quantitative non-invasive intracellular imaging of Plasmodium falciparum infected human erythrocytes

    International Nuclear Information System (INIS)

    Edward, Kert; Farahi, Faramarz

    2014-01-01

    Malaria is a virulent pathological condition which results in over a million annual deaths. The parasitic agent Plasmodium falciparum has been extensively studied in connection with this epidemic but much remains unknown about its development inside the red blood cell host. Optical and fluorescence imaging are among the two most common procedures for investigating infected erythrocytes but both require the introduction of exogenous contrast agents. In this letter, we present a procedure for the non-invasive in situ imaging of malaria infected red blood cells. The procedure is based on the utilization of simultaneously acquired quantitative phase and independent topography data to extract intracellular information. Our method allows for the identification of the developmental stages of the parasite and facilitates in situ analysis of the morphological changes associated with the progression of this disease. This information may assist in the development of efficacious treatment therapies for this condition. (letters)

  1. Temperature shift and host cell contact up-regulate sporozoite expression of Plasmodium falciparum genes involved in hepatocyte infection.

    Directory of Open Access Journals (Sweden)

    Anthony Siau

    Full Text Available Plasmodium sporozoites are deposited in the skin by Anopheles mosquitoes. They then find their way to the liver, where they specifically invade hepatocytes in which they develop to yield merozoites infective to red blood cells. Relatively little is known of the molecular interactions during these initial obligatory phases of the infection. Recent data suggested that many of the inoculated sporozoites invade hepatocytes an hour or more after the infective bite. We hypothesised that this pre-invasive period in the mammalian host prepares sporozoites for successful hepatocyte infection. Therefore, the genes whose expression becomes modified prior to hepatocyte invasion would be those likely to code for proteins implicated in the subsequent events of invasion and development. We have used P. falciparum sporozoites and their natural host cells, primary human hepatocytes, in in vitro co-culture system as a model for the pre-invasive period. We first established that under co-culture conditions, sporozoites maintain infectivity for an hour or more, in contrast to a drastic loss in infectivity when hepatocytes were not included. Thus, a differential transcriptome of salivary gland sporozoites versus sporozoites co-cultured with hepatocytes was established using a pan-genomic P. falciparum microarray. The expression of 532 genes was found to have been up-regulated following co-culture. A fifth of these genes had no orthologues in the genomes of Plasmodium species used in rodent models of malaria. Quantitative RT-PCR analysis of a selection of 21 genes confirmed the reliability of the microarray data. Time-course analysis further indicated two patterns of up-regulation following sporozoite co-culture, one transient and the other sustained, suggesting roles in hepatocyte invasion and liver stage development, respectively. This was supported by functional studies of four hitherto uncharacterized proteins of which two were shown to be sporozoite surface

  2. Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum.

    Science.gov (United States)

    Bracchi-Ricard, V; Nguyen, K T; Zhou, Y; Rajagopalan, P T; Chakrabarti, D; Pei, D

    2001-12-15

    Ribosomal protein synthesis in eubacteria and eukaryotic organelles initiates with an N-formylmethionyl-tRNA(i), resulting in N-terminal formylation of all nascent polypeptides. Peptide deformylase (PDF) catalyzes the subsequent removal of the N-terminal formyl group from the majority of bacterial proteins. Until recently, PDF has been thought as an enzyme unique to the bacterial kingdom. Searches of the genomic DNA databases identified several genes that encode proteins of high sequence homology to bacterial PDF from eukaryotic organisms. The cDNA encoding Plasmodium falciparum PDF (PfPDF) has been cloned and overexpressed in Escherichia coli. The recombinant protein is catalytically active in deformylating N-formylated peptides, shares many of the properties of bacterial PDF, and is inhibited by specific PDF inhibitors. Western blot analysis indicated expression of mature PfPDF in trophozoite, schizont, and segmenter stages of intraerythrocytic development. These results provide strong evidence that a functional PDF is present in P. falciparum. In addition, PDF inhibitors inhibited the growth of P. falciparum in the intraerythrocytic culture. (c)2001 Elsevier Science.

  3. Transgenic mosquitoes expressing a phospholipase A(2 gene have a fitness advantage when fed Plasmodium falciparum-infected blood.

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    Full Text Available Genetically modified mosquitoes have been proposed as an alternative strategy to reduce the heavy burden of malaria. In recent years, several proof-of-principle experiments have been performed that validate the idea that mosquitoes can be genetically modified to become refractory to malaria parasite development.We have created two transgenic lines of Anophelesstephensi, a natural vector of Plasmodium falciparum, which constitutively secrete a catalytically inactive phospholipase A2 (mPLA2 into the midgut lumen to interfere with Plasmodium ookinete invasion. Our experiments show that both transgenic lines expressing mPLA2 significantly impair the development of rodent malaria parasites, but only one line impairs the development of human malaria parasites. In addition, when fed on malaria-infected blood, mosquitoes from both transgenic lines are more fecund than non-transgenic mosquitoes. Consistent with these observations, cage experiments with mixed populations of transgenic and non-transgenic mosquitoes show that the percentage of transgenic mosquitoes increases when maintained on Plasmodium-infected blood.Our results suggest that the expression of an anti-Plasmodium effector gene gives transgenic mosquitoes a fitness advantage when fed malaria-infected blood. These findings have important implications for future applications of transgenic mosquito technology in malaria control.

  4. Antibody recognition of Plasmodium falciparum infected red blood cells by symptomatic and asymptomatic individuals in the Brazilian Amazon

    Science.gov (United States)

    Fratus, Alessandra Sampaio Bassi; Cabral, Fernanda Janku; Fotoran, Wesley Luzetti; Medeiros, Márcia Melo; Carlos, Bianca Cechetto; Martha, Rosimeire dalla; da Silva, Luiz Hildebrando Pereira; Lopes, Stefanie Costa Pinto; Costa, Fabio Trindade Maranhão; Wunderlich, Gerhard

    2014-01-01

    In the Amazon Region, there is a virtual absence of severe malaria and few fatal cases of naturally occurring Plasmodium falciparum infections; this presents an intriguing and underexplored area of research. In addition to the rapid access of infected persons to effective treatment, one cause of this phenomenon might be the recognition of cytoadherent variant proteins on the infected red blood cell (IRBC) surface, including the var gene encoded P. falciparum erythrocyte membrane protein 1. In order to establish a link between cytoadherence, IRBC surface antibody recognition and the presence or absence of malaria symptoms, we phenotype-selected four Amazonian P. falciparum isolates and the laboratory strain 3D7 for their cytoadherence to CD36 and ICAM1 expressed on CHO cells. We then mapped the dominantly expressed var transcripts and tested whether antibodies from symptomatic or asymptomatic infections showed a differential recognition of the IRBC surface. As controls, the 3D7 lineages expressing severe disease-associated phenotypes were used. We showed that there was no profound difference between the frequency and intensity of antibody recognition of the IRBC-exposed P. falciparum proteins in symptomatic vs. asymptomatic infections. The 3D7 lineages, which expressed severe malaria-associated phenotypes, were strongly recognised by most, but not all plasmas, meaning that the recognition of these phenotypes is frequent in asymptomatic carriers, but is not necessarily a prerequisite to staying free of symptoms. PMID:25099336

  5. Asymptomatic Plasmodium falciparum infection is associated with anaemia in pregnancy and can be more cost-effectively detected by rapid diagnostic test than by microscopy in Kinshasa, Democratic Republic of the Congo.

    Science.gov (United States)

    Matangila, Junior R; Lufuluabo, Jean; Ibalanky, Axel L; Inocêncio da Luz, Raquel A; Lutumba, Pascal; Van Geertruyden, Jean-Pierre

    2014-04-02

    In areas of high malaria transmission, Plasmodium falciparum infection during pregnancy is characterized by malaria-related anaemia, placental malaria and does not always result in clinical symptoms. This situation is associated with poor pregnancy outcomes. The aim of this study was to determine the extent of asymptomatic P. falciparum infection, its relation with anaemia as well as the most cost-effective technique for its diagnosis in healthy pregnant women living in Kinshasa, Democratic Republic of the Congo. In a cross-sectional study design, information on socio-demographic characteristics and cost data were collected in healthy pregnant women attending antenatal care consultations. Plasmodium falciparum infection was diagnosed using rapid diagnostic test (RDT), microscopy and polymerase chain reaction (PCR). Haemoglobin concentration was also determined. In total, 332 pregnant women were enrolled. RDT and microscopy data were available for all the blood samples and 166 samples were analysed by PCR. The prevalence of asymptomatic P. falciparum infection using microscopy, RDTs and PCR, were respectively 21.6%, 27.4% and 29.5%. Taking PCR as a reference, RDTs had a sensitivity of 81.6% and a specificity of 94.9% to diagnose asymptomatic P. falciparum infection. The corresponding values for microscopy were 67.3% and 97.4%. The prevalence of anaemia was 61.1% and asymptomatic malaria increased five times the odds (p anaemia. RDTs were more cost-effective compared to microscopy. Incremental cost-effectiveness ratio was US$ 63.47 per microscopy adequately diagnosed case. These alarming results emphasize the need to actively diagnose and treat asymptomatic malaria infection during all antenatal care visits. Moreover, in DRC, malaria and anaemia control efforts should be strengthened by promoting the use of insecticide-treated nets, intermittent preventive treatment with sulphadoxine-pyrimethamine and iron and folic acid supplements.

  6. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells.

    Directory of Open Access Journals (Sweden)

    Alessandro Esposito

    Full Text Available During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards.The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270+/-30 ps (mean+/-SD; N = 45. In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290+/-20 ps for cells with ring stage parasites to 590+/-13 ps and 1050+/-60 ps for cells with young trophozoites and late stage trophozoite/early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites.The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host cell with limited access to hemoglobin molecules indicating the

  7. Plasmodium falciparum: characterization of toxin-associated proteins and identification of a hemoglobin containing parasite cytokine stimulator

    DEFF Research Database (Denmark)

    Kristensen, G; Jakobsen, P H

    1996-01-01

    ]-methionine and immunoprecipitated the labeled antigens with an antiserum against IMP which blocks malaria parasite-induced TNF production. We detected four proteins associated with IMP when the immunoprecipitates were separated by SDS-PAGE and analyzed by autoradiography. To evaluate the capacity of different P. falciparum......Previous studies have indicated the inositol monophosphate (IMP) is a component of the malaria parasite toxin that induces cytokines such as tumour necrosis factor (TNF). To further characterize the toxin we have labeled Plasmodium falciparum in vitro cultures with [14C]inositol or [35S...

  8. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice.

    Science.gov (United States)

    Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean-François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique

    2015-07-24

    Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans.

  9. Global mass spectrometry based metabolomics profiling of erythrocytes infected with Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Theodore R Sana

    Full Text Available Malaria is a global infectious disease that threatens the lives of millions of people. Transcriptomics, proteomics and functional genomics studies, as well as sequencing of the Plasmodium falciparum and Homo sapiens genomes, have shed new light on this host-parasite relationship. Recent advances in accurate mass measurement mass spectrometry, sophisticated data analysis software, and availability of biological pathway databases, have converged to facilitate our global, untargeted biochemical profiling study of in vitro P. falciparum-infected (IRBC and uninfected (NRBC erythrocytes. In order to expand the number of detectable metabolites, several key analytical steps in our workflows were optimized. Untargeted and targeted data mining resulted in detection of over one thousand features or chemical entities. Untargeted features were annotated via matching to the METLIN metabolite database. For targeted data mining, we queried the data using a compound database derived from a metabolic reconstruction of the P. falciparum genome. In total, over one hundred and fifty differential annotated metabolites were observed. To corroborate the representation of known biochemical pathways from our data, an inferential pathway analysis strategy was used to map annotated metabolites onto the BioCyc pathway collection. This hypothesis-generating approach resulted in over-representation of many metabolites onto several IRBC pathways, most prominently glycolysis. In addition, components of the "branched" TCA cycle, partial urea cycle, and nucleotide, amino acid, chorismate, sphingolipid and fatty acid metabolism were found to be altered in IRBCs. Interestingly, we detected and confirmed elevated levels for cyclic ADP ribose and phosphoribosyl AMP in IRBCs, a novel observation. These metabolites may play a role in regulating the release of intracellular Ca(2+ during P. falciparum infection. Our results support a strategy of global metabolite profiling by untargeted

  10. Efficacy of integrated school based de-worming and prompt malaria treatment on helminths -Plasmodium falciparum co-infections: A 33 months follow up study

    Directory of Open Access Journals (Sweden)

    Chadukura Vivian

    2011-06-01

    Full Text Available Abstract Background The geographical congruency in distribution of helminths and Plasmodium falciparum makes polyparasitism a common phenomenon in Sub Saharan Africa. The devastating effects of helminths-Plasmodium co-infections on primary school health have raised global interest for integrated control. However little is known on the feasibility, timing and efficacy of integrated helminths-Plasmodium control strategies. A study was conducted in Zimbabwe to evaluate the efficacy of repeated combined school based antihelminthic and prompt malaria treatment. Methods A cohort of primary schoolchildren (5-17 years received combined Praziquantel, albendazole treatment at baseline, and again during 6, 12 and 33 months follow up surveys and sustained prompt malaria treatment. Sustained prompt malaria treatment was carried out throughout the study period. Children's infection status with helminths, Plasmodium and helminths-Plasmodium co-infections was determined by parasitological examinations at baseline and at each treatment point. The prevalence of S. haematobium, S. mansoni, STH, malaria, helminths-Plasmodium co-infections and helminths infection intensities before and after treatment were analysed. Results Longitudinal data showed that two rounds of combined Praziquantel and albendazole treatment for schistosomiasis and STHs at 6 monthly intervals and sustained prompt malaria treatment significantly reduced the overall prevalence of S. haematobium, S. mansoni, hookworms and P. falciparum infection in primary schoolchildren by 73.5%, 70.8%, 67.3% and 58.8% respectively (p P. f + schistosomes, and P. f + STHs + schistosomes co-infections were reduced by 68.0%, 84.2%, and 90.7%, respectively. The absence of anti-helminthic treatment between the 12 mth and 33 mth follow-up surveys resulted in the sharp increase in STHs + schistosomes co-infection from 3.3% at 12 months follow up survey to 10.7%, slightly more than the baseline level (10.3% while other

  11. Targeted disruption of a ring-infected erythrocyte surface antigen (RESA)-like export protein gene in Plasmodium falciparum confers stable chondroitin 4-sulfate cytoadherence capacity

    DEFF Research Database (Denmark)

    Goel, Suchi; Muthusamy, Arivalagan; Miao, Jun

    2014-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family proteins mediate the adherence of infected erythrocytes to microvascular endothelia of various organs, including the placenta, thereby contributing to cerebral, placental, and other severe malaria pathogenesis. Several paras...

  12. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and vivax.

    Science.gov (United States)

    March, Sandra; Ng, Shengyong; Velmurugan, Soundarapandian; Galstian, Ani; Shan, Jing; Logan, David J; Carpenter, Anne E; Thomas, David; Sim, B Kim Lee; Mota, Maria M; Hoffman, Stephen L; Bhatia, Sangeeta N

    2013-07-17

    The Plasmodium liver stage is an attractive target for the development of antimalarial drugs and vaccines, as it provides an opportunity to interrupt the life cycle of the parasite at a critical early stage. However, targeting the liver stage has been difficult. Undoubtedly, a major barrier has been the lack of robust, reliable, and reproducible in vitro liver-stage cultures. Here, we establish the liver stages for both Plasmodium falciparum and Plasmodium vivax in a microscale human liver platform composed of cryopreserved, micropatterned human primary hepatocytes surrounded by supportive stromal cells. Using this system, we have successfully recapitulated the full liver stage of P. falciparum, including the release of infected merozoites and infection of overlaid erythrocytes, as well as the establishment of small forms in late liver stages of P. vivax. Finally, we validate the potential of this platform as a tool for medium-throughput antimalarial drug screening and vaccine development. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum*

    Science.gov (United States)

    Cassera, María B.; Hazleton, Keith Z.; Riegelhaupt, Paul M.; Merino, Emilio F.; Luo, Minkui; Akabas, Myles H.; Schramm, Vern L.

    2008-01-01

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum. PMID:18799466

  14. Perfil clínico y parasitológico de la malaria por Plasmodium falciparum y Plasmodium vivax no complicada en Córdoba, Colombia.

    OpenAIRE

    Angélica Knudson Ospina; Ricardo Sánchez Pedraza; Manuel Alberto Pérez Mazorra; Liliana Jazmín Cortés Cortés; Ángela Patricia Guerra Vega; Rubén Santiago Nicholls Orejuela

    2015-01-01

    Antecedentes. En Colombia existen pocos estudios que buscan encontrar diferencias clínicas y parasitológicas en la malaria causada por Plasmodium falciparum y Plasmodium vivax.  Objetivo. Describir el perfil clínico y parasitológico de las malarias por Plasmodium falciparum y Plasmodium vivax no complicadas en Tierralta, Córdoba, Colombia. Materiales y métodos. Se evaluaron pacientes con paludismo no complicado por Plasmodium falciparum y Plasmodium vivax según los protocolos estandariz...

  15. Cloning of Plasmodium falciparum by single-cell sorting.

    Science.gov (United States)

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-10-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Cloning of Plasmodium falciparum by single-cell sorting

    Science.gov (United States)

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  17. Genetic diversity of Plasmodium falciparum isolates from naturally infected children in north-central Nigeria using the merozoite surface protein-2 as molecular marker.

    Science.gov (United States)

    Oyedeji, Segun Isaac; Awobode, Henrietta Oluwatoyin; Anumudu, Chiaka; Kun, Jürgen

    2013-08-01

    To characterize the genetic diversity of Plasmodium falciparum (P. falciparum) field isolates in children from Lafia, North-central Nigeria, using the highly polymorphic P. falciparum merozoite surface protein 2 (MSP-2) gene as molecular marker. Three hundred and twenty children were enrolled into the study between 2005 and 2006. These included 140 children who presented with uncomplicated malaria at the Dalhatu Araf Specialist Hospital, Lafia and another 180 children from the study area with asymptomatic infection. DNA was extracted from blood spot on filter paper and MSP-2 genes were genotyped using allele-specific nested PCR in order to analyze the genetic diversity of parasite isolates. A total of 31 and 34 distinct MSP-2 alleles were identified in the asymptomatic and uncomplicated malaria groups respectively. No difference was found between the multiplicity of infection in the asymptomatic group and that of the uncomplicated malaria group (P>0.05). However, isolates of the FC27 allele type were dominant in the asymptomatic group whereas isolates of the 3D7 allele type were dominant in the uncomplicated malaria group. This study showed a high genetic diversity of P. falciparum isolates in North-central Nigeria and is comparable to reports from similar areas with high malaria transmission intensity. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. More than just immune evasion: Hijacking complement by Plasmodium falciparum.

    Science.gov (United States)

    Schmidt, Christoph Q; Kennedy, Alexander T; Tham, Wai-Hong

    2015-09-01

    Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Characteristics of Travel-Related Severe Plasmodium vivax and Plasmodium falciparum Malaria in Individuals Hospitalized at a Tertiary Referral Center in Lima, Peru.

    Science.gov (United States)

    Llanos-Chea, Fiorella; Martínez, Dalila; Rosas, Angel; Samalvides, Frine; Vinetz, Joseph M; Llanos-Cuentas, Alejandro

    2015-12-01

    Severe Plasmodium falciparum malaria is uncommon in South America. Lima, Peru, while not endemic for malaria, is home to specialized centers for infectious diseases that admit and manage patients with severe malaria (SM), all of whom contracted infection during travel. This retrospective study describes severe travel-related malaria in individuals admitted to one tertiary care referral hospital in Lima, Peru; severity was classified based on criteria published by the World Health Organization in 2000. Data were abstracted from medical records of patients with SM admitted to Hospital Nacional Cayetano Heredia from 2006 to 2011. Of 33 SM cases with complete clinical data, the mean age was 39 years and the male/female ratio was 2.8. Most cases were contracted in known endemic regions within Peru: Amazonia (47%), the central jungle (18%), and the northern coast (12%); cases were also found in five (15%) travelers returning from Africa. Plasmodium vivax was most commonly identified (71%) among the severe infections, followed by P. falciparum (18%); mixed infections composed 11% of the group. Among the criteria of severity, jaundice was most common (58%), followed by severe thrombocytopenia (47%), hyperpyrexia (32%), and shock (15%). Plasmodium vivax mono-infection predominated as the etiology of SM in cases acquired in Peru. © The American Society of Tropical Medicine and Hygiene.

  20. Encapsulation of metalloporphyrins improves their capacity to block the viability of the human malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Alves, Eduardo; Iglesias, Bernardo A; Deda, Daiana K; Budu, Alexandre; Matias, Tiago A; Bueno, Vânia B; Maluf, Fernando V; Guido, Rafael V C; Oliva, Glaucius; Catalani, Luiz H; Araki, Koiti; Garcia, Celia R S

    2015-02-01

    Several synthetic metallated protoporphyrins (M-PPIX) were tested for their ability to block the cell cycle of the lethal human malaria parasite Plasmodium falciparum. After encapsulating the porphyrin derivatives in micro- and nanocapsules of marine atelocollagen, their effects on cultures of red blood cells infected (RBC) with P. falciparum were verified. RBCs infected with synchronized P. falciparum incubated for 48 h showed a toxic effect over a micromolar range. Strikingly, the IC50 of encapsulated metalloporphyrins reached nanomolar concentrations, where Zn-PPIX showed the best antimalarial effect, with an IC50=330 nM. This value is an 80-fold increase in the antimalarial activity compared to the antimalarial effect of non-encapsulated Zn-PPIX. These findings reveal that the incubation of P. falciparum infected-RBCs with 20 μM Zn-PPIX reduced the size of hemozoin crystal by 34%, whereas a 28% reduction was noticed with chloroquine, confirming the importance of heme detoxification pathway in drug therapy. In this study, synthetic metalloporphyrins were tested as therapeutics that target Plasmodium falciparum. The IC50 of encapsulated metalloporphyrins was found to be in the nanomolar concentration range, with encapsulated Zn-PPIX showing an 80-fold increase in its antimalarial activity compared to the non-encapsulated form. Copyright © 2015. Published by Elsevier Inc.

  1. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice

    Science.gov (United States)

    Vaughan, Ashley M.; Mikolajczak, Sebastian A.; Wilson, Elizabeth M.; Grompe, Markus; Kaushansky, Alexis; Camargo, Nelly; Bial, John; Ploss, Alexander; Kappe, Stefan H.I.

    2012-01-01

    Plasmodium falciparum, which causes the most lethal form of human malaria, replicates in the host liver during the initial stage of infection. However, in vivo malaria liver-stage (LS) studies in humans are virtually impossible, and in vitro models of LS development do not reconstitute relevant parasite growth conditions. To overcome these obstacles, we have adopted a robust mouse model for the study of P. falciparum LS in vivo: the immunocompromised and fumarylacetoacetate hydrolase–deficient mouse (Fah–/–, Rag2–/–, Il2rg–/–, termed the FRG mouse) engrafted with human hepatocytes (FRG huHep). FRG huHep mice supported vigorous, quantifiable P. falciparum LS development that culminated in complete maturation of LS at approximately 7 days after infection, providing a relevant model for LS development in humans. The infections allowed observations of previously unknown expression of proteins in LS, including P. falciparum translocon of exported proteins 150 (PTEX150) and exported protein-2 (EXP-2), components of a known parasite protein export machinery. LS schizonts exhibited exoerythrocytic merozoite formation and merosome release. Furthermore, FRG mice backcrossed to the NOD background and repopulated with huHeps and human red blood cells supported reproducible transition from LS infection to blood-stage infection. Thus, these mice constitute reliable models to study human LS directly in vivo and demonstrate utility for studies of LS–to–blood-stage transition of a human malaria parasite. PMID:22996664

  2. Gene copy number variation throughout the Plasmodium falciparum genome

    Directory of Open Access Journals (Sweden)

    Stewart Lindsay B

    2009-08-01

    Full Text Available Abstract Background Gene copy number variation (CNV is responsible for several important phenotypes of the malaria parasite Plasmodium falciparum, including drug resistance, loss of infected erythrocyte cytoadherence and alteration of receptor usage for erythrocyte invasion. Despite the known effects of CNV, little is known about its extent throughout the genome. Results We performed a whole-genome survey of CNV genes in P. falciparum using comparative genome hybridisation of a diverse set of 16 laboratory culture-adapted isolates to a custom designed high density Affymetrix GeneChip array. Overall, 186 genes showed hybridisation signals consistent with deletion or amplification in one or more isolate. There is a strong association of CNV with gene length, genomic location, and low orthology to genes in other Plasmodium species. Sub-telomeric regions of all chromosomes are strongly associated with CNV genes independent from members of previously described multigene families. However, ~40% of CNV genes were located in more central regions of the chromosomes. Among the previously undescribed CNV genes, several that are of potential phenotypic relevance are identified. Conclusion CNV represents a major form of genetic variation within the P. falciparum genome; the distribution of gene features indicates the involvement of highly non-random mutational and selective processes. Additional studies should be directed at examining CNV in natural parasite populations to extend conclusions to clinical settings.

  3. Pseudomonas aeruginosa septicaemia in a patient with severe Plasmodium falciparum

    DEFF Research Database (Denmark)

    Kharazmi, A; Høiby, N; Theander, T G

    1987-01-01

    This report describes a Danish patient with severe Plasmodium falciparum infection and Pseudomonas aeruginosa septicaemia. The patient had been sailing along the coast of West Africa for ten years without taking any antimalaria prophylaxis and without any apparent previous history of malaria. He...

  4. Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum?

    Directory of Open Access Journals (Sweden)

    Raquel M Gonçalves

    Full Text Available BACKGROUND: The mechanisms by which humans regulate pro- and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF-α receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85, P. falciparum (n = 30, or both species (n = 12, and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL-10, which correlated positively with parasite density, and elevated IL-10/TNF-α, IL-10/interferon (IFN-γ, IL-10/IL-6 and sTNFRII/TNF-α ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-α receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species. CONCLUSIONS: Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction

  5. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity.

    NARCIS (Netherlands)

    Silvie, O.; Rubinstein, E.; Franetich, J.F.; Prenant, M.; Belnoue, E.; Renia, L.; Hannoun, L.; Eling, W.M.C.; Levy, S.; Boucheix, C.; Mazier, D.

    2003-01-01

    Plasmodium sporozoites are transmitted through the bite of infected mosquitoes and first invade the liver of the mammalian host, as an obligatory step of the life cycle of the malaria parasite. Within hepatocytes, Plasmodium sporozoites reside in a membrane-bound vacuole, where they differentiate

  6. Decreased level of 2,3-diphosphoglycerate and alteration of structural integrity in erythrocytes infected with Plasmodium falciparum in vitro.

    Science.gov (United States)

    Dubey, M L; Hegde, Ramakrishna; Ganguly, N K; Mahajan, R C

    2003-04-01

    2,3-Diphosphoglycerate (2,3-DPG), an intracellular metabolite of glycolytic pathway is known to affect the oxygen binding capacity of haemoglobin and mechanical properties of the red blood cells. 2,3-DPG levels have been reported to be elevated during anaemic conditions including visceral leishmaniasis. 2,3-DPG activity in P. falciparum infected red blood cells, particularly in cells infected with different stages of the parasite and its relationship with structural integrity of the cells is not known. Chloroquine sensitive and resistant strains of P. falciparum were cultured in vitro and synchronized cultures of ring, trophozoite and schizont stage rich cells along with the uninfected control erythrocytes were assayed for 2,3-DPG activity and osmotic fragility. It was observed that in both the strains, in infected erythrocytes the 2,3-DPG activity gradually decreased and osmotic fragility gradually increased as the parasite matured from ring to schizont stage. The decrease in 2,3-DPG may probably be due to increased pyruvate kinase activity of parasite origin, which has been shown in erythrocytes infected with several species of Plasmodium. The absence of compensatory increase in 2,3-DPG in P. falciparum infected erythrocytes may aggravate hypoxia due to anaemia in malaria and probably may contribute to hypoxia in cerebral malaria. As 2,3-DPG was not found to be increased in erythrocytes parasitized with P. falciparum, the increased osmotic fragility observed in these cells is not due to increased 2,3-DPG as has been suggested in visceral leishmaniasis.

  7. The novel oxygenated chalcone, 2,4-dimethoxy-4'-butoxychalcone, exhibits potent activity against human malaria parasite Plasmodium falciparum in vitro and rodent parasites Plasmodium berghei and Plasmodium yoelii in vivo

    DEFF Research Database (Denmark)

    Chen, M; Brøgger Christensen, S; Zhai, L

    1997-01-01

    Previous studies have shown that licochalcone A, an oxygenated chalcone, exhibits antileishmanial and antimalarial activities. The present study was designed to examine the antimalarial activity of an analog of licochalcone A, 2,4-dimethoxy-4'-butoxychalcone (2,4mbc). 2,4mbc inhibited the in vitro...... activity and might be developed into a new antimalarial drug....... growth of both a chloroquine-susceptible (3D7) and a chloroquine-resistant (Dd2) strain of Plasmodium falciparum in a [3H]hypoxanthine uptake assay. The in vivo activity of 2,4mbc was tested in mice infected with Plasmodium berghei or Plasmodium yoelii and in rats infected with P. berghei. 2,4mbc...

  8. High prevalence of drug-resistance mutations in Plasmodium falciparum and Plasmodium vivax in southern Ethiopia

    Directory of Open Access Journals (Sweden)

    Löscher Thomas

    2006-07-01

    Full Text Available Abstract Background In Ethiopia, malaria is caused by both Plasmodium falciparum and Plasmodium vivax. Drug resistance of P. falciparum to sulfadoxine-pyrimethamine (SP and chloroquine (CQ is frequent and intense in some areas. Methods In 100 patients with uncomplicated malaria from Dilla, southern Ethiopia, P. falciparum dhfr and dhps mutations as well as P. vivax dhfr polymorphisms associated with resistance to SP and P. falciparum pfcrt and pfmdr1 mutations conferring CQ resistance were assessed. Results P. falciparum and P. vivax were observed in 69% and 31% of the patients, respectively. Pfdhfr triple mutations and pfdhfr/pfdhps quintuple mutations occurred in 87% and 86% of P. falciparum isolates, respectively. Pfcrt T76 was seen in all and pfmdr1 Y86 in 81% of P. falciparum. The P. vivax dhfr core mutations N117 and R58 were present in 94% and 74%, respectively. Conclusion These data point to an extraordinarily high frequency of drug-resistance mutations in both P. falciparum and P. vivax in southern Ethiopia, and strongly support that both SP and CQ are inadequate drugs for this region.

  9. Phenotypic and genotypic characterization of Thai isolates of Plasmodium falciparum after an artemisinin resistance containment project.

    Science.gov (United States)

    Thita, Thunyapit; Jadsri, Pimrat; Thamkhantho, Jarupatr; Ruang-Areerate, Toon; Suwandittakul, Nantana; Sitthichot, Naruemon; Mahotorn, Kittiya; Tan-Ariya, Peerapan; Mungthin, Mathirut

    2018-05-15

    In Thailand, artemisinin-based combination therapy (ACT) has been used to treat uncomplicated falciparum malaria since 1995. Unfortunately, artemisinin resistance has been reported from Thailand and other Southeast Asian countries since 2003. Malarone ® , a combination of atovaquone-proguanil (ATQ-PG), has been used to cease artemisinin pressure in some areas along Thai-Cambodia border, as part of an artemisinin resistance containment project since 2009. This study aimed to determine genotypes and phenotypes of Plasmodium falciparum isolates collected from the Thai-Cambodia border after the artemisinin resistance containment project compared with those collected before. One hundred and nine of P. falciparum isolates collected from Thai-Cambodia border from Chanthaburi and Trat provinces during 1988-2016 were used in this study. Of these, 58 isolates were collected after the containment. These parasite isolates were characterized for in vitro antimalarial sensitivities including chloroquine (CQ), quinine (QN), mefloquine (MQ), piperaquine (PPQ), artesunate (AS), dihydroartemisinin (DHA), ATQ and PG and genetic markers for drug resistance including the Kelch13 (k13), Plasmodium falciparum chloroquine resistance transporter (pfcrt), P. falciparum multidrug resistance 1 (pfmdr1) and cytochrome b (cytb) genes. Mean CQ, QN, MQ, PPQ and AS IC 50 s of the parasite isolates collected from 2009 to 2016 exhibited significantly higher than those of parasites collected before 2009. Approximately 57% exhibited in vitro MQ resistance. Approximately 94% of the isolates collected from 2009 to 2016 contained the pfmdr1 184F allele. Mutations of the k13 gene were detected in approximately 90% of the parasites collected from 2009 to 2016 which were significantly higher than the parasite isolates collected before. No ATQ-resistant genotype and phenotype of P. falciparum were found among the isolates collected after the containment project. Although the containment project had been

  10. The shape of the iceberg: quantification of submicroscopic Plasmodium falciparum and Plasmodium vivax parasitaemia and gametocytaemia in five low endemic settings in Ethiopia.

    Science.gov (United States)

    Tadesse, Fitsum G; van den Hoogen, Lotus; Lanke, Kjerstin; Schildkraut, Jodie; Tetteh, Kevin; Aseffa, Abraham; Mamo, Hassen; Sauerwein, Robert; Felger, Ingrid; Drakeley, Chris; Gadissa, Endalamaw; Bousema, Teun

    2017-03-03

    The widespread presence of low-density asymptomatic infections with concurrent gametocytes may be a stumbling block for malaria elimination. This study investigated the asymptomatic reservoir of Plasmodium falciparum and Plasmodium vivax infections in schoolchildren from five settings in northwest Ethiopia. Two cross-sectional surveys were conducted in June and November 2015, enrolling 551 students from five schools and 294 students from three schools, respectively. Finger prick whole blood and plasma samples were collected. The prevalence and density of P. falciparum and P. vivax parasitaemia and gametocytaemia were determined by 18S rRNA quantitative PCR (qPCR) and pfs25 and pvs25 reverse transcriptase qPCR. Antibodies against blood stage antigens apical membrane antigen-1 (AMA-1) and merozoite surface protein-1 (MSP-1 19 ) were measured for both species. Whilst only 6 infections were detected by microscopy in 881 slides (0.7%), 107 of 845 blood samples (12.7%) were parasite positive by (DNA-based) qPCR. qPCR parasite prevalence between sites and surveys ranged from 3.8 to 19.0% for P. falciparum and 0.0 to 9.0% for P. vivax. The median density of P. falciparum infections (n = 85) was 24.4 parasites/µL (IQR 18.0-34.0) and the median density of P. vivax infections (n = 28) was 16.4 parasites/µL (IQR 8.8-55.1). Gametocyte densities by (mRNA-based) qRT-PCR were strongly associated with total parasite densities for both P. falciparum (correlation coefficient = 0.83, p = 0.010) and P. vivax (correlation coefficient = 0.58, p = 0.010). Antibody titers against P. falciparum AMA-1 and MSP-1 19 were higher in individuals who were P. falciparum parasite positive in both surveys (p < 0.001 for both comparisons). This study adds to the available evidence on the wide-scale presence of submicroscopic parasitaemia by quantifying submicroscopic parasite densities and concurrent gametocyte densities. There was considerable heterogeneity in the occurrence of P

  11. Simultaneous detection of Plasmodium vivax and Plasmodium falciparum gametocytes in clinical isolates by multiplex-nested RT-PCR.

    Science.gov (United States)

    Kuamsab, Napaporn; Putaporntip, Chaturong; Pattanawong, Urassaya; Jongwutiwes, Somchai

    2012-06-10

    Gametocyte carriage is essential for malaria transmission and endemicity of disease; thereby it is a target for malaria control strategies. Malaria-infected individuals may harbour gametocytes below the microscopic detection threshold that can be detected by reverse transcription polymerase chain reaction (RT-PCR) targeting gametocyte-specific mRNA. To date, RT-PCR has mainly been applied to the diagnosis of Plasmodium falciparum gametocytes but very limited for that of Plasmodium vivax. A multiplex-nested RT-PCR targeting Pfs25 and Pvs25 mRNA specific to mature gametocytes of P. falciparum and P. vivax, respectively, was developed. The assay was evaluated using blood samples collected in rainy and dry seasons from febrile patients,in a malaria-endemic area in Thailand. Malaria diagnosis was performed by Giemsa-stained blood smears and 18S rRNA PCR. The multiplex-nested RT-PCR detected Pfs25 mRNA in 75 of 86 (87.2%) P. falciparum-infected individuals and Pvs25 mRNA in 82 of 90 (91.1%) P. vivax malaria patients diagnosed by 18S rRNA PCR. Gametocytes were detected in 38 (eight P. falciparum and 30 P. vivax) of 157 microscopy positive samples, implying that a large number of patients harbour sub-microscopic gametocytaemia. No seasonal differences in gametocyte carriage were observed for both malaria species diagnosed by multiplex-nested RT-PCR. With single-nested RT-PCR targeting Pfs25 or Pvs25 mRNA as standard, the multiplex-nested RT-PCR offered sensitivities of 97.4% and 98.9% and specificities of 100% and 98.8% for diagnosing mature gametocytes of P. falciparum and P. vivax, respectively. The minimum detection limit of the multiplex-nested PCR was 10 copies of templates. The multiplex-nested RT-PCR developed herein is useful for simultaneous assessment of both P. falciparum and P. vivax gametocyte carriage that is prevalent and generally sympatric in several malaria-endemic areas outside Africa.

  12. Human monoclonal IgG selection of Plasmodium falciparum for the expression of placental malaria-specific variant surface antigens

    DEFF Research Database (Denmark)

    Soerli, J; Barfod, L; Lavstsen, T

    2009-01-01

    Pregnancy-associated Plasmodium falciparum malaria (PAM) is a major cause of morbidity and mortality in African women and their offspring. PAM is characterized by accumulation of infected erythrocytes (IEs) that adhere to chondroitin sulphate A (CSA) in the placental intervillous space. We show h...... transcription of var2csa. The results corroborate current efforts to develop PAM-specific vaccines based on VAR2CSA....

  13. Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

    OpenAIRE

    Manske, Magnus; Miotto, Olivo; Campino, Susana; Auburn, Sarah; Almagro-Garcia, Jacob; Maslen, Gareth; O?Brien, Jack; Djimde, Abdoulaye; Doumbo, Ogobara; Zongo, Issaka; Ouedraogo, Jean-Bosco; Michon, Pascal; Mueller, Ivo; Siba, Peter; Nzila, Alexis

    2012-01-01

    : Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. Here we describe methods for the large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short-term culture. Analysis of 86,158 exonic single nucleotide polymorphisms that passed genotyping quality c...

  14. Prevalence of Plasmodium falciparum infection in pregnant women in Gabon

    Directory of Open Access Journals (Sweden)

    Kendjo Eric

    2003-06-01

    Full Text Available Abstract Background In areas where malaria is endemic, pregnancy is associated with increased susceptibility to malaria. It is generally agreed that this risk ends with delivery and decreases with the number of pregnancies. Our study aimed to demonstrate relationships between malarial parasitaemia and age, gravidity and anaemia in pregnant women in Libreville, the capital city of Gabon. Methods Peripheral blood was collected from 311 primigravidae and women in their second pregnancy. Thick blood smears were checked, as were the results of haemoglobin electrophoresis. We also looked for the presence of anaemia, fever, and checked whether the volunteers had had chemoprophylaxis. The study was performed in Gabon where malaria transmission is intense and perennial. Results A total of 177 women (57% had microscopic parasitaemia; 139 (64%of them were primigravidae, 38 (40% in their second pregnancy and 180 (64% were teenagers. The parasites densities were also higher in primigravidae and teenagers. The prevalence of anaemia was 71% and was associated with microscopic Plasmodium falciparum parasitaemia: women with moderate or severe anaemia had higher parasite prevalences and densities. However, the sickle cell trait, fever and the use of chemoprophylaxis did not have a significant association with the presence of P. falciparum. Conclusions These results suggest that the prevalence of malaria and the prevalence of anaemia, whether associated with malaria or not, are higher in pregnant women in Gabon. Primigravidae and young pregnant women are the most susceptible to infection. It is, therefore, urgent to design an effective regimen of malaria prophylaxis for this high risk population.

  15. Antibody-independent mechanisms regulate the establishment of chronic Plasmodium infection

    Science.gov (United States)

    Lin, Jingwen; Cunningham, Deirdre; Tumwine, Irene; Kushinga, Garikai; McLaughlin, Sarah; Spence, Philip; Böhme, Ulrike; Sanders, Mandy; Conteh, Solomon; Bushell, Ellen; Metcalf, Tom; Billker, Oliver; Duffy, Patrick E.; Newbold, Chris; Berriman, Matthew; Langhorne, Jean

    2017-01-01

    Malaria is caused by parasites of the genus Plasmodium. All human-infecting Plasmodium species can establish long-lasting chronic infections1–5, creating an infectious reservoir to sustain transmission1,6. It is widely accepted that maintenance of chronic infection involves evasion of adaptive immunity by antigenic variation7. However, genes involved in this process have been identified in only two of five human-infecting species: P. falciparum and P. knowlesi. Furthermore, little is understood about the early events in establishment of chronic infection in these species. Using a rodent model we demonstrate that only a minority of parasites from among the infecting population, expressing one of several clusters of virulence-associated pir genes, establishes a chronic infection. This process occurs in different species of parasite and in different hosts. Establishment of chronicity is independent of adaptive immunity and therefore different from the mechanism proposed for maintainance of chronic P. falciparum infections7–9. Furthermore, we show that the proportions of parasites expressing different types of pir genes regulate the time taken to establish a chronic infection. Since pir genes are common to most, if not all, species of Plasmodium10, this process may be a common way of regulating the establishment of chronic infections. PMID:28165471

  16. Plasmodium falciparum malaria challenge by the bite of aseptic Anopheles stephensi mosquitoes: results of a randomized infectivity trial.

    Directory of Open Access Journals (Sweden)

    Kirsten E Lyke

    2010-10-01

    Full Text Available Experimental infection of malaria-naïve volunteers by the bite of Plasmodium falciparum-infected mosquitoes is a preferred means to test the protective effect of malaria vaccines and drugs. The standard model relies on the bite of five infected mosquitoes to induce malaria. We examined the efficacy of malaria transmission using mosquitoes raised aseptically in compliance with current Good Manufacturing Practices (cGMPs.Eighteen adults aged 18-40 years were randomized to receive 1, 3 or 5 bites of Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of P. falciparum. Seventeen participants developed malaria; fourteen occurring on Day 11. The mean prepatent period was 10.9 days (9-12 days. The geometric mean parasitemia was 15.7 parasites/µL (range: 4-70 by microscopy. Polymerase chain reaction (PCR detected parasites 3.1 (range: 0-4 days prior to microscopy. The geometric mean sporozoite load was 16,753 sporozoites per infected mosquito (range: 1,000-57,500. A 1-bite participant withdrew from the study on Day 13 post-challenge and was PCR and smear negative.The use of aseptic, cGMP-compliant P. falciparum-infected mosquitoes is safe, is associated with a precise prepatent period compared to the standard model and appears more efficient than the standard approach, as it led to infection in 100% (6/6 of volunteers exposed to three mosquito bites and 83% (5/6 of volunteers exposed to one mosquito bite.ClinicalTrials.gov NCT00744133.

  17. Controlled human malaria infection by intramuscular and direct venous inoculation of cryopreserved Plasmodium falciparum sporozoites in malaria-naïve volunteers: effect of injection volume and dose on infectivity rates

    NARCIS (Netherlands)

    Gómez-Pérez, Gloria P.; Legarda, Almudena; Muñoz, Jose; Sim, B. Kim Lee; Ballester, María Rosa; Dobaño, Carlota; Moncunill, Gemma; Campo, Joseph J.; Cisteró, Pau; Jimenez, Alfons; Barrios, Diana; Mordmüller, Benjamin; Pardos, Josefina; Navarro, Mireia; Zita, Cecilia Justino; Nhamuave, Carlos Arlindo; García-Basteiro, Alberto L.; Sanz, Ariadna; Aldea, Marta; Manoj, Anita; Gunasekera, Anusha; Billingsley, Peter F.; Aponte, John J.; James, Eric R.; Guinovart, Caterina; Antonijoan, Rosa M.; Kremsner, Peter G.; Hoffman, Stephen L.; Alonso, Pedro L.

    2015-01-01

    Controlled human malaria infection (CHMI) by mosquito bite is a powerful tool for evaluation of vaccines and drugs against Plasmodium falciparum malaria. However, only a small number of research centres have the facilities required to perform such studies. CHMI by needle and syringe could help to

  18. Combinatorial gene regulation in Plasmodium falciparum.

    NARCIS (Netherlands)

    Noort, V. van; Huynen, M.A.

    2006-01-01

    The malaria parasite Plasmodium falciparum has a complicated life cycle with large variations in its gene expression pattern, but it contains relatively few specific transcriptional regulators. To elucidate this paradox, we identified regulatory sequences, using an approach that integrates the

  19. Characterization of the repertoire diversity of the Plasmodium falciparum stevor multigene family in laboratory and field isolates

    Directory of Open Access Journals (Sweden)

    Holder Anthony A

    2009-06-01

    Full Text Available Abstract Background The evasion of host immune response by the human malaria parasite Plasmodium falciparum has been linked to expression of a range of variable antigens on the infected erythrocyte surface. Several genes are potentially involved in this process with the var, rif and stevor multigene families being the most likely candidates and coding for rapidly evolving proteins. The high sequence diversity of proteins encoded by these gene families may have evolved as an immune evasion strategy that enables the parasite to establish long lasting chronic infections. Previous findings have shown that the hypervariable region (HVR of STEVOR has significant sequence diversity both within as well as across different P. falciparum lines. However, these studies did not address whether or not there are ancestral stevor that can be found in different parasites. Methods DNA and RNA sequences analysis as well as phylogenetic approaches were used to analyse the stevor sequence repertoire and diversity in laboratory lines and Kilifi (Kenya fresh isolates. Results Conserved stevor genes were identified in different P. falciparum isolates from different global locations. Consistent with previous studies, the HVR of the stevor gene family was found to be highly divergent both within and between isolates. Importantly phylogenetic analysis shows some clustering of stevor sequences both within a single parasite clone as well as across different parasite isolates. Conclusion This indicates that the ancestral P. falciparum parasite genome already contained multiple stevor genes that have subsequently diversified further within the different P. falciparum populations. It also confirms that STEVOR is under strong selection pressure.

  20. Falciparum malaria infection with invasive pulmonary aspergillosis in immunocompetent host – case report

    Science.gov (United States)

    Andriyani, Y.

    2018-03-01

    Invasive pulmonary aspergillosis is an extraordinary rare in the immunocompetent host. Falciparum malaria contributes to high morbidity and mortality of malaria infection cases in the world. The impairments of both humoral and cellular immunity could be the reason of invasive pulmonary aspergillosis in falciparum malaria infection. Forty-nine years old patient came with fever, jaundice, pain in the right abdomen, after visiting a remote area in Africa about one month before admission. Blood films and rapid test were positive for Plasmodium falciparum. After malaria therapy in five days, consciousness was altered into somnolence and intubated with respiratory deterioration. Invasive pulmonary aspergillosis after falciparum malaria infection is life-threatening. There should be awareness of physicians of invasive pulmonary aspergillosis in falciparum malaria infection.

  1. Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission

    Directory of Open Access Journals (Sweden)

    Zborowski Maciej

    2008-04-01

    Full Text Available Abstract Background Aggregated haemozoin crystals within malaria-infected erythrocytes confer susceptibility of parasitized cells to a magnetic field. Here the utility of this method for diagnosis of human malaria is evaluated in a malaria-endemic region of Papua New Guinea (PNG. Methods and findings Individuals with Plasmodium falciparum malaria symptoms (n = 55 provided samples for conventional blood smear (CBS and magnetic deposition microscopy (MDM diagnosis. Standard Giemsa staining and light microscopy was performed to evaluate all preparations. Plasmodium falciparum parasitaemia observed on MDM slides was consistently higher than parasitaemia observed by (CBS for ring (CBS = 2.6 vs. MDM = 3.4%; t-test P-value = 0.13, trophozoite (CBS = 0.5 vs. MDM = 1.6%; t-test P-value = 0.01, schizont (CBS = 0.003 vs. MDM = 0.1%; t-test P-value = 0.08 and gametocyte (CBS = 0.001 vs. MDM = 0.4%; t-test P-value = 0.0002 parasitaemias. Gametocyte prevalence determined by CBS compared to MDM increased from 7.3% to 45%, respectively. Conclusion MDM increased detection sensitivity of P. falciparum-infected, haemozoin-containing erythrocytes from infected humans while maintaining detection of ring-stage parasites. Gametocyte prevalence five-fold higher than observed by CBS suggests higher malaria transmission potential in PNG endemic sites compared to previous estimates.

  2. Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Jessica K O'Hara

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT, is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.

  3. Identification and characterization of a novel Plasmodium falciparum adhesin involved in erythrocyte invasion.

    Directory of Open Access Journals (Sweden)

    Nidhi Hans

    Full Text Available Malaria remains a major health problem worldwide. All clinical symptoms of malaria are attributed to the asexual blood stages of the parasite life cycle. Proteins resident in apical organelles and present on the surface of P. falciparum merozoites are considered promising candidates for the development of blood stage malaria vaccines. In the present study, we have identified and characterized a microneme associated antigen, PfMA [PlasmoDB Gene ID: PF3D7_0316000, PFC0700c]. The gene was selected by applying a set of screening criteria such as transcriptional upregulation at late schizogony, inter-species conservation and the presence of signal sequence or transmembrane domains. The gene sequence of PfMA was found to be conserved amongst various Plasmodium species. We experimentally demonstrated that the transcript for PfMA was expressed only in the late blood stages of parasite consistent with a putative role in erythrocyte invasion. PfMA was localized by immunofluorescence and immuno-electron microscopy to be in the micronemes, an apical organelle of merozoites. The functional role of the PfMA protein in erythrocyte invasion was identified as a parasite adhesin involved in direct attachment with the target erythrocyte. PfMA was demonstrated to bind erythrocytes in a sialic acid independent, chymotrypsin and trypsin resistant manner and its antibodies inhibited P. falciparum erythrocyte invasion. Invasion of erythrocytes is a complex multistep process that involves a number of redundant ligand-receptor interactions many of which still remain unknown and even uncharacterized. Our work has identified and characterized a novel P. falciparum adhesin involved in erythrocyte invasion.

  4. Hierarchical, domain type-specific acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 in Tanzanian children

    DEFF Research Database (Denmark)

    Cham, Gerald K K; Turner, Louise; Kurtis, Jonathan D

    2010-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of malaria-infected erythrocytes. PfEMP1 attaches to the vascular lining and allows infected erythrocytes to avoid filtration through the spleen. Each parasite genome encodes about 60 diffe...... and play a major role in limiting parasite multiplication in the blood.......Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a variant antigen expressed on the surface of malaria-infected erythrocytes. PfEMP1 attaches to the vascular lining and allows infected erythrocytes to avoid filtration through the spleen. Each parasite genome encodes about 60...... different PfEMP1 variants, each PfEMP1 comprises several domains in its extracellular region, and the PfEMP1 repertoire in different parasites contains domain types that are serologically cross-reactive. In this longitudinal study, we followed 672 children living in an area of high malaria transmission...

  5. Capture ELISA for IgM antibodies against Plasmodium falciparum glutamate rich protein

    DEFF Research Database (Denmark)

    Dziegiel, M; Borre, Mette; Petersen, E

    1992-01-01

    This report describes a novel mu chain capture ELISA for the detection of IgM antibodies against a Plasmodium falciparum antigen. A fragment of the 220 kDa P. falciparum glutamate rich protein containing amino acid residues 489-1271 was expressed in E. coli as a recombinant chimeric beta-galactos......This report describes a novel mu chain capture ELISA for the detection of IgM antibodies against a Plasmodium falciparum antigen. A fragment of the 220 kDa P. falciparum glutamate rich protein containing amino acid residues 489-1271 was expressed in E. coli as a recombinant chimeric beta...

  6. Distinct patterns of blood-stage parasite antigens detected by plasma IgG subclasses from individuals with different level of exposure to Plasmodium falciparum infections

    DEFF Research Database (Denmark)

    Olesen, Cathrine Holm; Brahimi, Karima; Vandahl, Brian

    2010-01-01

    ABSTRACT: BACKGROUND: In endemic regions naturally acquired immunity against Plasmodium falciparum develops as a function of age and exposure to parasite infections and is known to be mediated by IgG. The targets of protective antibodies remain to be fully defined. Several immunoepidemiological s...

  7. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    International Nuclear Information System (INIS)

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-01-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of 125 I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of 125 I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen

  8. Cytoadhesion to gC1qR through Plasmodium falciparum erythrocyte membrane protein 1 in severe malaria

    DEFF Research Database (Denmark)

    Magallón-Tejada, Ariel; Machevo, Sónia; Cisteró, Pau

    2016-01-01

    Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed...

  9. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Trelle, Morten Beck; Salcedo-Amaya, Adriana M; Cohen, Adrian

    2009-01-01

    Post-translational modifications (PTMs) of histone tails play a key role in epigenetic regulation of gene expression in a range of organisms from yeast to human, however, little is known about histone proteins from the parasite that causes malaria in humans, Plasmodium falciparum. We characterize...... comprehensive map of histone modifications in Plasmodium falciparum and highlight the utility of tandem MS for detailed analysis of peptides containing multiple PTMs....

  10. Heterologous Protection against Malaria after Immunization with Plasmodium falciparum Sporozoites.

    Directory of Open Access Journals (Sweden)

    Remko Schats

    Full Text Available Sterile protection in >90% of volunteers against homologous Plasmodium falciparum infection has been achieved only using the controlled human malaria infection (CHMI model. This efficient model involves whole parasite immunizations under chloroquine prophylaxis (CPS-immunization, requiring only 30-45 mosquitoes bites infected with P. falciparum-sporozoites. Given the large diversity of P. falciparum parasites, it is essential to assess protection against heterologous parasite strains.In an open-label follow-up study, 16 volunteers previously CPS-immunized and challenged with P. falciparum NF54 (West-Africa in a dose de-escalation and challenge trial were re-challenged with clone NF135.C10 (Cambodia at 14 months after the last immunization (NCT01660854.Two out of thirteen NF54 protected volunteers previously fully protected against NF54 were also fully protected against NF135.C10, while 11/13 showed a delayed patency (median prepatent period of 10.5 days (range 9.0-15.5 versus 8.5 days in 5 malaria-naïve controls (p = 0.0005. Analysis of patency by qPCR indicated a 91 to >99% estimated reduction of liver parasite load in 7/11 partially protected subjects. Three volunteers previously not protected against NF54, were also not protected against NF135.C10.This study shows that CPS-immunization can induce heterologous protection for a period of more than one year, which is a further impetus for clinical development of whole parasite vaccines.Clinicaltrials.gov NCT01660854.

  11. Chromosome End Repair and Genome Stability in Plasmodium falciparum.

    Science.gov (United States)

    Calhoun, Susannah F; Reed, Jake; Alexander, Noah; Mason, Christopher E; Deitsch, Kirk W; Kirkman, Laura A

    2017-08-08

    The human malaria parasite Plasmodium falciparum replicates within circulating red blood cells, where it is subjected to conditions that frequently cause DNA damage. The repair of DNA double-stranded breaks (DSBs) is thought to rely almost exclusively on homologous recombination (HR), due to a lack of efficient nonhomologous end joining. However, given that the parasite is haploid during this stage of its life cycle, the mechanisms involved in maintaining genome stability are poorly understood. Of particular interest are the subtelomeric regions of the chromosomes, which contain the majority of the multicopy variant antigen-encoding genes responsible for virulence and disease severity. Here, we show that parasites utilize a competitive balance between de novo telomere addition, also called "telomere healing," and HR to stabilize chromosome ends. Products of both repair pathways were observed in response to DSBs that occurred spontaneously during routine in vitro culture or resulted from experimentally induced DSBs, demonstrating that both pathways are active in repairing DSBs within subtelomeric regions and that the pathway utilized was determined by the DNA sequences immediately surrounding the break. In combination, these two repair pathways enable parasites to efficiently maintain chromosome stability while also contributing to the generation of genetic diversity. IMPORTANCE Malaria is a major global health threat, causing approximately 430,000 deaths annually. This mosquito-transmitted disease is caused by Plasmodium parasites, with infection with the species Plasmodium falciparum being the most lethal. Mechanisms underlying DNA repair and maintenance of genome integrity in P. falciparum are not well understood and represent a gap in our understanding of how parasites survive the hostile environment of their vertebrate and insect hosts. Our work examines DNA repair in real time by using single-molecule real-time (SMRT) sequencing focused on the subtelomeric

  12. Studies On the Incidence of Asymptomatic Plasmodium Infection ...

    African Journals Online (AJOL)

    The incidence of asymptomatic Plasmodium falciparum infection among orphans between age groups, gender and blood groups was investigated. Standard microscopic methods were used to screen for malaria parasites in the blood specimens obtained from eighty-five (85) subjects in three orphanages in Kaduna and ...

  13. Identification of glycosaminoglycan binding regions in the Plasmodium falciparum encoded placental sequestration ligand, VAR2CSA

    DEFF Research Database (Denmark)

    Resende, Mafalda; Nielsen, Morten A.; Dahlbaeck, Madeleine

    2008-01-01

    Background: Pregnancy malaria is caused by Plasmodium falciparum-infected erythrocytes binding the placental receptor chondroitin sulfate A (CSA). This results in accumulation of parasites in the placenta with severe clinical consequences for the mother and her unborn child. Women become resistan...

