WorldWideScience

Sample records for characterize cell populations

  1. Establishment and characterization of primary lung cancer cell lines from Chinese population

    Institute of Scientific and Technical Information of China (English)

    Chao ZHENG; Yi-hua SUN; Xiao-lei YE; Hai-quan CHEN; Hong-bin JI

    2011-01-01

    Aim: To establish and characterize primary lung cancer cell lines from Chinese population.Methods: Lung cancer specimens or pleural effusions were collected from Chinese lung cancer patients and cultured in vitro with ACL4 medium (for non-small cell lung carcinomas (NSCLC)) or HITES medium (for small cell lung carcinomas (SCLC)) supplemented with 5%FBS. All cell lines were maintained in culture for more than 25 passages. Most of these cell lines were further analyzed for oncogenic mutations, karyotype, cell growth kinetics, and tumorigenicity in nude mice.Results: Eight primary cell lines from Chinese lung cancer patients were established and characterized, including seven NSCLC cell lines and one SCLC cell line. Five NSCLC cell lines were found to harbor epidermal growth factor receptor (EGFR) kinase domain mutations.Conclusion: These well-characterized primary lung cancer cell lines from Chinese population provide a unique platform for future studies of the ethnic differences in lung cancer biology and drug response.

  2. Identification and Characterization of Side Population Cells in Human Lung Adenocarcinoma SPC-A1 Cells

    Institute of Scientific and Technical Information of China (English)

    Yan-liang Zhu; Long-bang Chen; Jing-hua Wang; Xin-yi Xia

    2011-01-01

    Objective: There has been an increasing interest in recent years in the role of stem cells.With an extensive understanding of their biology,a major role for stem cells in the malignant process has been proposed and the existence of cancer stem cells(CSCs) has been confirmed in hematopoietic malignancies and solid organ malignancies including brain cancer,breast,prostate,colon,and pancreatic cancer.Lung cancer is the leading cause of cancer mortality in most large cities of China.It is possible that lung cancer contains cancer stem cells responsible for its malignancy.The aim of this study is to identify,characterize and enrich the CSC population that drives and maintains lung adenocarcinoma growth and metastasis.Methods: Side population(SP) cell analysis and sorting were applied on human lung adenocarcinoma cell line and an attempt to further enrich them by preliminary serum-free culture before fluorescence activated cell sorting (FACS) was done.Stem cell properties of SP cells were evaluated by their proliferative index,colony-forming efficiency,tumorigenic potential,bi-differentiation capacity and the expression of common stem cell surface markers.Results: Lung cancer cells could grow in a serum-free Medium(SFM) as non-adherent spheres similar to neurospheres or mammospheres.The proportion of SP cells in cell spheres was significantly higher than that in cells grown as monolayers.SP cells had a greater proliferative index,a higher colony-forming efficiency and a greater ability to form tumor in vivo.SP cells were both CCA positive and SP-C positive while non-SP cells were only SP-C positive.Flow cytometric analysis of cell phenotype showed that SP cells expressed CD133 and CD44,the common cell surface markers of cancer stem cells,while non-SP cells only expressed CD44.Conclusion: SP cells existed in human lung adenocarcinoma cell lines and they could be further enriched by preliminary serum-free culture before FACS sorting.SP cells possessed the properties of

  3. Identification and Characterization of Side Population Cells in Human Lung Adenocarcinoma SPC-A1 Cells

    Institute of Scientific and Technical Information of China (English)

    Yan-liang Zhu; Long-bang Chen; Jing-hua Wang; Xin-yi Xia

    2010-01-01

    Objective:There has been an increasing interest in recent years in the role of stem cells.With an extensive understanding of their biology,a major role for stem cells in the malignant process has been proposed and the existence of cancer stem cells(CSCs)has been confirmed in hematopoietic malignancies and solid organ malignancies including brain cancer,breast,prostate,colon,and pancreatic cancer.Lung cancer is the leading cause of cancer mortality in most large cities of China.It is possible that lung cancer contains cancer stem cells responsible for its malignancy.The aim of this study is to identify,characterize and enrich the CSC population that drives and maintains lung adenocarcinoma growth and metastasis.Methods:Side population(SP)cell analysis and sorting were applied on human lung adenocarcinoma cell line and an attempt to further enrich them by preliminary serum-free culture before fluorescence activated cell sorting(FACS)was done.Stem cell properties of SP cells were evaluated by their proliferative index,colony-forming efficiency,tumorigenic potential,bi-differentiation capacity and the expression of common stem cell surface markers.Results:Lung cancer cells could grow in a serum-free Medium(SFM)as non-adherent spheres similar to neurospheres or mammospheres.The proportion of SP cells in cell spheres was significantly higher than that in cells grown as monolayers.SP cells had a greater proliferative index,a higher colony-forming efficiency and a greater ability to form tumor in vivo.SP cells were both CCA positive and SP-C positive while non-SP cells were only SP-C positive.Flow cytometric analysis of cell phenotype showed that SP cells expressed CD133 and CD44,the common cell surface markers of cancer stem cells,while non-SP cells only expressed CD44.Conclusion:SP cells existed in human lung adenocarcinoma cell lines and they could be further enriched by preliminary serum-free culture before FACS sorting.SP cells possessed the properties of cancer stem

  4. Characterization of mitochondrial populations during stem cell differentiation.

    Science.gov (United States)

    Kerscher, Petra; Bussie, Blakely S; DeSimone, Katherine M; Dunn, David A; Lipke, Elizabeth A

    2015-01-01

    Mitochondrial dynamics play an important role in numerous physiological and pathophysiological phenomena in the developing and adult human heart. Alterations in structural aspects of cellular mitochondrial composition as a function of changes in physiology can easily be visualized using fluorescence microscopy. Commonly, mitochondrial location, number, and morphology are reported qualitatively due to the lack of automated and user-friendly computer-based analysis tools. Mitochondrial Quantification using MATLAB (MQM) is a computer-based tool to quantitatively assess these parameters by analyzing fluorescently labeled mitochondria within the cell; in particular, MQM provides numerical information on the number, area, and location of mitochondria within a cell in a time-efficient, automated, and unbiased way. This chapter describes the use of MQM's capabilities to quantify mitochondrial changes during human pluripotent stem cell (hPSC) differentiation into spontaneously contracting cardiomyocytes (SC-CMs), which follows physiological pathways of human heart development.

  5. Characterization of cancer stem-like cells in the side population cells of human gastric cancer cell line MKN-45

    Institute of Scientific and Technical Information of China (English)

    Hai-hong ZHANG; Ai-zhen CAI; Xue-ming WEI; Li DING; Feng-zhi LI; Ai-ming ZHENG; Da-jiang DAI

    2013-01-01

    Objective:Side population (SP) cells may play a crucial role in tumorigenesis and the recurrence of cancer.Many kinds of cell lines and tissues have demonstrated the presence of SP cells,including several gastric cancer cell lines.This study is aimed to identify the cancer stem-like cells in the SP of gastric cancer cell line MKN-45.Methods:We used fluorescence activated cell sorting (FACS) to sort SP cells in the human gastric carcinoma cell line MKN-45 (cells labeled with Hoechst 33342) and then characterized the cancer stem-like properties of SP cells.Results:This study found that the SP cells had higher clone formation efficiency than major population (MP) cells.Five stemness-related gene expression profiles,including OCT-4,SOX-2,NANOG,CD44,and adenosine triphosphate (ATP)-binding cassette transporters gene ABCG2,were tested in SP and MP cells using quantitative real-time reverse transcription polymerase chain reaction (RT-PCR).Western blot was used to show the difference of protein expression between SP and MP cells.Both results show that there was significantly higher protein expression in SP cells than in MP cells.When inoculated into non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice,SP cells show higher tumorigenesis tendency than MP cells.Conclusions:These results indicate that SP cells possess cancer stem cell properties and prove that SP cells from MKN-45 are gastric cancer stem-like cells.

  6. Characterization of Side Cell Populations Obtained from Human Amnion Mesenchymal Cells

    Institute of Scientific and Technical Information of China (English)

    LI Ning; PIAO Zhengfu; Mamoru Kobayashi; Koji Sasaki; DING Shu-qin; Aiko Kikuchi; Isao Kamo; Norio Sakuragawa

    2009-01-01

    Human amnion mesenchymal cells (AMCs) contain multipotent cells. To enrich such multipotent stem cells, we applied to AMCs the new method for the isolation of side population (SP) cells used for the enrichment of multipotent stem cells from many tissues. We succeeded in obtaining SP cells from AMCs (AMC-SP cells). AMC-SP cells were found in 0.2% of AMCs, irrespective of the length of pregnant period, ranging from 37 to 40 weeks. Cell cycle analyses uggested that AMC-SP cells belonged to a cell population that proliferated very slowly and/or was in a quiescent state in the amniotic membrane. Upon culturing, they proliferated with 40 to 80 cell doublings. However, they did not form colonies in a soft agarose culture, whereas HepG2 cells, representative human hepatoma cells formed many large colonies. These results suggest that AMC-SP cells that have considerable value for the use of regenerative medicine can be managed safely in vitro.

  7. Characterization of immune cell populations in oral mucosal tissue of healthy adult cats.

    Science.gov (United States)

    Harley, R; Gruffydd-Jones, T J; Day, M J

    2003-01-01

    The aim of this study was to characterize the leucocyte subsets present in the oral mucosa of healthy cats. Immunohistochemical labelling and computer-assisted morphometric analysis was used to identify expression of MHC class II, CD3, CD79a, IgG, IgM, IgA, and leucocyte antigen L1 (L1) by cells in sections from 19 cats, and expression of CD4 and CD8 by cells in sections from 17 cats. Mast cells were detected by toluidine blue staining. In the epithelial compartment, CD3(+) intraepithelial lymphocytes were detected, and CD8(+) cells were more common than CD4(+) cells. MHC class II labelling revealed intraepithelial and subepithelial cells with a characteristic dendritic morphology. In some sections these dendritic cells were closely associated with subepithelial clusters of CD3(+) T cells containing both CD4(+) and CD8(+) cells. In the lamina propria and submucosal compartments, the cells most commonly identified were mast cells. CD3(+) T-lymphocytes were also observed, and CD4(+) and CD8(+) cells were detected in similar numbers. L1(+) and CD79(+) cells were detected least frequently. The few plasma cells present were generally found to be either IgG(+) or IgA(+). Within the stroma surrounding the salivary glands, CD79a(+) and IgA(+) cells predominated. Slight epithelial labelling for L1 was seen in some sections. The normal feline oral mucosa clearly contains a range of immune cell populations.

  8. Characterization of HIV-1 Gag-specific T cell responses in chronically infected Indian population

    Science.gov (United States)

    Kaushik, S; Vajpayee, M; Wig, N; Seth, P

    2005-01-01

    India is at the epicentre of the global HIV/AIDS epidemic in South-east Asia, predominated by subtype C infections. It is important to characterize HIV-1-specific T cell responses in this particular population with the aim of identifying protective correlates of immunity to control HIV-1 infection. In this study, we performed a comprehensive analysis of the breadth and magnitude of T cell responses directed at HIV-1 subtype C Gag, one of the most conserved HIV-1 proteins. The study population consisted of antiretroviral naive, chronic HIV-1 subtype C-infected individuals at various stages of infection. We used recent advanced techniques such as enzyme-linked immunospot (ELISPOT) assay and intracellular cytokine staining to quantify the total CD4+ and CD8+ T cell response to HIV-1 gag at single peptide level, regardless of HLA haplotype of the infected individual. The p24-Gag was identified as the most frequently recognized subunit protein with the greatest magnitude of CD4+ and CD8+ T cell responses. Stronger and broader CD8 T cell responses were recognized, contrasting with the weaker and narrower CD4 T cell responses with regard to Gag protein subunits. The magnitude of the HIV-specific interferon (IFN)-γ responses was observed to be higher than the corresponding interleukin (IL)-2 response, indicating the persistence of antigenic load in chronically infected Indian population due to the probable dysfunction of HIV-specific, IFN-γ-secreting CD8 T cells in absence of IL-2 help. PMID:16232229

  9. Derivation and characterization of human embryonic stem cell lines from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhao Wu; Huimin Dai; Lei Qian; Qing Tian; Lei Xiao; Xiaojun Tan; Hui Li; Lingjun Rao; Lixiazi He; Lei Bao; Jing Liao; Chun Cui; Zhenyu Zuo; Qiao Li

    2011-01-01

    Human embryonic stem cells (hESCs) can self-renew indefinitely and differentiate into all cell types in the human body. Therefore, they are valuable in regenerative medicine, human developmental biology and drug discovery. A number of hESC lines have been derived from the Chinese population,but limited of them are available for research purposes. Here we report the derivation and characterization of two hESC lines derived from human blastocysts of Chinese origin. These hESCs express alkaline phosphatase and hESC-specific markers, including Oct4, Nanog, SSEA-3, SSEA-4,TRA-1-60 and TRA-1-81. They also have high levels of telomerase activity and normal karyotypes. These cells can form embryoid body in vitro and can be differentiated into all three germ layers in vivo by teratoma formation. The newly established hESCs will be distributed for research purposes.The availability of hESC lines from the Chinese population will facilitate studies on the differences in hESCs from different ethnic groups.

  10. Isolation and phenotypic characterization of cancer stem-like side population cells in colon cancer.

    Science.gov (United States)

    Feng, Long; Wu, Jian-Bing; Yi, Feng-Ming

    2015-09-01

    Previous studies in cancer biology suggest that chemotherapeutic drug resistance and tumor relapse are driven by cells within a tumor termed 'cancer stem cells'. In the present study, a Hoechst 33342 dye exclusion technique was used to identify cancer stem‑like side population (SP) cells in colon carcinoma, which accounted for 3.4% of the total cell population. Following treatment with verapamil, the population of SP cells was reduced to 0.6%. In addition, the sorted SP cells exhibited marked multidrug resistance and enhanced cell survival rates compared with non‑SP cells. The SP cells were able to generate more tumor spheres and were CD133 positive. Subsequent biochemical analysis revealed that the levels of the adenosine triphosphate‑binding cassette sub‑family G member 2 transporter protein, B‑cell lymphoma anti‑apoptotic factor and autocrine production of interleukin‑4 were significantly enhanced in the colon cancer SP cells, which contributed to drug resistance, protection of the cells from apoptosis and tumor recurrence. Therefore, the findings suggested that treatment failure and colon tumorigenesis is dictated by a small population of SP cells, which indicate a potential target in future therapies.

  11. Awakened by Cellular Stress: Isolation and Characterization of a Novel Population of Pluripotent Stem Cells Derived from Human Adipose Tissue

    OpenAIRE

    Saleh Heneidi; Simerman, Ariel A; Erica Keller; Prapti Singh; Xinmin Li; Dumesic, Daniel A; Gregorio Chazenbalk

    2013-01-01

    Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT) derived pluripotent stem cells, termed Mul...

  12. Characterization of p53 gene mutations in a Brazilian population with oral squamous cell carcinomas.

    Science.gov (United States)

    Chaves, Anna C M; Cherubini, Karen; Herter, Nilton; Furian, Roque; Santos, Diogenes S; Squier, Christopher; Domann, Frederick E

    2004-02-01

    Mutations in the p53 tumor suppressor gene are present in approximately 50% of all human cancers. We sought to determine the frequency and type of p53 mutations in squamous cell carcinomas (SCC) of the oral cavity in a Brazilian population. To identify p53 mutations we used PCR-SSCP in tumor tissue microdissected from paraffin- embedded and from fresh-frozen sections followed by direct sequencing of SSCP bands with altered electrophoretic mobility. We identified p53 mutations in 40% of the human SCC analyzed. The mutations were of a broad spectrum, with a preponderance of G --> A and A --> G transitions with an apparent hotspot at the CpG dinucleotide at codon 290. Patient samples were stratified according to tobacco and alcohol consumption as well as by anatomic location of the tumor, and although trends did emerge, no statistically significant associations were obtained between the occurance of TP53 mutations and these lifestyle habits. We conclude that p53 mutations are common among oral cavity cancers in this population, and stress the significance of this study since it is the first analysis of p53 mutation in oral cancer in a southern Brazilian population.

  13. Characterizing passive coherent population trapping resonance in a cesium vapor cell filled with neon buffer gas

    Institute of Scientific and Technical Information of China (English)

    Liu Zhi; Wang Jie-Ying; Diao Wen-Ting; He Jun; Wang Jun-Min

    2013-01-01

    We present a pair of phase-locked lasers with a 9.2-GHz frequency difference through the injection locking of a master laser to the RF-modulation sideband of a slave diode laser.Using this laser system,a coherent population trapping (CPT)signal with a typical linewidth of ~ 182 Hz is obtained in a cesium vapor cell filled with 30 Torr (4 kPa) of neon as the buffer gas.We investigate the influence of the partial pressure of the neon buffer gas on the CPT linewidth,amplitude,and frequency shift.The results may offer some references for CPT atomic clocks and CPT atomic magnetometers.

  14. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Saleh Heneidi

    Full Text Available Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal. When compared to adipose stem cells (ASCs, microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell

  15. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Science.gov (United States)

    Heneidi, Saleh; Simerman, Ariel A; Keller, Erica; Singh, Prapti; Li, Xinmin; Dumesic, Daniel A; Chazenbalk, Gregorio

    2013-01-01

    Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT) derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse) Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal). When compared to adipose stem cells (ASCs), microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell homing. Being

  16. A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer.

    Science.gov (United States)

    Spike, Benjamin T; Engle, Dannielle D; Lin, Jennifer C; Cheung, Samantha K; La, Justin; Wahl, Geoffrey M

    2012-02-03

    Gene expression signatures relating mammary stem cell populations to breast cancers have focused on adult tissue. Here, we identify, isolate, and characterize the fetal mammary stem cell (fMaSC) state since the invasive and proliferative processes of mammogenesis resemble phases of cancer progression. fMaSC frequency peaks late in embryogenesis, enabling more extensive stem cell purification than achieved with adult tissue. fMaSCs are self-renewing, multipotent, and coexpress multiple mammary lineage markers. Gene expression, transplantation, and in vitro analyses reveal putative autocrine and paracrine regulatory mechanisms, including ErbB and FGF signaling pathways impinging on fMaSC growth. Expression profiles from fMaSCs and associated stroma exhibit significant similarities to basal-like and Her2+ intrinsic breast cancer subtypes. Our results reveal links between development and cancer and provide resources to identify new candidates for diagnosis, prognosis, and therapy.

  17. Nuclear β-catenin and CD44 upregulation characterize invasive cell populations in non-aggressive MCF-7 breast cancer cells

    Directory of Open Access Journals (Sweden)

    Uchino Masahiro

    2010-08-01

    cells as well as MDA-MB-231 cells. Conclusions MCF-7-14 cells are a novel model for breast cancer metastasis without requiring constitutive EMT and are categorized as a "metastable phenotype", which can be distinguished from both epithelial and mesenchymal cells. The alterations and characteristics of MCF-7-14 cells, especially nuclear β-catenin and CD44 upregulation, may characterize invasive cell populations in breast cancer.

  18. Characterization of distinct mesenchymal-like cell populations from human skeletal muscle in situ and in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Lecourt, Severine, E-mail: severine.lecourt@sls.aphp.fr [UPMC/AIM UMR S 974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); INSERM U974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); CNRS UMR 7215, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Marolleau, Jean-Pierre, E-mail: Marolleau.Jean-Pierre@chu-amiens.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); CHU Amiens Hopital Sud, Service d' Hematologie Clinique, UPJV, Amiens (France); Fromigue, Olivia, E-mail: olivia.fromigue@larib.inserm.fr [INSERM U606, Universite Paris 07, Hopital Lariboisiere, Paris (France); Vauchez, Karine, E-mail: k.vauchez@institut-myologie.org [UPMC/AIM UMR S 974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); INSERM U974, Groupe Hospitalier Pitie-Salpetriere, Paris (France); CNRS UMR 7215, Groupe Hospitalier Pitie-Salpetriere, Paris (France); Genzyme S.A.S., Saint-Germain en Laye (France); Andriamanalijaona, Rina, E-mail: rinandria@yahoo.fr [Laboratoire de Biochimie des Tissus Conjonctifs, Faculte de Medecine, Caen (France); Ternaux, Brigitte, E-mail: brigitte.ternaux@orange.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Lacassagne, Marie-Noelle, E-mail: mnlacassagne@free.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Robert, Isabelle, E-mail: isa-robert@hotmail.fr [Laboratoire de Therapie Cellulaire, Hopital Saint Louis, Paris (France); Boumediene, Karim, E-mail: karim.boumediene@unicaen.fr [Laboratoire de Biochimie des Tissus Conjonctifs, Faculte de Medecine, Caen (France); Chereau, Frederic, E-mail: fchereau@pervasistx.com [Myosix S.A., Saint-Germain en Laye (France); Marie, Pierre, E-mail: pierre.marie@larib.inserm.fr [INSERM U606, Universite Paris 07, Hopital Lariboisiere, Paris (France); and others

    2010-09-10

    Human skeletal muscle is an essential source of various cellular progenitors with potential therapeutic perspectives. We first used extracellular markers to identify in situ the main cell types located in a satellite position or in the endomysium of the skeletal muscle. Immunohistology revealed labeling of cells by markers of mesenchymal (CD13, CD29, CD44, CD47, CD49, CD62, CD73, CD90, CD105, CD146, and CD15 in this study), myogenic (CD56), angiogenic (CD31, CD34, CD106, CD146), hematopoietic (CD10, CD15, CD34) lineages. We then analysed cell phenotypes and fates in short- and long-term cultures of dissociated muscle biopsies in a proliferation medium favouring the expansion of myogenic cells. While CD56{sup +} cells grew rapidly, a population of CD15{sup +} cells emerged, partly from CD56{sup +} cells, and became individualized. Both populations expressed mesenchymal markers similar to that harboured by human bone marrow-derived mesenchymal stem cells. In differentiation media, both CD56{sup +} and CD15{sup +} cells shared osteogenic and chondrogenic abilities, while CD56{sup +} cells presented a myogenic capacity and CD15{sup +} cells presented an adipogenic capacity. An important proportion of cells expressed the CD34 antigen in situ and immediately after muscle dissociation. However, CD34 antigen did not persist in culture and this initial population gave rise to adipogenic cells. These results underline the diversity of human muscle cells, and the shared or restricted commitment abilities of the main lineages under defined conditions.

  19. Phenotypic characterization of CD8+ T cell populations in HIV disease and in anti-HIV immunity.

    Science.gov (United States)

    Watret, K C; Whitelaw, J A; Froebel, K S; Bird, A G

    1993-04-01

    The CD8+ T cell population is believed to play an important role in the control of viral infection, both for suppression of viral replication and for cytotoxic activity against viral infected cells. Elevated numbers of CD8+ T cells have been demonstrated in HIV infection, and CD8+ cytotoxic T cell (CTL) activity is associated with the early, asymptomatic stage of disease. We investigated the phenotypic characteristics of the CD8 population, in whole blood, in HIV disease and determined the predominant CD8+ subpopulation involved in anti-HIV CTL activity. We found that CD8+ T cells co-expressing markers of activation (HLA-DR), memory (CD45RO, CD29), and cytotoxic activity (S6F1) were significantly elevated in the early stages of disease, while the numbers of naive (CD45RA) cells remained unchanged. Progression to AIDS resulted in an overall loss of absolute CD8+ T cells, though the percentages of CD8+ HLA-DR+ and CD8+ S6F1+ remained elevated. In contrast to patients in the late stages of disease, anti-HIVgag CTL activity, following in vitro stimulation, was present in most HIV+ asymptomatic subjects and was associated with an expansion of CD8+ HLA-DR+ and CD8+ CD45RO+ cells. The absence of CTL activity was associated with a reduced ability of these populations to expand in vitro and with a significant loss of peripheral CD4+ T cells, independent of clinical stage. We suggest that CD8+ expressing HLA-DR+ CD45RO+ and S6F1+ play an important role in anti-HIV cytotoxicity.

  20. Use of flow cytometry for characterization and fractionation of cell populations based on their expression of heparan sulfate epitopes

    NARCIS (Netherlands)

    Holley, R.J.; Smith, R.A.; Westerlo, E.M.A. van de; Pickford, C.E.; Merry, C.L.; Kuppevelt, T.H. van

    2015-01-01

    The ability to characterize alterations in heparan sulfate (HS) structure during development or as a result of loss or mutation of one or more components of the HS biosynthetic pathway is essential for broad understanding of the effects these changes may have on cell/tissue function. The use of anti

  1. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3.

    Directory of Open Access Journals (Sweden)

    Sarah L Appleby

    Full Text Available Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+ population of non-adherent endothelial forming cells (naEFCs which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38 together with mature endothelial cell markers (VEGFR2, CD144 and CD31. These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8 or myeloid markers (CD11b and CD14 which distinguishes them from 'early' endothelial progenitor cells (EPCs. Functional studies demonstrated that these naEFCs (i bound Ulex europaeus lectin, (ii demonstrated acetylated-low density lipoprotein uptake, (iii increased vascular cell adhesion molecule (VCAM-1 surface expression in response to tumor necrosis factor and (iv in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs. Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

  2. Characterization of a distinct population of circulating human non-adherent endothelial forming cells and their recruitment via intercellular adhesion molecule-3.

    Science.gov (United States)

    Appleby, Sarah L; Cockshell, Michaelia P; Pippal, Jyotsna B; Thompson, Emma J; Barrett, Jeffrey M; Tooley, Katie; Sen, Shaundeep; Sun, Wai Yan; Grose, Randall; Nicholson, Ian; Levina, Vitalina; Cooke, Ira; Talbo, Gert; Lopez, Angel F; Bonder, Claudine S

    2012-01-01

    Circulating vascular progenitor cells contribute to the pathological vasculogenesis of cancer whilst on the other hand offer much promise in therapeutic revascularization in post-occlusion intervention in cardiovascular disease. However, their characterization has been hampered by the many variables to produce them as well as their described phenotypic and functional heterogeneity. Herein we have isolated, enriched for and then characterized a human umbilical cord blood derived CD133(+) population of non-adherent endothelial forming cells (naEFCs) which expressed the hematopoietic progenitor cell markers (CD133, CD34, CD117, CD90 and CD38) together with mature endothelial cell markers (VEGFR2, CD144 and CD31). These cells also expressed low levels of CD45 but did not express the lymphoid markers (CD3, CD4, CD8) or myeloid markers (CD11b and CD14) which distinguishes them from 'early' endothelial progenitor cells (EPCs). Functional studies demonstrated that these naEFCs (i) bound Ulex europaeus lectin, (ii) demonstrated acetylated-low density lipoprotein uptake, (iii) increased vascular cell adhesion molecule (VCAM-1) surface expression in response to tumor necrosis factor and (iv) in co-culture with mature endothelial cells increased the number of tubes, tubule branching and loops in a 3-dimensional in vitro matrix. More importantly, naEFCs placed in vivo generated new lumen containing vasculature lined by CD144 expressing human endothelial cells (ECs). Extensive genomic and proteomic analyses of the naEFCs showed that intercellular adhesion molecule (ICAM)-3 is expressed on their cell surface but not on mature endothelial cells. Furthermore, functional analysis demonstrated that ICAM-3 mediated the rolling and adhesive events of the naEFCs under shear stress. We suggest that the distinct population of naEFCs identified and characterized here represents a new valuable therapeutic target to control aberrant vasculogenesis.

  3. Characterization of surface interleukin-2 receptor expression on gated populations of peripheral blood mononuclear cells from manatees, Trichechus manatus latirostris.

    Science.gov (United States)

    Sweat, J M; Johnson, C M; Marikar, Y; Gibbs, E P

    2005-12-15

    An in vitro system to determine surface interleukin-2 receptor (IL-2R) expression on mitogen-stimulated peripheral blood mononuclear cells (PBMC) from free-ranging manatees, Trichechus manatus latirostris was developed. Human recombinant IL-2, conjugated with a fluorescein dye was used in conjunction with flow cytometric analysis to determine changes in surface expression of IL-2R at sequential times over a 48-h period of in vitro stimulation. Surface expression of IL-2R was detected on manatee PBMC, which also cross-reacted with an anti-feline pan T-cell marker. An expression index (EI) was calculated by comparing mitogen-activated and non-activated PBMC. Based on side- and forward-scatter properties, flow cytometric analysis showed an increase in the number of larger, more granular "lymphoblasts" following concanavalin A (Con A) stimulation. The appearance of lymphoblasts was correlated with an increase in their surface expression of IL-2 receptors. Surface IL-2R expression, in Con A-stimulated PBMC, was detected at 16 h, peaked at 24-36 h, and began to decrease by 48 h. Characterization of the IL-2R expression should provide additional information on the health status of manatees, and the effect of their sub lethal exposure to brevetoxin.

  4. A Structured Population Model of Cell Differentiation

    CERN Document Server

    Doumic, Marie; Perthame, Benoit; Zubelli, Jorge P

    2010-01-01

    We introduce and analyze several aspects of a new model for cell differentiation. It assumes that differentiation of progenitor cells is a continuous process. From the mathematical point of view, it is based on partial differential equations of transport type. Specifically, it consists of a structured population equation with a nonlinear feedback loop. This models the signaling process due to cytokines, which regulate the differentiation and proliferation process. We compare the continuous model to its discrete counterpart, a multi-compartmental model of a discrete collection of cell subpopulations recently proposed by Marciniak-Czochra et al. in 2009 to investigate the dynamics of the hematopoietic system. We obtain uniform bounds for the solutions, characterize steady state solutions, and analyze their linearized stability. We show how persistence or extinction might occur according to values of parameters that characterize the stem cells self-renewal. We also perform numerical simulations and discuss the q...

  5. Space Solar Cell Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Measures, characterizes, and analyzes photovoltaic materials and devices. The primary focus is the measurement and characterization of solar cell response...

  6. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology, Otaniemi (Finland). Dept. of Electrical and Communications Engineering

    1998-10-01

    Photovoltaic research in the Electron Physics Laboratory started in 1993, when laboratory joined the national TEKES/NEMO 2 research program. Since the beginning of the project, characterization as well as experimentally orientated development of the fabrication process of the solar cells were carried out parallery. The process development research started by the initiatives of the Finnish industry. At the moment a large amount of the laboratory personnel works on solar cell research and the financing comes mainly from external projects. The funding for the research has come from TEKES, Ministry of Education, Finnish Academy, GETA graduate school, special equipment grants of the university, and from the laboratory

  7. Detection of a novel population of fetal thymocytes characterized by preferential emigration and a TCRgammadelta+ T cell fate after dioxin exposure.

    Science.gov (United States)

    Majora, Marc; Frericks, Markus; Temchura, Vladimir; Reichmann, Gaby; Esser, Charlotte

    2005-11-01

    T cell maturation into TCRalphabeta(+) or TCRgammadelta(+) cells from common immature CD4(-)CD8(-)(DN) precursors occurs in the thymus, and is controlled through ordered regulation of genes. The aryl hydrocarbon receptor (AHR), a latent cytoplasmic transcription factor, affects thymocyte maturation and differentiation at several stages, also including DN cells. We analyzed in murine fetal thymus organ cultures (FTOC) the outcome of AHR-signaling and found a higher frequency of DN TCRgammadelta(+) cells in the presence of the AHR-activating ligand TCDD. We detected a novel population of CD25(int/lo)CD44(hi) cells associated with preferential emigration and a TCRgammadelta(+) T cell fate of thymocytes. Sorted DN TCRgammadelta(+) emigrants could proliferate if IL-2 was available. Moreover, they suppressed the proliferation of co-cultivated, activated CD4(+) T cells. Gene expression profiles of purified DN emigrants from TCDD*FTOC revealed 295 modulated genes, 10% of which are genes of the immune system. For instance, RAG-1, TdT, and Gfi-1 were downregulated, yet genes indicative of mature thymocytes were upregulated. In conclusion, we have detected changes in the differentiation programme of fetal DN thymocytes after ligand-activation of the AHR. In particular, we observed a higher frequency of DN TCRgammadelta(+) cells with high emigration potential, and possible regulatory functions.