  14. Using CF11 cellulose columns to inexpensively and effectively remove human DNA from Plasmodium falciparum-infected whole blood samples

    Directory of Open Access Journals (Sweden)

    Venkatesan Meera

    2012-02-01

    Full Text Available Abstract Background Genome and transcriptome studies of Plasmodium nucleic acids obtained from parasitized whole blood are greatly improved by depletion of human DNA or enrichment of parasite DNA prior to next-generation sequencing and microarray hybridization. The most effective method currently used is a two-step procedure to deplete leukocytes: centrifugation using density gradient media followed by filtration through expensive, commercially available columns. This method is not easily implemented in field studies that collect hundreds of samples and simultaneously process samples for multiple laboratory analyses. Inexpensive syringes, hand-packed with CF11 cellulose powder, were recently shown to improve ex vivo cultivation of Plasmodium vivax obtained from parasitized whole blood. This study was undertaken to determine whether CF11 columns could be adapted to isolate Plasmodium falciparum DNA from parasitized whole blood and achieve current quantity and purity requirements for Illumina sequencing. Methods The CF11 procedure was compared with the current two-step standard of leukocyte depletion using parasitized red blood cells cultured in vitro and parasitized blood obtained ex vivo from Cambodian patients with malaria. Procedural variations in centrifugation and column size were tested, along with a range of blood volumes and parasite densities. Results CF11 filtration reliably produces 500 nanograms of DNA with less than 50% human DNA contamination, which is comparable to that obtained by the two-step method and falls within the current quality control requirements for Illumina sequencing. In addition, a centrifuge-free version of the CF11 filtration method to isolate P. falciparum DNA at remote and minimally equipped field sites in malaria-endemic areas was validated. Conclusions CF11 filtration is a cost-effective, scalable, one-step approach to remove human DNA from P. falciparum-infected whole blood samples.

  15. Sporozoite Route of Infection Influences In Vitro var Gene Transcription of Plasmodium falciparum Parasites From Controlled Human Infections.

    Science.gov (United States)

    Dimonte, Sandra; Bruske, Ellen I; Hass, Johanna; Supan, Christian; Salazar, Carmen L; Held, Jana; Tschan, Serena; Esen, Meral; Flötenmeyer, Matthias; Koch, Iris; Berger, Jürgen; Bachmann, Anna; Sim, Betty K L; Hoffman, Stephen L; Kremsner, Peter G; Mordmüller, Benjamin; Frank, Matthias

    2016-09-15

    Antigenic variation in Plasmodium falciparum is mediated by the multicopy var gene family. Each parasite possesses about 60 var genes, and switching between active var loci results in antigenic variation. In the current study, the effect of mosquito and host passage on in vitro var gene transcription was investigated. Thirty malaria-naive individuals were inoculated by intradermal or intravenous injection with cryopreserved, isogenic NF54 P. falciparum sporozoites (PfSPZ) generated from 1 premosquito culture. Microscopic parasitemia developed in 22 individuals, and 21 in vitro cultures were established. The var gene transcript levels were determined in early and late postpatient cultures and in the premosquito culture. At the early time point, all cultures preferentially transcribed 8 subtelomeric var genes. Intradermal infections had higher var gene transcript levels than intravenous infections and a significantly longer intrahost replication time (P = .03). At the late time point, 9 subtelomeric and 8 central var genes were transcribed at the same levels in almost all cultures. Premosquito and late postpatient cultures transcribed the same subtelomeric and central var genes, except for var2csa  The duration of intrahost replication influences in vitro var gene transcript patterns. Differences between premosquito and postpatient cultures decrease with prolonged in vitro growth. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  16. Mannose-binding lectin is a disease modifier in clinical malaria and may function as opsonin for Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Garred, Peter; Nielsen, Morten A; Kurtzhals, Jørgen

    2003-01-01

    Variant alleles in the mannose-binding lectin (MBL) gene (mbl2) causing low levels of functional MBL are associated with susceptibility to different infections and are common in areas where malaria is endemic. Therefore, we investigated whether MBL variant alleles in 551 children from Ghana were...... associated with the occurrence and outcome parameters of Plasmodium falciparum malaria and asked whether MBL may function as an opsonin for P. falciparum. No difference in MBL genotype frequency was observed between infected and noninfected children or between children with cerebral malaria and/or severe...... malarial anemia and children with uncomplicated malaria. However, patients with complicated malaria who were homozygous for MBL variant alleles had significantly higher parasite counts and lower blood glucose levels than their MBL-competent counterparts. Distinct calcium-dependent binding of MBL...

  17. Molecular markers of antifolate resistance in Plasmodium falciparum isolates from Luanda, Angola

    Science.gov (United States)

    2011-01-01

    Background Plasmodium falciparum malaria remains a leading health problem in Africa and its control is seriously challenged by drug resistance. Although resistance to the sulphadoxine-pyrimethamine (SP) is widespread, this combination remains an important component of malaria control programmes as intermittent preventive therapy (IPT) for pregnant women and children. In Angola, resistance patterns have been poorly characterized, and IPT has been employed for pregnant women since 2006. The aim of this study was to assess the prevalence of key antifolate resistance mediating polymorphisms in the pfdhfr and pfdhps genes in P. falciparum samples from Angola. Methods Plasmodium falciparum samples collected in Luanda, in 2007, were genotyped by amplification and DNA forward and reverse sequencing of the pfdhfr and pfdhps genes. Results The most prevalent polymorphisms identified were pfdhfr 108N (100%), 51I (93%), 59R (57%) and pfdhps 437G (93%). Resistance-mediating polymorphisms in pfdhps less commonly observed in West Africa were also identified (540E in 10%, 581G in 7% of samples). Conclusion This study documents an important prevalence of 4 P. falciparum polymorphisms that predicts an antifolate resistance in Luanda. Further, some samples presented additional mutations associated to high-level resistance. These results suggest that the use of SP for IPT may no longer be warranted in Angola. PMID:21864379

  18. Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum-infected erythrocytes to monocytes, endothelial, and C32 melanoma cells

    International Nuclear Information System (INIS)

    Barnwell, J.W.; Ockenhouse, C.F.; Knowles, D.M. II

    1985-01-01

    Plasmodium falciparum-infected erythrocytes bind in vitro to human endothelial cells, monocytes, and a certain melanoma cell line. Evidence suggests that this interaction is mediated by similar mechanisms which lead to the sequestration of parasitized erythrocytes in vivo through their attachment to endothelial cells of small blood vessels. They show here the monoclonal antibody OKM5, previously shown to react with the membranes of endothelial cells, monocyte,s and platelets, also reacts with the C32 melanoma cell line which also binds P. falciparum-infected erythrocytes. At relatively low concentrations, OKM5 inhibits and reverses the in vitro adherence of infected erythrocytes to target cells. As with monocytes, OKM5 antibody recognizes an 125 I-labeled protein of approximately 88 Kd on the surface of C32 melanoma cells. It seems likely, therefore, that the 88 Kd polypeptide plays a role in cytoadherence, possibly as the receptor or part of a receptor for a ligand on the surface of infected erythrocytes

  19. Patterns of Plasmodium vivax and Plasmodium falciparum malaria underscore importance of data collection from private health care facilities in India.

    Science.gov (United States)

    Gupta, Sangeeta; Gunter, James T; Novak, Robert J; Regens, James L

    2009-10-12

    This study describes patterns of falciparum and vivax malaria in a private comprehensive-care, multi-specialty hospital in New Delhi from July 2006 to July 2008. Malarial morbidity by Plasmodium species (Plasmodium falciparum, Plasmodium vivax, or Plasmodium sp.) was confirmed using microscopy and antigen tests. The influence of seasonal factors and selected patient demographics on morbidity was evaluated. The proportions of malaria cases caused by P. falciparum at the private facility were compared to data from India's National Vector Borne Disease Control Programme (NVBDCP) during the same period for the Delhi region. In New Delhi, P. faciparum was the dominant cause of cases requiring treatment in the private hospital during the period examined. The national data reported a smaller proportion of malaria cases caused by P. falciparum in the national capital region than was observed in a private facility within the region. Plasmodium vivax also caused a large proportion of the cases presenting clinically at the private hospital during the summer and monsoon seasons. The proportion of P. falciparum malaria cases tends to be greatest during the post-monsoon season while the proportion of P. vivax malaria cases tends to be greatest in the monsoon season. Private hospital data demonstrate an under-reporting of malaria case incidences in the data from India's national surveillance programme during the same period for the national capital region.

  20. Neutrophil alterations in pregnancy-associated malaria and induction of neutrophil chemotaxis by Plasmodium falciparum

    DEFF Research Database (Denmark)

    Boström, S.; Schmiegelow, C; Abu Abed, U

    2017-01-01

    Pregnancy-associated malaria (PAM) is a severe form of the disease caused by sequestration of Plasmodium falciparum-infected red blood cells (iRBCs) in the developing placenta. Pathogenesis of PAM is partially based on immunopathology, with frequent monocyte infiltration into the placenta. Neutro...

  1. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children.

    Science.gov (United States)

    Vignali, Marissa; Armour, Christopher D; Chen, Jingyang; Morrison, Robert; Castle, John C; Biery, Matthew C; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K; Duffy, Patrick E

    2011-03-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a preponderance of host RNA in clinical samples. We report here the application of RNA sequencing to clinical isolates of P. falciparum, using not-so-random (NSR) primers to successfully exclude human ribosomal RNA and globin transcripts and enrich for parasite transcripts. Using NSR-seq, we confirmed earlier microarray studies showing upregulation of a distinct subset of genes in parasites infecting pregnant women, including that encoding the well-established pregnancy malaria vaccine candidate var2csa. We also describe a subset of parasite transcripts that distinguished parasites infecting children from those infecting pregnant women and confirmed this observation using quantitative real-time PCR and mass spectrometry proteomic analyses. Based on their putative functional properties, we propose that these proteins could have a role in childhood malaria pathogenesis. Our study provides proof of principle that NSR-seq represents an approach that can be used to study clinical isolates of parasites causing severe malaria syndromes as well other blood-borne pathogens and blood-related diseases.

  2. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children

    Science.gov (United States)

    Vignali, Marissa; Armour, Christopher D.; Chen, Jingyang; Morrison, Robert; Castle, John C.; Biery, Matthew C.; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K.; Duffy, Patrick E.

    2011-01-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a preponderance of host RNA in clinical samples. We report here the application of RNA sequencing to clinical isolates of P. falciparum, using not-so-random (NSR) primers to successfully exclude human ribosomal RNA and globin transcripts and enrich for parasite transcripts. Using NSR-seq, we confirmed earlier microarray studies showing upregulation of a distinct subset of genes in parasites infecting pregnant women, including that encoding the well-established pregnancy malaria vaccine candidate var2csa. We also describe a subset of parasite transcripts that distinguished parasites infecting children from those infecting pregnant women and confirmed this observation using quantitative real-time PCR and mass spectrometry proteomic analyses. Based on their putative functional properties, we propose that these proteins could have a role in childhood malaria pathogenesis. Our study provides proof of principle that NSR-seq represents an approach that can be used to study clinical isolates of parasites causing severe malaria syndromes as well other blood-borne pathogens and blood-related diseases. PMID:21317536

  3. Molecular Investigation into a Malaria Outbreak in Cusco, Peru: Plasmodium falciparum BV1 Lineage is Linked to a Second Outbreak in Recent Times

    Science.gov (United States)

    Okoth, Sheila Akinyi; Chenet, Stella M.; Arrospide, Nancy; Gutierrez, Sonia; Cabezas, Cesar; Matta, Jose Antonio; Udhayakumar, Venkatachalam

    2016-01-01

    In November 2013, a Plasmodium falciparum malaria outbreak of 11 cases occurred in Cusco, southern Peru, where falciparum malaria had not been reported since 1946. Although initial microscopic diagnosis reported only Plasmodium vivax infection in each of the specimens, subsequent examination by the national reference laboratory confirmed P. falciparum infection in all samples. Molecular typing of four available isolates revealed identity as the B-variant (BV1) strain that was responsible for a malaria outbreak in Tumbes, northern Peru, between 2010 and 2012. The P. falciparum BV1 strain is multidrug resistant, can escape detection by PfHRP2-based rapid diagnostic tests, and has contributed to two malaria outbreaks in Peru. This investigation highlights the importance of accurate species diagnosis given the potential for P. falciparum to be reintroduced to regions where it may have been absent. Similar molecular epidemiological investigations can track the probable source(s) of outbreak parasite strains for malaria surveillance and control purposes. PMID:26483121

  4. Surface co-expression of two different PfEMP1 antigens on single Plasmodium falciparum-infected erythrocytes facilitates binding to ICAM1 and PECAM1

    DEFF Research Database (Denmark)

    Joergensen, Louise; Bengtsson, Dominique C; Bengtsson, Anja

    2010-01-01

    The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var...

  5. Plasmodium falciparum metacaspase PfMCA-1 triggers a z-VAD-fmk inhibitable protease to promote cell death.

    Directory of Open Access Journals (Sweden)

    Benoît Meslin

    Full Text Available Activation of proteolytic cell death pathways may circumvent drug resistance in deadly protozoan parasites such as Plasmodium falciparum and Leishmania. To this end, it is important to define the cell death pathway(s in parasites and thus characterize proteases such as metacaspases (MCA, which have been reported to induce cell death in plants and Leishmania parasites. We, therefore, investigated whether the cell death function of MCA is conserved in different protozoan parasite species such as Plasmodium falciparum and Leishmania major, focusing on the substrate specificity and functional role in cell survival as compared to Saccharomyces cerevisae. Our results show that, similarly to Leishmania, Plasmodium MCA exhibits a calcium-dependent, arginine-specific protease activity and its expression in yeast induced growth inhibition as well as an 82% increase in cell death under oxidative stress, a situation encountered by parasites during the host or when exposed to drugs such as artemisins. Furthermore, we show that MCA cell death pathways in both Plasmodium and Leishmania, involve a z-VAD-fmk inhibitable protease. Our data provide evidence that MCA from both Leishmania and Plasmodium falciparum is able to induce cell death in stress conditions, where it specifically activates a downstream enzyme as part of a cell death pathway. This enzymatic activity is also induced by the antimalarial drug chloroquine in erythrocytic stages of Plasmodium falciparum. Interestingly, we found that blocking parasite cell death influences their drug sensitivity, a result which could be used to create therapeutic strategies that by-pass drug resistance mechanisms by acting directly on the innate pathways of protozoan cell death.

  6. A Lectin-Like Receptor is Involved in Invasion of Erythrocytes by Plasmodium falciparum

    Science.gov (United States)

    Jungery, M.; Pasvol, G.; Newbold, C. I.; Weatherall, D. J.

    1983-02-01

    Glycophorin both in solution and inserted into liposomes blocks invasion of erythrocytes by the malaria parasite Plasmodium falciparum. Furthermore, one sugar, N-acetyl-D-glucosamine (GlcNAc), completely blocks invasion of the erythrocyte by this parasite. GlcNAc coupled to bovine serum albumin to prevent the sugar entering infected erythrocytes was at least 100,000 times more effective than GlcNAc alone. Bovine serum albumin coupled to lactose or bovine serum albumin alone had no effect on invasion. These results suggest that the binding of P. falciparum to erythrocytes is lectin-like and is determined by carbohydrates on glycophorin.

  7. Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum.

    Science.gov (United States)

    Simpalipan, Phumin; Pattaradilokrat, Sittiporn; Harnyuttanakorn, Pongchai

    2018-01-09

    Antigen-detecting rapid diagnostic tests (RDTs) have been recommended by the World Health Organization for use in remote areas to improve malaria case management. Lactate dehydrogenase (LDH) of Plasmodium falciparum is one of the main parasite antigens employed by various commercial RDTs. It has been hypothesized that the poor detection of LDH-based RDTs is attributed in part to the sequence diversity of the gene. To test this, the present study aimed to investigate the genetic diversity of the P. falciparum ldh gene in Thailand and to construct the map of LDH sequence diversity in P. falciparum populations worldwide. The ldh gene was sequenced for 50 P. falciparum isolates in Thailand and compared with hundreds of sequences from P. falciparum populations worldwide. Several indices of molecular variation were calculated, including the proportion of polymorphic sites, the average nucleotide diversity index (π), and the haplotype diversity index (H). Tests of positive selection and neutrality tests were performed to determine signatures of natural selection on the gene. Mean genetic distance within and between species of Plasmodium ldh was analysed to infer evolutionary relationships. Nucleotide sequences of P. falciparum ldh could be classified into 9 alleles, encoding 5 isoforms of LDH. L1a was the most common allelic type and was distributed in P. falciparum populations worldwide. Plasmodium falciparum ldh sequences were highly conserved, with haplotype and nucleotide diversity values of 0.203 and 0.0004, respectively. The extremely low genetic diversity was maintained by purifying selection, likely due to functional constraints. Phylogenetic analysis inferred the close genetic relationship of P. falciparum to malaria parasites of great apes, rather than to other human malaria parasites. This study revealed the global genetic variation of the ldh gene in P. falciparum, providing knowledge for improving detection of LDH-based RDTs and supporting the candidacy of

  8. Malaria diagnosis by PCR revealed differential distribution of mono and mixed species infections by Plasmodium falciparum and P. vivax in India.

    Science.gov (United States)

    Siwal, Nisha; Singh, Upasana Shyamsunder; Dash, Manoswini; Kar, Sonalika; Rani, Swati; Rawal, Charu; Singh, Rajkumar; Anvikar, Anupkumar R; Pande, Veena; Das, Aparup

    2018-01-01

    Malaria is a vector-borne infectious disease, caused by five different species of the genus Plasmodium, and is endemic to many tropical and sub-tropical countries of the globe. At present, malaria diagnosis at the primary health care level in India is conducted by either microscopy or rapid diagnostic test (RDT). In recent years, molecular diagnosis (by PCR assay), has emerged as the most sensitive method for malaria diagnosis. India is highly endemic to malaria and shoulders the burden of two major malaria parasites, Plasmodium falciparum and P. vivax. Previous studies using PCR diagnostic assay had unraveled several interesting facts on distribution of malaria parasites in India. However, these studies had several limitations from small sample size to limited geographical areas of sampling. In order to mitigate these limitations, we have collected finger-prick blood samples from 2,333 malaria symptomatic individuals in nine states from 11 geographic locations, covering almost the entire malaria endemic regions of India and performed all the three diagnostic tests (microscopy, RDT and PCR assay) and also have conducted comparative assessment on the performance of the three diagnostic tests. Since PCR assay turned out to be highly sensitive (827 malaria positive cases) among the three types of tests, we have utilized data from PCR diagnostic assay for analyses and inferences. The results indicate varied distributional prevalence of P. vivax and P. falciparum according to locations in India, and also the mixed species infection due to these two species. The proportion of P. falciparum to P. vivax was found to be 49:51, and percentage of mixed species infections due to these two parasites was found to be 13% of total infections. Considering India is set for malaria elimination by 2030, the present malaria epidemiological information is of high importance.

  9. Retention of Plasmodium falciparum ring-infected erythrocytes in the slow, open microcirculation of the human spleen.

    Science.gov (United States)

    Safeukui, Innocent; Correas, Jean-Michel; Brousse, Valentine; Hirt, Déborah; Deplaine, Guillaume; Mulé, Sébastien; Lesurtel, Mickael; Goasguen, Nicolas; Sauvanet, Alain; Couvelard, Anne; Kerneis, Sophie; Khun, Huot; Vigan-Womas, Inès; Ottone, Catherine; Molina, Thierry Jo; Tréluyer, Jean-Marc; Mercereau-Puijalon, Odile; Milon, Geneviève; David, Peter H; Buffet, Pierre A

    2008-09-15

    The current paradigm in Plasmodium falciparum malaria pathogenesis states that young, ring-infected erythrocytes (rings) circulate in peripheral blood and that mature stages are sequestered in the vasculature, avoiding clearance by the spleen. Through ex vivo perfusion of human spleens, we examined the interaction of this unique blood-filtering organ with P falciparum-infected erythrocytes. As predicted, mature stages were retained. However, more than 50% of rings were also retained and accumulated upstream from endothelial sinus wall slits of the open, slow red pulp microcirculation. Ten percent of rings were retained at each spleen passage, a rate matching the proportion of blood flowing through the slow circulatory compartment established in parallel using spleen contrast-enhanced ultrasonography in healthy volunteers. Rings displayed a mildly but significantly reduced elongation index, consistent with a retention process, due to their altered mechanical properties. This raises the new paradigm of a heterogeneous ring population, the less deformable subset being retained in the spleen, thereby reducing the parasite biomass that will sequester in vital organs, influencing the risk of severe complications, such as cerebral malaria or severe anemia. Cryptic ring retention uncovers a new role for the spleen in the control of parasite density, opening novel intervention opportunities.

  10. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras.

    Science.gov (United States)

    Mejia Torres, Rosa Elena; Banegas, Engels Ilich; Mendoza, Meisy; Diaz, Cesar; Bucheli, Sandra Tamara Mancero; Fontecha, Gustavo A; Alam, Md Tauqeer; Goldman, Ira; Udhayakumar, Venkatachalam; Zambrano, Jose Orlinder Nicolas

    2013-05-01

    Chloroquine (CQ) is officially used for the primary treatment of Plasmodium falciparum malaria in Honduras. In this study, the therapeutic efficacy of CQ for the treatment of uncomplicated P. falciparum malaria in the municipality of Puerto Lempira, Gracias a Dios, Honduras was evaluated using the Pan American Health Organization-World Health Organization protocol with a follow-up of 28 days. Sixty-eight patients from 6 months to 60 years of age microscopically diagnosed with uncomplicated P. falciparum malaria were included in the final analysis. All patients who were treated with CQ (25 mg/kg over 3 days) cleared parasitemia by day 3 and acquired no new P. falciparum infection within 28 days of follow-up. All the parasite samples sequenced for CQ resistance mutations (pfcrt) showed only the CQ-sensitive genotype (CVMNK). This finding shows that CQ remains highly efficacious for the treatment of uncomplicated P. falciparum malaria in Gracias a Dios, Honduras.

  11. No miRNA were found in Plasmodium and the ones identified in erythrocytes could not be correlated with infection

    Directory of Open Access Journals (Sweden)

    Feng Le

    2008-03-01

    Full Text Available Abstract Background The transcriptional regulation of Plasmodium during its complex life cycle requires sequential activation and/or repression of different genetic programmes. MicroRNAs (miRNAs are a highly conserved class of non-coding RNAs that are important in regulating diverse cellular functions by sequence-specific inhibition of gene expression. What is know about double-stranded RNA-mediated gene silencing (RNAi and posttranscriptional gene silencing (PTGS in Plasmodium parasites entice us to speculate whether miRNAs can also function in Plasmodium-infected RBCs. Results Of 132 small RNA sequences, no Plasmodium-specific miRNAs have been found. However, a human miRNA, miR-451, was highly expressed, comprising approximately one third of the total identified miRNAs. Further analysis of miR-451 expression and malaria infection showed no association between the accumulation of miR-451 in Plasmodium falciparum-iRBCs, the life cycle stage of P. falciparum in the erythrocyte, or of P. berghei in mice. Moreover, treatment with an antisense oligonucleotide to miR-451 had no significant effect on the growth of the erythrocytic-stage P. falciparum. Methods Short RNAs from a mixed-stage of P. falciparum-iRBC were separated in a denaturing polyacrylamide gel and cloned into T vectors to create a cDNA library. Individual clones were then sequenced and further analysed by bioinformatics prediction to discover probable miRNAs in P. falciparum-iRBC. The association between miR-451 expression and the parasite were analysed by Northern blotting and antisense oligonucleotide (ASO of miR-451. Conclusion These results contribute to eliminate the probability of miRNAs in P. falciparum. The absence of miRNA in P. falciparum could be correlated with absence of argonaute/dicer genes. In addition, the miR-451 accumulation in Plasmodium-infected RBCs is independent of parasite infection. Its accumulation might be only the residual of erythroid differentiation or a

  12. Plasmodium falciparum var genes expressed in children with severe malaria encode CIDRα1 domains

    DEFF Research Database (Denmark)

    Jespersen, Jakob S.; Wang, Christian W.; Mkumbaye, Sixbert I.

    2016-01-01

    Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding hum...... the hypothesis that the CIDRα1-EPCR interaction is key to the pathogenesis of severe malaria and strengthen the rationale for pursuing a vaccine or adjunctive treatment aiming at inhibiting or reducing the damaging effects of this interaction....

  13. Bioinformatics analysis for structure and function of CPR of Plasmodium falciparum.

    Science.gov (United States)

    Fan, Zhigang; Zhang, Lingmin; Yan, Guogang; Wu, Qiang; Gan, Xiufeng; Zhong, Saifeng; Lin, Guifen

    2011-02-01

    To analyse the structure and function of NADPH-cytochrome p450 reductase (CYPOR or CPR) from Plasmodium falciparum (Pf), and to predict its' drug target and vaccine target. The structure, function, drug target and vaccine target of CPR from Plasmodium falciparum were analyzed and predicted by bioinformatics methods. PfCPR, which was older CPR, had close relationship with the CPR from other Plasmodium species, but it was distant from its hosts, such as Homo sapiens and Anopheles. PfCPR was located in the cellular nucleus of Plasmodium falciparum. 335aa-352aa and 591aa - 608aa were inserted the interior side of the nuclear membrane, while 151aa-265aa was located in the nucleolus organizer regions. PfCPR had 40 function sites and 44 protein-protein binding sites in amino acid sequence. The teriary structure of 1aa-700aa was forcep-shaped with wings. 15 segments of PfCPR had no homology with Homo sapien CPR and most were exposed on the surface of the protein. These segments had 25 protein-protein binding sites. While 13 other segments all possessed function sites. The evolution or genesis of Plasmodium falciparum is earlier than those of Homo sapiens. PfCPR is a possible resistance site of antimalarial drug and may involve immune evasion, which is associated with parasite of sporozoite in hepatocytes. PfCPR is unsuitable as vaccine target, but it has at least 13 ideal drug targets. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  14. A high parasite density environment induces transcriptional changes and cell death in Plasmodium falciparum blood stages.

    Science.gov (United States)

    Chou, Evelyn S; Abidi, Sabia Z; Teye, Marian; Leliwa-Sytek, Aleksandra; Rask, Thomas S; Cobbold, Simon A; Tonkin-Hill, Gerry Q; Subramaniam, Krishanthi S; Sexton, Anna E; Creek, Darren J; Daily, Johanna P; Duffy, Michael F; Day, Karen P

    2018-03-01

    Transient regulation of Plasmodium numbers below the density that induces fever has been observed in chronic malaria infections in humans. This species transcending control cannot be explained by immunity alone. Using an in vitro system we have observed density dependent regulation of malaria population size as a mechanism to possibly explain these in vivo observations. Specifically, Plasmodium falciparum blood stages from a high but not low-density environment exhibited unique phenotypic changes during the late trophozoite (LT) and schizont stages of the intraerythrocytic cycle. These included in order of appearance: failure of schizonts to mature and merozoites to replicate, apoptotic-like morphological changes including shrinking, loss of mitochondrial membrane potential, and blebbing with eventual release of aberrant parasites from infected erythrocytes. This unique death phenotype was triggered in a stage-specific manner by sensing of a high-density culture environment. Conditions of glucose starvation, nutrient depletion, and high lactate could not induce the phenotype. A high-density culture environment induced rapid global changes in the parasite transcriptome including differential expression of genes involved in cell remodeling, clonal antigenic variation, metabolism, and cell death pathways including an apoptosis-associated metacaspase gene. This transcriptional profile was also characterized by concomitant expression of asexual and sexual stage-specific genes. The data show strong evidence to support our hypothesis that density sensing exists in P. falciparum. They indicate that an apoptotic-like mechanism may play a role in P. falciparum density regulation, which, as in yeast, has features quite distinguishable from mammalian apoptosis. Gene expression data are available in the GEO databases under the accession number GSE91188. © 2017 Federation of European Biochemical Societies.

  15. The pathogenesis of Plasmodium falciparum malaria in humans: insights from splenic physiology

    Science.gov (United States)

    Safeukui, Innocent; Deplaine, Guillaume; Brousse, Valentine; Prendki, Virginie; Thellier, Marc; Turner, Gareth D.; Mercereau-Puijalon, Odile

    2011-01-01

    Clinical manifestations of Plasmodium falciparum infection are induced by the asexual stages of the parasite that develop inside red blood cells (RBCs). Because splenic microcirculatory beds filter out altered RBCs, the spleen can innately clear subpopulations of infected or uninfected RBC modified during falciparum malaria. The spleen appears more protective against severe manifestations of malaria in naïve than in immune subjects. The spleen-specific pitting function accounts for a large fraction of parasite clearance in artemisinin-treated patients. RBC loss contributes to malarial anemia, a clinical form associated with subacute progression, frequent splenomegaly, and relatively low parasitemia. Stringent splenic clearance of ring-infected RBCs and uninfected, but parasite-altered, RBCs, may altogether exacerbate anemia and reduce the risks of severe complications associated with high parasite loads, such as cerebral malaria. The age of the patient directly influences the risk of severe manifestations. We hypothesize that coevolution resulting in increased splenic clearance of P. falciparum–altered RBCs in children favors the survival of the host and, ultimately, sustained parasite transmission. This analysis of the RBC–spleen dynamic interactions during P falciparum infection reflects both data and hypotheses, and provides a framework on which a more complete immunologic understanding of malaria pathogenesis may be elaborated. PMID:20852127

  16. Transmission-blocking activity of antibodies to Plasmodium falciparum GLURP.10C chimeric protein formulated in different adjuvants

    DEFF Research Database (Denmark)

    Roeffen, Will; Theisen, Michael; van de Vegte-Bolmer, Marga

    2015-01-01

    BACKGROUND: Plasmodium falciparum is transmitted from person to person by Anopheles mosquitoes after completing its sexual reproductive cycle within the infected mosquito. An efficacious vaccine holds the potential to interrupt development of the parasite in the mosquito leading to control and po...

  17. Limited influence of haemoglobin variants on Plasmodium falciparum msp1 and msp2 alleles in symptomatic malaria

    NARCIS (Netherlands)

    Mockenhaupt, Frank P.; Ehrhardt, Stephan; Otchwemah, Rowland; Eggelte, Teunis A.; Anemana, Sylvester D.; Stark, Klaus; Bienzle, Ulrich; Kohne, Elisabeth

    2004-01-01

    Haemoglobin (Hb) S, HbC, and alpha(+)-thalassaemia confer protection from malaria. Accordingly, these traits may influence the multiplicity of infection (MOI) of Plasmodium falciparum and the presence of distinct parasite genotypes. In 840 febrile children in northern Ghana, we typed the P.

  18. Characterizing the impact of sustained sulfadoxine/pyrimethamine use upon the Plasmodium falciparum population in Malawi

    DEFF Research Database (Denmark)

    Ravenhall, Matt; Benavente, Ernest Diez; Mipando, Mwapatsa

    2016-01-01

    BACKGROUND: Malawi experienced prolonged use of sulfadoxine/pyrimethamine (SP) as the front-line anti-malarial drug, with early replacement of chloroquine and delayed introduction of artemisinin-based combination therapy. Extended use of SP, and its continued application in pregnancy is impacting...... the genomic variation of the Plasmodium falciparum population. METHODS: Whole genome sequence data of P. falciparum isolates covering 2 years of transmission within Malawi, alongside global datasets, were used. More than 745,000 SNPs were identified, and differences in allele frequencies between countries...

  19. Reduced susceptibility of Plasmodium falciparum to artesunate in southern Myanmar.

    Directory of Open Access Journals (Sweden)

    Myat P Kyaw

    Full Text Available Plasmodium falciparum resistance to artemisinins, the first line treatment for malaria worldwide, has been reported in western Cambodia. Resistance is characterized by significantly delayed clearance of parasites following artemisinin treatment. Artemisinin resistance has not previously been reported in Myanmar, which has the highest falciparum malaria burden among Southeast Asian countries.A non-randomized, single-arm, open-label clinical trial of artesunate monotherapy (4 mg/kg daily for seven days was conducted in adults with acute blood-smear positive P. falciparum malaria in Kawthaung, southern Myanmar. Parasite density was measured every 12 hours until two consecutive negative smears were obtained. Participants were followed weekly at the study clinic for three additional weeks. Co-primary endpoints included parasite clearance time (the time required for complete clearance of initial parasitemia, parasite clearance half-life (the time required for parasitemia to decrease by 50% based on the linear portion of the parasite clearance slope, and detectable parasitemia 72 hours after commencement of artesunate treatment. Drug pharmacokinetics were measured to rule out delayed clearance due to suboptimal drug levels.The median (range parasite clearance half-life and time were 4.8 (2.1-9.7 and 60 (24-96 hours, respectively. The frequency distributions of parasite clearance half-life and time were bimodal, with very slow parasite clearance characteristic of the slowest-clearing Cambodian parasites (half-life longer than 6.2 hours in approximately 1/3 of infections. Fourteen of 52 participants (26.9% had a measurable parasitemia 72 hours after initiating artesunate treatment. Parasite clearance was not associated with drug pharmacokinetics.A subset of P. falciparum infections in southern Myanmar displayed markedly delayed clearance following artemisinin treatment, suggesting either emergence of artemisinin resistance in southern Myanmar or spread

  20. Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi

    OpenAIRE

    Barber, Bridget E; William, Timothy; Grigg, Matthew J; Yeo, Tsin W; Anstey, Nicholas M

    2013-01-01

    Abstract Background In areas co-endemic for multiple Plasmodium species, correct diagnosis is crucial for appropriate treatment and surveillance. Species misidentification by microscopy has been reported in areas co-endemic for vivax and falciparum malaria, and may be more frequent in regions where Plasmodium knowlesi also commonly occurs. Methods This prospective study in Sabah, Malaysia, evaluated the accuracy of routine district and referral hospital-based microscopy, and microscopy perfor...

  1. Sequential, ordered acquisition of antibodies to Plasmodium falciparum erythrocyte membrane protein 1 domains

    DEFF Research Database (Denmark)

    Cham, Gerald K K; Turner, Louise; Lusingu, John

    2009-01-01

    The binding of erythrocytes infected with mature blood stage parasites to the vascular bed is key to the pathogenesis of malignant malaria. The binding is mediated by members of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. PfEMP1s can be divided into groups, and it has pr....... The identification of PfEMP1 domains expressed by parasites causing disease in infants and young children is important for development of vaccines protecting against severe malaria.......The binding of erythrocytes infected with mature blood stage parasites to the vascular bed is key to the pathogenesis of malignant malaria. The binding is mediated by members of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family. PfEMP1s can be divided into groups, and it has...... previously been suggested that parasites expressing group A or B/A PfEMP1s are most pathogenic. To test the hypothesis that the first malaria infections in infants and young children are dominated by parasites expressing A and B/A PfEMP1s, we measured the plasma Ab level against 48 recombinant PfEMP1 domains...

  2. Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity

    DEFF Research Database (Denmark)

    Hempel, Casper; Kohnke, Hannes; Maretty, Lasse

    2014-01-01

    Nitric oxide (NO) accumulates in Plasmodium falciparum-infected erythrocytes. It may be produced by a parasite NO synthase (NOS) or by nitrate reduction. The parasite's benefit of NO accumulation is not understood. We investigated if inhibiting the P. falciparum NOS with specific and unspecific NOS...... increased the fraction of phosphatidyl serine exposing cells significantly. The infection did not change the level of expression of neither total CD47 nor its oxidized form. Unrelated to NOS inhibition, incubation with caveolin-1 scaffolding domain peptide lead to a decrease in oxidized CD47. In conclusion...

  3. Plasmodium falciparum malaria and antimalarial interventions in ...

    African Journals Online (AJOL)

    Plasmodium falciparum malaria is one of the most important parasitic diseases affecting sub-Saharan Africa, despite the availability of interventions. It exerts tremendous socio-economic and medical burden on the continent, particularly in under five children and pregnant women. In this review, we have attempted to ...

  4. In-Silico detection of chokepoints enzymes in four plasmodium species

    African Journals Online (AJOL)

    Of the over 156 species of Plasmodium that infect vertebrates, only four infect man: Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium malariae. Other species infect other animals including birds, reptiles and rodents. The rodent malaria parasites are Plasmodium berghei, Plasmodium yoelii, ...

  5. Sero-epidemiological evaluation of Plasmodium falciparum malaria in Senegal.

    Science.gov (United States)

    Sylla, Khadime; Tine, Roger Clément Kouly; Ndiaye, Magatte; Sow, Doudou; Sarr, Aïssatou; Mbuyi, Marie Louise Tshibola; Diouf, Ibrahima; Lô, Amy Colé; Abiola, Annie; Seck, Mame Cheikh; Ndiaye, Mouhamadou; Badiane, Aïda Sadikh; N'Diaye, Jean Louis A; Ndiaye, Daouda; Faye, Oumar; Dieng, Thérèse; Dieng, Yémou; Ndir, Oumar; Gaye, Oumar; Faye, Babacar

    2015-07-16

    In Senegal, a significant decrease of malaria transmission intensity has been noted the last years. Parasitaemia has become lower and, therefore, more difficult to detect by microscopy. In the context of submicroscopic parasitaemia, it has become relevant to rely on relevant malaria surveillance tools to better document malaria epidemiology in such settings. Serological markers have been proposed as an essential tool for malaria surveillance. This study aimed to evaluate the sero-epidemiological situation of Plasmodium falciparum malaria in two sentinel sites in Senegal. Cross-sectional surveys were carried out in Velingara (south Senegal) and Keur Soce (central Senegal) between September and October 2010. Children under 10 years old, living in these areas, were enrolled using two-level, random sampling methods. P. falciparum infection was diagnosed using microscopy. P. falciparum antibodies against circumsporozoite protein (CSP), apical membrane protein (AMA1) and merozoite surface protein 1_42 (MSP1_42) were measured by ELISA method. A stepwise logistic regression analysis was done to assess factors associated with P. falciparum antibodies carriage. A total of 1,865 children under 10 years old were enrolled. The overall falciparum malaria prevalence was 4.99% with high prevalence in Velingara of 10.03% compared to Keur Soce of 0.3%. Symptomatic malaria cases (fever associated with parasitaemia) represented 17.37%. Seroprevalence of anti-AMA1, anti-MSP1_42 and anti-CSP antibody was 38.12, 41.55 and 40.38%, respectively. The seroprevalence was more important in Velingara and increased with age, active malaria infection and area of residence. The use of serological markers can contribute to improved malaria surveillance in areas with declining malaria transmission. This study provided useful baseline information about the sero-epidemiological situation of malaria in Senegal and can contribute to the identification of malaria hot spots in order to concentrate

  6. Paradoxical associations between soil-transmitted helminths and Plasmodium falciparum infection.

    Science.gov (United States)

    Fernández-Niño, Julián A; Idrovo, Alvaro J; Cucunubá, Zulma M; Reyes-Harker, Patricia; Guerra, Ángela P; Moncada, Ligia I; López, Myriam C; Barrera, Sandra M; Cortés, Liliana J; Olivera, Mario; Nicholls, Rubén S

    2012-11-01

    Evidence on the comorbidity between soil-transmitted helminth infections and malaria is scarce and divergent. This study explored the interactions between soil-transmitted helminth infections and uncomplicated falciparum malaria in an endemic area of Colombia. A paired case-control study matched by sex, age and location in Tierralta, Cordoba, was done between January and September 2010. The incident cases were 68 patients with falciparum malaria and 178 asymptomatic controls. A questionnaire was used to gather information on sociodemographic variables. Additionally physical examinations were carried out, stool samples were analysed for intestinal parasites and blood samples for Ig E concentrations. We found associations between infection with hookworm (OR: 4.21; 95% CI: 1.68-11.31) and Ascaris lumbricoides (OR 0.43; 95% CI: 0.18-1.04) and the occurrence of falciparum malaria. The effects of soil-transmitted helminths on the occurrence of malaria were found to be paradoxical. While hookworm is a risk factor, A. lumbricoides has a protective effect. The findings suggest that, in addition to the comorbidity, the presence of common determinants of soil-transmitted helminth infections and malaria could also exist. While the biological mechanisms involved are not clear, public health policies aimed at the control of their common social and environmental determinants are suggested. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  7. A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages.

    NARCIS (Netherlands)

    Tiburcio, M.; Niang, M.; Deplaine, G.; Perrot, S.; Bischoff, E.; Ndour, P.A.; Silvestrini, F.; Khattab, A.; Milon, G.; David, P.H.; Hardeman, M.; Vernick, K.D.; Sauerwein, R.W.; Preiser, P.R.; Mercereau-Puijalon, O.; Buffet, P.; Alano, P.; Lavazec, C.

    2012-01-01

    Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature

  8. A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages

    NARCIS (Netherlands)

    Tibúrcio, Marta; Niang, Makhtar; Deplaine, Guillaume; Perrot, Sylvie; Bischoff, Emmanuel; Ndour, Papa Alioune; Silvestrini, Francesco; Khattab, Ayman; Milon, Geneviève; David, Peter H.; Hardeman, Max; Vernick, Kenneth D.; Sauerwein, Robert W.; Preiser, Peter R.; Mercereau-Puijalon, Odile; Buffet, Pierre; Alano, Pietro; Lavazec, Catherine

    2012-01-01

    Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature

  9. Soluble haemoglobin is a marker of recent Plasmodium falciparum infections

    DEFF Research Database (Denmark)

    Jakobsen, P H; Bygbjerg, I C; Theander, T G

    1997-01-01

    Monoclonal antibodies (Mab) were raised against haemoglobin (Hb) associated with Plasmodium falciparum protein and used to develop an ELISA, measuring circulating levels of released Hb. This assay was evaluated in different malaria patients in parallel with ELISA assays for C-reactive protein (CR...... after treatment. Soluble Hb levels were associated with malariometric parameters in a similar fashion to haptoglobin. The new Mab-based assay for measuring soluble Hb in the peripheral blood of malaria patients may be useful for future epidemiological studies of malaria....

  10. Interaction of an atypical Plasmodium falciparum ETRAMP with human apolipoproteins

    Directory of Open Access Journals (Sweden)

    Sahasrabudhe Sudhir

    2008-10-01

    Full Text Available Abstract Background In order to establish a successful infection in the human host, the malaria parasite Plasmodium falciparum must establish interactions with a variety of human proteins on the surface of different cell types, as well as with proteins inside the host cells. To better understand this aspect of malaria pathogenesis, a study was conducted with the goal of identifying interactions between proteins of the parasite and those of its human host. Methods A modified yeast two-hybrid methodology that preferentially selects protein fragments that can be expressed in yeast was used to conduct high-throughput screens with P. falciparum protein fragments against human liver and cerebellum libraries. The resulting dataset was analyzed to exclude interactions that are not likely to occur in the human host during infection. Results An initial set of 2,200 interactions was curated to remove proteins that are unlikely to play a role in pathogenesis based on their annotation or localization, and proteins that behave promiscuously in the two-hybrid assay, resulting in a final dataset of 456 interactions. A cluster that implicates binding between P. falciparum PFE1590w/ETRAMP5, a putative parasitophorous vacuole membrane protein, and human apolipoproteins ApoA, ApoB and ApoE was selected for further analysis. Different isoforms of ApoE, which are associated with different outcomes of malaria infection, were shown to display differential interactions with PFE1590w. Conclusion A dataset of interactions between proteins of P. falciparum and those of its human host was generated. The preferential interaction of the P. falciparum PFE1590w protein with the human ApoE ε3 and ApoE ε4 isoforms, but not the ApoE ε2 isoform, supports the hypothesis that ApoE genotype affects risk of malaria infection. The dataset contains other interactions of potential relevance to disease that may identify possible vaccine candidates and drug targets.

  11. Drug resistance and genetic diversity of Plasmodium falciparum parasites from Suriname

    NARCIS (Netherlands)

    Peek, Ron; van Gool, Tom; Panchoe, Daynand; Greve, Sophie; Bus, Ellen; Resida, Lesley

    2005-01-01

    Plasmodium falciparum in Suriname was studied for the presence of drug resistance and genetic variation in blood samples of 86 patients with symptomatic malaria. Drug resistance was predicted by determining point mutations in the chloroquine resistance marker of the P. falciparum chloroquine

  12. Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum

    Science.gov (United States)

    2010-06-17

    Sciences, Bethesda, MD, ...... 14. ABSTRACT Plasmodium falciparum is a highly lethal malaria parasite of humans. A major portion of its life cycle is...parasite of humans. A major portion of its life cycle is dedicated to invading and multiplying inside erythrocytes. The molecular mechanisms of...Complement Receptor 1 Is a Sialic Acid-Independent Erythrocyte Receptor of Plasmodium falciparum Carmenza Spadafora1,2,3, Gordon A. Awandare4

  13. Plasmodium falciparum secretome in erythrocyte and beyond

    Directory of Open Access Journals (Sweden)

    Rani eSoni

    2016-02-01

    Full Text Available Plasmodium falciparum is the causative agent of deadly malaria disease. It is an intracellular eukaryote and completes its multi-stage life cycle spanning the two hosts viz, mosquito and human. In order to habituate within host environment, parasite conform several strategies to evade host immune responses such as surface antigen polymorphism or modulation of host immune system and it is mediated by secretion of proteins from parasite to the host erythrocyte and beyond, collectively known as, malaria secretome. In this review, we will discuss about the deployment of parasitic secretory protein in mechanism implicated for immune evasion, protein trafficking, providing virulence, changing permeability and cyto-adherence of infected erythrocyte. We will be covering the possibilities of developing malaria secretome as a drug/vaccine target. This gathered information will be worthwhile in depicting a well-organized picture for host-pathogen interplay during the malaria infection and may also provide some clues for development of novel anti-malarial therapies.

  14. Sustained activation of Akt elicits mitochondrial dysfunction to block Plasmodium falciparum infection in the mosquito host.

    Directory of Open Access Journals (Sweden)

    Shirley Luckhart

    2013-02-01

    Full Text Available The overexpression of activated, myristoylated Akt in the midgut of female transgenic Anopheles stephensi results in resistance to infection with the human malaria parasite Plasmodium falciparum but also decreased lifespan. In the present study, the understanding of mitochondria-dependent midgut homeostasis has been expanded to explain this apparent paradox in an insect of major medical importance. Given that Akt signaling is essential for cell growth and survival, we hypothesized that sustained Akt activation in the mosquito midgut would alter the balance of critical pathways that control mitochondrial dynamics to enhance parasite killing at some cost to survivorship. Toxic reactive oxygen and nitrogen species (RNOS rise to high levels in the midgut after blood feeding, due to a combination of high NO production and a decline in FOXO-dependent antioxidants. Despite an apparent increase in mitochondrial biogenesis in young females (3 d, energy deficiencies were apparent as decreased oxidative phosphorylation and increased [AMP]/[ATP] ratios. In addition, mitochondrial mass was lower and accompanied by the presence of stalled autophagosomes in the posterior midgut, a critical site for blood digestion and stem cell-mediated epithelial maintenance and repair, and by functional degradation of the epithelial barrier. By 18 d, the age at which An. stephensi would transmit P. falciparum to human hosts, mitochondrial dysfunction coupled to Akt-mediated repression of autophagy/mitophagy was more evident and midgut epithelial structure was markedly compromised. Inhibition of RNOS by co-feeding of the nitric-oxide synthase inhibitor L-NAME at infection abrogated Akt-dependent killing of P. falciparum that begins within 18 h of infection in 3-5 d old mosquitoes. Hence, Akt-induced changes in mitochondrial dynamics perturb midgut homeostasis to enhance parasite resistance and decrease mosquito infective lifespan. Further, quality control of mitochondrial

  15. Characterization of mitochondrion-targeted GTPases in Plasmodium falciparum.

    Science.gov (United States)

    Gupta, Kirti; Gupta, Ankit; Haider, Afreen; Habib, Saman

    2018-04-12

    Ribosome assembly is critical for translation and regulating the response to cellular events and requires a complex interplay of ribosomal RNA and proteins with assembly factors. We investigated putative participants in the biogenesis of the reduced organellar ribosomes of Plasmodium falciparum and identified homologues of two assembly GTPases - EngA and Obg that were found in mitochondria. Both are indispensable in bacteria and P. berghei EngA is among the 'essential' parasite blood stage proteins identified recently. PfEngA and PfObg1 interacted with parasite mitoribosomes in vivo. GTP stimulated PfEngA interaction with the 50S subunit of Escherichia coli surrogate ribosomes. Although PfObg1-ribosome interaction was independent of nucleotide binding, GTP hydrolysis by PfObg1 was enhanced upon ribosomal association. An additional function for PfObg1 in mitochondrial DNA transactions was suggested by its specific interaction with the parasite mitochondrial genome in vivo. Deletion analysis revealed that the positively-charged OBG (spoOB-associated GTP-binding protein) domain mediates DNA-binding. A role for PfEngA in mitochondrial genotoxic stress response was indicated by its over-expression upon methyl methanesulfonate-induced DNA damage. PfEngA had lower sensitivity to an E. coli EngA inhibitor suggesting differences with bacterial counterparts. Our results show the involvement of two important GTPases in P. falciparum mitochondrial function, with the first confirmed localization of an EngA homologue in eukaryotic mitochondria.

  16. Gametocytogenesis : the puberty of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Ariey Frédéric

    2004-07-01

    Full Text Available Abstract The protozoan Plasmodium falciparum has a complex life cycle in which asexual multiplication in the vertebrate host alternates with an obligate sexual reproduction in the anopheline mosquito. Apart from the apparent recombination advantages conferred by sex, P. falciparum has evolved a remarkable biology and adaptive phenotypes to insure its transmission despite the dangers of sex. This review mainly focuses on the current knowledge on commitment to sexual development, gametocytogenesis and the evolutionary significance of various aspects of gametocyte biology. It goes further than pure biology to look at the strategies used to improve successful transmission. Although gametocytes are inevitable stages for transmission and provide a potential target to fight malaria, they have received less attention than the pathogenic asexual stages. There is a need for research on gametocytes, which are a fascinating stage, responsible to a large extent for the success of P. falciparum.

  17. Detection of very low level Plasmodium falciparum infections using the nested polymerase chain reaction and a reassessment of the epidemiology of unstable malaria in Sudan

    DEFF Research Database (Denmark)

    Roper, C; Elhassan, I M; Hviid, L

    1996-01-01

    We have used the nested polymerase chain reaction (PCR) to assay for low level Plasmodium falciparum infections that were below the threshold of detection of blood film examination. This revealed a substantial group of asymptomatic, submicroscopically patent infections within the population...... of a Sudanese village present throughout the year although clinical malaria episodes were almost entirely confined to the transmission season. In our September, January, April, and June surveys, the PCR-detected prevalences were 13%, 19%, 24%, and 19%, respectively. These figures reveal a much higher prevalence...... of dry season infection than previous microscopic surveys have indicated. Furthermore, 20% of a cohort of 79 individuals were healthy throughout the September to November transmission season but were PCR-positive for P. falciparum in a least one of a series of samples taken in the ensuing months. Levels...

  18. Coinfection of Plasmodium vivax and Epstein-Barr virus: case report

    Directory of Open Access Journals (Sweden)

    Fatih Akin

    2013-02-01

    Full Text Available Malaria is an acute and chronic illness characterized by paroxysms of fever, chills, sweats, fatigue, anemia, and splenomegaly. It is still an important health problem in malaria-endemic countries. Children living in malaria-endemic areas have elevated Epstein-Barr Virus (EBV loads in the circulation and acute malaria infection leads to increased levels of circulating EBV that are cleared after anti-malaria treatment. There are many reports about the association of Plasmodium falciparum (P. falciparum malaria and EBV infection. Here we report a case who had coinfection of Plasmodium vivax (P. vivax malaria and EBV infection. To the best of our knowledge this is the first case indicating the association of P. vivax malaria and EBV infection.

  19. Humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria.

    Science.gov (United States)

    Wijayalath, Wathsala; Majji, Sai; Villasante, Eileen F; Brumeanu, Teodor D; Richie, Thomas L; Casares, Sofia

    2014-09-30

    Malaria is a deadly infectious disease affecting millions of people in tropical and sub-tropical countries. Among the five species of Plasmodium parasites that infect humans, Plasmodium falciparum accounts for the highest morbidity and mortality associated with malaria. Since humans are the only natural hosts for P. falciparum, the lack of convenient animal models has hindered the understanding of disease pathogenesis and prompted the need of testing anti-malarial drugs and vaccines directly in human trials. Humanized mice hosting human cells represent new pre-clinical models for infectious diseases that affect only humans. In this study, the ability of human-immune-system humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice to sustain infection with P. falciparum was explored. Four week-old DRAG mice were infused with HLA-matched human haematopoietic stem cells (HSC) and examined for reconstitution of human liver cells and erythrocytes. Upon challenge with infectious P. falciparum sporozoites (NF54 strain) humanized DRAG mice were examined for liver stage infection, blood stage infection, and transmission to Anopheles stephensi mosquitoes. Humanized DRAG mice reconstituted human hepatocytes, Kupffer cells, liver endothelial cells, and erythrocytes. Upon intravenous challenge with P. falciparum sporozoites, DRAG mice sustained liver to blood stage infection (average 3-5 parasites/microlitre blood) and allowed transmission to An. stephensi mosquitoes. Infected DRAG mice elicited antibody and cellular responses to the blood stage parasites and self-cured the infection by day 45 post-challenge. DRAG mice represent the first human-immune-system humanized mouse model that sustains the complex vertebrate life cycle of P. falciparum without the need of exogenous injection of human hepatocytes/erythrocytes or P. falciparum parasite adaptation. The ability of DRAG mice to elicit specific human immune responses to P. falciparum parasites may help deciphering immune correlates

  20. Comparative haematological parameters of HbAA and HbAS genotype children infected with Plasmodium falciparum malaria in Yemen.

    Science.gov (United States)

    Albiti, Anisa H; Nsiah, Kwabena

    2014-04-01

    Sickle haemoglobin (HbS) is known to offer considerable protection against falciparum malaria. However, the mechanism of protection is not yet completely understood. In this study, we investigate how the presence of the sickle cell trait affects the haematological profile of AS persons with malaria, in comparison with similarly infected persons with HbAA. This study is based on the hypothesis that the sickle cell trait plays a protective role against malaria. Children from an endemic malaria transmission area in Yemen were enrolled in this study. Hematological parameters were estimated using manual methods, the percentage of parasite density on stained thin smear was calculated, haemoglobin genotypes were determined on paper electrophoresis, ferritin was measured using enzyme-linked immunosorbent assay, serum iron and TIBC were assayed using spectrophotometer, transferrin saturation index was calculated by dividing serum iron by TIBC and expressing the result as a percentage. Haematological parameters were compared in HbAA- and HbAS-infected children. Falciparum malaria parasitaemia was confirmed in the blood smears of 62 children, 44 (55.7%) of AA and 18 (37.5%) AS, so there was higher prevalence in HbAA children (P = 0.047). Parasite density was lower in HbAS- than HbAA-infected children (P = 0.003). Anaemia was prominent in malaria-infected children, with high proportions of moderate and severe forms in HbAA (P = 0.001). The mean levels of haemoglobin, packed cell volume, reticulocyte count, platelets count, lymphocytes, eosinophils, and serum iron were significantly lower while total leukocytes, immature granulocytes, monocytes, erythrocyte sedimentation rate, transferrin saturation, and serum ferritin were significantly higher in HbAA-infected children than HbAS-infected children. Infection with Plasmodium falciparum malaria caused more significant haematological alterations of HbAA children than HbAS. This study supports the observation that sickle cell trait

  1. Molecular monitoring of Plasmodium falciparum resistance to artemisinin in Tanzania

    Directory of Open Access Journals (Sweden)

    Genton Blaise

    2006-12-01

    Full Text Available Abstract Artemisinin-based combination therapies (ACTs are recommended for use against uncomplicated malaria in areas of multi-drug resistant malaria, such as sub-Saharan Africa. However, their long-term usefulness in these high transmission areas remains unclear. It has been suggested that documentation of the S769N PfATPase6 mutations may indicate an emergence of artemisinin resistance of Plasmodium falciparum in the field. The present study assessed PfATPase6 mutations (S769N and A623E in 615 asymptomatic P. falciparum infections in Tanzania but no mutant genotype was detected. This observation suggests that resistance to artemisinin has not yet been selected in Tanzania, supporting the Ministry of Health's decision to adopt artemether+lumefantrine as first-line malaria treatment. The findings recommend further studies to assess PfATPase6 mutations in sentinel sites and verify their usefulness in monitoring emergency of ACT resistance.

  2. Unusual Transmission of Plasmodium falciparum, Bordeaux, France, 2009

    Science.gov (United States)

    Vareil, Marc-Olivier; Tandonnet, Olivier; Chemoul, Audrey; Bogreau, Hervé; Saint-Léger, Mélanie; Micheau, Maguy; Millet, Pascal; Koeck, Jean-Louis; Boyer, Alexandre; Rogier, Christophe

    2011-01-01

    Plasmodium falciparum malaria is usually transmitted by mosquitoes. We report 2 cases in France transmitted by other modes: occupational blood exposure and blood transfusion. Even where malaria is not endemic, it should be considered as a cause of unexplained acute fever. PMID:21291597

  3. Absence of Plasmodium inui and Plasmodium cynomolgi, but detection of Plasmodium knowlesi and Plasmodium vivax infections in asymptomatic humans in the Betong division of Sarawak, Malaysian Borneo.

    Science.gov (United States)

    Siner, Angela; Liew, Sze-Tze; Kadir, Khamisah Abdul; Mohamad, Dayang Shuaisah Awang; Thomas, Felicia Kavita; Zulkarnaen, Mohammad; Singh, Balbir

    2017-10-17

    Plasmodium knowlesi, a simian malaria parasite, has become the main cause of malaria in Sarawak, Malaysian Borneo. Epidemiological data on malaria for Sarawak has been derived solely from hospitalized patients, and more accurate epidemiological data on malaria is necessary. Therefore, a longitudinal study of communities affected by knowlesi malaria was undertaken. A total of 3002 blood samples on filter paper were collected from 555 inhabitants of 8 longhouses with recently reported knowlesi malaria cases in the Betong Division of Sarawak, Malaysian Borneo. Each longhouse was visited bimonthly for a total of 10 times during a 21-month study period (Jan 2014-Oct 2015). DNA extracted from blood spots were examined by a nested PCR assay for Plasmodium and positive samples were then examined by nested PCR assays for Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale, Plasmodium knowlesi, Plasmodium cynomolgi and Plasmodium inui. Blood films of samples positive by PCR were also examined by microscopy. Genus-specific PCR assay detected Plasmodium DNA in 9 out of 3002 samples. Species-specific PCR identified 7 P. knowlesi and one P. vivax. Malaria parasites were observed in 5 thick blood films of the PCR positive samples. No parasites were observed in blood films from one knowlesi-, one vivax- and the genus-positive samples. Only one of 7 P. knowlesi-infected individual was febrile and had sought medical treatment at Betong Hospital the day after sampling. The 6 knowlesi-, one vivax- and one Plasmodium-infected individuals were afebrile and did not seek any medical treatment. Asymptomatic human P. knowlesi and P. vivax malaria infections, but not P. cynomolgi and P. inui infections, are occurring within communities affected with malaria.