  8. Novel characterization of monocyte-derived cell populations in the meninges and choroid plexus and their rates of replenishment in bone marrow chimeric mice.

    Science.gov (United States)

    Chinnery, Holly R; Ruitenberg, Marc J; McMenamin, Paul G

    2010-09-01

    The mouse dura mater, pia mater, and choroid plexus contain resident macrophages and dendritic cells (DCs). These cells participate in immune surveillance, phagocytosis of cellular debris, uptake of antigens from the surrounding cerebrospinal fluid and immune regulation in many pathologic processes. We used Cx3cr1 knock-in, CD11c-eYFP transgenic and bone marrow chimeric mice to characterize the phenotype, density and replenishment rate of monocyte-derived cells in the meninges and choroid plexus and to assess the role of the chemokine receptor CX3CR1 on their number and tissue distribution. Iba-1 major histocompatibility complex (MHC) Class II CD169 CD68 macrophages and CD11c putative DCs were identified in meningeal and choroid plexus whole mounts. Comparison of homozygous and heterozygous Cx3cr1 mice did not reveal CX3CR1-dependancy on density, distribution or phenotype of monocyte-derived cells. In turnover studies, wild type lethally irradiated mice were reconstituted with Cx3cr1/-positive bone marrow and were analyzed at 3 days, 1, 2, 4 and 8 weeks after transplantation. There was a rapid replenishment of CX3CR1-positive cells in the dura mater (at 4 weeks) and the choroid plexus was fully reconstituted by 8 weeks. These data provide the foundation for future studies on the role of resident macrophages and DCs in conditions such as meningitis, autoimmune inflammatory disease and in therapies involving irradiation and hematopoietic or stem cell transplantation.

  9. How does cell size regulation affect population growth?

    CERN Document Server

    Lin, Jie

    2016-01-01

    The proliferation of a growing microbial colony is well characterized by the population growth rate. However, at the single-cell level, isogenic cells often exhibit different cell-cycle durations. For evolutionary dynamics, it is thus important to establish the connection between the population growth rate and the heterogeneous single-cell generation time. Existing theories often make the assumption that the generation times of mother and daughter cells are independent. However, it has been shown that to maintain a bounded cell size distribution, cells that grow exponentially at the single-cell level need to adopt cell size regulation, leading to a negative correlation of mother-daughter generation time. In this work, we construct a general framework to describe the population growth in the presence of size regulation. We derive a formula for the population growth rate, which only depends on the variability of single-cell growth rate, independent of other sources of noises. Our work shows that a population ca...

  10. Morphometric Characterization of Small Cell Lymphocytic Lymphoma

    Directory of Open Access Journals (Sweden)

    Chisoi Anca

    2014-11-01

    Full Text Available The morphometry in histopathology is used to characterize cell populations belonging to different tissues and to identify differences in their parameters with prognostic implications. To achieve morphometric examination were selected 6 of 24 cases identified as small cell lymphocytic lymphoma. For each case analysis was done on five fields, for each field measuring the parameters of 20 cells. The studied parameters were for cytoplasm: cytoplasmic area, maximum and minimum cytoplasmic diameter, cytoplasmic perimeter; for nucleus were measured: nuclear area, minimum and maximum nuclear diameter, nuclear perimeter, nuclear contour index, nuclear ellipticity index, nuclear irregularity index. Also the nucleocytoplasmic ratio was calculated in all studied cases. Small cell lymphocytic lymphoma is characterized in morphometric terms having a small cytoplasmic area (average 29.206 and also a small nuclear area (mean 28.939 having a nucleo-cytoplasmic ratio appearance suggestive for adult lymphocyte. A nuclear contour index small value (3.946, ellipticity index value also small (3.521 and small nuclear irregularity index (3.965. Standard deviations, in any of the studied morphometric categories, is around or below 1 suggesting monomorphic cell appearance. These morphometric and microscopic features characterized mainly by a small population of adult lymphocytes, monomorphic, with rounded hipercromic nuclei, dense chromatin, support the framing into indolent lymphoma group in terms of clinical outcome.

  11. Characterization of solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, J.; Tuominen, E.; Nybergh, K.; Ezer, Y.; Yli-Koski, M.; Sinkkonen, J. [Helsinki Univ. of Technology (Finland). Dept. of Electrical and Communications Engineering

    1998-12-31

    Photovoltaic research began at the Electron Physics Laboratory of the Helsinki University of Tehnology in 1993, when the laboratory joined the national NEMO 2 research program. During the early stages of the photovoltaic research the main objective was to establish necessary measurement and characterisation routines, as well as to develop the fabrication process. The fabrication process development work has been supported by characterisation and theoretical modelling of the solar cells. Theoretical investigations have been concerned with systematic studies of solar cell parameters, such as diffusion lengths, surface recombination velocities and junction depths. The main result of the modelling and characterisation work is a method which is based on a Laplace transform of the so-called spatial collection efficiency function of the cell. The basic objective of the research has been to develop a fabrication process cheap enough to be suitable for commercial production

  12. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    Science.gov (United States)

    2015-09-01

    AWARD NUMBER: W81XWH-13-1-0244 TITLE: Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells PRINCIPAL...2014 - 31 Aug 2015 4. TITLE AND SUBTITLE Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells 5a. CONTRACT NUMBER 5b...the development of knee osteoarthritis (OA). New treatments centered on the stem/ progenitor cell population resident within the adult meniscus will be

  13. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  14. Human colostral cells. I. Separation and characterization.

    Science.gov (United States)

    Crago, S S; Prince, S J; Pretlow, T G; McGhee, J R; Mestecky, J

    1979-12-01

    Analyses of the cells present in human colostrum obtained from fifty-four healthy donors during the first four days of lactation revealed that there were 3.3 x 10(6) (range 1.1 x 10(5)--1.2 x 10(7)) cells per ml of colostrum. Based on histochemical examinations, it was found that this population consisted of 30--47% macrophages, 40--60% polymorphonuclear leucocytes, 5.2--8.9% lymphocytes, and 1.3--2.8% colostral corpuscles; epithelial cells were rarely encountered. The identity of various cell types was confirmed by Wright's stain and by a series of histochemical techniques which disclosed the presence of non-specific esterase, peroxidase, and lipids. For further characterization, the different types of cells were separated by various methods, such as Ficoll-Hypaque density centrifugation, isokinetic centrifugation on a linear Ficoll gradient, adherence to glass or plastic, and phagocytosis of carbonyl iron. Immunohistochemical staining with FITC- and/or TRITC-labelled reagents to IgA, IgM, IgG, K- and lambda-chains, secretory component, lactoferrin, and alpha-lactalbumin were applied to unseparated as well as separated colostral cells. Polymorphonuclear leucocytes (staining for peroxidase) as well as macrophages and colostral corpuscles (staining for non-specific esterase) exhibited numerous intracellular vesicles that contained lipids as well as various combinations of milk proteins. Lymphoid cells did not stain with any of these reagents and plasma cells were not detected among the colostral cells. Individual phagocytic cells contained immunoglobulins of the IgA and IgM classes, both K and lambda light chains, secretory component, lactoferrin, and alpha-lactalbumin. The coincidental appearance of these proteins in single, phagocytic cells but not in lymphoid cells indicate that the cells acquired these proteins by ingestion from the environment. Markers commonly used for the identification of B lymphocytes (surface immunoglobulins) and T lymphocytes (receptors

  15. The spiny rat Proechimys guyannensis as model of resistance to epilepsy: chemical characterization of hippocampal cell populations and pilocarpine-induced changes.

    Science.gov (United States)

    Fabene, P F; Correia, L; Carvalho, R A; Cavalheiro, E A; Bentivoglio, M

    2001-01-01

    At variance with pilocarpine-induced epilepsy in the laboratory rat, pilocarpine administration to the tropical rodent Proechimys guyannensis (casiragua) elicited an acute seizure that did not develop in long-lasting status epilepticus and was not followed by spontaneous seizures up to 30 days, when the hippocampus was investigated in treated and control animals. Nissl staining revealed in Proechimys a highly developed hippocampus, with thick hippocampal commissures and continuity of the rostral dentate gyri at the midline. Immunohistochemistry was used to study calbindin, parvalbumin, calretinin, GABA, glutamic acid decarboxylase, and nitric oxide synthase expression. The latter was also investigated with NADPH-diaphorase histochemistry. Cell counts and densitometric evaluation with image analysis were performed. Differences, such as low calbindin immunoreactivity confined to some pyramidal cells, were found in the normal Proechimys hippocampus compared to the laboratory rat. In pilocarpine-treated casiraguas, stereological cell counts in Nissl-stained sections did not reveal significant neuronal loss in hippocampal subfields, where the examined markers exhibited instead striking changes. Calbindin was induced in pyramidal and granule cells and interneuron subsets. The number of parvalbumin- or nitric oxide synthase-containing interneurons and their staining intensity were significantly increased. Glutamic acid decarboxylase(67)-immunoreactive interneurons increased markedly in the hilus and decreased in the CA1 pyramidal layer. The number and staining intensity of calretinin-immunoreactive pyramidal cells and interneurons were significantly reduced. These findings provide the first description of the Proechimys hippocampus and reveal marked long-term variations in protein expression after an epileptic insult, which could reflect adaptive changes in functional hippocampal circuits implicated in resistance to limbic epilepsy.

  16. Modeling circadian clock-cell cycle interaction effects on cell population growth rates.

    Science.gov (United States)

    El Cheikh, R; Bernard, S; El Khatib, N

    2014-12-21

    The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells which cannot be explained by a molecular model or a population model alone. In this work, we present a combined molecular-population model that studies how coupling the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain to the circadian clock with different rational period ratios and characterize multiple domains of entrainment. We show that coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly, we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it elsewhere. Combining a molecular model to a population model offers new insight on the influence of the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering treatments at a specific time of the day.

  17. Molecular characterization of heterogeneous mesenchymal stem cells with single-cell transcriptomes.

    Science.gov (United States)

    Li, Zhongjun; Zhang, Chao; Weiner, Leslie P; Zhang, Yiqiang; Zhong, Jiang F

    2013-01-01

    Mesenchymal stem cells (MSC) are heterogeneous cell populations with promising therapeutic potentials in regenerative medicine. The therapeutic values of MSC in various clinical situations have been reported. Clonal assays (expansion of MSC from a single cell) demonstrated that multiple types of cells with different developmental potential exist in a MSC population. Due to the heterogeneous nature of MSC, molecular characterization of MSC in the absence of known biomarkers is a challenge for cell therapy with MSC. Here, we review potential therapeutic applications of MSC and discuss a systematic approach for molecular characterization of heterogeneous cell population using single-cell transcriptome analysis. Differentiation/maturation of cells is orchestrated by sequential expression of a series of genes within a cell. Therefore, single-cell mRNA expression (transcriptome) profiles from consecutive developmental stages are more similar than those from disparate stages. Bioinformatic analysis can cluster single-cell transcriptome profiles from consecutive developmental stages into a dendrogram based on the similarity matrix of these profiles. Because a single-cell is an ultimately "pure" sample in expression profiling, these dendrograms can be used to classify individual cells into molecular subpopulations within a heterogeneous cell population without known biomarkers. This approach is especially powerful in studying cell populations with little molecular information and few known biomarkers, for example the MSC populations. The molecular understanding will provide novel targets for manipulating MSC differentiation with small molecules and other drugs to enable safer and more effective therapeutic applications of MSC.

  18. Identification and Characterization of Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Valentina Pozzi

    2015-05-01

    Full Text Available Background/Aims: Head and neck squamous cell carcinoma (HNSCC ranks sixth worldwide for tumor-related mortality. A subpopulation of tumor cells, termed cancer stem cells (CSCs, has the ability to support cancer growth. Therefore, profiling CSC-enriched populations could be a reliable tool to study cancer biology. Methods: We performed phenotypic characterization of 7 HNSCC cell lines and evaluated the presence of CSCs. CSCs from Hep-2 cell line and HNSCC primary cultures were enriched through sphere formation and sphere-forming cells have been characterized both in vitro and in vivo. In addition, we investigated the expression levels of Nicotinamide N-methyltransferase (NNMT, an enzyme overexpressed in several malignancies. Results: CSC markers were markedly expressed in Hep-2 cell line, which was found to be highly tumorigenic. CSC-enriched populations displayed increased expression of CSC markers and a strong capability to form tumors in vivo. We also found an overexpression of CSC markers in tumor formed by CSC-enriched populations. Interestingly, NNMT levels were significantly higher in CSC-enriched populations compared with parental cells. Conclusion: Our study provides an useful procedure for CSC identification and enrichment in HNSCC. Moreover, results obtained seem to suggest that CSCs may represent a promising target for an anticancer therapy.

  19. Pregnancy persistently affects memory T cell populations.

    Science.gov (United States)

    Kieffer, Tom E C; Faas, Marijke M; Scherjon, Sicco A; Prins, Jelmer R

    2017-02-01

    Pregnancy is an immune challenge to the maternal immune system. The effects of pregnancy on maternal immunity and particularly on memory T cells during and after pregnancy are not fully known. This observational study aims to show the short term and the long term effects of pregnancy on the constitution, size and activation status of peripheral human memory T-lymphocyte populations. Effector memory (EM) and central memory (CM) T-lymphocytes were analyzed using flow cytometry of peripheral blood from 14 nulligravid, 12 primigravid and 15 parous women that were on average 18 months postpartum. The short term effects were shown by the significantly higher CD4+ EM cell and activated CD4+ memory cell proportions in primigravid women compared to nulligravid women. The persistent effects found in this study were the significantly higher proportions of CD4+ EM, CD4+ CM and activated memory T cells in parous women compared to nulligravid women. In contrast to CD4+ cells, activation status of CD8+ memory cells did not differ between the groups. This study shows that pregnancy persistently affects the pre-pregnancy CD4+ memory cell pool in human peripheral blood. During pregnancy, CD4+ T-lymphocytes might differentiate into EM cells followed by persistent higher proportions of CD4+ CM and EM cells postpartum. The persistent effects of pregnancy on memory T cells found in this study support the hypothesis that memory T cells are generated during pregnancy and that these cells could be involved in the lower complication risks in multiparous pregnancies in humans.

  20. Circadian rhythm and cell population growth

    CERN Document Server

    Clairambault, Jean; Lepoutre, Thomas

    2010-01-01

    Molecular circadian clocks, that are found in all nucleated cells of mammals, are known to dictate rhythms of approximately 24 hours (circa diem) to many physiological processes. This includes metabolism (e.g., temperature, hormonal blood levels) and cell proliferation. It has been observed in tumor-bearing laboratory rodents that a severe disruption of these physiological rhythms results in accelerated tumor growth. The question of accurately representing the control exerted by circadian clocks on healthy and tumour tissue proliferation to explain this phenomenon has given rise to mathematical developments, which we review. The main goal of these previous works was to examine the influence of a periodic control on the cell division cycle in physiologically structured cell populations, comparing the effects of periodic control with no control, and of different periodic controls between them. We state here a general convexity result that may give a theoretical justification to the concept of cancer chronothera...

  1. Characterization of clonogenic multiple myeloma cells

    OpenAIRE

    Matsui, William; Huff, Carol Ann; Wang, Qiuju; Malehorn, Matthew T.; Barber, James; Tanhehco, Yvette; Smith, B Douglas; Civin, Curt I.; Jones, Richard J.

    2003-01-01

    The identity of the cells responsible for the initiation and maintenance of multiple myeloma (MM) remains unclear largely because of the difficulty growing MM cells in vitro and in vivo. MM cell lines and clinical specimens are characterized by malignant plasma cells that express the cell surface antigen syndecan-1 (CD138); however, CD138 expression is limited to terminally differentiated plasma cells during B-cell development. Moreover, circulating B cells that are clonally related to MM pla...

  2. Electrical cell counting process characterization in a microfluidic impedance cytometer.

    Science.gov (United States)

    Hassan, Umer; Bashir, Rashid

    2014-10-01

    Particle counting in microfluidic devices with coulter principle finds many applications in health and medicine. Cell enumeration using microfluidic particle counters is fast and requires small volumes of sample, and is being used for disease diagnostics in humans and animals. A complete characterization of the cell counting process is critical for accurate cell counting especially in complex systems with samples of heterogeneous population interacting with different reagents in a microfluidic device. In this paper, we have characterized the electrical cell counting process using a microfluidic impedance cytometer. Erythrocytes were lysed on-chip from whole blood and the lysing was quenched to preserve leukocytes which subsequently pass through a 15 μm × 15 μm measurement channel used to electrically count the cells. We show that cell counting over time is a non-homogeneous Poisson process and that the electrical cell counts over time show the log-normal distribution, whose skewness can be attributed to diffusion of cells in the buffer that is used to meter the blood. We further found that the heterogeneous cell population (i.e. different cell types) shows different diffusion characteristics based on the cell size. Lymphocytes spatially diffuse more as compared to granulocytes and monocytes. The time difference between the cell occurrences follows an exponential distribution and when plotted over time verifies the cell diffusion characteristics. We also characterized the probability of occurrence of more than one cell at the counter within specified time intervals using Poisson counting statistics. For high cell concentration samples, we also derived the required sample dilution based on our particle counting characterization. Buffer characterization by considering the size based particle diffusion and estimating the required dilution are critical parameters for accurate counting results.

  3. Quantitative single cell analysis of cell population dynamics during submandibular salivary gland development and differentiation

    Directory of Open Access Journals (Sweden)

    Deirdre A. Nelson

    2013-04-01

    Epithelial organ morphogenesis involves reciprocal interactions between epithelial and mesenchymal cell types to balance progenitor cell retention and expansion with cell differentiation for evolution of tissue architecture. Underlying submandibular salivary gland branching morphogenesis is the regulated proliferation and differentiation of perhaps several progenitor cell populations, which have not been characterized throughout development, and yet are critical for understanding organ development, regeneration, and disease. Here we applied a serial multiplexed fluorescent immunohistochemistry technology to map the progressive refinement of the epithelial and mesenchymal cell populations throughout development from embryonic day 14 through postnatal day 20. Using computational single cell analysis methods, we simultaneously mapped the evolving temporal and spatial location of epithelial cells expressing subsets of differentiation and progenitor markers throughout salivary gland development. We mapped epithelial cell differentiation markers, including aquaporin 5, PSP, SABPA, and mucin 10 (acinar cells; cytokeratin 7 (ductal cells; and smooth muscle α-actin (myoepithelial cells and epithelial progenitor cell markers, cytokeratin 5 and c-kit. We used pairwise correlation and visual mapping of the cells in multiplexed images to quantify the number of single- and double-positive cells expressing these differentiation and progenitor markers at each developmental stage. We identified smooth muscle α-actin as a putative early myoepithelial progenitor marker that is expressed in cytokeratin 5-negative cells. Additionally, our results reveal dynamic expansion and redistributions of c-kit- and K5-positive progenitor cell populations throughout development and in postnatal glands. The data suggest that there are temporally and spatially discreet progenitor populations that contribute to salivary gland development and homeostasis.

  4. Isolation and In Vitro Characterization of Epidermal Stem Cells

    DEFF Research Database (Denmark)

    Moestrup, Kasper S; Andersen, Marianne Stemann; Jensen, Kim Bak

    2017-01-01

    Colony-forming assays represent prospective methods, where cells isolated from enzymatically dissociated tissues or from tissue cultures are assessed for their proliferative capacity in vitro. Complex tissues such as the epithelial component of the skin (the epidermis) are characterized by a subs...... skin sorted by surface antigens associated with adult stem cell characteristics.......Colony-forming assays represent prospective methods, where cells isolated from enzymatically dissociated tissues or from tissue cultures are assessed for their proliferative capacity in vitro. Complex tissues such as the epithelial component of the skin (the epidermis) are characterized...... by a substantial cellular heterogeneity. Analysis of bulk populations of cells by colony-forming assays can consequently be convoluted by a number of factors that are not controlled for in population wide studies. It is therefore advantageous to refine in vitro growth assays by sub-fractionation of cells using...

  5. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells

    Science.gov (United States)

    Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N.; McGinnis, Christopher S.; Zhou, Joseph X.; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy

    2017-01-01

    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or “tipping point” at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations. PMID:28167799

  6. Targeting population heterogeneity for optimal cell factories

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Carlqvist, Magnus; Helmark, S.

    analysis, and thereby created the possibility to map population heterogeneity. A factorial design with pH, glucose concentration and oxygen level was performed in batch cultivations using the growth reporter strains to evaluate the effect of those environmental factors on heterogeneity level and amount...... of living cells. A highly dynamic behavior with regard to subpopulation distribution during the different growth stages was seen for the batch cultivations. Moreover, it could be demonstrated that the glucose concentration had a clear influence on the heterogeneity. The results from the factorial design...

  7. Side population rather than CD133+ cells distinguishes enriched tumorigenicity in hTERT-immortalized primary prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Wolcott Karen

    2011-09-01

    Full Text Available Abstract Background Subpopulations of cancer cells with the capacity of generating solid tumors have been characterized. In various cancer types, including prostate cancer cells, a side population (SP and CD133-expressing cells have been proposed as containing a population cancer cells with stem-like ability. Therefore the aim of this work was to determine, in prostate cancer cell lines, the frequency and tumorigenic potential of SP and CD133+ cells. Results In vitro 2D colony-forming assay and sphere-forming assay, Flow cytometry analysis and magnetic cell sorting were utilized to sort CD133+, CD133- and Side population (SP cells. Our findings indicate that CD44 and integrin α-6 are uniformly expressed in the hTERT cell lines; however, CD133 is expressed only in a small population (in vitro and in vivo. Additionally, for the hTERT cells, SP rather than CD133 expression showed an 8-fold enhanced tumorigenic potential. The data suggest that SP cells, rather than those with CD133 marker, contain the rare population of CSC capable of producing prostate tumors. Conclusion Collectively, our data suggest that although CD133 is expressed only in a small population of hTERT-immortalized prostate cancer cells, it is not likely to be associated with stem cells, as CD133- and CD133+ cells exhibited similar tumorigenicity. However, SP isolated cells, appear to be enriched with tumorigenic stem-like cells capable of generating palpable tumors.

  8. Identification of side population cells in chicken embryonic gonads.

    Science.gov (United States)

    Bachelard, Elodie; Raucci, Franca; Montillet, Guillaume; Pain, Bertrand

    2015-02-01

    The side population (SP) phenotype, defined by the ability of a cell to efflux fluorescent dyes such as Hoechst, is common to several stem/progenitor cell types. In avian species, SP phenotype has been identified in pubertal and adult testes, but nothing is known about its expression during prenatal development of a male gonad. In this study, we characterized the Hoechst SP phenotype via the cytofluorimetric analysis of disaggregated testes on different days of chicken embryonic development. Male prenatal gonads contained a fraction of SP cells at each stage analyzed. At least two main SP fractions, named P3 and P4, were identified. The percentage of P3 fraction decreased as development proceeds, whereas P4 cell number was not affected by gonad growth. Functional inhibition of BCRP1 channel membrane using Verapamil and/or Ko143 showed that P3, but not P4 phenotype, was dependent on BCRP1 activity. Molecular analysis of both P3- and P4-sorted fractions revealed a differential RNA expression pattern, indicating that P3 cells mainly contained germinal stem cell markers, whereas P4 was preferentially composed of both Sertoli and Leydig cell progenitor markers. Finally, these findings provided evidence that the SP phenotype is a common feature of both germ and somatic cells detected in chicken developing testis.

  9. Clonal, self-renewing and differentiating human and porcine urothelial cells, a novel stem cell population.

    Directory of Open Access Journals (Sweden)

    Hans M Larsson

    Full Text Available Although urothelial progenitor-like cells have been described in the human urinary tract, the existence of stem cells remains to be proven. Using a culture system that favors clonogenic epithelial cell growth, we evaluated and characterized clonal human urothelial cells. We isolated human urothelial cells that were clonogenic, capable of self-renewal and could develop into fully differentiated urothelium once re-implanted into the subcapsular space of nude mice. In addition to final urothelial cell differentiation, spontaneous formation of bladder-like microstructures was observed. By examining an epithelial stem cell signature marker, we found p63 to correlate with the self-renewal capacity of the isolated human urothelial clonal populations. Since a clinically relevant, long-term model for functional reconstitution of human cells does not exist, we sought to establish a culture method for porcine urothelial cells in a clinically relevant porcine model. We isolated cells from porcine ureter, urethra and bladder that were clonogenic and capable of self-renewal and differentiation into fully mature urothelium. In conclusion, we could isolate human and porcine cell populations, behaving as urothelial stem cells and showing clonogenicity, self-renewal and, once re-implanted, morphological differentiation.

  10. Population genetics inside a cell: Mutations and mitochondrial genome maintenance

    Science.gov (United States)

    Goyal, Sidhartha; Shraiman, Boris; Gottschling, Dan

    2012-02-01

    In realistic ecological and evolutionary systems natural selection acts on multiple levels, i.e. it acts on individuals as well as on collection of individuals. An understanding of evolutionary dynamics of such systems is limited in large part due to the lack of experimental systems that can challenge theoretical models. Mitochondrial genomes (mtDNA) are subjected to selection acting on cellular as well as organelle levels. It is well accepted that mtDNA in yeast Saccharomyces cerevisiae is unstable and can degrade over time scales comparable to yeast cell division time. We utilize a recent technology designed in Gottschling lab to extract DNA from populations of aged yeast cells and deep sequencing to characterize mtDNA variation in a population of young and old cells. In tandem, we developed a stochastic model that includes the essential features of mitochondrial biology that provides a null model for expected mtDNA variation. Overall, we find approximately 2% of the polymorphic loci that show significant increase in frequency as cells age providing direct evidence for organelle level selection. Such quantitative study of mtDNA dynamics is absolutely essential to understand the propagation of mtDNA mutations linked to a spectrum of age-related diseases in humans.

  11. ScaffoldSeq: Software for characterization of directed evolution populations.

    Science.gov (United States)

    Woldring, Daniel R; Holec, Patrick V; Hackel, Benjamin J

    2016-07-01

    ScaffoldSeq is software designed for the numerous applications-including directed evolution analysis-in which a user generates a population of DNA sequences encoding for partially diverse proteins with related functions and would like to characterize the single site and pairwise amino acid frequencies across the population. A common scenario for enzyme maturation, antibody screening, and alternative scaffold engineering involves naïve and evolved populations that contain diversified regions, varying in both sequence and length, within a conserved framework. Analyzing the diversified regions of such populations is facilitated by high-throughput sequencing platforms; however, length variability within these regions (e.g., antibody CDRs) encumbers the alignment process. To overcome this challenge, the ScaffoldSeq algorithm takes advantage of conserved framework sequences to quickly identify diverse regions. Beyond this, unintended biases in sequence frequency are generated throughout the experimental workflow required to evolve and isolate clones of interest prior to DNA sequencing. ScaffoldSeq software uniquely handles this issue by providing tools to quantify and remove background sequences, cluster similar protein families, and dampen the impact of dominant clones. The software produces graphical and tabular summaries for each region of interest, allowing users to evaluate diversity in a site-specific manner as well as identify epistatic pairwise interactions. The code and detailed information are freely available at http://research.cems.umn.edu/hackel. Proteins 2016; 84:869-874. © 2016 Wiley Periodicals, Inc.

  12. Characterization of cells in cork

    Science.gov (United States)

    Pina, P.; Fortes, M. A.

    1996-09-01

    Various topological and metric properties of the cells in the phelogen of the cork oak have been measured in tangential sections of cork by image analysis methods. These include the fractions 0022-3727/29/9/041/img5 of cells with i sides (i-cells), the fractions 0022-3727/29/9/041/img6 of adjacencies between i- and k-cells and various distributions of cell areas in relation to topology.

  13. Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population.

    Directory of Open Access Journals (Sweden)

    Kazuyo Yasuda

    Full Text Available Cancer stem-like cells (CSCs/cancer-initiaiting cells (CICs are defined as a small population of cancer cells that have self-renewal capacity, differentiation potential and high tumor-initiating ability. CSCs/CICs of ovarian cancer have been isolated by side population (SP analysis, ALDEFLUOR assay and using cell surface markers. However, these approaches are not definitive markers for CSCs/CICs, and it is necessary to refine recent methods for identifying more highly purified CSCs/CICs. In this study, we analyzed SP cells and aldehyde dehydrogenese bright (ALDH(Br cells from ovarian cancer cells. Both SP cells and ALDH(Br cells exhibited higher tumor-initiating ability and higher expression level of a stem cell marker, sex determining region Y-box 2 (SOX2, than those of main population (MP cells and ALDH(Low cells, respectively. We analyzed an SP and ALDH(Br overlapping population (SP/ALDH(Br, and the SP/ALDH(Br population exhibited higher tumor-initiating ability than that of SP cells or ALDH(Br cells, enabling initiation of tumor with as few as 10(2 cells. Furthermore, SP/ADLH(Br population showed higher sphere-forming ability, cisplatin resistance, adipocyte differentiation ability and expression of SOX2 than those of SP/ALDH(Low, MP/ALDH(Br and MP/ALDH(Low cells. Gene knockdown of SOX2 suppressed the tumor-initiation of ovarian cancer cells. An SP/ALDH(Br population was detected in several gynecological cancer cells with ratios of 0.1% for HEC-1 endometrioid adenocarcinoma cells to 1% for MCAS ovary mucinous adenocarcinoma cells. Taken together, use of the SP and ALDH(Br overlapping population is a promising approach to isolate highly purified CSCs/CICs and SOX2 might be a novel functional marker for ovarian CSCs/CICs.

  14. T Regulatory Cells Support Plasma Cell Populations in the Bone Marrow

    Directory of Open Access Journals (Sweden)

    Arielle Glatman Zaretsky

    2017-02-01

    Full Text Available Long-lived plasma cells (PCs in the bone marrow (BM are a critical source of antibodies after infection or vaccination, but questions remain about the factors that control PCs. We found that systemic infection alters the BM, greatly reducing PCs and regulatory T (Treg cells, a population that contributes to immune privilege in the BM. The use of intravital imaging revealed that BM Treg cells display a distinct behavior characterized by sustained co-localization with PCs and CD11c-YFP+ cells. Gene expression profiling indicated that BM Treg cells express high levels of Treg effector molecules, and CTLA-4 deletion in these cells resulted in elevated PCs. Furthermore, preservation of Treg cells during systemic infection prevents PC loss, while Treg cell depletion in uninfected mice reduced PC populations. These studies suggest a role for Treg cells in PC biology and provide a potential target for the modulation of PCs during vaccine-induced humoral responses or autoimmunity.

  15. Chapter 10: CPV Multijunction Solar Cell Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Osterwald, Carl R.; Siefer, Gerald

    2016-04-15

    Characterization of solar cells can be divided into two types: the first is measurement of electrooptical semiconductor device parameters, and the second is determination of electrical conversion efficiency. This chapter reviews the multijunction concepts that are necessary for understanding Concentrator photovoltaic (CPV) cell characterization techniques, and describes how CPV efficiency is defined and used. For any I-V measurement of a multijunction cell, the sun simulator spectrum has to be adjusted in a way that all junctions generate the same photocurrent ratios with respect to each other as under reference conditions. The chapter discusses several procedures for spectral irradiance adjustments of solar simulators, essential for multijunction measurements. It overviews the light sources and optics commonly used in simulators for CPV cells under concentration. Finally, the chapter talks about the cell area, quantum efficiency (QE), and current-voltage (I-V) curve measurements that are needed to characterize cells as a function of irradiance.

  16. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis.

    Science.gov (United States)

    Paulissen, Sandra M J; van Hamburg, Jan Piet; Dankers, Wendy; Lubberts, Erik

    2015-07-01

    The IL-17A producing T-helper-17 (Th17) cell population plays a major role in rheumatoid arthritis (RA) pathogenesis and has gained wide interest as treatment target. IL-17A expressing Th cells are characterized by the expression of the chemokine receptor CCR6 and the transcription factor RORC. In RA, CCR6+ Th cells were identified in peripheral blood, synovial fluid and inflamed synovial tissue. CCR6+ Th cells might drive the progression of an early inflammation towards a persistent arthritis. The CCR6+ Th cell population is heterogeneous and several subpopulations can be distinguished, including Th17, Th22, Th17.1 (also called non-classic Th1 cells), and unclassified or intermediate populations. Interestingly, some of these populations produce low levels of IL-17A but are still very pathogenic. Furthermore, the CCR6+ Th cells phenotype is unstable and plasticity exists between CCR6+ Th cells and T-regulatory (Treg) cells and within the CCR6+ Th cell subpopulations. In this review, characteristics of the different CCR6+ Th cell populations, their plasticity, and their potential impact on rheumatoid arthritis are discussed. Moreover, current approaches to target CCR6+ Th cells and future directions of research to find specific CCR6+ Th cell targets in the treatment of patients with RA and other CCR6+ Th cell mediated autoimmune diseases are highlighted.

  17. Isolation and characterization of node/notochord-like cells from mouse embryonic stem cells.

    Science.gov (United States)

    Winzi, Maria K; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle

    2011-11-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures.

  18. A microarray analysis of two distinct lymphatic endothelial cell populations

    Directory of Open Access Journals (Sweden)

    Bernhard Schweighofer

    2015-06-01

    Full Text Available We have recently identified lymphatic endothelial cells (LECs to form two morphologically different populations, exhibiting significantly different surface protein expression levels of podoplanin, a major surface marker for this cell type. In vitro shockwave treatment (IVSWT of LECs resulted in enrichment of the podoplaninhigh cell population and was accompanied by markedly increased cell proliferation, as well as 2D and 3D migration. Gene expression profiles of these distinct populations were established using Affymetrix microarray analyses. Here we provide additional details about our dataset (NCBI GEO accession number GSE62510 and describe how we analyzed the data to identify differently expressed genes in these two LEC populations.

  19. Characterization of Microbial Population Shifts During Sample Storage

    Directory of Open Access Journals (Sweden)

    Heath J. Mills

    2012-02-01

    Full Text Available The objective of this study was to determine shifts in the microbial community structure and potential function based on standard Integrated Ocean Drilling Program storage procedures for sediment cores. Standard long-term storage protocols maintain sediment temperature at 4oC for mineralogy, geochemical, and/or geotechnical analysis whereas standard microbiological sampling immediately preserves sediments at -80oC. Storage at 4oC does not take into account populations may remain active over geologic time scales at temperatures similar to storage conditions. Identification of active populations within the stored core would suggest geochemical and geophysical conditions within the core change over time. To test this potential, the metabolically active fraction of the total microbial community was characterized from IODP Expedition 325 Great Barrier Reef sediment cores prior to and following a three-month storage period. Total RNA was extracted from complementary 2, 20, and 40 m below seafloor sediment samples, reverse transcribed to cDNA and then sequenced using 454 FLX sequencing technology, yielding over 14,800 sequences from the six samples. Interestingly, 97.3% of the sequences detected were associated with lineages that changed in detection frequency during the storage period including key biogeochemically relevant lineages associated with nitrogen, iron and sulfur cycling. These lineages have the potential to permanently alter the physical and chemical characteristics of the sediment promoting misleading conclusions about the in situ biogeochemical environment. In addition, the detection of new lineages after storage increases the potential for a wider range of viable lineages within the subsurface that may be underestimated during standard community characterizations.

  20. Triticale powdery mildew: population characterization and wheat gene efficiency.

    Science.gov (United States)

    Bouguennec, Annaig; Trottet, Maxime; du Cheyron, Philippe; Lonnet, Philippe

    2014-01-01

    Powdery mildew has emerged on triticale in the early 2000s in many locations, probably due to a host range expansion of the wheat formae speciales, Blumeria graminis f.sp. tritici. Many triticale cultivars are highly susceptible to powdery mildew, mainly in seedling stage, revealing a probably narrow genetic basis for powdery mildew resistance genes (Pm). Moreover, as Blumeria graminis is an obligate biotrophic fungus, it is very time consuming and difficult to maintain powdery mildew isolates for a non-specialized laboratory and populations can evolve. In order to identify wheat Pm genes efficient against natural populations of powdery mildew, wheat differential hosts and triticale seedlings were inoculated below susceptible triticale crop naturally contaminated by mildew, in several locations and several years. Symptoms on seedlings were measured after approximately two weeks of incubation in favorable fungus growth conditions. According to these data, we classified the Pm genes presents in our wheat differential hosts set in 3 classes: Pm already overcame by triticale powdery mildew, Pm having variable effects and Pm still efficient against triticale mildew. Data on triticale seedlings allowed us to identify some few triticale cultivars resistant to Blumeria graminis in seedling stage. We will try to identify Pm genes present in those cultivars next year by testing them with the characterized isolates of powdery mildew from Gent University. Nevertheless, interspecific crossing of wheat, resistant to powdery mildew in seedling stage, and rye have been initiated to introduce potentially interesting genes for resistance in triticale.

  1. Characterization and functionality of proliferative human Sertoli cells.

    Science.gov (United States)

    Chui, Kitty; Trivedi, Alpa; Cheng, C Yan; Cherbavaz, Diana B; Dazin, Paul F; Huynh, Ai Lam Thu; Mitchell, James B; Rabinovich, Gabriel A; Noble-Haeusslein, Linda J; John, Constance M

    2011-01-01

    It has long been thought that mammalian Sertoli cells are terminally differentiated and nondividing postpuberty. For most previous in vitro studies immature rodent testes have been the source of Sertoli cells and these have shown little proliferative ability when cultured. We have isolated and characterized Sertoli cells from human cadaveric testes from seven donors ranging from 12 to 36 years of age. The cells proliferated readily in vitro under the optimized conditions used with a doubling time of approximately 4 days. Nuclear 5-ethynyl-2'-deoxyuridine (EdU) incorporation confirmed that dividing cells represented the majority of the population. Classical Sertoli cell ultrastructural features, lipid droplet accumulation, and immunoexpression of GATA-4, Sox9, and the FSH receptor (FSHr) were observed by electron and fluorescence microscopy, respectively. Flow cytometry revealed the expression of GATA-4 and Sox9 by more than 99% of the cells, and abundant expression of a number of markers indicative of multipotent mesenchymal cells. Low detection of endogenous alkaline phosphatase activity after passaging showed that few peritubular myoid cells were present. GATA-4 and SOX9 expression were confirmed by reverse transcription polymerase chain reaction (RT-PCR), along with expression of stem cell factor (SCF), glial cell line-derived neurotrophic factor (GDNF), and bone morphogenic protein 4 (BMP4). Tight junctions were formed by Sertoli cells plated on transwell inserts coated with fibronectin as revealed by increased transepithelial electrical resistance (TER) and polarized secretion of the immunoregulatory protein, galectin-1. These primary Sertoli cell populations could be expanded dramatically in vitro and could be cryopreserved. The results show that functional human Sertoli cells can be propagated in vitro from testicular cells isolated from adult testis. The proliferative human Sertoli cells should have important applications in studying infertility

  2. Characterizing Early Maternal Style in a Population of Guide Dogs

    Science.gov (United States)

    Bray, Emily E.; Sammel, Mary D.; Cheney, Dorothy L.; Serpell, James A.; Seyfarth, Robert M.

    2017-01-01

    In both humans and non-humans, differences in maternal style during the first few weeks of life can be reliably characterized, and these differences affect offspring's temperament and cognition in later life. Drawing on the breeding population of dogs at The Seeing Eye, a guide dog school in Morristown, New Jersey, we conducted videotaped focal follows on 21 mothers and their litters (n = 138 puppies) over the first 3 weeks of the puppies' lives in an effort to characterize maternal style. We found that a mother's attitude and actions toward her offspring varied naturally between individuals, and that these variations could be summarized by a single principal component, which we described as Maternal behavior. This component was stable across weeks, associated with breed, litter size, and parity, but not redundant with these attributes. Furthermore, this component was significantly associated with an independent experimental measure of maternal behavior, and with maternal stress as measured by salivary cortisol. In summary, Maternal behavior captured a significant proportion of the variation in maternal style; was stable over time; and had both discriminant and predictive validity.

  3. DLTS Characterization of CIGS Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, L. L.; Li, S. S.; Anderson, T. J.; Crisalle, O. D.; Johnston, S.; Abushama, J.; Noufi, R.

    2003-06-01

    Deep Level Transient Spectroscopy (DLTS) and Capacitance-Voltage (C-V) measurements are employed to study deep-level electron and hole traps in CIGS solar cells fabricated at two different locations (EPV and NREL). The activation energy and trap density as well as suggested defect origins are given.

  4. Mouse adipose tissue stromal cells give rise to skeletal and cardiomyogenic cell sub-populations

    Directory of Open Access Journals (Sweden)

    Cécile eDromard

    2014-08-01

    Full Text Available We previously reported that adipose tissue could generate cardiomyocyte-like cells from crude stromal vascular fraction (SVF in vitro that improved cardiac function in a myocardial infarction context. However, it is not clear whether these adipose-derived cardiomyogenic cells (AD-CMG constitute a homogenous population and if AD-CMG progenitors could be isolated as a pure population from the SVF of adipose tissue. This study aims to characterize the different cell types that constitute myogenic clusters and identify the earliest AD-CMG progenitors in vitro for establishing a complete phenotype and use it to sort AD-CMG progenitors from crude SVF. Here, we report cell heterogeneity among adipose-derived clusters during their course of maturation and highlighted sub-populations that exhibit original mixed cardiac/skeletal muscle phenotypes with a progressive loss of cardiac phenotype with time in liquid culture conditions. Moreover, we completed the phenotype of AD-CMG progenitors but we failed to sort them from the stromal vascular fraction. We demonstrated that micro-environment is required for the maturation of myogenic phenotype by co-culture experiments. These findings bring complementary data on AD-CMG and suggest that their emergence results from in vitro events.

  5. Mouse adipose tissue stromal cells give rise to skeletal and cardiomyogenic cell sub-populations.

    Science.gov (United States)

    Dromard, Cécile; Barreau, Corinne; André, Mireille; Berger-Müller, Sandra; Casteilla, Louis; Planat-Benard, Valerie

    2014-01-01

    We previously reported that adipose tissue could generate cardiomyocyte-like cells from crude stromal vascular fraction (SVF) in vitro that improved cardiac function in a myocardial infarction context. However, it is not clear whether these adipose-derived cardiomyogenic cells (AD-CMG) constitute a homogenous population and if AD-CMG progenitors could be isolated as a pure population from the SVF of adipose tissue. This study aims to characterize the different cell types that constitute myogenic clusters and identify the earliest AD-CMG progenitors in vitro for establishing a complete phenotype and use it to sort AD-CMG progenitors from crude SVF. Here, we report cell heterogeneity among adipose-derived clusters during their course of maturation and highlighted sub-populations that exhibit original mixed cardiac/skeletal muscle phenotypes with a progressive loss of cardiac phenotype with time in liquid culture conditions. Moreover, we completed the phenotype of AD-CMG progenitors but we failed to sort them from the SVF. We demonstrated that micro-environment is required for the maturation of myogenic phenotype by co-culture experiments. These findings bring complementary data on AD-CMG and suggest that their emergence results from in vitro events.

  6. Development of a low bias method for characterizing viral populations using next generation sequencing technology.

    Directory of Open Access Journals (Sweden)

    Stephanie M Willerth

    Full Text Available BACKGROUND: With an estimated 38 million people worldwide currently infected with human immunodeficiency virus (HIV, and an additional 4.1 million people becoming infected each year, it is important to understand how this virus mutates and develops resistance in order to design successful therapies. METHODOLOGY/PRINCIPAL FINDINGS: We report a novel experimental method for amplifying full-length HIV genomes without the use of sequence-specific primers for high throughput DNA sequencing, followed by assembly of full length viral genome sequences from the resulting large dataset. Illumina was chosen for sequencing due to its ability to provide greater coverage of the HIV genome compared to prior methods, allowing for more comprehensive characterization of the heterogeneity present in the HIV samples analyzed. Our novel amplification method in combination with Illumina sequencing was used to analyze two HIV populations: a homogenous HIV population based on the canonical NL4-3 strain and a heterogeneous viral population obtained from a HIV patient's infected T cells. In addition, the resulting sequence was analyzed using a new computational approach to obtain a consensus sequence and several metrics of diversity. SIGNIFICANCE: This study demonstrates how a lower bias amplification method in combination with next generation DNA sequencing provides in-depth, complete coverage of the HIV genome, enabling a stronger characterization of the quasispecies present in a clinically relevant HIV population as well as future study of how HIV mutates in response to a selective pressure.

  7. Gene expression heterogeneities in embryonic stem cell populations

    DEFF Research Database (Denmark)

    Martinez Arias, Alfonso; Brickman, Joshua M

    2011-01-01

    Stem and progenitor cells are populations of cells that retain the capacity to populate specific lineages and to transit this capacity through cell division. However, attempts to define markers for stem cells have met with limited success. Here we consider whether this limited success reflects...... an intrinsic requirement for heterogeneity with stem cell populations. We focus on Embryonic Stem (ES) cells, in vitro derived cell lines from the early embryo that are considered both pluripotent (able to generate all the lineages of the future embryo) and indefinitely self renewing. We examine the relevance...... of recently reported heterogeneities in ES cells and whether these heterogeneities themselves are inherent requirements of functional potency and self renewal....

  8. HOX and TALE signatures specify human stromal stem cell populations from different sources.

    Science.gov (United States)

    Picchi, Jacopo; Trombi, Luisa; Spugnesi, Laura; Barachini, Serena; Maroni, Giorgia; Brodano, Giovanni Barbanti; Boriani, Stefano; Valtieri, Mauro; Petrini, Mario; Magli, Maria Cristina

    2013-04-01

    Human stromal stem cell populations reside in different tissues and anatomical sites, however a critical question related to their efficient use in regenerative medicine is whether they exhibit equivalent biological properties. Here, we compared cellular and molecular characteristics of stromal stem cells derived from the bone marrow, at different body sites (iliac crest, sternum, and vertebrae) and other tissues (dental pulp and colon). In particular, we investigated whether homeobox genes of the HOX and TALE subfamilies might provide suitable markers to identify distinct stromal cell populations, as HOX proteins control cell positional identity and, together with their co-factors TALE, are involved in orchestrating differentiation of adult tissues. Our results show that stromal populations from different sources, although immunophenotypically similar, display distinct HOX and TALE signatures, as well as different growth and differentiation abilities. Stromal stem cells from different tissues are characterized by specific HOX profiles, differing in the number and type of active genes, as well as in their level of expression. Conversely, bone marrow-derived cell populations can be essentially distinguished for the expression levels of specific HOX members, strongly suggesting that quantitative differences in HOX activity may be crucial. Taken together, our data indicate that the HOX and TALE profiles provide positional, embryological and hierarchical identity of human stromal stem cells. Furthermore, our data suggest that cell populations derived from different body sites may not represent equivalent cell sources for cell-based therapeutical strategies for regeneration and repair of specific tissues.

  9. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells.

    Science.gov (United States)

    Katz, Adam J; Tholpady, Ashok; Tholpady, Sunil S; Shang, Hulan; Ogle, Roy C

    2005-03-01

    Adult human subcutaneous adipose tissue contains cells with intriguing multilineage developmental plasticity, much like marrow-derived mesenchymal stem cells. Putative stem or progenitor cells from fat have been given many different names in the literature, reflecting an early and evolving consensus regarding their phenotypic characterization. The study reported here used microarrays to evaluate over 170 genes relating to angiogenesis and extracellular matrix in undifferentiated, early-passage human adipose-derived adherent stromal (hADAS) cells isolated from three separate donors. The hADAS populations unanimously transcribed 66% of the screened genes, and 83% were transcribed by at least two of the three populations. The most highly transcribed genes relate to functional groupings such as cell adhesion, matrix proteins, growth factors and receptors, and proteases. The transcriptome of hADAS cells demonstrated by this work reveals many similarities to published profiles of bone marrow mesenchymal stem cells (MSCs). In addition, flow analysis of over 24 hADAS cell surface proteins (n = 7 donors) both confirms and expands on the existing literature and reveals strong intergroup correlation, despite an inconsistent nomenclature and the lack of standardized protocols for cell isolation and culture. Finally, based on flow analysis and reverse transcription polymerase chain reaction studies, our results suggest that hADAS cells do not express several proteins that are implicated as markers of "stemness" in other stem cell populations, including telomerase, CD133, and the membrane transporter ABCG2.

  10. A stochastic model of a cell population with quiescence.

    Science.gov (United States)

    Olofsson, Peter

    2008-10-01

    A cell population in which cells are allowed to enter a quiescent (nonproliferating) phase is analyzed using a stochastic approach. A general branching process is used to model the population which, under very mild conditions, exhibits balanced exponential growth. A formula is given for the asymptotic fraction of quiescent cells, and a numerical example illustrates how convergence toward the asymptotic fraction exhibits a typical oscillatory pattern. The model is compared with deterministic models based on semigroup analysis of systems of differential equations.

  11. Differentiating quiescent cancer cell populations in heterogeneous samples with fluorescence lifetime imaging

    Science.gov (United States)

    Heaster, Tiffany M.; Walsh, Alex J.; Skala, Melissa C.

    2016-03-01

    Measurement of relative fluorescence intensities of NAD(P)H and FAD with fluorescence lifetime imaging (FLIM) allows metabolic characterization of cancerous populations and correlation to treatment response. However, quiescent populations of cancer cells introduce heterogeneity to the tumor and exhibit resistance to standard therapies, requiring a better understanding of this influence on treatment outcome. Significant differences were observed between proliferating and quiescent cell populations upon comparison of respective redox ratios (pFAD lifetimes (p<0.05) across monolayers and in mixed samples. These results demonstrate that metabolic activity may function as a marker for separation and characterization of proliferating and quiescent cancer cells within mixed samples, contributing to comprehensive investigation of heterogeneity-dependent drug resistance.

  12. Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells.

    Directory of Open Access Journals (Sweden)

    Irene Cervelló

    Full Text Available During reproductive life, the human endometrium undergoes around 480 cycles of growth, breakdown and regeneration should pregnancy not be achieved. This outstanding regenerative capacity is the basis for women's cycling and its dysfunction may be involved in the etiology of pathological disorders. Therefore, the human endometrial tissue must rely on a remarkable endometrial somatic stem cells (SSC population. Here we explore the hypothesis that human endometrial side population (SP cells correspond to somatic stem cells. We isolated, identified and characterized the SP corresponding to the stromal and epithelial compartments using endometrial SP genes signature, immunophenotyping and characteristic telomerase pattern. We analyzed the clonogenic activity of SP cells under hypoxic conditions and the differentiation capacity in vitro to adipogenic and osteogenic lineages. Finally, we demonstrated the functional capability of endometrial SP to develop human endometrium after subcutaneous injection in NOD-SCID mice. Briefly, SP cells of human endometrium from epithelial and stromal compartments display genotypic, phenotypic and functional features of SSC.

  13. Single cell motility and trail formation in populations of microglia

    Science.gov (United States)

    Lee, Kyoung Jin

    2009-03-01

    Microglia are a special type of glia cell in brain that has immune responses. They constitute about 20 % of the total glia population within the brain. Compared to other glia cells, microglia are very motile, constantly moving to destroy pathogens and to remove dead neurons. While doing so, they exhibit interesting body shapes, have cell-to-cell communications, and have chemotatic responses to each other. Interestingly, our recent in vitro studies show that their unusual motile behaviors can self-organize to form trails, similar to those in populations of ants. We have studied the changes in the physical properties of these trails by varying the cell population density and by changing the degree of spatial inhomogeneities (``pathogens''). Our experimental observations can be quite faithfully reproduced by a simple mathematical model involving many motile cells whose mechanical motion are driven by actin polymerization and depolymerization process within the individual cell body and by external chemical gradients.

  14. On interfaces between cell populations with different mobilities

    KAUST Repository

    Lorenzi, Tommaso

    2016-11-18

    Partial differential equations describing the dynamics of cell population densities from a fluid mechanical perspective can model the growth of avascular tumours. In this framework, we consider a system of equations that describes the interaction between a population of dividing cells and a population of non-dividing cells. The two cell populations are characterised by different mobilities. We present the results of numerical simulations displaying two-dimensional spherical waves with sharp interfaces between dividing and non-dividing cells. Furthermore, we numerically observe how different ratios between the mobilities change the morphology of the interfaces, and lead to the emergence of finger-like patterns of invasion above a threshold. Motivated by these simulations, we study the existence of one-dimensional travelling wave solutions.

  15. Isolation and Characterization of Node/Notochord-like Cells from Mouse Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Winzi, Maria Karin; Maddox-Hyttel, Poul; Dale, J Kim;

    2011-01-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However......, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed...... the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells...

  16. GADD45β Determines Chemoresistance and Invasive Growth of Side Population Cells of Human Embryonic Carcinoma

    Directory of Open Access Journals (Sweden)

    Toshihiko Inowa

    2010-01-01

    Full Text Available Side population (SP cells are an enriched population of stem, and the existence of SP cells has been reported in human cancer cell lines. In this study, we performed an SP analysis using 11 human cancer cell lines and confirmed the presence of SP cells in an embryonic carcinoma cell line, NEC8. NEC8 SP cells showed characteristics of cancer stem cells, such as high growth rate, chemoresistance and high invasiveness. To further characterize the NEC8 SP cells, we used DNA microarrays. Among 38,500 genes, we identified 12 genes that were over-expressed in SP cells and 1 gene that was over-expressed in non-SP cells. Among these 13 genes, we focused on GADD45b. GADD45b was over-expressed in non-SP cells, but the inhibition of GADD45b had no effect on non-SP cells. Paradoxically, the inhibition of GADD45b significantly reduced the viability of NEC8 SP cells. The inhibition of ABCG2, which determines the SP phenotype, had no effect on the invasiveness of NEC8 SP cells, but the inhibition of GADD45b significantly reduced invasiveness. These results suggest that GADD45b, but not ABCG2, might determine the cancer stem cell-like phenotype, such as chemoresistance and the high invasiveness of NEC8 SP cells, and might be a good therapeutic target.

  17. Characterization of chicken dendritic cell markers

    Science.gov (United States)

    Animal and Natural Resources Institute, ARS-USDA, Beltsville, MD, USA. New mouse monoclonal antibodies which detect CD80 and CD83 were developed to characterize chicken dendritic cells (DCs). The characteristics of these molecules have been studied in human, swine, ovine, feline, and canine but not ...

  18. Embryonic Stem Cells: Isolation, Characterization and Culture

    Science.gov (United States)

    Amit, Michal; Itskovitz-Eldor, Joseph

    Embryonic stem cells are pluripotent cells isolated from the mammalian blastocyst. Traditionally, these cells have been derived and cultured with mouse embryonic fibroblast (MEF) supportive layers, which allow their continuous growth in an undifferentiated state. However, for any future industrial or clinical application hESCs should be cultured in reproducible, defined, and xeno-free culture system, where exposure to animal pathogens is prevented. From their derivation in 1998 the methods for culturing hESCs were significantly improved. This chapter wills discuss hESC characterization and the basic methods for their derivation and maintenance.

  19. Evolution of cell populations in vitro: peculiarities, driving forces, mechanisms and consequences

    Directory of Open Access Journals (Sweden)

    Kunakh V. A.

    2013-07-01

    Full Text Available This review outlines the major features and distinctions of cell populations, types and directions of selection in such populations. Population-genetic basis for cell adaptation to growth conditions in vitro is elucidated; in particular, peculiarities of genome evolution in the course of cell dedifferentiation and further cell adaptation to growth conditions in passaged culture are evaluated. Main factors of variation and selection in cell populations in vitro, influence of growth conditions on structure of cell populations and some regularities of cultured cells and regenerated plants are considered. Details of creation of stable cell lines-producers of biologically active substances are presented. Views and suppositions of author resulting from analysis of both literature data and own multiyear studies on cell population genetics are set forth. Among others are substantiated such key statements: cell culture in vitro presents dynamically-heterogeneous biological system, clone population, which is developing (evolving as a result of major driving factors of evolution – variation, heredity, selection and drift of genes (genotypes; interaction between these processes determines the biological characteristics of each particular cell line grown in specific conditions; in adaptation of cells to growth conditions in vitro one can single out three periods: the initial population of isolated cells, the period of strain (cell line formation and the established strain. The division into periods is determined by the type, direction and intensity of «natural» selection that acts in cell population. The formed (adapted to growth in vitro strains are genetically heterogeneous, they are characterized by the presence of physiological and genetic homeostasis, which are mostly caused by the action of stabilizing selection; cultured cells of higher plants are able to synthesize practically all classes of secondary (specialized compounds (alkaloids, steroids

  20. Controlling the diversity of cell populations in a stem cell culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  1. Emergence of cytotoxic resistance in cancer cell populations: Single-cell mechanisms and population-level consequences

    Science.gov (United States)

    Lorenzi, Tommaso; Chisholm, Rebecca H.; Lorz, Alexander; Larsen, Annette K.; de Almeida, Luís Neves; Escargueil, Alexandre; Clairambault, Jean

    2016-06-01

    We formulate an individual-based model and a population model of phenotypic evolution, under cytotoxic drugs, in a cancer cell population structured by the expression levels of survival-potential and proliferation-potential. We apply these models to a recently studied experimental system. Our results suggest that mechanisms based on fundamental laws of biology can reversibly push an actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and drug-tolerant cells.

  2. A focus on parietal cells as a renewing cell population

    Institute of Scientific and Technical Information of China (English)

    Sherif; M; Karam

    2010-01-01

    The fact that the acidsecreting parietal cells undergo continuous renewal has been ignored by many gastroenterologists and cell biologists. In the past, it was thought that these cells were static. However, by using 3Hthymidine radioautography in combination with electron microscopy, it was possible to demonstrate that parietal cells belong to a continuously renewing epithelial cell lineage. In the gastric glands, stem cells anchored in the isthmus region are responsible for the production of parietal cells...

  3. The Notch Pathway Is Important in Maintaining the Cancer Stem Cell Population in Pancreatic Cancer

    OpenAIRE

    Abel, Ethan V.; Kim, Edward J.; Jingjiang Wu; Mark Hynes; Filip Bednar; Erica Proctor; Lidong Wang; Dziubinski, Michele L; Simeone, Diane M.

    2014-01-01

    Background Pancreatic cancer stem cells (CSCs) represent a small subpopulation of pancreatic cancer cells that have the capacity to initiate and propagate tumor formation. However, the mechanisms by which pancreatic CSCs are maintained are not well understood or characterized. Methods Expression of Notch receptors, ligands, and Notch signaling target genes was quantitated in the CSC and non-CSC populations from 8 primary human pancreatic xenografts. A gamma secretase inhibitor (GSI) that inhi...

  4. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, Victor Paul

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means of labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.

  5. Biophysical characterization of hematopoietic cells from normal and leukemic sources with distinct primitiveness

    Science.gov (United States)

    Tan, Youhua; Fung, Tsz-Kan; Wan, Haixia; Wang, Kaiqun; Leung, Anskar Y. H.; Sun, Dong

    2011-08-01

    This letter reported the biophysical characterization of immunophenotypically distinct hematopoietic cells from normal and leukemic sources, through manipulation with optical tweezers at single cell level. The results show that the percentage of cells that are stretchable and their deformability are significantly higher in the more primitive cell populations. This study provides the evidence that normal and leukemic hematopoietic cell populations with distinct primitiveness exhibit differential biophysical properties. These findings raise a hypothesis that the high deformability may be related to the unique functions and activities of primitive hematopoietic cells.

  6. Medullospheres from DAOY, UW228 and ONS-76 cells: increased stem cell population and proteomic modifications.

    Directory of Open Access Journals (Sweden)

    Cristina Zanini

    Full Text Available BACKGROUND: Medulloblastoma (MB is an aggressive pediatric tumor of the Central Nervous System (CNS usually treated according to a refined risk stratification. The study of cancer stem cells (CSC in MB is a promising approach aimed at finding new treatment strategies. METHODOLOGY/PRINCIPAL FINDINGS: The CSC compartment was studied in three characterized MB cell lines (DAOY, UW228 and ONS-76 grown in standard adhesion as well as being grown as spheres, which enables expansion of the CSC population. MB cell lines, grown in adherence and as spheres, were subjected to morphologic analysis at the light and electron microscopic level, as well as cytofluorimetric determinations. Medullospheres (MBS were shown to express increasingly immature features, along with the stem cells markers: CD133, Nestin and β-catenin. Proteomic analysis highlighted the differences between MB cell lines, demonstrating a unique protein profile for each cell line, and minor differences when grown as spheres. In MBS, MALDI-TOF also identified some proteins, that have been linked to tumor progression and resistance, such as Nucleophosmin (NPM. In addition, immunocytochemistry detected Sox-2 as a stemness marker of MBS, as well as confirming high NPM expression. CONCLUSIONS/SIGNIFICANCE: Culture conditioning based on low attachment flasks and specialized medium may provide new data on the staminal compartment of CNS tumors, although a proteomic profile of CSC is still elusive for MB.

  7. Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis.

    Science.gov (United States)

    MacLean, Adam L; Lo Celso, Cristina; Stumpf, Michael P H

    2017-01-01

    Stem cells are fundamental to human life and offer great therapeutic potential, yet their biology remains incompletely-or in cases even poorly-understood. The field of stem cell biology has grown substantially in recent years due to a combination of experimental and theoretical contributions: the experimental branch of this work provides data in an ever-increasing number of dimensions, while the theoretical branch seeks to determine suitable models of the fundamental stem cell processes that these data describe. The application of population dynamics to biology is amongst the oldest applications of mathematics to biology, and the population dynamics perspective continues to offer much today. Here we describe the impact that such a perspective has made in the field of stem cell biology. Using hematopoietic stem cells as our model system, we discuss the approaches that have been used to study their key properties, such as capacity for self-renewal, differentiation, and cell fate lineage choice. We will also discuss the relevance of population dynamics in models of stem cells and cancer, where competition naturally emerges as an influential factor on the temporal evolution of cell populations. Stem Cells 2017;35:80-88.