  4. Fitness components and natural selection: why are there different patterns on the emergence of drug resistance in Plasmodium falciparum and Plasmodium vivax?

    Directory of Open Access Journals (Sweden)

    Schneider Kristan A

    2013-01-01

    Full Text Available Abstract Background Considering the distinct biological characteristics of Plasmodium species is crucial for control and elimination efforts, in particular when facing the spread of drug resistance. Whereas the evolutionary fitness of all malarial species could be approximated by the probability of being taken by a mosquito and then infecting a new host, the actual steps in the malaria life cycle leading to a successful transmission event show differences among Plasmodium species. These “steps” are called fitness components. Differences in terms of fitness components may affect how selection imposed by interventions, e.g. drug treatments, differentially acts on each Plasmodium species. Thus, a successful malaria control or elimination programme should understand how differences in fitness components among different malaria species could affect adaptive evolution (e.g. the emergence of drug resistance. In this investigation, the interactions between some fitness components and natural selection are explored. Methods A population-genetic model is formulated that qualitatively explains how different fitness components (in particular gametocytogenesis and longevity of gametocytes affect selection acting on merozoites during the erythrocytic cycle. By comparing Plasmodium falciparum and Plasmodium vivax, the interplay of parasitaemia and gametocytaemia dynamics in determining fitness is modelled under circumstances that allow contrasting solely the differences between these two parasites in terms of their fitness components. Results By simulating fitness components, it is shown that selection acting on merozoites (e.g., on drug resistant mutations or malaria antigens is more efficient in P. falciparum than in P. vivax. These results could explain, at least in part, why resistance against drugs, such as chloroquine (CQ is highly prevalent in P. falciparum worldwide, while CQ is still a successful treatment for P. vivax despite its massive use

  5. Prevalence of mutation and phenotypic expression associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum and Plasmodium vivax.

    Science.gov (United States)

    Zakai, Haytham A; Khan, Wajihullah; Asma, Umme

    2013-09-01

    Therapeutic efficacy of sulfadoxine-pyrimethamine (SP), which is commonly used to treat falciparum malaria, was assessed in isolates of Plasmodium falciparum (Welch, 1897) and Plasmodium vivax (Grassi et Feletti, 1890) ofAligarh, Uttar Pradesh, North India and Taif, Saudi Arabia during 2011-2012. Both the species showed mutations in dihydrofolate reductase (DHFR) enzyme as they have common biochemical drug targets. Mutation rate for pfdhfr was higher compared to pvdhfr because the drug was mainly given to treat falciparum malaria. Since both the species coexist, P. vivax was also exposed to SP due to faulty species diagnosis or medication without specific diagnosis. Low level of mutations against SP in P. falciparum of Saudi isolates indicates that the SP combination is still effective for the treatment of falciparum malaria. Since SP is used as first-line of treatment because of high level of resistance against chloroquine (CQ), it may result in spread of higher level of mutations resulting in drug resistance and treatment failure in near future. Therefore, to avoid further higher mutations in the parasite, use of better treatment regimens such as artesunate combination therapy must be introduced against SP combination.

  6. Rapid diagnostic tests for diagnosing uncomplicated non-falciparum or Plasmodium vivax malaria in endemic countries

    Science.gov (United States)

    Abba, Katharine; Kirkham, Amanda J; Olliaro, Piero L; Deeks, Jonathan J; Donegan, Sarah; Garner, Paul; Takwoingi, Yemisi

    2014-01-01

    Background In settings where both Plasmodium vivax and Plasmodium falciparum infection cause malaria, rapid diagnostic tests (RDTs) need to distinguish which species is causing the patients' symptoms, as different treatments are required. Older RDTs incorporated two test lines to distinguish malaria due to P. falciparum, from malaria due to any other Plasmodium species (non-falciparum). These RDTs can be classified according to which antibodies they use: Type 2 RDTs use HRP-2 (for P. falciparum) and aldolase (all species); Type 3 RDTs use HRP-2 (for P. falciparum) and pLDH (all species); Type 4 use pLDH (fromP. falciparum) and pLDH (all species). More recently, RDTs have been developed to distinguish P. vivax parasitaemia by utilizing a pLDH antibody specific to P. vivax. Objectives To assess the diagnostic accuracy of RDTs for detecting non-falciparum or P. vivax parasitaemia in people living in malaria-endemic areas who present to ambulatory healthcare facilities with symptoms suggestive of malaria, and to identify which types and brands of commercial test best detect non-falciparum and P. vivax malaria. Search methods We undertook a comprehensive search of the following databases up to 31 December 2013: Cochrane Infectious Diseases Group Specialized Register; MEDLINE; EMBASE; MEDION; Science Citation Index; Web of Knowledge; African Index Medicus; LILACS; and IndMED. Selection criteria Studies comparing RDTs with a reference standard (microscopy or polymerase chain reaction) in blood samples from a random or consecutive series of patients attending ambulatory health facilities with symptoms suggestive of malaria in non-falciparum endemic areas. Data collection and analysis For each study, two review authors independently extracted a standard set of data using a tailored data extraction form. We grouped comparisons by type of RDT (defined by the combinations of antibodies used), and combined in meta-analysis where appropriate. Average sensitivities and

  7. Diversity of Plasmodium falciparum clones infecting children living in a holoendemic area in north-eastern Tanzania

    DEFF Research Database (Denmark)

    Magesa, S M; Mdira, K Y; Babiker, H A

    2002-01-01

    of 34 initially asymptomatic parasitaemic children aged 1-5 years were followed daily for 31 days. Clinical examinations were made each day for signs and symptoms of clinical malaria, followed by parasitological investigation. Nineteen children developed symptoms suggestive of clinical malaria during......The diversity of Plasmodium falciparum clones and their role in progression from asymptomatic to symptomatic condition in children have been investigated. Attempts to identify whether particular parasite genotypes were associated with the development of clinical symptoms have been made. A cohort...... this period. Daily blood parasite samples from 13 children who developed clinical malaria symptoms and 7 who remained asymptomatic were genotyped by PCR-amplification of the polymorphic regions of the merozoite surface proteins 1 and 2 (MSP1 and MSP2) and the glutamate rich protein (GLURP) genes. Infections...

  8. The epidemiology of Plasmodium vivax and Plasmodium falciparum malaria in China, 2004-2012: from intensified control to elimination.

    Science.gov (United States)

    Zhang, Qian; Lai, Shengjie; Zheng, Canjun; Zhang, Honglong; Zhou, Sheng; Hu, Wenbiao; Clements, Archie C A; Zhou, Xiao-Nong; Yang, Weizhong; Hay, Simon I; Yu, Hongjie; Li, Zhongjie

    2014-11-03

    In China, the national malaria elimination programme has been operating since 2010. This study aimed to explore the epidemiological changes in patterns of malaria in China from intensified control to elimination stages. Data on nationwide malaria cases from 2004 to 2012 were extracted from the Chinese national malaria surveillance system. The secular trend, gender and age features, seasonality, and spatial distribution by Plasmodium species were analysed. In total, 238,443 malaria cases were reported, and the proportion of Plasmodium falciparum increased drastically from population. The areas affected by Plasmodium vivax malaria shrunk, while areas affected by P. falciparum malaria expanded from 294 counties in 2004 to 600 counties in 2012. This study demonstrated that malaria has decreased dramatically in the last five years, especially since the Chinese government launched a malaria elimination programme in 2010, and areas with reported falciparum malaria cases have expanded over recent years. These findings suggest that elimination efforts should be improved to meet these changes, so as to achieve the nationwide malaria elimination goal in China in 2020.

  9. Placental histopathological changes associated with Plasmodium vivax infection during pregnancy.

    Directory of Open Access Journals (Sweden)

    Rodrigo M Souza

    Full Text Available Histological evidence of Plasmodium in the placenta is indicative of placental malaria, a condition associated with severe outcomes for mother and child. Histological lesions found in placentas from Plasmodium-exposed women include syncytial knotting, syncytial rupture, thickening of the placental barrier, necrosis of villous tissue and intervillositis. These histological changes have been associated with P. falciparum infections, but little is known about the contribution of P. vivax to such changes. We conducted a cross-sectional study with pregnant women at delivery and assigned them to three groups according to their Plasmodium exposure during pregnancy: no Plasmodium exposure (n = 41, P. vivax exposure (n = 59 or P. falciparum exposure (n = 19. We evaluated their placentas for signs of Plasmodium and placental lesions using ten histological parameters: syncytial knotting, syncytial rupture, placental barrier thickness, villi necrosis, intervillous space area, intervillous leucocytes, intervillous mononucleates, intervillous polymorphonucleates, parasitized erythrocytes and hemozoin. Placentas from P. vivax-exposed women showed little evidence of Plasmodium or hemozoin but still exhibited more lesions than placentas from women not exposed to Plasmodium, especially when infections occurred twice or more during pregnancy. In the Brazilian state of Acre, where diagnosis and primary treatment are readily available and placental lesions occur in the absence of detected placental parasites, relying on the presence of Plasmodium in the placenta to evaluate Plasmodium-induced placental pathology is not feasible. Multivariate logistic analysis revealed that syncytial knotting (odds ratio [OR], 4.21, P = 0.045, placental barrier thickness (OR, 25.59, P = 0.021 and mononuclear cells (OR, 4.02, P = 0.046 were increased in placentas from P. vivax-exposed women when compared to women not exposed to Plasmodium during pregnancy. A

  10. Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia

    Directory of Open Access Journals (Sweden)

    Cook Jackie

    2012-03-01

    Full Text Available Abstract Background In Cambodia, malaria transmission is low and most cases occur in forested areas. Sero-epidemiological techniques can be used to identify both areas of ongoing transmission and high-risk groups to be targeted by control interventions. This study utilizes repeated cross-sectional data to assess the risk of being malaria sero-positive at two consecutive time points during the rainy season and investigates who is most likely to sero-convert over the transmission season. Methods In 2005, two cross-sectional surveys, one in the middle and the other at the end of the malaria transmission season, were carried out in two ecologically distinct regions in Cambodia. Parasitological and serological data were collected in four districts. Antibodies to Plasmodium falciparum Glutamate Rich Protein (GLURP and Plasmodium vivax Merozoite Surface Protein-119 (MSP-119 were detected using Enzyme Linked Immunosorbent Assay (ELISA. The force of infection was estimated using a simple catalytic model fitted using maximum likelihood methods. Risks for sero-converting during the rainy season were analysed using the Classification and Regression Tree (CART method. Results A total of 804 individuals participating in both surveys were analysed. The overall parasite prevalence was low (4.6% and 2.0% for P. falciparum and 7.9% and 6.0% for P. vivax in August and November respectively. P. falciparum force of infection was higher in the eastern region and increased between August and November, whilst P. vivax force of infection was higher in the western region and remained similar in both surveys. In the western region, malaria transmission changed very little across the season (for both species. CART analysis for P. falciparum in the east highlighted age, ethnicity, village of residence and forest work as important predictors for malaria exposure during the rainy season. Adults were more likely to increase their antibody responses to P. falciparum during the

  11. Decrease of microscopic Plasmodium falciparum infection prevalence during pregnancy following IPTp-SP implementation in urban cities of Gabon.

    Science.gov (United States)

    Bouyou-Akotet, M K; Mawili-Mboumba, D P; Kendjo, E; Moutandou Chiesa, S; Tshibola Mbuyi, M L; Tsoumbou-Bakana, G; Zong, J; Ambounda, N; Kombila, M

    2016-06-01

    Six years after the implementation of intermittent preventive treatment in pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) in Gabon, its impact on placental malaria and pregnancy outcomes remains unknown. Age, gestational data, use of IPTp-SP and birth weight were recorded during a hospital-based cross-sectional survey performed in 2011 in 387 women at the end of pregnancy. Malaria prevalence was 6.7 and 5.3% in peripheral and placental blood respectively. Overall, 59.0% women took at least two IPTp-SP doses which was associated with 50% reduction of Plasmodium; (P.) falciparum infection in primigravidae. Previous malaria treatment was a risk factor for peripheral P. falciparum infection, while uptake of IPTp-SP was associated with reduced parasitaemia. Anaemia prevalence was 38.0%, low birth weight and prematurity rates were 6.0 and 12.0% respectively. Young age was associated with a higher frequency of malaria, anaemia, low birth weight and preterm delivery (pprevalence during pregnancy significantly declined between 2005 and 2011, following IPTp-SP implementation in Gabon. Young women and paucigravidae remain the most susceptible to malaria and associated outcomes. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Plasmodium falciparum infection rates for some Anopheles spp. from Guinea-Bissau, West Africa [v2; ref status: indexed, http://f1000r.es/4n3

    Directory of Open Access Journals (Sweden)

    Michelle R. Sanford

    2014-11-01

    Full Text Available Presence of Plasmodium falciparum circumsporozoite protein (CSP was detected by enzyme linked immunosorbent assay (ELISA in a sample of Anopheles gambiae s.s., A. melas and A. pharoensis collected in Guinea-Bissau during October and November 2009. The percentage of P. falciparum infected samples (10.2% overall; confidence interval (CI: 7.45-13.6% was comparable to earlier studies from other sites in Guinea-Bissau (9.6-12.4%. The majority of the specimens collected were identified as A. gambiae which had an individual infection rate of 12.6 % (CI: 8.88-17.6 across collection sites. A small number of specimens of A. coluzzii, A. coluzzii x A. gambiae hybrids, A. melas and A. pharoensis were collected and had infection rates of 4.3% (CI:0.98-12.4, 4.1% (CI:0.35-14.5, 11.1% (CI:1.86-34.1 and 33.3% (CI:9.25-70.4 respectively. Despite being present in low numbers in indoor collections, the exophilic feeding behaviors of A. melas (N=18 and A. pharoensis (N=6 and high infection rates observed in this survey suggest falciparum-malaria transmission potential outside of the protection of bed nets.

  13. Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Magistrado, Pamela; Sharp, Sarah

    2004-01-01

    Parasite-encoded variant surface antigens (VSAs) like the var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family are responsible for antigenic variation and infected red blood cell (RBC) cytoadhesion in P. falciparum malaria. Parasites causing severe malaria in noni...... genes, such as PFD1235w/MAL7P1.1, appear to be involved in the pathogenesis of severe disease and are thus attractive candidates for a vaccine against life-threatening P. falciparum malaria....

  14. Positive blood culture with Plasmodium falciparum : Case report

    NARCIS (Netherlands)

    De Vries, Jutte J. C.; Van Assen, Sander; Mulder, André B.; Kampinga, Greetje A.

    2007-01-01

    An adult traveler presented with fever and malaise after returning from Sierra Leone. Young trophozoites of Plasmodium falciparum were seen in a blood smear, with parasitemia being 10%. Moreover, blood cultures drawn on admission signaled as "positive" after 1 day of incubation, but no bacteria were

  15. Population genomics diversity of Plasmodium falciparum in malaria ...

    African Journals Online (AJOL)

    Background: Plasmodium falciparum, the most dangerous malaria parasite species to ... tigen for subunit malaria vaccine.10 It comprises highly ... were also prepared for Giemsa staining as described by ... parasites with different alleles at a given locus and ranges ..... surface protein 1, immune evasion and vaccines against.

  16. Blood Stage Plasmodium falciparum Exhibits Biological Responses to Direct Current Electric Fields.

    Directory of Open Access Journals (Sweden)

    Lorena M Coronado

    Full Text Available The development of resistance to insecticides by the vector of malaria and the increasingly faster appearance of resistance to antimalarial drugs by the parasite can dangerously hamper efforts to control and eradicate the disease. Alternative ways to treat this disease are urgently needed. Here we evaluate the in vitro effect of direct current (DC capacitive coupling electrical stimulation on the biology and viability of Plasmodium falciparum. We designed a system that exposes infected erythrocytes to different capacitively coupled electric fields in order to evaluate their effect on P. falciparum. The effect on growth of the parasite, replication of DNA, mitochondrial membrane potential and level of reactive oxygen species after exposure to electric fields demonstrate that the parasite is biologically able to respond to stimuli from DC electric fields involving calcium signaling pathways.

  17. NSR-seq transcriptional profiling enables identification of a gene signature of Plasmodium falciparum parasites infecting children

    OpenAIRE

    Vignali, Marissa; Armour, Christopher D.; Chen, Jingyang; Morrison, Robert; Castle, John C.; Biery, Matthew C.; Bouzek, Heather; Moon, Wonjong; Babak, Tomas; Fried, Michal; Raymond, Christopher K.; Duffy, Patrick E.

    2011-01-01

    Malaria caused by Plasmodium falciparum results in approximately 1 million annual deaths worldwide, with young children and pregnant mothers at highest risk. Disease severity might be related to parasite virulence factors, but expression profiling studies of parasites to test this hypothesis have been hindered by extensive sequence variation in putative virulence genes and a prep...

  18. Anti-phospholipid antibodies in patients with Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Jakobsen, P H; Morris-Jones, S D; Hviid, L

    1993-01-01

    Plasma levels of antibodies against phosphatidylinositol (PI), phosphatidylcholine (PC) and cardiolipin (CL) were measured by enzyme-linked immunosorbent assay (ELISA) in patients from malaria endemic area of Sudan and The Gambia. Some Sudanese adults produced IgM antibodies against all three types...... of phospholipids (PL) during an acute Plasmodium falciparum infection. The anti-PL antibody titre returned to preinfection levels in most of the donors 30 days after the disease episode. IgG titres against PI, PC and CL were low. In Gambian children with malaria, IgM antibody titres against PI and PC were...... significantly higher in those with severe malaria than in those with mild malaria. These results show that a proportion of malaria patients produce anti-PL antibodies during infection and that titres of these antibodies are associated with the severity of disease....

  19. Plasmodium falciparum uses vitamin E to avoid oxidative stress

    OpenAIRE

    Sussmann, Rodrigo A. C.; Fotoran, Wesley L.; Kimura, Emilia A.; Katzin, Alejandro M.

    2017-01-01

    Background Plasmodium falciparum is sensitive to oxidative stress in vitro and in vivo, and many drugs such as artemisinin, chloroquine and cercosporin interfere in the parasite’s redox system. To minimize the damage caused by reactive radicals, antioxidant enzymes and their substrates found in parasites and in erythrocytes must be functionally active. It was shown that P. falciparum synthesizes vitamin E and that usnic acid acts as an inhibitor of its biosynthesis. Vitamin E is a potent anti...

  20. A multi-level spatial analysis of clinical malaria and subclinical Plasmodium infections in Pailin Province, Cambodia

    Directory of Open Access Journals (Sweden)

    Daniel M. Parker

    2017-11-01

    Full Text Available Background: The malaria burden is decreasing throughout the Greater Mekong Subregion, however transmission persists in some areas. Human movement, subclinical infections and complicated transmission patterns contribute to the persistence of malaria. This research describes the micro-geographical epidemiology of both clinical malaria and subclinical Plasmodium infections in three villages in Western Cambodia. Methods: Three villages in Western Cambodia were selected for the study based on high reported Plasmodium falciparum incidence. A census was conducted at the beginning of the study, including demographic information and travel history. The total population was 1766. Cross-sectional surveys were conducted every three months from June 2013 to June 2014. Plasmodium infections were detected using an ultra-sensitive, high-volume, quantitative polymerase chain reaction (uPCR technique. Clinical episodes were recorded by village health workers. The geographic coordinates (latitude and longitude were collected for all houses and all participants were linked to their respective houses using a demographic surveillance system. Written informed consent was obtained from all participants. Results: Most clinical episodes and subclinical infections occurred within a single study village. Clinical Plasmodium vivax episodes clustered spatially in each village but only lasted for a month. In one study village subclinical infections clustered in geographic proximity to clusters of clinical episodes. The largest risk factor for clinical P. falciparum episodes was living in a house where another clinical P. falciparum episode occurred (model adjusted odds ratio (AOR: 6.9; CI: 2.3–19. 8. Subclinical infections of both P. vivax and P. falciparum were associated with clinical episodes of the same species (AOR: 5.8; CI: 1.5–19.7 for P. falciparum and AOR: 14.6; CI: 8.6–25.2 for P. vivax and self-reported overnight visits to forested areas (AOR = 3.8; CI: 1.8

  1. The practice of jhum cultivation and its relationship to Plasmodium falciparum infection in the Chittagong Hill Districts of Bangladesh.

    Science.gov (United States)

    Galagan, Sean R; Prue, Chai Shwai; Khyang, Jacob; Khan, Wasif Ali; Ahmed, Sabeena; Ram, Malathi; Alam, Mohammad Shafiul; Haq, M Zahirul; Akter, Jasmin; Streatfield, Peter Kim; Glass, Gregory; Norris, Douglas E; Nyunt, Myaing Myaing; Shields, Timothy; Sullivan, David J; Sack, David A

    2014-08-01

    Malaria is endemic in the Chittagong Hill Districts of southeastern Bangladesh. Previous epidemiological analyses identified the agricultural practice of jhum cultivation as a potential risk factor for malaria infection. We conducted qualitative interviews with jhum cultivators and surveillance workers to describe jhum cultivation and used demographic and malaria surveillance in two study unions from May of 2010 to August of 2012 to better understand the relationship between jhum cultivation and malaria infection. Qualitative interviews revealed that jhum cultivation is conducted on remote, steep hillsides by ethnic tribal groups. Quantitative analyses found that adult jhum cultivators and individuals who live in the same residence had significantly higher incidence rates of symptomatic Plasmodium falciparum infection compared with non-cultivators. These results confirm that jhum cultivation is an independent risk factor for malaria infection and underscore the need for malaria testing and treatment services to reach remote populations in the Chittagong Hill Districts. © The American Society of Tropical Medicine and Hygiene.

  2. Transcription status of vaccine candidate genes of Plasmodium falciparum during the hepatic phase of its life cycle.

    NARCIS (Netherlands)

    Bodescot, M.; Silvie, O.; Siau, A.; Refour, P.; Pino, P.; Franetich, J.F.; Hannoun, L.; Sauerwein, R.W.; Mazier, D.

    2004-01-01

    The CSP, EMP2/MESA, MSP2, MSP3, MSP5, RAP1, RAP2, RESA1, SERA1 and SSP2/TRAP genes of Plasmodium falciparum are vaccine candidates. The hepatic phase of the infection is of major interest due to the protection induced by immunization with radiation-attenuated sporozoites. We therefore performed

  3. Full-length recombinant Plasmodium falciparum VAR2CSA binds specifically to CSPG and induces potent parasite adhesion blocking antibodies

    DEFF Research Database (Denmark)

    Khunrae, Pongsak; Dahlbäck, Madeleine; Nielsen, Morten A

    2010-01-01

    in the pathogenesis of severe P. falciparum infection. In pregnant women the parasites express a single and unique member of the PfEMP1 family named VAR2CSA, which is associated with the ability of the infected erythrocytes to adhere specifically to chondroitin sulphate A (CSA) in the placenta. Several DBL domains......Plasmodium falciparum malaria remains one of the world's leading causes of human suffering and poverty. Each year, the disease takes 1-3 million lives, mainly in sub-Saharan Africa. The adhesion of parasite-infected erythrocytes to the vascular endothelium or the placenta is the key event...

  4. Seasonality, Blood Feeding Behavior, and Transmission of Plasmodium Falciparum by Anopheles Arabiensis after an Extended Drought In Southern Zambia

    Science.gov (United States)

    Thuma, Philip E.; Mharakurwa, Sungano; Norris, Douglas E.

    2014-01-01

    Transmission of Plasmodium falciparum is hyperendemic in southern Zambia. However, no data on the entomologic aspects of malaria transmission have been published from Zambia in more than 25 years. We evaluated seasonal malaria transmission by Anopheles arabiensis and An. funestus s.s. and characterized the blood feeding behavior of An. arabiensis in two village areas. Transmission during the 2004–2005 rainy season was nearly zero because of widespread drought. During 2005–2006, the estimated entomologic inoculation rate values were 1.6 and 18.3 infective bites per person per transmission season in each of the two village areas, respectively. Finally, with a human blood index of 0.923, An. arabiensis was substantially more anthropophilic in our study area than comparable samples of indoor-resting An. arabiensis throughout Africa and was the primary vector responsible for transmission of P. falciparum. PMID:17297034

  5. A plant-produced Pfs230 vaccine candidate blocks transmission of Plasmodium falciparum

    NARCIS (Netherlands)

    Farrance, C.E.; Rhee, A.; Jones, R.M.; Musiychuk, K.; Shamloul, M.; Sharma, S.; Mett, V.; Chichester, J.A.; Streatfield, S.J.; Roeffen, W.F.G.; Vegte-Bolmer, M.G. van de; Sauerwein, R.W.; Tsuboi, T.; Muratova, O.V.; Wu, Y.; Yusibov, V.

    2011-01-01

    Plasmodium falciparum is transmitted to a new host after completing its sexual cycle within a mosquito. Developing vaccines against the parasite sexual stages is a critical component in the fight against malaria. We are targeting multiple proteins of P. falciparum which are found only on the

  6. Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies

    DEFF Research Database (Denmark)

    Muellenbeck, Matthias F; Ueberheide, Beatrix; Amulic, Borko

    2013-01-01

    signs of active antibody secretion. AtM and CM were also different in their IgG gene repertoire, suggesting that they develop from different precursors. The findings provide direct evidence that natural Pf infection leads to the development of protective memory B cell antibody responses and suggest......Antibodies can protect from Plasmodium falciparum (Pf) infection and clinical malaria disease. However, in the absence of constant reexposure, serum immunoglobulin (Ig) levels rapidly decline and full protection from clinical symptoms is lost, suggesting that B cell memory is functionally impaired...... that constant immune activation rather than impaired memory function leads to the accumulation of AtM in malaria. Understanding the memory B cell response to natural Pf infection may be key to the development of a malaria vaccine that induces long-lived protection....

  7. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda.

    Science.gov (United States)

    Kateera, Fredrick; Nsobya, Sam L; Tukwasibwe, Stephen; Mens, Petra F; Hakizimana, Emmanuel; Grobusch, Martin P; Mutesa, Leon; Kumar, Nirbhay; van Vugt, Michele

    2016-04-26

    Malaria remains a public health challenge in sub-Saharan Africa with Plasmodium falciparum being the principal cause of malaria disease morbidity and mortality. Plasmodium falciparum virulence is attributed, in part, to its population-level genetic diversity-a characteristic that has yet to be studied in Rwanda. Characterizing P. falciparum molecular epidemiology in an area is needed for a better understand of malaria transmission and to inform choice of malaria control strategies. In this health-facility based survey, malaria case clinical profiles and parasite densities as well as parasite genetic diversity were compared among P. falciparum-infected patients identified at two sites of different malaria transmission intensities in Rwanda. Data on demographics and clinical features and finger-prick blood samples for microscopy and parasite genotyping were collected(.) Nested PCR was used to genotype msp-2 alleles of FC27 and 3D7. Patients' variables of age group, sex, fever (both by patient report and by measured tympanic temperatures), parasite density, and bed net use were found differentially distributed between the higher endemic (Ruhuha) and lower endemic (Mubuga) sites. Overall multiplicity of P. falciparum infection (MOI) was 1.73 but with mean MOI found to vary significantly between 2.13 at Ruhuha and 1.29 at Mubuga (p < 0.0001). At Ruhuha, expected heterozygosity (EH) for FC27 and 3D7 alleles were 0.62 and 0.49, respectively, whilst at Mubuga, EH for FC27 and 3D7 were 0.26 and 0.28, respectively. In this study, a higher geometrical mean parasite counts, more polyclonal infections, higher MOI, and higher allelic frequency were observed at the higher malaria-endemic (Ruhuha) compared to the lower malaria-endemic (Mubuga) area. These differences in malaria risk and MOI should be considered when choosing setting-specific malaria control strategies, assessing p. falciparum associated parameters such as drug resistance, immunity and impact of used

  8. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country.

    Science.gov (United States)

    Pumpaibool, Tepanata; Arnathau, Céline; Durand, Patrick; Kanchanakhan, Naowarat; Siripoon, Napaporn; Suegorn, Aree; Sitthi-Amorn, Chitr; Renaud, François; Harnyuttanakorn, Pongchai

    2009-07-14

    The population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites). Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow. The diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand. A strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 +/- 0.17), where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai populations during this study. Comparison of the genetic

  9. Plasmodium falciparum-infected erythrocytes do not adhere well to C32 melanoma cells or CD36 unless rosettes with uninfected erythrocytes are first disrupted.

    OpenAIRE

    Handunnetti, S M; Hasler, T H; Howard, R J

    1992-01-01

    Plasmodium falciparum malaria parasites modify the human erythrocytes in which they grow so that some parasitized erythrocytes (PE) can cytoadhere (C+) to host vascular endothelial cells or adhere in rosettes (R+) to uninfected erythrocytes. These C+ and R+ adherence properties of PE appear to mediate much of the pathogenesis of severe malaria infections, in part by blocking blood flow in microvessels. From one parasite strain, PE were selected in vitro for C+ R+ or C+ R- adherence properties...

  10. Construction of a system for heterologous production of carbonic anhydrase from Plasmodium falciparum in Pichia pastoris

    OpenAIRE

    Gullberg, Erik

    2008-01-01

    Malaria is one of the biggest current global health problems, and with the increasing occurance of drug resistant Plasmodium falciparum strains, there is an urgent need for new antimalarial drugs. Given the important role of carbonic anhydrase in Plasmodium falciparum (PfCA), it is a potential novel drug target. Heterologous expression of malaria proteins is problematic due to the unusual codon usage of the Plasmodium genome, so to overcome this problem a synthetic PfCA gene was designed, opt...

  11. Host AMPK Is a Modulator of Plasmodium Liver Infection

    Directory of Open Access Journals (Sweden)

    Margarida T. Grilo Ruivo

    2016-09-01

    Full Text Available Manipulation of the master regulator of energy homeostasis AMP-activated protein kinase (AMPK activity is a strategy used by many intracellular pathogens for successful replication. Infection by most pathogens leads to an activation of host AMPK activity due to the energetic demands placed on the infected cell. Here, we demonstrate that the opposite is observed in cells infected with rodent malaria parasites. Indeed, AMPK activity upon the infection of hepatic cells is suppressed and dispensable for successful infection. By contrast, an overactive AMPK is deleterious to intracellular growth and replication of different Plasmodium spp., including the human malaria parasite, P. falciparum. The negative impact of host AMPK activity on infection was further confirmed in mice under conditions that activate its function. Overall, this work establishes the role of host AMPK signaling as a suppressive pathway of Plasmodium hepatic infection and as a potential target for host-based antimalarial interventions.

  12. High-Dose Chloroquine for Treatment of Chloroquine-Resistant Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Ursing, Johan; Rombo, Lars; Bergqvist, Yngve

    2016-01-01

    BACKGROUND:  Due to development of multidrug-resistant Plasmodium falciparum new antimalarial therapies are needed. In Guinea-Bissau, routinely used triple standard-dose chloroquine remained effective for decades despite the existence of "chloroquine-resistant" P. falciparum. This study aimed...... to determine the in vivo efficacy of higher chloroquine concentrations against P. falciparum with resistance-conferring genotypes. METHODS:  Standard or double-dose chloroquine was given to 892 children aged ...-up. The P. falciparum resistance-conferring genotype (pfcrt 76T) and day 7 chloroquine concentrations were determined. Data were divided into age groups (chloroquine is prescribed according to body weight. RESULTS:  Adequate clinical...

  13. A Plasmodium falciparum Strain Expressing GFP throughout the Parasite's Life-Cycle

    OpenAIRE

    Talman, Arthur M.; Blagborough, Andrew M.; Sinden, Robert E.

    2010-01-01

    The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete spo...

  14. A transgenic Plasmodium falciparum NF54 strain that expresses GFP-luciferase throughout the parasite life cycle.

    Science.gov (United States)

    Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I

    2012-12-01

    Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR

    OpenAIRE

    Karl, Stephan; Davis, Timothy ME; St-Pierre, Tim G

    2009-01-01

    Abstract Background The magnetic properties of Plasmodium-infected erythrocytes have been exploited for different clinical and research purposes. A recent study in a rural clinical setting in Papua New Guinea has demonstrated that Plasmodium falciparum gametocyte detection is facilitated by magnetic deposition microscopy but no study has yet determined the relative sensitivity and limit of detection of a magnetic fractionation technique. The present study compares the detection limit and sens...

  16. Plasmodium falciparum: attenuation by irradiation

    International Nuclear Information System (INIS)

    Waki, S.; Yonome, I.; Suzuki, M.

    1983-01-01

    The effect of irradiation on the in vitro growth of Plasmodium falciparum was investigated. The cultured malarial parasites at selected stages of development were exposed to gamma rays and the sensitivity of each stage was determined. The stages most sensitive to irradiation were the ring forms and the early trophozoites; late trophozoites were relatively insensitive. The greatest resistance was shown when parasites were irradiated at a time of transition from the late trophozoite and schizont stages to young ring forms. The characteristics of radiosensitive variation in the parasite cycle resembled that of mammalian cells. Growth curves of parasites exposed to doses of irradiation upto 150 gray had the same slope as nonirradiated controls but parasites which were exposed to 200 gray exhibited a growth curve which was less steep than that for parasites in other groups. Less than 10 organisms survived from the 10(6) parasites exposed to this high dose of irradiation; the possibility exists of obtaining radiation-attenuated P. falciparum

  17. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Janse, Chris J; van Gemert, Geert-Jan

    2008-01-01

    Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature...... whose annotation suggest an involvement in sporozoite maturation, motility, infection of the human host and associated metabolic adjustments. Analyses of proteins identified in the P. falciparum sporozoite proteomes by orthologous gene disruption in the rodent malaria parasite, P. berghei, revealed...... three previously uncharacterized Plasmodium proteins that appear to be essential for sporozoite development at distinct points of maturation in the mosquito. This study sheds light on the development and maturation of the malaria parasite in an Anopheles mosquito and also identifies proteins that may...

  18. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) - A Receptor Associated with Severe Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R

    2013-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes....... Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has...

  19. Assessment of the Combined Effect of Epstein–Barr Virus and Plasmodium falciparum Infections on Endemic Burkitt Lymphoma Using a Multiplex Serological Approach

    Directory of Open Access Journals (Sweden)

    Ruth Aguilar

    2017-10-01

    Full Text Available Epstein–Barr virus (EBV is a necessary cause of endemic Burkitt lymphoma (eBL, while the role of Plasmodium falciparum in eBL remains uncertain. This study aimed to generate new hypotheses on the interplay between both infections in the development of eBL by investigating the IgG and IgM profiles against several EBV and P. falciparum antigens. Serum samples collected in a childhood study in Malawi (2005–2006 from 442 HIV-seronegative children (271 eBL cases and 171 controls between 1.4 and 15 years old were tested by quantitative suspension array technology against a newly developed multiplex panel combining 4 EBV antigens [Z Epstein–Barr replication activator protein (ZEBRA, early antigen-diffuse component (EA-D, EBV nuclear antigen 1, and viral capsid antigen p18 subunit (VCA-p18] and 15 P. falciparum antigens selected for their immunogenicity, role in malaria pathogenesis, and presence in different parasite stages. Principal component analyses, multivariate logistic models, and elastic-net regressions were used. As expected, elevated levels of EBV IgG (especially against the lytic antigens ZEBRA, EA-D, and VCA-p18 were strongly associated with eBL [high vs low tertile odds ratio (OR = 8.67, 95% confidence interval (CI = 4.81–15.64]. Higher IgG responses to the merozoite surface protein 3 were observed in children with eBL compared with controls (OR = 1.29, 95% CI = 1.02–1.64, showing an additive interaction with EBV IgGs (OR = 10.6, 95% CI = 5.1–22.2, P = 0.05. Using elastic-net regression models, eBL serological profile was further characterized by lower IgM levels against P. falciparum preerythrocytic-stage antigen CelTOS and EBV lytic antigen VCA-p18 compared with controls. In a secondary analysis, abdominal Burkitt lymphoma had lower IgM to EBV and higher IgG to EA-D levels than cases with head involvement. Overall, this exploratory study confirmed the strong role of EBV in eBL and identified

  20. Dhfr and dhps mutations in Plasmodium falciparum isolates in ...

    African Journals Online (AJOL)

    Sulfadoxine-pyrimethamine (SP), the current first line antimalarial drug in Tanzania, is compromised by evolution and spread of mutations in the parasite's dhfr and dhps genes. In the present study we established the baseline frequencies of Plasmodium falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate ...

  1. The Exported Chaperone PfHsp70x Is Dispensable for the Plasmodium falciparum Intraerythrocytic Life Cycle.

    Science.gov (United States)

    Cobb, David W; Florentin, Anat; Fierro, Manuel A; Krakowiak, Michelle; Moore, Julie M; Muralidharan, Vasant

    2017-01-01

    Export of parasite proteins into the host erythrocyte is essential for survival of Plasmodium falciparum during its asexual life cycle. While several studies described key factors within the parasite that are involved in protein export, the mechanisms employed to traffic exported proteins within the host cell are currently unknown. Members of the Hsp70 family of chaperones, together with their Hsp40 cochaperones, facilitate protein trafficking in other organisms, and are thus likely used by P. falciparum in the trafficking of its exported proteins. A large group of Hsp40 proteins is encoded by the parasite and exported to the host cell, but only one Hsp70, P. falciparum Hsp70x (PfHsp70x), is exported with them. PfHsp70x is absent in most Plasmodium species and is found only in P. falciparum and closely related species that infect apes. Herein, we have utilized clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing in P. falciparum to investigate the essentiality of PfHsp70x. We show that parasitic growth was unaffected by knockdown of PfHsp70x using both the dihydrofolate reductase (DHFR)-based destabilization domain and the glmS ribozyme system. Similarly, a complete gene knockout of PfHsp70x did not affect the ability of P. falciparum to proceed through its intraerythrocytic life cycle. The effect of PfHsp70x knockdown/knockout on the export of proteins to the host red blood cell (RBC), including the critical virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), was tested, and we found that this process was unaffected. These data show that although PfHsp70x is the sole exported Hsp70, it is not essential for the asexual development of P. falciparum . IMPORTANCE Half of the world's population lives at risk for malaria. The intraerythrocytic life cycle of Plasmodium spp. is responsible for clinical manifestations of malaria; therefore, knowledge of the parasite's ability to survive within the erythrocyte is

  2. Microsatellite genotyping and genome-wide single nucleotide polymorphism-based indices of Plasmodium falciparum diversity within clinical infections.

    Science.gov (United States)

    Murray, Lee; Mobegi, Victor A; Duffy, Craig W; Assefa, Samuel A; Kwiatkowski, Dominic P; Laman, Eugene; Loua, Kovana M; Conway, David J

    2016-05-12

    In regions where malaria is endemic, individuals are often infected with multiple distinct parasite genotypes, a situation that may impact on evolution of parasite virulence and drug resistance. Most approaches to studying genotypic diversity have involved analysis of a modest number of polymorphic loci, although whole genome sequencing enables a broader characterisation of samples. PCR-based microsatellite typing of a panel of ten loci was performed on Plasmodium falciparum in 95 clinical isolates from a highly endemic area in the Republic of Guinea, to characterize within-isolate genetic diversity. Separately, single nucleotide polymorphism (SNP) data from genome-wide short-read sequences of the same samples were used to derive within-isolate fixation indices (F ws), an inverse measure of diversity within each isolate compared to overall local genetic diversity. The latter indices were compared with the microsatellite results, and also with indices derived by randomly sampling modest numbers of SNPs. As expected, the number of microsatellite loci with more than one allele in each isolate was highly significantly inversely correlated with the genome-wide F ws fixation index (r = -0.88, P 10 % had high correlation (r > 0.90) with the index derived using all SNPs. Different types of data give highly correlated indices of within-infection diversity, although PCR-based analysis detects low-level minority genotypes not apparent in bulk sequence analysis. When whole-genome data are not obtainable, quantitative assay of ten or more SNPs can yield a reasonably accurate estimate of the within-infection fixation index (F ws).

  3. Schistosomiasis coinfection in children influences acquired immune response against Plasmodium falciparum malaria antigens.

    Directory of Open Access Journals (Sweden)

    Tamsir O Diallo

    Full Text Available BACKGROUND: Malaria and schistosomiasis coinfection frequently occurs in tropical countries. This study evaluates the influence of Schistosoma haematobium infection on specific antibody responses and cytokine production to recombinant merozoite surface protein-1-19 (MSP1-(19 and schizont extract of Plasmodium falciparum in malaria-infected children. METHODOLOGY: Specific IgG1 to MSP1-(19, as well as IgG1 and IgG3 to schizont extract were significantly increased in coinfected children compared to P. falciparum mono-infected children. Stimulation with MSP1-(19 lead to a specific production of both interleukin-10 (IL-10 and interferon-γ (IFN-γ, whereas the stimulation with schizont extract produced an IL-10 response only in the coinfected group. CONCLUSIONS: Our study suggests that schistosomiasis coinfection favours anti-malarial protective antibody responses, which could be associated with the regulation of IL-10 and IFN-γ production and seems to be antigen-dependent. This study demonstrates the importance of infectious status of the population in the evaluation of acquired immunity against malaria and highlights the consequences of a multiple infection environment during clinical trials of anti-malaria vaccine candidates.

  4. On Programmed Cell Death in Plasmodium falciparum: Status Quo

    Science.gov (United States)

    Engelbrecht, Dewaldt; Durand, Pierre Marcel; Coetzer, Thérèsa Louise

    2012-01-01

    Conflicting arguments and results exist regarding the occurrence and phenotype of programmed cell death (PCD) in the malaria parasite Plasmodium falciparum. Inconsistencies relate mainly to the number and type of PCD markers assessed and the different methodologies used in the studies. In this paper, we provide a comprehensive overview of the current state of knowledge and empirical evidence for PCD in the intraerythrocytic stages of P. falciparum. We consider possible reasons for discrepancies in the data and offer suggestions towards more standardised investigation methods in this field. Furthermore, we present genomic evidence for PCD machinery in P. falciparum. We discuss the potential adaptive or nonadaptive role of PCD in the parasite life cycle and its possible exploitation in the development of novel drug targets. Lastly, we pose pertinent unanswered questions concerning the PCD phenomenon in P. falciparum to provide future direction. PMID:22287973

  5. A longitudinal study of type-specific antibody responses to Plasmodium falciparum merozoite surface protein-1 in an area of unstable malaria in Sudan

    DEFF Research Database (Denmark)

    Cavanagh, D R; Elhassan, I M; Roper, C

    1998-01-01

    Merozoite surface protein-1 (MSP-1) of Plasmodium falciparum is a malaria vaccine candidate Ag. Immunity to MSP-1 has been implicated in protection against infection in animal models. However, MSP-1 is a polymorphic protein and its immune recognition by humans following infection is not well unde...

  6. An in vitro system from Plasmodium falciparum active in endogenous mRNA translation

    Directory of Open Access Journals (Sweden)

    Ferreras Ana

    2000-01-01

    Full Text Available An in vitro translation system has been prepared from Plasmodium falciparum by saponin lysis of infected-erythrocytes to free parasites which were homogeneized with glass beads, centrifuged to obtain a S-30 fraction followed by Sephadex G-25 gel filtration. This treatment produced a system with very low contamination of host proteins (<1%. The system, optimized for Mg2+ and K+, translates endogenous mRNA and is active for 80 min which suggests that their protein factors and mRNA are quite stable.

  7. Selection of drug resistant mutants from random library of Plasmodium falciparum dihydrofolate reductase in Plasmodium berghei model

    OpenAIRE

    Tipsuwan, Wachiraporn; Srichairatanakool, Somdet; Kamchonwongpaisan, Sumalee; Yuthavong, Yongyuth; Uthaipibull, Chairat

    2011-01-01

    Abstract Background The prevalence of drug resistance amongst the human malaria Plasmodium species has most commonly been associated with genomic mutation within the parasites. This phenomenon necessitates evolutionary predictive studies of possible resistance mutations, which may occur when a new drug is introduced. Therefore, identification of possible new Plasmodium falciparum dihydrofolate reductase (PfDHFR) mutants that confer resistance to antifolate drugs is essential in the process of...

  8. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum

    DEFF Research Database (Denmark)

    Jiang, Lubin; Mu, Jianbing; Zhang, Qingfeng

    2013-01-01

    The variant antigen Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), which is expressed on the surface of P. falciparum-infected red blood cells, is a critical virulence factor for malaria. Each parasite has 60 antigenically distinct var genes that each code for a different PfEMP1...... parasite nuclei and their expression as proteins on the surface of individual infected red blood cells. PfSETvs-dependent H3K36me3 is present along the entire gene body, including the transcription start site, to silence var genes. With low occupancy of PfSETvs at both the transcription start site of var...... protein. During infection the clonal parasite population expresses only one gene at a time before switching to the expression of a new variant antigen as an immune-evasion mechanism to avoid the host antibody response. The mechanism by which 59 of the 60 var genes are silenced remains largely unknown...

  9. A nested real-time PCR assay for the quantification of Plasmodium falciparum DNA extracted from dried blood spots.

    Science.gov (United States)

    Tran, Tuan M; Aghili, Amirali; Li, Shanping; Ongoiba, Aissata; Kayentao, Kassoum; Doumbo, Safiatou; Traore, Boubacar; Crompton, Peter D

    2014-10-04

    As public health efforts seek to eradicate malaria, there has been an emphasis on eliminating low-density parasite reservoirs in asymptomatic carriers. As such, diagnosing submicroscopic Plasmodium infections using PCR-based techniques has become important not only in clinical trials of malaria vaccines and therapeutics, but also in active malaria surveillance campaigns. However, PCR-based quantitative assays that rely on nucleic acid extracted from dried blood spots (DBS) have demonstrated lower sensitivity than assays that use cryopreserved whole blood as source material. The density of Plasmodium falciparum asexual parasites was quantified using genomic DNA extracted from dried blood spots (DBS) and the sensitivity of two approaches was compared: quantitative real-time PCR (qPCR) targeting the P. falciparum 18S ribosomal RNA gene, either with an initial conventional PCR amplification prior to qPCR (nested qPCR), or without an initial amplification (qPCR only). Parasite densities determined by nested qPCR, qPCR only, and light microscopy were compared. Nested qPCR results in 10-fold higher sensitivity (0.5 parasites/μl) when compared to qPCR only (five parasites/ul). Among microscopy-positive samples, parasite densities calculated by nested qPCR correlated strongly with microscopy for both asymptomatic (Pearson's r=0.58, PNested qPCR improves the sensitivity for the detection of P. falciparum blood-stage infection from clinical DBS samples. This approach may be useful for active malaria surveillance in areas where submicroscopic asymptomatic infections are prevalent.

  10. Similar efficacy and tolerability of double-dose chloroquine and artemether-lumefantrine for treatment of Plasmodium falciparum infection in Guinea-Bissau: a randomized trial

    DEFF Research Database (Denmark)

    Ursing, Johan; Kofoed, Poul-Erik; Rodrigues, Amabelia

    2011-01-01

    In 2008, Guinea-Bissau introduced artemether-lumefantrine for treatment of uncomplicated malaria. Previously, 3 times the standard dose of chloroquine, that was probably efficacious against Plasmodium falciparum with the resistance-associated chloroquine-resistance transporter (pfcrt) 76T allele,......, was routinely used. The present study compared the efficacy and tolerability of a double standard dose of chloroquine with the efficacy and tolerability of artemether-lumefantrine.......In 2008, Guinea-Bissau introduced artemether-lumefantrine for treatment of uncomplicated malaria. Previously, 3 times the standard dose of chloroquine, that was probably efficacious against Plasmodium falciparum with the resistance-associated chloroquine-resistance transporter (pfcrt) 76T allele...

  11. In silico and biological survey of transcription-associated proteins implicated in the transcriptional machinery during the erythrocytic development of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Bischoff Emmanuel

    2010-01-01

    Full Text Available Abstract Background Malaria is the most important parasitic disease in the world with approximately two million people dying every year, mostly due to Plasmodium falciparum infection. During its complex life cycle in the Anopheles vector and human host, the parasite requires the coordinated and modulated expression of diverse sets of genes involved in epigenetic, transcriptional and post-transcriptional regulation. However, despite the availability of the complete sequence of the Plasmodium falciparum genome, we are still quite ignorant about Plasmodium mechanisms of transcriptional gene regulation. This is due to the poor prediction of nuclear proteins, cognate DNA motifs and structures involved in transcription. Results A comprehensive directory of proteins reported to be potentially involved in Plasmodium transcriptional machinery was built from all in silico reports and databanks. The transcription-associated proteins were clustered in three main sets of factors: general transcription factors, chromatin-related proteins (structuring, remodelling and histone modifying enzymes, and specific transcription factors. Only a few of these factors have been molecularly analysed. Furthermore, from transcriptome and proteome data we modelled expression patterns of transcripts and corresponding proteins during the intra-erythrocytic cycle. Finally, an interactome of these proteins based either on in silico or on 2-yeast-hybrid experimental approaches is discussed. Conclusion This is the first attempt to build a comprehensive directory of potential transcription-associated proteins in Plasmodium. In addition, all complete transcriptome, proteome and interactome raw data were re-analysed, compared and discussed for a better comprehension of the complex biological processes of Plasmodium falciparum transcriptional regulation during the erythrocytic development.

  12. Specific proliferative response of human lymphocytes to purified soluble antigens from Plasmodium falciparum in vitro cultures and to antigens from malaria patients' sera

    DEFF Research Database (Denmark)

    Bygbjerg, I C; Jepsen, S; Theander, T G

    1985-01-01

    Antigens of Plasmodium falciparum, in supernatants of in vitro cultures of the parasite were affinity purified on columns prepared with the IgG fraction of the serum of an immune individual. The purified antigens induced proliferation of lymphocytes from persons who had recently had malaria....... The responses were strongest with lymphocytes from individuals infected with falciparum and ovale malaria; vivax malaria infections induced a lower level of response and lymphocytes of unsensitized individuals were little affected. Lymphocytes from unsensitized individuals did not respond to the affinity...

  13. Genetic Diversity of Plasmodium falciparum Field Isolates in Central Sudan Inferred by PCR Genotyping of Merozoite Surface Protein 1 and 2.

    Science.gov (United States)

    Hamid, Muzamil M Abdel; Mohammed, Sara B; El Hassan, Ibrahim M

    2013-02-01

    Characterization of Plasmodium falciparum diversity is commonly achieved by amplification of the polymorphic regions of the merozoite surface proteins 1 (MSP1) and 2 (MSP2) genes. The present study aimed to determine the allelic variants distribution of MSP1 and MSP2 and multiplicity of infection in P. falciparum field isolates from Kosti, central Sudan, an area characterized by seasonal malaria transmission. Total 121 samples (N = 121) were collected during a cross-sectional survey between March and April 2003. DNA was extracted and MSP1 and MSP2 polymorphic loci were genotyped. The total number of alleles identified in MSP1 block 2 was 11, while 16 alleles were observed in MSP2 block 3. In MSP1, RO33 was found to be the predominant allelic type, carried alone or in combination with MAD20 and K1 types, whereas FC27 family was the most prevalent in MSP2. Sixty two percent of isolates had multiple genotypes and the overall mean multiplicity of infection was 1.93 (CI 95% 1.66-2.20). Age correlated with parasite density (P = 0.017). In addition, a positive correlation was observed between parasite densities and the number of alleles (P = 0.022). Genetic diversity in P. falciparum field isolates in central Sudan was high and consisted of multiple clones.

  14. Modelling the incidence of Plasmodium vivax and Plasmodium falciparum malaria in Afghanistan 2006-2009.

    Science.gov (United States)

    Alegana, Victor A; Wright, Jim A; Nahzat, Sami M; Butt, Waqar; Sediqi, Amad W; Habib, Naeem; Snow, Robert W; Atkinson, Peter M; Noor, Abdisalan M

    2014-01-01

    Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. From the analysis of healthcare utilisation, over 80% of the population was within 2 hours' travel of the nearest public health facility, while 64.4% were within 30 minutes' travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2-9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4-2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan.

  15. Cellular responses to modified Plasmodium falciparum MSP119 antigens in individuals previously exposed to natural malaria infection

    Directory of Open Access Journals (Sweden)

    Awobode Henrietta O

    2009-11-01

    Full Text Available Abstract Background MSP1 processing-inhibitory antibodies bind to epitopes on the 19 kDa C-terminal region of the Plasmodium falciparum merozoite surface protein 1 (MSP119, inhibiting erythrocyte invasion. Blocking antibodies also bind to this antigen but prevent inhibitory antibodies binding, allowing invasion to proceed. Recombinant MSP119 had been modified previously to allow inhibitory but not blocking antibodies to continue to bind. Immunization with these modified proteins, therefore, has the potential to induce more effective protective antibodies. However, it was unclear whether the modification of MSP119 would affect critical T-cell responses to epitopes in this antigen. Methods The cellular responses to wild-type MSP119 and a panel of modified MSP119 antigens were measured using an in-vitro assay for two groups of individuals: the first were malaria-naïve and the second had been naturally exposed to Plasmodium falciparum infection. The cellular responses to the modified proteins were examined using cells from malaria-exposed infants and adults. Results Interestingly, stimulation indices (SI for responses induced by some of the modified proteins were at least two-fold higher than those elicited by the wild-type MSP119. A protein with four amino acid substitutions (Glu27→Tyr, Leu31→Arg, Tyr34→Ser and Glu43→Leu had the highest stimulation index (SI up to 360 and induced large responses in 64% of the samples that had significant cellular responses to the modified proteins. Conclusion This study suggests that specific MSP119 variants that have been engineered to improve their antigenicity for inhibitory antibodies, retain T-cell epitopes and the ability to induce cellular responses. These proteins are candidates for the development of MSP1-based malaria vaccines.

  16. Genetic polymorphisms in the glutamate-rich protein of Plasmodium falciparum field isolates from a malaria-endemic area of Brazil

    DEFF Research Database (Denmark)

    Pratt-Riccio, Lilian Rose; Perce-da-Silva, Daiana de Souza; Lima-Junior, Josué da Costa

    2013-01-01

    The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in...

  17. A novel method for extracting nucleic acids from dried blood spots for ultrasensitive detection of low-density Plasmodium falciparum and Plasmodium vivax infections.

    Science.gov (United States)

    Zainabadi, Kayvan; Adams, Matthew; Han, Zay Yar; Lwin, Hnin Wai; Han, Kay Thwe; Ouattara, Amed; Thura, Si; Plowe, Christopher V; Nyunt, Myaing M

    2017-09-18

    Greater Mekong Subregion countries are committed to eliminating Plasmodium falciparum malaria by 2025. Current elimination interventions target infections at parasite densities that can be detected by standard microscopy or rapid diagnostic tests (RDTs). More sensitive detection methods have been developed to detect lower density "asymptomatic" infections that may represent an important transmission reservoir. These ultrasensitive polymerase chain reaction (usPCR) tests have been used to identify target populations for mass drug administration (MDA). To date, malaria usPCR tests have used either venous or capillary blood sampling, which entails complex sample collection, processing and shipping requirements. An ultrasensitive method performed on standard dried blood spots (DBS) would greatly facilitate the molecular surveillance studies needed for targeting elimination interventions. A highly sensitive method for detecting Plasmodium falciparum and P. vivax 18S ribosomal RNA from DBS was developed by empirically optimizing nucleic acid extraction conditions. The limit of detection (LoD) was determined using spiked DBS samples that were dried and stored under simulated field conditions. Further, to assess its utility for routine molecular surveillance, two cross-sectional surveys were performed in Myanmar during the wet and dry seasons. The lower LoD of the DBS-based ultrasensitive assay was 20 parasites/mL for DBS collected on Whatman 3MM filter paper and 23 parasites/mL for Whatman 903 Protein Saver cards-equivalent to 1 parasite per 50 µL DBS. This is about 5000-fold more sensitive than standard RDTs and similar to the LoD of ≤16-22 parasites/mL reported for other ultrasensitive methods based on whole blood. In two cross-sectional surveys in Myanmar, nearly identical prevalence estimates were obtained from contemporaneous DBS samples and capillary blood samples collected during the wet and dry season. The DBS-based ultrasensitive method described in this

  18. On Programmed Cell Death in Plasmodium falciparum: Status Quo

    Directory of Open Access Journals (Sweden)

    Dewaldt Engelbrecht

    2012-01-01

    Full Text Available Conflicting arguments and results exist regarding the occurrence and phenotype of programmed cell death (PCD in the malaria parasite Plasmodium falciparum. Inconsistencies relate mainly to the number and type of PCD markers assessed and the different methodologies used in the studies. In this paper, we provide a comprehensive overview of the current state of knowledge and empirical evidence for PCD in the intraerythrocytic stages of P. falciparum. We consider possible reasons for discrepancies in the data and offer suggestions towards more standardised investigation methods in this field. Furthermore, we present genomic evidence for PCD machinery in P. falciparum. We discuss the potential adaptive or nonadaptive role of PCD in the parasite life cycle and its possible exploitation in the development of novel drug targets. Lastly, we pose pertinent unanswered questions concerning the PCD phenomenon in P. falciparum to provide future direction.

  19. Dual fluorescence labeling of surface-exposed and internal proteins in erythrocytes infected with the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Bengtsson, Dominique C; Sowa, Kordai M P; Arnot, David E

    2008-01-01

    There is a need for improved methods for in situ localization of surface proteins on Plasmodium falciparum-infected erythrocytes to help understand how these antigens are trafficked to, and positioned within, the host cell membrane. This protocol for confocal immunofluorescence microscopy combines...... and permeabilization; indirect labeling of the internal antigen using a secondary antibody tagged with a spectrally distinct fluorescent dye; and detection of the differentially labeled antigens using a laser scanning confocal microscope. The protocol can be completed in approximately 7 h. Although the protocol...... surface antigen labeling on live cells with subsequent fixation and permeabilization, which enables antibodies to penetrate the cell and label internal antigens. The key steps of the protocol are as follows: indirect labeling of the surface antigen using a fluorescently tagged secondary antibody; fixation...

  20. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    KAUST Repository

    Ramaprasad, Abhinay; Pain, Arnab; Ravasi, Timothy

    2012-01-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable

  1. Use of chloroquine in uncomplicated falciparum malaria ...

    African Journals Online (AJOL)

    Use of chloroquine in uncomplicated falciparum malaria chemotherapy: The past, the present and the future. ... regions. It was initially highly effective against the four Plasmodium species (P. falciparum, P. malaria, P. ovale and P. vivax) infecting human. It is also effective against gametocytes except those of P. falciparum.