  8. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  9. Human embryonic stem cell lines derived from the Chinese population

    Institute of Scientific and Technical Information of China (English)

    Zhen Fu FANG; Fan JIN; Hui GAI; Ying CHEN; Li WU; Ai Lian LIU; Bin CHEN; Hui Zhen SHENG

    2005-01-01

    Six human embryonic stem cell lines were established from surplus blastocysts. The cell lines expressed alkaline phosphatase and molecules typical of primate embryonic stem cells, including Oct-4, Nanog, TDGF1, Sox2, EBAF,Thy-1, FGF4, Rex-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. Five of the six lines formed embryoid bodies that expressed markers of a variety of cell types; four of them formed teratomas with tissue types representative of all three embryonic germ layers. These human embryonic stem cells are capable of producing clones of undifferentiated morphology, and one of them was propagated to become a subline. Human embryonic stem cell lines from the Chinese population should facilitate stem cell research and may be valuable in studies of population genetics and ecology.

  10. Characterization of human pluripotent stem cells.

    Science.gov (United States)

    Gokhale, Paul J; Andrews, Peter W

    2013-12-18

    Human pluripotent stem cells (PSCs), whether embryonic stem cells or induced PSCs, offer enormous opportunities for regenerative medicine and other biomedical applications once we have developed the ability to harness their capacity for extensive differentiation. Central to this is our ability to identify and characterize such PSCs, but this is fraught with potential difficulties that arise from a tension between functional definitions of pluripotency and the more convenient use of 'markers', a problem exacerbated by ethical issues, our lack of knowledge of early human embryonic development, and differences from the mouse paradigm.

  11. Foetal stem cell derivation & characterization for osteogenic lineage

    Directory of Open Access Journals (Sweden)

    A Mangala Gowri

    2013-01-01

    Full Text Available Background & objectives: Mesencymal stem cells (MSCs derived from foetal tissues present a multipotent progenitor cell source for application in tissue engineering and regenerative medicine. The present study was carried out to derive foetal mesenchymal stem cells from ovine source and analyze their differentiation to osteogenic linage to serve as an animal model to predict human applications. Methods: Isolation and culture of sheep foetal bone marrow cells were done and uniform clonally derived MSC population was collected. The cells were characterized using cytochemical, immunophenotyping, biochemical and molecular analyses. The cells with defined characteristics were differentiated into osteogenic lineages and analysis for differentiated cell types was done. The cells were analyzed for cell surface marker expression and the gene expression in undifferentiated and differentiated osteoblast was checked by reverse transcriptase PCR (RT PCR analysis and confirmed by sequencing using genetic analyzer. Results: Ovine foetal samples were processed to obtain mononuclear (MNC cells which on culture showed spindle morphology, a characteristic oval body with the flattened ends. MSC population CD45 - /CD14 - was cultured by limiting dilution to arrive at uniform spindle morphology cells and colony forming units. The cells were shown to be positive for surface markers such as CD44, CD54, integrinβ1, and intracellular collagen type I/III and fibronectin. The osteogenically induced MSCs were analyzed for alkaline phosphatase (ALP activity and mineral deposition. The undifferentiated MSCs expressed RAB3B, candidate marker for stemness in MSCs. The osteogenically induced and uninduced MSCs expressed collagen type I and MMP13 gene in osteogenic induced cells. Interpretation & conclusions: The protocol for isolation of ovine foetal bone marrow derived MSCs was simple to perform, and the cultural method of obtaining pure spindle morphology cells was established

  12. Identification and characterization of SP cells in human lung adenocarcinoma SPC-A1 cells

    Directory of Open Access Journals (Sweden)

    Yanliang ZHU

    2008-10-01

    Full Text Available Background and objective Recently, eloquent studies from some solid tumors have provided proofs that cancers originate from cancer stem cells (CSC. The discovery of CSC has changed our view of carcinogenesis and chemotherapy. The aim of this study is to identify and characterize the CSC population that drives and maintains lung adenocarcinoma growth and metastasis. Methods Side population (SP cell analysis combined with serum-free media (SFM were applied to established human lung adenocarcinoma cell lines. Properties of SP cells were evaluated by their proliferative index, colony-forming efficiency and tumorigenic potential. Results Characteristic SP cells could be detected by FACS in lung adenocarcinoma cell lines. And the proportion of SP cells is greatly increased after serum-free culture.SP cells have a greater proliferative index, a higher colony-forming efficiency and a greater ability to form tumor in vivo .Conclusion SP cells exist in human lung adenocarcinoma cell lines and they could be further enriched by preliminary serum-free culture before FACS sorting.

  13. Emergence of cytotoxic resistance in cancer cell populations*

    Directory of Open Access Journals (Sweden)

    Lorenzi Tommaso

    2015-01-01

    Full Text Available We formulate an individual-based model and an integro-differential model of phenotypic evolution, under cytotoxic drugs, in a cancer cell population structured by the expression levels of survival-potential and proliferation-potential. We apply these models to a recently studied experimental system. Our results suggest that mechanisms based on fundamental laws of biology can reversibly push an actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and drug-tolerant cells.

  14. Characterization of glyphosate resistance in Amaranthus tuberculatus populations.

    Science.gov (United States)

    Lorentz, Lothar; Gaines, Todd A; Nissen, Scott J; Westra, Philip; Strek, Harry J; Dehne, Heinz W; Ruiz-Santaella, Juan Pedro; Beffa, Roland

    2014-08-13

    The evolution of glyphosate-resistant weeds has recently increased dramatically. Six suspected glyphosate-resistant Amaranthus tuberculatus populations were studied to confirm resistance and determine the resistance mechanism. Resistance was confirmed in greenhouse for all six populations with glyphosate resistance factors (R/S) between 5.2 and 7.5. No difference in glyphosate absorption or translocation was observed between resistant and susceptible individuals. No mutation at amino acid positions G101, T102, or P106 was detected in the EPSPS gene coding sequence, the target enzyme of glyphosate. Analysis of EPSPS gene copy number revealed that all glyphosate-resistant populations possessed increased EPSPS gene copy number, and this correlated with increased expression at both RNA and protein levels. EPSPS Vmax and Kcat values were more than doubled in resistant plants, indicating higher levels of catalytically active expressed EPSPS protein. EPSPS gene amplification is the main mechanism contributing to glyphosate resistance in the A. tuberculatus populations analyzed.

  15. Microarray Dot Electrodes Utilizing Dielectrophoresis for Cell Characterization

    Directory of Open Access Journals (Sweden)

    Fatimah Ibrahim

    2013-07-01

    Full Text Available During the last three decades; dielectrophoresis (DEP has become a vital tool for cell manipulation and characterization due to its non-invasiveness. It is very useful in the trend towards point-of-care systems. Currently, most efforts are focused on using DEP in biomedical applications, such as the spatial manipulation of cells, the selective separation or enrichment of target cells, high-throughput molecular screening, biosensors and immunoassays. A significant amount of research on DEP has produced a wide range of microelectrode configurations. In this paper; we describe the microarray dot electrode, a promising electrode geometry to characterize and manipulate cells via DEP. The advantages offered by this type of microelectrode are also reviewed. The protocol for fabricating planar microelectrodes using photolithography is documented to demonstrate the fast and cost-effective fabrication process. Additionally; different state-of-the-art Lab-on-a-Chip (LOC devices that have been proposed for DEP applications in the literature are reviewed. We also present our recently designed LOC device, which uses an improved microarray dot electrode configuration to address the challenges facing other devices. This type of LOC system has the capability to boost the implementation of DEP technology in practical settings such as clinical cell sorting, infection diagnosis, and enrichment of particle populations for drug development.

  16. Optimized Stem Cell Detection Using the DyeCycle-Triggered Side Population Phenotype

    Directory of Open Access Journals (Sweden)

    Maximilian Boesch

    2016-01-01

    Full Text Available Tissue and cancer stem cells are highly attractive target populations for regenerative medicine and novel potentially curative anticancer therapeutics. In order to get a better understanding of stem cell biology and function, it is essential to reproducibly identify these stem cells from biological samples for subsequent characterization or isolation. ABC drug transporter expression is a hallmark of stem cells. This is utilized to identify (cancer stem cells by exploiting their dye extrusion properties, which is referred to as the “side population assay.” Initially described for high-end flow cytometers equipped with ultraviolet lasers, this technique is now also amenable for a broader scientific community, owing to the increasing availability of violet laser-furnished cytometers and the advent of DyeCycle Violet (DCV. Here, we describe important technical aspects of the DCV-based side population assay and discuss potential pitfalls and caveats helping scientists to establish a valid and reproducible DCV-based side population assay. In addition, we investigate the suitability of blue laser-excitable DyeCycle dyes for side population detection. This knowledge will help to improve and standardize detection and isolation of stem cells based on their expression of ABC drug transporters.

  17. Hematopoietic stem cell characterization and isolation.

    Science.gov (United States)

    Rossi, Lara; Challen, Grant A; Sirin, Olga; Lin, Karen Kuan-Yin; Goodell, Margaret A

    2011-01-01

    Hematopoietic stem cells (HSCs) are defined by the capabilities of multi-lineage differentiation and long-term self-renewal. Both these characteristics contribute to maintain the homeostasis of the system and allow the restoration of hematopoiesis after insults, such as infections or therapeutic ablation. Reconstitution after lethal irradiation strictly depends on a third, fundamental property of HSCs: the capability to migrate under the influence of specific chemokines. Directed by a chemotactic compass, after transplant HSCs find their way to the bone marrow, where they eventually home and engraft. HSCs represent a rare population that primarily resides in the bone marrow with an estimated frequency of 0.01% of total nucleated cells. Separating HSCs from differentiated cells that reside in the bone marrow has been the focus of intense investigation for years. In this chapter, we will describe in detail the strategy routinely used by our laboratory to purify murine HSCs, by exploiting their antigenic phenotype (KSL), combined with the physiological capability to efficiently efflux the vital dye Hoechst 33342, generating the so-called Side Population, or SP.

  18. Distinct human stem cell populations in small and large intestine.

    Science.gov (United States)

    Cramer, Julie M; Thompson, Timothy; Geskin, Albert; LaFramboise, William; Lagasse, Eric

    2015-01-01

    The intestine is composed of an epithelial layer containing rapidly proliferating cells that mature into two regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for intestinal epithelial cells, no studies have directly compared stem cells derived from these anatomically distinct regions. Here, we examine intrinsic differences between primary epithelial cells isolated from human fetal small and large intestine, after in vitro expansion, using the Wnt agonist R-spondin 2. We utilized flow cytometry, fluorescence-activated cell sorting, gene expression analysis and a three-dimensional in vitro differentiation assay to characterize their stem cell properties. We identified stem cell markers that separate subpopulations of colony-forming cells in the small and large intestine and revealed important differences in differentiation, proliferation and disease pathways using gene expression analysis. Single cells from small and large intestine cultures formed organoids that reflect the distinct cellular hierarchy found in vivo and respond differently to identical exogenous cues. Our characterization identified numerous differences between small and large intestine epithelial stem cells suggesting possible connections to intestinal disease.

  19. Distinct human stem cell populations in small and large intestine.

    Directory of Open Access Journals (Sweden)

    Julie M Cramer

    Full Text Available The intestine is composed of an epithelial layer containing rapidly proliferating cells that mature into two regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for intestinal epithelial cells, no studies have directly compared stem cells derived from these anatomically distinct regions. Here, we examine intrinsic differences between primary epithelial cells isolated from human fetal small and large intestine, after in vitro expansion, using the Wnt agonist R-spondin 2. We utilized flow cytometry, fluorescence-activated cell sorting, gene expression analysis and a three-dimensional in vitro differentiation assay to characterize their stem cell properties. We identified stem cell markers that separate subpopulations of colony-forming cells in the small and large intestine and revealed important differences in differentiation, proliferation and disease pathways using gene expression analysis. Single cells from small and large intestine cultures formed organoids that reflect the distinct cellular hierarchy found in vivo and respond differently to identical exogenous cues. Our characterization identified numerous differences between small and large intestine epithelial stem cells suggesting possible connections to intestinal disease.

  20. Modelling Spread of Oncolytic Viruses in Heterogeneous Cell Populations

    Science.gov (United States)

    Ellis, Michael; Dobrovolny, Hana

    2014-03-01

    One of the most promising areas in current cancer research and treatment is the use of viruses to attack cancer cells. A number of oncolytic viruses have been identified to date that possess the ability to destroy or neutralize cancer cells while inflicting minimal damage upon healthy cells. Formulation of predictive models that correctly describe the evolution of infected tumor systems is critical to the successful application of oncolytic virus therapy. A number of different models have been proposed for analysis of the oncolytic virus-infected tumor system, with approaches ranging from traditional coupled differential equations such as the Lotka-Volterra predator-prey models, to contemporary modeling frameworks based on neural networks and cellular automata. Existing models are focused on tumor cells and the effects of virus infection, and offer the potential for improvement by including effects upon normal cells. We have recently extended the traditional framework to a 2-cell model addressing the full cellular system including tumor cells, normal cells, and the impacts of viral infection upon both populations. Analysis of the new framework reveals complex interaction between the populations and potential inability to simultaneously eliminate the virus and tumor populations.

  1. Single cell functional analysis of multiple myeloma cell populations correlates with diffusion profiles in static microfluidic coculture systems.

    Science.gov (United States)

    Moore, Thomas A; Young, Edmond W K

    2016-07-01

    Microfluidic cell culture systems are becoming increasingly useful for studying biology questions, particularly those involving small cell populations that are cultured within microscale geometries mimicking the complex cellular microenvironment. Depending on the geometry and spatial organization of these cell populations, however, paracrine signaling between cell types can depend critically on spatial concentration profiles of soluble factors generated by diffusive transport. In scenarios where single cell data are acquired to study cell population heterogeneities in functional response, uncertainty associated with concentration profiles can lead to interpretation bias. To address this issue and provide important evidence on how diffusion develops within typical microfluidic cell culture systems, a combination of experimental and computational approaches were applied to measure and predict concentration patterns within microfluidic geometries, and characterize the functional response of culture cells based on single-cell resolution transcription factor activation. Using a model coculture system consisting of multiple myeloma cells (MMCs) and neighboring bone marrow stromal cells (BMSCs), we measured concentrations of three cytokines (IL-6, VEGF, and TNF-α) in conditioned media collected from separate culture compartments using a multiplex ELISA system. A 3D numerical model was developed to predict biomolecular diffusion and resulting concentration profiles within the tested microsystems and compared with experimental diffusion of 20 kDa FITC-Dextran. Finally, diffusion was further characterized by controlling exogenous IL-6 diffusion and the coculture spatial configuration of BMSCs to stimulate STAT3 nuclear translocation in MMCs. Results showed agreement between numerical and experimental results, provided evidence of a shallow concentration gradient across the center well of the microsystem that did not lead to a bias in results, and demonstrated that

  2. Characterization of alfalfa populations contrasting for root system architecture (RSA)

    Science.gov (United States)

    The root system architecture affects the capacity for nutrient and water uptake thus impacting biomass yield production and may contribute to the persistence of perennial plants. The objectives of this study were to phenotype the roots of three alfalfa populations and identify differences between di...

  3. Ecophysiological characterization of Penicillium expansum population in lleida (Spain).

    Science.gov (United States)

    Morales, Hector; Marín, Sonia; Obea, Laura; Patiño, Belén; Doménech, Miriam; Ramos, Antonio J; Sanchis, Vicente

    2008-03-20

    Penicillium expansum, a patulin producer fungus, is the most important fungus causing decay in cold stored both apples and pears. This can lead to patulin contaminated by-products. The aim of this assay was to evaluate the phenotypical and physiological variability in the population of P. expansum that cause fruit spoilage in post-harvest stages in Lleida (Spain). In total, 101 isolates of P. expansum from the 2004 and the 2005 seasons were obtained from decayed fruits. Significant differences were found in the observations from both seasons. Variability of the isolates in each season seemed to be partially explained by differences in growth in media, patulin accumulation and resistance to fungicides. Patulin production was detected in almost 100% of the isolates. Variability existing in P. expansum population could not be totally explained, but the above mentioned variables explained up to 74% of the diversity in some cases. The results obtained point to the existence of different populations of P. expansum in each season and may explain the differences in fungicide resistance observed between both seasons. The capacity to colonize apple flesh and some variables involved in fruit colonization were not a source of variation neither in each season nor when both seasons were compared. As storage rooms are cleaned and disinfected each season, this suggests that each season, the populations in storage rooms develop only from strains capable to colonize apple flesh. This may lead to rapid sporulation and spreading of spores.

  4. Fundamental limits to collective concentration sensing in cell populations

    CERN Document Server

    Fancher, Sean

    2016-01-01

    The precision of concentration sensing is improved when cells communicate. Here we derive the physical limits to concentration sensing for cells that communicate over short distances by directly exchanging small molecules (juxtacrine signaling), or over longer distances by secreting and sensing a diffusive messenger molecule (autocrine signaling). In the latter case, we find that the optimal cell spacing can be large, due to a tradeoff between maintaining communication strength and reducing signal cross-correlations. This leads to the surprising result that autocrine signaling allows more precise sensing than juxtacrine signaling for sufficiently large populations. We compare our results to data from a wide variety of communicating cell types.

  5. Characterization of Metacarpal Fractures in a Military Population.

    Science.gov (United States)

    Dichiera, Robert; Dunn, John; Bader, Julia; Bulken-Hoover, Jamie; Pallis, Mark

    2016-08-01

    The purpose of this study was to investigate the incidence and type of metacarpal (MC) fractures in a military population, and whether these fractures are related to age, military occupational specialty, aggression, or accidental injury. A retrospective record-based review was conducted at a single military center over a 5-year period. Service members with index finger through small finger MC fracture were identified. Data were collected utilizing Armed Forces Health Longitudinal Technology Application and electronic profile (e-profile) databases. Data collected included demographic information, mechanism of injury, nature of injury, total number of visits, and estimated time on physical restriction. 400 patients met inclusion criteria. Males accounted for 94% of the study population, 75% of fractures were of the small finger MC, 54% of patients were between 20 and 24 years, 90% were sustained by junior enlisted personnel, and most occurred by punching. Men aged readiness.

  6. [Anthropometric characterization of an institutionalized elderly population from Caracas, Venezuela].

    Science.gov (United States)

    Hérrera, Hector; Rebato, Esther; Rocandio, Ana María; Hernández, Rosa; Rodríguez, Nahir; Barbosa, Johanna; Hernández-Valera, Yolanda

    2005-06-01

    Most of the anthropometric standards are derived from adult populations but not from older subjects, so their use to evaluate the nutritional status in the elderly may not be the most appropriate. In this sense, the anthropometric characteristics and their relationship to sex and age in a cross-sectional sample of 809 Venezuelan subjects (370 males and 439 females), aged 60 to 102 years old, randomly selected from a elderly institution-alised population were studied. The results indicate that anthropometric variables show different degrees and signs of sexual dimorphism. Males presented higher stature, weight, waist and calf circumferences and higher bone diameters, while females have higher hip and thigh perimeters, and bigger trunk and extremities skinfolds. Independently of the changes observed in these variables with age, the difference spread between the sexes tends to stay and even to increase with age in the height and weight, in hip perimeter and in thigh and calf skinfolds; while, on the contrary, they attenuate in waist perimeter and in triceps, subescapular and suprailiac skinfolds. Males and females appear to be more similar for these variables in the advanced ages. In general, these results could be used as reference elements for similar researches in Venezuela, due to the low number of studies developed in the country in older populations

  7. A probabilistic model for cell population phenotyping using HCS data.

    Directory of Open Access Journals (Sweden)

    Edouard Pauwels

    Full Text Available High Content Screening (HCS platforms allow screening living cells under a wide range of experimental conditions and give access to a whole panel of cellular responses to a specific treatment. The outcome is a series of cell population images. Within these images, the heterogeneity of cellular response to the same treatment leads to a whole range of observed values for the recorded cellular features. Consequently, it is difficult to compare and interpret experiments. Moreover, the definition of phenotypic classes at a cell population level remains an open question, although this would ease experiments analyses. In the present work, we tackle these two questions. The input of the method is a series of cell population images for which segmentation and cellular phenotype classification has already been performed. We propose a probabilistic model to represent and later compare cell populations. The model is able to fully exploit the HCS-specific information: "dependence structure of population descriptors" and "within-population variability". The experiments we carried out illustrate how our model accounts for this specific information, as well as the fact that the model benefits from considering them. We underline that these features allow richer HCS data analysis than simpler methods based on single cellular feature values averaged over each well. We validate an HCS data analysis method based on control experiments. It accounts for HCS specificities that were not taken into account by previous methods but have a sound biological meaning. Biological validation of previously unknown outputs of the method constitutes a future line of work.

  8. Photoacoustic cell for ultrasound contrast agent characterization

    Science.gov (United States)

    Alippi, A.; Bettucci, A.; Biagioni, A.; D'Orazio, A.; Germano, M.; Passeri, D.

    2010-10-01

    Photoacoustics has emerged as a tool for the study of liquid gel suspension behavior and has been recently employed in a number of new biomedical applications. In this paper, a photoacoustic sensor is presented which was designed and realized for analyzing photothermal signals from solutions filled with microbubbles, commonly used as ultrasound contrast agents in echographic imaging techniques. It is a closed cell device, where photothermal volume variation of an aqueous solution produces the periodic deflection of a thin membrane closing the cell at the end of a short pipe. The cell then acts as a Helmholtz resonator, where the displacement of the membrane is measured through a laser probe interferometer, whereas photoacoustic signal is generated by a laser chopped light beam impinging onto the solution through a glass window. Particularly, the microbubble shell has been modeled through an effective surface tension parameter, which has been then evaluated from experimental data through the shift of the resonance frequencies of the photoacoustic sensor. This shift of the resonance frequencies of the photoacoustic sensor caused by microbubble solutions is high enough for making such a cell a reliable tool for testing ultrasound contrast agent, particularly for bubble shell characterization.

  9. Multiscale experimental characterization of solar cell defects

    Science.gov (United States)

    Škarvada, Pavel; Škvarenina, Lubomír.; Tománek, Pavel; Sobola, Dinara; Macků, Robert; Brüstlová, Jitka; Grmela, Lubomír.; Smith, Steve

    2016-12-01

    The search for alternative sources of renewable energy, including novel photovoltaics structures, is one of the principal tasks of 21th century development. In the field of photovoltaics there are three generations of solar cells of different structures going from monocrystalline silicon through thin-films to hybrid and organic cells, moreover using nanostructure details. Due to the diversity of these structures, their complex study requires the multiscale interpretations which common core includes an integrated approach bridging not only the length scales from macroscale to the atomistic, but also multispectral investigation under different working temperatures. The multiscale study is generally applied to theoretical aspects, but is also applied to experimental characterization. We investigate multiscale aspects of electrical, optical and thermal properties of solar cells under illumination and in dark conditions when an external bias is applied. We present the results of a research of the micron and sub-micron defects in a crystalline solar cell structure utilizing scanning probe microscopy and electric noise measurement.

  10. Toxicological and biochemical characterizations of malathion sensitivity in two field populations of Oxya chinensis (Orthoptera: Acridoidea)

    Institute of Scientific and Technical Information of China (English)

    MEI-LING YANG; HAI-HUA WU; YA-PING GUO; EN-BO MA

    2006-01-01

    We evaluate comparative toxicity of malathion in the two populations of the grasshopper Oxya chinensis, collected from Daixian and Fanshi of Shanxi province, China.General esterases and acetylcholinesterase (AChE) from the two populations were characterized and compared. LD50 of the Daixian population (7.58μg/g body weight) was 2.02-fold higher than that of the Fanshi population (3.75 μg/g body weight). General esterase-specific activities in the Daixian population were 1.91, 1.10 and 1.85-fold higher than those in the Fanshi population, when α-NA, α-NB and β-NA were used as a substrate, respectively.Kinetic studies of general esterase showed that Vmax values of general esterases hydrolyzing α-NA, α-NB and β-NA in the Daixian population were 2.15-, 1.12-, and 1.47-fold,respectively, higher than those in the Fanshi population. The AChE activity of the Fanshi population was 1.54-fold higher than that of the Daixian population. Kinetic analysis of AChE showed that significant differences were presented between the two populations in the Km values; and the Vmax value in the Fanshi population was higher than that in the Daixian population. Inhibition studies of AChE indicated that AChE from the Daixian population was 2.56-, 2.80-, and 2.29-fold less sensitive to inhibition by paraoxon, chlorpyrifos-oxon,and demeton-S-methyl, respectively, than that from the Fanshi population. These biochemical characterizations of general esterases and AChE were consistent with malathion bioassay in the two populations. It is inferred that the reduced sensitivity of altered AChE and increased general esterase activities play an important role in the differences of insusceptibility of Oxya chinensis to malathion between the two populations.

  11. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    Directory of Open Access Journals (Sweden)

    Martins-Neves Sara R

    2012-04-01

    Full Text Available Abstract Background Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. Methods CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. Results The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. Conclusions MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma.

  12. Characterization of cell subpopulations expressing progenitor cell markers in porcine cardiac valves.

    Directory of Open Access Journals (Sweden)

    Huan Wang

    Full Text Available Valvular interstitial cells (VICs are the main population of cells found in cardiac valves. These resident fibroblastic cells play important roles in maintaining proper valve function, and their dysregulation has been linked to disease progression in humans. Despite the critical functions of VICs, their cellular composition is still not well defined for humans and other mammals. Given the limited availability of healthy human valves and the similarity in valve structure and function between humans and pigs, we characterized porcine VICs (pVICs based on expression of cell surface proteins and sorted a specific subpopulation of pVICs to study its functions. We found that small percentages of pVICs express the progenitor cell markers ABCG2 (~5%, NG2 (~5% or SSEA-4 (~7%, whereas another subpopulation (~5% expresses OB-CDH, a type of cadherin expressed by myofibroblasts or osteo-progenitors. pVICs isolated from either aortic or pulmonary valves express most of these protein markers at similar levels. Interestingly, OB-CDH, NG2 and SSEA-4 all label distinct valvular subpopulations relative to each other; however, NG2 and ABCG2 are co-expressed in the same cells. ABCG2(+ cells were further characterized and found to deposit more calcified matrix than ABCG2(- cells upon osteogenic induction, suggesting that they may be involved in the development of osteogenic VICs during valve pathology. Cell profiling based on flow cytometry and functional studies with sorted primary cells provide not only new and quantitative information about the cellular composition of porcine cardiac valves, but also contribute to our understanding of how a subpopulation of valvular cells (ABCG2(+ cells may participate in tissue repair and disease progression.

  13. Dynamic Heterogeneity of the Heart Valve Interstitial Cell Population in Mitral Valve Health and Disease

    Directory of Open Access Journals (Sweden)

    Tori E. Horne

    2015-08-01

    Full Text Available The heart valve interstitial cell (VIC population is dynamic and thought to mediate lay down and maintenance of the tri-laminar extracellular matrix (ECM structure within the developing and mature valve throughout life. Disturbances in the contribution and distribution of valve ECM components are detrimental to biomechanical function and associated with disease. This pathological process is associated with activation of resident VICs that in the absence of disease reside as quiescent cells. While these paradigms have been long standing, characterization of this abundant and ever-changing valve cell population is incomplete. Here we examine the expression pattern of Smooth muscle α-actin, Periostin, Twist1 and Vimentin in cultured VICs, heart valves from healthy embryonic, postnatal and adult mice, as well as mature valves from human patients and established mouse models of disease. We show that the VIC population is highly heterogeneous and phenotypes are dependent on age, species, location, and disease state. Furthermore, we identify phenotypic diversity across common models of mitral valve disease. These studies significantly contribute to characterizing the VIC population in health and disease and provide insights into the cellular dynamics that maintain valve structure in healthy adults and mediate pathologic remodeling in disease states.

  14. Isolation and Characterization of Prostate Cancer Stem Cells

    Science.gov (United States)

    2009-08-01

    identifying primitive cell populations from normal and malignant human prostate tissue, as new treatments may be designed to target cancer stem cells rather...To investigate Trop2 as a functional progenitor marker, we turned to 2 in vitro assays that measure primitive cell activity: the prostate colony and...assays indicative of primitive cell populations. Trop2 Fractionates LinSca-1CD49fhi Cells into Two Basal Subpopu- lations. We have previously

  15. Human lymphocyte sub-populations and K cells.

    Science.gov (United States)

    Sandilands, G; Gray, K; Cooney, A; Froebel, K; Anderson, J R

    1976-01-01

    Peripheral blood lymphocytes from 19 normal subjects were examined for surface Ig (SIg) and capacity to form rosettes with normal and neuraminidase-treated sheep erythrocytes and with chicken erythrocytes sensitised with IgG antibody. Information on the relationship between the presence of SIg and capacity to form rosettes was obtained by combined tests and depletion experiments. By these means, a population of lymphocytes with Fc receptors, but lacking SIg (mean 14.6%) was defined and shown to correlate closely with cytotoxic activity for antibody-sensitised target cells. Indirect evidence was also obtained that these lymphocytes, which are regarded as the major population of antibody-dependent cytotoxic cells, are capable of forming rosettes with normal and neuraminidase-treated sheep erythrocytes. The nature of these cells is briefly discussed.

  16. Characterization of a Commercial Silicon Beta Cell

    Energy Technology Data Exchange (ETDEWEB)

    Foxe, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mayer, Michael F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McIntyre, Justin I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivels, Ciara B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suarez, Rey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-31

    Silicon detectors are of interest for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) due to their enhanced energy resolution compared to plastic scintillators beta cells. Previous work developing a figure-of-merit (FOM) for comparison of beta cells suggests that the minimum detectable activity (MDA) could be reduced by a factor of two to three with the use of silicon detectors. Silicon beta cells have been developed by CEA (France) and Lares Ltd. (Russia), with the PIPSBox developed by CEA being commercially available from Canberra for approximately $35k, but there is still uncertainty about the reproducibility of the capabilities in the field. PNNL is developing a high-resolution beta-gamma detector system in the shallow underground laboratory, which will utilize and characterize the operation of the PIPSBox detector. Throughout this report, we examine the capabilities of the PIPSBox as developed by CEA. The lessons learned through the testing and use of the PIPSBox will allow PNNL to strategically develop a silicon detector optimized to better suit the communities needs in the future.

  17. Sorting and biological characteristics analysis for side population cells in human primary hepatocellular carcinoma

    Science.gov (United States)

    Jiang, Yegui; Gao, Hucheng; Liu, Mingdong; Mao, Qing

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cause of the tumor worldwide, its incidence is increasing year by year. This study aims to investigate the sorting and biological characteristics of side population (SP) cells. Human HCC tissues used were obtained from patients undergoing surgical resection. SP cells were sorted using flow cytometry. Cell cycle assay, apoptosis assay and colony formation assay were performed to detect cell proliferation and apoptosis. Invasion assay was employed to examine SP cell invasion. Tumorigenicity assay was used to evaluate tumorigenicity. HCC related microRNAs (miRNA) were analyzed using Micro-array analysis. Target genes were predicted using miRNA database. GO analsis was employed to predict target gene function. Apoptosis percentage was lower and cell viability was higher in SP cells than non-SP (NSP) cells. Colony forming ability of SP cells was significantly higher than NSP cells. Transwell assay positive cells in SP cells were higher significantly than NSP cells. Tumorigenicity of SP cells was higher significantly than NSP cells. 107 differentially expression miRNA were discovered, including 45 up-expressed miRNAs and 62 down-expressed miRNAs in SP cells. Up-regulated hsa-miR-193b-3p and hsa-miR-505-3p predict 25 and 35 target genes, and correlated with 4 and 42 GO terms, respectively. Down-regulated hsa-miR-200a-3p, hsa-miR-194-5p, hsa-miR-130b-3p predict 133, 48 and 127 target genes, and correlate with 10, 7 and 109 GO terms, respectively. In conclusion, proliferation, colony formation, anti-apoptosis, self-renewal capavility, invasive characteristic and tumorigenicity in SP cells isolated from HCC tissues was higher compared to NSP cells. Therefore, sorted SP cells could characterize with biological functions of cancer stem cells.