  2. Various pfcrt and pfmdr1 Genotypes of Plasmodium falciparum Cocirculate with P. malariae, P. ovale spp., and P. vivax in Northern Angola

    Science.gov (United States)

    Fançony, Cláudia; Gamboa, Dina; Sebastião, Yuri; Hallett, Rachel; Sutherland, Colin; Sousa-Figueiredo, José Carlos

    2012-01-01

    Artemisinin-based combination therapy for malaria has become widely available across Africa. Populations of Plasmodium falciparum that were previously dominated by chloroquine (CQ)-resistant genotypes are now under different drug selection pressures. P. malariae, P. ovale curtisi, and P. ovale wallikeri are sympatric with P. falciparum across the continent and are frequently present as coinfections. The prevalence of human Plasmodium species was determined by PCR using DNA from blood spots collected during a cross-sectional survey in northern Angola. P. falciparum was genotyped at resistance-associated loci in pfcrt and pfmdr1 by real-time PCR or by direct sequencing of amplicons. Of the 3,316 samples collected, 541 (16.3%) contained Plasmodium species infections; 477 (88.2%) of these were P. falciparum alone, 6.5% were P. falciparum and P. malariae together, and 1.1% were P. vivax alone. The majority of the remainder (3.7%) harbored P. ovale curtisi or P. ovale wallikeri alone or in combination with other species. Of 430 P. falciparum isolates genotyped for pfcrt, 61.6% carried the wild-type allele CVMNK at codons 72 to 76, either alone or in combination with the resistant allele CVIET. No other pfcrt allele was found. Wild-type alleles dominated at codons 86, 184, 1034, 1042, and 1246 of the pfmdr1 locus among the sequenced isolates. In contrast to previous studies, P. falciparum in the study area comprises an approximately equal mix of genotypes associated with CQ sensitivity and with CQ resistance, suggesting either lower drug pressure due to poor access to treatment in rural areas or a rapid impact of the policy change away from the use of standard monotherapies. PMID:22850519

  3. A randomized, double-blind, placebo-controlled, dose-ranging trial of tafenoquine for weekly prophylaxis against Plasmodium falciparum.

    Science.gov (United States)

    Hale, Braden R; Owusu-Agyei, Seth; Fryauff, David J; Koram, Kwadwo A; Adjuik, Martin; Oduro, Abraham R; Prescott, W Roy; Baird, J Kevin; Nkrumah, Francis; Ritchie, Thomas L; Franke, Eileen D; Binka, Fred N; Horton, John; Hoffman, Stephen L

    2003-03-01

    Tafenoquine is a promising new 8-aminoquinoline drug that may be useful for malaria prophylaxis in nonpregnant persons with normal glucose-6-phosphate dehydrogenase (G6PD) function. A randomized, double-blind, placebo-controlled chemoprophylaxis trial was conducted with adult residents of northern Ghana to determine the minimum effective weekly dose of tafenoquine for the prevention of infection by Plasmodium falciparum. The primary end point was a positive malaria blood smear result during the 13 weeks of study drug coverage. Relative to the placebo, all 4 tafenoquine dosages demonstrated significant protection against P. falciparum infection: for 25 mg/week, protective efficacy was 32% (95% confidence interval [CI], 20%-43%); for 50 mg/week, 84% (95% CI, 75%-91%); for 100 mg/week, 87% (95% CI, 78%-93%); and for 200 mg/week, 86% (95% CI, 76%-92%). The mefloquine dosage of 250 mg/week also demonstrated significant protection against P. falciparum infection (protective efficacy, 86%; 95% CI, 72%-93%). There was little difference between study groups in the adverse events reported, and there was no evidence of a relationship between tafenoquine dosage and reports of physical complaints or the occurrence of abnormal laboratory parameters. Tafenoquine dosages of 50, 100, and 200 mg/week were safe, well tolerated, and effective against P. falciparum infection in this study population.

  4. Characterization of sequence diversity in Plasmodium falciparum SERA5 from Indian isolates

    Directory of Open Access Journals (Sweden)

    Rahul C.N

    2015-06-01

    Full Text Available Objective: To characterize the sequence diversity of blood-stage Plasmodium falciparum serine repeat antigen-5 (PfSERA5 which is lacking in a malaria-endemic country like India. Methods: In this study, parasitic DNA was obtained from field isolates collected from various geographic regions. Subsequently, PfSERA5 gene sequence was PCR amplified and DNA sequenced. Results: We reported the existence of unique repeat polymorphisms and novel haplotypes for both the octamer repeat (OR and serine repeat (SR regions of the N-terminal fragment of PfSERA5 from Indian isolates. Several isolates from India were identical to low-frequency African haplotypes. Unique finding of our study was an Indian isolate showing deletion in a perfectly conserved 14 mer sequence within octamer repeat. Indian haplotypes reported in this study were found to be distributed into the three earlier classified allelic clusters of FCR3, K1 and Honduras showcasing broad diversity as compared to worldwide haplotypes. Conclusions: This study is the first report on genetic diversity of PfSERA5 antigen from India. Further evaluation of these haplotypes by serotyping would provide useful information for investigating variant-specific immunity and aid in malaria vaccine research.

  5. Variant surface antigen-specific IgG and protection against clinical consequences of pregnancy-associated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Shulman, Caroline E; Bulmer, Judith N

    2004-01-01

    BACKGROUND: Pregnancy-associated malaria caused by Plasmodium falciparum adherence to chondroitin sulfate A in the placental intervillous space is a major cause of low birthweight and maternal anaemia in areas of endemic P falciparum transmission. Adhesion-blocking antibodies that specifically...... recognise parasite-encoded variant surface antigens (VSA) are associated with resistance to pregnancy-associated malaria. We looked for a possible relation between VSA-specific antibody concentrations, placental infection, and protection from low birthweight and maternal anaemia. METHODS: We used flow...... cytometry to measure VSA-specific IgG concentrations in plasma samples taken during child birth from 477 Kenyan women selected from a cohort of 910 women on the basis of HIV-1 status, gravidity, and placental histology. We measured VSA expressed by one placental P falciparum isolate and two isolates...

  6. In vitro growth of Plasmodium falciparum in neonatal blood.

    Science.gov (United States)

    Sauerzopf, Ulrich; Honkpehedji, Yabo J; Adgenika, Ayôla A; Feugap, Elianne N; Ngoma, Ghyslain Mombo; Mackanga, Jean-Rodolphe; Lötsch, Felix; Loembe, Marguerite M; Kremsner, Peter G; Mordmüller, Benjamin; Ramharter, Michael

    2014-11-18

    Children below the age of six months suffer less often from malaria than older children in sub-Saharan Africa. This observation is commonly attributed to the persistence of foetal haemoglobin (HbF), which is considered not to permit growth of Plasmodium falciparum and therefore providing protection against malaria. Since this concept has recently been challenged, this study evaluated the effect of HbF erythrocytes and maternal plasma on in vitro parasite growth of P. falciparum in Central African Gabon. Umbilical cord blood and peripheral maternal blood were collected at delivery at the Albert Schweitzer Hospital in Gabon. Respective erythrocyte suspension and plasma were used in parallel for in vitro culture. In vitro growth rates were compared between cultures supplemented with either maternal or cord erythrocytes. Plasma of maternal blood and cord blood was evaluated. Parasite growth rates were assessed by the standard HRP2-assay evaluating the increase of HRP2 concentration in Plasmodium culture. Culture of P. falciparum using foetal erythrocytes led to comparable growth rates (mean growth rate = 4.2, 95% CI: 3.5 - 5.0) as cultures with maternal red blood cells (mean growth rate =4.2, 95% CI: 3.4 - 5.0) and those from non-malaria exposed individuals (mean growth rate = 4.6, 95% CI: 3.8 - 5.5). Standard in vitro culture of P. falciparum supplemented with either maternal or foetal plasma showed both significantly lower growth rates than a positive control using non-malaria exposed donor plasma. These data challenge the concept of HbF serving as intrinsic inhibitor of P. falciparum growth in the first months of life. Erythrocytes containing HbF are equally permissive to P. falciparum growth in vitro. However, addition of maternal and cord plasma led to reduced in vitro growth which may translate to protection against clinical disease or show synergistic effects with HbF in vivo. Further studies are needed to elucidate the pathophysiology of innate and acquired

  7. Identification of O-GlcNAcylated proteins in Plasmodium falciparum.

    Science.gov (United States)

    Kupferschmid, Mattis; Aquino-Gil, Moyira Osny; Shams-Eldin, Hosam; Schmidt, Jörg; Yamakawa, Nao; Krzewinski, Frédéric; Schwarz, Ralph T; Lefebvre, Tony

    2017-11-29

    Post-translational modifications (PTMs) constitute a huge group of chemical modifications increasing the complexity of the proteomes of living beings. PTMs have been discussed as potential anti-malarial drug targets due to their involvement in many cell processes. O-GlcNAcylation is a widespread PTM found in different organisms including Plasmodium falciparum. The aim of this study was to identify O-GlcNAcylated proteins of P. falciparum, to learn more about the modification process and to understand its eventual functions in the Apicomplexans. The P. falciparum strain 3D7 was amplified in erythrocytes and purified. The proteome was checked for O-GlcNAcylation using different methods. The level of UDP-GlcNAc, the donor of the sugar moiety for O-GlcNAcylation processes, was measured using high-pH anion exchange chromatography. O-GlcNAcylated proteins were enriched and purified utilizing either click chemistry labelling or adsorption on succinyl-wheat germ agglutinin beads. Proteins were then identified by mass-spectrometry (nano-LC MS/MS). While low when compared to MRC5 control cells, P. falciparum disposes of its own pool of UDP-GlcNAc. By using proteomics methods, 13 O-GlcNAcylated proteins were unambiguously identified (11 by click-chemistry and 6 by sWGA-beads enrichment; 4 being identified by the 2 approaches) in late trophozoites. These proteins are all part of pathways, functions and structures important for the parasite survival. By probing clicked-proteins with specific antibodies, Hsp70 and α-tubulin were identified as P. falciparum O-GlcNAc-bearing proteins. This study is the first report on the identity of P. falciparum O-GlcNAcylated proteins. While the parasite O-GlcNAcome seems close to those of other species, the structural differences exhibited by the proteomes provides a glimpse of innovative therapeutic paths to fight malaria. Blocking biosynthesis of UDP-GlcNAc in the parasites is another promising option to reduce Plasmodium life cycle.

  8. Investigation of volatile organic biomarkers derived from Plasmodium falciparum in vitro

    Directory of Open Access Journals (Sweden)

    Wong Rina PM

    2012-09-01

    Full Text Available Abstract Background There remains a need for techniques that improve the sensitive detection of viable Plasmodium falciparum as part of diagnosis and therapeutic monitoring in clinical studies and usual-care management of malaria infections. A non-invasive breath test based on P. falciparum-associated specific volatile organic compounds (VOCs could fill this gap and provide insights into parasite metabolism and pathogenicity. The aim of this study was to determine whether VOCs are present in the headspace above in vitro P. falciparum cultures. Methods A novel, custom-designed apparatus was developed to enable efficient headspace sampling of infected and non-infected cultures. Conditions were optimized to support cultures of high parasitaemia (>20% to improve the potential detection of parasite-specific VOCs. A number of techniques for VOC analysis were investigated including solid phase micro-extraction using two different polarity fibres, and purge and trap/thermal desorption, each coupled to gas chromatography–mass spectrometry. Each experiment and analysis method was performed at least on two occasions. VOCs were identified by comparing their mass spectra against commercial mass spectral libraries. Results No unique malarial-specific VOCs could be detected relative to those in the control red blood cell cultures. This could reflect sequestration of VOCs into cell membranes and/or culture media but solvent extractions of supernatants and cell lysates using hexane, dichloromethane and ethyl acetate also showed no obvious difference compared to control non-parasitized cultures. Conclusions Future in vivo studies analysing the breath of patients with severe malaria who are harbouring a parasite biomass that is significantly greater than achievable in vitro may yet reveal specific clinically-useful volatile chemical biomarkers.

  9. The Th1 immune response to Plasmodium falciparum circumsporozoite protein is boosted by adenovirus vectors 35 and 26 with a homologous insert

    NARCIS (Netherlands)

    Radosevic, Katarina; Rodriguez, Ariane; Lemckert, Angelique A. C.; van der Meer, Marjolein; Gillissen, Gert; Warnar, Carolien; von Eyben, Rie; Pau, Maria Grazia; Goudsmit, Jaap

    2010-01-01

    The most advanced malaria vaccine, RTS,S, is comprised of an adjuvant portion of the Plasmodium falciparum circumsporozoite (CS) protein fused to and admixed with the hepatitis B virus surface antigen. This vaccine confers short-term protection against malaria infection, with an efficacy of about

  10. Increase of a Calcium Independent Transglutaminase Activity in the Erythrocyte during the Infection with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Wasserman Moisés

    1999-01-01

    Full Text Available We have studied the activity of a calcium dependent transglutaminase (EC 2.3.2.13 during the growth of the parasite Plasmodium falciparum inside the infected human erythrocyte. There is only one detectable transglutaminase in the two-cell-system, and its origin is erythrocytic. No activity was detected in preparations of the parasite devoid of erythrocyte cytoplasm. The Michaelis Menten constants (Km of the enzyme for the substrates N'N'dimethylcaseine and putrescine were undistinguishable whether the cell extracts used in their determination were obtained from normal or from infected red cells. The total activity of transglutaminase in stringently synchronized cultures, measured at 0.5mM Ca2+, decreased with the maturation of the parasite. However, a fraction which became irreversibly activated and independent of calcium concentration was detected. The proportion of this fraction grew with maturation; it represented only 20% of the activity in 20 hr-old-trophozoites while in 48-hr-schizonts it was more than 85% of the total activity. The activation of this fraction of transglutaminase did not depend on an increase in the erythrocyte cytoplasmic calcium, since most of the calcium was shown to be located in the parasite.

  11. Genetic diversity of Plasmodium falciparum populations in southeast and western Myanmar.

    Science.gov (United States)

    Soe, Than Naing; Wu, Yanrui; Tun, Myo Win; Xu, Xin; Hu, Yue; Ruan, Yonghua; Win, Aung Ye Naung; Nyunt, Myat Htut; Mon, Nan Cho Nwe; Han, Kay Thwe; Aye, Khin Myo; Morris, James; Su, Pincan; Yang, Zhaoqing; Kyaw, Myat Phone; Cui, Liwang

    2017-07-04

    The genetic diversity of malaria parasites reflects the complexity and size of the parasite populations. This study was designed to explore the genetic diversity of Plasmodium falciparum populations collected from two southeastern areas (Shwekyin and Myawaddy bordering Thailand) and one western area (Kyauktaw bordering Bangladesh) of Myanmar. A total of 267 blood samples collected from patients with acute P. falciparum infections during 2009 and 2010 were used for genotyping at the merozoite surface protein 1 (Msp1), Msp2 and glutamate-rich protein (Glurp) loci. One hundred and eighty four samples were successfully genotyped at three genes. The allelic distributions of the three genes were all significantly different among three areas. MAD20 and 3D7 were the most prevalent alleles in three areas for Msp1 and Msp2, respectively. The Glurp allele with a bin size of 700-750 bp was the most prevalent both in Shwekyin and Myawaddy, whereas two alleles with bin sizes of 800-850 bp and 900-1000 bp were the most prevalent in the western site Kyauktaw. Overall, 73.91% of samples contained multiclonal infections, resulting in a mean multiplicity of infection (MOI) of 1.94. Interestingly, the MOI level presented a rising trend with the order of Myawaddy, Kyauktaw and Shwekyin, which also paralleled with the increasing frequencies of Msp1 RO33 and Msp2 FC27 200-250 bp alleles. Msp1 and Msp2 genes displayed higher levels of diversity and higher MOI rates than Glurp. PCR revealed four samples (two from Shwekyin and two from Myawaddy) with mixed infections of P. falciparum and P. vivax. This study genotyped parasite clinical samples from two southeast regions and one western state of Myanmar at the Msp1, Msp2 and Glurp loci, which revealed high levels of genetic diversity and mixed-strain infections of P. falciparum populations at these sites. The results indicated that malaria transmission intensity in these regions remained high and more strengthened control efforts are

  12. Short report: entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa.

    Science.gov (United States)

    Beier, J C; Killeen, G F; Githure, J I

    1999-07-01

    Epidemiologic patterns of malaria infection are governed by environmental parameters that regulate vector populations of Anopheles mosquitoes. The intensity of malaria parasite transmission is normally expressed as the entomologic inoculation rate (EIR), the product of the vector biting rate times the proportion of mosquitoes infected with sporozoite-stage malaria parasites. Malaria transmission intensity in Africa is highly variable with annual EIRs ranging from 1,000 infective bites per person per year. Malaria control programs often seek to reduce morbidity and mortality due to malaria by reducing or eliminating malaria parasite transmission by mosquitoes. This report evaluates data from 31 sites throughout Africa to establish fundamental relationships between annual EIRs and the prevalence of Plasmodium falciparum malaria infection. The majority of sites fitted a linear relationship (r2 = 0.71) between malaria prevalence and the logarithm of the annual EIR. Some sites with EIRs 80%. The basic relationship between EIR and P. falciparum prevalence, which likely holds in east and west Africa, and across different ecologic zones, shows convincingly that substantial reductions in malaria prevalence are likely to be achieved only when EIRs are reduced to levels less than 1 infective bite per person per year. The analysis also highlights that the EIR is a more direct measure of transmission intensity than traditional measures of malaria prevalence or hospital-based measures of infection or disease incidence. As such, malaria field programs need to consider both entomologic and clinical assessments of the efficacy of transmission control measures.

  13. Perfil clínico y parasitológico de la malaria por Plasmodium falciparum y Plasmodium vivax no complicada en Córdoba, Colombia.

    Directory of Open Access Journals (Sweden)

    Angélica Knudson Ospina

    2015-10-01

    Conclusión. Se identificaron algunas diferencias clínicas entre los enfermos con Plasmodium vivax y los enfermos con Plasmodium falciparum, y las variables estudiadas se agruparon en cuatro perfiles que permiten una variedad de interpretaciones.

  14. Multiplicity of Plasmodium falciparum infection following intermittent preventive treatment in infants

    NARCIS (Netherlands)

    Buchholz, U.; Kobbe, R.; Danquah, I.; Zanger, P.; Reither, K.; Abruquah, H.H.; Grobusch, M.P.; Ziniel, P.; May, J.; Mockenhaupt, F.P.

    2010-01-01

    Background: Intermittent preventive treatment in infants with sulphadoxine-pyrimethamine (IPTi-SP) reduces malaria morbidity by 20% to 33%. Potentially, however, this intervention may compromise the acquisition of immunity, including the tolerance towards multiple infections with Plasmodium

  15. Population genetic structure of Plasmodium falciparum across a region of diverse endemicity in West Africa

    Directory of Open Access Journals (Sweden)

    Mobegi Victor A

    2012-07-01

    Full Text Available Abstract Background Malaria parasite population genetic structure varies among areas of differing endemicity, but this has not been systematically studied across Plasmodium falciparum populations in Africa where most infections occur. Methods Ten polymorphic P. falciparum microsatellite loci were genotyped in 268 infections from eight locations in four West African countries (Republic of Guinea, Guinea Bissau, The Gambia and Senegal, spanning a highly endemic forested region in the south to a low endemic Sahelian region in the north. Analysis was performed on proportions of mixed genotype infections, genotypic diversity among isolates, multilocus standardized index of association, and inter-population differentiation. Results Each location had similar levels of pairwise genotypic diversity among isolates, although there were many more mixed parasite genotype infections in the south. Apart from a few isolates that were virtually identical, the multilocus index of association was not significant in any population. Genetic differentiation between populations was low (most pairwise FST values  Conclusions Although proportions of mixed genotype infections varied with endemicity as expected, population genetic structure was similar across the diverse sites. Very substantial reduction in transmission would be needed to cause fragmented or epidemic sub-structure in this region.

  16. Positive Selection of Plasmodium falciparum Parasites With Multiple var2csa-Type PfEMP1 Genes During the Course of Infection in Pregnant Women

    Science.gov (United States)

    Salanti, Ali; Lavstsen, Thomas; Nielsen, Morten A.; Theander, Thor G.; Leke, Rose G. F.; Lo, Yeung Y.; Bobbili, Naveen; Arnot, David E.; Taylor, Diane W.

    2011-01-01

    Placental malaria infections are caused by Plasmodium falciparum–infected red blood cells sequestering in the placenta by binding to chondroitin sulfate A, mediated by VAR2CSA, a variant of the PfEMP1 family of adhesion antigens. Recent studies have shown that many P. falciparum genomes have multiple genes coding for different VAR2CSA proteins, and parasites with >1 var2csa gene appear to be more common in pregnant women with placental malaria than in nonpregnant individuals. We present evidence that, in pregnant women, parasites containing multiple var2csa-type genes possess a selective advantage over parasites with a single var2csa gene. Accumulation of parasites with multiple copies of the var2csa gene during the course of pregnancy was also correlated with the development of antibodies involved in blocking VAR2CSA adhesion. The data suggest that multiplicity of var2csa-type genes enables P. falciparum parasites to persist for a longer period of time during placental infections, probably because of their greater capacity for antigenic variation and evasion of variant-specific immune responses. PMID:21592998

  17. The anthraquinone emodin inhibits the non-exported FIKK kinase from Plasmodium falciparum.

    Science.gov (United States)

    Lin, Benjamin C; Harris, Darcy R; Kirkman, Lucy M D; Perez, Astrid M; Qian, Yiwen; Schermerhorn, Janse T; Hong, Min Y; Winston, Dennis S; Xu, Lingyin; Lieber, Alexander M; Hamilton, Matthew; Brandt, Gabriel S

    2017-12-01

    The FIKK family of kinases is unique to parasites of the Apicomplexan order, which includes all malaria parasites. Plasmodium falciparum, the most virulent form of human malaria, has a family of 19 FIKK kinases, most of which are exported into the host red blood cell during malaria infection. Here, we confirm that FIKK 8 is a non-exported member of the FIKK kinase family. Through expression and purification of the recombinant kinase domain, we establish that emodin is a relatively high-affinity (IC 50 =2μM) inhibitor of PfFk8. Closely related anthraquinones do not inhibit PfFk8, suggesting that the particular substitution pattern of emodin is critical to the inhibitory pharmacophore. This first report of a P. falciparum FIKK kinase inhibitor lays the groundwork for developing specific inhibitors of the various members of the FIKK kinase family in order to probe their physiological function. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A portion of the Pf155/RESA antigen of Plasmodium falciparum is accessible on the surface of infected erythrocytes

    International Nuclear Information System (INIS)

    Saul, A.; Maloy, W.L.; Howard, R.J.; Rock, E.P.

    1988-01-01

    An investigation of antigens accessible to lactoperoxidase-catalysed cell surface iodination on intact Plasmodium falciparum-infected red blood cells (RBC) has identified a 125 I-labelled antigen with an apparent size of about 155 kD. This labelled protein was specifically immunoprecipitated by the following antibodies: a rabbit antiserum and a mouse monoclonal antibody raised against a synthetic peptide comprising the 3',8-mer repeat EENVEHDA of the Pf155/RESA protein; a rabbit antiserum raised against a synthetic octapeptide comprising two copies of the 3',4-mer repeat EENV of the Pf155/RESA protein; and rabbit antisera against another synthetic peptide C(MYSNNNVED) 2 . The last antibody shows a strong reaction in asexual blood state parasites with the Pf155/RESA antigen. While this antigen has been described previously as a submembrane component of the outer membrane of infected RBC, this report shows that at least part of it is accessible to the surface of both ring and late trophozoite-infected erythrocytes. 21 refs., 4 figs

  19. Infections with Plasmodium falciparum during pregnancy affect VAR2CSA DBL-5 domain-specific T cell cytokine responses

    DEFF Research Database (Denmark)

    Gbédandé, Komi; Cottrell, Gilles; Vianou, Bertin

    2016-01-01

    BACKGROUND: Current knowledge of human immunological responses to pregnancy-associated malaria-specific Plasmodium falciparum protein VAR2CSA concerns almost exclusively B cell-driven antibody-mediated activity. Knowledge of VAR2CSA-specific T cell-mediated activity is minimal by comparison, with...

  20. Proteomic analysis revealed alterations of the Plasmodium falciparum metabolism following salicylhydroxamic acid exposure

    Directory of Open Access Journals (Sweden)

    Torrentino-Madamet M

    2011-09-01

    Full Text Available Marylin Torrentino-Madamet1, Lionel Almeras2, Christelle Travaillé1, Véronique Sinou1, Matthieu Pophillat3, Maya Belghazi4, Patrick Fourquet3, Yves Jammes5, Daniel Parzy11UMR-MD3, Université de la Méditerranée, Antenne IRBA de Marseille (IMTSSA, Le Pharo, 2Unité de Recherche en Biologie et Epidémiologie Parasitaires, Antenne IRBA de Marseille (IMTSSA, Le Pharo, 3Centre d'Immunologie de Marseille Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de la Méditerranée, 4Centre d'Analyse Protéomique de Marseille, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord, 5UMR-MD2, Physiologie et Physiopathologie en Conditions d'Oxygénations Extrêmes, Institut Fédératif de Recherche Jean Roche, Faculté de Médecine Nord, Marseille, FranceObjectives: Although human respiratory metabolism is characterized by the mitochondrial electron transport chain, some organisms present a “branched respiratory chain.” This branched pathway includes both a classical and an alternative respiratory chain. The latter involves an alternative oxidase. Though the Plasmodium falciparum alternative oxidase is not yet identified, a specific inhibitor of this enzyme, salicylhydroxamic acid (SHAM, showed a drug effect on P. falciparum respiratory function using oxygen consumption measurements. The present study aimed to highlight the metabolic pathways that are affected in P. falciparum following SHAM exposure.Design: A proteomic approach was used to analyze the P. falciparum proteome and determine the metabolic pathways altered following SHAM treatment. To evaluate the SHAM effect on parasite growth, the phenotypic alterations of P. falciparum after SHAM or/and hyperoxia exposure were observed.Results: After SHAM exposure, 26 proteins were significantly deregulated using a fluorescent two dimensional-differential gel electrophoresis. Among these deregulated proteins

  1. Proteomic profiling of Plasmodium sporozoite maturation identifies new proteins essential for parasite development and infectivity.

    NARCIS (Netherlands)

    Lasonder, E.; Janse, C.J.; Gemert, G.J.A. van; Mair, G.R.; Vermunt, A.M.W.; Douradinha, B.G.; Noort, V. van; Huynen, M.A.; Luty, A.J.F.; Kroeze, H.; Khan, S.M.; Sauerwein, R.W.; Waters, A.P.; Mann, M.; Stunnenberg, H.G.

    2008-01-01

    Plasmodium falciparum sporozoites that develop and mature inside an Anopheles mosquito initiate a malaria infection in humans. Here we report the first proteomic comparison of different parasite stages from the mosquito -- early and late oocysts containing midgut sporozoites, and the mature,

  2. Blockage of spontaneous Ca2+ oscillation causes cell death in intraerythrocitic Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Masahiro Enomoto

    Full Text Available Malaria remains one of the world's most important infectious diseases and is responsible for enormous mortality and morbidity. Resistance to antimalarial drugs is a challenging problem in malaria control. Clinical malaria is associated with the proliferation and development of Plasmodium parasites in human erythrocytes. Especially, the development into the mature forms (trophozoite and schizont of Plasmodium falciparum (P. falciparum causes severe malaria symptoms due to a distinctive property, sequestration which is not shared by any other human malaria. Ca(2+ is well known to be a highly versatile intracellular messenger that regulates many different cellular processes. Cytosolic Ca(2+ increases evoked by extracellular stimuli are often observed in the form of oscillating Ca(2+ spikes (Ca(2+ oscillation in eukaryotic cells. However, in lower eukaryotic and plant cells the physiological roles and the molecular mechanisms of Ca(2+ oscillation are poorly understood. Here, we showed the observation of the inositol 1,4,5-trisphospate (IP(3-dependent spontaneous Ca(2+ oscillation in P. falciparum without any exogenous extracellular stimulation by using live cell fluorescence Ca(2+ imaging. Intraerythrocytic P. falciparum exhibited stage-specific Ca(2+ oscillations in ring form and trophozoite stages which were blocked by IP(3 receptor inhibitor, 2-aminoethyl diphenylborinate (2-APB. Analyses of parasitaemia and parasite size and electron micrograph of 2-APB-treated P. falciparum revealed that 2-APB severely obstructed the intraerythrocytic maturation, resulting in cell death of the parasites. Furthermore, we confirmed the similar lethal effect of 2-APB on the chloroquine-resistant strain of P. falciparum. To our best knowledge, we for the first time showed the existence of the spontaneous Ca(2+ oscillation in Plasmodium species and clearly demonstrated that IP(3-dependent spontaneous Ca(2+ oscillation in P. falciparum is critical for the development

  3. Variation of nitric oxide levels in imported Plasmodium falciparum ...

    African Journals Online (AJOL)

    SERVER

    2008-03-18

    Mar 18, 2008 ... ISSN 1684–5315 © 2008 Academic Journals. Full Length Research Paper. Variation of nitric oxide levels in imported Plasmodium falciparum malaria episodes. De Sousa, Karina*, Silva, Marcelo S. and Tavira, Luís T. Instituto de Higiene e Medicina Tropical, Centro de Malária e outras Doenças Tropicais, ...

  4. The Plasmodium PI(4)K inhibitor KDU691 selectively inhibits dihydroartemisinin-pretreated Plasmodium falciparum ring-stage parasites.

    Science.gov (United States)

    Dembele, L; Ang, X; Chavchich, M; Bonamy, G M C; Selva, J J; Lim, M Yi-Xiu; Bodenreider, C; Yeung, B K S; Nosten, F; Russell, B M; Edstein, M D; Straimer, J; Fidock, D A; Diagana, T T; Bifani, P

    2017-05-24

    Malaria control and elimination are threatened by the emergence and spread of resistance to artemisinin-based combination therapies (ACTs). Experimental evidence suggests that when an artemisinin (ART)-sensitive (K13 wild-type) Plasmodium falciparum strain is exposed to ART derivatives such as dihydroartemisinin (DHA), a small population of the early ring-stage parasites can survive drug treatment by entering cell cycle arrest or dormancy. After drug removal, these parasites can resume growth. Dormancy has been hypothesized to be an adaptive physiological mechanism that has been linked to recrudescence of parasites after monotherapy with ART and, possibly contributes to ART resistance. Here, we evaluate the in vitro drug sensitivity profile of normally-developing P. falciparum ring stages and DHA-pretreated dormant rings (DP-rings) using a panel of antimalarial drugs, including the Plasmodium phosphatidylinositol-4-OH kinase (PI4K)-specific inhibitor KDU691. We report that while KDU691 shows no activity against rings, it is highly inhibitory against DP-rings; a drug effect opposite to that of ART. Moreover, we provide evidence that KDU691 also kills DP-rings of P. falciparum ART-resistant strains expressing mutant K13.

  5. Recognition of Plasmodium falciparum mature gametocyte-infected erythrocytes by antibodies of semi-immune adults and malaria-exposed children from Gabon

    DEFF Research Database (Denmark)

    Gebru, Tamirat; Ajua, Anthony; Theisen, Michael

    2017-01-01

    BACKGROUND: Transmission of malaria from man to mosquito depends on the presence of gametocytes, the sexual stage of Plasmodium parasites in the infected host. Naturally acquired antibodies against gametocytes exist and may play a role in controlling transmission by limiting the gametocyte...... falciparum mature gametocytes were investigated in sera of semi-immune adults and malaria-exposed children. In addition, the effect of immunization with GMZ2, a blood stage malaria vaccine candidate, and the effect of intestinal helminth infection on the development of immunity to gametocytes of P...... was significantly higher after fixation and permeabilization of parasitized erythrocytes. Following vaccination with the malaria vaccine candidate GMZ2, anti-gametocyte Ab concentration decreased in adults compared to baseline. Ab response to whole asexual stage antigens had a significant but weak positive...

  6. Effectiveness of quinine monotherapy for the treatment of Plasmodium falciparum infection in pregnant women in Lambaréné, Gabon

    NARCIS (Netherlands)

    Adegnika, Ayôla A.; Breitling, Lutz Ph; Agnandji, Selidji T.; Chai, Sanders K.; Schütte, Daniela; Oyakhirome, Sunny; Schwarz, Norbert G.; Grobusch, Martin P.; Missinou, Michel A.; Ramharter, Michael; Issifou, Saadou; Kremsner, Peter G.

    2005-01-01

    Pregnant women participating in a longitudinal immuno-epidemiologic survey in Lambaréné, Gabon, and presenting with Plasmodium falciparum parasitemia at monthly blood smear examinations were offered treatment with oral 7-day quinine monotherapy according to national health guidelines. A total of 50

  7. Loading of erythrocyte membrane with pentacyclic triterpenes inhibits Plasmodium falciparum invasion

    DEFF Research Database (Denmark)

    Ziegler, Hanne L; Staalsø, Trine; Jaroszewski, Jerzy W

    2006-01-01

    Lupeol and betulinic acid inhibit the proliferation of Plasmodium falciparum parasites by inhibition of the invasion of merozoites into erythrocytes. This conclusion is based on experiments employing parasite cultures synchronized by magnetic cell sorting (MACS). Identical inhibitory effects were...

  8. A Novel Domain Cassette Identifies Plasmodium falciparum PfEMP1 Proteins Binding ICAM-1 and Is a Target of Cross-Reactive, Adhesion-Inhibitory Antibodies

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Jørgensen, Louise; Rask, Thomas Salhøj

    2013-01-01

    Cerebral Plasmodium falciparum malaria is characterized by adhesion of infected erythrocytes (IEs) to the cerebral microvasculature. This has been linked to parasites expressing the structurally related group A subset of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of IE...... to ICAM-1. The ICAM-1-binding capacity of DC4 was mapped to the C-terminal third of its Duffy-binding-like beta 3 domain. DC4 was the target of broadly cross-reactive and adhesion-inhibitory IgG Abs, and levels of DC4-specific and adhesion-inhibitory IgG increased with age among P. falciparum......-exposed children. Our study challenges earlier conclusions that group A PfEMP1 proteins are not central to ICAM-1-specific IE adhesion and support the feasibility of developing a vaccine preventing cerebral malaria by inhibiting cerebral IE sequestration. The Journal of Immunology, 2013, 190: 240-249....

  9. Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle.

    Directory of Open Access Journals (Sweden)

    Balbir K Chaal

    2010-01-01

    Full Text Available The apparent paucity of molecular factors of transcriptional control in the genomes of Plasmodium parasites raises many questions about the mechanisms of life cycle regulation in these malaria parasites. Epigenetic regulation has been suggested to play a major role in the stage specific gene expression during the Plasmodium life cycle. To address some of these questions, we analyzed global transcriptional responses of Plasmodium falciparum to a potent inhibitor of histone deacetylase activities (HDAC. The inhibitor apicidin induced profound transcriptional changes in multiple stages of the P. falciparum intraerythrocytic developmental cycle (IDC that were characterized by rapid activation and repression of a large percentage of the genome. A major component of this response was induction of genes that are otherwise suppressed during that particular stage of the IDC or specific for the exo-erythrocytic stages. In the schizont stage, apicidin induced hyperacetylation of histone lysine residues H3K9, H4K8 and the tetra-acetyl H4 (H4Ac4 and demethylation of H3K4me3. Interestingly, we observed overlapping patterns of chromosomal distributions between H4K8Ac and H3K4me3 and between H3K9Ac and H4Ac4. There was a significant but partial association between the apicidin-induced gene expression and histone modifications, which included a number of stage specific transcription factors. Taken together, inhibition of HDAC activities leads to dramatic de-regulation of the IDC transcriptional cascade, which is a result of both disruption of histone modifications and up-regulation of stage specific transcription factors. These findings suggest an important role of histone modification and chromatin remodeling in transcriptional regulation of the Plasmodium life cycle. This also emphasizes the potential of P. falciparum HDACs as drug targets for malaria chemotherapy.

  10. Histone deacetylases play a major role in the transcriptional regulation of the Plasmodium falciparum life cycle.

    Science.gov (United States)

    Chaal, Balbir K; Gupta, Archna P; Wastuwidyaningtyas, Brigitta D; Luah, Yen-Hoon; Bozdech, Zbynek

    2010-01-22

    The apparent paucity of molecular factors of transcriptional control in the genomes of Plasmodium parasites raises many questions about the mechanisms of life cycle regulation in these malaria parasites. Epigenetic regulation has been suggested to play a major role in the stage specific gene expression during the Plasmodium life cycle. To address some of these questions, we analyzed global transcriptional responses of Plasmodium falciparum to a potent inhibitor of histone deacetylase activities (HDAC). The inhibitor apicidin induced profound transcriptional changes in multiple stages of the P. falciparum intraerythrocytic developmental cycle (IDC) that were characterized by rapid activation and repression of a large percentage of the genome. A major component of this response was induction of genes that are otherwise suppressed during that particular stage of the IDC or specific for the exo-erythrocytic stages. In the schizont stage, apicidin induced hyperacetylation of histone lysine residues H3K9, H4K8 and the tetra-acetyl H4 (H4Ac4) and demethylation of H3K4me3. Interestingly, we observed overlapping patterns of chromosomal distributions between H4K8Ac and H3K4me3 and between H3K9Ac and H4Ac4. There was a significant but partial association between the apicidin-induced gene expression and histone modifications, which included a number of stage specific transcription factors. Taken together, inhibition of HDAC activities leads to dramatic de-regulation of the IDC transcriptional cascade, which is a result of both disruption of histone modifications and up-regulation of stage specific transcription factors. These findings suggest an important role of histone modification and chromatin remodeling in transcriptional regulation of the Plasmodium life cycle. This also emphasizes the potential of P. falciparum HDACs as drug targets for malaria chemotherapy.

  11. Immune response to soluble exoantigens of Plasmodium falciparum may contribute to both pathogenesis and protection in clinical malaria: evidence from a longitudinal, prospective study of semi-immune African children

    DEFF Research Database (Denmark)

    Riley, E M; Jakobsen, P H; Allen, S J

    1991-01-01

    Some soluble exoantigens of Plasmodium have lipopolysaccharide (LPS)-like properties and are believed to contribute to the pathogenesis of acute malaria. We have studied cellular and humoral immune responses to several purified exoantigens of Plasmodium falciparum in a cohort of children and comp......Some soluble exoantigens of Plasmodium have lipopolysaccharide (LPS)-like properties and are believed to contribute to the pathogenesis of acute malaria. We have studied cellular and humoral immune responses to several purified exoantigens of Plasmodium falciparum in a cohort of children...... and compared these responses with their subsequent susceptibility to malaria infection and clinical disease. We found no evidence that either lymphoproliferative or interferon-gamma (IFN-gamma) responses to these antigens were associated with protective immunity. On the contrary, children whose cells produced...

  12. Plasmodium falciparum isolates from Angola show the StctVMNT haplotype in the pfcrt gene

    Science.gov (United States)

    2010-01-01

    Background Effective treatment remains a mainstay of malaria control, but it is unfortunately strongly compromised by drug resistance, particularly in Plasmodium falciparum, the most important human malaria parasite. Although P. falciparum chemoresistance is well recognized all over the world, limited data are available on the distribution and prevalence of pfcrt and pfmdr1 haplotypes that mediate resistance to commonly used drugs and that show distinct geographic differences. Methods Plasmodium falciparum-infected blood samples collected in 2007 at four municipalities of Luanda, Angola, were genotyped using PCR and direct DNA sequencing. Single nucleotide polymorphisms in the P. falciparum pfcrt and pfmdr1 genes were assessed and haplotype prevalences were determined. Results and Discussion The most prevalent pfcrt haplotype was StctVMNT (representing amino acids at codons 72-76). This result was unexpected, since the StctVMNT haplotype has previously been seen mainly in parasites from South America and India. The CVIET, CVMNT and CVINT drug-resistance haplotypes were also found, and one previously undescribed haplotype (CVMDT) was detected. Regarding pfmdr1, the most prevalent haplotype was YEYSNVD (representing amino acids at codons 86, 130, 184, 1034, 1042, 1109 and 1246). Wild haplotypes for pfcrt and pfmdr1 were uncommon; 3% of field isolates harbored wild type pfcrt (CVMNK), whereas 21% had wild type pfmdr1 (NEYSNVD). The observed predominance of the StctVMNT haplotype in Angola could be a result of frequent travel between Brazil and Angola citizens in the context of selective pressure of heavy CQ use. Conclusions The high prevalence of the pfcrt SVMNT haplotype and the pfmdr1 86Y mutation confirm high-level chloroquine resistance and might suggest reduced efficacy of amodiaquine in Angola. Further studies must be encouraged to examine the in vitro sensitivity of pfcrt SVMNT parasites to artesunate and amodiaquine for better conclusive data. PMID:20565881

  13. High sensitivity detection of Plasmodium species reveals positive correlations between infections of different species, shifts in age distribution and reduced local variation in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Smith Thomas A

    2009-03-01

    Full Text Available Abstract Background When diagnosed by standard light microscopy (LM, malaria prevalence can vary significantly between sites, even at local scale, and mixed species infections are consistently less common than expect in areas co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae. The development of a high-throughput molecular species diagnostic assay now enables routine PCR-based surveillance of malaria infections in large field and intervention studies, and improves resolution of species distribution within and between communities. Methods This study reports differences in the prevalence of infections with all four human malarial species and of mixed infections as diagnosed by LM and post-PCR ligase detection reaction – fluorescent microsphere (LDR-FMA assay in 15 villages in the central Sepik area of Papua New Guinea. Results Significantly higher rates of infection by P. falciparum, P. vivax, P. malariae and Plasmodium ovale were observed in LDR-FMA compared to LM diagnosis (p P. malariae (3.9% vs 13.4% and P. ovale (0.0% vs 4.8%. In contrast to LM diagnosis, which suggested a significant deficit of mixed species infections, a significant excess of mixed infections over expectation was detected by LDR-FMA (p P. falciparum (LM: 7–9 yrs 47.5%, LDR-FMA: 10–19 yrs 74.2% and P. vivax (LM: 4–6 yrs 24.2%, LDR-FMA: 7–9 yrs 50.9% but not P. malariae infections (10–19 yrs, LM: 7.7% LDR-FMA: 21.6%. Significant geographical variation in prevalence was found for all species (except for LM-diagnosed P. falciparum, with the extent of this variation greater in LDR-FMA than LM diagnosed infections (overall, 84.4% vs. 37.6%. Insecticide-treated bednet (ITN coverage was also the dominant factor linked to geographical differences in Plasmodium species infection prevalence explaining between 60.6% – 74.5% of this variation for LDR-FMA and 81.8% – 90.0% for LM (except P. falciparum, respectively. Conclusion The present study

  14. Increase in the prevalence of mutations associated with sulfadoxine-pyrimethamine resistance in Plasmodium falciparum isolates collected from early to late pregnancy in Nanoro, Burkina Faso

    NARCIS (Netherlands)

    Ruizendaal, Esmée; Tahita, Marc C.; Geskus, Ronald B.; Versteeg, Inge; Scott, Susana; d'Alessandro, Umberto; Lompo, Palpouguini; Derra, Karim; Traore-Coulibaly, Maminata; de Jong, Menno D.; Schallig, Henk D. F. H.; Tinto, Halidou; Mens, Petra F.

    2017-01-01

    Pregnant women are a high-risk group for Plasmodium falciparum infections, which may result in maternal anaemia and low birth weight newborns, among other adverse birth outcomes. Intermittent preventive treatment with sulfadoxine-pyrimethamine during pregnancy (IPTp-SP) is widely implemented to

  15. A systematic classification of Plasmodium falciparum P-loop NTPases: structural and functional correlation

    Directory of Open Access Journals (Sweden)

    Chauhan Virander S

    2009-04-01

    Full Text Available Abstract Background The P-loop NTPases constitute one of the largest groups of globular protein domains that play highly diverse functional roles in most of the organisms. Even with the availability of nearly 300 different Hidden Markov Models representing the P-loop NTPase superfamily, not many P-loop NTPases are known in Plasmodium falciparum. A number of characteristic attributes of the genome have resulted into the lack of knowledge about this functionally diverse, but important class of proteins. Method In the study, protein sequences with characteristic motifs of NTPase domain (Walker A and Walker B are computationally extracted from the P. falciparum database. A detailed secondary structure analysis, functional classification, phylogenetic and orthology studies of the NTPase domain of repertoire of 97 P. falciparum P-loop NTPases is carried out. Results Based upon distinct sequence features and secondary structure profile of the P-loop domain of obtained sequences, a cladistic classification is also conceded: nucleotide kinases and GTPases, ABC and SMC family, SF1/2 helicases, AAA+ and AAA protein families. Attempts are made to identify any ortholog(s for each of these proteins in other Plasmodium sp. as well as its vertebrate host, Homo sapiens. A number of P. falciparum P-loop NTPases that have no homologue in the host, as well as those annotated as hypothetical proteins and lack any characteristic functional domain are identified. Conclusion The study suggests a strong correlation between sequence and secondary structure profile of P-loop domains and functional roles of these proteins and thus provides an opportunity to speculate the role of many hypothetical proteins. The study provides a methodical framework for the characterization of biologically diverse NTPases in the P. falciparum genome. The efforts made in the analysis are first of its kind; and the results augment to explore the functional role of many of these proteins from

  16. Molecular modelling of calcium dependent protein kinase 4 (CDPK4) from Plasmodium falciparum

    CSIR Research Space (South Africa)

    Tsekoa, Tsepo L

    2009-10-01

    Full Text Available eukaryotic protein kinases (ePKs) as defined in model organisms. A novel family of phylogenetically distinct ePK-related genes in P. falciparum has been identified. These kinases (up to 20 in number [2], designated the FIKK family due to a conserved amino...]. The protein kinase complement of Plasmodium falciparum, the main infectious agent of lethal malaria in humans, has been analysed in detail [2, 3]. These analyses revealed that the P. falciparum kinome comprises as many as 65 sequences related to typical...

  17. Selective and Specific Inhibition of the Plasmodium falciparum Lysyl-tRNA Synthetase by the Fungal Secondary Metabolite Cladosporin

    OpenAIRE

    Hoepfner, Dominic; McNamara, Case W.; Lim, Chek Shik; Studer, Christian; Riedl, Ralph; Aust, Thomas; McCormack, Susan L.; Plouffe, David M.; Meister, Stephan; Schuierer, Sven; Plikat, Uwe; Hartmann, Nicole; Staedtler, Frank; Cotesta, Simona; Schmitt, Esther K.

    2012-01-01

    Summary With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity a...

  18. A focus of hyperendemic Plasmodium malariae-P. vivax with no P. falciparum in a primitive population in the Peruvian Amazon jungle.

    Science.gov (United States)

    Sulzer, A J; Cantella, R; Colichon, A; Gleason, N N; Walls, K W

    1975-01-01

    Findings in a sample population in southeastern Peru with a very high rate of malaria infection, due to Plasmodium malariae and P. vivax with apparently no P. falciparum, are described. The proportion of persons with P. malariae in this sample population, as determined by slide examination, appears to be the greatest ever reported for any area before the introduction of control measures. Although very few P. vivax were found on stained slides, results of the indirect immunofluorescence test indicated that this species was probably as prevalent as P. malariae; the absence of P. falciparum was supported by results of serologic tests. Possible reasons for this focus of malaria with no P. falciparum are discussed.

  19. Malaria's missing number: calculating the human component of R0 by a within-host mechanistic model of Plasmodium falciparum infection and transmission.

    Directory of Open Access Journals (Sweden)

    Geoffrey L Johnston

    2013-04-01

    Full Text Available Human infection by malarial parasites of the genus Plasmodium begins with the bite of an infected Anopheles mosquito. Current estimates place malaria mortality at over 650,000 individuals each year, mostly in African children. Efforts to reduce disease burden can benefit from the development of mathematical models of disease transmission. To date, however, comprehensive modeling of the parameters defining human infectivity to mosquitoes has remained elusive. Here, we describe a mechanistic within-host model of Plasmodium falciparum infection in humans and pathogen transmission to the mosquito vector. Our model incorporates the entire parasite lifecycle, including the intra-erythrocytic asexual forms responsible for disease, the onset of symptoms, the development and maturation of intra-erythrocytic gametocytes that are transmissible to Anopheles mosquitoes, and human-to-mosquito infectivity. These model components were parameterized from malaria therapy data and other studies to simulate individual infections, and the ensemble of outputs was found to reproduce the full range of patient responses to infection. Using this model, we assessed human infectivity over the course of untreated infections and examined the effects in relation to transmission intensity, expressed by the basic reproduction number R0 (defined as the number of secondary cases produced by a single typical infection in a completely susceptible population. Our studies predict that net human-to-mosquito infectivity from a single non-immune individual is on average equal to 32 fully infectious days. This estimate of mean infectivity is equivalent to calculating the human component of malarial R0 . We also predict that mean daily infectivity exceeds five percent for approximately 138 days. The mechanistic framework described herein, made available as stand-alone software, will enable investigators to conduct detailed studies into theories of malaria control, including the effects of

  20. Memory B-Cell and Antibody Responses Induced by Plasmodium falciparum Sporozoite Immunization

    NARCIS (Netherlands)

    Nahrendorf, W.; Scholzen, A.; Bijker, E.M.; Teirlinck, A.C.; Bastiaens, G.J.H.; Schats, R.; Hermsen, C.C.; Visser, L.G.; Langhorne, J.; Sauerwein, R.W.

    2014-01-01

    BACKGROUND: Immunization of healthy volunteers during receipt of chemoprophylaxis with Plasmodium falciparum sporozoites (CPS-immunization) induces sterile protection from malaria. Antibody responses have long been known to contribute to naturally acquired immunity against malaria, but their

  1. Prevalence of Dihydrofolate reductase gene mutations in Plasmodium falciparum isolate from pregnant women in Nigeria

    Directory of Open Access Journals (Sweden)

    Olusola Ojurongbe

    2011-12-01

    Full Text Available We assessed the prevalence of Plasmodium falciparum and the frequency of the dhfr triple mutation that is associated with antifolate drug resistance among P. falciparumisolates obtained from pregnant women in Ilorin, Nigeria. The study included 179 women in the second and third trimester of pregnancy who have been exposed to intermittent preventive treatment in pregnancy (IPTp with sulfadoxinepyrimethamine. Thick and thin blood films and PCR were used for malaria parasite detection. Blood group and hemoglobin concentration were also determined. Mutations in P. falciparum dhfr were analyzed by sequencing DNA obtained from blood spots on filter paper. Prevalence of P. falciparum in the population (PCR corrected was 44.1% (79/179 with 66.7% and 33.3% in the second and third trimester, respectively. Primigravide (51.3% were more infected than multigravide (48.7% but the difference was not statistically significant. Women in blood group A had the highest P. falciparum malaria infection (30.8%. The mean hemoglobin concentration was lower among those infected with malaria parasite. Also, more women with the malaria parasite (38.4% had anemia compare to those without (21.4%. The prevalence of the P. falciparum dhfr mutant alleles was 64.1%, 61.5%, 38.5%, and 12.8% for I51, R59, N108 and T108, respectively. None of the samples had the L164 mutation. The combined triple dhfr mutation (51 + 59 + 108 in the population was 17.9% (7 of 39. Also, the prevalence of the triple mutant alleles was not significantly associated to the number of doses of SP taken by the women. These findings highlight the need for a regular assessment of IPTp/SP efficacy, and evaluation of possible alternative drugs.

  2. In silico discovery of transcription regulatory elements in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Le Roch Karine G

    2008-02-01

    Full Text Available Abstract Background With the sequence of the Plasmodium falciparum genome and several global mRNA and protein life cycle expression profiling projects now completed, elucidating the underlying networks of transcriptional control important for the progression of the parasite life cycle is highly pertinent to the development of new anti-malarials. To date, relatively little is known regarding the specific mechanisms the parasite employs to regulate gene expression at the mRNA level, with studies of the P. falciparum genome sequence having revealed few cis-regulatory elements and associated transcription factors. Although it is possible the parasite may evoke mechanisms of transcriptional control drastically different from those used by other eukaryotic organisms, the extreme AT-rich nature of P. falciparum intergenic regions (~90% AT presents significant challenges to in silico cis-regulatory element discovery. Results We have developed an algorithm called Gene Enrichment Motif Searching (GEMS that uses a hypergeometric-based scoring function and a position-weight matrix optimization routine to identify with high-confidence regulatory elements in the nucleotide-biased and repeat sequence-rich P. falciparum genome. When applied to promoter regions of genes contained within 21 co-expression gene clusters generated from P. falciparum life cycle microarray data using the semi-supervised clustering algorithm Ontology-based Pattern Identification, GEMS identified 34 putative cis-regulatory elements associated with a variety of parasite processes including sexual development, cell invasion, antigenic variation and protein biosynthesis. Among these candidates were novel motifs, as well as many of the elements for which biological experimental evidence already exists in the Plasmodium literature. To provide evidence for the biological relevance of a cell invasion-related element predicted by GEMS, reporter gene and electrophoretic mobility shift assays

  3. Phytochemical isolation of compounds from Sceletium tortuosum and activity testing against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Itumeleng I. Setshedi

    2012-06-01

    Full Text Available Malaria is a major health care problem in tropical regions due to the increasing resistance of Plasmodium falciparum against widely available antimalarial drugs. Traditional societies relied on medicinal plants to treat parasitic infections. As a result, drugs like quinine and artemisinin were isolated from herbs and barks (Varughese et al. 2010. Sceletium tortuosum has been used as medicine for social and spiritual purposes by San hunter gatherers and Khoi pastoralists. Sceletium tortuosum is rich in alkaloids, one of the important classes of natural product producing treatment for parasitic infections (Kayser et al. 2002. Laboratory preparation of extracts of fresh S. tortuosum plant material was conducted mimicking traditional methods of preparation using organic solvents. Mesembrine was isolated from a methanol extract using conventional column chromatography. Sixteen extracts and mesembrine were evaluated for antiplasmodium activity using a plasmodium lactate dehydrogenase culture sensitivity assay with chloroquine as reference drug. Of the sixteen extracts, four showed activity against P. falciparum with IC50 ranging between 1.47 µg/mL and 7.32 µg/mL. Extracts prepared from stored material at -20 °C showed no antiplasmodium activity. The four originally active extracts were re-screened six months later, but the antimalarial activity could not be reproduced. To determine discrepancy in biological results, chemical profiling of the extracts was done using high performance liquid chromatography technique. Differences were observed in the profiles of the active extracts when compared to those of stored plant material. The instability of plant constituents observed could be a result of plant storage suggesting that the plant is best used when fresh.

  4. In Vitro Variant Surface Antigen Expression in Plasmodium falciparum Parasites from a Semi-Immune Individual Is Not Correlated with Var Gene Transcription

    Science.gov (United States)

    Tschan, Serena; Flötenmeyer, Matthias; Koch, Iris; Berger, Jürgen; Kremsner, Peter; Frank, Matthias

    2016-01-01

    Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is considered to be the main variant surface antigen (VSA) of Plasmodium falciparum and is mainly localized on electron-dense knobs in the membrane of the infected erythrocyte. Switches in PfEMP1 expression provide the basis for antigenic variation and are thought to be critical for parasite persistence during chronic infections. Recently, strain transcending anti-PfEMP1 immunity has been shown to develop early in life, challenging the role of PfEMP1 in antigenic variation during chronic infections. In this work we investigate how P. falciparum achieves persistence during a chronic asymptomatic infection. The infected individual (MOA) was parasitemic for 42 days and multilocus var gene genotyping showed persistence of the same parasite population throughout the infection. Parasites from the beginning of the infection were adapted to tissue culture and cloned by limiting dilution. Flow cytometry using convalescent serum detected a variable surface recognition signal on isogenic clonal parasites. Quantitative real-time PCR with a field isolate specific var gene primer set showed that the surface recognition signal was not correlated with transcription of individual var genes. Strain transcending anti-PfEMP1 immunity of the convalescent serum was demonstrated with CD36 selected and PfEMP1 knock-down NF54 clones. In contrast, knock-down of PfEMP1 did not have an effect on the antibody recognition signal in MOA clones. Trypsinisation of the membrane surface proteins abolished the surface recognition signal and immune electron microscopy revealed that antibodies from the convalescent serum bound to membrane areas without knobs and with knobs. Together the data indicate that PfEMP1 is not the main variable surface antigen during a chronic infection and suggest a role for trypsin sensitive non-PfEMP1 VSAs for parasite persistence in chronic infections. PMID:27907004

  5. Impact of child malnutrition on the specific anti-Plasmodium falciparum antibody response

    Directory of Open Access Journals (Sweden)

    Fillol Florie

    2009-06-01

    Full Text Available Abstract Background In sub-Saharan Africa, preschool children represent the population most vulnerable to malaria and malnutrition. It is widely recognized that malnutrition compromises the immune function, resulting in higher risk of infection. However, very few studies have investigated the relationship between malaria, malnutrition and specific immunity. In the present study, the anti-Plasmodium falciparum IgG antibody (Ab response was evaluated in children according to the type of malnutrition. Methods Anthropometric assessment and blood sample collection were carried out during a cross-sectional survey including rural Senegalese preschool children. This cross-sectional survey was conducted in July 2003 at the onset of the rainy season. Malnutrition was defined as stunting (height-for-age P. falciparum whole extracts (schizont antigens was assessed by ELISA in sera of the included children. Results Both the prevalence of anti-malarial immune responders and specific IgG Ab levels were significantly lower in malnourished children than in controls. Depending on the type of malnutrition, wasted children and stunted children presented a lower specific IgG Ab response than their respective controls, but this difference was significant only in stunted children (P = 0.026. This down-regulation of the specific Ab response seemed to be explained by severely stunted children (HAZ ≤ -2.5 compared to their controls (P = 0.03, while no significant difference was observed in mildly stunted children (-2.5 P. falciparum Ab response appeared to be independent of the intensity of infection. Conclusion Child malnutrition, and particularly stunting, may down-regulate the anti-P. falciparum Ab response, both in terms of prevalence of immune responders and specific IgG Ab levels. This study provides further evidence for the influence of malnutrition on the specific anti-malarial immune response and points to the importance of taking into account child

  6. Antioxidant vitamin levels among preschool children with uncomplicated Plasmodium falciparum malaria in Sokoto, Nigeria

    Directory of Open Access Journals (Sweden)

    Aghedo FI

    2013-07-01

    Full Text Available Festus I Aghedo,1 Resqua A Shehu,2 Rabiu A Umar,2 Mohammed N Jiya,3 Osaro Erhabor4 1Department of Haematology, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria; 2Department of Biochemistry, Usmanu Danfodiyo University, Sokoto, Nigeria; 3Department of Paediatrics, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria; 4Department of Haematology, Faculty of Medical Laboratory Science, Usmanu Danfodiyo University, Sokoto, Nigeria Objective: To assess antioxidant vitamin levels among preschool children with plasmodium malarial infection. Methods: We assessed antioxidant vitamin levels by using a standard procedure in 130 malaria-parasitized preschool children. Packed cell volume and parasite density were also evaluated. Forty healthy age- and gender-matched nonparasitized children were included as controls. Results: Plasmodium falciparum was the causative species in all subjects. The mean malaria parasitemia was 4529.45 ± 1237.5/µL. The mean antioxidant concentrations for vitamins A, C, and E among plasmodium-parasitized subjects were 33.15 ± 1.79 µg/dL, 0.51 ± 0.02 mg/dL, and 0.61 ± 0.02 mg/dL, respectively. The mean concentrations of vitamins A, C, and E among the non-malaria-parasitized controls were 69.72 ± 1.71 µg/dL, 1.25 ± 0.04 mg/dL, and 1.31 ± 0.04 mg/dL respectively. We observed that the mean antioxidant concentrations of vitamins A, C, and E were significantly lower among plasmodium-parasitized subjects compared with non-parasitized controls (P = 0.01. Malaria parasitemia correlated negatively with antioxidant concentrations and packed cell volume (r = -0.736 and -0.723, P = 0.001. We observed that the higher the level of parasitemia, the lower the antioxidant concentration. Conclusion: Our study has shown that the antioxidant levels in plasmodium-parasitized children in the North-West of Nigeria are low and that the more severe the malarial infection, the lower the antioxidant level and the

  7. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli.