  18. Population dynamics during cell proliferation and neuronogenesis in the developing murine neocortex

    Science.gov (United States)

    Nowakowski, Richard S.; Caviness, Verne S Jr; Takahashi, Takao; Hayes, Nancy L.

    2002-01-01

    During the development of the neocortex, cell proliferation occurs in two specialized zones adjacent to the lateral ventricle. One of these zones, the ventricular zone, produces most of the neurons of the neocortex. The proliferating population that resides in the ventricular zone is a pseudostratified ventricular epithelium (PVE) that looks uniform in routine histological preparations, but is, in fact, an active and dynamically changing population. In the mouse, over the course of a 6-day period, the PVE produces approximately 95% of the neurons of the adult neocortex. During this time, the cell cycle of the PVE population lengthens from about 8 h to over 18 h and the progenitor population passes through a total of 11 cell cycles. This 6-day, 11-cell cycle period comprises the "neuronogenetic interval" (NI). At each passage through the cell cycle, the proportion of daughter cells that exit the cell cycle (Q cells) increases from 0 at the onset of the NI to 1 at the end of the NI. The proportion of daughter cells that re-enter the cell cycle (P cells) changes in a complementary fashion from 1 at the onset of the NI to 0 at the end of the NI. This set of systematic changes in the cell cycle and the output from the proliferative population of the PVE allows a quantitative and mathematical treatment of the expansion of the PVE and the growth of the cortical plate that nicely accounts for the observed expansion and growth of the developing neocortex. In addition, we show that the cells produced during a 2-h window of development during specific cell cycles reside in a specific set of laminae in the adult cortex, but that the distributions of the output from consecutive cell cycles overlap. These dynamic events occur in all areas of the PVE underlying the neocortex, but there is a gradient of maturation that begins in the rostrolateral neocortex near the striatotelencephalic junction and which spreads across the surface of the neocortex over a period of 24-36 h. The

  19. Reconstruction of endometrium from human endometrial side population cell lines.

    Directory of Open Access Journals (Sweden)

    Irene Cervelló

    Full Text Available Endometrial regeneration is mediated, at least in part, by the existence of a specialized somatic stem cell (SSC population recently identified by several groups using the side population (SP technique. We previously demonstrated that endometrial SP displays genotypic, phenotypic and the functional capability to develop human endometrium after subcutaneous injection in NOD-SCID mice. We have now established seven human endometrial SP (hESP cell lines (ICE 1-7: four from the epithelial and three from the stromal fraction, respectively. SP cell lines were generated under hypoxic conditions based on their cloning efficiency ability, cultured for 12-15 passages (20 weeks and cryopreserved. Cell lines displayed normal 46XX karyotype, intermediate telomerase activity pattern and expressed mRNAs encoding proteins that are considered characteristic of undifferentiated cells (Oct-4, GDF3, DNMT3B, Nanog, GABR3 and those of mesodermal origin (WT1, Cardiac Actin, Enolase, Globin, REN. Phenotype analysis corroborated their epithelial (CD9+ or stromal (vimentin+ cell origin and mesenchymal (CD90+, CD73+ and CD45⁻ attributes. Markers considered characteristic of ectoderm or endoderm were not detected. Cells did not express either estrogen receptor alpha (ERα or progesterone receptor (PR. The hESP cell lines were able to differentiate in vitro into adipocytes and osteocytes, which confirmed their mesenchymal origin. Finally, we demonstrated their ability to generate human endometrium when transplanted beneath the renal capsule of NOD-SCID mice. These findings confirm that SP cells exhibit key features of human endometrial SSC and open up new possibilities for the understanding of gynecological disorders such as endometriosis or Asherman syndrome. Our cell lines can be a valuable model to investigate new targets for endometrium proliferation in endometriosis.

  20. Comparative characterization of stromal vascular cells derived from three types of vascular wall and adipose tissue.

    Science.gov (United States)

    Yang, Santsun; Eto, Hitomi; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Ma, Hsu; Tsai, Chi-Han; Chou, Wan-Ting; Yoshimura, Kotaro

    2013-12-01

    Multipotent stem/progenitor cells localize perivascularly in many organs and vessel walls. These tissue-resident stem/progenitor cells differentiate into vascular endothelial cells, pericytes, and other mesenchymal lineages, and participate in physiological maintenance and repair of vasculatures. In this study, we characterized stromal vascular cells obtained through the explant culture method from three different vessel walls in humans: arterial wall (ART; >500 μm in diameter), venous wall (VN; >500 μm in diameter), and small vessels in adipose tissue (SV; arterioles and venules, adipose-derived stem/stromal cells (ASCs). All stromal vascular cells of different origins presented fibroblast-like morphology and we could not visually discriminate one population from another. Flow cytometry showed that the cultured population heterogeneously expressed a variety of surface antigens associated with stem/progenitor cells, but CD105 was expressed by most cells in all groups, suggesting that the cells generally shared the characteristics of mesenchymal stem cells. Our histological and flow cytometric data suggested that the main population of vessel wall-derived stromal vascular cells were CD34(+)/CD31(-) and came from the tunica adventitia and areola tissue surrounding the adventitia. CD271 (p75NTR) was expressed by the vasa vasorum in the VN adventitia and by a limited population in the adventitia of SV. All three populations differentiated into multiple lineages as did ASCs. ART cells induced the largest quantity of calcium formation in the osteogenic medium, whereas ASCs showed the greatest adipogenic differentiation. SV and VN stromal cells had greater potency for network formation than did ART stromal cells. In conclusion, the three stromal vascular populations exhibited differential functional properties. Our results have clinical implications for vascular diseases such as arterial wall calcification and possible applications to regenerative therapies

  1. Plastic solar cell interface and morphological characterization

    Science.gov (United States)

    Guralnick, Brett W.

    Plastic solar cell research has become an intense field of study considering these devices may be lightweight, flexible and reduce the cost of photovoltaic devices. The active layer of plastic solar cells are a combination of two organic components which blend to form an internal morphology. Due to the poor electrical transport properties of the organic components it is important to understand how the morphology forms in order to engineer these materials for increased efficiency. The focus of this thesis is a detailed study of the interfaces between the plastic solar cell layers and the morphology of the active layer. The system studied in detail is a blend of P3HT and PCBM that acts as the primary absorber, which is the electron donor, and the electron acceptor, respectively. The key morphological findings are, while thermal annealing increases the crystallinity parallel to the substrate, the morphology is largely unchanged following annealing. The deposition and mixing conditions of the bulk heterojunction from solution control the starting morphology. The spin coating speed, concentration, solvent type, and solution mixing time are all critical variables in the formation of the bulk heterojunction. In addition, including the terminals or inorganic layers in the analysis is critical because the inorganic surface properties influence the morphology. Charge transfer in the device occurs at the material interfaces, and a highly resistive transparent conducting oxide layer limits device performance. It was discovered that the electron blocking layer between the transparent conducting oxide and the bulk heterojunction is compromised following annealing. The electron acceptor material can diffuse into this layer, a location which does not benefit device performance. Additionally, the back contact deposition is important since the organic material can be damaged by the thermal evaporation of Aluminum, typically used for plastic solar cells. Depositing a thin thermal and

  2. Electrical characterization of polymer solar cells

    Science.gov (United States)

    Green, Christopher; Cohick, Zane; Tzolov, Marian

    2013-03-01

    Polymer solar cell devices were fabricated using a mixture of the polymer PCPDTBT, PCBM, and 1,8-diiodooctane. The films were spin coated on ITO patterned substrates and covered with a hole injection layer. The film drying was performed at varied annealing temperatures and times. These devices were characterized utilizing current-voltage characteristics and the fill factor was determined. Devices were tested under dark and bright conditions using a xenon lamp. The current-voltage characteristics were modeled with an equivalent circuit yielding values for the shunt and series resistances. The variations in performance due to the changes in annealing temperatures and drying times were studied. Impedance spectroscopy was used to determine the dielectric constant of the active film.

  3. Cell mass and cell cycle dynamics of an asynchronous budding yeast population

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita; Carlquist, Magnus; Lundin, Luisa

    2013-01-01

    consumption observed during batch cultivation. The good agreement between the proposed multi-scale model (a population balance model [PBM] coupled to an unstructured model) and experimental data (both the overall physiology and cell size and cell cycle distributions) indicates that a mechanistic model...... of model predictions for cell property distributions against experimental data is scarce. This study focuses on the experimental and mathematical description of the dynamics of cell size and cell cycle position distributions, of a population of Saccharomyces cerevisiae, in response to the substrate......Despite traditionally regarded as identical, cells in a microbial cultivation present a distribution of phenotypic traits, forming a heterogeneous cell population. Moreover, the degree of heterogeneity is notably enhanced by changes in micro-environmental conditions. A major development...

  4. Identification of a population of epidermal squamous cell carcinoma cells with enhanced potential for tumor formation.

    Directory of Open Access Journals (Sweden)

    Gautam Adhikary

    Full Text Available Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation.

  5. Characterization of M2 antibodies in asymptomatic Chinese population

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hua Jiang; Ren-Qian Zhong; Xiao-Yun Fan; Yin Hu; Feng An; Jian-Wen Sun; Xian-Tao Kong

    2003-01-01

    AIM: To investigate the presence of M2 antibodies specific for pdmary biliary cirrhosis (PBC) in asymptomatic Chinese and identify patients with early PBC.METHODS: Enzyme-linked immunosorbent assay (ElISA)tests for M2 antibodies to recombinant protein were performed in 5 011 subjects (age range, 26-85 years; mean age: 45.81±15.02 years) who took an annual physical examination. M2-positive subjects were further analyzed for immunoglobulin (Ig) classes and subclasses of M2 antibodies.Clinical, biochemical and immunological data were obtained for M2-positive subjects. In addition, ultrasonography (US)or endoscopic retrograde cholangio-pancreatography (ERCP)was performed to exclude any disorders other than PBC.RESULTS: M2 antibodies were detected in 8 (0.16%) of the 5 0LL subjects studied. Of the 8 subjects, 7 were female and 1 was male (age range: 40-74 years). An unexplained increase of serum alkaline phosphatase (ALP) and gamma glutamyl transpeptidase (γ-GT) values, often to striking levels,was detected in 4 M2-positive subjects, 3 of them accorded with the diagnostic criteria recommended by the American Association for the Study of Liver Diseases, even though they had no symptoms of PBC (such as fatigue, pruritus or jaundice).Liver biopsy was performed in two M2-positive subjects and the histology was compatible with PBC in both cases.CONCLUSION: Our data, while not assessing the true prevalence of asymptomatic PBC in the general population,suggest that asymptomatic PBC is much more common in China than has been supposed.

  6. Identification of a novel population of human cord blood cells with hematopoietic and chondrocytic potential

    Institute of Scientific and Technical Information of China (English)

    Karen E JAY; Anne ROULEAU; T Michael UNDERHILL; Mickie BHATIA

    2004-01-01

    With the exception of mature erythrocytes, cells within the human hematopoietic system are characterized by the cell surface expression of the pan-leukocyte receptor CD45. Here, we identify a novel subset among mononuclear cord blood cells depleted of lineage commitment markers (Lin-) that are devoid of CD45 expression. Surprisingly, functional examination of Lin-CD45- cells also lacking cell surface CD34 revealed they were capable of multipotential hematopoietic progenitor capacity. Co-culture with mouse embryonic limb bud cells demonstrated that Lin-CD45-CD34- cells were capable of contributing to cartilage nodules and differentiating into human chondrocytes. BMP-4, a mesodermal factor known to promote chondrogenesis, significantly augmented Lin-CD45-CD34- differentiation into chondrocytes.Moreover, unlike CD34+ human hematopoietic stem cells, Lin-CD45-CD34- cells were unable to proliferate or survive in liquid cultures, whereas single Lin-CD45-CD34- cells were able to chimerize the inner cell mass (ICM) of murine blastocysts and proliferate in this embryonic environment. Our study identifies a novel population of Lin-CD45-CD34-cells capable of commitment into both hematopoietic and chondrocytic lineages, suggesting that human cord blood may provide a more ubiquitous source of tissue with broader developmental potential than previously appreciated.

  7. Characterization of Microvesicles Released from Human Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Duc Bach Nguyen

    2016-03-01

    Full Text Available Background/Aims: Extracellular vesicles (EVs are spherical fragments of cell membrane released from various cell types under physiological as well as pathological conditions. Based on their size and origin, EVs are classified as exosome, microvesicles (MVs and apoptotic bodies. Recently, the release of MVs from human red blood cells (RBCs under different conditions has been reported. MVs are released by outward budding and fission of the plasma membrane. However, the outward budding process itself, the release of MVs and the physical properties of these MVs have not been well investigated. The aim of this study is to investigate the formation process, isolation and characterization of MVs released from RBCs under conditions of stimulating Ca2+ uptake and activation of protein kinase C. Methods: Experiments were performed based on single cell fluorescence imaging, fluorescence activated cell sorter/flow cytometer (FACS, scanning electron microscopy (SEM, atomic force microscopy (AFM and dynamic light scattering (DLS. The released MVs were collected by differential centrifugation and characterized in both their size and zeta potential. Results: Treatment of RBCs with 4-bromo-A23187 (positive control, lysophosphatidic acid (LPA, or phorbol-12 myristate-13 acetate (PMA in the presence of 2 mM extracellular Ca2+ led to an alteration of cell volume and cell morphology. In stimulated RBCs, exposure of phosphatidylserine (PS and formation of MVs were observed by using annexin V-FITC. The shedding of MVs was also observed in the case of PMA treatment in the absence of Ca2+, especially under the transmitted bright field illumination. By using SEM, AFM and DLS the morphology and size of stimulated RBCs, MVs were characterized. The sizes of the two populations of MVs were 205.8 ± 51.4 nm and 125.6 ± 31.4 nm, respectively. Adhesion of stimulated RBCs and MVs was observed. The zeta potential of MVs was determined in the range from - 40 mV to - 10 m

  8. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter

    2015-01-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and pro...

  9. Stem cell populations in the heart and the role of Isl1 positive cells

    Directory of Open Access Journals (Sweden)

    V. Di Felice

    2013-05-01

    Full Text Available Cardiac progenitor cells are multipotent stem cells isolated from both embryonic and adult hearts in several species and are able to differentiate at least into smooth muscle cells, endothelial cells and cardiomyocytes. The embryonic origin of these cells has not yet been demonstrated, but it has been suggested that these cells may derive from the first and secondary heart fields and from the neural crest. In the last decade, two diffe-rent populations of cardiac progenitor or stem cells have been identified and isolated, i.e., the Islet1 positive (Isl1+ and c-Kit positive (c-Kit+/Stem Cell Antigen-1 positive (Sca-1+ cells. Until 2012, these two populations have been considered two separate entities with different roles and a different origin, but new evidence now suggests a con-nection between the two populations and that the two populations may represent two subpopulations of a unique pool of cardiac stem cells, derived from a common immature primitive cell. To find a common consensus on this concept is very important in furthe-ring the application of stem cells to cardiac tissue engineering.

  10. Stem cell populations in the heart and the role of Isl1 positive cells.

    Science.gov (United States)

    Di Felice, V; Zummo, G

    2013-05-09

    Cardiac progenitor cells are multipotent stem cells isolated from both embryonic and adult hearts in several species and are able to differentiate at least into smooth muscle cells, endothelial cells and cardiomyocytes. The embryonic origin of these cells has not yet been demonstrated, but it has been suggested that these cells may derive from the first and secondary heart fields and from the neural crest. In the last decade, two diffe-rent populations of cardiac progenitor or stem cells have been identified and isolated, i.e., the Islet1 positive (Isl1+) and c-Kit positive (c-Kit+)/Stem Cell Antigen-1 positive (Sca-1+) cells. Until 2012, these two populations have been considered two separate entities with different roles and a different origin, but new evidence now suggests a con-nection between the two populations and that the two populations may represent two subpopulations of a unique pool of cardiac stem cells, derived from a common immature primitive cell. To find a common consensus on this concept is very important in furthe-ring the application of stem cells to cardiac tissue engineering.

  11. CD133 positive embryonal rhabdomyosarcoma stem-like cell population is enriched in rhabdospheres.

    Directory of Open Access Journals (Sweden)

    Dagmar Walter

    Full Text Available Cancer stem cells (CSCs have been identified in a number of solid tumors, but not yet in rhabdomyosarcoma (RMS, the most frequently occurring soft tissue tumor in childhood. Hence, the aim of this study was to identify and characterize a CSC population in RMS using a functional approach. We found that embryonal rhabdomyosarcoma (eRMS cell lines can form rhabdomyosarcoma spheres (short rhabdospheres in stem cell medium containing defined growth factors over several passages. Using an orthotopic xenograft model, we demonstrate that a 100 fold less sphere cells result in faster tumor growth compared to the adherent population suggesting that CSCs were enriched in the sphere population. Furthermore, stem cell genes such as oct4, nanog, c-myc, pax3 and sox2 are significantly upregulated in rhabdospheres which can be differentiated into multiple lineages such as adipocytes, myocytes and neuronal cells. Surprisingly, gene expression profiles indicate that rhabdospheres show more similarities with neuronal than with hematopoietic or mesenchymal stem cells. Analysis of these profiles identified the known CSC marker CD133 as one of the genes upregulated in rhabdospheres, both on RNA and protein levels. CD133(+ sorted cells were subsequently shown to be more tumorigenic and more resistant to commonly used chemotherapeutics. Using a tissue microarray (TMA of eRMS patients, we found that high expression of CD133 correlates with poor overall survival. Hence, CD133 could be a prognostic marker for eRMS. These experiments indicate that a CD133(+ CSC population can be enriched from eRMS which might help to develop novel targeted therapies against this pediatric tumor.

  12. PopulationProfiler: A Tool for Population Analysis and Visualization of Image-Based Cell Screening Data

    OpenAIRE

    Matuszewski, Damian J.; Carolina Wählby; Jordi Carreras Puigvert; Ida-Maria Sintorn

    2016-01-01

    Image-based screening typically produces quantitative measurements of cell appearance. Large-scale screens involving tens of thousands of images, each containing hundreds of cells described by hundreds of measurements, result in overwhelming amounts of data. Reducing per-cell measurements to the averages across the image(s) for each treatment leads to loss of potentially valuable information on population variability. We present PopulationProfiler-a new software tool that reduces per-cell mea...

  13. Mathematical determination of cell population doubling times for multiple cell lines.

    Science.gov (United States)

    Daukste, Liene; Basse, Britta; Baguley, Bruce C; Wall, David J N

    2012-10-01

    Cell cycle times are vital parameters in cancer research, and short cell cycle times are often related to poor survival of cancer patients. A method for experimental estimation of cell cycle times, or doubling times of cultured cancer cell populations, based on addition of paclitaxel (an inhibitor of cell division) has been proposed in literature. We use a mathematical model to investigate relationships between essential parameters of the cell division cycle following inhibition of cell division. The reduction in the number of cells engaged in DNA replication reaches a plateau as the concentration of paclitaxel is increased; this can be determined experimentally. From our model we have derived a plateau log reduction formula for proliferating cells and established that there are linear relationships between the plateau log reduction values and the reciprocal of doubling times (i.e. growth rates of the populations). We have therefore provided theoretical justification of an important experimental technique to determine cell doubling times. Furthermore, we have applied Monte Carlo experiments to justify the suggested linear relationships used to estimate doubling time from 5-day cell culture assays. We show that our results are applicable to cancer cell populations with cell loss present.

  14. Molecular and functional heterogeneity of early postnatal porcine satellite cell populations is associated with bioenergetic profile

    Science.gov (United States)

    Miersch, Claudia; Stange, Katja; Hering, Silvio; Kolisek, Martin; Viergutz, Torsten; Röntgen, Monika

    2017-01-01

    During postnatal development, hyperplastic and hypertrophic processes of skeletal muscle growth depend on the activation, proliferation, differentiation, and fusion of satellite cells (SC). Therefore, molecular and functional SC heterogeneity is an important component of muscle plasticity and will greatly affect long-term growth performance and muscle health. However, its regulation by cell intrinsic and extrinsic factors is far from clear. In particular, there is only minor information on the early postnatal period which is critical for muscle maturation and the establishment of adult SC pools. Here, we separated two SC subpopulations (P40/50, P50/70) from muscle of 4-day-old piglets. Our results characterize P40/50 as homogeneous population of committed (high expression of Myf5), fast-proliferating muscle progenitors. P50/70 constituted a slow-proliferating phenotype and contains high numbers of differentiated SC progeny. During culture, P50/70 is transformed to a population with lower differentiation potential that contains 40% Pax7-positive cells. A reversible state of low mitochondrial activity that results from active down-regulation of ATP-synthase is associated with the transition of some of the P50/70 cells to this more primitive fate typical for a reserve cell population. We assume that P40/50 and P50/70 subpopulations contribute unequally in the processes of myofiber growth and maintenance of the SC pool. PMID:28344332

  15. Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations.

    Science.gov (United States)

    Sasso, Luigi; Heiskanen, Arto; Diazzi, Francesco; Dimaki, Maria; Castillo-León, Jaime; Vergani, Marco; Landini, Ettore; Raiteri, Roberto; Ferrari, Giorgio; Carminati, Marco; Sampietro, Marco; Svendsen, Winnie E; Emnéus, Jenny

    2013-07-07

    A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an aqueous pyrrole solution onto electrode surfaces. The conducting polymer film was doped during electropolymerization by introducing counter-ions in the monomer solution. Several counter-ions were tested and the resulting electrode modifications were characterized electrochemically to find the optimal dopant that increases sensitivity in dopamine detection. Overoxidation of the PPy films was shown to contribute to a significant enhancement in sensitivity to dopamine. The changes caused by overoxidation in the electrochemical behavior and electrode morphology were investigated using cyclic voltammetry and SEM as well as AFM, respectively. The optimal dopant for dopamine detection was found to be polystyrene sulfonate anion (PSS(-)). Rat pheochromocytoma (PC12) cells, a suitable model to study exocytotic dopamine release, were differentiated on IDEs functionalized with an overoxidized PSS(-)-doped PPy film. The modified electrodes were used to amperometrically detect dopamine released by populations of cells upon triggering cellular exocytosis with an elevated K(+) concentration. A comparison between the generated current on bare gold electrodes and gold electrodes modified with overoxidized doped PPy illustrates the clear advantage of the modification, yielding 2.6-fold signal amplification. The results also illustrate how to use cell population based dopamine exocytosis measurements to obtain biologically significant information that can be relevant in, for instance, the study of neural stem cell differentiation into dopaminergic neurons.

  16. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates.

    Science.gov (United States)

    Blin, Guillaume; Nury, David; Stefanovic, Sonia; Neri, Tui; Guillevic, Oriane; Brinon, Benjamin; Bellamy, Valérie; Rücker-Martin, Catherine; Barbry, Pascal; Bel, Alain; Bruneval, Patrick; Cowan, Chad; Pouly, Julia; Mitalipov, Shoukhrat; Gouadon, Elodie; Binder, Patrice; Hagège, Albert; Desnos, Michel; Renaud, Jean-François; Menasché, Philippe; Pucéat, Michel

    2010-04-01

    Cell therapy holds promise for tissue regeneration, including in individuals with advanced heart failure. However, treatment of heart disease with bone marrow cells and skeletal muscle progenitors has had only marginal positive benefits in clinical trials, perhaps because adult stem cells have limited plasticity. The identification, among human pluripotent stem cells, of early cardiovascular cell progenitors required for the development of the first cardiac lineage would shed light on human cardiogenesis and might pave the way for cell therapy for cardiac degenerative diseases. Here, we report the isolation of an early population of cardiovascular progenitors, characterized by expression of OCT4, stage-specific embryonic antigen 1 (SSEA-1), and mesoderm posterior 1 (MESP1), derived from human pluripotent stem cells treated with the cardiogenic morphogen BMP2. This progenitor population was multipotential and able to generate cardiomyocytes as well as smooth muscle and endothelial cells. When transplanted into the infarcted myocardium of immunosuppressed nonhuman primates, an SSEA-1+ progenitor population derived from Rhesus embryonic stem cells differentiated into ventricular myocytes and reconstituted 20% of the scar tissue. Notably, primates transplanted with an unpurified population of cardiac-committed cells, which included SSEA-1- cells, developed teratomas in the scar tissue, whereas those transplanted with purified SSEA-1+ cells did not. We therefore believe that the SSEA-1+ progenitors that we have described here have the potential to be used in cardiac regenerative medicine.

  17. Cancer Stem Cells and Side Population Cells in Breast Cancer and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Britton, Kelly M. [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); Kirby, John A. [Institute of Cellular Medicine, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Lennard, Thomas W.J. [Faculty of Medical Sciences, Newcastle University, 3rd Floor William Leech Building, Framlington Place, Newcastle-upon-Tyne, NE2 4HH (United Kingdom); Meeson, Annette P., E-mail: annette.meeson@ncl.ac.uk [Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom); North East England Stem Cell Institute, Bioscience Centre, International Centre for Life, Central Parkway, Newcastle-upon-Tyne, NE1 3BZ (United Kingdom)

    2011-04-19

    In breast cancer it is never the primary tumour that is fatal; instead it is the development of metastatic disease which is the major cause of cancer related mortality. There is accumulating evidence that suggests that Cancer Stem Cells (CSC) may play a role in breast cancer development and progression. Breast cancer stem cell populations, including side population cells (SP), have been shown to be primitive stem cell-like populations, being long-lived, self-renewing and highly proliferative. SP cells are identified using dual wavelength flow cytometry combined with Hoechst 33342 dye efflux, this ability is due to expression of one or more members of the ABC transporter family. They have increased resistance to chemotherapeutic agents and apoptotic stimuli and have increased migratory potential above that of the bulk tumour cells making them strong candidates for the metastatic spread of breast cancer. Treatment of nearly all cancers usually involves one first-line agent known to be a substrate of an ABC transporter thereby increasing the risk of developing drug resistant tumours. At present there is no marker available to identify SP cells using immunohistochemistry on breast cancer patient samples. If SP cells do play a role in breast cancer progression/Metastatic Breast Cancer (MBC), combining chemotherapy with ABC inhibitors may be able to destroy both the cells making up the bulk tumour and the cancer stem cell population thus preventing the risk of drug resistant disease, recurrence or metastasis.

  18. A Retrospective Analysis of Oral Langerhans Cell Histiocytosis in an Iranian Population: a 20-year Evaluation

    Science.gov (United States)

    Atarbashi Moghadam, Saede; Lotfi, Ali; Piroozhashemi, Batool; Mokhtari, Sepideh

    2015-01-01

    Statement of the Problem Langerhans cell histiocytosis is a rare disease with unknown pathogenesis and is characterized by local or disseminated proliferation of Langerhans cells. There is no previous investigation on prevalence of oral Langerhans cell histiocytosis in Iranian population. Purpose The purpose of this study was to assess the relative frequency of oral Langerhans cell histiocytosis in an Iranian population and to compare the data with previous reports. Materials and Method Pathology files of Oral and Maxillofacial Pathology Department of Dental School of Shahid Beheshti University of Medical Sciences from 1992 to 2012 were searched for cases recorded as oral Langerhans cell histiocytosis. A total number of 20 cases were found and the clinical information of patients was recorded. Results The relative frequency of oral Langerhans cell histiocytosis was 0.34% and the most common location was the posterior mandible. In addition, the mean age of patients was 27 years and there was a definite male predominance. Most lesions were localized and tooth mobility was the most common oral presentation. Conclusion In Iranian population as in many other countries, the relative frequency of oral Langerhans cell histiocytosis is low. Moreover, tooth mobility and periodontal lesions are the frequent early signs of disease. Therefore, in patients with periodontal problems, good oral health, and no response to the treatment; Langerhans cell histiocytosis must be considered. Additionally, although most cases of oral Langerhans cell histiocytosis are localized, systemic involvement must also be considered and dental professionals have an important role in early detection of the disease. PMID:26535408

  19. A Retrospective Analysis of Oral Langerhans Cell Histiocytosis in an Iranian Population: a 20-year Evaluation

    Directory of Open Access Journals (Sweden)

    Saede Atarbashi Moghadam

    2015-09-01

    Full Text Available Statement of the Problem: Langerhans cell histiocytosis is a rare disease with unknown pathogenesis and is characterized by local or disseminated proliferation of Langerhans cells. There is no previous investigation on prevalence of oral Langerhans cell histiocytosis in Iranian population. Purpose: The purpose of this study was to assess the relative frequency of oral Langerhans cell histiocytosis in an Iranian population and to compare the data with previous reports. Materials and Method: Pathology files of Oral and Maxillofacial Pathology Department of Dental School of Shahid Beheshti University of Medical Sciences from 1992 to 2012 were searched for cases recorded as oral Langerhans cell histiocytosis. A total number of 20 cases were found and the clinical information of patients was recorded. Results: The relative frequency of oral Langerhans cell histiocytosis was 0.34% and the most common location was the posterior mandible. In addition, the mean age of patients was 27 years and there was a definite male predominance. Most lesions were localized and tooth mobility was the most common oral presentation. Conclusion: In Iranian population as in many other countries, the relative frequency of oral Langerhans cell histiocytosis is low. Moreover, tooth mobility and periodontal lesions are the frequent early signs of disease. Therefore, in patients with periodontal problems, good oral health, and no response to the treatment; Langerhans cell histiocytosis must be considered. Additionally, although most cases of oral Langerhans cell histiocytosis are localized, systemic involvement must also be considered and dental professionals have an important role in early detection of the disease.

  20. Epitope specific T-cell responses against influenza A in a healthy population.

    Science.gov (United States)

    Savic, Miloje; Dembinski, Jennifer L; Kim, Yohan; Tunheim, Gro; Cox, Rebecca J; Oftung, Fredrik; Peters, Bjoern; Mjaaland, Siri

    2016-02-01

    Pre-existing human CD4(+) and CD8(+) T-cell-mediated immunity may be a useful correlate of protection against severe influenza disease. Identification and evaluation of common epitopes recognized by T cells with broad cross-reactivity is therefore important to guide universal influenza vaccine development, and to monitor immunological preparedness against pandemics. We have retrieved an optimal combination of MHC class I and class II restricted epitopes from the Immune Epitope Database (www.iedb.org), by defining a fitness score function depending on prevalence, sequence conservancy and HLA super-type coverage. Optimized libraries of CD4(+) and CD8(+) T-cell epitopes were selected from influenza antigens commonly present in seasonal and pandemic influenza strains from 1934 to 2009. These epitope pools were used to characterize human T-cell responses in healthy donors using interferon-γ ELISPOT assays. Upon stimulation, significant CD4(+) and CD8(+) T-cell responses were induced, primarily recognizing epitopes from the conserved viral core proteins. Furthermore, the CD4(+) and CD8(+) T cells were phenotypically characterized regarding functionality, cytotoxic potential and memory phenotype using flow cytometry. Optimized sets of T-cell peptide epitopes may be a useful tool to monitor the efficacy of clinical trials, the immune status of a population to predict immunological preparedness against pandemics, as well as being candidates for universal influenza vaccines.

  1. Extracellular matrix stiffness modulates VEGF calcium signaling in endothelial cells: individual cell and population analysis.