    Science.gov (United States)

    Guerra, Ángela Patricia; Calvo, Eliana Patricia; Wasserman, Moisés; Chaparro-Olaya, Jacqueline

    2016-02-23

    The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum. However, the proteins of P. falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies.  To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8).  The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice.  The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli, compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies.  The use of genetically modified strains of E. coli was essential to achieve high expression levels of the four evaluated P. falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P. falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.

  8. Modelling the Incidence of Plasmodium vivax and Plasmodium falciparum Malaria in Afghanistan 2006–2009

    Science.gov (United States)

    Alegana, Victor A.; Wright, Jim A.; Nahzat, Sami M.; Butt, Waqar; Sediqi, Amad W.; Habib, Naeem; Snow, Robert W.; Atkinson, Peter M.; Noor, Abdisalan M.

    2014-01-01

    Background Identifying areas that support high malaria risks and where populations lack access to health care is central to reducing the burden in Afghanistan. This study investigated the incidence of Plasmodium vivax and Plasmodium falciparum using routine data to help focus malaria interventions. Methods To estimate incidence, the study modelled utilisation of the public health sector using fever treatment data from the 2012 national Malaria Indicator Survey. A probabilistic measure of attendance was applied to population density metrics to define the proportion of the population within catchment of a public health facility. Malaria data were used in a Bayesian spatio-temporal conditional-autoregressive model with ecological or environmental covariates, to examine the spatial and temporal variation of incidence. Findings From the analysis of healthcare utilisation, over 80% of the population was within 2 hours’ travel of the nearest public health facility, while 64.4% were within 30 minutes’ travel. The mean incidence of P. vivax in 2009 was 5.4 (95% Crl 3.2–9.2) cases per 1000 population compared to 1.2 (95% Crl 0.4–2.9) cases per 1000 population for P. falciparum. P. vivax peaked in August while P. falciparum peaked in November. 32% of the estimated 30.5 million people lived in regions where annual incidence was at least 1 case per 1,000 population of P. vivax; 23.7% of the population lived in areas where annual P. falciparum case incidence was at least 1 per 1000. Conclusion This study showed how routine data can be combined with household survey data to model malaria incidence. The incidence of both P. vivax and P. falciparum in Afghanistan remain low but the co-distribution of both parasites and the lag in their peak season provides challenges to malaria control in Afghanistan. Future improved case definition to determine levels of imported risks may be useful for the elimination ambitions in Afghanistan. PMID:25033452

  9. Caracterización parcial de la calmodulina de Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Claudia P. Tinjacá

    1995-12-01

    Full Text Available Se describe una alternativa para la purificación parcial de Calmodulina (CaM a partir de Plasmodium falciparum que, de acuerdo con anticuerpos monoclonales altamente especificas contra CaM, permite separar por lo menos dos formas de la proteína que, aunque difieren en sus pesos moleculares (una pequeña de 12.600 y otra grande entre 36.000 y 50.000 daltones, son capaces de estimular a la ATPasa de calcio del eritrocito por separado. Se plantea la posibilidad de una modificación estructural de la CaM dePlasmodium falciparum, que no interfiere con su función como activadora de la ATPasa de calcio y que la hace inhibible en menor grado que la CaM de eritrocito en su función estimuladora de la enzima. Lo anterior hace pensar en una mayor afinidad de la proteína del parásito por esta enzima o en una modificación de la zona regulatoria a la que se unen los inhibidores.

  10. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Lilburn Timothy G

    2011-12-01

    Full Text Available Abstract Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome in the malaria parasite Plasmodium falciparum and its sibling species 123, providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database 4, and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H system 5, blood stage microarray experiments 678, proteomics 9101112, literature text mining, and sequence homology analysis. Seventy-seven (77 out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs. These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins, range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide

  11. SHORT COMMUNICATION High prevalence of Plasmodium ...

    African Journals Online (AJOL)

    Dell

    Volume 20, Number 1, January 2018. 1. SHORT COMMUNICATION ... This study was designed to establish the prevalence of Plasmodium falciparum malaria among HIV infected populations. ... The prevalence of P. falciparum was high among HIV seropositive individuals in the Lake Victoria Zone, which calls for additional ...

  12. Broadly reactive antibodies specific for Plasmodium falciparum MSP-119 are associated with the protection of naturally exposed children against infection

    Directory of Open Access Journals (Sweden)

    Dent Arlene E

    2012-08-01

    Full Text Available Abstract Background The 19 kDa C-terminal region of Plasmodium falciparum Merozoite Surface Protein-1 is a known target of naturally acquired humoral immunity and a malaria vaccine candidate. MSP-119 has four predominant haplotypes resulting in amino acid changes labelled EKNG, QKNG, QTSR and ETSR. IgG antibodies directed against all four variants have been detected, but it is not known if these variant specific antibodies are associated with haplotype-specific protection from infection. Methods Blood samples from 201 healthy Kenyan adults and children who participated in a 12-week treatment time-to-infection study were evaluated. Venous blood drawn at baseline (week 0 was examined for functional and serologic antibodies to MSP-119 and MSP-142 variants. MSP-119 haplotypes were detected by a multiplex PCR assay at baseline and weekly throughout the study. Generalized linear models controlling for age, baseline MSP-119 haplotype and parasite density were used to determine the relationship between infecting P. falciparum MSP-119 haplotype and variant-specific antibodies. Results A total of 964 infections resulting in 1,533 MSP-119 haplotypes detected were examined. The most common haplotypes were EKNG and QKNG, followed by ETSR and QTSR. Children had higher parasite densities, greater complexity of infection (>1 haplotype, and more frequent changes in haplotypes over time compared to adults. Infecting MSP-119 haplotype at baseline (week 0 had no influence on haplotypes detected over the subsequent 11 weeks among children or adults. Children but not adults with MSP-119 and some MSP-142 variant antibodies detected by serology at baseline had delayed time-to-infection. There was no significant association of variant-specific serology or functional antibodies at baseline with infecting haplotype at baseline or during 11 weeks of follow up among children or adults. Conclusions Variant transcending IgG antibodies to MSP-119 are associated with protection

  13. Regulation of antigenic variation in Plasmodium falciparum: censoring freedom of expression?

    Science.gov (United States)

    Duffy, Michael F; Reeder, John C; Brown, Graham V

    2003-03-01

    Plasmodium falciparum employs a strategy of clonal antigenic variation to evade the host immune response during the intraerythrocytic stage of its life cycle. The major variant parasite molecule is the P. falciparum erythrocyte membrane protein (PfEMP)1, which is encoded by the var multigene family. The parasite switches between different PfEMP1 molecules through regulation of var transcription. Recent studies have shed considerable light on this process, but much remains unknown. However, striking parallels between transcriptional control of var and genes in other organisms provide direction for future studies.

  14. Computational and experimental analysis identified 6-diazo-5-oxonorleucine as a potential agent for treating infection by Plasmodium falciparum.

    Science.gov (United States)

    Plaimas, Kitiporn; Wang, Yulin; Rotimi, Solomon O; Olasehinde, Grace; Fatumo, Segun; Lanzer, Michael; Adebiyi, Ezekiel; König, Rainer

    2013-12-01

    Plasmodium falciparum (PF) is the most severe malaria parasite. It is developing resistance quickly to existing drugs making it indispensable to discover new drugs. Effective drugs have been discovered targeting metabolic enzymes of the parasite. In order to predict new drug targets, computational methods can be used employing database information of metabolism. Using this data, we performed recently a computational network analysis of metabolism of PF. We analyzed the topology of the network to find reactions which are sensitive against perturbations, i.e., when a single enzyme is blocked by drugs. We now used a refined network comprising also the host enzymes which led to a refined set of the five targets glutamyl-tRNA (gln) amidotransferase, hydroxyethylthiazole kinase, deoxyribose-phophate aldolase, pseudouridylate synthase, and deoxyhypusine synthase. It was shown elsewhere that glutamyl-tRNA (gln) amidotransferase of other microorganisms can be inhibited by 6-diazo-5-oxonorleucine. Performing a half maximal inhibitory concentration (IC50) assay, we showed, that 6-diazo-5-oxonorleucine is also severely affecting viability of PF in blood plasma of the human host. We confirmed this by an in vivo study observing Plasmodium berghei infected mice. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Manufacture and Testing of a High Field Gradient Magnetic Fractionation System for Quantitative Detection of Plasmodium falciparum Gametocytes

    Science.gov (United States)

    Karl, Stephan; Woodward, Robert C.; Davis, Timothy M. E.; St. Pierre, Tim G.

    2010-12-01

    Plasmodium falciparum is the most dangerous of the human malaria parasite species and accounts for millions of clinical episodes of malaria each year in tropical countries. The pathogenicity of Plasmodium falciparum is a result of its ability to infect erythrocytes where it multiplies asexually over 48 h or develops into sexual forms known as gametocytes. If sufficient male and female gametocytes are taken up by a mosquito vector, it becomes infectious. Therefore, the presence and density of gametocytes in human blood is an important indicator of human-to-mosquito transmission of malaria. Recently, we have shown that high field gradient magnetic fractionation improves gametocyte detection in human blood samples. Here we present two important new developments. Firstly we introduce a quantitative approach to replace the previous qualitative method and, secondly, we describe a novel method that enables cost-effective production of the magnetic fractionation equipment required to carry out gametocyte quantification. We show that our custom-made magnetic fractionation equipment can deliver results with similar sensitivity and convenience but for a small fraction of the cost.

  16. Evaluating Controlled Human Malaria Infection in Kenyan Adults with Varying Degrees of Prior Exposure to Plasmodium falciparum using sporozoites administered by intramuscular injection

    Directory of Open Access Journals (Sweden)

    Susanne Helena Hodgson

    2014-12-01

    Full Text Available Background: Controlled human malaria infection (CHMI studies are a vital tool to accelerate vaccine and drug development. As CHMI trials are performed in a controlled environment, they allow unprecedented, detailed evaluation of parasite growth dynamics (PGD and immunological responses. However, CHMI studies have not been routinely performed in malaria-endemic countries or used to investigate mechanisms of naturally-acquired immunity (NAI to Plasmodium falciparum. Methods: We conducted an open-label, randomized CHMI pilot-study using aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge to evaluate safety, infectivity and PGD in Kenyan adults with low to moderate prior exposure to P. falciparum (Pan African Clinical Trial Registry: PACTR20121100033272. Results: All participants developed blood-stage infection confirmed by qPCR. However one volunteer (110 remained asymptomatic and blood-film negative until day 21 post-injection of PfSPZ Challenge. This volunteer had a reduced parasite multiplication rate (PMR (1.3 in comparison to the other 27 volunteers (median 11.1. A significant correlation was seen between PMR and screening anti-schizont ELISA OD (p=0.044, R=-0.384 but not when volunteer 110 was excluded from the analysis (p=0.112, R=-0.313. Conclusions: PfSPZ Challenge is safe and infectious in malaria-endemic populations and could be used to assess the efficacy of malaria vaccines and drugs in African populations. Whilst our findings are limited by sample size, our pilot study has demonstrated for the first time that NAI may impact on PMR post-CHMI in a detectable fashion, an important finding that should be evaluated in further CHMI studies.

  17. Immunization with Pre-Erythrocytic Antigen CelTOS from Plasmodium falciparum Elicits Cross-Species Protection against Heterologous Challenge with Plasmodium berghei

    Science.gov (United States)

    2010-08-01

    or the early liver-stages of the mammalian life cycle . One of these antigens is the cell-traversal protein for ookinetes and sporozoites (CelTOS...Immunization with Pre-Erythrocytic Antigen CelTOS from Plasmodium falciparum Elicits Cross-Species Protection against Heterologous Challenge with... Plasmodium berghei Elke S. Bergmann-Leitner1*, Ryan M. Mease1, Patricia De La Vega1, Tatyana Savranskaya2, Mark Polhemus1, Christian Ockenhouse1, Evelina

  18. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Helegbe, Gideon K; Goka, Bamenla Q; Kurtzhals, Jørgen

    2007-01-01

    BACKGROUND: Severe anaemia (SA), intravascular haemolysis (IVH) and respiratory distress (RD) are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism lead...

  19. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    Science.gov (United States)

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. P. falciparum infection and maternofetal antibody transfer in malaria-endemic settings of varying transmission.

    Directory of Open Access Journals (Sweden)

    Alistair R D McLean

    Full Text Available During pregnancy, immunoglobulin G (IgG is transferred from the mother to the fetus, providing protection from disease in early infancy. Plasmodium falciparum infections may reduce maternofetal antibody transfer efficiency, but mechanisms remain unclear.Mother-cord paired serum samples collected at delivery from Papua New Guinea (PNG and the Thailand-Myanmar Border Area (TMBA were tested for IgG1 and IgG3 to four P. falciparum antigens and measles antigen, as well as total serum IgG. Multivariable linear regression was conducted to assess the association of peripheral P. falciparum infection during pregnancy or placental P. falciparum infection assessed at delivery with maternofetal antibody transfer efficiency. Path analysis assessed the extent to which associations between P. falciparum infection and antibody transfer were mediated by gestational age at delivery or levels of maternal total serum IgG.Maternofetal antibody transfer efficiency of IgG1 and IgG3 was lower in PNG compared to TMBA (mean difference in cord antibody levels (controlling for maternal antibody levels ranged from -0.88 to 0.09, median of -0.20 log2 units. Placental P. falciparum infections were associated with substantially lower maternofetal antibody transfer efficiency in PNG primigravid women (mean difference in cord antibody levels (controlling for maternal antibody levels ranged from -0.62 to -0.10, median of -0.36 log2 units, but not multigravid women. The lower antibody transfer efficiency amongst primigravid women with placental infection was only partially mediated by gestational age at delivery (proportion indirect effect ranged from 0% to 18%, whereas no mediation effects of maternal total serum IgG were observed.Primigravid women may be at risk of impaired maternofetal antibody transport with placental P. falciparum infection. Direct effects of P. falciparum on the placenta, rather than earlier gestational age and elevated serum IgG, are likely responsible for

  1. Complement activation in Ghanaian children with severe Plasmodium falciparum malaria

    Directory of Open Access Journals (Sweden)

    Ofori Michael F

    2007-12-01

    Full Text Available Abstract Background Severe anaemia (SA, intravascular haemolysis (IVH and respiratory distress (RD are severe forms of Plasmodium falciparum malaria, with RD reported to be of prognostic importance in African children with malarial anaemia. Complement factors have been implicated in the mechanism leading to excess anaemia in acute P. falciparum infection. Methods The direct Coombs test (DCT and flow cytometry were used to investigate the mean levels of RBC-bound complement fragments (C3d and C3bαβ and the regulatory proteins [complement receptor 1 (CD35 and decay accelerating factor (CD55] in children with discrete clinical forms of P. falciparum malaria. The relationship between the findings and clinical parameters including coma, haemoglobin (Hb levels and RD were investigated. Results Of the 484 samples tested, 131(27% were positive in DCT, out of which 115/131 (87.8% were positive for C3d alone while 16/131 (12.2% were positive for either IgG alone or both. 67.4% of the study population were below 5 years of age and DCT positivity was more common in this age group relative to children who were 5 years or older (Odds ratio, OR = 3.8; 95%CI, 2.2–6.7, p Conclusion These results suggest that complement activation contributed to anaemia in acute childhood P. falciparum malaria, possibly through induction of erythrophagocytosis and haemolysis. In contrast to other studies, this study did not find association between levels of the complement regulatory proteins, CD35 and CD55 and malarial anaemia. These findings suggest that complement activation could also be involved in the pathogenesis of RD but larger studies are needed to confirm this finding.

  2. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...... with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized...

  3. Molecular inference of sources and spreading patterns of Plasmodium falciparum malaria parasites in internally displaced persons settlements in Myanmar-China border area.

    Science.gov (United States)

    Lo, Eugenia; Zhou, Guofa; Oo, Winny; Lee, Ming-Chieh; Baum, Elisabeth; Felgner, Philip L; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun

    2015-07-01

    In Myanmar, civil unrest and establishment of internally displaced persons (IDP) settlement along the Myanmar-China border have impacted malaria transmission. The growing IDP populations raise deep concerns about health impact on local communities. Microsatellite markers were used to examine the source and spreading patterns of Plasmodium falciparum between IDP settlement and surrounding villages in Myanmar along the China border. Genotypic structure of P. falciparum was compared over the past three years from the same area and the demographic history was inferred to determine the source of recent infections. In addition, we examined if border migration is a factor of P. falciparum infections in China by determining gene flow patterns across borders. Compared to local community, the IDP samples showed a reduced and consistently lower genetic diversity over the past three years. A strong signature of genetic bottleneck was detected in the IDP samples. P. falciparum infections from the border regions in China were genetically similar to Myanmar and parasite gene flow was not constrained by geographical distance. Reduced genetic diversity of P. falciparum suggested intense malaria control within the IDP settlement. Human movement was a key factor to the spread of malaria both locally in Myanmar and across the international border. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Evolution of Resistance to Sulfadoxine-Pyrimethamine in Plasmodium falciparum

    OpenAIRE

    Gatton, Michelle L.; Martin, Laura B; Cheng, Qin

    2004-01-01

    The development of resistance to sulfadoxine-pyrimethamine by Plasmodium parasites is a major problem for the effective treatment of malaria, especially P. falciparum malaria. Although the molecular basis for parasite resistance is known, the factors promoting the development and transmission of these resistant parasites are less clear. This paper reports the results of a quantitative comparison of factors previously hypothesized as important for the development of drug resistance, drug dosag...

  5. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation

    Directory of Open Access Journals (Sweden)

    Amélie eVantaux

    2015-08-01

    Full Text Available Previous studies have shown that Plasmodium parasites can manipulate mosquito feeding behaviours such as motivation and avidity to feed on vertebrate hosts, in ways that increase the probability of parasite transmission. These studies, however, have been mainly carried out on non-natural and/or laboratory based model systems and hence may not reflect what occurs in the field. We now need to move closer to the natural setting, if we are to fully capture the ecological and evolutionary consequences of these parasite-induced behavioral changes. As part of this effort, we conducted a series of experiments to investigate the long and short-range behavioural responses to human stimuli in the mosquito Anopheles coluzzii during different stages of infection with sympatric field isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. First, we used a dual-port olfactometer designed to take advantage of the whole body odor to gauge mosquito long-range host-seeking behaviors. Second, we used a locomotor activity monitor system to assess mosquito short-range behaviors. Compared to control uninfected mosquitoes, P. falciparum infection had no significant effect neither on long-range nor on short-range behaviors both at the immature and mature stages. This study, using a natural mosquito-malaria parasite association, indicates that manipulation of vector behavior may not be a general phenomenon. We speculate that the observed contrasting phenotypes with model systems might result from coevolution of the human parasite and its natural vector. Future experiments, using other sympatric malaria mosquito populations or species are required to test this hypothesis. In conclusion, our results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite–mosquito interactions to accurately predict the epidemiological, ecological and evolutionary consequences of parasite manipulation of vector

  6. Proliferation induced by Plasmodium falciparum antigen and interleukin-2 production by lymphocytes isolated from malaria-immune individuals

    DEFF Research Database (Denmark)

    Theander, T G; Bygbjerg, I C; Jepsen, S

    1986-01-01

    Affinity-purified Plasmodium falciparum soluble antigens (SPAg) isolated from in vitro cultures of the parasite were shown to be relatively free of nonspecific polyclonal activators. To determine the presence of lymphocytes with specificity against SPAg in the peripheral blood of malaria-immune i......Affinity-purified Plasmodium falciparum soluble antigens (SPAg) isolated from in vitro cultures of the parasite were shown to be relatively free of nonspecific polyclonal activators. To determine the presence of lymphocytes with specificity against SPAg in the peripheral blood of malaria...

  7. Larval habitats of Anopheles gambiae s.s. (Diptera: Culicidae influences vector competence to Plasmodium falciparum parasites

    Directory of Open Access Journals (Sweden)

    Gouagna Louis C

    2007-04-01

    Full Text Available Abstract Background The origin of highly competent malaria vectors has been linked to productive larval habitats in the field, but there isn't solid quantitative or qualitative data to support it. To test this, the effect of larval habitat soil substrates on larval development time, pupation rates and vector competence of Anopheles gambiae to Plasmodium falciparum were examined. Methods Soils were collected from active larval habitats with sandy and clay substrates from field sites and their total organic matter estimated. An. gambiae larvae were reared on these soil substrates and the larval development time and pupation rates monitored. The emerging adult mosquitoes were then artificially fed blood with infectious P. falciparum gametocytes from human volunteers and their midguts examined for oocyst infection after seven days. The wing sizes of the mosquitoes were also measured. The effect of autoclaving the soil substrates was also evaluated. Results The total organic matter was significantly different between clay and sandy soils after autoclaving (P = 0.022. A generalized liner model (GLM analysis identified habitat type (clay soil, sandy soil, or lake water and autoclaving (that reduces presence of microbes as significant factors affecting larval development time and oocyst infection intensities in adults. Autoclaving the soils resulted in the production of significantly smaller sized mosquitoes (P = 0.008. Autoclaving clay soils resulted in a significant reduction in Plasmodium falciparum oocyst intensities (P = 0.041 in clay soils (unautoclaved clay soils (4.28 ± 0.18 oocysts/midgut; autoclaved clay soils = 1.17 ± 0.55 oocysts/midgut although no difference (P = 0.480 in infection rates was observed between clay soils (10.4%, sandy soils (5.3% or lake water (7.9%. Conclusion This study suggests an important nutritional role for organic matter and microbial fauna on mosquito fitness and vector competence. It shows that the quality of

  8. Ned-19 inhibition of parasite growth and multiplication suggests a role for NAADP mediated signalling in the asexual development of Plasmodium falciparum.

    Science.gov (United States)

    Suárez-Cortés, Pablo; Gambara, Guido; Favia, Annarita; Palombi, Fioretta; Alano, Pietro; Filippini, Antonio

    2017-09-12

    Although malaria is a preventable and curable human disease, millions of people risk to be infected by the Plasmodium parasites and to develop this illness. Therefore, there is an urgent need to identify new anti-malarial drugs. Ca 2+ signalling regulates different processes in the life cycle of Plasmodium falciparum, representing a suitable target for the development of new drugs. This study investigated for the first time the effect of a highly specific inhibitor of nicotinic acid adenine dinucleotide phosphate (NAADP)-induced Ca 2+ release (Ned-19) on P. falciparum, revealing the inhibitory effect of this compound on the blood stage development of this parasite. Ned-19 inhibits both the transition of the parasite from the early to the late trophozoite stage and the ability of the late trophozoite to develop to the multinucleated schizont stage. In addition, Ned-19 affects spontaneous intracellular Ca 2+ oscillations in ring and trophozoite stage parasites, suggesting that the observed inhibitory effects may be associated to regulation of intracellular Ca 2+ levels. This study highlights the inhibitory effect of Ned-19 on progression of the asexual life cycle of P. falciparum. The observation that Ned-19 inhibits spontaneous Ca 2+ oscillations suggests a potential role of NAADP in regulating Ca 2+ signalling of P. falciparum.

  9. Analysis of the plasmodium falciparum proteome by high-accuracy mass spectrometry

    DEFF Research Database (Denmark)

    Lasonder, Edwin; Ishihama, Yasushi; Andersen, Jens S

    2002-01-01

    -accuracy (average deviation less than 0.02 Da at 1,000 Da) mass spectrometric proteome analysis of selected stages of the human malaria parasite Plasmodium falciparum. The analysis revealed 1,289 proteins of which 714 proteins were identified in asexual blood stages, 931 in gametocytes and 645 in gametes. The last...

  10. Randomized, placebo-controlled trial of atovaquone/proguanil for the prevention of Plasmodium falciparum or Plasmodium vivax malaria among migrants to Papua, Indonesia.

    Science.gov (United States)

    Ling, Judith; Baird, J Kevin; Fryauff, David J; Sismadi, Priyanto; Bangs, Michael J; Lacy, Mark; Barcus, Mazie J; Gramzinski, Robert; Maguire, Jason D; Kumusumangsih, Marti; Miller, Gerri B; Jones, Trevor R; Chulay, Jeffrey D; Hoffman, Stephen L

    2002-10-01

    The increasing prevalence of resistance to antimalarial drugs reduces options for malaria prophylaxis. Atovaquone/proguanil (Malarone; GlaxoSmithKline) has been >95% effective in preventing Plasmodium falciparum malaria in lifelong residents of areas of holoendemicity, but data from persons without clinical immunity or who are at risk for Plasmodium vivax malaria have not been described. We conducted a randomized, double-blinded study involving 297 people from areas of nonendemicity in Indonesia who migrated to Papua (where malaria is endemic) proguanil hydrochloride; n=148) or placebo (n=149) per day for 20 weeks. Hematologic and clinical chemistry values did not change significantly. The protective efficacy of atovaquone/proguanil was 84% (95% confidence interval [CI], 44%-95%) for P. vivax malaria, 96% (95% CI, 72%-99%) for P. falciparum malaria, and 93% (95% CI, 77%-98%) overall. Atovaquone/proguanil was well tolerated, safe, and effective for the prevention of drug-resistant P. vivax and P. falciparum malaria in individuals without prior malaria exposure who migrated to Papua, Indonesia.

  11. Limited cross-reactivity among domains of the Plasmodium falciparum clone 3D7 erythrocyte membrane protein 1 family

    DEFF Research Database (Denmark)

    Joergensen, Louise; Turner, Louise; Magistrado, Pamela

    2006-01-01

    The var gene-encoded Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family is responsible for antigenic variation and sequestration of infected erythrocytes during malaria. We have previously grouped the 60 PfEMP1 variants of P. falciparum clone 3D7 into groups A and B/A (category A......) and groups B, B/C, and C (category non-A). Expression of category A molecules is associated with severe malaria, and that of category non-A molecules is associated with uncomplicated malaria and asymptomatic infection. Here we assessed cross-reactivity among 60 different recombinant PfEMP1 domains derived...... from clone 3D7 by using a competition enzyme-linked immunosorbent assay and a pool of plasma from 63 malaria-exposed Tanzanian individuals. We conclude that naturally acquired antibodies are largely directed toward epitopes varying between different domains with a few, mainly category A, domains...

  12. [Congenital malaria due to Plasmodium falciparum and Plasmodium malariae].

    Science.gov (United States)

    Zenz, W; Trop, M; Kollaritsch, H; Reinthaler, F

    2000-05-19

    Increasing tourism and growing numbers of immigrants from malaria-endemic countries are leading to a higher importation rate of rare tropical disorders in European countries. We describe, to the best of our knowledge, the first case of connatal malaria in Austria. The patient is the first child of a 24 year old mother who was born in Ghana and immigrated to Austria one and a half years before delivery. She did not stay in an endemic region during this period and did not show fever or any other signs of malaria. The boy was healthy for the first six weeks of his life. In the 8th week of life he was admitted to our hospital due to persistent fever of unknown origin. On physical examination he showed only mild splenomegaly. Routine laboratory testing revealed mild hemolytic anemia with a hemoglobin value of 8.3 g/l. In the blood smear Plasmodium falciparum and Plasmodium malariae were detected. Oral therapy with quinine hydrochloride was successful and blood smears became negative for Plasmodia within 6 days. This case shows that congenital malaria can occur in children of clinically healthy women who were born in malaria-endemic areas even one and a half year after they have immigrated to non-endemic regions.

  13. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number.

    Science.gov (United States)

    Price, Ric N; Uhlemann, Anne-Catrin; Brockman, Alan; McGready, Rose; Ashley, Elizabeth; Phaipun, Lucy; Patel, Rina; Laing, Kenneth; Looareesuwan, Sornchai; White, Nicholas J; Nosten, François; Krishna, Sanjeev

    The borders of Thailand harbour the world's most multidrug resistant Plasmodium falciparum parasites. In 1984 mefloquine was introduced as treatment for uncomplicated falciparum malaria, but substantial resistance developed within 6 years. A combination of artesunate with mefloquine now cures more than 95% of acute infections. For both treatment regimens, the underlying mechanisms of resistance are not known. The relation between polymorphisms in the P falciparum multidrug resistant gene 1 (pfmdr1) and the in-vitro and in-vivo responses to mefloquine were assessed in 618 samples from patients with falciparum malaria studied prospectively over 12 years. pfmdr1 copy number was assessed by a robust real-time PCR assay. Single nucleotide polymorphisms of pfmdr1, P falciparum chloroquine resistance transporter gene (pfcrt) and P falciparum Ca2+ ATPase gene (pfATP6) were assessed by PCR-restriction fragment length polymorphism. Increased copy number of pfmdr1 was the most important determinant of in-vitro and in-vivo resistance to mefloquine, and also to reduced artesunate sensitivity in vitro. In a Cox regression model with control for known confounders, increased pfmdr1 copy number was associated with an attributable hazard ratio (AHR) for treatment failure of 6.3 (95% CI 2.9-13.8, p<0.001) after mefloquine monotherapy and 5.4 (2.0-14.6, p=0.001) after artesunate-mefloquine therapy. Single nucleotide polymorphisms in pfmdr1 were associated with increased mefloquine susceptibility in vitro, but not in vivo. Amplification in pfmdr1 is the main cause of resistance to mefloquine in falciparum malaria. Multidrug resistant P falciparum malaria is common in southeast Asia, but difficult to identify and treat. Genes that encode parasite transport proteins maybe involved in export of drugs and so cause resistance. In this study we show that increase in copy number of pfmdr1, a gene encoding a parasite transport protein, is the best overall predictor of treatment failure with

  14. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Zbynek Bozdech

    2003-10-01

    Full Text Available Plasmodium falciparum is the causative agent of the most burdensome form of human malaria, affecting 200-300 million individuals per year worldwide. The recently sequenced genome of P. falciparum revealed over 5,400 genes, of which 60% encode proteins of unknown function. Insights into the biochemical function and regulation of these genes will provide the foundation for future drug and vaccine development efforts toward eradication of this disease. By analyzing the complete asexual intraerythrocytic developmental cycle (IDC transcriptome of the HB3 strain of P. falciparum, we demonstrate that at least 60% of the genome is transcriptionally active during this stage. Our data demonstrate that this parasite has evolved an extremely specialized mode of transcriptional regulation that produces a continuous cascade of gene expression, beginning with genes corresponding to general cellular processes, such as protein synthesis, and ending with Plasmodium-specific functionalities, such as genes involved in erythrocyte invasion. The data reveal that genes contiguous along the chromosomes are rarely coregulated, while transcription from the plastid genome is highly coregulated and likely polycistronic. Comparative genomic hybridization between HB3 and the reference genome strain (3D7 was used to distinguish between genes not expressed during the IDC and genes not detected because of possible sequence variations. Genomic differences between these strains were found almost exclusively in the highly antigenic subtelomeric regions of chromosomes. The simple cascade of gene regulation that directs the asexual development of P. falciparum is unprecedented in eukaryotic biology. The transcriptome of the IDC resembles a "just-in-time" manufacturing process whereby induction of any given gene occurs once per cycle and only at a time when it is required. These data provide to our knowledge the first comprehensive view of the timing of transcription throughout the

  15. Does radical cure of asymptomatic Plasmodium falciparum place adults in endemic areas at increased risk of recurrent symptomatic malaria?

    Science.gov (United States)

    Owusu-Agyei, Seth; Binka, Fred; Koram, Kwadwo; Anto, Francis; Adjuik, Martin; Nkrumah, Francis; Smith, Tom

    2002-07-01

    A cohort of 197 adults in Kassena-Nankana District (northern Ghana) was radically cured of malaria parasites to study subsequent incidence of malaria infection. During the following 20 weeks of the malaria transmission season, 49% experienced clinical attacks associated with Plasmodium falciparum parasitaemia. In a group of 202 adults identically followed-up 1 year later without being treated, only 38% experienced such episodes (log-rank test for equality of survivor functions, P=0.035). Clinical attacks in radically cured individuals presented with lower parasite densities but more symptoms. Randomized studies are needed to test the hypothesis that radical cure of P. falciparum enhances the risk and severity of subsequent clinical malaria attacks.

  16. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum

    NARCIS (Netherlands)

    Butzloff, Sabine; Groves, Matthew R; Wrenger, Carsten; Müller, Ingrid B

    The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied

  17. Potentiation of Artemisinin Activity against Chloroquine-Resistant Plasmodium falciparum Strains by Using Heme Models

    Science.gov (United States)

    Benoit-Vical, Françoise; Robert, Anne; Meunier, Bernard

    1999-01-01

    The influence of different metalloporphyrin derivatives on the antimalarial activity of artemisinin was studied with two chloroquine-resistant strains of Plasmodium falciparum (FcB1-Colombia and FcM29-Cameroon) cultured in human erythrocytes. This potentiation study indicates that the manganese complex of meso-tetrakis(4-sulfonatophenyl)porphyrin has a significant synergistic effect on the activity of artemisinin against both Plasmodium strains. PMID:10508044

  18. Targeting a Novel Plasmodium falciparum Purine Recycling Pathway with Specific Immucillins

    International Nuclear Information System (INIS)

    Ting, L; Shi, W; Lewandowicz, A; Singh, V; Mwakingwe, A; Birck, M R; Taylor Ringia, E A; Bench, G; Madrid, D C; Tyler, P C; Evans, G B; Furneaux, R H; Schramm, V L; Kim, K.

    2004-01-01

    Plasmodium falciparum is unable to synthesize purine bases and relies upon purine salvage and purine recycling to meet its purine needs. We report that purines formed as products of the polyamine pathway are recycled in a novel pathway in which 5'-methylthioinosine is generated by adenosine deaminase. The action of P. falciparum purine nucleoside phosphorylase is a convergent step of purine salvage, converting both 5'-methylthioinosine and inosine to hypoxanthine. We used accelerator mass spectrometry to verify that 5'-methylthioinosine is an active nucleic acid precursor in P. falciparum. Prior studies have shown that inhibitors of purine salvage enzymes kill malaria, but potent malaria-specific inhibitors of these enzymes have not previously been described. 5'-methylthio-Immucillin-H, a transition state analogue inhibitor that is selective for malarial over human purine nucleoside phosphorylase, kills P. falciparum in culture. Immucillins are currently in clinical trials for other indications and may have application as antimalarials

  19. An impossible journey? The development of Plasmodium falciparum NF54 in Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    Julia Knöckel

    Full Text Available Although Anopheles mosquitoes are the vectors for human Plasmodium spp., there are also other mosquito species-among them culicines (Culex spp., Aedes spp.-present in malaria-endemic areas. Culicine mosquitoes transmit arboviruses and filarial worms to humans and are vectors for avian Plasmodium spp., but have never been observed to transmit human Plasmodium spp. When ingested by a culicine mosquito, parasites could either face an environment that does not allow development due to biologic incompatibility or be actively killed by the mosquito's immune system. In the latter case, the molecular mechanism of killing must be sufficiently powerful that Plasmodium is not able to overcome it. To investigate how human malaria parasites develop in culicine mosquitoes, we infected Culex quinquefasciatus with Plasmodium falciparum NF54 and monitored development of parasites in the blood bolus and midgut epithelium at different time points. Our results reveal that ookinetes develop in the midgut lumen of C. quinquefasciatus in slightly lower numbers than in Anopheles gambiae G3. After 30 hours, parasites have invaded the midgut and can be observed on the basal side of the midgut epithelium by confocal and transmission electron microscopy. Very few of the parasites in C. quinquefasciatus are alive, most of them are lysed. Eight days after the mosquito's blood meal, no oocysts can be found in C. quinquefasciatus. Our results suggest that the mosquito immune system could be involved in parasite killing early in development after ookinetes have crossed the midgut epithelium and come in contact with the mosquito hemolymph.

  20. PfClpC Is an Essential Clp Chaperone Required for Plastid Integrity and Clp Protease Stability in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Anat Florentin

    2017-11-01

    Full Text Available Summary: The deadly malaria parasite Plasmodium falciparum contains a nonphotosynthetic plastid, known as the apicoplast, that functions to produce essential metabolites, and drugs that target the apicoplast are clinically effective. Several prokaryotic caseinolytic protease (Clp genes have been identified in the Plasmodium genome. Using phylogenetic analysis, we focused on the Clp members that may form a regulated proteolytic complex in the apicoplast. We genetically targeted members of this complex and generated conditional mutants of the apicoplast-localized PfClpC chaperone and PfClpP protease. Conditional inhibition of the PfClpC chaperone resulted in growth arrest and apicoplast loss and was rescued by addition of the essential apicoplast-derived metabolite IPP. Using a double-conditional mutant parasite line, we discovered that the chaperone activity is required to stabilize the mature protease, revealing functional interactions. These data demonstrate the essential function of PfClpC in maintaining apicoplast integrity and its role in regulating the proteolytic activity of the Clp complex. : Plasmodium falciparum contains a unique organelle, the apicoplast. Using genetic and phenotypic assays, Florentin et al. characterize the apicoplast Clp chaperone and protease. They find that the chaperone is essential for protease stability and that together they function to maintain organelle integrity and segregation into daughter cells. Keywords: malaria, Plasmodium, apicoplast, IPP, Clp, chaperone, caseinolytic protease

  1. Septic Shock due to Cytomegalovirus Infection in Acute Respiratory Distress Syndrome after Falciparum Malaria.

    Science.gov (United States)

    Harbarth; Meyer; Grau; Loutan; Ricou

    1997-09-01

    Incidence of falciparum malaria in developed countries has increased in recent years due to tourism to tropical countries and immigration from Asia and Africa. In Switzerland, about 250 cases of malaria were reported in 1994 to the Federal Office of Health, including three cases with fatal outcome.1 The most commonly described complications of plasmodia infection are cerebral malaria, acute renal failure, and severe anemia with disseminated intravascular coagulation. However, pulmonary involvement occurs in 3 to 10% of cases and represents the most serious complication of this infection, with a lethality of 70%.2,3 Furthermore, a pronounced general immunosuppression has been reported in malaria patients, which may predispose them to opportunistic infections.4 We report a case of Plasmodium falciparum infection complicated by severe acute respiratory distress syndrome (ARDS) with development of systemic cytomegalovirus (CMV) infection leading to death. This evolution implies a severe immune deficiency associated with malaria, as previously suggested in the literature.

  2. Antimalarial efficacy of Pongamia pinnata (L) Pierre against Plasmodium falciparum (3D7 strain) and Plasmodium berghei (ANKA).

    Science.gov (United States)

    Satish, P V V; Sunita, K

    2017-09-11

    The objective of the current study was to assess the in vitro antiplasmodial activities of leaf, bark, flower, and the root of Pongamia pinnata against chloroquine-sensitive Plasmodium falciparum (3D7 strain), cytotoxicity against Brine shrimp larvae and THP-1 cell line. For in vivo study, the plant extract which has shown potent in vitro antimalarial activity was tested against Plasmodium berghei (ANKA strain). The plant Pongamia pinnata was collected from the herbal garden of Acharya Nagarjuna University of Guntur district, Andhra Pradesh, India. Sequentially crude extracts of methanol (polar), chloroform (non-polar), hexane (non-polar), ethyl acetate (non-polar) and aqueous (polar) of dried leaves, bark, flowers and roots of Pongamia pinnata were prepared using Soxhlet apparatus. The extracts were screened for in vitro antimalarial activity against P. falciparum 3D7 strain. The cytotoxicity studies of crude extracts were conducted against Brine shrimp larvae and THP-1 cell line. Phytochemical analysis of the plant extracts was carried out by following the standard methods. The chemical injury to erythrocytes due to the plant extracts was checked. The in vivo study was conducted on P. berghei (ANKA) infected BALB/c albino mice by following 4-Day Suppressive, Repository, and Curative tests. Out of all the tested extracts, the methanol extract of the bark of Pongamia pinnata had shown an IC 50 value of 11.67 μg/mL with potent in vitro antimalarial activity and cytotoxicity evaluation revealed that this extract was not toxic against Brine shrimp and THP-1 cells. The injury to erythrocytes analysis had not shown any morphological alterations and damage to the erythrocytes after 48 h of incubation. Because methanolic bark extract of Pongamia pinnata has shown good antimalarial activity in vitro, it was also tested in vivo. So the extract had exhibited an excellent activity against P. berghei malaria parasite while decrement of parasite counts was moderately low and

  3. Efficacy and safety of atovaquone/proguanil as suppressive prophylaxis for Plasmodium falciparum malaria.

    Science.gov (United States)

    Shanks, G D; Gordon, D M; Klotz, F W; Aleman, G M; Oloo, A J; Sadie, D; Scott, T R

    1998-09-01

    Currently recommended prophylactic regimens for Plasmodium falciparum malaria are associated with a high incidence of adverse events and/or suboptimal efficacy. In a double-blind, placebo-controlled, randomized clinical trial in western Kenya, adult volunteers received a treatment course of atovaquone/proguanil hydrochloride (250 mg/100 mg per tablet) to eliminate preexisting infection. Immediately thereafter, subjects were randomized to one of the three prophylactic regimens to receive one atovaquone/proguanil tablet daily (n = 68), two atovaquone/proguanil tablets daily (n = 65), or placebo (n = 65) for 10 weeks. The study endpoint for any subject was the development of parasitemia, evident on blood smear, during prophylaxis. Of the evaluable subjects, all in the low-dose (54 of 54) and high-dose (54 of 54) atovaquone/proguanil groups remained malaria-free during the 10-week prophylaxis period, in contrast to only 48% (26 of 54) in the placebo group (P proguanil prophylactic regimens were as well tolerated as placebo. Thus, atovaquone/proguanil appears to be highly efficacious and safe as prophylaxis for P. falciparum malaria.

  4. Molecular cloning of a K+ channel from the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Ricke, Christina Høier; Litman, Thomas

    2004-01-01

    In most living cells, K(+) channels are important for the generation of the membrane potential and for volume regulation. The parasite Plasmodium falciparum, which causes malignant malaria, must be able to deal with large variations in the ambient K(+) concentration: it is exposed to high...... concentrations of K(+) when inside the erythrocyte and low concentrations when in plasma. In the recently published genome of P. falciparum, we have identified a gene, pfkch1, encoding a potential K(+) channel, which to some extent resembles the big-conductance (BK) K(+) channel. We have cloned the approximately...

  5. A method for visualizing surface-exposed and internal PfEMP1 adhesion antigens in Plasmodium falciparum infected erythrocytes

    DEFF Research Database (Denmark)

    Bengtsson, Dominique; Sowa, Kordai M; Salanti, Ali

    2008-01-01

    BACKGROUND: The insertion of parasite antigens into the host erythrocyte membrane and the structure and distribution of Plasmodium falciparum adhesion receptors on that membrane are poorly understood. Laser scanning confocal microscopy (LSCM) and a novel labelling and fixation method have been used...... fluorochromes has been developed for laser scanning confocal optical microscopy and the analysis of the developmental expression of malaria adhesion antigens....

  6. Filter paper collection of Plasmodium falciparum mRNA for detecting low-density gametocytes

    NARCIS (Netherlands)

    Jones, S.; Sutherland, C.J.; Hermsen, C.C.; Arens, T.; Teelen, K.A.E.M.; Hallett, R.; Corran, P.; van der Vegte-Bolmer, M.; Sauerwein, R.; Drakeley, C.; Bousema, J.T.

    2012-01-01

    ABSTRACT: BACKGROUND: Accurate sampling of sub-microscopic gametocytes is necessary for epidemiological studies to identify the infectious reservoir of Plasmodium falciparum. Detection of gametocyte mRNA achieves sensitive detection, but requires careful handling of samples. Filter papers can be

  7. Prevalence of falciparum malaria amongst pregnant women in Aba ...

    African Journals Online (AJOL)

    Malaria during pregnancy poses a substantial risk to mother and foetus especially an infection with Plasmodium falciparum. This study was undertaken to assess the prevalence of falciparum malaria among pregnant women in Aba South Local Government Area, Abia State, south-east Nigeria. Blood samples from 432 ...

  8. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda

    NARCIS (Netherlands)

    Kateera, Fredrick; Nsobya, Sam L.; Tukwasibwe, Stephen; Mens, Petra F.; Hakizimana, Emmanuel; Grobusch, Martin P.; Mutesa, Leon; Kumar, Nirbhay; van Vugt, Michele

    2016-01-01

    Malaria remains a public health challenge in sub-Saharan Africa with Plasmodium falciparum being the principal cause of malaria disease morbidity and mortality. Plasmodium falciparum virulence is attributed, in part, to its population-level genetic diversity-a characteristic that has yet to be

  9. Plasmodium falciparum uses vitamin E to avoid oxidative stress.

    Science.gov (United States)

    Sussmann, Rodrigo A C; Fotoran, Wesley L; Kimura, Emilia A; Katzin, Alejandro M

    2017-10-10

    Plasmodium falciparum is sensitive to oxidative stress in vitro and in vivo, and many drugs such as artemisinin, chloroquine and cercosporin interfere in the parasite's redox system. To minimize the damage caused by reactive radicals, antioxidant enzymes and their substrates found in parasites and in erythrocytes must be functionally active. It was shown that P. falciparum synthesizes vitamin E and that usnic acid acts as an inhibitor of its biosynthesis. Vitamin E is a potent antioxidant that protects polyunsaturated fatty acids from lipid peroxidation, and this activity can be measured by detecting its oxidized product and by evaluating reactive oxygen species (ROS) levels. Here, we demonstrated that ROS levels increased in P. falciparum when vitamin E biosynthesis was inhibited by usnic acid treatment and decreased to basal levels if exogenous vitamin E was added. Furthermore, we used metabolic labelling to demonstrate that vitamin E biosynthesized by the parasite acts as an antioxidant since we could detect its radiolabeled oxidized product. The treatment with chloroquine or cercosporin of the parasites increased the ratio between α-tocopherolquinone and α-tocopherol. Our findings demonstrate that vitamin E produced endogenously by P. falciparum is active as an antioxidant, probably protecting the parasite from the radicals generated by drugs.

  10. Species-specific escape of Plasmodium sporozoites from oocysts of avian, rodent, and human malarial parasites.

    Science.gov (United States)

    Orfano, Alessandra S; Nacif-Pimenta, Rafael; Duarte, Ana P M; Villegas, Luis M; Rodrigues, Nilton B; Pinto, Luciana C; Campos, Keillen M M; Pinilla, Yudi T; Chaves, Bárbara; Barbosa Guerra, Maria G V; Monteiro, Wuelton M; Smith, Ryan C; Molina-Cruz, Alvaro; Lacerda, Marcus V G; Secundino, Nágila F C; Jacobs-Lorena, Marcelo; Barillas-Mury, Carolina; Pimenta, Paulo F P

    2016-08-02

    Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P. berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P. gallinaceum and P. berghei, and the two main species that cause malaria in humans, P. vivax and P. falciparum. It was found that sporozoites have species-specific mechanisms of escape from the oocyst. The two model species of Plasmodium had a common mechanism, in which the oocyst wall breaks down before sporozoites emerge. In contrast, P. vivax and P. falciparum sporozoites show a dynamic escape mechanism from the oocyst via polarized propulsion. This study demonstrated that Plasmodium species do not share a common mechanism of sporozoite escape, as previously thought, but show complex and species-specific mechanisms. In addition, the knowledge of this phenomenon in human Plasmodium can facilitate transmission-blocking studies and not those ones only based on the murine and avian models.

  11. Sub-microscopic infections and long-term recrudescence of Plasmodium falciparum in Mozambican pregnant women

    Directory of Open Access Journals (Sweden)

    Mandomando Inacio

    2009-01-01

    Full Text Available Abstract Background Control of malaria in pregnancy remains a public health challenge. Improvements in its correct diagnosis and the adequacy of protocols to evaluate anti-malarial drug efficacy in pregnancy, are essential to achieve this goal. Methods The presence of Plasmodium falciparum was assessed by real-time (RT PCR in 284 blood samples from pregnant women with clinical complaints suggestive of malaria, attending the maternity clinic of a Mozambican rural hospital. Parasite recrudescences in 33 consecutive paired episodes during the same pregnancy were identified by msp1 and msp2 genotyping. Results Prevalence of parasitaemia by microscopy was 5.3% (15/284 and 23.2% (66/284 by RT-PCR. Sensitivity of microscopy, compared to RT-PCR detection, was 22.7%. Risk of maternal anaemia was higher in PCR-positive women than in PCR-negative women (odds ratio [OR] = 1.92, 95% confidence interval [CI] 1.09–3.36. Genotyping confirmed that recrudescence after malaria treatment occurred in 7 (21% out of 33 pregnant women with consecutive episodes during the same pregnancy (time range between recrudescent episodes: 14 to 187 days. Conclusion More accurate and sensitive diagnostic indicators of malaria infection in pregnancy are needed to improve malaria control. Longer follow-up periods than the standard in vivo drug efficacy protocol should be used to assess anti-malarial drug efficacy in pregnancy.

  12. The efficacy of artemether in the treatment of Plasmodium falciparum malaria in Sudan

    DEFF Research Database (Denmark)

    Elhassan, I M; Satti, G H; Ali, A E

    1994-01-01

    The efficacy of artemether (a qinghaosu derivative) administered intramuscularly for the treatment of Plasmodium falciparum malaria was compared to quinine in an open randomized trial including 54 patients in eastern Sudan, where chloroquine resistance is common. The artemether treatment (5 d...

  13. A simple field kit for the determination of drug susceptibility in Plasmodium falciparum.

    Science.gov (United States)

    Nguyen-Dinh, P; Magloire, R; Chin, W

    1983-05-01

    A field kit has been developed which greatly simplifies the performance of the 48-hour in vitro test for drug resistance in Plasmodium falciparum. The kit uses an easily reconstituted lyophilized culture medium, and requires only a fingerprick blood sample. In parallel tests with 13 isolates of P. falciparum in Haiti, the new technique had a success rate equal to that of the previously described method, with comparable results in terms of parasite susceptibility in vitro to chloroquine and pyrimethamine.

  14. Salivary Glands Proteins Expression of Anopheles dirus A Fed on Plasmodium vivax- and Plasmodium falciparum-Infected Human Blood

    Directory of Open Access Journals (Sweden)

    Saowanee Cotama

    2013-01-01

    Full Text Available Mosquitoes are able to adapt to feed on blood by the salivary glands which created a protein that works against the haemostasis process. This study aims to investigate the salivary glands proteins expression of 50 adult female An. dirus A mosquitoes, a main vector of malaria in Thailand, each group with an age of 5 days which were artificial membrane fed on sugar, normal blood, blood infected with P. vivax, and blood infected with P. falciparum. Then mosquito salivary gland proteins were analyzed by SDS-PAGE on days 0, 1, 2, 3, and 4 after feeding. The findings revealed that the major salivary glands proteins had molecular weights of 62, 58, 43, 36, 33, 30, and 18 kDa. One protein band of approximately 13 kDa was found in normal blood and blood infected with P. vivax fed on day 0. A stronger protein band, 65 kDa, was expressed from the salivary glands of mosquitoes fed with P. vivax- or P. falciparum-infected blood on only day 0, but none on days 1 to 4. The study shows that salivary glands proteins expression of An. dirus may affect the malaria parasite life cycle and the ability of mosquitoes to transmit malaria parasites in post-24-hour disappearance observation.

  15. frequency and seasonal variation of plasmodium species in southern districts of Khyber pakhtunkhwa

    International Nuclear Information System (INIS)

    Khan, N.U.

    2014-01-01

    To determine the frequency of malaria and seasonal variation of Plasmodium species in southern districts of Khyber Pakhtunkhwa. Study Design: Descriptive study. Place and Duration of study: Department of Pathology Combined Military Hospital (CMH), Bannu, from 1st January 2010 to 31st December 2011. Patients and Methods: Five thousand eight hundred and seventy eight (5878) patients with symptoms of fever, nausea, malaise and body aches irrespective of age and gender were included in the study. Samples were collected, thin and thick smears of the samples were prepared and stained with Giemsa's stain. Thick film was used for screening for malaria parasites and species identification was done on thin smears. Results: Out of 5878 patients, 1962 (28.8%) were found to be positive for malaria. Of them 1524 (90%) had plasmodium vivax infection, while 119 (7.0%) patients were infected with plasmodium falciparum, 49 (3.0%) of the patients were infected with both Plasmodium vivax and Plasmodium falciparum. Plasmodium vivax was most common in the months of August 203 (12.3%) patients, September 235 (14.3%) patients and October 317 (20%), whereas plasmodium falciparum infection was most common in the months of October 34 (28.6%) patients, November 19 (16%) patients and December 30 (25.2%) patients. Conclusion: Malaria is an endemic infectious disease in Pakistan, in the Southern districts of Khyber Pakhtunkhaw and tribal areas of North and South Waziristan. It is prevalent throughout the year and most noticeably from May to November. (author)

  16. Paludismo por Plasmodium falciparum adquirido en África subsahariana Plasmodium falciparum malaria acquired in Subsaharian Africa

    Directory of Open Access Journals (Sweden)

    Ricardo Durlach

    2009-02-01

    Full Text Available El objetivo de este trabajo es presentar los casos de paludismo por Plasmodium falciparum ocurridos en viajeros provenientes del África tropical, atendidos en el Hospital Alemán. Se definió paludismo de origen africano como la infección adquirida en un país del África subsahariana, diagnosticado y tratado en la Argentina. El diagnóstico se realizó por la clínica y la microscopía óptica en frotis de sangre periférica coloreados con Giemsa. Se revieron las historias clínicas de 11 pacientes adultos -cinco turistas y seis marineros mercantes- no oriundos de área endémica, sin condición inmunosupresora, ni morbilidad asociada, internados entre 1993 y 2007. El rango de edad fue de 21 a 48 años; nueve hombres y dos mujeres. Los pacientes fueron clasificados retrospectivamente en malaria grave (seis o no grave (cinco según cumplieran con uno o más de los criterios de gravedad de la Organización Mundial de la Salud. Todos presentaron fiebre como signo más significativo. Como complicaciones graves se observaron casos de insuficiencia renal, epistaxis, hemoglobinuria, hipoglucemia, edema pulmonar, acidosis y coma. Tres pacientes requirieron internación en la unidad de terapia intensiva. Todos sobrevivieron y solamente tres habían recibido la quimioprofilaxis correcta antes de viajar. El tratamiento se realizó con una o más de las siguientes drogas: mefloquina, quinidina, clindamicina y cotrimoxazol.The purpose of this paper is to present the cases of malaria caused by Plasmodium falciparum in travelers coming from tropical Africa, who were treated at the Hospital Alemán (Buenos Aires. African malaria was defined as an infection acquired in any country within Africa, diagnosed and treated in Argentina. Diagnostic tools included clinical features and optic microscopy with Giemsa stained peripheral blood films. We reviewed the medical records of 11 adult patients -five tourists and six sailors- with no history of malaria

  17. In vitro adaptation of Plasmodium falciparum reveal variations in cultivability

    OpenAIRE

    White, John; Mascarenhas, Anjali; Pereira, Ligia; Dash, Rashmi; Walke, Jayashri T.; Gawas, Pooja; Sharma, Ambika; Manoharan, Suresh Kumar; Guler, Jennifer L.; Maki, Jennifer N.; Kumar, Ashwani; Mahanta, Jagadish; Valecha, Neena; Dubhashi, Nagesh; Vaz, Marina

    2016-01-01

    Background Culture-adapted Plasmodium falciparum parasites can offer deeper understanding of geographic variations in drug resistance, pathogenesis and immune evasion. To help ground population-based calculations and inferences from culture-adapted parasites, the complete range of parasites from a study area must be well represented in any collection. To this end, standardized adaptation methods and determinants of successful in vitro adaption were sought. Methods Venous blood was collected f...

  18. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    Science.gov (United States)

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  19. Antibodies to a recombinant glutamate-rich Plasmodium falciparum protein

    DEFF Research Database (Denmark)

    Hogh, B; Petersen, E; Dziegiel, Morten Hanefeld

    1992-01-01

    A Plasmodium falciparum antigen gene coding for a 220-kD glutamate-rich protein (GLURP) has been cloned, and the 783 C-terminal amino acids of this protein (GLURP489-1271) have been expressed as a beta-galactosidase fusion protein in Escherichia coli. The encoded 783 amino acid residues contain two...... areas of repeated amino acid sequences. Antibodies against recombinant GLURP489-1271, as well as against a synthetic peptide corresponding to GLURP899-916, and against a synthetic peptide representing the major glutamate rich repeat sequence from the P. falciparum ring erythrocyte surface antigen (Pf155...... between the anti-GLURP489-1271 and anti-(EENV)6 antibody responses. The data provide indirect evidence for a protective role of antibodies reacting with recombinant GLURP489-1271 as well as with the synthetic peptide (EENV)6 from the Pf155/RESA....