    Science.gov (United States)

    Derricks, Kelsey E; Trinkaus-Randall, Vickery; Nugent, Matthew A

    2015-09-01

    Vascular disease and its associated complications are the number one cause of death in the Western world. Both extracellular matrix stiffening and dysfunctional endothelial cells contribute to vascular disease. We examined endothelial cell calcium signaling in response to VEGF as a function of extracellular matrix stiffness. We developed a new analytical tool to analyze both population based and individual cell responses. Endothelial cells on soft substrates, 4 kPa, were the most responsive to VEGF, whereas cells on the 125 kPa substrates exhibited an attenuated response. Magnitude of activation, not the quantity of cells responding or the number of local maximums each cell experienced distinguished the responses. Individual cell analysis, across all treatments, identified two unique cell clusters. One cluster, containing most of the cells, exhibited minimal or slow calcium release. The remaining cell cluster had a rapid, high magnitude VEGF activation that ultimately defined the population based average calcium response. Interestingly, at low doses of VEGF, the high responding cell cluster contained smaller cells on average, suggesting that cell shape and size may be indicative of VEGF-sensitive endothelial cells. This study provides a new analytical tool to quantitatively analyze individual cell signaling response kinetics, that we have used to help uncover outcomes that are hidden within the average. The ability to selectively identify highly VEGF responsive cells within a population may lead to a better understanding of the specific phenotypic characteristics that define cell responsiveness, which could provide new insight for the development of targeted anti- and pro-angiogenic therapies.

  2. PopulationProfiler: A Tool for Population Analysis and Visualization of Image-Based Cell Screening Data.

    Directory of Open Access Journals (Sweden)

    Damian J Matuszewski

    Full Text Available Image-based screening typically produces quantitative measurements of cell appearance. Large-scale screens involving tens of thousands of images, each containing hundreds of cells described by hundreds of measurements, result in overwhelming amounts of data. Reducing per-cell measurements to the averages across the image(s for each treatment leads to loss of potentially valuable information on population variability. We present PopulationProfiler-a new software tool that reduces per-cell measurements to population statistics. The software imports measurements from a simple text file, visualizes population distributions in a compact and comprehensive way, and can create gates for subpopulation classes based on control samples. We validate the tool by showing how PopulationProfiler can be used to analyze the effect of drugs that disturb the cell cycle, and compare the results to those obtained with flow cytometry.

  3. PopulationProfiler: A Tool for Population Analysis and Visualization of Image-Based Cell Screening Data.

    Science.gov (United States)

    Matuszewski, Damian J; Wählby, Carolina; Puigvert, Jordi Carreras; Sintorn, Ida-Maria

    2016-01-01

    Image-based screening typically produces quantitative measurements of cell appearance. Large-scale screens involving tens of thousands of images, each containing hundreds of cells described by hundreds of measurements, result in overwhelming amounts of data. Reducing per-cell measurements to the averages across the image(s) for each treatment leads to loss of potentially valuable information on population variability. We present PopulationProfiler-a new software tool that reduces per-cell measurements to population statistics. The software imports measurements from a simple text file, visualizes population distributions in a compact and comprehensive way, and can create gates for subpopulation classes based on control samples. We validate the tool by showing how PopulationProfiler can be used to analyze the effect of drugs that disturb the cell cycle, and compare the results to those obtained with flow cytometry.

  4. The Notch pathway is important in maintaining the cancer stem cell population in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Ethan V Abel

    Full Text Available Pancreatic cancer stem cells (CSCs represent a small subpopulation of pancreatic cancer cells that have the capacity to initiate and propagate tumor formation. However, the mechanisms by which pancreatic CSCs are maintained are not well understood or characterized.Expression of Notch receptors, ligands, and Notch signaling target genes was quantitated in the CSC and non-CSC populations from 8 primary human pancreatic xenografts. A gamma secretase inhibitor (GSI that inhibits the Notch pathway and a shRNA targeting the Notch target gene Hes1 were used to assess the role of the Notch pathway in CSC population maintenance and pancreatic tumor growth.Notch pathway components were found to be upregulated in pancreatic CSCs. Inhibition of the Notch pathway using either a gamma secretase inhibitor or Hes1 shRNA in pancreatic cancer cells reduced the percentage of CSCs and tumorsphere formation. Conversely, activation of the Notch pathway with an exogenous Notch peptide ligand increased the percentage of CSCs as well as tumorsphere formation. In vivo treatment of orthotopic pancreatic tumors in NOD/SCID mice with GSI blocked tumor growth and reduced the CSC population.The Notch signaling pathway is important in maintaining the pancreatic CSC population and is a potential therapeutic target in pancreatic cancer.

  5. Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle.

    Science.gov (United States)

    Tedesco, Francesco Saverio; Moyle, Louise A; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle regeneration is mainly enabled by a population of adult stem cells known as satellite cells. Satellite cells have been shown to be indispensable for adult skeletal muscle repair and regeneration. In the last two decades, other stem/progenitor cell populations resident in the skeletal muscle interstitium have been identified as "collaborators" of satellite cells during regeneration. They also appear to have a key role in replacing skeletal muscle with adipose, fibrous, or bone tissue in pathological conditions. Here, we review the role and known functions of these different interstitial skeletal muscle cell types and discuss their role in skeletal muscle tissue homeostasis, regeneration, and disease, including their therapeutic potential for cell transplantation protocols.

  6. Enzymatic characterization of insecticide resistance mechanisms in field populations of Malaysian Culex quinquefasciatus say (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Van Lun Low

    Full Text Available BACKGROUND: There has been no comprehensive study on biochemical characterization of insecticide resistance mechanisms in field populations of Malaysian Culex quinquefasciatus. To fill this void in the literature, a nationwide investigation was performed to quantify the enzyme activities, thereby attempting to characterize the potential resistance mechanisms in Cx. quinquefasciatus in residential areas in Malaysia. METHODOLOGY/PRINCIPAL FINDINGS: Culex quinquefasciatus from 14 residential areas across 13 states and one federal territory were subjected to esterases, mixed function oxidases, glutathione-S-transferase and insensitive acetylcholinesterase assays. Enzyme assays revealed that α-esterases and β-esterases were elevated in 13 populations and 12 populations, respectively. Nine populations demonstrated elevated levels of mixed function oxidases and glutathione-S-transferase. Acetylcholinesterase was insensitive to propoxur in all 14 populations. Activity of α-esterases associated with malathion resistance was found in the present study. In addition, an association between the activity of α-esterases and β-esterases was also demonstrated. CONCLUSIONS/SIGNIFICANCE: The present study has characterized the potential biochemical mechanisms in contributing towards insecticide resistance in Cx. quinquefasciatus field populations in Malaysia. Identification of mechanisms underlying the insecticide resistance will be beneficial in developing effective mosquito control programs in Malaysia.

  7. A morphological and molecular characterization of vine mealybug populations (Hemiptera, Pseudococcidae from Tunisia

    Directory of Open Access Journals (Sweden)

    Ramzi Mansour

    2012-05-01

    Full Text Available Some vine mealybug, Planococcus ficus (Signoret populations in Tunisian vineyards have been morphologically and genetically characterized. The morphological examination was based on the main distinctive characteristics of species of Planococcus, namely the number and distribution of the multilocular disc pores and tubular ducts on the adult female. This showed the existence of two different vine mealybug populations in Tunisia. Likewise, in the molecular analyses, two separate clades were revealed in the neighbour-joining phylogenetic tree, supporting the morphological studies and suggesting that there are two distinct populations of P. ficus on grapevine in Tunisia.

  8. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis.

    Science.gov (United States)

    Lovato, Laura; Willis, Simon N; Rodig, Scott J; Caron, Tyler; Almendinger, Stefany E; Howell, Owain W; Reynolds, Richard; O'Connor, Kevin C; Hafler, David A

    2011-02-01

    In the central nervous system of patients with multiple sclerosis, B cell aggregates populate the meninges, raising the central question as to whether these structures relate to the B cell infiltrates found in parenchymal lesions or instead, represent a separate central nervous system immune compartment. We characterized the repertoires derived from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue derived primarily from patients with progressive multiple sclerosis. The majority of expanded antigen-experienced B cell clones derived from meningeal aggregates were also present in the parenchyma. We extended this investigation to include 20 grey matter specimens containing meninges, 26 inflammatory plaques, 19 areas of normal appearing white matter and cerebral spinal fluid. Analysis of 1833 B cell receptor heavy chain variable region sequences demonstrated that antigen-experienced clones were consistently shared among these distinct compartments. This study establishes a relationship between extraparenchymal lymphoid tissue and parenchymal infiltrates and defines the arrangement of B cell clones that populate the central nervous system of patients with multiple sclerosis.

  9. A novel lymphoid progenitor cell population (LSK(low)) is restricted by p18(INK4c).

    Science.gov (United States)

    Dong, Fang; Hao, Sha; Ma, Shihui; Cheng, Hui; Wang, Yajie; Zhou, Wen; Yuan, Weiping; Ema, Hideo; Cheng, Tao

    2016-09-01

    The cyclin-dependent kinase inhibitor CDKN2C (p18(INK4c)) restrains self-renewal in hematopoietic stem cells (HSCs) and participates in the development and maturation of lymphoid cells. Deficiency in p18 predisposes mice and humans to hematopoietic lymphoid malignancies such as T-cell leukemia and multiple myeloma. However, the mechanism by which p18 regulates differentiation from HSCs to lymphoid cells is poorly understood. In this study, we found that a progenitor population characterized by its expression of surface markers, Lin(-) Sca-1(+) c-Kit(low) (LSK(low)), was markedly expanded in the bone marrow of p18 knock-out (p18(-/-)) mice. This novel population possessed lymphoid differentiation potential, but not myeloid differentiation potential, both in vitro and in vivo. Whereas LSK(low) cells and common lymphoid progenitors (CLPs) overlapped functionally in generating lymphoid cells, they were distinct cell populations, because they had different gene expression profiles. Unlike CLPs, LSK(low) cells did not express the interleukin-7 receptor. LSK(low) cells were derived from HSCs and were independent of the p18-deleted microenvironment. This cell population may represent a previously unappreciated transitional stage from HSCs to lymphoid progenitors that is strictly restricted by p18 under physiological conditions. Likewise, LSK(low) might serve as a new cellular target of lymphoid malignances in the absence of p18.

  10. Spectral Distribution of Transport Operator Arising in Growing Cell Populations

    Directory of Open Access Journals (Sweden)

    Hongxing Wu

    2014-01-01

    Full Text Available Transport equation with partly smooth boundary conditions arising in growing cell populations is studied in Lp  (1

  11. Multi-population model of a microbial electrolysis cell.

    Science.gov (United States)

    Pinto, R P; Srinivasan, B; Escapa, A; Tartakovsky, B

    2011-06-01

    This work presents a multi-population dynamic model of a microbial electrolysis cell (MEC). The model describes the growth and metabolic activity of fermentative, electricigenic, methanogenic acetoclastic, and methanogenic hydrogenophilic microorganisms and is capable of simulating hydrogen production in a MEC fed with complex organic matter, such as wastewater. The model parameters were estimated with the experimental results obtained in continuous flow MECs fed with acetate or synthetic wastewater. Following successful model validation with an independent data set, the model was used to analyze and discuss the influence of applied voltage and organic load on hydrogen production and COD removal.

  12. Synchronization of glycolytic oscillations in a yeast cell population

    DEFF Research Database (Denmark)

    Dano, S.; Hynne, F.; De Monte, Silvia

    2001-01-01

    The mechanism of active phase synchronization in a suspension of oscillatory yeast cells has remained a puzzle for almost half a century. The difficulty of the problem stems from the fact that the synchronization phenomenon involves the entire metabolic network of glycolysis and fermentation......, and consequently it cannot be addressed at the level of a single enzyme or a single chemical species. In this paper it is shown how this system in a CSTR (continuous flow stirred tank reactor) can be modelled quantitatively as a population of Stuart-Landau oscillators interacting by exchange of metabolites through...

  13. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells

    DEFF Research Database (Denmark)

    Jørgensen, Claus; Sherman, Andrew; Chen, Ginny I;

    2009-01-01

    Cells have self-organizing properties that control their behavior in complex tissues. Contact between cells expressing either B-type Eph receptors or their transmembrane ephrin ligands initiates bidirectional signals that regulate cell positioning. However, simultaneously investigating how...... information is processed in two interacting cell types remains a challenge. We implemented a proteomic strategy to systematically determine cell-specific signaling networks underlying EphB2- and ephrin-B1-controlled cell sorting. Quantitative mass spectrometric analysis of mixed populations of EphB2......- and ephrin-B1-expressing cells that were labeled with different isotopes revealed cell-specific tyrosine phosphorylation events. Functional associations between these phosphotyrosine signaling networks and cell sorting were established with small interfering RNA screening. Data-driven network modeling...

  14. Feasibility of wear compensation in micro EDM milling based on discharge counting and discharge population characterization

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; Tristo, G.

    2011-01-01

    This paper investigates the applicability of real time wear compensation in micro EDM milling based on discharge counting and discharge population characterization. Experiments were performed involving discharge counting and tool electrode wear measurement in a wide range of process parameters se...

  15. Isolation of Side Population Cells and Detection of ABCG2 from SW480

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-guang; PAN Yi-fei; GUO Gui-long; HU Xiao-qu; HUANG Ka-te; ZHANG Xiao-hua

    2007-01-01

    Objective: Side population cells (SP cells) are a new type of stem cells. They mainly express ABCG2/BCRP1 and have the ability to eliminate DNA dye Hoechst33342. Many studies showed that side population cells were able of self-renewal, differentiation and carcinogenesis in cancers. Our investigation aimed at isolation of side population cells and ABCG2 positive subpopulation from colon cancer cell line SW480 and identification of their characteristics of cancer stem cells. Methods: side population cells and non-side population cells of colon cancer cell line SW480 were isolated with DNA dye Hoechst33342 and their cell cycles were measured by flow cytometry. Expression of ABCG2 of SW480 was measured by immunohistochemistry and immunofluorescence, and its proportion was measured by flow cytometry. Results: SW480 contained 2.29% side population cells. The fraction of side population cells decreased greatly to 0.40% by treatment with verapamil. The fraction of side population cells in S-G2M cell cycle was 16.14%, which was much lower than the fraction (34.05%) of non-side population cells in S-G2M. In SW480, ABCG2 positive cells, which proportion was 9.66%, were small, circular or oval, lack of psuedopods, similar to poor differentiation. On the contrary, the ABCG2 negative cells were large, polygonal, with many psuedopods, similar to high differentiation. Conclusion: our assay identified that side population cells did exist in SW480 and had a quiescence characteristic of stem cells. ABCG2 positive subpopulation occupied about 9.66% of SW480 and may have the ability to promote cell self-renewal and inhibit cell differentiation. Therefore, to isolate ABCG2 positive subpopulation from side population cells may be an alternative to study colorectal cancer stem cells.

  16. Lattice Boltzmann method with the cell-population equilibrium

    Institute of Scientific and Technical Information of China (English)

    Zhou Xiao-Yang; Cheng Bing; Shi Bao-Chang

    2008-01-01

    The central problem of the lattice Boltzmann method (LBM) is to construct a discrete equilibrium.In this paper,a multi-speed 1D cell-model of Boltzmann equation is proposed,in which the cell-population equilibrium,a direct nonnegative approximation to the continuous Maxwellian distribution,plays an important part.By applying the explicit one-order Chapman-Enskog distribution,the model reduces the transportation and collision,two basic evolution steps in LBM,to the transportation of the non-equilibrium distribution.Furthermore,1D dam-break problem is performed and the numerical results agree well with the analytic solutions.

  17. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells

    Directory of Open Access Journals (Sweden)

    Chansavath Phetsouphanh

    2015-08-01

    Full Text Available A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.

  18. Characterization of colonic dendritic cells in normal and colitic mice

    Institute of Scientific and Technical Information of China (English)

    Sheena M Cruickshank; Nicholas R English; Peter J Felsburg; Simon R Carding

    2005-01-01

    AIM: Recent studies demonstrating the direct involvement of dendritic cells (DC) in the activation of pathogenic T cells in animal models of inflammatory bowel disease identify DC as important antigen presenting cells in the colon. However, very little is known about the properties of colonic DC.METHODS: Using immunohistochemistry, electron microscopy and flow cytometry we have characterized and compared colonic DC in the colon of healthy animals and interleukin-2-deficient (IL2-/-) mice that develop colitis.RESULTS: In the healthy colon, DC resided within the lamina propria and in close association with the basement membrane of colonic villi. Type 1 myeloid (CD11c+, CD11b+,B220-, CD8α-) DC made up the largest (40-45%) population and all DC expressed low levels of CD80, CD86, and CD40,and had high endocytic activity consistent with an immature phenotype. In colitic IL2-/- mice, colonic DC numbers increased four- to five-fold and were localized within the epithelial layer and within aggregates of T and B cells. They were also many more DC in mesenteric lymph nodes (MLN).The majority (>85%) of DC in the colon and MLN of IL2-/-mice were type 1 myeloid, and expressed high levels of MHC class Ⅱ, CD80, CD86, CD 40, DEC 205, and CCR5molecules and were of low endocytic activity consistent with mature DC.CONCLUSION: These findings demonstrate striking changes in the number, distribution and phenotype of DC in the inflamed colon. Their intimate association with lymphocytes in the colon and draining lymph nodes suggest that they may contribute directly to the ongoing inflammation in the colon.

  19. Putative population of adipose-derived stem cells isolated from mediastinal tissue during cardiac surgery.

    Science.gov (United States)

    Patel, Amit N; Yockman, James; Vargas, Vanessa; Bull, David A

    2013-01-01

    Mesenchymal stem cells have been isolated from various adult human tissues and are valuable for not only therapeutic applications but for the study of tissue homeostasis and disease progression. Subcutaneous adipose depots have been shown to contain large amounts of stem cells. There is little information that has been reported to date describing the isolation and characterization of mesenchymal stem cells from visceral adipose tissue. In this study, we describe a mesenchymal stem cell population isolated from mediastinal adipose depots. The cells express CD44, CD105, CD166, and CD90 and are negative for hematopoietic markers CD34, CD45, and HLA-DR. In addition, the cells have a multilineage potential, with the ability to differentiate into adipogenic, osteogenic, and chondrogenic cell types. The biological function of visceral adipose tissue remains largely unknown and uncharacterized. However, the proximity of adipose tissue to the heart suggests a potential role in the pathogenesis of cardiovascular disease in obesity. In addition, with the ability of fat to regulate metabolic activity in humans, this novel stem cell source may be useful to further study the mechanisms involved in metabolic disorders.

  20. Distinct populations of innate CD8+ T cells revealed in a CXCR3 reporter mouse.

    Science.gov (United States)

    Oghumu, Steve; Dong, Ran; Varikuti, Sanjay; Shawler, Todd; Kampfrath, Thomas; Terrazas, Cesar A; Lezama-Davila, Claudio; Ahmer, Brian M M; Whitacre, Caroline C; Rajagopalan, Sanjay; Locksley, Richard; Sharpe, Arlene H; Satoskar, Abhay R

    2013-03-01

    CXCR3, expressed mainly on activated T and NK cells, is implicated in a host of immunological conditions and can contribute either to disease resolution or pathology. We report the generation and characterization of a novel CXCR3 internal ribosome entry site bicistronic enhanced GFP reporter (CIBER) mouse in which enhanced GFP expression correlates with surface levels of CXCR3. Using CIBER mice, we identified two distinct populations of innate CD8(+) T cells based on constitutive expression of CXCR3. We demonstrate that CXCR3(+) innate CD8(+) T cells preferentially express higher levels of Ly6C and CD122, but lower levels of CCR9 compared with CXCR3(-) innate CD8(+) T cells. Furthermore, we show that CXCR3(+) innate CD8(+) T cells express higher transcript levels of antiapoptotic but lower levels of proapoptotic factors, respond more robustly to IL-2 and IL-15, and produce significantly more IFN-γ and granzyme B. Interestingly, CXCR3(+) innate CD8(+) T cells do not respond to IL-12 or IL-18 alone, but produce significant amounts of IFN-γ on stimulation with a combination of these cytokines. Taken together, these findings demonstrate that CXCR3(+) and CXCR3(-) innate CD8(+) T cells are phenotypically and functionally distinct. These newly generated CIBER mice provide a novel tool for studying the role of CXCR3 and CXCR3-expressing cells in vivo.

  1. Characterization of cell suspensions from solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pallavicini, M.

    1985-07-10

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs.

  2. Dynamic equilibrium of reconstituting hematopoietic stem cell populations.

    Science.gov (United States)

    O'Quigley, John

    2010-12-01

    Clonal dominance in hematopoietic stem cell populations is an important question of interest but not one we can directly answer. Any estimates are based on indirect measurement. For marked populations, we can equate empirical and theoretical moments for binomial sampling, in particular we can use the well-known formula for the sampling variation of a binomial proportion. The empirical variance itself cannot always be reliably estimated and some caution is needed. We describe the difficulties here and identify ready solutions which only require appropriate use of variance-stabilizing transformations. From these we obtain estimators for the steady state, or dynamic equilibrium, of the number of hematopoietic stem cells involved in repopulating the marrow. The calculations themselves are not too involved. We give the distribution theory for the estimator as well as simple approximations for practical application. As an illustration, we rework on data recently gathered to address the question as to whether or not reconstitution of marrow grafts in the clinical setting might be considered to be oligoclonal.

  3. [Th17 cells, a novel proinflammatory effector CD4 T cell population].

    Science.gov (United States)

    Leung-Theung-Long, Stéphane; Guerder, Sylvie

    2008-11-01

    After more than 20 years of hegemony, the Th1-Th2 paradigm was recently shaken by the discovery of a novel population of CD4 effector T cells, the Th17 cells. Th17 effector cells produce IL-17 and IL-22 and thus have pro-inflammatory properties notably favoring neutrophils recruitment and thus control of extracellular bacteria mainly at the epithelium surface. Th17 cells appear also as the major inducer of organ specific autoimmune pathologies such as EAE or rheumatoid arthritis, a function previously attributed to Th1 effector cells. The discovery of Th17 cells further supports the notion that effector CD4 T cells responses are diverse in vivo and that fine tuning of these different effector cells is critical to maintain tissue integrity.

  4. Population genetics of cancer cell clones: possible implications of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Naugler Christopher T

    2010-11-01

    Full Text Available Abstract Background The population dynamics of the various clones of cancer cells existing within a tumour is complex and still poorly understood. Cancer cell clones can be conceptualized as sympatric asexual species, and as such, the application of theoretical population genetics as it pertains to asexual species may provide additional insights. Results The number of generations of tumour cells within a cancer has been estimated at a minimum of 40, but high cancer cell mortality rates suggest that the number of cell generations may actually be in the hundreds. Such a large number of generations would easily allow natural selection to drive clonal evolution assuming that selective advantages of individual clones are within the range reported for free-living animal species. Tumour cell clonal evolution could also be driven by variation in the intrinsic rates of increase of different clones or by genetic drift. In every scenario examined, the presence of cancer stem cells would require lower selection pressure or less variation in intrinsic rates of increase. Conclusions The presence of cancer stem cells may result in more rapid clonal evolution. Specific predictions from theoretical population genetics may lead to a greater understanding of this process.

  5. Cell Invasion in Collagen Scaffold Architectures Characterized by Percolation Theory.

    Science.gov (United States)

    Ashworth, Jennifer C; Mehr, Marco; Buxton, Paul G; Best, Serena M; Cameron, Ruth E

    2015-06-24

    The relationship between biological scaffold interconnectivity and cell migration is an important but poorly understood factor in tissue regeneration. Here a scale-independent technique for characterization of collagen scaffold interconnectivity is presented, using a combination of X-ray microcomputed tomography and percolation theory. Confocal microscopy of connective tissue cells reveals this technique as highly relevant for determining the extent of cell invasion.

  6. Isolation of a mesenchymal cell population from murine dermis that contains progenitors of multiple cell lineages.

    Science.gov (United States)

    Crigler, Lauren; Kazhanie, Amita; Yoon, Tae-Jin; Zakhari, Julia; Anders, Joanna; Taylor, Barbara; Virador, Victoria M

    2007-07-01

    The skin contains two known subpopulations of stem cells/epidermal progenitors: a basal keratinocyte population found in the interfollicular epithelium and cells residing in the bulge region of the hair follicle. The major role of the interfollicular basal keratinocyte population may be epidermal renewal, whereas the bulge population may only be activated and recruited to form a cutaneous epithelium in case of trauma. Using 3-dimensional cultures of murine skin under stress conditions in which only reserve epithelial cells would be expected to survive and expand, we demonstrate that a mesenchymal population resident in neonatal murine dermis has the unique potential to develop an epidermis in vitro. In monolayer culture, this dermal subpopulation has long-term survival capabilities in restricted serum and an inducible capacity to evolve into multiple cell lineages, both epithelial and mesenchymal, depending on culture conditions. When grafted subcutaneously, this dermal subpopulation gave rise to fusiform structures, reminiscent of disorganized muscle, that stained positive for smooth muscle actin and desmin; on typical epidermal grafts, abundant melanocytes appeared throughout the dermis that were not associated with hair follicles. The multipotential cells can be repeatedly isolated from neonatal murine dermis by a sequence of differential centrifugation and selective culture conditions. These results suggest that progenitors capable of epidermal differentiation exist in the mesenchymal compartment of an abundant tissue source and may have a function in mesenchymal-epithelial transition upon insult. Moreover, these cells could be available in sufficient quantities for lineage determination or tissue engineering applications.

  7. Characterization of new microsatellite loci for population genetic studies in the Smooth Cauliflower Coral (Stylophora sp.)

    KAUST Repository

    Banguera-Hinestroza, E.

    2013-01-09

    A total of one hundred microsatellites loci were selected from the draft genome of Stylophora pistillata and evaluated in previously characterized samples of Stylophora cf pistillata from the Red Sea. 17 loci were amplified successfully and tested in 24 individuals from samples belonging to a single population from the central region of the Red Sea. The number of alleles ranged from 3 to 15 alleles per locus, while observed heterozygosity ranged from 0. 292 to 0. 95. Six of these loci showed significant deviations from Hardy-Weinberg equilibrium (HWE) expectations, and 4/136 paired loci comparisons suggested linkage disequilibrium after Bonferroni corrections. After excluding loci with significant HWE deviation and evidence of null alleles, average genetic diversity over loci in the population studied (N = 24, Nloci = 11) was 0. 701 ± 0. 380. This indicates that these loci can be used effectively to evaluate genetic diversity and undertake population genetics studies in Stylophora sp. populations. 2013 The Author(s).

  8. Joint modeling and registration of cell populations in cohorts of high-dimensional flow cytometric data.

    Science.gov (United States)

    Pyne, Saumyadipta; Lee, Sharon X; Wang, Kui; Irish, Jonathan; Tamayo, Pablo; Nazaire, Marc-Danie; Duong, Tarn; Ng, Shu-Kay; Hafler, David; Levy, Ronald; Nolan, Garry P; Mesirov, Jill; McLachlan, Geoffrey J

    2014-01-01

    In biomedical applications, an experimenter encounters different potential sources of variation in data such as individual samples, multiple experimental conditions, and multivariate responses of a panel of markers such as from a signaling network. In multiparametric cytometry, which is often used for analyzing patient samples, such issues are critical. While computational methods can identify cell populations in individual samples, without the ability to automatically match them across samples, it is difficult to compare and characterize the populations in typical experiments, such as those responding to various stimulations or distinctive of particular patients or time-points, especially when there are many samples. Joint Clustering and Matching (JCM) is a multi-level framework for simultaneous modeling and registration of populations across a cohort. JCM models every population with a robust multivariate probability distribution. Simultaneously, JCM fits a random-effects model to construct an overall batch template--used for registering populations across samples, and classifying new samples. By tackling systems-level variation, JCM supports practical biomedical applications involving large cohorts. Software for fitting the JCM models have been implemented in an R package EMMIX-JCM, available from http://www.maths.uq.edu.au/~gjm/mix_soft/EMMIX-JCM/.

  9. Single-cell protein dynamics reproduce universal fluctuations in cell populations

    CERN Document Server

    Brenner, Naama; Rotella, James S; Salman, Hanna

    2015-01-01

    Protein fluctuations in cell populations have recently been shown to exhibit a universal distribution shape under a broad range of biological realizations. Here, measuring protein content in individual bacteria continuously over ~70 generations, we show that single-cell trajectories fluctuate around their average with the same distribution shape as the population, i.e. their relative fluctuations are ergodic. Analysis of these temporal trajectories reveals that one effective random variable, sampled once each cell cycle, suffices to reconstruct the distribution from the trajectory. This in turn implies that cellular microscopic processes are strongly buffered and population-level protein distributions are insensitive to details of the intracellular dynamics. Probing them thus requires searching for novel universality-breaking experimental perturbations.

  10. Introduction: characterization and functions of human T regulatory cells.

    Science.gov (United States)

    Romagnani, Sergio

    2005-06-01

    The field of human T regulatory (Treg) cells is a rapidly progressing, but still confused field of immunology. The effects of dendritic cell (DC) manipulation in Treg generation and the main features of human "natural" Treg cells, as well as of different populations of adaptive Treg subsets, are still partially unclear. However, it is clear that Treg cells play an important role in human diseases, such as autoimmune disorders, allergy, HIV infection, tumors and graft-versus-host disease.

  11. Characterization of genetic diversity of native 'Ancho' chili populations of Mexico using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Rocío Toledo-Aguilar

    2016-03-01

    Full Text Available 'Ancho' type chilis (Capsicum annuum L. var. annuum are an important ingredient in the traditional cuisine of Mexico and so are in high demand. It includes six native sub-types with morphological and fruit color differences. However, the genetic diversity of the set of these sub­types has not been determined. The objective of this study was to characterize the genetic diversity of native Mexican ancho chili populations using microsatellites and to determine the relationship among these populations. Twenty-four microsatellite loci were used to analyze 38 native populations of 'Ancho' chilis collected in seven states of Mexico; three populations different from the ancho type ('Piquin', 'Guajillo', and 'Chilaca' and three hybrids (Capulin, Abedul, and green pepper were included as controls. The number of alleles per locus, number and percentage of polymorphic loci, polymorphic information content (PIC, expected heterozygosity, and Wright F statistics were obtained. Moreover, an analysis of principal components and a cluster analysis were carried out. We detected 220 alleles, with an average of 9.2 alleles per locus; PIC varied between 0.07 and 1, and expected heterozygosity was between 0.36 and 0.59. Also we identified 59 unique alleles and eight alleles common to all of the populations. The F statistics revealed broad genetic differentiation among populations. Both the analysis of principal components and the cluster analysis were able to separate the populations by origin (southern, central, and northern Mexico. The broad genetic diversity detected in the native ancho chili populations of Mexico was found in greater proportion within the populations than between populations.