  20. Geographical and temporal conservation of antibody recognition of Plasmodium falciparum variant surface antigens

    DEFF Research Database (Denmark)

    Nielsen, Morten A; Vestergaard, Lasse S; Lusingu, John

    2004-01-01

    The slow acquisition of protection against Plasmodium falciparum malaria probably reflects the extensive diversity of important antigens. The variant surface antigens (VSA) that mediate parasite adhesion to a range of host molecules are regarded as important targets of acquired protective immunity......, but their diversity makes them questionable vaccine candidates. We determined levels of VSA-specific immunoglobulin G (IgG) in human plasma collected at four geographically distant and epidemiologically distinct localities with specificity for VSA expressed by P. falciparum isolates from three African countries...

  1. Selection of Plasmodium falciparum Multidrug Resistance Gene 1 Alleles in Asexual Stages and Gametocytes by Artemether-Lumefantrine in Nigerian Children with Uncomplicated Falciparum Malaria ▿

    OpenAIRE

    Happi, C. T.; Gbotosho, G. O.; Folarin, O. A.; Sowunmi, A.; Hudson, T.; O'Neil, M.; Milhous, W.; Wirth, D. F.; Oduola, A. M. J.

    2008-01-01

    We assessed Plasmodium falciparum mdr1 (Pfmdr1) gene polymorphisms and copy numbers as well as P. falciparum Ca2+ ATPase (PfATPase6) gene polymorphisms in 90 Nigerian children presenting with uncomplicated falciparum malaria and enrolled in a study of the efficacy of artemether-lumefantrine (AL). The nested PCR-restriction fragment length polymorphism and the quantitative real-time PCR methodologies were used to determine the alleles of the Pfmdr1 and PfATPase6 genes and the Pfmdr1 copy numbe...

  2. Plasmodium malariae Infection Associated with a High Burden of Anemia: A Hospital-Based Surveillance Study.

    Directory of Open Access Journals (Sweden)

    Siobhan Langford

    2015-12-01

    Full Text Available Plasmodium malariae is a slow-growing parasite with a wide geographic distribution. Although generally regarded as a benign cause of malaria, it has been associated with nephrotic syndrome, particularly in young children, and can persist in the host for years. Morbidity associated with P. malariae infection has received relatively little attention, and the risk of P. malariae-associated nephrotic syndrome is unknown.We used data from a very large hospital-based surveillance system incorporating information on clinical diagnoses, blood cell parameters and treatment to describe the demographic distribution, morbidity and mortality associated with P. malariae infection in southern Papua, Indonesia. Between April 2004 and December 2013 there were 1,054,674 patient presentations to Mitra Masyarakat Hospital of which 196,380 (18.6% were associated with malaria and 5,097 were with P. malariae infection (constituting 2.6% of all malaria cases. The proportion of malaria cases attributable to P. malariae increased with age from 0.9% for patients under one year old to 3.1% for patients older than 15 years. Overall, 8.5% of patients with P. malariae infection required admission to hospital and the median length of stay for these patients was 2.5 days (Interquartile Range: 2.0-4.0 days. Patients with P. malariae infection had a lower mean hemoglobin concentration (9.0 g/dL than patients with P. falciparum (9.5 g/dL, P. vivax (9.6g/dL and mixed species infections (9.3g/dL. There were four cases of nephrotic syndrome recorded in patients with P. malariae infection, three of which were in children younger than 5 years old, giving a risk in this age group of 0.47% (95% Confidence Interval; 0.10% to 1.4%. Overall, 2.4% (n = 16 of patients hospitalized with P. malariae infection subsequently died in hospital, similar to the proportions for the other endemic Plasmodium species (range: 0% for P. ovale to 1.6% for P. falciparum.Plasmodium malariae infection is

  3. Hepatitis C virus infection may lead to slower emergence of P. falciparum in blood.

    Directory of Open Access Journals (Sweden)

    Odile Ouwe-Missi-Oukem-Boyer

    Full Text Available BACKGROUND: Areas endemic for Plasmodium falciparum, hepatitis B virus (HBV and hepatitis C virus (HCV overlap in many parts of sub-Saharan Africa. HBV and HCV infections develop in the liver, where takes place the first development stage of P. falciparum before its further spread in blood. The complex mechanisms involved in the development of hepatitis may potentially influence the development of the liver stage of malaria parasites. Understanding the molecular mechanisms of these interactions could provide new pathophysiological insights for treatment strategies in Malaria. METHODOLOGY: We studied a cohort of 319 individuals living in a village where the three infections are prevalent. The patients were initially given a curative antimalarial treatment and were then monitored for the emergence of asexual P. falciparum forms in blood, fortnightly for one year, by microscopy and polymerase chain reaction. PRINCIPAL FINDINGS: At inclusion, 65 (20.4% subjects had detectable malaria parasites in blood, 36 (11.3% were HBV chronic carriers, and 61 (18.9% were HCV chronic carriers. During follow-up, asexual P. falciparum forms were detected in the blood of 203 patients. The median time to P. falciparum emergence in blood was respectively 140 and 120 days in HBV- and HBV+ individuals, and 135 and 224 days in HCV- and HCV+ individuals. HCV carriage was associated with delayed emergence of asexual P. falciparum forms in blood relative to patients without HCV infection. CONCLUSIONS: This pilot study represents first tentative evidence of a potential epidemiological interaction between HBV, HCV and P. falciparum infections. Age is an important confounding factor in this setting however multivariate analysis points to an interaction between P. falciparum and HCV at the hepatic level with a slower emergence of P. falciparum in HCV chronic carriers. More in depth analysis are necessary to unravel the basis of hepatic interactions between these two pathogens

  4. Severe Plasmodium falciparum malaria is associated with circulating ultra-large von Willebrand multimers and ADAMTS13 inhibition.

    LENUS (Irish Health Repository)

    Larkin, Deirdre

    2009-03-01

    Plasmodium falciparum infection results in adhesion of infected erythrocytes to blood vessel endothelium, and acute endothelial cell activation, together with sequestration of platelets and leucocytes. We have previously shown that patients with severe infection or fulminant cerebral malaria have significantly increased circulatory levels of the adhesive glycoprotein von Willebrand factor (VWF) and its propeptide, both of which are indices of endothelial cell activation. In this prospective study of patients from Ghana with severe (n = 20) and cerebral (n = 13) P. falciparum malaria, we demonstrate that increased plasma VWF antigen (VWF:Ag) level is associated with disproportionately increased VWF function. VWF collagen binding (VWF:CB) was significantly increased in patients with cerebral malaria and severe malaria (medians 7.6 and 7.0 IU\\/ml versus 1.9 IU\\/ml; p<0.005). This increased VWF:CB correlated with the presence of abnormal ultra-large VWF multimers in patient rather than control plasmas. Concomitant with the increase in VWF:Ag and VWF:CB was a significant persistent reduction in the activity of the VWF-specific cleaving protease ADAMTS13 (approximately 55% of normal; p<0.005). Mixing studies were performed using P. falciparum patient plasma and normal pooled plasma, in the presence or absence of exogenous recombinant ADAMTS13. These studies demonstrated that in malarial plasma, ADAMTS13 function was persistently inhibited in a time-dependent manner. Furthermore, this inhibitory effect was not associated with the presence of known inhibitors of ADAMTS13 enzymatic function (interleukin-6, free haemoglobin, factor VIII or thrombospondin-1). These novel findings suggest that severe P. falciparum infection is associated with acute endothelial cell activation, abnormal circulating ULVWF multimers, and a significant reduction in plasma ADAMTS13 function which is mediated at least in part by an unidentified inhibitor.

  5. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine.

    Directory of Open Access Journals (Sweden)

    Stephen A Kaba

    Full Text Available The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+ and CD4(+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects.To establish the basis for a SAPN-based vaccine, B- and CD8(+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP. We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year protective antibody and poly-functional (IFNγ(+, IL-2(+ long-lived central memory CD8(+ T-cells. Furthermore, we demonstrated that these Ab or CD8(+ T-cells can independently provide sterile protection against a lethal challenge of the transgenic parasites.The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.

  6. Mutations in Plasmodium falciparum K13 propeller gene from Bangladesh (2009-2013).

    Science.gov (United States)

    Mohon, Abu Naser; Alam, Mohammad Shafiul; Bayih, Abebe Genetu; Folefoc, Asongna; Shahinas, Dea; Haque, Rashidul; Pillai, Dylan R

    2014-11-18

    Bangladesh is a malaria hypo-endemic country sharing borders with India and Myanmar. Artemisinin combination therapy (ACT) remains successful in Bangladesh. An increase of artemisinin-resistant malaria parasites on the Thai-Cambodia and Thai-Myanmar borders is worrisome. K13 propeller gene (PF3D7_1343700 or PF13_0238) mutations have been linked to both in vitro artemisinin resistance and in vivo slow parasite clearance rates. This group undertook to evaluate if mutations seen in Cambodia have emerged in Bangladesh where ACT use is now standard for a decade. Samples were obtained from Plasmodium falciparum-infected malaria patients from Upazila health complexes (UHC) between 2009 and 2013 in seven endemic districts of Bangladesh. These districts included Khagrachari (Matiranga UHC), Rangamati (Rajasthali UHC), Cox's Bazar (Ramu and Ukhia UHC), Bandarban (Lama UHC), Mymensingh (Haluaghat UHC), Netrokona (Durgapur and Kalmakanda UHC), and Moulvibazar (Sreemangal and Kamalganj UHC). Out of 296 microscopically positive P. falciparum samples, 271 (91.6%) were confirmed as mono-infections by both real-time PCR and nested PCR. The K13 propeller gene from 253 (93.4%) samples was sequenced bi-directionally. One non-synonymous mutation (A578S) was found in Bangladeshi clinical isolates. The A578S mutation was confirmed and lies adjacent to the C580Y mutation, the major mutation causing delayed parasite clearance in Cambodia. Based on computational modeling A578S should have a significant effect on tertiary structure of the protein. The data suggest that P. falciparum in Bangladesh remains free of the C580Y mutation linked to delayed parasite clearance. However, the mutation A578S is present and based on structural analysis could affect K13 gene function. Further in vivo clinical studies are required to validate the effect of this mutation.

  7. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo.

    Science.gov (United States)

    Soares, Roberta Reis; da Silva, José Marcio Fernandes; Carlos, Bianca Cecheto; da Fonseca, Camila Campos; de Souza, Laila Salomé Araújo; Lopes, Fernanda Valério; de Paula Dias, Rafael Mafra; Moreira, Paulo Otávio Lourenço; Abramo, Clarice; Viana, Gustavo Henrique Ribeiro; de Pila Varotti, Fernando; da Silva, Adilson David; Scopel, Kézia Katiani Gorza

    2015-06-01

    Malaria continues to be an important public health problem in the world. Nowadays, the widespread parasite resistance to many drugs used in antimalarial therapy has made the effective treatment of cases and control of the disease a constant challenge. Therefore, the discovery of new molecules with good antimalarial activity and tolerance to human use can be really important in the further treatment of the disease. In this study we have investigated the antiplasmodial activity of 10 synthetic compounds derived from quinoline, five of them combined to sulfonamide and five to the hydrazine or hydrazide group. The compounds were evaluated according to their cytotoxicity against HepG2 and HeLa cell lines, their antimalarial activity against CQ-sensitive and CQ-resistant Plasmodium falciparum strains and, finally, their schizonticide blood action in mice infected with Plasmodium berghei NK65. The compounds exhibited no cytotoxic action in HepG2 and HeLa cell lines when tested up to a concentration of 100 μg/mL. In addition, the hydrazine or hydrazide derivative compounds were less cytotoxic against cell lines and more active against CQ-sensitive and CQ-resistant P. falciparum strains, showing high SI (>1000 when SI was calculated using the CC50 from the 3D7 strain as reference). When tested in vivo, the hydrazine derivative 1f compound showed activity against the development of blood parasites similar to that observed with CQ, the reference drug. Interestingly, the 1f compound demonstrated the best LipE value (4.84) among all those tested in vivo. Considering the in vitro and in vivo activities of the compounds studied here and the LipE values, we believe the 1f compound to be the most promising molecule for further studies in antimalarial chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of Var genes during mitosis.

    Science.gov (United States)

    Claessens, Antoine; Hamilton, William L; Kekre, Mihir; Otto, Thomas D; Faizullabhoy, Adnan; Rayner, Julian C; Kwiatkowski, Dominic

    2014-12-01

    The most polymorphic gene family in P. falciparum is the ∼60 var genes distributed across parasite chromosomes, both in the subtelomeres and in internal regions. They encode hypervariable surface proteins known as P. falciparum erythrocyte membrane protein 1 (PfEMP1) that are critical for pathogenesis and immune evasion in Plasmodium falciparum. How var gene sequence diversity is generated is not currently completely understood. To address this, we constructed large clone trees and performed whole genome sequence analysis to study the generation of novel var gene sequences in asexually replicating parasites. While single nucleotide polymorphisms (SNPs) were scattered across the genome, structural variants (deletions, duplications, translocations) were focused in and around var genes, with considerable variation in frequency between strains. Analysis of more than 100 recombination events involving var exon 1 revealed that the average nucleotide sequence identity of two recombining exons was only 63% (range: 52.7-72.4%) yet the crossovers were error-free and occurred in such a way that the resulting sequence was in frame and domain architecture was preserved. Var exon 1, which encodes the immunologically exposed part of the protein, recombined in up to 0.2% of infected erythrocytes in vitro per life cycle. The high rate of var exon 1 recombination indicates that millions of new antigenic structures could potentially be generated each day in a single infected individual. We propose a model whereby var gene sequence polymorphism is mainly generated during the asexual part of the life cycle.

  9. Artemisinin Resistance-Associated Polymorphisms at the K13-Propeller Locus Are Absent in Plasmodium falciparum Isolates from Haiti

    Science.gov (United States)

    Carter, Tamar E.; Boulter, Alexis; Existe, Alexandre; Romain, Jean R.; St. Victor, Jean Yves; Mulligan, Connie J.; Okech, Bernard A.

    2015-01-01

    Antimalarial drugs are a key tool in malaria elimination programs. With the emergence of artemisinin resistance in southeast Asia, an effort to identify molecular markers for surveillance of resistant malaria parasites is underway. Non-synonymous mutations in the kelch propeller domain (K13-propeller) in Plasmodium falciparum have been associated with artemisinin resistance in samples from southeast Asia, but additional studies are needed to characterize this locus in other P. falciparum populations with different levels of artemisinin use. Here, we sequenced the K13-propeller locus in 82 samples from Haiti, where limited government oversight of non-governmental organizations may have resulted in low-level use of artemisinin-based combination therapies. We detected a single-nucleotide polymorphism (SNP) at nucleotide 1,359 in a single isolate. Our results contribute to our understanding of the global genomic diversity of the K13-propeller locus in P. falciparum populations. PMID:25646258

  10. Plasmodium falciparum incidence relative to entomologic inoculation rates at a site proposed for testing malaria vaccines in western Kenya.

    Science.gov (United States)

    Beier, J C; Oster, C N; Onyango, F K; Bales, J D; Sherwood, J A; Perkins, P V; Chumo, D K; Koech, D V; Whitmire, R E; Roberts, C R

    1994-05-01

    Relationships between Plasmodium falciparum incidence and entomologic inoculation rates (EIRs) were determined for a 21-month period in Saradidi, western Kenya, in preparation for malaria vaccine field trials. Children, ranging in age from six months to six years and treated to clear malaria parasites, were monitored daily for up to 12 weeks to detect new malaria infections. Overall, new P. falciparum infections were detected in 77% of 809 children. The percentage of children that developed infections per two-week period averaged 34.7%, ranging from 7.3% to 90.9%. Transmission by vector populations was detected in 86.4% (38 of 44) of the two-week periods, with daily EIRs averaging 0.75 infective bites per person. Periods of intense transmission during April to August, and from November to January, coincided with seasonal rains. Relationships between daily malaria attack rates and EIRs indicated that an average of only 7.5% (1 in 13) of the sporozoite inoculations produced new infections in children. Regression analysis demonstrated that EIRs accounted for 74% of the variation in attack rates. One of the components of the EIR, the human-biting rate, alone accounted for 68% of the variation in attack rates. Thus, measurements of either the EIR or the human-biting rate can be used to predict corresponding attack rates in children. These baseline epidemiologic studies indicate that the intense transmission patterns of P. falciparum in Saradidi will provide excellent conditions for evaluating malaria vaccine efficacy.

  11. Dynamics of pfcrt alleles CVMNK and CVIET in chloroquine-treated Sudanese patients infected with Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Warhurst David C

    2010-03-01

    Full Text Available Abstract Background Parasite resistance to the anti-malarial drug chloroquine is common in eastern Sudan. Dynamic within-host changes in the relative abundance of both sensitive and resistant Plasmodium falciparum parasites were examined in a cohort of chloroquine-treated patients presenting with uncomplicated falciparum malaria, using a novel allele-specific quantitative approach. Methods Treatment outcomes were determined for 93 patients of all ages in a per protocol cohort using a modified 14-day WHO protocol. Parasite DNA samples at days 0, 1, 2, 3, 7 and 14 following treatment were analysed using real-time quantitative PCR methods that distinguished resistant and sensitive genotypes at amino acids 72 - 76 of the pfcrt locus. Results Chloroquine treatment was not efficacious, and of 93 assessable patients, only 10 individuals (10.7%; 95% C.I. 4.34 - 17.2% enjoyed an adequate clinical and parasitological response. Resistant parasites with the haplotype CVIET at codons 72-76 of the pfcrt locus were dominant in the starting population. Chloroquine sensitive parasites with the haplotype CVMNK were detected in 19 individuals prior to treatment (20.43%; 95% C.I. 5.14 - 18.5%. In these patients, CQ treatment rapidly selected CVIET parasites, and this haplotype overwhelmingly dominated the parasite population in each individual by day 2 after treatment. Conclusions Such rapid intra-host selection of particular genotypes after the introduction of drug will cause frequent misidentification of parasite genotypes present in the starting population. This will have a potentially serious confounding effect on clinical trials which employ PCR-corrected estimates of treatment failure, as resistant parasites below the detection threshold in the pre-treatment sample can be erroneously classified as "new" infections during follow-up, over-estimating drug efficacy.

  12. An FtsH protease is recruited to the mitochondrion of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Aiman Tanveer

    Full Text Available The two organelles, apicoplast and mitochondrion, of the malaria parasite Plasmodium falciparum have unique morphology in liver and blood stages; they undergo complex branching and looping prior to division and segregation into daughter merozoites. Little is known about the molecular processes and proteins involved in organelle biogenesis in the parasite. We report the identification of an AAA+/FtsH protease homolog (PfFtsH1 that exhibits ATP- and Zn(2+-dependent protease activity. PfFtsH1 undergoes processing, forms oligomeric assemblies, and is associated with the membrane fraction of the parasite cell. Generation of a transfectant parasite line with hemagglutinin-tagged PfFtsH1, and immunofluorescence assay with anti-PfFtsH1 Ab demonstrated that the protein localises to P. falciparum mitochondria. Phylogenetic analysis and the single transmembrane region identifiable in PfFtsH1 suggest that it is an i-AAA like inner mitochondrial membrane protein. Expression of PfFtsH1 in Escherichia coli converted a fraction of bacterial cells into division-defective filamentous forms implying a sequestering effect of the Plasmodium factor on the bacterial homolog, indicative of functional conservation with EcFtsH. These results identify a membrane-associated mitochondrial AAA+/FtsH protease as a candidate regulatory protein for organelle biogenesis in P. falciparum.

  13. Harvest of Plasmodium falciparum merozoites from continuous culture.

    Science.gov (United States)

    Mrema, J E; Campbell, G H; Jaramillo, A L; Miranda, R; Rieckmann, K H

    1979-01-01

    Spontaneously released merozoites were harvested from cultures in which 42-90% of the erythrocytes had been infected with mature forms of Plasmodium falciparum at the start of incubation. The mature forms had been extracted from asynchronous cultures by the use of Ficoll and Plasmagel gradients. As the mature forms consisted of both trophozoites and schizonts, merozoites were released into the culture medium over a long period of time. The synchrony of merozoite release did not appear to be improved by prior exposure of parasites to sorbitol. Over this prolonged period of incubation, the yield of merozoites was disappointingly low in cultures containing 2.5% of erythrocytes. At erythrocyte concentrations of 0.01-0.25%, 3-10 times more merozoites were released into the medium; 0.4-2.3 merozoites per initial mature form were harvested over a 15-19-hour period. In addition to merozoites, contents of the culture medium included intact erythrocytes, ghost cells, and other cellular fragments. Only intact erythrocytes were effectively removed from the medium by simple or Ficoll gradient centrifugation. Merozoite preparations that are free from host cellular material are important in the development of a human malaria vaccine.

  14. Biochemical and functional analysis of two Plasmodium falciparum blood-stage 6-cys proteins: P12 and P41.

    Directory of Open Access Journals (Sweden)

    Tana Taechalertpaisarn

    Full Text Available The genomes of Plasmodium parasites that cause malaria in humans, other primates, birds, and rodents all encode multiple 6-cys proteins. Distinct 6-cys protein family members reside on the surface at each extracellular life cycle stage and those on the surface of liver infective and sexual stages have been shown to play important roles in hepatocyte growth and fertilization respectively. However, 6-cys proteins associated with the blood-stage forms of the parasite have no known function. Here we investigate the biochemical nature and function of two blood-stage 6-cys proteins in Plasmodium falciparum, the most pathogenic species to afflict humans. We show that native P12 and P41 form a stable heterodimer on the infective merozoite surface and are secreted following invasion, but could find no evidence that this complex mediates erythrocyte-receptor binding. That P12 and P41 do not appear to have a major role as adhesins to erythrocyte receptors was supported by the observation that antisera to these proteins did not substantially inhibit erythrocyte invasion. To investigate other functional roles for these proteins their genes were successfully disrupted in P. falciparum, however P12 and P41 knockout parasites grew at normal rates in vitro and displayed no other obvious phenotypic changes. It now appears likely that these blood-stage 6-cys proteins operate as a pair and play redundant roles either in erythrocyte invasion or in host-immune interactions.

  15. Putative DNA G-quadruplex formation within the promoters of Plasmodium falciparum var genes

    Directory of Open Access Journals (Sweden)

    Rowe J

    2009-08-01

    Full Text Available Abstract Background Guanine-rich nucleic acid sequences are capable of folding into an intramolecular four-stranded structure called a G-quadruplex. When found in gene promoter regions, G-quadruplexes can downregulate gene expression, possibly by blocking the transcriptional machinery. Here we have used a genome-wide bioinformatic approach to identify Putative G-Quadruplex Sequences (PQS in the Plasmodium falciparum genome, along with biophysical techniques to examine the physiological stability of P. falciparum PQS in vitro. Results We identified 63 PQS in the non-telomeric regions of the P. falciparum clone 3D7. Interestingly, 16 of these PQS occurred in the upstream region of a subset of the P. falciparum var genes (group B var genes. The var gene family encodes PfEMP1, the parasite's major variant antigen and adhesin expressed at the surface of infected erythrocytes, that plays a key role in malaria pathogenesis and immune evasion. The ability of the PQS found in the upstream regions of group B var genes (UpsB-Q to form stable G-quadruplex structures in vitro was confirmed using 1H NMR, circular dichroism, UV spectroscopy, and thermal denaturation experiments. Moreover, the synthetic compound BOQ1 that shows a higher affinity for DNA forming quadruplex rather than duplex structures was found to bind with high affinity to the UpsB-Q. Conclusion This is the first demonstration of non-telomeric PQS in the genome of P. falciparum that form stable G-quadruplexes under physiological conditions in vitro. These results allow the generation of a novel hypothesis that the G-quadruplex sequences in the upstream regions of var genes have the potential to play a role in the transcriptional control of this major virulence-associated multi-gene family.

  16. Pro-inflammatory Cytokine Response and Genetic Diversity in Merozoite Surface Protein 2 of Plasmodium falciparum Isolates from Nigeria.

    Science.gov (United States)

    Ajibaye, Olusola; Osuntoki, Akinniyi A; Ebuehi, Albert Ot; Iwalokun, Bamidele A; Balogun, Emmanuel O; Egbuna, Kathleen N

    2017-01-01

    Polymorphisms in Plasmodium falciparum merozoite surface protein-2 ( msp -2) and associated parasite genetic diversity which varies between malaria-endemic regions remain a limitation in malaria vaccine development. Pro-inflammatory cytokines are important in immunity against malaria, understanding the influence of genetic diversity on cytokine response is important for effective vaccine design. P. falciparum isolates obtained from 300 Nigerians with uncomplicated falciparum malaria at Ijede General Hospital, Ijede (IJE), General Hospital Ajeromi, Ajeromi (AJE) and Saint Kizito Mission Hospital, Lekki, were genotyped by nested polymerase chain reaction of msp -2 block 3 while ELISA was used to determine the pro-inflammatory cytokine response to describe the genetic diversity of P. falciparum . Eighteen alleles were observed for msp -2 loci. Of the 195 isolates, 61 (31.0%) had only FC27-type alleles, 38 (19.7%) had only 3D7-type alleles, and 49.3% had multiple parasite lines with both alleles. Band sizes were 275-625 bp for FC27 and 150-425 bp for 3D7. Four alleles were observed from LEK, 2 (375-425 bp) and 2 (275-325 bp) of FC27-and 3D7-types, respectively; 12 alleles from AJE, 9 (275-625 bp) and 3 (325-425 bp) of FC27-types and 3D7-types, respectively; while IJE had a total of 12 alleles, 9 (275-625 bp) and 3 (325-425 bp) of FC27-types and 3D7-types, respectively. Mean multiplicity of infection (MOI) was 1.54. Heterozygosity ( H E ) ranged from 0.77 to 0.87 and was highest for IJE (0.87). Cytokine response was higher among 0.05) but with neither parasite density nor infection type. P. falciparum genetic diversity is extensive in Nigeria, protection via pro-inflammatory cytokines have little or no interplay with infection multiplicity.

  17. Investigating the activity of quinine analogues versus chloroquine resistant Plasmodium falciparum.

    Science.gov (United States)

    Dinio, Theresa; Gorka, Alexander P; McGinniss, Andrew; Roepe, Paul D; Morgan, Jeremy B

    2012-05-15

    Plasmodium falciparum, the deadliest malarial parasite species, has developed resistance against nearly all man-made antimalarial drugs within the past century. However, quinine (QN), the first antimalarial drug, remains efficacious worldwide. Some chloroquine resistant (CQR) P. falciparum strains or isolates show mild cross resistance to QN, but many do not. Further optimization of QN may provide a well-tolerated therapy with improved activity versus CQR malaria. Thus, using the Heck reaction, we have pursued a structure-activity relationship study, including vinyl group modifications of QN. Certain derivatives show good antiplasmodial activity in QN-resistant and QN-sensitive strains, with lower IC(50) values relative to QN. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. In vitro atovaquone/proguanil susceptibility and characterization of the cytochrome b gene of Plasmodium falciparum from different endemic regions of Thailand

    Directory of Open Access Journals (Sweden)

    Mungthin Mathirut

    2008-01-01

    Full Text Available Abstract Background The emergence of Plasmodium falciparum resistant to most currently used antimalarial drugs is the major problem in malaria control along the Thai-Myanmar and Thai-Cambodia borders. Although artemisinin-based combination therapy has been recommended for the treatment of multidrug-resistant falciparum malaria, these combinations are not available for some people, such as travelers from North America. A fixed-dose combination of atovaquone and proguanil (Malarone has been proved to be effective for the treatment and prophylaxis of malaria which is already approved by countries in North America and Europe. Determination of the phenotypes and genotypes related to atovaquone/proguanil response in Thai isolates of P. falciparum will be useful for rationale drug use. The main purpose of this study was to explore the in vitro atovaquone/proguanil susceptibility of recently adapted Thai isolates of P. falciparum. Genotypic characterization of the cytb gene of these isolates was also determined since it has been reported that point mutations, particularly codon 268 in the cytochrome b gene (cytb have been linked to atovaquone/proguanil treatment failure. Methods Eighty three P. falciparum isolates collected during 1998 to 2005 from four different multidrug resistance areas of Thailand were determined for the in vitro atovaquone/proguanil susceptibilities using radioisotopic assay. Mutations in the cytb gene were determined by PCR-RFLP and sequence analysis. Results The mean atovaquone and proguanil IC50 was 3.4 nM and 36.5 μM, respectively. All 83 Thai isolates were atovaquone sensitive. None of the 83 isolates contained the mutations at codon 268 of the cytb gene. DNA sequencing of the cytb gene of 20 parasite isolates showed no other mutations. Conclusion In agreement with a recent efficacy study of atovaquone/proguanil, the present information indicates that atovaquone/proguanil can be one of the drugs of choice for the treatment

  19. Comparison of allele frequencies of Plasmodium falciparum merozoite antigens in malaria infections sampled in different years in a Kenyan population.

    Science.gov (United States)

    Ochola-Oyier, Lynette Isabella; Okombo, John; Wagatua, Njoroge; Ochieng, Jacob; Tetteh, Kevin K; Fegan, Greg; Bejon, Philip; Marsh, Kevin

    2016-05-06

    Plasmodium falciparum merozoite antigens elicit antibody responses in malaria-endemic populations, some of which are clinically protective, which is one of the reasons why merozoite antigens are the focus of malaria vaccine development efforts. Polymorphisms in several merozoite antigen-encoding genes are thought to arise as a result of selection by the human immune system. The allele frequency distribution of 15 merozoite antigens over a two-year period, 2007 and 2008, was examined in parasites obtained from children with uncomplicated malaria. In the same population, allele frequency changes pre- and post-anti-malarial treatment were also examined. Any gene which showed a significant shift in allele frequencies was also assessed longitudinally in asymptomatic and complicated malaria infections. Fluctuating allele frequencies were identified in codons 147 and 148 of reticulocyte-binding homologue (Rh) 5, with a shift from HD to YH haplotypes over the two-year period in uncomplicated malaria infections. However, in both the asymptomatic and complicated malaria infections YH was the dominant and stable haplotype over the two-year and ten-year periods, respectively. A logistic regression analysis of all three malaria infection populations between 2007 and 2009 revealed, that the chance of being infected with the HD haplotype decreased with time from 2007 to 2009 and increased in the uncomplicated and asymptomatic infections. Rh5 codons 147 and 148 showed heterogeneity at both an individual and population level and may be under some degree of immune selection.

  20. Anti-Plasmodium falciparum invasion ligand antibodies in a low malaria transmission region, Loreto, Peru

    DEFF Research Database (Denmark)

    Villasis, Elizabeth; Lopez-Perez, Mary; Torres, Katherine

    2012-01-01

    Background: Erythrocyte invasion by Plasmodium falciparum is a complex process that involves two families; Erythrocyte Binding-Like (EBL) and the Reticulocyte Binding-Like (PfRh) proteins. Antibodies that inhibit merozoite attachment and invasion are believed to be important in mediating naturall...

  1. Confirmation of emergence of mutations associated with atovaquone-proguanil resistance in unexposed Plasmodium falciparum isolates from Africa

    OpenAIRE

    Happi, Christian T; Gbotosho, Grace O; Folarin, Onikepe A; Milner, Danny; Sarr, Ousmane; Sowunmi, Akintunde; Kyle, Dennis E; Milhous, Wilbur K; Wirth, Dyann F; Oduola, Ayoade MJ

    2006-01-01

    Abstract Background In vitro and in vivo resistance of Plasmodium falciparum to atovaquone or atovaquone-proguanil hydrochloride combination has been associated to two point mutations in the parasite cytochrome b (cytb) gene (Tyr268Ser and Tyr268Asn). However, little is known about the prevalence of codon-268 mutations in natural populations of P. falciparum without previous exposure to the drug in Africa. Methods The prevalence of codon-268 mutations in the cytb gene of African P. falciparum...

  2. Plasmodium falciparum-infected erythrocyte knob density is linked to the PfEMP1 variant expressed

    DEFF Research Database (Denmark)

    Subramani, Ramesh; Quadt, Katharina; Jeppesen, Anine Engholm

    2015-01-01

    expression increased knob density approximately 3-fold, whereas IEs selected for IT4VAR60 expression were essentially knobless. When IT4VAR60(+) IEs were subsequently selected to express IT4VAR04 or IT4VAR32b, they again displayed low and high knob densities, respectively. All sublines expressed KAHRP...... responsible for many deaths, especially among children and pregnant women. New interventions are needed to reduce severe illness and deaths caused by this malaria parasite. Thus, a better understanding of the mechanisms behind the pathogenesis is essential. A main reason why Plasmodium falciparum malaria...

  3. Detection of telomerase activity in Plasmodium falciparum using a nonradioactive method

    Directory of Open Access Journals (Sweden)

    Rubiano Claudia C

    2003-01-01

    Full Text Available A simple, quick and sensitive method was used to detect telomerase activity in Plasmodium falciparum. The telomeric repeat amplification protocol (TRAP assay was modified using electrophoresis and staining with SYBR-green I to detect telomerase activity in a range of 10² to 10(7 parasites. This might be a useful way to ascertain telomerase activity in different types of nontumor cells.

  4. Plasmodium vivax cerebral malaria complicated with venous sinus thrombosis in Colombia

    Institute of Scientific and Technical Information of China (English)

    Miguel A Pinzn; Juan C Pineda; Fernando Rosso; Masaru Shinchi; Fabio Bonilla-Abada

    2013-01-01

    Complicated malaria is usually due to Plasmodium falciparum. Nevertheless, Plasmodium vivax is infrequently related with life-threatening complications. Few cases have been reported of severe Plasmodium vivax infection, and most of them from Southeast Asia and India. We report the first case of cerebral malaria due to Plasmodium vivax in Latin America, complicated with sagittal sinus thrombosis and confirmed by a molecular method.

  5. HUBUNGAN SENSISTIVITAS PLASMODIUM FALCIPARUM TERHADAP KOMBINASI PIRIMETAMIN/SULFADOKSIN DAN KLOROKUIN SECARA IN VITRO

    Directory of Open Access Journals (Sweden)

    Sahat Ompusunggu

    2012-09-01

    Full Text Available An in vitro sensitivity test was conducted to study the sensitivity of Plasmodium falciparum against chloroquine and pyrimethamine/sulphadoxine combination. The relationship between sensitivity of the parasite to the two drugs was also studied. A total of 72 patients from five localities were examined during 1984-1985. Test against chloroquine was conduc­ted according to WHO method, while against pyrimethamine/sulphadoxine combination, a modified method of Nguyen Dinh and Payne and Eastham and Rieckmann was used. The results showed that there is no relationship between the sensitivity of P. falciparum against pyrimethamine/ sulphadoxine combination and chloroquine. It can be concluded that in case of chloroquine resistant P. falciparum, pyrimethamine/sulphadoxine combination could be applied as an alternative chemotherapy.

  6. Comparison of three molecular methods for the detection and speciation of Plasmodium vivax and Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Price Ric N

    2007-09-01

    Full Text Available Abstract Background Accurate diagnosis of Plasmodium spp. is essential for the rational treatment of malaria. Despite its many disadvantages, microscopic examination of blood smears remains the current "gold standard" for malaria detection and speciation. PCR assays offer an alternative to microscopy which has been shown to have superior sensitivity and specificity. Unfortunately few comparative studies have been done on the various molecular based speciation methods. Methods The sensitivity, specificity and cost effectiveness of three molecular techniques were compared for the detection and speciation of Plasmodium falciparum and Plasmodium vivax from dried blood spots collected from 136 patients in western Thailand. The results from the three molecular speciation techniques (nested PCR, multiplex PCR, and real-time PCR were used to develop a molecular consensus (two or more identical PCR results as an alternative gold standard. Results According to the molecular consensus, 9.6% (13/136 of microscopic diagnoses yielded false negative results. Multiplex PCR failed to detect P. vivax in three mixed isolates, and the nested PCR gave a false positive P. falciparum result in one case. Although the real-time PCR melting curve analysis was the most expensive method, it was 100% sensitive and specific and least time consuming of the three molecular techniques investigated. Conclusion Although microscopy remains the most appropriate method for clinical diagnosis in a field setting, its use as a gold standard may result in apparent false positive results by superior techniques. Future studies should consider using more than one established molecular methods as a new gold standard to assess novel malaria diagnostic kits and PCR assays.

  7. Integrative omics analysis. A study based on Plasmodium falciparum mRNA and protein data.

    Science.gov (United States)

    Tomescu, Oana A; Mattanovich, Diethard; Thallinger, Gerhard G

    2014-01-01

    Technological improvements have shifted the focus from data generation to data analysis. The availability of large amounts of data from transcriptomics, protemics and metabolomics experiments raise new questions concerning suitable integrative analysis methods. We compare three integrative analysis techniques (co-inertia analysis, generalized singular value decomposition and integrative biclustering) by applying them to gene and protein abundance data from the six life cycle stages of Plasmodium falciparum. Co-inertia analysis is an analysis method used to visualize and explore gene and protein data. The generalized singular value decomposition has shown its potential in the analysis of two transcriptome data sets. Integrative Biclustering applies biclustering to gene and protein data. Using CIA, we visualize the six life cycle stages of Plasmodium falciparum, as well as GO terms in a 2D plane and interpret the spatial configuration. With GSVD, we decompose the transcriptomic and proteomic data sets into matrices with biologically meaningful interpretations and explore the processes captured by the data sets. IBC identifies groups of genes, proteins, GO Terms and life cycle stages of Plasmodium falciparum. We show method-specific results as well as a network view of the life cycle stages based on the results common to all three methods. Additionally, by combining the results of the three methods, we create a three-fold validated network of life cycle stage specific GO terms: Sporozoites are associated with transcription and transport; merozoites with entry into host cell as well as biosynthetic and metabolic processes; rings with oxidation-reduction processes; trophozoites with glycolysis and energy production; schizonts with antigenic variation and immune response; gametocyctes with DNA packaging and mitochondrial transport. Furthermore, the network connectivity underlines the separation of the intraerythrocytic cycle from the gametocyte and sporozoite stages

  8. Targeting the cell stress response of Plasmodium falciparum to overcome artemisinin resistance.

    Directory of Open Access Journals (Sweden)

    Con Dogovski

    2015-04-01

    Full Text Available Successful control of falciparum malaria depends greatly on treatment with artemisinin combination therapies. Thus, reports that resistance to artemisinins (ARTs has emerged, and that the prevalence of this resistance is increasing, are alarming. ART resistance has recently been linked to mutations in the K13 propeller protein. We undertook a detailed kinetic analysis of the drug responses of K13 wild-type and mutant isolates of Plasmodium falciparum sourced from a region in Cambodia (Pailin. We demonstrate that ART treatment induces growth retardation and an accumulation of ubiquitinated proteins, indicative of a cellular stress response that engages the ubiquitin/proteasome system. We show that resistant parasites exhibit lower levels of ubiquitinated proteins and delayed onset of cell death, indicating an enhanced cell stress response. We found that the stress response can be targeted by inhibiting the proteasome. Accordingly, clinically used proteasome inhibitors strongly synergize ART activity against both sensitive and resistant parasites, including isogenic lines expressing mutant or wild-type K13. Synergy is also observed against Plasmodium berghei in vivo. We developed a detailed model of parasite responses that enables us to infer, for the first time, in vivo parasite clearance profiles from in vitro assessments of ART sensitivity. We provide evidence that the clinical marker of resistance (delayed parasite clearance is an indirect measure of drug efficacy because of the persistence of unviable parasites with unchanged morphology in the circulation, and we suggest alternative approaches for the direct measurement of viability. Our model predicts that extending current three-day ART treatment courses to four days, or splitting the doses, will efficiently clear resistant parasite infections. This work provides a rationale for improving the detection of ART resistance in the field and for treatment strategies that can be employed in areas

  9. Asymptomatic falciparum malaria and intestinal helminths co-infection among school children in Osogbo, Nigeria

    Directory of Open Access Journals (Sweden)

    Olusola Ojurongbe

    2011-01-01

    Full Text Available Background: Malaria and intestinal helminths are parasitic diseases causing high morbidity and mortality in most tropical parts of the world, where climatic conditions and sanitation practices favor their prevalence. The aim of this study was to determine the prevalence and possible impact of falciparum malaria and intestinal helminths co-infection among school children in Kajola, Osun state, Nigeria. Methods: Fresh stool and blood samples were collected from 117 primary school children age range 4-15 years. The stool samples were processed using both Kato-Katz and formol-ether concentration techniques and microscopically examined for intestinal parasitic infections. Blood was collected by finger prick to determine malaria parasitemia using thick film method; and packed cell volume (PCV was determined by hematocrit. Univariate analysis and chi-square statistical tests were used to analyze the data. Results: The prevalence of Plasmodium falciparum, intestinal helminth infections, and co-infection of malaria and helminth in the study were 25.6%, 40.2% and 4.3%, respectively. Five species of intestinal helminths were recovered from the stool samples and these were Ascaris lumbricoides (34.2%, hookworm (5.1%, Trichuris trichiura (2.6%, Diphyllobothrium latum (0.9% and Trichostrongylus species (0.9%. For the co-infection of both malaria and intestinal helminths, females (5.9% were more infected than males (2.0% but the difference was not statistically significant (p = 0.3978. Children who were infected with helminths were equally likely to be infected with malaria as children without intestinal helminths [Risk Ratio (RR = 0.7295]. Children with A. lumbricoides (RR = 1.359 were also likely to be infected with P. falciparum as compared with uninfected children. Conclusions: Asymptomatic falciparum malaria and intestinal helminth infections do co-exist without clinical symp-toms in school children in Nigeria.

  10. High level of resistance of Plasmodium falciparum to sulfadoxine-pyrimethamine in children in Tanzania

    DEFF Research Database (Denmark)

    Rønn, A M; Msangeni, H A; Mhina, J

    1996-01-01

    In many areas of tropical Africa affected by chloroquine-resistant Plasmodium falciparum, a combination of sulfadoxine and pyrimethamine (S-P) is used for alternative medication, especially in young children. In Magoda village in Muheza District, north-eastern Tanzania, 38 children 1-10 years...

  11. A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.

    Directory of Open Access Journals (Sweden)

    Arthur M Talman

    2010-02-01

    Full Text Available The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.

  12. A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.

    Science.gov (United States)

    Talman, Arthur M; Blagborough, Andrew M; Sinden, Robert E

    2010-02-10

    The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.

  13. Rodent Plasmodium-infected red blood cells: imaging their fates and interactions within their hosts.

    Science.gov (United States)

    Claser, Carla; Malleret, Benoit; Peng, Kaitian; Bakocevic, Nadja; Gun, Sin Yee; Russell, Bruce; Ng, Lai Guan; Rénia, Laurent

    2014-02-01

    Malaria, a disease caused by the Plasmodium parasite, remains one of the most deadly infectious diseases known to mankind. The parasite has a complex life cycle, of which only the erythrocytic stage is responsible for the diverse pathologies induced during infection. To date, the disease mechanisms that underlie these pathologies are still poorly understood. In the case of infections caused by Plasmodium falciparum, the species responsible for most malaria related deaths, pathogenesis is thought to be due to the sequestration of infected red blood cells (IRBCs) in deep tissues. Other human and rodent malaria parasite species are also known to exhibit sequestration. Here, we review the different techniques that allow researchers to study how rodent malaria parasites modify their host cells, the distribution of IRBCs in vivo as well as the interactions between IRBCs and host tissues. © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Preferential transcription of conserved rif genes in two phenotypically distinct Plasmodium falciparum parasite lines

    DEFF Research Database (Denmark)

    Wang, Christian W; Magistrado, Pamela A; Nielsen, Morten A

    2009-01-01

    transcribed in the VAR2CSA-expressing parasite line. In addition, two rif genes were found transcribed at early and late intra-erythrocyte stages independently of var gene transcription. Rif genes are organised in groups and inter-genomic conserved gene families, suggesting that RIFIN sub-groups may have......Plasmodium falciparum variant surface antigens (VSA) are targets of protective immunity to malaria. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) and repetitive interspersed family (RIFIN) proteins are encoded by the two variable multigene families, var and rif genes, respectively...... novel rif gene groups, rifA1 and rifA2, containing inter-genomic conserved rif genes, were identified. All rifA1 genes were orientated head-to-head with a neighbouring Group A var gene whereas rifA2 was present in all parasite genomes as a single copy gene with a unique 5' untranslated region. Rif...

  15. Plasmodium falciparum: assessment of in vitro growth by [3H]hypoxanthine incorporation

    International Nuclear Information System (INIS)

    Chulay, J.D.; Haynes, J.D.; Diggs, C.L.

    1983-01-01

    To evaluate rapidly Plasmodium falciparum growth in Vitro, [ 3 H]hypoxanthine was added to parasite microcultures and radioisotope incorporation was measured. When culture parameters were carefully controlled, [ 3 H]hypoxanthine incorporation was proportional to the number of parasitized erythrocytes present. Factors affecting [ 3 H]hypoxanthine incorporation included initial parasitemia, duration of culture, duration of radioisotope pulse, parasite stage, concentration of uninfected erythrocytes, the use of serum or plasma to supplement growth, and the concentration of a variety of purines in the culture medium. The method described can be used to measure inhibition of P. falciparum growth by immune serum and has previously been used to study antimalarial drug activity in vitro

  16. Serological evidence of discrete spatial clusters of Plasmodium falciparum parasites

    DEFF Research Database (Denmark)

    Bejon, Philip; Turner, Louise; Lavstsen, Thomas

    2011-01-01

    Malaria transmission may be considered to be homogenous with well-mixed parasite populations (as in the classic Ross/Macdonald models). Marked fine-scale heterogeneity of transmission has been observed in the field (i.e., over a few kilometres), but there are relatively few data on the degree...... of mixing. Since the Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) is highly polymorphic, the host's serological responses may be used to infer exposure to parasite sub-populations....

  17. bacteraemia, urinary tract infection and malaria in hospitalised ...

    African Journals Online (AJOL)

    hi-tech

    2004-01-01

    Jan 1, 2004 ... Kremer, P.G., Zotter, G.M., Feldmeier, H., et al. Immune response in patients during and after plasmodium falciparum infection. JID. 1990; 161:1025-1028. 12. Brasseur, P., Agrapart, M., Ballet, J.J., Druilhe, P., Warrell,. M.J., and Savanat, T. Impaired Cell-Mediated immunity in. Plasmodium falciparum infected ...

  18. Use of a colorimetric (DELI) test for the evaluation of chemoresistance of Plasmodium falciparum and Plasmodium vivax to commonly used anti-plasmodial drugs in the Brazilian Amazon.

    Science.gov (United States)

    Pratt-Riccio, Lilian R; Chehuan, Yonne F; Siqueira, Maria José; das Graças Alecrim, Maria; Bianco-Junior, Cesare; Druilhe, Pierre; Brasseur, Philippe; de Fátima Ferreira-da-Cruz, Maria; Carvalho, Leonardo J M; Daniel-Ribeiro, Cláudio T

    2013-08-12

    The emergence and spread of Plasmodium falciparum and Plasmodium vivax resistance to available anti-malarial drugs represents a major drawback in the control of malaria and its associated morbidity and mortality. The aim of this study was to evaluate the chemoresistance profile of P. falciparum and P. vivax to commonly used anti-plasmodial drugs in a malaria-endemic area in the Brazilian Amazon. The study was carried out in Manaus (Amazonas state), in the Brazilian Amazon. A total of 88 P. falciparum and 178 P. vivax isolates was collected from 2004 to 2007. The sensitivity of P. falciparum isolates was determined to chloroquine, quinine, mefloquine and artesunate and the sensitivity of P. vivax isolates was determined to chloroquine and mefloquine, by using the colorimetric DELI test. As expected, a high prevalence of P. falciparum isolates resistant to chloroquine (78.1%) was observed. The prevalence of isolates with profile of resistance or decreased sensitivity for quinine, mefloquine and artesunate was 12.7, 21.2 and 11.7%, respectively. In the case of P. vivax, the prevalence of isolates with profile of resistance for chloroquine and mefloquine was 9.8 and 28%, respectively. No differences in the frequencies of isolates with profile of resistance or geometric mean IC50s were seen when comparing the data obtained in 2004, 2005, 2006 and 2007, for all tested anti-malarials. The great majority of P. falciparum isolates in the Brazilian malaria-endemic area remain resistant to chloroquine, and the decreased sensitivity to quinine, mefloquine and artesunate observed in 10-20% of the isolates must be taken with concern, especially for artesunate. Plasmodium vivax isolates also showed a significant proportion of isolates with decreased sensitivity to chloroquine (first-line drug) and mainly to mefloquine. The data presented here also confirm the usefulness of the DELI test to generate results able to impact on public health policies.

  19. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    NARCIS (Netherlands)

    Baldwin, S.L.; Roeffen, W.; Singh, S.K; Tiendrebeogo, R.W.; Christiansen, M.; Beebe, E.; Carter, D.; Fox, C.B.; Howard, R.F.; Reed, S.G.; Sauerwein, R.; Theisen, M.

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the

  20. Prevalence of Plasmodium falciparum resistance markers to sulfadoxine-pyrimethamine among pregnant women receiving intermittent preventive treatment for malaria in Uganda

    DEFF Research Database (Denmark)

    Mbonye, Anthony K; Birungi, Josephine; Yanow, Stephanie K

    2015-01-01

    The aim of this study was to assess the prevalence of mutations in Plasmodium falciparum dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes among pregnant women using sulfadoxine-pyrimethamine (SP) as an intermittent preventive treatment (IPTp). A molecular epidemiological...... in the Pfdhfr and Pfdhps genes that are associated with SP resistance. The prevalence of the single-nucleotide mutations in Pfdhfr at codons 51I, 59R, and 108N and in Pfdhps at codons 437G and 540E was high (>98%), reaching 100% fixation after one dose of SP, while the prevalence of 581G was 3.3% at baseline...... and anemia. However, women infected with P. falciparum had 1.3-g/dl-lower hemoglobin levels (P = 0.001) and delivered babies with a 400-g-lower birth weight (P = 0.001) compared to nonparasitemic women. Despite this, 44 women who were P. falciparum positive at baseline became negative after one or two doses...

  1. The periodicity of Plasmodium vivax and Plasmodium falciparum in Venezuela.

    Science.gov (United States)

    Grillet, María-Eugenia; El Souki, Mayida; Laguna, Francisco; León, José Rafael

    2014-01-01

    We investigated the periodicity of Plasmodium vivax and P. falciparum incidence in time-series of malaria data (1990-2010) from three endemic regions in Venezuela. In particular, we determined whether disease epidemics were related to local climate variability and regional climate anomalies such as the El Niño Southern Oscillation (ENSO). Malaria periodicity was found to exhibit unique features in each studied region. Significant multi-annual cycles of 2- to about 6-year periods were identified. The inter-annual variability of malaria cases was coherent with that of SSTs (ENSO), mainly at temporal scales within the 3-6 year periods. Additionally, malaria cases were intensified approximately 1 year after an El Niño event, a pattern that highlights the role of climate inter-annual variability in the epidemic patterns. Rainfall mediated the effect of ENSO on malaria locally. Particularly, rains from the last phase of the season had a critical role in the temporal dynamics of Plasmodium. The malaria-climate relationship was complex and transient, varying in strength with the region and species. By identifying temporal cycles of malaria we have made a first step in predicting high-risk years in Venezuela. Our findings emphasize the importance of analyzing high-resolution spatial-temporal data to better understand malaria transmission dynamics. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Five-year tracking of Plasmodium falciparum allele frequencies in a holoendemic area with indistinct seasonal transitions

    Directory of Open Access Journals (Sweden)

    Akala HM

    2014-11-01

    Full Text Available Hoseah M Akala, Angela O Achieng, Fredrick L Eyase, Dennis W Juma, Luiser Ingasia, Agnes C Cheruiyot, Charles Okello, Duke Omariba, Eunice A Owiti, Catherine Muriuki, Redemptah Yeda, Ben Andagalu, Jacob D Johnson, Edwin Kamau Global Emerging Infections Surveillance Program, United States Army Medical Research Unit-Kenya, Kenya Medical Research Institute, Walter Reed Project, Kisumu and Nairobi, Kenya Background: The renewed malaria eradication efforts require an understanding of the seasonal patterns of frequency of polymorphic variants in order to focus limited funds productively. Although cross-sectional studies in holoendemic areas spanning a single year could be useful in describing parasite genotype status at a given point, such information is inadequate in describing temporal trends in genotype polymorphisms. For Plasmodium falciparum isolates from Kisumu District Hospital, Plasmodium falciparum chloroquine-resistance transporter gene (Pfcrt-K76T and P. falciparum multidrug resistance gene 1 (PfMDR1-N86Y, were analyzed for polymorphisms and parasitemia changes in the 53 months from March 2008 to August 2012. Observations were compared with prevailing climatic factors, including humidity, rainfall, and temperature. Methods: Parasitemia (the percentage of infected red blood cells per total red blood cells was established by microscopy for P. falciparum malaria-positive samples. P. falciparum DNA was extracted from whole blood using a Qiagen DNA Blood Mini Kit. Single nucleotide polymorphism identification at positions Pfcrt-K76T and PfMDR1-N86Y was performed using real-time polymerase chain reaction and/or sequencing. Data on climatic variables were obtained from http://www.tutiempo.net/en/. Results: A total of 895 field isolates from 2008 (n=169, 2009 (n=161, 2010 (n=216, 2011 (n=223, and 2012 (n=126 showed large variations in monthly frequency of PfMDR1-N86Y and Pfcrt-K76T as the mutant genotypes decreased from 68.4%±15% and 38.1%±13% to

  3. Improving the production of the denatured recombinant N-terminal domain of rhoptry-associated protein 2 from a Plasmodium falciparum target in the pathology of anemia in falciparum malaria

    Directory of Open Access Journals (Sweden)

    Luis Andre Mariuba

    2008-09-01

    Full Text Available Rhoptry-associated protein 2 (RAP2 is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2 was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.

  4. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites

    Science.gov (United States)

    Charnaud, Sarah C.; Dixon, Matthew W. A.; Nie, Catherine Q.; Chappell, Lia; Sanders, Paul R.; Nebl, Thomas; Hanssen, Eric; Berriman, Matthew; Chan, Jo-Anne; Blanch, Adam J.; Beeson, James G.; Rayner, Julian C.; Przyborski, Jude M.; Tilley, Leann; Crabb, Brendan S.

    2017-01-01

    Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE) in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins. PMID:28732045

  5. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites.

    Directory of Open Access Journals (Sweden)

    Sarah C Charnaud

    Full Text Available Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins.

  6. Structural Studies on Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) Malaria Antigens Using Small Angle X-Ray Scattering (SAXS)

    DEFF Research Database (Denmark)

    Christoffersen, Stig

    Chemistry (App I) [1]. VAR2CSA binds specifically to CSA in the placental tissue of pregnant women hereby causing severe malaria symptoms endangering both mother and child. The minimal VAR2CSA region required to effectively bind CSA was determined to be the N-terminal DBL domain, DBL2X which we locate......Infection with the pathogenic Plasmodium falciparum parasite causes the potentially deadly Malaria disease which leads to over 1 million fatalities each year according to the WHO (World Health Organization). Individuals subjected to multiple infections gradually become immune to the disease...... symptoms and vaccine research is focused on trying to mimic or advance this immune acquisition. Immunity is primarily caused by acquisition of antibodies directed against a family of Plasmodium protein antigens called PfEMP1s located on the surface of infected erythrocytes. The PfEMP1 proteins are adhesive...

  7. Gametocytogenesis Following Drug Treatment of Plasmodium Falciparum in an Area of Seasonal Transmission in Sudan

    International Nuclear Information System (INIS)

    Mackinnon, M. J.M; Walliker, D.; Babiker, A.; Ahmed, S.; Abdel-Muhsin, A.; Eltayeb, A.

    2007-01-01

    We monitored post-treatment Plasmodium falciparum among patients treated with chloroquine (CQ) and pyrimethamine-sulfadoxine (PS) in a village in eastern Sudan. Parasites were examined on day zero (pre-treatment), day 7, day 14 and day 21 (post-treatment) during the transmission season. A further sample was taken two months later (Day 80) at the start of the dry season. Asexual forms and gametocytes were detected by microscopy and reverse transcriptase polymerase chain reaction (RT-PCR) to detect expression of a gametocyte-specific protein pfg377. Gametocyte carriage, as revealed by microscopy, increased significantly following CQ and PS treatment reaching a maximum between days 7 and 14. When measured by RT-PCR, however, there was no significant difference in gametocyte rate between day 0 and day 7 or 14. RT-PCR gametocyte rates dropped dramatically by day 80 post-treatment but were still 33% and 8% in the CQ and PS treated group at this time. Alleles associated with drug resistance of P. falciparum to chloroquine (the chloroquine resistance transporter, pfcrt, and multi-drug resistance, pfmdr-1) and pyrimethamine (dihydrofolate reductase, dhfr) were at high frequency at the beginning of treatment and increased further through time under both drug treatments. Infections with drug-resistant parasites tended to have higher gametocyte prevalence than drug-sensitive infections.

  8. Transcript and protein expression profile of PF11_0394, a Plasmodium falciparum protein expressed in salivary gland sporozoites

    Directory of Open Access Journals (Sweden)

    Schlarman Maggie S

    2012-03-01

    Full Text Available Abstract Background Plasmodium falciparum malaria is a significant problem around the world today, thus there is still a need for new control methods to be developed. Because the sporozoite displays dual infectivity for both the mosquito salivary glands and vertebrate host tissue, it is a good target for vaccine development. Methods The P. falciparum gene, PF11_0394, was chosen as a candidate for study due to its potential role in the invasion of host tissues. This gene, which was selected using a data mining approach from PlasmoDB, is expressed both at the transcriptional and protein levels in sporozoites and likely encodes a putative surface protein. Using reverse transcription-polymerase chain reaction (RT-PCR and green fluorescent protein (GFP-trafficking studies, a transcript and protein expression profile of PF11_0394 was determined. Results The PF11_0394 protein has orthologs in other Plasmodium species and Apicomplexans, but none outside of the group Apicomplexa. PF11_0394 transcript was found to be present during both the sporozoite and erythrocytic stages of the parasite life cycle, but no transcript was detected during axenic exoerythrocytic stages. Despite the presence of transcript throughout several life cycle stages, the PF11_0394 protein was only detected in salivary gland sporozoites. Conclusions PF11_0394 appears to be a protein uniquely detected in salivary gland sporozoites. Even though a specific function of PF11_0394 has not been determined in P. falciparum biology, it could be another candidate for a new vaccine.

  9. Plasmodium falciparum, anaemia and cognitive and educational performance among school children in an area of moderate malaria transmission: baseline results of a cluster randomized trial on the coast of Kenya.

    Science.gov (United States)

    Halliday, Katherine E; Karanja, Peris; Turner, Elizabeth L; Okello, George; Njagi, Kiambo; Dubeck, Margaret M; Allen, Elizabeth; Jukes, Matthew C H; Brooker, Simon J

    2012-05-01

    Studies have typically investigated health and educational consequences of malaria among school-aged children in areas of high malaria transmission, but few have investigated these issues in moderate transmission settings. This study investigates the patterns of and risks for Plasmodium falciparum and anaemia and their association with cognitive and education outcomes on the Kenyan coast, an area of moderate malaria transmission. As part of a cluster randomised trial, a baseline cross-sectional survey assessed the prevalence of and risk factors for P. falciparum infection and anaemia and the associations between health status and measures of cognition and educational achievement. Results are presented for 2400 randomly selected children who were enrolled in the 51 intervention schools. The overall prevalence of P. falciparum infection and anaemia was 13.0% and 45.5%, respectively. There was marked heterogeneity in the prevalence of P. falciparum infection by school. In multivariable analysis, being male, younger age, not sleeping under a mosquito net and household crowding were adjusted risk factors for P. falciparum infection, whilst P. falciparum infection, being male and indicators of poor nutritional intake were risk factors for anaemia. No association was observed between either P. falciparum or anaemia and performance on tests of sustained attention, cognition, literacy or numeracy. The results indicate that in this moderate malaria transmission setting, P. falciparum is strongly associated with anaemia, but there is no clear association between health status and education. Intervention studies are underway to investigate whether removing the burden of chronic asymptomatic P. falciparum and related anaemia can improve education outcomes. © 2012 Blackwell Publishing Ltd.

  10. Molecular characterization of Plasmodium falciparum in Arunachal Pradesh from Northeast India based on merozoite surface protein 1 & glutamate-rich protein.

    Science.gov (United States)

    Sarmah, Nilanju Pran; Sarma, Kishore; Bhattacharyya, Dibya Ranjan; Sultan, Ali; Bansal, Devendra; Singh, Neeru; Bharti, Praveen K; Kaur, Hargobinder; Sehgal, Rakesh; Mohapatra, Pradyumna Kishore; Mahanta, Jagadish

    2017-09-01

    Northeast (NE) India is one of the high endemic regions for malaria with a preponderance of Plasmodium falciparum, resulting in high morbidity and mortality. The P. falciparum parasite of this region showed high polymorphism in drug-resistant molecular biomarkers. However, there is a paucity of information related to merozoite surface protein 1 (msp-1) and glutamate-rich protein (glurp) which have been extensively studied in various parts of the world. The present study was, therefore, aimed at investigating the genetic diversity of P. falciparum based on msp-1 and glurp in Arunachal Pradesh, a State in NE India. Two hundred and forty nine patients with fever were screened for malaria, of whom 75 were positive for P. falciparum. Blood samples were collected from each microscopically confirmed patient. The DNA was extracted; nested polymerase chain reaction and sequencing were performed to study the genetic diversity of msp-1 (block 2) and glurp. The block 2 of msp-1 gene was found to be highly polymorphic, and overall allelic distribution showed that RO33 was the dominant allele (63%), followed by MAD20 (29%) and K1 (8%) alleles. However, an extensive diversity (9 alleles and 4 genotypes) and 6-10 repeat regions exclusively of R2 type were observed in glurp. The P. falciparum population of NE India was diverse which might be responsible for higher plasticity leading to the survival of the parasite and in turn to the higher endemicity of falciparum malaria of this region.

  11. Exposure of the Plasmodium falciparum clonally variant STEVOR proteins on the merozoite surface

    Directory of Open Access Journals (Sweden)

    Meri Seppo

    2011-03-01

    Full Text Available Abstract Background Plasmodium falciparum merozoites are free invasive forms that invade host erythrocytes in iterative cycles in the presence of different arms of the immune system. Variant antigens are known to play a role in immune evasion and several gene families coding for variant antigens have been identified in P. falciparum. However, none of them have been reported to be expressed on the surface of merozoites. Methods Flow cytometry, immunofluorescence microscopy, and immunoblotting assays were performed to assess surface exposure, membrane association and stage specific expression of the STEVOR family of variants proteins, respectively. Results Using a polyclonal antibody (anti-PFL2610w with a broad specificity towards different STEVOR variants, the STEVOR proteins were identified on the surface of non-permeabilized/non-fixed merozoites in flow cytometry assays. Anti-PFL2610w antibody showed that several STEVORs were expressed in the trophozoite stage of the parasite but only one variant was integrated into the merozoite membrane. Moreover, this antibody failed to identify STEVORs on the surface of the parent schizont infected erythrocytes (IE although they were readily identified when schizont IE were permeabilized. Conclusions These data suggest for a role for STEVOR in immune evasion by P. falciparum merozoites to allow successful invasion of erythrocytes. Additionally, the expression of STEVORs in the schizont stage may only represent a step in the biogenesis process of the merozoite surface coat.

  12. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P. yoelii infection

    DEFF Research Database (Denmark)

    Chen, M; Theander, T G; Christensen, S B

    1994-01-01

    Licochalcone A, isolated from Chinese licorice roots, inhibited the in vitro growth of both chloroquine-susceptible (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains in a [3H]hypoxanthine uptake assay. The growth inhibition of the chloroquine-resistant strain by licochalcone A w...... that licochalcone A exhibits potent antimalarial activity and might be developed into a new antimalarial drug....... A was similar to that of the chloroquine-susceptible strain. To examine the activity of licochalcone A on the different asexual blood stages of the parasite, licochalcone A was added to highly synchronized cultures containing rings, trophozoites, and schizonts. The growth of the parasites at all stages...... was inhibited by licochalcone A. The in vivo activity of licochalcone A was tested in a mouse model of infection with P. yoelii. Licochalcone A administered either intraperitoneally or orally for 3 to 6 days protected the mice from the otherwise lethal P. yoelii infection. These results demonstrate...

  13. X-ray microanalysis of Plasmodium falciparum and infected red blood cells: effects of qinghaosu and chloroquine on potassium, sodium, and phosphorus composition

    International Nuclear Information System (INIS)

    Lee, P.; Ye, Z.; Van Dyke, K.; Kirk, R.G.

    1988-01-01

    Cryosections of human red blood cells infected by Plasmodium falciparum were analyzed by energy dispersive x-ray microanalysis to determine the elemental composition of the parasites and their red cell hosts separately. The effects of two antimalarial drugs, qinghaosu and chloroquine, on potassium, sodium, and phosphorus concentrations were studied. Malarial infection causes a decrease in potassium concentration and an increase in sodium concentration in the host red cells. The drastic change in the cation composition, however, occurs only in red cells infected by late stage parasites (late trophozoite and schizont). Red cells infected by early stage parasites (ring stage) show only small changes in sodium concentration. Furthermore, the noninfected red cells in parasitized cultures show no difference in composition from those of normal red cells. Treatment of the parasitized cultures with qinghaosu (10(-6) M) or chloroquine (10(-6) M) for 8 hr causes phosphorus concentration of both early and late parasites to decrease. An 8 hr treatment with qinghaosu also produces a reduction in potassium and an increase in sodium concentrations in early and late parasites. In contrast, 8 hr treatment with chloroquine only causes a change in the sodium and potassium concentrations of the late stage parasites and does not affect the early stage parasites

  14. Generation of antigenic diversity in Plasmodium falciparum by structured rearrangement of Var genes during mitosis.

    Directory of Open Access Journals (Sweden)

    Antoine Claessens

    2014-12-01

    Full Text Available The most polymorphic gene family in P. falciparum is the ∼60 var genes distributed across parasite chromosomes, both in the subtelomeres and in internal regions. They encode hypervariable surface proteins known as P. falciparum erythrocyte membrane protein 1 (PfEMP1 that are critical for pathogenesis and immune evasion in Plasmodium falciparum. How var gene sequence diversity is generated is not currently completely understood. To address this, we constructed large clone trees and performed whole genome sequence analysis to study the generation of novel var gene sequences in asexually replicating parasites. While single nucleotide polymorphisms (SNPs were scattered across the genome, structural variants (deletions, duplications, translocations were focused in and around var genes, with considerable variation in frequency between strains. Analysis of more than 100 recombination events involving var exon 1 revealed that the average nucleotide sequence identity of two recombining exons was only 63% (range: 52.7-72.4% yet the crossovers were error-free and occurred in such a way that the resulting sequence was in frame and domain architecture was preserved. Var exon 1, which encodes the immunologically exposed part of the protein, recombined in up to 0.2% of infected erythrocytes in vitro per life cycle. The high rate of var exon 1 recombination indicates that millions of new antigenic structures could potentially be generated each day in a single infected individual. We propose a model whereby var gene sequence polymorphism is mainly generated during the asexual part of the life cycle.

  15. STANDARDIZATION OF PROCEDURES OF Plasmodium falciparum ANTIGEN PREPARATION FOR SEROLOGIC TESTS

    Directory of Open Access Journals (Sweden)

    Sandra L.M. AVILA

    1998-09-01

    Full Text Available The objective of the present study is to standardize the technical variables for preparation and storage of Plasmodium falciparum and of antigen components extracted with the amphoteric detergent Zwittergent. P. falciparum obtained from in vitro culture was stored at different temperatures and for different periods of time. For each variable, antigen components of the parasite were extracted in the presence or absence of protease inhibitors and submitted or not to later dialysis. Products were stored for 15, 30 and 60 days at different temperatures and immunological activity of each extract was determined by SDS-PAGE and ELISA using positive or negative standard sera for the presence of IgG directed to blood stage antigens of P. falciparum. Antigen extracts obtained from parasites stored at -20oC up to 10 days or at -70oC for 2 months presented the best results, showing well-defined bands on SDS-PAGE and Western blots and presenting absorbance values in ELISA that permitted safe differentiation between positive and negative sera.O objetivo deste estudo foi padronizar variáveis técnicas para o armazenamento de Plasmodium falciparum e de seus componentes antigênicos. Sedimentos de parasitas foram obtidos do cultivo in vitro de P.falciparum e estocados em diferentes temperaturas por diferentes períodos de tempo. De cada variável, foram extraídos os componentes antigênicos com detergente anfótero Zwittergent na presença e na ausência de inibidores de proteases e submetidos ou não a posterior diálise. Os produtos foram estocados por 15, 30 e 60 dias em diferentes temperaturas e caracterizados por SDS-PAGE. A atividade antigênica de cada extrato foi determinada por ELISA e Western blotting usando soros positivos e negativos para anticorpos IgG anti-formas eritrocitárias de P.falciparum. Os extratos antigênicos obtidos de parasitas estocados até 10 dias a _20ºC ou por 2 meses a _70ºC e tratados com inibidores de proteases, sob as

  16. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies.

    Science.gov (United States)

    Chan, Jo-Anne; Howell, Katherine B; Langer, Christine; Maier, Alexander G; Hasang, Wina; Rogerson, Stephen J; Petter, Michaela; Chesson, Joanne; Stanisic, Danielle I; Duffy, Michael F; Cooke, Brian M; Siba, Peter M; Mueller, Ivo; Bull, Peter C; Marsh, Kevin; Fowkes, Freya J I; Beeson, James G

    2016-11-01

    Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.

  17. Induction of cell death on Plasmodium falciparum asexual blood stages by Solanum nudum steroids

    DEFF Research Database (Denmark)

    López, Mary Luz; Vommaro, Rossiane; Zalis, Mariano

    2010-01-01

    Solanum nudum Dunal (Solanaceae) is a plant used in traditional medicine in Colombian Pacific Coast, from which five steroids denominated SNs have been isolated. The SNs compounds have antiplasmodial activity against asexual blood stages of Plasmodium falciparum strain 7G8 with an IC50 between 20...

  18. Limonene Arrests Parasite Development and Inhibits Isoprenylation of Proteins in Plasmodium falciparum

    Science.gov (United States)

    Moura, Ivan Cruz; Wunderlich, Gerhard; Uhrig, Maria L.; Couto, Alicia S.; Peres, Valnice J.; Katzin, Alejandro M.; Kimura, Emília A.

    2001-01-01

    Isoprenylation is an essential protein modification in eukaryotic cells. Herein, we report that in Plasmodium falciparum, a number of proteins were labeled upon incubation of intraerythrocytic forms with either [3H]farnesyl pyrophosphate or [3H]geranylgeranyl pyrophosphate. By thin-layer chromatography, we showed that attached isoprenoids are partially modified to dolichol and other, uncharacterized, residues, confirming active isoprenoid metabolism in this parasite. Incubation of blood-stage P. falciparum treated with the isoprenylation inhibitor limonene significantly decreased the parasites' progression from the ring stage to the trophozoite stage and at 1.22 mM, 50% of the parasites died after the first cycle. Using Ras- and Rap-specific monoclonal antibodies, putative Rap and Ras proteins of P. falciparum were immunoprecipitated. Upon treatment with 0.5 mM limonene, isoprenylation of these proteins was significantly decreased, possibly explaining the observed arrest of parasite development. PMID:11502528

  19. Exitoso cultivo in vitro de gametocitos de Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Silvia Blair

    2008-12-01

    Full Text Available Introducción. Los estadios sexuales de Plasmodium falciparum han sido menos estudiados que los estadios asexuales. Al parecer, esto se debe a la carencia de cultivos estandarizados in vitro y a la dificultad de reconocer sus estadios de desarrollo. Estos hechos no permiten el estudio de aspectos biológicos, aspectos metabólicos, expresión de genes y síntesis de proteínas durante los estadios sexuales, temas de interés en la investigación de nuevos medicamentos antipalúdicos, principalmente los aislados de plantas, y la identificación de un potencial blanco contra Plasmodium. Objetivos. Establecer un cultivo in vitro de gametocitos, con la identificación de sus cinco estadios de desarrollo, y asegurar su continua producción. Materiales y métodos. El cultivo in vitro de gametocitos se realizó a partir de la cepa NF54 de P. falciparum en medio RPMI, con determinación de la parasitemia asexual y sexual, adición de glóbulos rojos A-Rh+ sólo el primer día de cultivo y cambio diario del medio con adición de mezcla de gases (90% N2, 5% O2; 5% CO2, asegurándose que el cultivo se mantuviera a 37 °C. Cuando la parasitemia asexual estuvo entre 3% y 5%, se comenzó a agregar el doble de volumen de medio. Resultados. Se obtuvieron gametocitos en estadios I, II y III a partir del día 11 de cultivo y estadios IV y V a partir del día 14 de cultivo. Conclusiones. Se estandarizó un cultivo in vitro para estadios sexuales de P. falciparum que puede usarse para futuros estudios de evaluación de compuestos, naturales o sintéticos, que actúen sobre los gametocitos, lo cual podría permitir el desarrollo de nuevas estrategias de control contra el paludismo.

  20. Novel short chain chloroquine analogues retain activity against chloroquine resistant K1 Plasmodium falciparum.

    Science.gov (United States)

    Stocks, Paul A; Raynes, Kaylene J; Bray, Patrick G; Park, B Kevin; O'Neill, Paul M; Ward, Stephen A

    2002-11-07

    A series of short chain chloroquine (CQ) derivatives have been synthesized in one step from readily available starting materials. The diethylamine function of CQ is replaced by shorter alkylamine groups (4-9) containing secondary or tertiary terminal nitrogens. Some of these derivatives are significantly more potent than CQ against a CQ resistant strain of Plasmodium falciparum in vitro. We conclude that the ability to accumulate at higher concentrations within the food vacuole of the parasite is an important parameter that dictates their potency against CQ sensitive and the chloroquine resistant K1 P. falciparum.

  1. Plasmodium falciparum responds to amino acid starvation by entering into a hibernatory state.

    Science.gov (United States)

    Babbitt, Shalon E; Altenhofen, Lindsey; Cobbold, Simon A; Istvan, Eva S; Fennell, Clare; Doerig, Christian; Llinás, Manuel; Goldberg, Daniel E

    2012-11-20

    The human malaria parasite Plasmodium falciparum is auxotrophic for most amino acids. Its amino acid needs are met largely through the degradation of host erythrocyte hemoglobin; however the parasite must acquire isoleucine exogenously, because this amino acid is not present in adult human hemoglobin. We report that when isoleucine is withdrawn from the culture medium of intraerythrocytic P. falciparum, the parasite slows its metabolism and progresses through its developmental cycle at a reduced rate. Isoleucine-starved parasites remain viable for 72 h and resume rapid growth upon resupplementation. Protein degradation during starvation is important for maintenance of this hibernatory state. Microarray analysis of starved parasites revealed a 60% decrease in the rate of progression through the normal transcriptional program but no other apparent stress response. Plasmodium parasites do not possess a TOR nutrient-sensing pathway and have only a rudimentary amino acid starvation-sensing eukaryotic initiation factor 2α (eIF2α) stress response. Isoleucine deprivation results in GCN2-mediated phosphorylation of eIF2α, but kinase-knockout clones still are able to hibernate and recover, indicating that this pathway does not directly promote survival during isoleucine starvation. We conclude that P. falciparum, in the absence of canonical eukaryotic nutrient stress-response pathways, can cope with an inconsistent bloodstream amino acid supply by hibernating and waiting for more nutrient to be provided.

  2. Adhesion of Plasmodium falciparum infected erythrocytes in ex vivo perfused placental tissue

    DEFF Research Database (Denmark)

    Pehrson, Caroline; Mathiesen, Line; Heno, Kristine K

    2016-01-01

    placental tissue. RESULTS: The ex vivo placental perfusion model was modified to study adhesion of infected erythrocytes binding to CSA, endothelial protein C receptor (EPCR) or a transgenic parasite where P. falciparum erythrocyte membrane protein 1 expression had been shut down. Infected erythrocytes......, such as binding to immunoglobulins. Furthermore, other parasite antigens have been associated with placental malaria. These findings have important implications for placental malaria vaccine design. The objective of this study was to adapt and describe a biologically relevant model of parasite adhesion in intact...... expressing VAR2CSA accumulated in perfused placental tissue whereas the EPCR binding and the transgenic parasite did not. Soluble CSA and antibodies specific against VAR2CSA inhibited binding of infected erythrocytes. CONCLUSION: The ex vivo model provides a novel way of studying receptor-ligand interactions...

  3. Molecular Docking and Molecular Dynamics Simulation studies of DHFR inhibitors in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Prachi Bhole

    2017-10-01

    Full Text Available Malaria, caused by Plasmodium falciparum is a very common disease that causes 2.5 million deaths worldwide. This makes designing of lead molecules for malaria very exigent. DHFR has been known to be one of the major targets of antimalarial drug therapy which functions as a fundamental cofactor in the synthesis of histidine and methionine as well as purine nucleotides. Inhibition of this DHFR blocks the reduction of Dihydrofolate (DHF to Tetrahydrofolate (THF and hence prevents the synthesis of DNA, resulting in death of Plasmodium falciparum. Pyrimethamine is a Diaminopyrimidine that inhibits pfDHFR (Plasmodium falciparum DHFR at a concentration that is 1000 times less than that required to inhibit the mammalian DHFR. Virtual screening is performed to find Pyrimethamine analogs from PubChem database. Docking studies are performed on DHFR (PDB ID: 3QGT with Pyrimethamine and its 193 derivatives and the differences in their binding modes are investigated. The binding score suggests 53 derivatives to be more potent than Pyrimethamine which has a score of -24.7 showing interaction with Ile14, Asp54 and Ile164. The compound with best binding score (-35 showed interaction with Ile14, Cys15, Asp54, Phe58, Ser108, Ser111, Ile164 and Tyr170. The compounds are screened based on hydrogen bonding, π-π interactions, halogen bonding and orientation within the binding site with high binding score using Maestro (v.11.0.014, Schrodinger. The best screened compound is selected for Molecular Dynamic Simulation analysis up to 20ns using Desmond (v.4.8, Schrodinger which represents a good starting point for further in vivo experimentation and can probably serve as an ideal lead compound for the treatment of Malaria.

  4. Plasmodium falciparum centromeres display a unique epigenetic makeup and cluster prior to and during schizogony.

    Science.gov (United States)

    Hoeijmakers, Wieteke A M; Flueck, Christian; Françoijs, Kees-Jan; Smits, Arne H; Wetzel, Johanna; Volz, Jennifer C; Cowman, Alan F; Voss, Till; Stunnenberg, Hendrik G; Bártfai, Richárd

    2012-09-01

    Centromeres are essential for the faithful transmission of chromosomes to the next generation, therefore being essential in all eukaryotic organisms. The centromeres of Plasmodium falciparum, the causative agent of the most severe form of malaria, have been broadly mapped on most chromosomes, but their epigenetic composition remained undefined. Here, we reveal that the centromeric histone variant PfCENH3 occupies a 4-4.5 kb region on each P. falciparum chromosome, which is devoid of pericentric heterochromatin but harbours another histone variant, PfH2A.Z. These CENH3 covered regions pinpoint the exact position of the centromere on all chromosomes and revealed that all centromeric regions have similar size and sequence composition. Immunofluorescence assay of PfCENH3 strongly suggests that P. falciparum centromeres cluster to a single nuclear location prior to and during mitosis and cytokinesis but dissociate soon after invasion. In summary, we reveal a dynamic association of Plasmodium centromeres, which bear a unique epigenetic signature and conform to a strict structure. These findings suggest that DNA-associated and epigenetic elements play an important role in centromere establishment in this important human pathogen. © 2012 Blackwell Publishing Ltd.

  5. Recurrent Plasmodium falciparum malaria infections in Kenyan children diminish T-cell immunity to Epstein Barr virus lytic but not latent antigens.

    Directory of Open Access Journals (Sweden)

    Cynthia J Snider

    Full Text Available Plasmodium falciparum malaria (Pf-malaria and Epstein Barr Virus (EBV infections coexist in children at risk for endemic Burkitt's lymphoma (eBL; yet studies have only glimpsed the cumulative effect of Pf-malaria on EBV-specific immunity. Using pooled EBV lytic and latent CD8+ T-cell epitope-peptides, IFN-γ ELISPOT responses were surveyed three times among children (10 months to 15 years in Kenya from 2002-2004. Prevalence ratios (PR and 95% confidence intervals (CI were estimated in association with Pf-malaria exposure, defined at the district-level (Kisumu: holoendemic; Nandi: hypoendemic and the individual-level. We observed a 46% decrease in positive EBV lytic antigen IFN-γ responses among 5-9 year olds residing in Kisumu compared to Nandi (PR: 0.54; 95% CI: 0.30-0.99. Individual-level analysis in Kisumu revealed further impairment of EBV lytic antigen responses among 5-9 year olds consistently infected with Pf-malaria compared to those never infected. There were no observed district- or individual-level differences between Pf-malaria exposure and EBV latent antigen IFN-γ response. The gradual decrease of EBV lytic antigen but not latent antigen IFN-γ responses after primary infection suggests a specific loss in immunological control over the lytic cycle in children residing in malaria holoendemic areas, further refining our understanding of eBL etiology.

  6. Cloning of the Repertoire of Individual Plasmodium falciparum var Genes Using Transformation Associated Recombination (TAR)

    Science.gov (United States)

    Schmid, Christoph D.; Bühlmann, Tobias; Louis, Edward J.; Beck, Hans-Peter

    2011-01-01

    One of the major virulence factors of the malaria causing parasite is the Plasmodium falciparum encoded erythrocyte membrane protein 1 (PfEMP1). It is translocated to It the membrane of infected erythrocytes and expressed from approximately 60 var genes in a mutually exclusive manner. Switching of var genes allows the parasite to alter functional and antigenic properties of infected erythrocytes, to escape the immune defense and to establish chronic infections. We have developed an efficient method for isolating VAR genes from telomeric and other genome locations by adapting transformation-associated recombination (TAR) cloning, which can then be analyzed and sequenced. For this purpose, three plasmids each containing a homologous sequence representing the upstream regions of the group A, B, and C var genes and a sequence homologous to the conserved acidic terminal segment (ATS) of var genes were generated. Co-transfection with P. falciparum strain ITG2F6 genomic DNA in yeast cells yielded 200 TAR clones. The relative frequencies of clones from each group were not biased. Clones were screened by PCR, as well as Southern blotting, which revealed clones missed by PCR due to sequence mismatches with the primers. Selected clones were transformed into E. coli and further analyzed by RFLP and end sequencing. Physical analysis of 36 clones revealed 27 distinct types potentially representing 50% of the var gene repertoire. Three clones were selected for sequencing and assembled into single var gene containing contigs. This study demonstrates that it is possible to rapidly obtain the repertoire of var genes from P. falciparum within a single set of cloning experiments. This technique can be applied to individual isolates which will provide a detailed picture of the diversity of var genes in the field. This is a powerful tool to overcome the obstacles with cloning and assembly of multi-gene families by simultaneously cloning each member. PMID:21408186

  7. Modelling the impact of antimalarial quality on the transmission of sulfadoxine-pyrimethamine resistance in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Aleisha R. Brock

    2017-05-01

    Full Text Available Background: The use of poor quality antimalarial medicines, including the use of non-recommended medicines for treatment such as sulfadoxine-pyrimethamine (SP monotherapy, undermines malaria control and elimination efforts. Furthermore, the use of subtherapeutic doses of the active ingredient(s can theoretically promote the emergence and transmission of drug resistant parasites. Methods: We developed a deterministic compartmental model to quantify the impact of antimalarial medicine quality on the transmission of SP resistance, and validated it using sensitivity analysis and a comparison with data from Kenya collected in 2006. We modelled human and mosquito population dynamics, incorporating two Plasmodium falciparum subtypes (SP-sensitive and SP-resistant and both poor quality and good quality (artemether-lumefantrine antimalarial use. Findings: The model predicted that an increase in human malaria cases, and among these, an increase in the proportion of SP-resistant infections, resulted from an increase in poor quality SP antimalarial use, whether it was full- or half-dose SP monotherapy. Interpretation: Our findings suggest that an increase in poor quality antimalarial use predicts an increase in the transmission of resistance. This highlights the need for stricter control and regulation on the availability and use of poor quality antimalarial medicines, in order to offer safe and effective treatments, and work towards the eradication of malaria. Keywords: Deterministic compartmental model, Falsified antimalarial medicine, Substandard antimalarial treatments, Antimalarial quality, Plasmodium falciparum malaria, Drug resistance

  8. Absence of erythrocyte sequestration and lack of multicopy gene family expression in Plasmodium falciparum from a splenectomized malaria patient.

    Directory of Open Access Journals (Sweden)

    Anna Bachmann

    Full Text Available BACKGROUND: To avoid spleen-dependent killing mechanisms parasite-infected erythrocytes (IE of Plasmodium falciparum malaria patients have the capacity to bind to endothelial receptors. This binding also known as sequestration, is mediated by parasite proteins, which are targeted to the erythrocyte surface. Candidate proteins are those encoded by P. falciparum multicopy gene families, such as var, rif, stevor or PfMC-2TM. However, a direct in vivo proof of IE sequestration and expression of multicopy gene families is still lacking. Here, we report on the analysis of IE from a black African immigrant, who received the diagnosis of a malignant lymphoproliferative disorder and subsequently underwent splenectomy. Three weeks after surgery, the patient experienced clinical falciparum malaria with high parasitemia and circulating developmental parasite stages usually sequestered to the vascular endothelium such as late trophozoites, schizonts or immature gametocytes. METHODOLOGY/PRINCIPAL FINDINGS: Initially, when isolated from the patient, the infected erythrocytes were incapable to bind to various endothelial receptors in vitro. Moreover, the parasites failed to express the multicopy gene families var, A-type rif and stevor but expression of B-type rif and PfMC-2TM genes were detected. In the course of in vitro cultivation, the parasites started to express all investigated multicopy gene families and concomitantly developed the ability to adhere to endothelial receptors such as CD36 and ICAM-1, respectively. CONCLUSION/SIGNIFICANCE: This case strongly supports the hypothesis that parasite surface proteins such as PfEMP1, A-type RIFIN or STEVOR are involved in interactions of infected erythrocytes with endothelial receptors mediating sequestration of mature asexual and immature sexual stages of P. falciparum. In contrast, multicopy gene families coding for B-type RIFIN and PfMC-2TM proteins may not be involved in sequestration, as these genes were

  9. Adaptation of Plasmodium falciparum to its transmission environment.

    Science.gov (United States)

    Rono, Martin K; Nyonda, Mary A; Simam, Joan J; Ngoi, Joyce M; Mok, Sachel; Kortok, Moses M; Abdullah, Abdullah S; Elfaki, Mohammed M; Waitumbi, John N; El-Hassan, Ibrahim M; Marsh, Kevin; Bozdech, Zbynek; Mackinnon, Margaret J

    2018-02-01

    Success in eliminating malaria will depend on whether parasite evolution outpaces control efforts. Here, we show that Plasmodium falciparum parasites (the deadliest of the species causing human malaria) found in low-transmission-intensity areas have evolved to invest more in transmission to new hosts (reproduction) and less in within-host replication (growth) than parasites found in high-transmission areas. At the cellular level, this adaptation manifests as increased production of reproductive forms (gametocytes) early in the infection at the expense of processes associated with multiplication inside red blood cells, especially membrane transport and protein trafficking. At the molecular level, this manifests as changes in the expression levels of genes encoding epigenetic and translational machinery. Specifically, expression levels of the gene encoding AP2-G-the transcription factor that initiates reproduction-increase as transmission intensity decreases. This is accompanied by downregulation and upregulation of genes encoding HDAC1 and HDA1-two histone deacetylases that epigenetically regulate the parasite's replicative and reproductive life-stage programmes, respectively. Parasites in reproductive mode show increased reliance on the prokaryotic translation machinery found inside the plastid-derived organelles. Thus, our dissection of the parasite's adaptive regulatory architecture has identified new potential molecular targets for malaria control.

  10. Effects of pregnancy and intensity of Plasmodium falciparum transmission on immunoglobulin G subclass responses to variant surface antigens

    DEFF Research Database (Denmark)

    Megnekou, Rosette; Staalsoe, Trine; Taylor, Diane W

    2005-01-01

    Placenta-sequestering Plasmodium falciparum involved in the pathogenesis of pregnancy-associated malaria (PAM) in otherwise clinically immune women expresses particular variant surface antigens (VSA(PAM)) on the surface of infected erythrocytes that differ from VSA found in parasitized nonpregnant...... individuals (non-PAM type VSA). We studied levels of immunoglobulin G (IgG) and IgG subclasses with specificity for VSA(PAM) and for non-PAM type VSA in pregnant and nonpregnant women from two sites with different endemicities in Cameroon. We found that VSA(PAM)-specific responses depended on the pregnancy......(PAM)-specific immunity to pregnancy-associated malaria....

  11. Temporal expression and localization patterns of variant surface antigens in clinical Plasmodium falciparum isolates during erythrocyte schizogony.

    Directory of Open Access Journals (Sweden)

    Anna Bachmann

    Full Text Available Avoidance of antibody-mediated immune recognition allows parasites to establish chronic infections and enhances opportunities for transmission. The human malaria parasite Plasmodium falciparum possesses a number of multi-copy gene families, including var, rif, stevor and pfmc-2tm, which encode variant antigens believed to be expressed on the surfaces of infected erythrocytes. However, most studies of these antigens are based on in vitro analyses of culture-adapted isolates, most commonly the laboratory strain 3D7, and thus may not be representative of the unique challenges encountered by P. falciparum in the human host. To investigate the expression of the var, rif-A, rif-B, stevor and pfmc-2tm family genes under conditions that mimic more closely the natural course of infection, ex vivo clinical P. falciparum isolates were analyzed using a novel quantitative real-time PCR approach. Expression patterns in the clinical isolates at various time points during the first intraerythrocytic developmental cycle in vitro were compared to those of strain 3D7. In the clinical isolates, in contrast to strain 3D7, there was a peak of expression of the multi-copy gene families rif-A, stevor and pfmc-2tm at the young ring stage, in addition to the already known expression peak in trophozoites. Furthermore, most of the variant surface antigen families were overexpressed in the clinical isolates relative to 3D7, with the exception of the pfmc-2tm family, expression of which was higher in 3D7 parasites. Immunofluorescence analyses performed in parallel revealed two stage-dependent localization patterns of RIFIN, STEVOR and PfMC-2TM. Proteins were exported into the infected erythrocyte at the young trophozoite stage, whereas they remained inside the parasite membrane during schizont stage and were subsequently observed in different compartments in the merozoite. These results reveal a complex pattern of expression of P. falciparum multi-copy gene families during

  12. Transplacental Transmission of Plasmodium falciparum in a Highly Malaria Endemic Area of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Alphonse Ouédraogo

    2012-01-01

    Full Text Available Malaria congenital infection constitutes a major risk in malaria endemic areas. In this study, we report the prevalence of transplacental malaria in Burkina Faso. In labour and delivery units, thick and thin blood films were made from maternal, placental, and umbilical cord blood to determine malaria infection. A total of 1,309 mother/baby pairs were recruited. Eighteen cord blood samples (1.4% contained malaria parasites (Plasmodium falciparum. Out of the 369 (28.2% women with peripheral positive parasitemia, 211 (57.2% had placental malaria and 14 (3.8% had malaria parasites in their umbilical cord blood. The umbilical cord parasitemia levels were statistically associated with the presence of maternal peripheral parasitemia (OR=9.24, ≪0.001, placental parasitemia (OR=10.74, ≪0.001, high-density peripheral parasitemia (OR=9.62, ≪0.001, and high-density placental parasitemia (OR=4.91, =0.03. In Burkina Faso, the mother-to-child transmission rate of malaria appears to be low.

  13. Evidence for in vitro and in vivo expression of the conserved VAR3 (type 3) plasmodium falciparum erythrocyte membrane protein 1

    DEFF Research Database (Denmark)

    Wang, Christian W; Lavstsen, Thomas; Bengtsson, Dominique C

    2012-01-01

    ABSTRACT: BACKGROUND: Members of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion antigen family are major contributors to the pathogenesis of P. falciparum malaria infections. The PfEMP1-encoding var genes are among the most diverse sequences in nature, but three genes......, var1, var2csa and var3 are found conserved in most parasite genomes. The most severe forms of malaria disease are caused by parasites expressing a subset of antigenically conserved PfEMP1 variants. Thus the ubiquitous and conserved VAR3 PfEMP1 is of particular interest to the research field. Evidence...... of VAR3 expression on the infected erythrocyte surface has never been presented, and var3 genes have been proposed to be transcribed and expressed differently from the rest of the var gene family members. METHODS: In this study, parasites expressing VAR3 PfEMP1 were generated using anti-VAR3 antibodies...

  14. The Malaria Parasite Cyclin H Homolog PfCyc1 Is Required for Efficient Cytokinesis in Blood-Stage Plasmodium falciparum.

    Science.gov (United States)

    Robbins, Jonathan A; Absalon, Sabrina; Streva, Vincent A; Dvorin, Jeffrey D

    2017-06-13

    All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G 1 -, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G 1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We

  15. Maternally transmitted antibodies to pregnancy-associated variant antigens on the surface of erythrocytes infected with Plasmodium falciparum: relation to child susceptibility to malaria

    DEFF Research Database (Denmark)

    Cot, Michel; Le Hesran, Jean Yves; Staalsoe, Trine

    2003-01-01

    The consequences of pregnancy-associated malaria on a child's health have been poorly investigated. Malarial infection of the placenta seems to result in a higher susceptibility of children to the parasite during their first year of life. In 1993-1995, the authors investigated the role of antibod......The consequences of pregnancy-associated malaria on a child's health have been poorly investigated. Malarial infection of the placenta seems to result in a higher susceptibility of children to the parasite during their first year of life. In 1993-1995, the authors investigated the role......, Cameroon. These newborns were subsequently followed up for 2 years to determine the date of first occurrence of blood parasites and mean parasite density during follow-up. Maternally transmitted antibodies to VSA expressed by CSA-binding parasites, but not antibodies to any other specificity, were...... negatively related to time of first appearance of Plasmodium falciparum in a child's blood and were positively related to mean parasite density during the first 2 years of life. If maternal infection is thought to be the main mechanism influencing susceptibility of the newborn to malaria, antibodies to VSA...

  16. Defining the relationship between Plasmodium falciparum parasite rate and clinical disease: statistical models for disease burden estimation

    Directory of Open Access Journals (Sweden)

    Snow Robert W

    2009-08-01

    Full Text Available Abstract Background Clinical malaria has proven an elusive burden to enumerate. Many cases go undetected by routine disease recording systems. Epidemiologists have, therefore, frequently defaulted to actively measuring malaria in population cohorts through time. Measuring the clinical incidence of malaria longitudinally is labour-intensive and impossible to undertake universally. There is a need, therefore, to define a relationship between clinical incidence and the easier and more commonly measured index of infection prevalence: the "parasite rate". This relationship can help provide an informed basis to define malaria burdens in areas where health statistics are inadequate. Methods Formal literature searches were conducted for Plasmodium falciparum malaria incidence surveys undertaken prospectively through active case detection at least every 14 days. The data were abstracted, standardized and geo-referenced. Incidence surveys were time-space matched with modelled estimates of infection prevalence derived from a larger database of parasite prevalence surveys and modelling procedures developed for a global malaria endemicity map. Several potential relationships between clinical incidence and infection prevalence were then specified in a non-parametric Gaussian process model with minimal, biologically informed, prior constraints. Bayesian inference was then used to choose between the candidate models. Results The suggested relationships with credible intervals are shown for the Africa and a combined America and Central and South East Asia regions. In both regions clinical incidence increased slowly and smoothly as a function of infection prevalence. In Africa, when infection prevalence exceeded 40%, clinical incidence reached a plateau of 500 cases per thousand of the population per annum. In the combined America and Central and South East Asia regions, this plateau was reached at 250 cases per thousand of the population per annum. A temporal

  17. Expressed var gene repertoire and variant surface antigen diversity in a shrinking Plasmodium falciparum population.

    Science.gov (United States)

    Carlos, Bianca C; Fotoran, Wesley L; Menezes, Maria J; Cabral, Fernanda J; Bastos, Marcele F; Costa, Fabio T M; Sousa-Neto, Jayme A; Ribolla, Paulo E M; Wunderlich, Gerhard; Ferreira, Marcelo U

    2016-11-01

    The var gene-encoded erythrocyte membrane protein-1 of Plasmodium falciparum (PfEMP-1) is the main variant surface antigen (VSA) expressed on infected erythrocytes. The rate at which antibody responses to VSA expressed by circulating parasites are acquired depends on the size of the local VSA repertoire and the frequency of exposure to new VSA. Because parasites from areas with declining malaria endemicity, such as the Amazon, typically express a restricted PfEMP-1 repertoire, we hypothesized that Amazonians would rapidly acquire antibodies to most locally circulating VSA. Consistent with our expectations, the analysis of 5878 sequence tags expressed by 10 local P. falciparum samples revealed little PfEMP-1 DBL1α domain diversity. Among the most commonly expressed DBL1α types, 45% were shared by two or more independent parasite lines. Nevertheless, Amazonians displayed major gaps in their repertoire of anti-VSA antibodies, although the breadth of anti-VSA antibody responses correlated positively with their cumulative exposure to malaria. We found little antibody cross-reactivity even when testing VSA from related parasites expressing the same dominant DBL1α types. We conclude that variant-specific immunity to P. falciparum VSAs develops slowly despite the relatively restricted PfEMP-1 repertoire found in low-endemicity settings. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum.

    NARCIS (Netherlands)

    Silvestrini, F.; Lasonder, E.; Olivieri, A.; Camarda, G.; Schaijk, B.C.L. van; Sanchez, M.; Younis Younis, S.; Sauerwein, R.W.; Alano, P.

    2010-01-01

    Despite over a century of study of malaria parasites, parts of the Plasmodium falciparum life cycle remain virtually unknown. One of these is the early gametocyte stage, a round shaped cell morphologically similar to an asexual trophozoite in which major cellular transformations ensure subsequent

  19. Análisis proteómico de Plasmodium, el agente causal de la malaria Proteomic analysis of Plasmodium, the causal agent of Malaria

    Directory of Open Access Journals (Sweden)

    Ivone Castro R

    2009-01-01

    Full Text Available Los plasmodios son protozoarios cuyo complejo ciclo de vida se lleva a cabo en dos hospederos, el vertebrado y el mosquito. La infección de los seres humanos produce la enfermedad conocida como malaria. La secuenciación del genoma de Plasmodium falciparum y el desarrollo de la proteómica han permitido un gran avance en el conocimiento de la biología de este letal parásito. La presente revisión se centra en describir los logros recientes en el estudio del proteoma de Plasmodium falciparum y algunas de las implicaciones en la búsqueda de nuevos fármacos antimaláricos, así como en la generación de vacunas para el control de la enfermedad.Plasmodia are protozoa whose complex life cycle takes place in two different hosts, the vertebrate and the mosquito. The human infection produces the malaria disease. The genome sequence of Plasmodium falciparum and the proteomic tools have enabled a huge advance in knowledge of the biology of this parasite. This review will focus on the recent advances in proteomic studies of Plasmodium falciparum and some implications for the search of new antimalarial drugs as well as vaccines for the control of the disease.

  20. Antiplasmodial activities of dyes against Plasmodium falciparum asexual and sexual stages: Contrasted uptakes of triarylmethanes Brilliant green, Green S (E142), and Patent Blue V (E131) by erythrocytes.

    Science.gov (United States)

    Leba, Louis-Jérôme; Popovici, Jean; Estevez, Yannick; Pelleau, Stéphane; Legrand, Eric; Musset, Lise; Duplais, Christophe

    2017-12-01

    The search for safe antimalarial compounds acting against asexual symptom-responsible stages and sexual transmission-responsible forms of Plasmodium species is one of the major challenges in malaria elimination programs. So far, among current drugs approved for human use, only primaquine has transmission-blocking activity. The discovery of small molecules targeting different Plasmodium falciparum life stages remains a priority in antimalarial drug research. In this context, several independent studies have recently reported antiplasmodial and transmission-blocking activities of commonly used stains, dyes and fluorescent probes against P. falciparum including chloroquine-resistant isolates. Herein we have studied the antimalarial activities of dyes with different scaffold and we report that the triarylmethane dye (TRAM) Brilliant green inhibits the growth of asexual stages (IC 50  ≤ 2 μM) and has exflagellation-blocking activity (IC 50  ≤ 800 nM) against P. falciparum reference strains (3D7, 7G8) and chloroquine-resistant clinical isolate (Q206). In a second step we have investigated the antiplasmodial activities of two polysulfonated triarylmethane food dyes. Green S (E142) is weakly active against P. falciparum asexual stage (IC 50 ≃ 17 μM) whereas Patent Blue V (E131) is inactive in both antimalarial assays. By applying liquid chromatography techniques for the culture supernatant analysis after cell washings and lysis, we report the detection of Brilliant green in erythrocytes, the selective uptake of Green S (E142) by infected erythrocytes, whereas Patent Blue V (E131) could not be detected within non-infected and 3D7-infected erythrocytes. Overall, our results suggest that two polysulfonated food dyes might display different affinity with transporters or channels on infected RBC membrane. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Antiplasmodial activities of dyes against Plasmodium falciparum asexual and sexual stages: Contrasted uptakes of triarylmethanes Brilliant green, Green S (E142, and Patent Blue V (E131 by erythrocytes

    Directory of Open Access Journals (Sweden)

    Louis-Jérôme Leba

    2017-12-01

    Full Text Available The search for safe antimalarial compounds acting against asexual symptom-responsible stages and sexual transmission-responsible forms of Plasmodium species is one of the major challenges in malaria elimination programs. So far, among current drugs approved for human use, only primaquine has transmission-blocking activity. The discovery of small molecules targeting different Plasmodium falciparum life stages remains a priority in antimalarial drug research. In this context, several independent studies have recently reported antiplasmodial and transmission-blocking activities of commonly used stains, dyes and fluorescent probes against P. falciparum including chloroquine-resistant isolates. Herein we have studied the antimalarial activities of dyes with different scaffold and we report that the triarylmethane dye (TRAM Brilliant green inhibits the growth of asexual stages (IC50 ≤ 2 μM and has exflagellation-blocking activity (IC50 ≤ 800 nM against P. falciparum reference strains (3D7, 7G8 and chloroquine-resistant clinical isolate (Q206. In a second step we have investigated the antiplasmodial activities of two polysulfonated triarylmethane food dyes. Green S (E142 is weakly active against P. falciparum asexual stage (IC50 ≃ 17 μM whereas Patent Blue V (E131 is inactive in both antimalarial assays. By applying liquid chromatography techniques for the culture supernatant analysis after cell washings and lysis, we report the detection of Brilliant green in erythrocytes, the selective uptake of Green S (E142 by infected erythrocytes, whereas Patent Blue V (E131 could not be detected within non-infected and 3D7-infected erythrocytes. Overall, our results suggest that two polysulfonated food dyes might display different affinity with transporters or channels on infected RBC membrane. Keywords: Antimalarial dyes, Transmission blocking, Triarylmethanes, Drug uptake, Brilliant green, Food dyes

  2. The Effect of Aqueous Extract of Cinnamon on the Metabolome of Plasmodium falciparum Using 1HNMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Shirin Parvazi

    2016-01-01

    Full Text Available Malaria is responsible for estimated 584,000 deaths in 2013. Researchers are working on new drugs and medicinal herbs due to drug resistance that is a major problem facing them; the search is on for new medicinal herbs. Cinnamon is the bark of a tree with reported antiparasitic effects. Metabonomics is the simultaneous study of all the metabolites in biological fluids, cells, and tissues detected by high throughput technology. It was decided to determine the mechanism of the effect of aqueous extract of cinnamon on the metabolome of Plasmodium falciparum in vitro using 1HNMR spectroscopy. Prepared aqueous extract of cinnamon was added to a culture of Plasmodium falciparum 3D7 and its 50% inhibitory concentration determined, and, after collection, their metabolites were extracted and 1HNMR spectroscopy by NOESY method was done. The spectra were analyzed by chemometric methods. The differentiating metabolites were identified using Human Metabolome Database and the metabolic cycles identified by Metaboanalyst. 50% inhibitory concentration of cinnamon on Plasmodium falciparum was 1.25 mg/mL with p<0.001. The metabolites were identified as succinic acid, glutathione, L-aspartic acid, beta-alanine, and 2-methylbutyryl glycine. The main metabolic cycles detected were alanine and aspartame and glutamate pathway and pantothenate and coenzyme A biosynthesis and lysine biosynthesis and glutathione metabolism, which are all important as drug targets.

  3. Genetic diversity of Plasmodium falciparum merozoite surface protein-1 block 2 in sites of contrasting altitudes and malaria endemicities in the Mount Cameroon region.

    Science.gov (United States)

    Wanji, Samuel; Kengne-Ouafo, Arnaud J; Eyong, Ebanga E Joan; Kimbi, Helen K; Tendongfor, Nicholas; Ndamukong-Nyanga, Judith L; Nana-Djeunga, Hugues C; Bourguinat, Catherine; Sofeu-Feugaing, David D; Charvet, Claude L

    2012-05-01

    The present study analyzed the relationship between the genetic diversity of Plasmodium falciparum and parasitologic/entomologic indices in the Mount Cameroon region by using merozoite surface protein 1 as a genetic marker. Blood samples were collected from asymptomatic children from three altitude zones (high, intermediate, and low). Parasitologic and entomologic indices were determined by microscopy and landing catch mosquito collection/circumsporozoite protein-enzyme-linked immunosorbent assay, respectively. A total of 142 randomly selected P. falciparum-positive blood samples were genotyped by using a nested polymerase chain reaction-based technique. K-1 polymerase chain reaction products were also sequenced. As opposed to high altitude, the highest malaria prevalence (70.65%) and entomologic inoculation rate (2.43 infective/bites/night) were recorded at a low altitude site. Seven (18.91%), 22 (36.66%), and 19 (42.22%) samples from high, intermediate, and low altitudes, respectively, contained multiclonal infections. A new K-1 polymorphism was identified. This study shows a positive non-linear association between low/intermediate altitude (high malaria transmission) and an increase in P. falciparum merozoite surface protein 1 block 2 polymorphisms.

  4. Effects of the vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor SU5416 on in vitro cultures of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Hempel, Casper; Hoyer, Nils; Staalsø, Trine

    2014-01-01

    BACKGROUND: Vascular endothelial growth factor (VEGF) is taken up by parasitized red blood cells during malaria and stimulates intra-erythrocytic growth of Plasmodium falciparum in vitro. The cause and consequence of this uptake is not understood. METHODS: Plasmodium falciparum was cultured......, SU5416, dose-dependently inhibited growth. None of the treatments reduced intracellular VEGF levels. Thus, the anti-parasitic effect of SU5416 seemed independent of VEGF uptake. SU5416 reduced phosphorylated tyrosine in parasitized red blood cells. Similarly, the broad-spectrum tyrosine kinase...... in vitro. Parasite growth and intracellular VEGF levels were assessed using flow cytometry. Intracellular VEGF was visualized by fluorescence immunocytochemistry. Phosphorylated tyrosine was measured by western blotting. In vivo assessment of intra-erythrocytic VEGF was performed in Plasmodium berghei ANKA...

  5. Characterization of sporozoite surface antigens of Plasmodium falciparum, using monoclonal antibodies. Part of a coordinated programme on the preparation of irradiated vaccines against some human diseases

    International Nuclear Information System (INIS)

    Groot, M.

    1982-10-01

    Sporozoites are considered as a source of potential vaccine. Characterization of their antigens is therefore important and can be achieved by monoclonal antibodies. The purpose of this project is to study the production of monoclonal antibodies against sporozoites of P. falciparum. Various infections of mosquitoes were carried out during the period 1981-1982 to obtain antigens for the production of hybridomas. Hybridomas were produced from mice immunized through the bites of infected mosquitoes and by intravenous inoculation. The anti-sporozoite activity of the hybridomas was tested by an immunofluorescent antibody test using P. falciparum sporozoites as antigens. Positive immunofluorescence was seen in hybridoma cell lines tested with P. falciparum, whereas negative results were obtained when the cell lines were cross-reacted with other human species (P. vivax) and with a rodent malaria parasite (P. berghei)

  6. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Pierre Druilhe

    2005-11-01

    Full Text Available Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant.Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation.This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  7. Plasmodium knowlesi: from severe zoonosis to animal model.

    Science.gov (United States)

    Cox-Singh, Janet; Culleton, Richard

    2015-06-01

    Plasmodium knowlesi malaria is a newly described zoonosis in Southeast Asia. Similarly to Plasmodium falciparum, P. knowlesi can reach high parasitaemia in the human host and both species cause severe and fatal illness. Interpretation of host-parasite interactions in studies of P. knowlesi malaria adds a counterpoint to studies on P. falciparum. However, there is no model system for testing the resulting hypotheses on malaria pathophysiology or for developing new interventions. Plasmodium knowlesi is amenable to genetic manipulation in vitro and several nonhuman primate species are susceptible to experimental infection. Here, we make a case for drawing on P. knowlesi as both a human pathogen and an experimental model to lift the roadblock between malaria research and its translation into human health benefits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Distinct patterns of cytokine regulation in discrete clinical forms of Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Akanmori, B D; Kurtzhals, J A; Goka, B Q

    2000-01-01

    The pathogenesis of two of the most severe complications of Plasmodium falciparum malaria, cerebral malaria (CM) and severe malarial anaemia (SA) both appear to involve dysregulation of the immune system. We have measured plasma levels of TNF and its two receptors in Ghanaian children with strict...

  9. Selective and specific inhibition of the plasmodium falciparum lysyl-tRNA synthetase by the fungal secondary metabolite cladosporin.

    Science.gov (United States)

    Hoepfner, Dominic; McNamara, Case W; Lim, Chek Shik; Studer, Christian; Riedl, Ralph; Aust, Thomas; McCormack, Susan L; Plouffe, David M; Meister, Stephan; Schuierer, Sven; Plikat, Uwe; Hartmann, Nicole; Staedtler, Frank; Cotesta, Simona; Schmitt, Esther K; Petersen, Frank; Supek, Frantisek; Glynne, Richard J; Tallarico, John A; Porter, Jeffrey A; Fishman, Mark C; Bodenreider, Christophe; Diagana, Thierry T; Movva, N Rao; Winzeler, Elizabeth A

    2012-06-14

    With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin

    Directory of Open Access Journals (Sweden)

    Barik Sailen

    2003-09-01

    Full Text Available Abstract Background The naturally occurring benzoquinone ansamycin compound, geldanamycin (GA, is a specific inhibitor of heat shock protein 90 (Hsp90 and is a potential anticancer agent. Since Plasmodium falciparum has been reported to have an Hsp90 ortholog, we tested the possibility that GA might inhibit it and thereby display antiparasitic activity. Results We provide direct recombinant DNA evidence for the Hsp90 protein of Plasmodium falciparum, the causative agent of fatal malaria. While the mRNA of Hsp90 was mainly expressed in ring and trophozoite stages, the protein was found in all stages, although schizonts contained relatively lower amounts. In vitro the parasitic Hsp90 exhibited an ATP-binding activity that could be specifically inhibited by GA. Plasmodium growth in human erythrocyte culture was strongly inhibited by GA with an IC50 of 20 nM, compared to the IC50 of 15 nM for chloroquine (CQ under identical conditions. When used in combination, the two drugs acted synergistically. GA was equally effective against CQ-sensitive and CQ-resistant strains (3D7 and W2, respectively and on all erythrocytic stages of the parasite. Conclusions Together, these results suggest that an active and essential Hsp90 chaperone cycle exists in Plasmodium and that the ansamycin antibiotics will be an important tool to dissect its role in the parasite. Additionally, the favorable pharmacology of GA, reported in human trials, makes it a promising antimalarial drug.

  11. Selection of drug resistant mutants from random library of Plasmodium falciparum dihydrofolate reductase in Plasmodium berghei model

    Directory of Open Access Journals (Sweden)

    Yuthavong Yongyuth

    2011-05-01

    Full Text Available Abstract Background The prevalence of drug resistance amongst the human malaria Plasmodium species has most commonly been associated with genomic mutation within the parasites. This phenomenon necessitates evolutionary predictive studies of possible resistance mutations, which may occur when a new drug is introduced. Therefore, identification of possible new Plasmodium falciparum dihydrofolate reductase (PfDHFR mutants that confer resistance to antifolate drugs is essential in the process of antifolate anti-malarial drug development. Methods A system to identify mutations in Pfdhfr gene that confer antifolate drug resistance using an animal Plasmodium parasite model was developed. By using error-prone PCR and Plasmodium transfection technologies, libraries of Pfdhfr mutant were generated and then episomally transfected to Plasmodium berghei parasites, from which pyrimethamine-resistant PfDHFR mutants were selected. Results The principal mutation found from this experiment was S108N, coincident with the first pyrimethamine-resistance mutation isolated from the field. A transgenic P. berghei, in which endogenous Pbdhfr allele was replaced with the mutant PfdhfrS108N, was generated and confirmed to have normal growth rate comparing to parental non-transgenic parasite and also confer resistance to pyrimethamine. Conclusion This study demonstrated the power of the transgenic P. berghei system to predict drug-resistant Pfdhfr mutations in an in vivo parasite/host setting. The system could be utilized for identification of possible novel drug-resistant mutants that could arise against new antifolate compounds and for prediction the evolution of resistance mutations.

  12. Changes in lipid composition during sexual development of the malaria parasite Plasmodium falciparum.

    Science.gov (United States)

    Tran, Phuong N; Brown, Simon H J; Rug, Melanie; Ridgway, Melanie C; Mitchell, Todd W; Maier, Alexander G

    2016-02-06

    The development of differentiated sexual stages (gametocytes) within human red blood cells is essential for the propagation of the malaria parasite, since only mature gametocytes will survive in the mosquito's midgut. Hence gametocytogenesis is a pre-requisite for transmission of the disease. Physiological changes involved in sexual differentiation are still enigmatic. In particular the lipid metabolism-despite being central to cellular regulation and development-is not well explored. Here the lipid profiles of red blood cells infected with the five different sexual stages of Plasmodium falciparum were analysed by mass spectrometry and compared to those from uninfected and asexual trophozoite infected erythrocytes. Fundamental differences between erythrocytes infected with the different parasite stages were revealed. In mature gametocytes many lipids that decrease in the trophozoite and early gametocyte infected red blood cells are regained. In particular, regulators of membrane fluidity, cholesterol and sphingomyelin, increased significantly during gametocyte maturation. Neutral lipids (serving mainly as caloriometric reserves) increased from 3 % of total lipids in uninfected to 27 % in stage V gametocyte infected red blood cells. The major membrane lipid class (phospholipids) decreased during gametocyte development. The lipid profiles of infected erythrocytes are characteristic for the particular parasite life cycle and maturity stages of gametocytes. The obtained lipid profiles are crucial in revealing the lipid metabolism of malaria parasites and identifying targets to interfere with this deadly disease.

  13. Plasmodium falciparum Adhesins Play an Essential Role in Signalling and Activation of Invasion into Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    Wai-Hong Tham

    2015-12-01

    Full Text Available The most severe form of malaria in humans is caused by the protozoan parasite Plasmodium falciparum. The invasive form of malaria parasites is termed a merozoite and it employs an array of parasite proteins that bind to the host cell to mediate invasion. In Plasmodium falciparum, the erythrocyte binding-like (EBL and reticulocyte binding-like (Rh protein families are responsible for binding to specific erythrocyte receptors for invasion and mediating signalling events that initiate active entry of the malaria parasite. Here we have addressed the role of the cytoplasmic tails of these proteins in activating merozoite invasion after receptor engagement. We show that the cytoplasmic domains of these type 1 membrane proteins are phosphorylated in vitro. Depletion of PfCK2, a kinase implicated to phosphorylate these cytoplasmic tails, blocks P. falciparum invasion of red blood cells. We identify the crucial residues within the PfRh4 cytoplasmic domain that are required for successful parasite invasion. Live cell imaging of merozoites from these transgenic mutants show they attach but do not penetrate erythrocytes implying the PfRh4 cytoplasmic tail conveys signals important for the successful completion of the invasion process.