  12. Genetic characterization of residual Triatoma infestans populations from Brazil by microsatellite.

    Science.gov (United States)

    Belisário, Carlota Josefovicz; Pessoa, Grasielle Caldas D'Avila; Silva, Eduardo Melos; Rosa, Aline Cristine Luiz; Ferreira, Rafaela Elias; Bedin, Cleonara; Wilhelms, Tania; de Mello, Fernanda; Coutinho, Helder Silveira; Fonseca, Eduardo Lins Oyama; Dos Santos, Roberto Fonseca; Rodrigues, Vera Lucia Cortiço Corrêa; Dias, João Carlos Pinto; Diotaiuti, Liléia

    2017-02-01

    In spite of long-term efforts to eliminate Triatoma infestans (Klug 1834) from Brazil, residual foci still persist in the states of Bahia and Rio Grande do Sul. Data on the genetic variability and structuring of these populations are however lacking. Using nine microsatellite loci, we characterized one residual T. infestans population from Bahia and four from Rio Grande do Sul, and compared them with bugs originally from an older focus in São Paulo; 224 bugs were genotyped. The number of alleles per locus ranged from 5 to 11. Observed and expected heterozygosities per locus ranged, respectively, from 0 to 0.786 and from 0 to 0.764. Significant departures from Hardy-Weinberg equilibrium, mainly due to heterozygote deficits, were detected in all loci and in most populations. Global indices estimated by AMOVA were: Fis was 0.37; Fst was 0.28; and Fit was 0.55; overall indices with p = 0.00 indicated substantial differentiation. Inter-population Fst ranged from 0.118 to 0.562, suggesting strong genetic structuring and little to no gene flow among populations. Intra-population Fis ranged from 0.301 to 0.307. Inbreeding was apparent in all populations except that from Bahia-which might be either linked by gene flow to nearby unsampled populations or part of a relatively large local population. The overall pattern of strong genetic structuring among pyrethroid-susceptible residual T. infestans populations suggests that their persistence is probably due to operational control failures. Detection and elimination of such residual foci is technically feasible and must become a public health priority in Brazil.

  13. Dielectrophoretic capture of low abundance cell population using thick electrodes

    Science.gov (United States)

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C.; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-01-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force (FDEP) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10). PMID:26392836

  14. Sickle cell disease in the Kurdish population of northern Iraq.

    Science.gov (United States)

    Al-Allawi, Nasir A S; Jalal, Sana D; Nerwey, Farida F; Al-Sayan, Galawezh O O; Al-Zebari, Sahima S M; Alshingaly, Awny A; Markous, Raji D; Jubrael, Jaladet M S; Hamamy, Hanan

    2012-01-01

    Epidemiological studies have revealed that sickle cell disease patients are clustered in two geographical areas in Iraq, one among the Arabs in the extreme south, another among the Kurdish population in the extreme north, where they constitute major health problems. However, no studies have focused on the genotypes responsible for sickle cell disease or the β-globin gene haplotypes associated with it. For the latter purpose, a total of 103 unrelated Kurdish sickle cell disease patients were evaluated by restriction fragment length polymorphism (RFLP) for the sickle cell mutation, followed by multiplex polymerase chain reaction (PCR) and reverse hybridization for β- and α-thalassemia (β- and α-thal) mutations, whenever indicated. Results showed that the most common genotype was sickle cell anemia (68.0%) followed by Hb S/β(0)-thal and Hb S/β(+)-thal at frequencies of 24.2 and 7.8%, respectively. Eight β-thal mutations were associated with the latter two genotypes including: IVS-II-1 (G>A), IVS-I-110 (G>A), codon 8 (-AA), codon 44 (-C), codon 22 (-7 bp), IVS-I-1 (G>A), codon 30 (G>C) and IVS-I-6 (T>C). In Hb SS patients, the -α(3.7) deletion was documented in 10.0% and was the only α-thal mutation detected. Furthermore, 5' β-globin gene cluster haplotyping of 128 β(S) chromosomes revealed that the most common haplotype seen in 69.5% was the Benin haplotype, followed by the Arab-Indian haplotype in 12.5%. These latter findings closely resemble reports from neighboring Turkey, Syria, Jordan, Lebanon and Mediterranean countries, suggesting a possible common origin, but are in contrast to findings from the Eastern Arabian Peninsula and Iran.

  15. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun; Juhn, Kyoung-Mi; Woo, Seon Rang; Kim, Hee-Young; Han, Young-Hoon; Hwang, Sang-Gu; Hong, Sung-Hee; Kang, Chang-Mo [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Yoo, Young-Do [Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Park, Won-Bong [Division of Natural Science, Seoul Women' s University, Seoul 139-774 (Korea, Republic of); Cho, Myung-Haing [Laboratory of Toxicology, College of Veterinary Medicine, Seoul National University, Seoul (Korea, Republic of); Park, Gil Hong, E-mail: ghpark@korea.ac.kr [Department of Biochemistry, College of Medicine, Korea University, Seoul (Korea, Republic of); Lee, Kee-Ho, E-mail: khlee@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2010-11-12

    Research highlights: {yields} In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. {yields} The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. {yields} The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. {yields} P53 status is not associated with the occurrence of unsensitized clone. {yields} Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC{sup -/-} cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC{sup -/-} clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.

  16. Single Cell Characterization of Prostate Cancer-Circulating Tumor Cells

    Science.gov (United States)

    2013-09-01

    al., 2010). In addition, there were a significant number of cell cycle and mitosis associated transcripts in the highly expressed gene set including...red blood cell lysis with 10 volumes of 16 PharmLyse (BD Biosciences) for 15 minutes at room temperature . Remaining cells were pelleted at 4uC for 15...processes (23%, GO:0008152) or the cell cycle (10%, GO:0007049), consistent with mitotically active cells (Fig. 4C). Cell cycle and mitosis associated

  17. Side Population Cells as Prototype of Chemoresistant, Tumor-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Vinitha Richard

    2013-01-01

    Full Text Available Classically, isolation of CSCs from tumors exploits the detection of cell surface markers associated with normal stem cells. Invariable expression of these cell surface markers in almost all proliferating tumor cells that albeit impart specific functionality, the universality, and clinical credibility of CSC phenotype based on markers is still dubious. Side Population (SP cells, as defined by Hoechst dye exclusion in flow cytometry, have been identified in many solid tumors and cell lines and the SP phenotype can be considered as an enriched source of stem cells as well as an alternative source for the isolation of cancer stem cells especially when molecular markers for stem cells are unknown. SP cells may be responsible for the maintenance and propagation of tumors and the proportion of SP cells may be a predictor of patient outcome. Several of these markers used in cell sorting have emerged as prognostic markers of disease progression though it is seen that the development of new CSC-targeted strategies is often hindered by poor understanding of their regulatory networks and functions. This review intends to appraise the experimental progress towards enhanced isolation and drug screening based on property of acquired chemoresistance of cancer stem cells.

  18. FGFR signaling maintains a drug persistent cell population following epithelial-mesenchymal transition.

    Science.gov (United States)

    Brown, Wells S; Akhand, Saeed Salehin; Wendt, Michael K

    2016-12-13

    An emerging characteristic of drug resistance in cancer is the induction of epithelial-mesenchymal transition (EMT). However, the mechanisms of EMT-mediated drug resistance remain poorly defined. Therefore, we conducted long-term treatments of human epidermal growth factor receptor-2 (Her2)-transformed breast cancer cells with either the EGFR/Her2 kinase inhibitor, Lapatinib or TGF-β, a known physiological inducer of EMT. Both of these treatment regimes resulted in robust EMT phenotypes, but upon withdrawal a subpopulation of TGF-β induced cells readily underwent mesenchymal-epithelial transition, where as Lapatinib-induced cells failed to reestablish an epithelial population. The mesenchymal population that remained following TGF-β stimulation and withdrawal was quickly selected for during subsequent Lapatinib treatment, manifesting in inherent drug resistance. The Nanostring cancer progression gene panel revealed a dramatic upregulation of fibroblast growth factor receptor 1 (FGFR1) and its cognate ligand FGF2 in both acquired and inherent resistance. Mechanistically, FGF:Erk1/2 signaling functions to stabilize the EMT transcription factor Twist and thus maintain the mesenchymal and drug resistant phenotype. Finally, Lapatinib resistant cells could be readily eliminated using recently characterized covalent inhibitors of FGFR. Overall our data demonstrate that next-generation targeting of FGFR can be used in combination with Her2-targeted therapies to overcome resistance in this breast cancer subtype.

  19. Characterization and Comparison of Canine Multipotent Stromal Cells Derived from Liver and Bone Marrow

    Science.gov (United States)

    Malagola, Ermanno; Teunissen, Michelle; van der Laan, Luc J.W.; Verstegen, Monique M.A.; Schotanus, Baukje A.; van Steenbeek, Frank G.; Penning, Louis C.; van Wolferen, Monique E.; Tryfonidou, Marianna A.

    2016-01-01

    Liver-derived multipotent stromal cells (L-MSCs) may prove preferable for treatment strategies of liver diseases, in comparison to the widely studied bone marrow-derived MSCs (BM-MSCs). Canines are a large animal model, in which the pathologies of liver diseases are similar to man. This study further promotes the implementation of canine models in MSC-based treatments of liver diseases. L-MSCs were characterized and compared to BM-MSCs from the same individual. Both cell types demonstrated a spindle-shaped fibroblast-like morphology, possessed the same growth potential, and demonstrated similar immunomodulation gene expression of CD274, PTGS-1, and PTGS-2. Marked differences in cell surface markers, CD105 and CD146, distinguished these two cell populations, and L-MSCs retained a liver-specific imprinting, observed by expression of CK18 and CK19. Finally, both populations differentiated toward the osteogenic and adipogenic lineage; however, L-MSCs failed to differentiate into the chondrogenic lineage. In conclusion, characterization of canine L-MSCs and BM-MSCs demonstrated that the two cell type populations are highly comparable. Although it is still unclear which cell source is preferred for clinical application in liver treatment strategies, this study provides a foundation for future controlled studies with MSC therapy in various liver diseases in dogs before their application in man. PMID:26462417

  20. Selective isolation and differentiation of a stromal population of human embryonic stem cells with osteogenic potential

    DEFF Research Database (Denmark)

    Harkness, Linda M; Mahmood, Amer; Ditzel, Nicholas

    2011-01-01

    The derivation of osteogenic cells from human embryonic stem cells (hESC) has been hampered by the absence of easy and reproducible protocols. hESC grown in feeder-free conditions, often show a sub population of fibroblast-like, stromal cells growing between the colonies. Thus, we examined...... the possibility that these cells represent a population of stromal (mesenchymal) stem cells (hESC-stromal). Two in house derived hES cell lines (Odense3 and KMEB3) as well as an externally derived cell line (Hues8) were transitioned to feeder-free conditions. A sub population of fibroblast-like cells established...

  1. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich

    2013-01-01

    Full Text Available High aldehyde dehydrogenase (ALDH activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated.

  2. Characterizing contrast adaptation in a population of cat primary visual cortical neurons using Fisher information.

    Science.gov (United States)

    Durant, Szonya; Clifford, Colin W G; Crowder, Nathan A; Price, Nicholas S C; Ibbotson, Michael R

    2007-06-01

    When cat V1/V2 cells are adapted to contrast at their optimal orientation, a reduction in gain and/or a shift in the contrast response function is found. We investigated how these factors combine at the population level to affect the accuracy for detecting variations in contrast. Using the contrast response function parameters from a physiologically measured population, we model the population accuracy (using Fisher information) for contrast discrimination. Adaptation at 16%, 32%, and 100% contrast causes a shift in peak accuracy. Despite an overall drop in firing rate over the whole population, accuracy is enhanced around the adapted contrast and at higher contrasts, leading to greater efficiency of contrast coding at these levels. The estimated contrast discrimination threshold curve becomes elevated and shifted toward higher contrasts after adaptation, as has been found previously in human psychophysical experiments.

  3. Phenotypic characterization of bovine memory cells responding to mycobacteria in IFNγ enzyme linked immunospot assays.

    Science.gov (United States)

    Blunt, Laura; Hogarth, Philip J; Kaveh, Daryan A; Webb, Paul; Villarreal-Ramos, Bernardo; Vordermeier, Hans Martin

    2015-12-16

    Bovine tuberculosis (bTB) remains a globally significant veterinary health problem. Defining correlates of protection can accelerate the development of novel vaccines against TB. As the cultured IFNγ ELISPOT (cELISPOT) assay has been shown to predict protection and duration of immunity in vaccinated cattle, we sought to characterize the phenotype of the responding T-cells. Using expression of CD45RO and CD62L we purified by cytometric cell sorting four distinct CD4(+) populations: CD45RO(+)CD62L(hi), CD45RO(+)CD62L(lo), CD45RO(-)CD62L(hi) and CD45RO(-)CD62L(lo) (although due to low and inconsistent cell recovery, this population was not considered further in this study), in BCG vaccinated and Mycobacterium bovis infected cattle. These populations were then tested in the cELISPOT assay. The main populations contributing to production of IFNγ in the cELISPOT were of the CD45RO(+)CD62L(hi) and CD45RO(+)CD62L(lo) phenotypes. These cell populations have been described in other species as central and effector memory cells, respectively. Following in vitro culture and flow cytometry we observed plasticity within the bovine CD4(+) T-cell phenotype. Populations switched phenotype, increasing or decreasing expression of CD45RO and CD62L within 24h of in vitro stimulation. After 14 days all IFNγ producing CD4(+) T cells expressed CD45RO regardless of the original phenotype of the sorted population. No differences were detected in behavior of cells derived from BCG-vaccinated animals compared to cells derived from naturally infected animals. In conclusion, although multiple populations of CD4(+) T memory cells from both BCG vaccinated and M. bovis infected animals contributed to cELISPOT responses, the dominant contributing population consists of central-memory-like T cells (CD45RO(+)CD62L(hi)).

  4. Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts.

    Science.gov (United States)

    Ivanov, Volodymyr; Rezaeinejad, Saeid; Chu, Jian

    2013-10-01

    It is considered that all growing cells, for exception of acidophilic bacteria, have negatively charged inside cytoplasmic membrane (Δψ⁻-cells). Here we show that growing populations of microbial cells contain a small portion of cells with positively charged inside cytoplasmic membrane (Δψ⁺-cells). These cells were detected after simultaneous application of the fluorescent probes for positive membrane potential (anionic dye DIBAC⁻) and membrane integrity (propidium iodide, PI). We found in exponentially growing cell populations of Escherichia coli and Saccharomyces cerevisiae that the content of live Δψ⁻-cells was 93.6 ± 1.8 % for bacteria and 90.4 ± 4.0 % for yeasts and the content of live Δψ⁺-cells was 0.9 ± 0.3 % for bacteria and 2.4 ± 0.7 % for yeasts. Hypothetically, existence of Δψ⁺-cells could be due to short-term, about 1 min for bacteria and 5 min for yeasts, change of membrane potential from negative to positive value during the cell cycle. This change has been shown by the reversions of K⁺, Na⁺, and Ca²⁺ ions fluxes across the cell membrane during synchronous yeast culture. The transformation of Δψ(⁻-cells to Δψ⁺-cells can be explained by slow influx of K⁺ ions into Δψ⁻-cell to the trigger level of K⁺ concentration ("compression of potassium spring"), which is forming "alternative" Δψ⁺-cell for a short period, following with fast efflux of K⁺ ions out of Δψ⁺-cell ("release of potassium spring") returning cell to normal Δψ⁻ state. We anticipate our results to be a starting point to reveal the biological role of cell dualism in form of Δψ⁻- and Δψ⁺- cells.

  5. Effect of Bcl-2 and Bax on survival of side population cells from hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To understand the role and significance of side population (SP) cells from hepatocellular carcinoma (HCC) in hepatocarcinogenesis, development, relapse and metastasis, we simulated the denutrition conditions that cancer cells experience in clinical therapy, observed the different anti-apoptosis ability of SP cells and non-SP cells under such conditions, and established the possible effects of P53, Bcl-2 and Bax on survival of SP cells.METHODS: We used flow cytometry to analyze and sort the SP and non-SP cells in established HCC lines MHCC97and hHCC. We evaluated cell proliferation by methyl thiazolyl tetrazolium (MTT) assay and investigated the expression of p53, bd-2 and bax genes during denutrition,by RT-PCR and immunofluorescence staining.RESULTS: The percentage of SP cells in the two established HCC lines was 0.25% and 0.5%, respectively.SP cells had greater anti-apoptosis and proliferation ability than non-SP cells. Expression of Bcl-2 and Bax in SP and non-SP cells differed during denutrition. The former was up-regulated in SP cells, and the latter was up-regulated in non-SP cells.CONCLUSION: It may be that different upstream molecules acted and led to different expression levels of Bcl-2 and Bax in these two cell lines. There was a direct relationship between up-regulation of Bcl-2 and down-regulation of Bax and higher anti-apoptosis ability in SP cells. It may be that the existence and activity of SP cells are partly responsible for some of the clinical phenomena which are seen in HCC, such as relapse or metastasis. Further research on SP cells may have potential applications in the field of anticancer therapy.

  6. Temporal dynamics of distinct CA1 cell populations during unconscious state induced by ketamine.

    Directory of Open Access Journals (Sweden)

    Hui Kuang

    Full Text Available Ketamine is a widely used dissociative anesthetic which can induce some psychotic-like symptoms and memory deficits in some patients during the post-operative period. To understand its effects on neural population dynamics in the brain, we employed large-scale in vivo ensemble recording techniques to monitor the activity patterns of simultaneously recorded hippocampal CA1 pyramidal cells and various interneurons during several conscious and unconscious states such as awake rest, running, slow wave sleep, and ketamine-induced anesthesia. Our analyses reveal that ketamine induces distinct oscillatory dynamics not only in pyramidal cells but also in at least seven different types of CA1 interneurons including putative basket cells, chandelier cells, bistratified cells, and O-LM cells. These emergent unique oscillatory dynamics may very well reflect the intrinsic temporal relationships within the CA1 circuit. It is conceivable that systematic characterization of network dynamics may eventually lead to better understanding of how ketamine induces unconsciousness and consequently alters the conscious mind.

  7. Preface of the "Symposium on Mathematical Models and Methods to investigate Heterogeneity in Cell and Cell Population Biology"

    Science.gov (United States)

    Clairambault, Jean

    2016-06-01

    This session investigates hot topics related to mathematical representations of cell and cell population dynamics in biology and medicine, in particular, but not only, with applications to cancer. Methods in mathematical modelling and analysis, and in statistical inference using single-cell and cell population data, should contribute to focus this session on heterogeneity in cell populations. Among other methods are proposed: a) Intracellular protein dynamics and gene regulatory networks using ordinary/partial/delay differential equations (ODEs, PDEs, DDEs); b) Representation of cell population dynamics using agent-based models (ABMs) and/or PDEs; c) Hybrid models and multiscale models to integrate single-cell dynamics into cell population behaviour; d) Structured cell population dynamics and asymptotic evolution w.r.t. relevant traits; e) Heterogeneity in cancer cell populations: origin, evolution, phylogeny and methods of reconstruction; f) Drug resistance as an evolutionary phenotype: predicting and overcoming it in therapeutics; g) Theoretical therapeutic optimisation of combined drug treatments in cancer cell populations and in populations of other organisms, such as bacteria.

  8. Bayesian Analysis and Characterization of Multiple Populations in Galactic Globular Clusters

    Science.gov (United States)

    Wagner-Kaiser, Rachel A.; Stenning, David; Sarajedini, Ata; von Hippel, Ted; van Dyk, David A.; Robinson, Elliot; Stein, Nathan; Jefferys, William H.; BASE-9, HST UVIS Globular Cluster Treasury Program

    2017-01-01

    Globular clusters have long been important tools to unlock the early history of galaxies. Thus, it is crucial we understand the formation and characteristics of the globular clusters (GCs) themselves. Historically, GCs were thought to be simple and largely homogeneous populations, formed via collapse of a single molecular cloud. However, this classical view has been overwhelmingly invalidated by recent work. It is now clear that the vast majority of globular clusters in our Galaxy host two or more chemically distinct populations of stars, with variations in helium and light elements at discrete abundance levels. No coherent story has arisen that is able to fully explain the formation of multiple populations in globular clusters nor the mechanisms that drive stochastic variations from cluster to cluster.We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of 30 Galactic Globular Clusters to characterize two distinct stellar populations. A sophisticated Bayesian technique is employed to simultaneously sample the joint posterior distribution of age, distance, and extinction for each cluster, as well as unique helium values for two populations within each cluster and the relative proportion of those populations. We find the helium differences among the two populations in the clusters fall in the range of 0.04 to 0.11. Because adequate models varying in CNO are not presently available, we view these spreads as upper limits and present them with statistical rather than observational uncertainties. Evidence supports previous studies suggesting an increase in helium content concurrent with increasing mass of the cluster. We also find that the proportion of the first population of stars increases with mass. Our results are examined in the context of proposed globular cluster formation scenarios.

  9. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  10. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  11. Dose dependent side effect of superparamagnetic iron oxide nanoparticle labeling on cell motility in two fetal stem cell populations.

    Directory of Open Access Journals (Sweden)

    Valentina Diana

    Full Text Available Multipotent stem cells (SCs could substitute damaged cells and also rescue degeneration through the secretion of trophic factors able to activate the endogenous SC compartment. Therefore, fetal SCs, characterized by high proliferation rate and devoid of ethical concern, appear promising candidate, particularly for the treatment of neurodegenerative diseases. Super Paramagnetic Iron Oxide nanoparticles (SPIOn, routinely used for pre-clinical cell imaging and already approved for clinical practice, allow tracking of transplanted SCs and characterization of their fate within the host tissue, when combined with Magnetic Resonance Imaging (MRI. In this work we investigated how SPIOn could influence cell migration after internalization in two fetal SC populations: human amniotic fluid and chorial villi SCs were labeled with SPIOn and their motility was evaluated. We found that SPIOn loading significantly reduced SC movements without increasing production of Reactive Oxygen Species (ROS. Moreover, motility impairment was directly proportional to the amount of loaded SPIOn while a chemoattractant-induced recovery was obtained by increasing serum levels. Interestingly, the migration rate of SPIOn labeled cells was also significantly influenced by a degenerative surrounding. In conclusion, this work highlights how SPIOn labeling affects SC motility in vitro in a dose-dependent manner, shedding the light on an important parameter for the creation of clinical protocols. Establishment of an optimal SPIOn dose that enables both a good visualization of grafted cells by MRI and the physiological migration rate is a main step in order to maximize the effects of SC therapy in both animal models of neurodegeneration and clinical studies.

  12. Comprehensive proteomic characterization of stem cell-derived extracellular matrices.

    Science.gov (United States)

    Ragelle, Héloïse; Naba, Alexandra; Larson, Benjamin L; Zhou, Fangheng; Prijić, Miralem; Whittaker, Charles A; Del Rosario, Amanda; Langer, Robert; Hynes, Richard O; Anderson, Daniel G

    2017-06-01

    In the stem-cell niche, the extracellular matrix (ECM) serves as a structural support that additionally provides stem cells with signals that contribute to the regulation of stem-cell function, via reciprocal interactions between cells and components of the ECM. Recently, cell-derived ECMs have emerged as in vitro cell culture substrates to better recapitulate the native stem-cell microenvironment outside the body. Significant changes in cell number, morphology and function have been observed when mesenchymal stem cells (MSC) were cultured on ECM substrates as compared to standard tissue-culture polystyrene (TCPS). As select ECM components are known to regulate specific stem-cell functions, a robust characterization of cell-derived ECM proteomic composition is critical to better comprehend the role of the ECM in directing cellular processes. Here, we characterized and compared the protein composition of ECM produced in vitro by bone marrow-derived MSC, adipose-derived MSC and neonatal fibroblasts from different donors, employing quantitative proteomic methods. Each cell-derived ECM displayed a specific and unique matrisome signature, yet they all shared a common set of proteins. We evaluated the biological response of cells cultured on the different matrices and compared them to cells on standard TCPS. The matrices lead to differential survival and gene-expression profiles among the cell types and as compared to TCPS, indicating that the cell-derived ECMs influence each cell type in a different manner. This general approach to understanding the protein composition of different tissue-specific and cell-derived ECM will inform the rational design of defined systems and biomaterials that recapitulate critical ECM signals for stem-cell culture and tissue engineering.

  13. Characterizing intestinal stem cells. An important part of the puzzle

    NARCIS (Netherlands)

    Schepers, A.G.A.P.

    2012-01-01

    The aim of this thesis is to gain better understanding of intestinal stem cells in normal and malignant conditions. In chapter 2 we take our first steps in the characterization of intestinal stem cells. We determine that they have telomerase activity but still suffer from telomere loss. In addition

  14. Comprehensive genomic characterization of squamous cell lung cancers

    NARCIS (Netherlands)

    Hammerman, Peter S.; Lawrence, Michael S.; Voet, Douglas; Jing, Rui; Cibulskis, Kristian; Sivachenko, Andrey; Stojanov, Petar; McKenna, Aaron; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Sougnez, Carrie; Imielinski, Marcin; Helman, Elena; Hernandez, Bryan; Pho, Nam H.; Meyerson, Matthew; Chu, Andy; Chun, Hye-Jung E.; Mungall, Andrew J.; Pleasance, Erin; Robertson, A. Gordon; Sipahimalani, Payal; Stoll, Dominik; Balasundaram, Miruna; Birol, Inanc; Butterfield, Yaron S. N.; Chuah, Eric; Coope, Robin J. N.; Corbett, Richard; Dhalla, Noreen; Guin, Ranabir; Hirst, Anhe Carrie; Hirst, Martin; Holt, Robert A.; Lee, Darlene; Li, Haiyan I.; Mayo, Michael; Moore, Richard A.; Mungall, Karen; Nip, Ka Ming; Olshen, Adam; Schein, Jacqueline E.; Slobodan, Jared R.; Tam, Angela; Thiessen, Nina; Varhol, Richard; Zeng, Thomas; Zhao, Yongjun; Jones, Steven J. M.; Marra, Marco A.; Saksena, Gordon; Cherniack, Andrew D.; Schumacher, Stephen E.; Tabak, Barbara; Carter, Scott L.; Pho, Nam H.; Nguyen, Huy; Onofrio, Robert C.; Crenshaw, Andrew; Ardlie, Kristin; Beroukhim, Rameen; Winckler, Wendy; Hammerman, Peter S.; Getz, Gad; Meyerson, Matthew; Protopopov, Alexei; Zhang, Jianhua; Hadjipanayis, Angela; Lee, Semin; Xi, Ruibin; Yang, Lixing; Ren, Xiaojia; Zhang, Hailei; Shukla, Sachet; Chen, Peng-Chieh; Haseley, Psalm; Lee, Eunjung; Chin, Lynda; Park, Peter J.; Kucherlapati, Raju; Socci, Nicholas D.; Liang, Yupu; Schultz, Nikolaus; Borsu, Laetitia; Lash, Alex E.; Viale, Agnes; Sander, Chris; Ladanyi, Marc; Auman, J. Todd; Hoadley, Katherine A.; Wilkerson, Matthew D.; Shi, Yan; Liquori, Christina; Meng, Shaowu; Li, Ling; Turman, Yidi J.; Topal, Michael D.; Tan, Donghui; Waring, Scot; Buda, Elizabeth; Walsh, Jesse; Jones, Corbin D.; Mieczkowski, Piotr A.; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Dolina, Peter; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; O'Connor, Brian D.; Prins, Jan F.; Liu, Jinze; Chiang, Derek Y.; Hayes, D. Neil; Perou, Charles M.; Cope, Leslie; Danilova, Ludmila; Weisenberger, Daniel J.; Maglinte, Dennis T.; Pan, Fei; Van den Berg, David J.; Triche, Timothy; Herman, James G.; Baylin, Stephen B.; Laird, Peter W.; Getz, Gad; Noble, Michael; Voet, Doug; Saksena, Gordon; Gehlenborg, Nils; DiCara, Daniel; Zhang, Jinhua; Zhang, Hailei; Wu, Chang-Jiun; Liu, Spring Yingchun; Lawrence, Michael S.; Zou, Lihua; Sivachenko, Andrey; Lin, Pei; Stojanov, Petar; Jing, Rui; Cho, Juok; Nazaire, Marc-Danie; Robinson, Jim; Thorvaldsdottir, Helga; Mesirov, Jill; Park, Peter J.; Chin, Lynda; Schultz, Nikolaus; Sinha, Rileen; Ciriello, Giovanni; Cerami, Ethan; Gross, Benjamin; Jacobsen, Anders; Gao, Jianjiong; Aksoy, B. Arman; Weinhold, Nils; Ramirez, Ricardo; Taylor, Barry S.; Antipin, Yevgeniy; Reva, Boris; Shen, Ronglai; Mo, Qianxing; Seshan, Venkatraman; Paik, Paul K.; Ladanyi, Marc; Sander, Chris; Akbani, Rehan; Zhang, Nianxiang; Broom, Bradley M.; Casasent, Tod; Unruh, Anna; Wakefield, Chris; Cason, R. Craig; Baggerly, Keith A.; Weinstein, John N.; Haussler, David; Benz, Christopher C.; Stuart, Joshua M.; Zhu, Jingchun; Szeto, Christopher; Scott, Gary K.; Yau, Christina; Ng, Sam; Goldstein, Ted; Waltman, Peter; Sokolov, Artem; Ellrott, Kyle; Collisson, Eric A.; Zerbino, Daniel; Wilks, Christopher; Ma, Singer; Craft, Brian; Wilkerson, Matthew D.; Auman, J. Todd; Hoadley, Katherine A.; Du, Ying; Cabanski, Christopher; Walter, Vonn; Singh, Darshan; Wu, Junyuan; Gulabani, Anisha; Bodenheimer, Tom; Hoyle, Alan P.; Simons, Janae V.; Soloway, Matthew G.; Mose, Lisle E.; Jefferys, Stuart R.; Balu, Saianand; Marron, J. S.; Liu, Yufeng; Wang, Kai; Liu, Jinze; Prins, Jan F.; Hayes, D. Neil; Perou, Charles M.; Creighton, Chad J.; Zhang, Yiqun; Travis, William D.; Rekhtman, Natasha; Yi, Joanne; Aubry, Marie C.; Cheney, Richard; Dacic, Sanja; Flieder, Douglas; Funkhouser, William; Illei, Peter; Myers, Jerome; Tsao, Ming-Sound; Penny, Robert; Mallery, David; Shelton, Troy; Hatfield, Martha; Morris, Scott; Yena, Peggy; Shelton, Candace; Sherman, Mark; Paulauskis, Joseph; Meyerson, Matthew; Baylin, Stephen B.; Govindan, Ramaswamy; Akbani, Rehan; Azodo, Ijeoma; Beer, David; Bose, Ron; Byers, Lauren A.; Carbone, David; Chang, Li-Wei; Chiang, Derek; Chu, Andy; Chun, Elizabeth; Collisson, Eric; Cope, Leslie; Creighton, Chad J.; Danilova, Ludmila; Ding, Li; Getz, Gad; Hammerman, Peter S.; Hayes, D. Neil; Hernandez, Bryan; Herman, James G.; Heymach, John; Ida, Cristiane; Imielinski, Marcin; Johnson, Bruce; Jurisica, Igor; Kaufman, Jacob; Kosari, Farhad; Kucherlapati, Raju; Kwiatkowski, David; Ladanyi, Marc; Lawrence, Michael S.; Maher, Christopher A.; Mungall, Andy; Ng, Sam; Pao, William; Peifer, Martin; Penny, Robert; Robertson, Gordon; Rusch, Valerie; Sander, Chris; Schultz, Nikolaus; Shen, Ronglai; Siegfried, Jill; Sinha, Rileen; Sivachenko, Andrey; Sougnez, Carrie; Stoll, Dominik; Stuart, Joshua; Thomas, Roman K.; Tomaszek, Sandra; Tsao, Ming-Sound; Travis, William D.; Vaske, Charles; Weinstein, John N.; Weisenberger, Daniel; Wheeler, David; Wigle, Dennis A.; Wilkerson, Matthew D.; Wilks, Christopher; Yang, Ping; Zhang, Jianjua John; Jensen, Mark A.; Sfeir, Robert; Kahn, Ari B.; Chu, Anna L.; Kothiyal, Prachi; Wang, Zhining; Snyder, Eric E.; Pontius, Joan; Pihl, Todd D.; Ayala, Brenda; Backus, Mark; Walton, Jessica; Baboud, Julien; Berton, Dominique L.; Nicholls, Matthew C.; Srinivasan, Deepak; Raman, Rohini; Girshik, Stanley; Kigonya, Peter A.; Alonso, Shelley; Sanbhadti, Rashmi N.; Barletta, Sean P.; Greene, John M.; Pot, David A.; Tsao, Ming-Sound; Bandarchi-Chamkhaleh, Bizhan; Boyd, Jeff; Weaver, JoEllen; Wigle, Dennis A.; Azodo, Ijeoma A.; Tomaszek, Sandra C.; Aubry, Marie Christine; Ida, Christiane M.; Yang, Ping; Kosari, Farhad; Brock, Malcolm V.; Rogers, Kristen; Rutledge, Marian; Brown, Travis; Lee, Beverly; Shin, James; Trusty, Dante; Dhir, Rajiv; Siegfried, Jill M.; Potapova, Olga; Fedosenko, Konstantin V.; Nemirovich-Danchenko, Elena; Rusch, Valerie; Zakowski, Maureen; Iacocca, Mary V.; Brown, Jennifer; Rabeno, Brenda; Czerwinski, Christine; Petrelli, Nicholas; Fan, Zhen; Todaro, Nicole; Eckman, John; Myers, Jerome; Rathmell, W. Kimryn; Thorne, Leigh B.; Huang, Mei; Boice, Lori; Hill, Ashley; Penny, Robert; Mallery, David; Curley, Erin; Shelton, Candace; Yena, Peggy; Morrison, Carl; Gaudioso, Carmelo; Bartlett, Johnm. S.; Kodeeswaran, Sugy; Zanke, Brent; Sekhon, Harman; David, Kerstin; Juhl, Hartmut; Van Le, Xuan; Kohl, Bernard; Thorp, Richard; Tien, Nguyen Viet; Van Bang, Nguyen; Sussman, Howard; Phu, Bui Duc; Hajek, Richard; PhiHung, Nguyen; Khan, Khurram Z.; Muley, Thomas; Shaw, Kenna R. Mills; Sheth, Margi; Yang, Liming; Buetow, Ken; Davidsen, Tanja; Demchok, John A.; Eley, Greg; Ferguson, Martin; Dillon, Laura A. L.; Schaefer, Carl; Guyer, Mark S.; Ozenberger, Bradley A.; Palchik, Jacqueline D.; Peterson, Jane; Sofia, Heidi J.; Thomson, Elizabeth; Meyerson, Matthew

    2012-01-01

    Lung squamous cell carcinoma is a common type of lung cancer, causing approximately 400,000 deaths per year worldwide. Genomic alterations in squamous cell lung cancers have not been comprehensively characterized, and no molecularly targeted agents have been specifically developed for its treatment.

  15. Establishment and characterization of porcine cytolytic cell lines and clones

    NARCIS (Netherlands)

    Bruin, de M.C.M.; Rooij, van E.M.A.; Voermans, J.L.M.; Visser, de Y.E.; Bianchi, A.T.J.; Kimman, T.G.

    1997-01-01

    Although non-major-histocompatibility-complex-restricted cytolytic cells appear to significantly influence antiviral immunity in pigs, the phenotype and functional characteristics of these cells are not well defined. To allow a detailed analysis of these subsets, we established and characterized cel

  16. Identification and Characterization of Adult Porcine Muscle Stem Cells

    NARCIS (Netherlands)

    Wilschut, K.J.

    2009-01-01

    In the past decade, tissue-specific stem cell research has been emerging. Stem cells are characterized by a long-term expansion and a broad developmental potential in vitro. Pre-clinical studies appear promising, but still many limitations have to be overcome before broad therapeutic use of stem cel

  17. Invasive cells in the placentome of Andean populations of Mabuya: an endotheliochorial contribution to the placenta?

    Science.gov (United States)

    Vieira, Simón; de Perez, Gloria; Ramírez-Pinilla, Martha Patricia

    2007-12-01

    New world lizards of the genus Mabuya have the most specialized level of placentotrophy among reptiles known to date, and related to that, they have the most complex allantoplacenta characterized by a series of morphological specializations that converge with those known for eutherian mammals. One of these specializations is the placentome that is found in the embryonic pole of the incubation chamber. In the mature allantoplacenta, this structure is morphologically the most complex, which could support an important amount of nutrient exchange between mother and fetus. According to the relationship between the chorioallantois and the syncytial uterine epithelia, the placenta of Mabuya populations shows some interesting similarities to the synepitheliochorial type. Recently, cells of chorionic origin have been found invading the syncytial uterine epithelium, and in very close proximity with uterine blood vessels. In this study, we describe the relationship between these invasive chorionic cells, the uterine syncytium, and the subjacent blood vessels of several populations of this genus, by means of high resolution optical microscopy and transmission electron microscopy. Cell groups originating from the chorion, of variable size and shape, penetrate the uterine syncytial epithelium extending complex cytoplasmic projections that come in contact with uterine capillaries and form an extensive and complex double-membrane system that surrounds the capillary. The close relationship between the chorion and the maternal circulation suggests that the Mabuya placentome shows some characteristics of an endotheliochorial placenta. This finding constitutes so far the only documented example of an endotheliochorial placentation in Reptilia.

  18. Characterization of Human Mammary Epithelial Stem Cells

    Science.gov (United States)

    2010-10-01

    breast is highly expressed by luminal epithelial cells and is less expressed by basal cells19,20. In contrast, CD49f (a6 integrin) has an inverse pattern...mouse stretched on its back. The hose and nose cone from the anesthetic vaporizer are securely attached to one side of the plate, and a heated pad is...the mouse by a nose cone. Check that the mouse has reached surgical anesthesia by loss of pedal withdrawal reflex . ! cautIon Institutional review

  19. Abcg2-Labeled Cells Contribute to Different Cell Populations in the Embryonic and Adult Heart

    Science.gov (United States)

    Doyle, Michelle J.; Maher, Travis J.; Li, Qinglu; Garry, Mary G.; Sorrentino, Brian P.

    2016-01-01

    ATP-binding cassette transporter subfamily G member 2 (Abcg2)-expressing cardiac-side population cells have been identified in the developing and adult heart, although the role they play in mammalian heart growth and regeneration remains unclear. In this study, we use genetic lineage tracing to follow the cell fate of Abcg2-expressing cells in the embryonic and adult heart. During cardiac embryogenesis, the Abcg2 lineage gives rise to multiple cardiovascular cell types, including cardiomyocytes, endothelial cells, and vascular smooth muscle cells. This capacity for Abcg2-expressing cells to contribute to cardiomyocytes decreases rapidly during the postnatal period. We further tested the role of the Abcg2 lineage following myocardial injury. One month following ischemia reperfusion injury, Abcg2-expressing cells contributed significantly to the endothelial cell lineage, however, there was no contribution to regenerated cardiomyocytes. Furthermore, consistent with previous results showing that Abcg2 plays an important cytoprotective role during oxidative stress, we show an increase in Abcg2 labeling of the vasculature, a decrease in the scar area, and a moderate improvement in cardiac function following myocardial injury. We have uncovered a difference in the capacity of Abcg2-expressing cells to generate the cardiovascular lineages during embryogenesis, postnatal growth, and cardiac regeneration. PMID:26573225

  20. T-cell population of primary and secondary cutaneous B-cell lymphomas does not express the cutaneous lymphocyte-associated antigen (CLA).

    Science.gov (United States)

    Marti, R M; Hausmann, G; Estrach, T; Cid, M C; Palou, J; Herrero, C; Mascaro, J M

    1997-05-01

    Primary cutaneous B-cell lymphomas (CBCL) are a group of malignant lymphomas with apparently distinct clinicopathological and immunophenotypical features. As in other B-cell lymphomas, the accompanying benign cell population in CBCL includes a variable number of T lymphocytes whose role is not well understood. In the present study we characterized the immunophenotype of these T cells and compared it with that of the reactive T-cell population in specific skin involvement by noncutaneous B-cell malignancies. Our results indicated that most T cells in both primary and secondary B-cell lymphomas were CLA+ memory/effector helper T cells which differed from the currently known CLA+ memory/effector helper T lymphocytes of the skin-associated lymphoid tissue (SALT) system. However, the endothelial CLA ligand, E-selectin, was expressed on dermal vessels. These results suggest that a B cell environment and/or a lack of epidermal involvement promote(s) the recruitment into the skin of a different, apparently less specific, subset of memory helper T cells from those seen in T-cell-mediated dermatoses.

  1. Programming strategy for efficient modeling of dynamics in a population of heterogeneous cells

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Hendriksen, Morten; Sørensen, Preben Graae

    2013-01-01

    Heterogeneity is a ubiquitous property of biological systems. Even in a genetically identical population of a single cell type, cell-to-cell differences are observed. Although the functional behavior of a given population is generally robust, the consequences of heterogeneity are fairly unpredict...

  2. Isolation, Characterization, and Transplantation of Cardiac Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Busadee Pratumvinit

    2013-01-01

    due to difficulties in isolation, cell heterogeneity, lack of specific markers to identify myocardial endothelial cells, and inadequate conditions to maintain long-term cultures. Herein, we developed a method for isolation, characterization, and expansion of cardiac endothelial cells applicable to study endothelial cell biology and clinical applications such as neoangiogenesis. First, we dissociated the cells from murine heart by mechanical disaggregation and enzymatic digestion. Then, we used flow cytometry coupled with specific markers to isolate endothelial cells from murine hearts. CD45+ cells were gated out to eliminate the hematopoietic cells. CD31+/Sca-1+ cells were isolated as endothelial cells. Cells isolated from atrium grew faster than those from ventricle. Cardiac endothelial cells maintain endothelial cell function such as vascular tube formation and acetylated-LDL uptake in vitro. Finally, cardiac endothelial cells formed microvessels in dorsal matrigel plug and engrafted in cardiac microvessels following intravenous and intra-arterial injections. In conclusion, our multicolor flow cytometry method is an effective method to analyze and purify endothelial cells from murine heart, which in turn can be ex vivo expanded to study the biology of endothelial cells or for clinical applications such as therapeutic angiogenesis.

  3. RADBALL TECHNOLOGY TESTING FOR HOT CELL CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2010-03-25

    Operations at various U.S. Department of Energy sites have resulted in substantial radiological contamination of tools, equipment, and facilities. It is essential to use remote technologies for characterization and decommissioning to keep worker exposures as low as reasonably achievable in these highly contaminated environments. A significant initial step in planning and implementing D&D of contaminated facilities involves the development of an accurate assessment of the radiological, chemical, and structural conditions inside of the facilities. Collected information describing facility conditions using remote technologies could reduce the conservatism associated with planning initial worker entry (and associated cost).

  4. Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype.

    Science.gov (United States)

    Jiang, J; Zhang, Y; Chuai, S; Wang, Z; Zheng, D; Xu, F; Zhang, Y; Li, C; Liang, Y; Chen, Z

    2012-02-09

    Identification and characterization of cancer stem cells (CSCs) in gastric cancer are difficult owing to the lack of specific markers and consensus methods. In this study, we show that cells with the CD90 surface marker in gastric tumors could be enriched under non-adherent, serum-free and sphere-forming conditions. These CD90(+) cells possess a higher ability to initiate tumor in vivo and could re-establish the cellular hierarchy of tumors from single-cell implantation, demonstrating their self-renewal properties. Interestingly, higher proportion of CD90(+) cells correlates with higher in vivo tumorigenicity of gastric primary tumor models. In addition, it was found that ERBB2 was overexpressed in about 25% of the gastric primary tumor models, which correlates with the higher level of CD90 expression in these tumors. Trastuzumab (humanized anti-ERBB2 antibody) treatment of high-tumorigenic gastric primary tumor models could reduce the CD90(+) population in tumor mass and suppress tumor growth when combined with traditional chemotherapy. Moreover, tumorigenicity of tumor cells could also be suppressed when trastuzumab treatment starts at the same time as cell implantation. Therefore, we have identified a CSC population in gastric primary tumors characterized by their CD90 phenotype. The finding that trastuzumab targets the CSC population in gastric tumors suggests that ERBB2 signaling has a role in maintaining CSC populations, thus contributing to carcinogenesis and tumor invasion. In conclusion, the results from this study provide new insights into the gastric tumorigenic process and offer potential implications for the development of anticancer drugs as well as therapeutic treatment of gastric cancers.

  5. Derivation and characterization of monkey embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Wolf Don P

    2004-06-01

    Full Text Available Abstract Embryonic stem (ES cell based therapy carries great potential in the treatment of neurodegenerative diseases. However, before clinical application is realized, the safety, efficacy and feasibility of this therapeutic approach must be established in animal models. The rhesus macaque is physiologically and phylogenetically similar to the human, and therefore, is a clinically relevant animal model for biomedical research, especially that focused on neurodegenerative conditions. Undifferentiated monkey ES cells can be maintained in a pluripotent state for many passages, as characterized by a collective repertoire of markers representing embryonic cell surface molecules, enzymes and transcriptional factors. They can also be differentiated into lineage-specific phenotypes of all three embryonic germ layers by epigenetic protocols. For cell-based therapy, however, the quality of ES cells and their progeny must be ensured during the process of ES cell propagation and differentiation. While only a limited number of primate ES cell lines have been studied, it is likely that substantial inter-line variability exists. This implies that diverse ES cell lines may differ in developmental stages, lineage commitment, karyotypic normalcy, gene expression, or differentiation potential. These variables, inherited genetically and/or induced epigenetically, carry obvious complications to therapeutic applications. Our laboratory has characterized and isolated rhesus monkey ES cell lines from in vitro produced blastocysts. All tested cell lines carry the potential to form pluripotent embryoid bodies and nestin-positive progenitor cells. These ES cell progeny can be differentiated into phenotypes representing the endodermal, mesodermal and ectodermal lineages. This review article describes the derivation of monkey ES cell lines, characterization of the undifferentiated phenotype, and their differentiation into lineage-specific, particularly neural, phenotypes

  6. Characterization of mast cell secretory granules and their cell biology.

    Science.gov (United States)

    Azouz, Nurit Pereg; Hammel, Ilan; Sagi-Eisenberg, Ronit

    2014-10-01

    Exocytosis and secretion of secretory granule (SG) contained inflammatory mediators is the primary mechanism by which mast cells exert their protective immune responses in host defense, as well as their pathological functions in allergic reactions and anaphylaxis. Despite their central role in mast cell function, the molecular mechanisms underlying the biogenesis and secretion of mast cell SGs remain largely unresolved. Early studies have established the lysosomal nature of the mast cell SGs and implicated SG homotypic fusion as an important step occurring during both their biogenesis and compound secretion. However, the molecular mechanisms that account for key features of this process largely remain to be defined. A novel high-resolution imaging based methodology allowed us to screen Rab GTPases for their phenotypic and functional impact and identify Rab networks that regulate mast cell secretion. This screen has identified Rab5 as a novel regulator of homotypic fusion of the mast cell SGs that thereby regulates their size and cargo composition.

  7. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  8. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Damodaran, Shima P; Eberhard, Stephan; Boitard, Laurent; Rodriguez, Jairo Garnica; Wang, Yuxing; Bremond, Nicolas; Baudry, Jean; Bibette, Jérôme; Wollman, Francis-André

    2015-01-01

    To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers) and a significant subpopulation of slowly dividing cells (slow-growers). These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  9. Characterization of inflammatory cell infiltration in feline allergic skin disease.

    Science.gov (United States)

    Taglinger, K; Day, M J; Foster, A P

    2007-11-01

    Sixteen cats with allergic dermatitis and six control cats with no skin disease were examined. Lymphoid and histiocytic cells in skin sections were examined immunohistochemically and mast cells were identified by toluidine blue staining. The 16 allergic cats showed one or more of several features (alopecia, eosinophilic plaques or granulomas, papulocrusting lesions), and histopathological findings were diverse. In control cats there were no cells that expressed IgM or MAC387, a few that were immunolabelled for IgG, IgA or CD3, and moderate numbers of mast cells. In allergic cats, positively labelled inflammatory cells were generally more numerous in lesional than in non-lesional skin sections, and were particularly associated with the superficial dermis and perifollicular areas. There were low numbers of plasma cells expressing cytoplasmic immunoglobulin; moderate numbers of MHC II-, MAC387- and CD3-positive cells; and moderate to numerous mast cells. MHC class II expression was associated with inflammatory cells morphologically consistent with dermal dendritic cells and macrophages, and epidermal Langerhans cells. Dendritic cells expressing MHC class II were usually associated with an infiltrate of CD3 lymphocytes, suggesting that these cells participate in maintenance of the local immune response by presenting antigen to T lymphocytes. These findings confirm that feline allergic skin disease is characterized by infiltration of activated antigen-presenting cells and T lymphocytes in addition to increased numbers of dermal mast cells. This pattern mimics the dermal inflammation that occurs in the chronic phase of both canine and human atopic dermatitis.

  10. Isolation, characterization, and molecular regulation of muscle stem cells

    Directory of Open Access Journals (Sweden)

    So-ichiro eFukada

    2013-11-01

    Full Text Available keletal muscle has great regenerative capacity which is dependent on muscle stem cells, also known as satellite cells. A loss of satellite cells and/or their function impairs skeletal muscle regeneration and leads to a loss of skeletal muscle power; therefore, the molecular mechanisms for maintaining satellite cells in a quiescent and undifferentiated state are of great interest in skeletal muscle biology. Many studies have demonstrated proteins expressed by satellite cells, including Pax7, M-cadherin, Cxcr4, syndecan3/4, and c-met. To further characterize satellite cells, we established a method to directly isolate satellite cells using a monoclonal antibody, SM/C-2.6. Using SM/C-2.6 and microarrays, we measured the genes expressed in quiescent satellite cells and demonstrated that Hesr3 may complement Hesr1 in generating quiescent satellite cells. Although Hesr1- or Hesr3-single knockout mice show a normal skeletal muscle phenotype, including satellite cells, Hesr1/Hesr3-double knockout mice show a gradual decrease in the number of satellite cells and increase in regenerative defects dependent on satellite cell numbers. We also observed that a mouse’s genetic background affects the regenerative capacity of its skeletal muscle and have established a line of DBA/2-background mdx mice that has a much more severe phenotype than the frequently used C57BL/10-mdx mice. The phenotype of DBA/2-mdx mice also seems to depend on the function of satellite cells. In this review, we summarize the methodology of direct isolation, characterization, and molecular regulation of satellite cells based on our results. The relationship between the regenerative capacity of satellite cells and progression of muscular disorders is also summarized. In the last part, we discuss application of the accumulating scientific information on satellite cells to treatment of patients with muscular disorders.

  11. Development of a novel cell sorting method that samples population diversity in flow cytometry.

    Science.gov (United States)

    Osborne, Geoffrey W; Andersen, Stacey B; Battye, Francis L

    2015-11-01

    Flow cytometry based electrostatic cell sorting is an important tool in the separation of cell populations. Existing instruments can sort single cells into multi-well collection plates, and keep track of cell of origin and sorted well location. However currently single sorted cell results reflect the population distribution and fail to capture the population diversity. Software was designed that implements a novel sorting approach, "Slice and Dice Sorting," that links a graphical representation of a multi-well plate to logic that ensures that single cells are sampled and sorted from all areas defined by the sort region/s. Therefore the diversity of the total population is captured, and the more frequently occurring or rarer cell types are all sampled. The sorting approach was tested computationally, and using functional cell based assays. Computationally we demonstrate that conventional single cell sorting can sample as little as 50% of the population diversity dependant on the population distribution, and that Slice and Dice sorting samples much more of the variety present within a cell population. We then show by sorting single cells into wells using the Slice and Dice sorting method that there are cells sorted using this method that would be either rarely sorted, or not sorted at all using conventional single cell sorting approaches. The present study demonstrates a novel single cell sorting method that samples much more of the population diversity than current methods. It has implications in clonal selection, stem cell sorting, single cell sequencing and any areas where population heterogeneity is of importance.

  12. Tendon repair augmented with a novel circulating stem cell population.

    Science.gov (United States)

    Daher, Robert J; Chahine, Nadeen O; Razzano, Pasquale; Patwa, Sohum A; Sgaglione, Nicholas J; Grande, Daniel A

    2011-01-01

    Tendon ruptures are common sports-related injuries that are often treated surgically by the use of sutures followed by immobilization. However, tendon repair by standard technique is associated with long healing time and often suboptimal repair. Methods to enhance tendon repair time as well as the quality of repair are currently unmet clinical needs. Our hypothesis is that the introduction of a unique stem cell population at the site of tendon transection would result in an improved rate and quality of repair. Achilles tendons of fifty-one Sprague-Dawley rats were transected and suture-repaired. In half of the rats, a biodegradable scaffold seeded with allogenic circulating stem cells was placed as an onlay to the defect site in addition to the suture repair. The other half was treated with suture alone to serve as the control group. Animals were randomized to a two-, four-, or six-week time group. At the time of necropsy, tendons were harvested and prepared for either biomechanical or histological analysis. Histological slides were evaluated in a blinded fashion with the use of a grading scale. By two weeks, the experimental group demonstrated a significant improvement in repair compared to controls with no failures. Average histological scores of 0.6 and 2.6 were observed for the experimental and control group respectively. The experimental group demonstrated complete bridging of the transection site with parallel collagen fiber arrangement. By four weeks, both groups showed a continuing trend of healing, with the scaffold group exceeding the histological quality of the tissue repaired with suture alone. Biomechanically, the experimental group had a decreasing cross-sectional area with time which was also associated with a significant increase in the ultimate tensile strength of the tendons, reaching 4.2MPa by six weeks. The experimental group also achieved a significantly higher elastic toughness by six weeks and saw an increase in the tensile modulus, reaching

  13. Distinct population of highly malignant cells in a head and neck squamous cell carcinoma cell line established by xenograft model

    Directory of Open Access Journals (Sweden)

    Jan Chia-Ing

    2009-11-01

    Full Text Available Abstract The progression and metastasis of solid tumors, including head and neck squamous cell carcinoma (HNSCC, have been related to the behavior of a small subpopulation of cancer stem cells. Here, we have established a highly malignant HNSCC cell line, SASVO3, from primary tumors using three sequential rounds of xenotransplantation. SASVO3 possesses enhanced tumorigenic ability both in vitro and in vivo. Moreover, SASVO3 exhibits properties of cancer stem cells, including that increased the abilities of sphere-forming, the number of side population cells, the potential of transplanted tumor growth and elevated expression of the stem cell marker Bmi1. Injection of SASVO3 into the tail vein of nude mice resulted in lung metastases. These results are consistent with the postulate that the malignant and/or metastasis potential of HNSCC cells may reside in a stem-like subpopulation.

  14. Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential

    Energy Technology Data Exchange (ETDEWEB)

    Barbieri, Federica; Wurth, Roberto [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Ratto, Alessandra; Campanella, Chiara; Vito, Guendalina [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Thellung, Stefano [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy); Daga, Antonio [Laboratory of Translational Oncology, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Cilli, Michele [Animal Facility, IRCCS Azienda Ospedaliera Universitaria San Martino - IST- Istituto Nazionale Ricerca sul Cancro, L.go R. Benzi, 10, 16132 Genova Italy (Italy); Ferrari, Angelo [Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D' Aosta, National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Piazza Borgo Pila, 16129, Genova (Italy); Florio, Tullio, E-mail: tullio.florio@unige.it [Section of Pharmacology, Dept. of Internal Medicine Di.M.I., and Center of Excellence for Biomedical Research - University of Genova, Viale Benedetto XV, 2, 16132 Genova (Italy)

    2012-04-15

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67, EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black

  15. T Cell Epitope Immunotherapy Induces a CD4+ T Cell Population with Regulatory Activity

    Directory of Open Access Journals (Sweden)

    Verhoef Adrienne

    2005-01-01

    Full Text Available Background Synthetic peptides, representing CD4+ T cell epitopes, derived from the primary sequence of allergen molecules have been used to down-regulate allergic inflammation in sensitised individuals. Treatment of allergic diseases with peptides may offer substantial advantages over treatment with native allergen molecules because of the reduced potential for cross-linking IgE bound to the surface of mast cells and basophils. Methods and Findings In this study we address the mechanism of action of peptide immunotherapy (PIT in cat-allergic, asthmatic patients. Cell-division-tracking dyes, cell-mixing experiments, surface phenotyping, and cytokine measurements were used to investigate immunomodulation in peripheral blood mononuclear cells (PBMCs after therapy. Proliferative responses of PBMCs to allergen extract were significantly reduced after PIT. This was associated with modified cytokine profiles generally characterised by an increase in interleukin-10 and a decrease in interleukin-5 production. CD4+ cells isolated after PIT were able to actively suppress allergen-specific proliferative responses of pretreatment CD4neg PBMCs in co-culture experiments. PIT was associated with a significant increase in surface expression of CD5 on both CD4+ and CD8+ PBMCs. Conclusion This study provides evidence for the induction of a population of CD4+ T cells with suppressor/regulatory activity following PIT. Furthermore, up-regulation of cell surface levels of CD5 may contribute to reduced reactivity to allergen.

  16. The cell-stretcher: A novel device for the mechanical stimulation of cell populations

    Science.gov (United States)

    Seriani, S.; Del Favero, G.; Mahaffey, J.; Marko, D.; Gallina, P.; Long, C. S.; Mestroni, L.; Sbaizero, O.

    2016-08-01

    Mechanical stimulation appears to be a critical modulator for many aspects of biology, both of living tissue and cells. The cell-stretcher, a novel device for the mechanical uniaxial stimulation of populations of cells, is described. The system is based on a variable stroke cam-lever-tappet mechanism which allows the delivery of cyclic stimuli with frequencies of up to 10 Hz and deformation between 1% and 20%. The kinematics is presented and a simulation of the dynamics of the system is shown, in order to compute the contact forces in the mechanism. The cells, following cultivation and preparation, are plated on an ad hoc polydimethylsiloxane membrane which is then loaded on the clamps of the cell-stretcher via force-adjustable magnetic couplings. In order to show the viability of the experimentation and biocompatibility of the cell-stretcher, a set of two in vitro tests were performed. Human epithelial carcinoma cell line A431 and Adult Mouse Ventricular Fibroblasts (AMVFs) from a dual reporter mouse were subject to 0.5 Hz, 24 h cyclic stretching at 15% strain, and to 48 h stimulation at 0.5 Hz and 15% strain, respectively. Visual analysis was performed on A431, showing definite morphological changes in the form of cellular extroflections in the direction of stimulation compared to an unstimulated control. A cytometric analysis was performed on the AMVF population. Results show a post-stimulation live-dead ratio deviance of less than 6% compared to control, which proves that the environment created by the cell-stretcher is suitable for in vitro experimentation.

  17. Characterization of F1 interspecific hybrids between wild Helianthus annuus L. populations and cultivated sunflower

    Directory of Open Access Journals (Sweden)

    Terzić Sreten

    2006-01-01

    Full Text Available Phenotype, chromosomes pairing and pollen vitality were compared between parental populations and F1 hybrids of interspecific cross between Helianthus annuus L. and cultivated sunflower. The investigation of the simple sequence repeats (SSR polymorphism was also used to test the hybrid nature of F1 populations. The phenotypic traits of F1 hybrid plants were either closer to the wild species or intermediate. Irregular chromosome pairing was found in only 0 to 10% of meiocytes in the meiosis of F1 hybrid plants. Interspecific crosses were confirmed with SSR markers in all hybrid combinations. Alleles that were not present in parental DNA were frequently observed in F1 hybrids. That is additional evidence that those hybrid combinations were not produced by self-fertilization. The results suggest that SSR markers can be efficiently used for the F1 hybrid characterization in crosses between closely related species, in which, the changes of phenotype, meiosis and pollen vitality are not always significant.

  18. Characterization of a novel South American population of the astaxanthin producing yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma).

    Science.gov (United States)

    Libkind, Diego; Moliné, Martín; de García, Virginia; Fontenla, Sonia; van Broock, María

    2008-03-01

    A novel population of the biotechnologically important yeast Xanthophyllomyces dendrorhous, the sexual stage of Phaffia rhodozyma, has been recently isolated for the first time in the southern Hemisphere (Patagonia, Argentina). The aim of the present work was to phenotypically and genotypically characterize two representative strains of this new population, and assess such strains as a potential biotechnological source of astaxanthin, fatty acids and extracellular enzymes. Minor variations were found in physiological tests. PCR fingerprinting studies (MSP-PCR) showed the main differences between X. dendrorhous Patagonian and Type strains. Patagonian strains accumulated a xanthophyll-like pigment, which was identified as astaxanthin. These strains showed low fatty acids content (mainly polyunsaturated fatty acids) and, of a total of six extracellular enzymes tested, only produced amylase. Genetic differences between Patagonian and collection X. dendrorhous strains could be explained by geographic isolation and habitat specificity.

  19. Characterizing cancer cells with cancer stem cell-like features in 293T human embryonic kidney cells

    OpenAIRE

    Buchholz Thomas A; Lacerda Lara; Xu Wei; Robertson Fredika; Ueno Naoto T; Lucci Anthony; Landis Melissa D; Rodriguez Angel A; Li Li; Cohen Evan; Gao Hui; Krishnamurthy Savitri; Zhang Xiaomei; Debeb Bisrat G; Cristofanilli Massimo

    2010-01-01

    Abstract Background Since the first suggestion of prospectively identifiable cancer stem cells in solid tumors, efforts have been made to characterize reported cancer stem cell surrogates in existing cancer cell lines, and cell lines rich with these surrogates have been used to screen for cancer stem cell targeted agents. Although 293T cells were derived from human embryonic kidney, transplantation of these cells into the mammary fat pad yields aggressive tumors that self-renew as evidenced b...

  20. Characterization of mitochondrial haplogroups in a large population-based sample from the United States.

    Science.gov (United States)

    Mitchell, Sabrina L; Goodloe, Robert; Brown-Gentry, Kristin; Pendergrass, Sarah A; Murdock, Deborah G; Crawford, Dana C

    2014-07-01

    Mitochondrial DNA (mtDNA) haplogroups are valuable for investigations in forensic science, molecular anthropology, and human genetics. In this study, we developed a custom panel of 61 mtDNA markers for high-throughput classification of European, African, and Native American/Asian mitochondrial haplogroup lineages. Using these mtDNA markers, we constructed a mitochondrial haplogroup classification tree and classified 18,832 participants from the National Health and Nutrition Examination Surveys (NHANES). To our knowledge, this is the largest study to date characterizing mitochondrial haplogroups in a population-based sample from the United States, and the first study characterizing mitochondrial haplogroup distributions in self-identified Mexican Americans separately from Hispanic Americans of other descent. We observed clear differences in the distribution of maternal genetic ancestry consistent with proposed admixture models for these subpopulations, underscoring the genetic heterogeneity of the United States Hispanic population. The mitochondrial haplogroup distributions in the other self-identified racial/ethnic groups within NHANES were largely comparable to previous studies. Mitochondrial haplogroup classification was highly concordant with self-identified race/ethnicity (SIRE) in non-Hispanic whites (94.8 %), but was considerably lower in admixed populations including non-Hispanic blacks (88.3 %), Mexican Americans (81.8 %), and other Hispanics (61.6 %), suggesting SIRE does not accurately reflect maternal genetic ancestry, particularly in populations with greater proportions of admixture. Thus, it is important to consider inconsistencies between SIRE and genetic ancestry when performing genetic association studies. The mitochondrial haplogroup data that we have generated, coupled with the epidemiologic variables in NHANES, is a valuable resource for future studies investigating the contribution of mtDNA