  14. Genetic diversity of the msp-1, msp-2, and glurp genes of Plasmodium falciparum isolates along the Thai-Myanmar borders.

    Science.gov (United States)

    Congpuong, Kanungnit; Sukaram, Rungniran; Prompan, Yuparat; Dornae, Aibteesam

    2014-08-01

    To study the genetic diversity at the msp-1, msp-2, and glurp genes of Plasmodium falciparum (P. falciparum) isolates from 3 endemic areas in Thailand: Tak, Kanchanaburi and Ranong provinces. A total of 144 P. falciparum isolates collected prior to treatment during January, 2012 to June, 2013 were genotyped. DNA was extracted; allele frequency and diversity of msp-1, msp-2, and glurp genes were investigated by nested polymerase chain reaction. P. falciparum isolates in this study had high rate of multiple genotypes infection (96.5%) with an overall mean multiplicity of infection of 3.21. The distribution of allelic families of msp-1 was significantly different among isolates from Tak, Kanchanaburi, and Ranong but not for the msp-2. K1 and MAD20 were the predominant allelic families at the msp-1 gene, whereas alleles belonging to 3D7 were more frequent at the msp-2 gene. The glurp gene had the least diverse alleles. Population structure of P. falciparum isolates from Tak and Ranong was quite similar as revealed by the presence of similar proportions of MAD20 and K1 alleles at msp-1 loci, 3D7 and FC27 alleles at msp-2 loci as well as comparable mean MOI. Isolates from Kanchanaburi had different structures; the most prevalent alleles were K1 and RO33. The present study shows that P. falciparum isolates from Tak and Ranong provinces had similar allelic pattern of msp-1 and msp-2 and diversity but different from Kanchanaburi isolates. These allelic variant profiles are valuable baseline data for future epidemiological study of malaria transmission and for continued monitoring of polymorphisms associated with antimalarial drug resistance in these areas.

  15. Distinct genomic architecture of Plasmodium falciparum populations from South Asia.

    Science.gov (United States)

    Kumar, Shiva; Mudeppa, Devaraja G; Sharma, Ambika; Mascarenhas, Anjali; Dash, Rashmi; Pereira, Ligia; Shaik, Riaz Basha; Maki, Jennifer N; White, John; Zuo, Wenyun; Tuljapurkar, Shripad; Duraisingh, Manoj T; Gomes, Edwin; Chery, Laura; Rathod, Pradipsinh K

    Previous whole genome comparisons of Plasmodium falciparum populations have not included collections from the Indian subcontinent, even though two million Indians contract malaria and about 50,000 die from the disease every year. Stratification of global parasites has revealed spatial relatedness of parasite genotypes on different continents. Here, genomic analysis was further improved to obtain country-level resolution by removing var genes and intergenic regions from distance calculations. P. falciparum genomes from India were found to be most closely related to each other. Their nearest neighbors were from Bangladesh and Myanmar, followed by Thailand. Samples from the rest of Southeast Asia, Africa and South America were increasingly more distant, demonstrating a high-resolution genomic-geographic continuum. Such genome stratification approaches will help monitor variations of malaria parasites within South Asia and future changes in parasite populations that may arise from in-country and cross-border migrations. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Cellular effects of curcumin on Plasmodium falciparum include disruption of microtubules.

    Directory of Open Access Journals (Sweden)

    Rimi Chakrabarti

    Full Text Available Curcumin has been widely investigated for its myriad cellular effects resulting in reduced proliferation of various eukaryotic cells including cancer cells and the human malaria parasite Plasmodium falciparum. Studies with human cancer cell lines HT-29, Caco-2, and MCF-7 suggest that curcumin can bind to tubulin and induce alterations in microtubule structure. Based on this finding, we investigated whether curcumin has any effect on P. falciparum microtubules, considering that mammalian and parasite tubulin are 83% identical. IC50 of curcumin was found to be 5 µM as compared to 20 µM reported before. Immunofluorescence images of parasites treated with 5 or 20 µM curcumin showed a concentration-dependent effect on parasite microtubules resulting in diffuse staining contrasting with the discrete hemispindles and subpellicular microtubules observed in untreated parasites. The effect on P. falciparum microtubules was evident only in the second cycle for both concentrations tested. This diffuse pattern of tubulin fluorescence in curcumin treated parasites was similar to the effect of a microtubule destabilizing drug vinblastine on P. falciparum. Molecular docking predicted the binding site of curcumin at the interface of alpha and beta tubulin, similar to another destabilizing drug colchicine. Data from predicted drug binding is supported by results from drug combination assays showing antagonistic interactions between curcumin and colchicine, sharing a similar binding site, and additive/synergistic interactions of curcumin with paclitaxel and vinblastine, having different binding sites. This evidence suggests that cellular effects of curcumin are at least, in part, due to its perturbing effect on P. falciparum microtubules. The action of curcumin, both direct and indirect, on P. falciparum microtubules is discussed.

  17. Improved assay to detect Plasmodium falciparum using an uninterrupted, semi-nested PCR and quantitative lateral flow analysis

    Science.gov (United States)

    2013-01-01

    Background A rapid, non-invasive, and inexpensive point-of-care (POC) diagnostic for malaria followed by therapeutic intervention would improve the ability to control infection in endemic areas. Methods A semi-nested PCR amplification protocol is described for quantitative detection of Plasmodium falciparum and is compared to a traditional nested PCR. The approach uses primers that target the P. falciparum dihydrofolate reductase gene. Results This study demonstrates that it is possible to perform an uninterrupted, asymmetric, semi-nested PCR assay with reduced assay time to detect P. falciparum without compromising the sensitivity and specificity of the assay using saliva as a testing matrix. Conclusions The development of this PCR allows nucleic acid amplification without the need to transfer amplicon from the first PCR step to a second reaction tube with nested primers, thus reducing both the chance of contamination and the time for analysis to PCR amplicon yield was adapted to lateral flow detection using the quantitative up-converting phosphor (UCP) reporter technology. This approach provides a basis for migration of the assay to a POC microfluidic format. In addition the assay was successfully evaluated with oral samples. Oral fluid collection provides a simple non-invasive method to collect clinical samples. PMID:23433252

  18. The effects of a partitioned var gene repertoire of Plasmodium falciparum on antigenic diversity and the acquisition of clinical immunity

    Directory of Open Access Journals (Sweden)

    Arinaminpathy Nimalan

    2008-01-01

    Full Text Available Abstract Background The human malaria parasite Plasmodium falciparum exploits antigenic diversity and within-host antigenic variation to evade the host's immune system. Of particular importance are the highly polymorphic var genes that encode the family of cell surface antigens PfEMP1 (Plasmodium falciparum Erythrocyte Membrane Protein 1. It has recently been shown that in spite of their extreme diversity, however, these genes fall into distinct groups according to chromosomal location or sequence similarity, and that recombination may be confined within these groups. Methods This study presents a mathematical analysis of how recombination hierarchies affect diversity, and, by using simple stochastic simulations, investigates how intra- and inter-genic diversity influence the rate at which individuals acquire clinical immunity. Results The analysis demonstrates that the partitioning of the var gene repertoire has a limiting effect on the total diversity attainable through recombination and that the limiting effect is strongly influenced by the respective sizes of each of the partitions. Furthermore, by associating expression of one of the groups with severe malaria it is demonstrated how a small number of infections can be sufficient to protect against disease despite a seemingly limitless number of possible non-identical repertoires. Conclusion Recombination hierarchies within the var gene repertoire of P. falciparum have a severe effect on strain diversity and the process of acquiring immunity against clinical malaria. Future studies will show how the existence of these recombining groups can offer an evolutionary advantage in spite of their restriction on diversity.

  19. Status of dhps and dhfr genes of Plasmodium falciparum in Colombia before artemisinin based treatment policy Estado de los genes dhps y dhfr de Plasmodium falciparum en Colombia antes de la recomendación de tratamiento basado en artemisinina

    Directory of Open Access Journals (Sweden)

    Andrés Villa

    2012-03-01

    Full Text Available Introduction: Surveillance of the genetic characteristics of dhps and dhfr can be useful to outline guidelines for application of intermittent preventive therapy in Northwest Colombia and to define the future use of antifolates in artemisinin-based combination therapy schemes. Objective: To evaluate the frequency of mutations in dhps and dhfr and to characterize parasite populations using msp-1, msp-2 and glurp in historic samples before artemisinin-based therapy was implemented in the country. Methods: A controlled clinical study was carried out on randomly selected Plasmodium falciparum infected volunteers of Northwest Colombia (Turbo and Zaragoza. A sample size of 25 subjects per region was calculated. Treatment efficacy to antifolates was assessed. Molecular analyses included P. falciparum genotypes by msp-1, msp-2 and glurp and evaluation of the status of codons 16, 51, 59, 108 and 164 of dhfr and 436, 437, 540, 581 and 613 of dhps. Results: In total 78 subjects were recruited. A maximum number of 4 genotypes were detected by msp-1, msp-2 and glurp. Codons 16, 59 and 164 of the dhfr gene exhibited the wild-type form, while codons 51 and 108 were mutant. In the dhps gene, the mutant 437 glycine was detected in 85% on day 0, while codons 436, 540, 581 and 613 were wild-type. Conclusions: Plasmodium falciparum populations were very homogeneous in this region of Colombia, and the triple mutants of dhfr and dhps Asn108, Ile51 and Gly437 were predominant in clinical isolates.Introducción. La vigilancia de las características genéticas de dhps y dhfr puede utilizarse para delinear guías de aplicación de terapia preventiva intermitente en el nordeste de Colombia y para definir el uso futuro de los antifolatos en esquemas terapéuticos basados en artemisinina. Objetivo. Evaluar la frecuencia de mutaciones en dhps y dhfr, y caracterizar las poblaciones parasitarias usando msp-1, msp-2 y glurp, en muestras históricas obtenidas antes de la

  20. Plasmodium vivax malaria among pregnant women in Eastern Sudan

    Directory of Open Access Journals (Sweden)

    Duria Abdulwhab Rayis

    2016-06-01

    Full Text Available Objective: To determine the epidemiology of malaria [especially Plasmodium vivax (P. vivax] among pregnant women in Eastern Sudan. Methods: A cross sectional study was conducted in the antenatal care of New Halfa hospital, Eastern Sudan to investigate the prevalence, manifestations and determinants of malaria (especially P. vivax among pregnant women. Results: Out of 2 378 pregnant women, there were 48 (2.0% and 36 (1.5% Plasmodium falciparum (P. falciparum and P. vivax infection, respectively. There was no significant difference in the age, parity, gestational age between women with malaria and healthy controls. The mean ± SD of the temperature was significantly higher in patients with P. vivax than in patient with P. falciparum malaria [(38.6 ± 0.7 °C vs. (38.1 ± 0.6 °C, P = 0.001]. Patients with P. vivax malaria had slightly (not reach statistical significance lower hemoglobin level compared with P. falciparum malaria and healthy controls. The geometric parasite count showed no significant difference between patients with P. vivax and P. falciparum malaria infections (12 189.9 vs. 9 755.1 trophozoite/µL, P = 0.356. Conclusions: P. vivax malaria is an existing health problem in Eastern Sudan. Further research is also needed.

  1. HLA-A alleles differentially associate with severity to Plasmodium ...

    African Journals Online (AJOL)

    Human Leukocyte Antigen (HLA), particularly HLA-B and class II alleles have been differentially associated with disease outcomes in different populations following infection with the malaria Plasmodium falciparum. However, the effect of HLA-A on malaria infection and/or disease is not fully understood. Recently, HLA-A ...

  2. Using a genome-scale metabolic network model to elucidate the mechanism of chloroquine action in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Shivendra G. Tewari

    2017-08-01

    Full Text Available Chloroquine, long the default first-line treatment against malaria, is now abandoned in large parts of the world because of widespread drug-resistance in Plasmodium falciparum. In spite of its importance as a cost-effective and efficient drug, a coherent understanding of the cellular mechanisms affected by chloroquine and how they influence the fitness and survival of the parasite remains elusive. Here, we used a systems biology approach to integrate genome-scale transcriptomics to map out the effects of chloroquine, identify targeted metabolic pathways, and translate these findings into mechanistic insights. Specifically, we first developed a method that integrates transcriptomic and metabolomic data, which we independently validated against a recently published set of such data for Krebs-cycle mutants of P. falciparum. We then used the method to calculate the effect of chloroquine treatment on the metabolic flux profiles of P. falciparum during the intraerythrocytic developmental cycle. The model predicted dose-dependent inhibition of DNA replication, in agreement with earlier experimental results for both drug-sensitive and drug-resistant P. falciparum strains. Our simulations also corroborated experimental findings that suggest differences in chloroquine sensitivity between ring- and schizont-stage P. falciparum. Our analysis also suggests that metabolic fluxes that govern reduced thioredoxin and phosphoenolpyruvate synthesis are significantly decreased and are pivotal to chloroquine-based inhibition of P. falciparum DNA replication. The consequences of impaired phosphoenolpyruvate synthesis and redox metabolism are reduced carbon fixation and increased oxidative stress, respectively, both of which eventually facilitate killing of the parasite. Our analysis suggests that a combination of chloroquine (or an analogue and another drug, which inhibits carbon fixation and/or increases oxidative stress, should increase the clearance of P. falciparum

  3. Expression of variant surface antigens by Plasmodium falciparum parasites in the peripheral blood of clinically immune pregnant women indicates ongoing placental infection

    DEFF Research Database (Denmark)

    Ofori, Michael F; Staalsoe, Trine; Bam, Victoria

    2003-01-01

    Placenta-sequestered Plasmodium falciparum parasites that cause pregnancy-associated malaria (PAM) in otherwise clinically immune women express distinct variant surface antigens (VSA(PAM)) not expressed by parasites in nonpregnant individuals. We report here that parasites from the peripheral blood...... of clinically immune pregnant women also express VSA(PAM), making them a convenient source of VSA(PAM) expressors for PAM vaccine research....

  4. Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum malaria

    NARCIS (Netherlands)

    Price, Ric N.; Uhlemann, Anne-Catrin; van Vugt, Michele; Brockman, Al; Hutagalung, Robert; Nair, Shalini; Nash, Denae; Singhasivanon, Pratap; Anderson, Tim J. C.; Krishna, Sanjeev; White, Nicholas J.; Nosten, François

    2006-01-01

    Our study examined the relative contributions of host, pharmacokinetic, and parasitological factors in determining the therapeutic response to artemether-lumefantrine (AL). On the northwest border of Thailand, patients with uncomplicated Plasmodium falciparum malaria were enrolled in prospective

  5. Genetic structure of Plasmodium falciparum populations across the Honduras-Nicaragua border.

    Science.gov (United States)

    Larrañaga, Nerea; Mejía, Rosa E; Hormaza, José I; Montoya, Alberto; Soto, Aida; Fontecha, Gustavo A

    2013-10-04

    The Caribbean coast of Central America remains an area of malaria transmission caused by Plasmodium falciparum despite the fact that morbidity has been reduced in recent years. Parasite populations in that region show interesting characteristics such as chloroquine susceptibility and low mortality rates. Genetic structure and diversity of P. falciparum populations in the Honduras-Nicaragua border were analysed in this study. Seven neutral microsatellite loci were analysed in 110 P. falciparum isolates from endemic areas of Honduras (n = 77) and Nicaragua (n = 33), mostly from the border region called the Moskitia. Several analyses concerning the genetic diversity, linkage disequilibrium, population structure, molecular variance, and haplotype clustering were conducted. There was a low level of genetic diversity in P. falciparum populations from Honduras and Nicaragua. Expected heterozigosity (H(e)) results were similarly low for both populations. A moderate differentiation was revealed by the F(ST) index between both populations, and two putative clusters were defined through a structure analysis. The main cluster grouped most of samples from Honduras and Nicaragua, while the second cluster was smaller and included all the samples from the Siuna community in Nicaragua. This result could partially explain the stronger linkage disequilibrium (LD) in the parasite population from that country. These findings are congruent with the decreasing rates of malaria endemicity in Central America.

  6. Bioenergetics-based modeling of Plasmodium falciparum metabolism reveals its essential genes, nutritional requirements, and thermodynamic bottlenecks

    Science.gov (United States)

    Chiappino-Pepe, Anush; Ataman, Meriç

    2017-01-01

    Novel antimalarial therapies are urgently needed for the fight against drug-resistant parasites. The metabolism of malaria parasites in infected cells is an attractive source of drug targets but is rather complex. Computational methods can handle this complexity and allow integrative analyses of cell metabolism. In this study, we present a genome-scale metabolic model (iPfa) of the deadliest malaria parasite, Plasmodium falciparum, and its thermodynamics-based flux analysis (TFA). Using previous absolute concentration data of the intraerythrocytic parasite, we applied TFA to iPfa and predicted up to 63 essential genes and 26 essential pairs of genes. Of the 63 genes, 35 have been experimentally validated and reported in the literature, and 28 have not been experimentally tested and include previously hypothesized or novel predictions of essential metabolic capabilities. Without metabolomics data, four of the genes would have been incorrectly predicted to be non-essential. TFA also indicated that substrate channeling should exist in two metabolic pathways to ensure the thermodynamic feasibility of the flux. Finally, analysis of the metabolic capabilities of P. falciparum led to the identification of both the minimal nutritional requirements and the genes that can become indispensable upon substrate inaccessibility. This model provides novel insight into the metabolic needs and capabilities of the malaria parasite and highlights metabolites and pathways that should be measured and characterized to identify potential thermodynamic bottlenecks and substrate channeling. The hypotheses presented seek to guide experimental studies to facilitate a better understanding of the parasite metabolism and the identification of targets for more efficient intervention. PMID:28333921

  7. Bioenergetics-based modeling of Plasmodium falciparum metabolism reveals its essential genes, nutritional requirements, and thermodynamic bottlenecks.

    Directory of Open Access Journals (Sweden)

    Anush Chiappino-Pepe

    2017-03-01

    Full Text Available Novel antimalarial therapies are urgently needed for the fight against drug-resistant parasites. The metabolism of malaria parasites in infected cells is an attractive source of drug targets but is rather complex. Computational methods can handle this complexity and allow integrative analyses of cell metabolism. In this study, we present a genome-scale metabolic model (iPfa of the deadliest malaria parasite, Plasmodium falciparum, and its thermodynamics-based flux analysis (TFA. Using previous absolute concentration data of the intraerythrocytic parasite, we applied TFA to iPfa and predicted up to 63 essential genes and 26 essential pairs of genes. Of the 63 genes, 35 have been experimentally validated and reported in the literature, and 28 have not been experimentally tested and include previously hypothesized or novel predictions of essential metabolic capabilities. Without metabolomics data, four of the genes would have been incorrectly predicted to be non-essential. TFA also indicated that substrate channeling should exist in two metabolic pathways to ensure the thermodynamic feasibility of the flux. Finally, analysis of the metabolic capabilities of P. falciparum led to the identification of both the minimal nutritional requirements and the genes that can become indispensable upon substrate inaccessibility. This model provides novel insight into the metabolic needs and capabilities of the malaria parasite and highlights metabolites and pathways that should be measured and characterized to identify potential thermodynamic bottlenecks and substrate channeling. The hypotheses presented seek to guide experimental studies to facilitate a better understanding of the parasite metabolism and the identification of targets for more efficient intervention.

  8. Diversity of Plasmodium falciparum chloroquine resistance transporter (pfcrt exon 2 haplotypes in the Pacific from 1959 to 1979.

    Directory of Open Access Journals (Sweden)

    Chim W Chan

    Full Text Available Nearly one million deaths are attributed to malaria every year. Recent reports of multi-drug treatment failure of falciparum malaria underscore the need to understand the molecular basis of drug resistance. Multiple mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt are involved in chloroquine resistance, but the evolution of complex haplotypes is not yet well understood. Using over 4,500 archival human serum specimens collected from 19 Pacific populations between 1959 and 1979, the period including and just prior to the appearance of chloroquine treatment failure in the Pacific, we PCR-amplified and sequenced a portion of the pfcrt exon 2 from 771 P. falciparum-infected individuals to explore the spatial and temporal variation in falciparum malaria prevalence and the evolution of chloroquine resistance. In the Pacific, the prevalence of P. falciparum varied considerably across ecological zones. On the island of New Guinea, the decreases in prevalence of P. falciparum in coastal, high-transmission areas over time were contrasted by the increase in prevalence during the same period in the highlands, where transmission was intermittent. We found 78 unique pfcrt haplotypes consisting of 34 amino acid substitutions and 28 synonymous mutations. More importantly, two pfcrt mutations (N75D and K76T implicated in chloroquine resistance were present in parasites from New Hebrides (now Vanuatu eight years before the first report of treatment failure. Our results also revealed unexpectedly high levels of genetic diversity in pfcrt exon 2 prior to the historical chloroquine resistance selective sweep, particularly in areas where disease burden was relatively low. In the Pacific, parasite genetic isolation, as well as host acquired immune status and genetic resistance to malaria, were important contributors to the evolution of chloroquine resistance in P. falciparum.

  9. Primaquine for reducing Plasmodium falciparum transmission.

    Science.gov (United States)

    Graves, Patricia M; Gelband, Hellen; Garner, Paul

    2012-09-12

    Mosquitoes become infected with malaria when they ingest gametocyte stages of the parasite from the blood of a human host. Plasmodium falciparum gametocytes are sensitive to the drug primaquine (PQ). The World Health Organization (WHO) recommends giving a single dose or short course of PQ alongside primary treatment for people ill with P. falciparum infection to reduce malaria transmission. Gametocytes themselves cause no symptoms, so this intervention does not directly benefit individuals. PQ causes haemolysis in some people with glucose-6-phosphate dehydrogenase (G6PD) deficiency so may not be safe.   To assess whether a single dose or short course of PQ added to treatments for malaria caused by P. falciparum infection reduces malaria transmission and is safe. We searched the following databases up to 10 April 2012 for studies: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; LILACS; metaRegister of Controlled Trials (mRCT) and the WHO trials search portal using 'malaria*', 'falciparum', and 'primaquine' as search terms. In addition, we searched conference proceedings and reference lists of included studies, and we contacted likely researchers and organizations for relevant trials. Trials of mass treatment of whole populations (or actively detected fever or malaria cases within such populations) with antimalarial drugs, compared to treatment with the same drug plus PQ; or patients with clinical malaria being treated for malaria at health facilities randomized to short course/single dose PQ versus no PQ. Two authors (PMG and HG) independently screened all abstracts, applied inclusion criteria, and abstracted data. We sought data on the effect of PQ on malaria transmission intensity, participant infectiousness, the number of participants with gametocytes, and gametocyte density over time. We stratified results by primary treatment drug as

  10. Structure of Plasmodium falciparum orotate phosphoribosyltransferase with autologous inhibitory protein–protein interactions

    International Nuclear Information System (INIS)

    Kumar, Shiva; Krishnamoorthy, Kalyanaraman; Mudeppa, Devaraja G.; Rathod, Pradipsinh K.

    2015-01-01

    P. falciparum orotate phosphoribosyltransferase, a potential target for antimalarial drugs and a conduit for prodrugs, crystallized as a structure with eight molecules per asymmetric unit that included some unique parasite-specific auto-inhibitory interactions between catalytic dimers. The most severe form of malaria is caused by the obligate parasite Plasmodium falciparum. Orotate phosphoribosyltransferase (OPRTase) is the fifth enzyme in the de novo pyrimidine-synthesis pathway in the parasite, which lacks salvage pathways. Among all of the malaria de novo pyrimidine-biosynthesis enzymes, the structure of P. falciparum OPRTase (PfOPRTase) was the only one unavailable until now. PfOPRTase that could be crystallized was obtained after some low-complexity sequences were removed. Four catalytic dimers were seen in the asymmetic unit (a total of eight polypeptides). In addition to revealing unique amino acids in the PfOPRTase active sites, asymmetric dimers in the larger structure pointed to novel parasite-specific protein–protein interactions that occlude the catalytic active sites. The latter could potentially modulate PfOPRTase activity in parasites and possibly provide new insights for blocking PfOPRTase functions

  11. Structure of Plasmodium falciparum orotate phosphoribosyltransferase with autologous inhibitory protein–protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Shiva; Krishnamoorthy, Kalyanaraman; Mudeppa, Devaraja G.; Rathod, Pradipsinh K., E-mail: rathod@chem.washington.edu [University of Washington, Seattle, WA 98195 (United States)

    2015-04-21

    P. falciparum orotate phosphoribosyltransferase, a potential target for antimalarial drugs and a conduit for prodrugs, crystallized as a structure with eight molecules per asymmetric unit that included some unique parasite-specific auto-inhibitory interactions between catalytic dimers. The most severe form of malaria is caused by the obligate parasite Plasmodium falciparum. Orotate phosphoribosyltransferase (OPRTase) is the fifth enzyme in the de novo pyrimidine-synthesis pathway in the parasite, which lacks salvage pathways. Among all of the malaria de novo pyrimidine-biosynthesis enzymes, the structure of P. falciparum OPRTase (PfOPRTase) was the only one unavailable until now. PfOPRTase that could be crystallized was obtained after some low-complexity sequences were removed. Four catalytic dimers were seen in the asymmetic unit (a total of eight polypeptides). In addition to revealing unique amino acids in the PfOPRTase active sites, asymmetric dimers in the larger structure pointed to novel parasite-specific protein–protein interactions that occlude the catalytic active sites. The latter could potentially modulate PfOPRTase activity in parasites and possibly provide new insights for blocking PfOPRTase functions.

  12. Evidence that Plasmodium falciparum diacylglycerol acyltransferase is essential for intraerythrocytic proliferation

    International Nuclear Information System (INIS)

    Palacpac, Nirianne Marie Q.; Hiramine, Yasushi; Seto, Shintaro; Hiramatsu, Ryuji; Horii, Toshihiro; Mitamura, Toshihide

    2004-01-01

    In triacylglycerol (TAG)-accumulating organisms, the physiological roles of diacylglycerol acyltransferase (DGAT), a principal enzyme in the major biosynthetic pathway for TAG, appear to be diverse. Apicomplexan parasite, Plasmodium falciparum, shows unique features in TAG metabolism and trafficking during intraerythrocytic development, and unlike most eukaryotes, only one open reading frame (ORF) encoding a candidate DGAT could be found in its genome. However, whether this candidate ORF encodes P. falciparum DGAT and its physiological relevance have not been assessed. Here, we demonstrate that the ORF is transcribed as a ∼3.6 kb single mRNA throughout intraerythrocytic development, markedly elevated at trophozoite, schizont, and segmented schizont, and indeed encodes a protein exhibiting DGAT activity. Further, we provide evidence that the parasite in which the ORF was disrupted via double crossover recombination cannot be enriched, implying a fundamental role of PfDGAT in intraerythrocytic proliferation

  13. Procalcitonin as a biomarker for severe Plasmodium falciparum disease: a critical appraisal of a semi-quantitative point-of-care test in a cohort of travellers with imported malaria.

    Science.gov (United States)

    Hesselink, Dennis A; Burgerhart, Jan-Steven; Bosmans-Timmerarends, Hanna; Petit, Pieter; van Genderen, Perry J J

    2009-09-01

    Imported malaria occurs as a relatively rare event in developed countries. As a consequence, most clinicians have little experience in making clinical assessments of disease severity and decisions regarding the need for parenteral therapy or high-level monitoring. In this study, the diagnostic accuracy of procalcitonin (PCT) for severe Plasmodium falciparum disease was assessed in a cohort of 100 consecutive travellers with various species of imported malaria. In all patients, PCT was measured on admission with a semi-quantitative 'point-of-care' test. Patients with severe P. falciparum malaria had significantly higher median PCT levels on admission as compared with patients with uncomplicated P. falciparum disease. In addition, PCT levels in patients with non-falciparum malaria were also higher compared with patients with non-severe falciparum malaria but lower compared with severe P. falciparum malaria. At a cut-off point of 10 ng/mL, PCT had a sensitivity of 0,67 and a specificity of 0,94 for severe falciparum disease. However, at lower cut-off points the specificity and positive predictive value were rather poor although the sensitivity and negative predictive value remained high. Potential drawbacks in the interpretation of elevated PCT levels on admission may be caused by infections with non-falciparum species and by concomitant bacterial infections. Semi-quantitative determination of PCT on admission is of limited use in the initial clinical assessment of disease severity in travellers with imported malaria, especially in settings with limited experience with the treatment of malaria.

  14. A malaria vaccine that elicits in humans antibodies able to kill Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available BACKGROUND: Plasmodium falciparum merozoite surface protein 3 is a malaria vaccine candidate that was identified, characterised, and developed based on a unique immuno-clinical approach. The vaccine construct was derived from regions fully conserved among various strains and containing B cell epitopes targeted by human antibodies (from malaria-immune adults that are able to mediate a monocyte-dependent parasite killing effect. The corresponding long synthetic peptide was administered to 36 volunteers, with either alum or Montanide ISA720 as adjuvant. METHODS AND FINDINGS: Both formulations induced cellular and humoral immune responses. With alum, the responses lasted up to 12 mo. The vaccine-induced antibodies were predominantly of cytophilic classes, i.e., able to cooperate with effector cells. In vitro, the antibodies induced an inhibition of the P. falciparum erythrocytic growth in a monocyte-dependent manner, which was in most instances as high as or greater than that induced by natural antibodies from immune African adults. In vivo transfer of the volunteers' sera into P. falciparum-infected humanized SCID mice profoundly reduced or abrogated parasitaemia. These inhibitory effects were related to the antibody reactivity with the parasite native protein, which was seen in 60% of the volunteers, and remained in samples taken 12 mo postimmunisation. CONCLUSION: This is the first malaria vaccine clinical trial to clearly demonstrate antiparasitic activity by vaccine-induced antibodies by both in vitro and in vivo methods. The results, showing the induction of long-lasting antibodies directed to a fully conserved polypeptide, also challenge current concepts about malaria vaccines, such as unavoidable polymorphism, low antigenicity, and poor induction of immune memory.

  15. Efficacy of sulfadoxine-pyrimethamine and mefloquine for the treatment of uncomplicated Plasmodium falciparum malaria in the Amazon basin of Peru Eficácia da sulfadoxina-pirimetamina e mefloquina no tratamento de malária não-complicada por Plasmodium falciparum na bacia amazônica peruana

    Directory of Open Access Journals (Sweden)

    Alan J. Magill

    2004-06-01

    Full Text Available In vivo antimalarial drug efficacy studies of uncomplicated Plasmodium falciparum malaria at an isolated site in the Amazon basin of Peru bordering Brazil and Colombia showed >50% RII/RIII resistance to sulfadoxine-pyrimethamine but no evidence of resistance to mefloquine.Testes in vivo foram realizados para avaliar resistência a drogas antimalária, em pessoas com malária não complicada, causada por Plasmodium falciparum, numa região isolada da Bacia Amazônica, na fronteira com o Brasil e a Colômbia. Os testes mostraram resistência >50% RII/RIII a sulfadoxina-pirimetamina, mas não evidenciaram resistência a mefloquina.

  16. Sequence analysis of DBL2β domain of vargene of Indonesian Plasmodium falciparum

    Science.gov (United States)

    Sulistyaningsih, E.; Romadhon, B. D.; Palupi, I.; Hidayah, F.; Dewi, R.; Prasetyo, A.

    2018-03-01

    Malaria is a major health problem in tropical countries including Indonesia. The most deadly agent is Plasmodium falciparum. In P. falciparum infection, PfEMP1 is supposed to play an important role in the pathogenesis of malaria. PfEMP1 is encoded by var gene family, it is a polymorphic protein where the extra-cellular portion contains of three distinct binding domains: Duffy binding-like (DBL), Cysteine-rich interdomain regions (CIDR) and C2. PfEMP1 varies in domain composition and binding specificity. The study explored the characteristic of Indonesian DBL2β-var genes and investigated its role to the malaria outcome. Twenty blood samples from clinically mild to severe malaria patients in Jember, East Java were collected for DNA extraction. Diagnosis was confirmed by Giemsa-stained thick blood smear. PCR was conducted using specific primer targeting on the full-length of DBL2ß and resulted approximately single band of 1,7 kb in a sample. This band was observed only from severe malaria sample. Sequence analysis directly from PCR product showed 74-99% similarities with previous sequences in Gene Bank. In conclusion, the DBL2β domain of vargene of Indonesian isolates was 1603 nucleotides in length and there was a possible association of the existence of DBL2β domain with the severity of malaria outcome.

  17. Altered immune responses in rhesus macaques co-infected with SIV and Plasmodium cynomolgi: an animal model for coincident AIDS and relapsing malaria.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    2009-09-01

    Full Text Available Dual epidemics of the malaria parasite Plasmodium and HIV-1 in sub-Saharan Africa and Asia present a significant risk for co-infection in these overlapping endemic regions. Recent studies of HIV/Plasmodium falciparum co-infection have reported significant interactions of these pathogens, including more rapid CD4+ T cell loss, increased viral load, increased immunosuppression, and increased episodes of clinical malaria. Here, we describe a novel rhesus macaque model for co-infection that supports and expands upon findings in human co-infection studies and can be used to identify interactions between these two pathogens.Five rhesus macaques were infected with P. cynomolgi and, following three parasite relapses, with SIV. Compared to macaques infected with SIV alone, co-infected animals had, as a group, decreased survival time and more rapid declines in markers for SIV progression, including peripheral CD4+ T cells and CD4+/CD8+ T cell ratios. The naïve CD4+ T cell pool of the co-infected animals was depleted more rapidly than animals infected with SIV alone. The co-infected animals also failed to generate proliferative responses to parasitemia by CD4+ and CD8+ T cells as well as B cells while also having a less robust anti-parasite and altered anti-SIV antibody response.These data suggest that infection with both SIV and Plasmodium enhances SIV-induced disease progression and impairs the anti-Plasmodium immune response. These data support findings in HIV/Plasmodium co-infection studies. This animal model can be used to further define impacts of lentivirus and Plasmodium co-infection and guide public health and therapeutic interventions.

  18. A brief review on features of falciparum malaria during pregnancy

    Directory of Open Access Journals (Sweden)

    Alexandre Manirakiza

    2017-12-01

    Full Text Available Malaria in pregnancy is a serious public health problem in tropical areas. Frequently, the placenta is infected by accumulation of Plasmodium falciparum-infected erythrocytes in the intervillous space. Falciparum malaria acts during pregnancy by a range of mechanisms, and chronic or repeated infection and co-infections have insidious effects. The susceptibility of pregnant women to malaria is due to both immunological and humoral changes. Until a malaria vaccine becomes available, the deleterious effects of malaria in pregnancy can be avoided by protection against infection and prompt treatment with safe, effective antimalarial agents; however, concurrent infections such as with HIV and helminths during pregnancy are jeopardizing malaria control in sub-Saharan Africa.

  19. Prevalence and risk factors for Plasmodium falciparum malaria in pregnant women of eastern Sudan

    Directory of Open Access Journals (Sweden)

    Khamis Amar H

    2005-04-01

    Full Text Available Abstract Background Pregnant women are more susceptible to malaria, which is associated with serious adverse effects on pregnancy. The presentation of malaria during pregnancy varies according to the level of transmission in the area. Our study aimed to demonstrate the prevalence and risk factors for malaria (age, parity and gestational age among pregnant women of eastern Sudan, which is characterized by unstable malaria transmission. Methods The prevalence and possible risk factors for Plasmodium falciparum malaria were investigated in 744 pregnant Sudanese women attending the antenatal clinic of New Haifa Teaching Hospital, eastern Sudan, during October 2003-April 2004. Results A total 102 (13.7% had P. falciparum malaria, 18(17.6% of these were severe cases (jaundice and severe anaemia. Univariate and multivariate analysis showed that, age and parity were not associated with malaria. Women who attended the antenatal clinic in the third trimester were at highest risk for malaria (OR = 1.58, 95% CI = 1.02–2.4; P Women with malaria had significantly lower mean haemoglobin (9.4 g/dl, 95% CI 9.1–9.7 versus 10.7, CI 10.6–10.8, P Conclusion The results suggest that P. falciparum malaria is common in pregnant women attending antenatal care and that anaemia is an important complication. Preventive measures (chemoprophylaxis and insecticide-treated bednets may be beneficial in this area for all women irrespective of age or parity.

  20. Highly sensitive solid-phase radioimmunoassay for the assay of Plasmodium falciparum antigens and antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Avraham, H.; Golenser, J.; Gazitt, Y.; Spira, D.T.; Sulitzeanu, D. (Hebrew Univ., Jerusalem (Israel). Hadassah Medical School)

    1982-08-27

    A highly sensitive radioimmunoassay for detection of P. falciparum antibodies and antigens is described. A partially purified P. falciparum antigen preparation is obtained from in vitro cultured parasites enriched after gelatin sedimentation by sonicating the infected red blood cells and precipitating the proteins with 50% saturated ammonium sulfate. The precipitate is dissolved in buffer, ultracentrifuged and used to coat wells of microtiter plates. Anti-P. falciparum antibodies are detected by incubating antiserum dilutions in the coated wells and detecting the bound IgG with radioiodinated staphylococcal protein A. P. falciparum antigens are detected by their ability to inhibit binding of antibodies to the coated wells. Sera of individuals with a history of P. falciparum infection contain antibodies detectable at a dilution of 1:75,000. P. falciparum RBC infected in vitro can be detected at levels of parasitemia of the order of 1 parasite or less per 10/sup 6/ RBC.

  1. Monitoring of Plasmodium vivax and Plasmodium falciparum response to chloroquine in Bandar-Abbas district, Hormozgan province, Iran

    Directory of Open Access Journals (Sweden)

    Nateghpour M M

    2009-06-01

    Full Text Available "n Normal 0 false false false EN-GB X-NONE AR-SA MicrosoftInternetExplorer4 st1":*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Malaria is an important parasitic vector-borne disease with considerable infectivity and world-wide distribution. Since prevalence of chloroquine resistance in Plasmodium falciparum at the malarious areas such as Iran and reliable reports from many countries indicating emergence of chloroquine- resistant strains of P.vivax, this study was conducted to monitor the current response of vivax and falciparum plasmodia to chloroquine in Bandar-Abbas district, a malarious area in Iran."n"nMethods: The study was conducted at the Bandar-Abbas district in Hormozgan province, Iran. 123 patients were enrolled and considered. The patients were treated with a standard 3-day regimen of chloroquine and were followed-up clinically and parasitologically. The results were interpreted as mean parasite clearance time (MPCT in P. vivax and early treatment failure (ETF, late treatment failure (LTF and adequate clinical and parasitological response (ACPR in P. falciparum."n"nResults: The patients with vivax malaria were responded to the regimen of chloroquine within 24-216 hours. Most cases of the parasite clearance time occurred at 48 hours (50.40%, and less of them at 120, 168, 192 and 216 hours

  2. Haemoglobin C and S role in acquired immunity against Plasmodium falciparum malaria.

    Directory of Open Access Journals (Sweden)

    Federica Verra

    2007-10-01

    Full Text Available A recently proposed mechanism of protection for haemoglobin C (HbC; beta6Glu-->Lys links an abnormal display of PfEMP1, an antigen involved in malaria pathogenesis, on the surface of HbC infected erythrocytes together with the observation of reduced cytoadhesion of parasitized erythrocytes and impaired rosetting in vitro. We investigated the impact of this hypothesis on the development of acquired immunity against Plasmodium falciparum variant surface antigens (VSA encoding PfEMP1 in HbC in comparison with HbA and HbS carriers of Burkina Faso. We measured: i total IgG against a single VSA, A4U, and against a panel of VSA from severe malaria cases in human sera from urban and rural areas of Burkina Faso of different haemoglobin genotypes (CC, AC, AS, SC, SS; ii total IgG against recombinant proteins of P. falciparum asexual sporozoite, blood stage antigens, and parasite schizont extract; iii total IgG against tetanus toxoid. Results showed that the reported abnormal cell-surface display of PfEMP1 on HbC infected erythrocytes observed in vitro is not associated to lower anti- PfEMP1 response in vivo. Higher immune response against the VSA panel and malaria antigens were observed in all adaptive genotypes containing at least one allelic variant HbC or HbS in the low transmission urban area whereas no differences were detected in the high transmission rural area. In both contexts the response against tetanus toxoid was not influenced by the beta-globin genotype. These findings suggest that both HbC and HbS affect the early development of naturally acquired immunity against malaria. The enhanced immune reactivity in both HbC and HbS carriers supports the hypothesis that the protection against malaria of these adaptive genotypes might be at least partially mediated by acquired immunity against malaria.

  3. Differential induction of functional IgG using the Plasmodium falciparum placental malaria vaccine candidate VAR2CSA

    DEFF Research Database (Denmark)

    Pinto, Vera V; Ditlev, Sisse B; Jensen, Kamilla E

    2011-01-01

    In Plasmodium falciparum malaria endemic areas placental malaria (PM) is an important complication of malaria. The recurrence of malaria in primigravidae women irrespective of acquired protection during childhood is caused by the interaction between the parasite-expressed VAR2CSA antigen and chon...

  4. Differential patterns of human immunoglobulin G subclass responses to distinct regions of a single protein, the merozoite surface protein 1 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Cavanagh, D R; Dobaño, C; Elhassan, I M

    2001-01-01

    Comparisons of immunoglobulin G (IgG) subclass responses to the major polymorphic region and to a conserved region of MSP-1 in three cohorts of African villagers exposed to Plasmodium falciparum revealed that responses to Block 2 are predominantly IgG3 whereas antibodies to MSP-1(19) are mainly IgG......1. The striking dominance of IgG3 to Block 2 may explain the short duration of this response and also the requirement for continuous stimulation by malaria infection to maintain clinical immunity....

  5. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting

    Directory of Open Access Journals (Sweden)

    Harris Ivor

    2010-09-01

    Full Text Available Abstract Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR and rapid diagnostic tests (RDTs. The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%, indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162 compared to P. falciparum (36/118. The malaria RDT detected the 12 microscopy and

  6. Carriage of sub-microscopic sexual and asexual Plasmodium ...

    African Journals Online (AJOL)

    SUMMARY. Background: We investigated the prevalence of sub-microscopic Plasmodium falciparum infections and gameto- cyte carriage in asymptomatic individuals in Navrongo in northern Ghana, an area of seasonal malaria transmission. Design: A cross sectional study of 209 randomly selected participants of all ...

  7. Evaluation of DNA Recombinant Methodologies for the Diagnosis of Plasmodium falciparum and their Comparison with the Microscopy Assay

    Directory of Open Access Journals (Sweden)

    L Urdaneta

    1998-09-01

    Full Text Available Since 1984, DNA tests based on the highly repeated subtelomeric sequences of Plasmodium falciparum (rep 20 have been frequently used in malaria diagnosis. Rep 20 is very specific for this parasite, and is made of 21 bp units, organized in repeated blocks with direct and inverted orientation. Based in this particular organization, we selected a unique consensus oligonucleotide (pf-21 to drive a PCR reaction coupled to hybridization to non-radioactive labeled probes. The pf-21 unique oligo PCR (pf-21-I assay produced DNA amplification fingerprints when was applied on purified P. falciparum DNA samples (Brazil and Colombia, as well as in patient's blood samples from a large area of Venezuela. The performance of the Pf-21-I assay was compared against Giemsa stained thick blood smears from samples collected at a malaria endemic area of the Bolívar State, Venezuela, at the field station of Malariología in Tumeremo. Coupled to non-radioactive hybridization the pf-21-I performed better than the traditional microscopic method with a r=1.7:1. In the case of mixed infections the r value of P. falciparum detection increased to 2.5:1. The increased diagnostic sensitivity of the test produced with this homologous oligonucleotide could provide an alternative to the epidemiological diagnosis of P. falciparum being currently used in Venezuela endemic areas, where low parasitemia levels and asymptomatic malaria are frequent. In addition, the DNA fingerprint could be tested in molecular population studies

  8. Cross-reactive anti-PfCLAG9 antibodies in the sera of asymptomatic parasite carriers of Plasmodium vivax

    Science.gov (United States)

    Costa, Joana D'Arc Neves; Zanchi, Fernando Berton; Rodrigues, Francisco Lurdevanhe da Silva; Honda, Eduardo Rezende; Katsuragawa, Tony Hiroschi; Pereira, Dhélio Batista; Taborda, Roger Lafontaine Mesquita; Tada, Mauro Shugiro; Ferreira, Ricardo de Godoi Mattos; Pereira-da-Silva, Luiz Hildebrando

    2013-01-01

    The PfCLAG9 has been extensively studied because their immunogenicity. Thereby, the gene product is important for therapeutics interventions and a potential vaccine candidate. Antibodies against synthetic peptides corresponding to selected sequences of the Plasmodium falciparum antigen PfCLAG9 were found in sera of falciparum malaria patients from Rondônia, in the Brazilian Amazon. Much higher antibody titres were found in semi-immune and immune asymptomatic parasite carriers than in subjects suffering clinical infections, corroborating original findings in Papua Guinea. However, sera of Plasmodium vivax patients from the same Amazon area, in particular from asymptomatic vivax parasite carriers, reacted strongly with the same peptides. Bioinformatic analyses revealed regions of similarity between P. falciparum Pfclag9 and the P. vivax ortholog Pvclag7. Indirect fluorescent microscopy analysis showed that antibodies against PfCLAG9 peptides elicited in BALB/c mice react with human red blood cells (RBCs) infected with both P. falciparum and P. vivax parasites. The patterns of reactivity on the surface of the parasitised RBCs are very similar. The present observations support previous findings that PfCLAG9 may be a target of protective immune responses and raises the possibility that the cross reactive antibodies to PvCLAG7 in mixed infections play a role in regulate the fate of Plasmodium mixed infections. PMID:23440122

  9. Togetherness among Plasmodium falciparum gametocytes: interpretation through simulation and consequences for malaria transmission.

    Science.gov (United States)

    Gaillard, F O; Boudin, C; Chau, N P; Robert, V; Pichon, G

    2003-11-01

    Previous experimental gametocyte infections of Anopheles arabiensis on 3 volunteers naturally infected with Plasmodium falciparum were conducted in Senegal. They showed that gametocyte counts in the mosquitoes are, like macroparasite intakes, heterogeneous (overdispersed). They followed a negative binomial distribution, the overdispersion coefficient seeming constant (k = 3.1). To try to explain this heterogeneity, we used an individual-based model (IBM), simulating the behaviour of gametocytes in the human blood circulation and their ingestion by mosquitoes. The hypothesis was that there exists a clustering of the gametocytes in the capillaries. From a series of simulations, in the case of clustering the following results were obtained: (i) the distribution of the gametocytes ingested by the mosquitoes followed a negative binomial, (ii) the k coefficient significantly increased with the density of circulating gametocytes. To validate this model result, 2 more experiments were conducted in Cameroon. Pooled experiments showed a distinct density dependency of the k-values. The simulation results and the experimental results were thus in agreement and suggested that an aggregation process at the microscopic level might produce the density-dependent overdispersion at the macroscopic level. Simulations also suggested that the clustering of gametocytes might facilitate fertilization of gametes.

  10. Genetic diversity in the merozoite surface protein 1 and 2 genes of Plasmodium falciparum from the Artibonite Valley of Haiti.

    Science.gov (United States)

    Londono-Renteria, Berlin; Eisele, Thomas P; Keating, Joseph; Bennett, Adam; Krogstad, Donald J

    2012-01-01

    Describing genetic diversity of the Plasmodium falciparum parasite provides important information about the local epidemiology of malaria. In this study, we examined the genetic diversity of P. falciparum isolates from the Artibonite Valley in Haiti using the allelic families of merozoite surface protein 1 and 2 genes (msp-1 and msp-2). The majority of study subjects infected with P. falciparum had a single parasite genotype (56% for msp-1 and 69% for msp-2: n=79); 9 distinct msp-1 genotypes were identified by size differences on agarose gels. K1 was the most polymorphic allelic family with 5 genotypes (amplicons from 100 to 300 base pairs [bp]); RO33 was the least polymorphic, with a single genotype (120-bp). Although both msp-2 alleles (3D7/IC1, FC27) had similar number of genotypes (n=4), 3D7/IC1 was more frequent (85% vs. 26%). All samples were screened for the presence of the K76T mutation on the P. falciparum chloroquine resistance transporter (pfcrt) gene with 10 of 79 samples positive. Of the 2 (out of 10) samples from individuals follow-up for 21 days, P. falciparum parasites were present through day 7 after treatment with chloroquine. No parasites were found on day 21. Our results suggest that the level of genetic diversity is low in this area of Haiti, which is consistent with an area of low transmission. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Safety and efficacy of dihydroartemisinin-piperaquine versus artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Zambian children

    Directory of Open Access Journals (Sweden)

    Mulenga Modest

    2011-02-01

    Full Text Available Abstract Background Malaria in Zambia remains a public health and developmental challenge, affecting mostly children under five and pregnant women. In 2002, the first-line treatment for uncomplicated malaria was changed to artemether-lumefantrine (AL that has proved to be highly efficacious against multidrug resistant Plasmodium falciparum. Objective The study objective was to determine whether dihydroartemisinin-piperaquine (DHA/PQP had similar efficacy, safety and tolerability as AL for the treatment of children with uncomplicated P. falciparum malaria in Ndola, Zambia. Methods Between 2005 and 2006, 304 children (6-59 months old with uncomplicated P. falciparum were enrolled, randomized to AL (101 or DHA/PQP (203 and followed up for 42 days. Outcome of treatment was defined according to the standard WHO classification, i.e. early treatment failure (ETF, late clinical failure (LCF, late parasitological failure (LPF and adequate clinical and parasitological response (ACPR. Recurrent infections were genotyped to distinguish between recrudescence and new infection. Results No ETF was observed. At day 28, PCR-uncorrected ACPR was 92% in the DHA/PQP and 74% in the AL arm (OR: 4.05; 95%CI: 1.89-8.74; p Conclusion DHA/PQP was as efficacious, safe and well tolerated in treatment of uncomplicated malaria as AL, though in the latter group more new infections during the follow up were observed. DHA/PQP seems a potential candidate to be used as an alternative first-line or rescue treatment in Zambia. Trial Registration ISRCTN16263443, at http://www.controlled-trials.com/isrctn

  12. The NTS-DBL2X region of VAR2CSA Induces cross-reactive antibodies that inhibit adhesion of several Plasmodium falciparum isolates to chondroitin sulfate A

    DEFF Research Database (Denmark)

    Bigey, Pascal; Gnidehou, Sédami; Doritchamou, Justin

    2011-01-01

    Background. Binding to chondroitin sulfate A by VAR2CSA, a parasite protein expressed on infected erythrocytes, allows placental sequestration of Plasmodium falciparum-infected erythrocytes. This leads to severe consequences such as maternal anemia, stillbirths, and intrauterine growth retardation....... The latter has been clearly associated to increased morbidity and mortality of the infants. Acquired anti-VAR2CSA antibodies have been associated with improved pregnancy outcomes, suggesting a vaccine could prevent the syndrome. However, identifying functionally important regions in the large VAR2CSA protein...

  13. Coma Associated with Microscopy-Diagnosed Plasmodium vivax: A Prospective Study in Papua, Indonesia

    Science.gov (United States)

    Hardianto, Setiawan O.; Tjitra, Emiliana; Kenangalem, Enny; Sugiarto, Paulus; Price, Ric N.; Anstey, Nicholas M.

    2011-01-01

    Background Coma complicates Plasmodium falciparum infection but is uncommonly associated with P. vivax. Most series of vivax coma have been retrospective and have not utilized molecular methods to exclude mixed infections with P. falciparum. Methods We prospectively enrolled patients hospitalized in Timika, Indonesia, with a Glasgow Coma Score (GCS) ≤10 and P. vivax monoinfection on initial microscopy over a four year period. Hematological, biochemical, serological, radiological and cerebrospinal fluid (CSF) examinations were performed to identify other causes of coma. Repeat microscopy, antigen detection and polymerase chain reaction (PCR) were performed to exclude infections with other Plasmodium species. Results Of 24 patients fulfilling enrolment criteria, 5 had clear evidence for other non-malarial etiologies. PCR demonstrated 10 mixed infections and 3 P. falciparum monoinfections. 6 (25%) patients had vivax monoinfection and no apparent alternative cause, with a median GCS of 9 (range 8–10) and a median coma duration of 42 (range 36–48) hours. CSF leukocyte counts were coma was estimated at 1 in 29,486 clinical vivax infections with no deaths. In comparison, the risk of falciparum-associated coma was estimated at 1 in 1,276 clinical infections with an 18.5% mortality rate. Conclusions P. vivax-associated coma is rare, occurring 23 times less frequently than that seen with falciparum malaria, and is associated with a high proportion of non-malarial causes and mixed infections using PCR. The pathogenesis of coma associated with vivax malaria, particularly the role of comorbidities, is uncertain and requires further investigation. PMID:21666785

  14. In vitro sensitivity pattern of chloroquine and artemisinin in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Supriya Sharma

    2016-01-01

    Full Text Available Artemisinin (ART and its derivatives form the mainstay of antimalarial therapy. Emergence of resistance to them poses a potential threat to future malaria control and elimination on a global level. It is important to know the mechanism of action of drug and development of drug resistance. We put forwards probable correlation between the mode of action of chloroquine (CQ and ART. Modified trophozoite maturation inhibition assay, WHO Mark III assay and molecular marker study for CQ resistance at K76T codon in Plasmodium falciparum CQ-resistant transporter gene were carried out on cultured P. falciparum. On comparing trophozoite and schizont growth for both CQ-sensitive (MRC-2 and CQ-resistant (RKL-9 culture isolates, it was observed that the clearance of trophozoites and schizonts was similar with both drugs. The experiment supports that CQ interferes with heme detoxification pathway in food vacuoles of parasite, and this may be correlated as one of the plausible mechanisms of ART.

  15. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains

    KAUST Repository

    Preston, Mark D.

    2014-06-13

    Malaria is a major public health problem that is actively being addressed in a global eradication campaign. Increased population mobility through international air travel has elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable public health tool for locating the source of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of 711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are non-recombining and co-inherited. The high degree of linkage produces a panel of relatively few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design a 23-SNP barcode that is highly predictive (?92%) and easily adapted to aid case management in the field and survey parasite migration worldwide. 2014 Macmillan Publishers Limited. All rights reserved.

  16. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains

    KAUST Repository

    Preston, Mark D.; Campino, Susana; Assefa, Samuel A.; Echeverry, Diego F.; Ocholla, Harold; Amambua-Ngwa, Alfred; Stewart, Lindsay B.; Conway, David J.; Borrmann, Steffen; Michon, Pascal; Zongo, Issaka; Oué draogo, Jean-Bosco; Djimde, Abdoulaye A.; Doumbo, Ogobara K.; Nosten, Francois; Pain, Arnab; Bousema, Teun; Drakeley, Chris J.; Fairhurst, Rick M.; Sutherland, Colin J.; Roper, Cally; Clark, Taane G.

    2014-01-01

    Malaria is a major public health problem that is actively being addressed in a global eradication campaign. Increased population mobility through international air travel has elevated the risk of re-introducing parasites to elimination areas and dispersing drug-resistant parasites to new regions. A simple genetic marker that quickly and accurately identifies the geographic origin of infections would be a valuable public health tool for locating the source of imported outbreaks. Here we analyse the mitochondrion and apicoplast genomes of 711 Plasmodium falciparum isolates from 14 countries, and find evidence that they are non-recombining and co-inherited. The high degree of linkage produces a panel of relatively few single-nucleotide polymorphisms (SNPs) that is geographically informative. We design a 23-SNP barcode that is highly predictive (?92%) and easily adapted to aid case management in the field and survey parasite migration worldwide. 2014 Macmillan Publishers Limited. All rights reserved.

  17. Plasmodium falciparum field isolates from South America use an atypical red blood cell invasion pathway associated with invasion ligand polymorphisms

    DEFF Research Database (Denmark)

    Lopez-Perez, Mary; Villasis, Elizabeth; Machado, Ricardo L D

    2012-01-01

    Studies of Plasmodium falciparum invasion pathways in field isolates have been limited. Red blood cell (RBC) invasion is a complex process involving two invasion protein families; Erythrocyte Binding-Like (EBL) and the Reticulocyte Binding-Like (PfRh) proteins, which are polymorphic and not fully...... characterized in field isolates. To determine the various P. falciparum invasion pathways used by parasite isolates from South America, we studied the invasion phenotypes in three regions: Colombia, Peru and Brazil. Additionally, polymorphisms in three members of the EBL (EBA-181, EBA-175 and EBL-1) and five...... pathways and the ligand polymorphisms differed substantially among the Colombian and Brazilian isolates while the Peruvian isolates represent an amalgam of those present in the Colombian and Brazilian field isolates. The NrTrCr invasion profile was associated with the presence of the PfRh2a pepC variant...

  18. The Effect of Storage and Extraction Methods on Amplification of Plasmodium falciparum DNA from Dried Blood Spots

    NARCIS (Netherlands)

    Schwartz, A.; Baidjoe, A.Y.; Rosenthal, P.J.; Dorsey, G.; Bousema, T.; Greenhouse, B.

    2015-01-01

    Extraction and amplification of DNA from dried blood spots (DBS) collected in field studies is commonly used for detection of Plasmodium falciparum. However, there have been few systematic efforts to determine the effects of storage and extraction methods on the sensitivity of DNA amplification. We

  19. Persistent Epstein-Barr viral reactivation in young African children with a history of severe Plasmodium falciparum malaria.

    NARCIS (Netherlands)

    Yone, C.L.; Kube, D.; Kremsner, P.G.; Luty, A.J.F.

    2006-01-01

    Epstein-Barr virus (EBV) and Plasmodium falciparum have overlapping distributions and are thought to have causal interactions, particularly with regard to the aetiology of endemic Burkitt's lymphoma. Using real-time PCR, we quantified and compared EBV DNA levels in the blood before and after

  20. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    OpenAIRE

    Huthmacher, Carola; Hoppe, Andreas; Bulik, Sascha; Holzh?tter, Hermann-Georg

    2010-01-01

    Abstract Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicte...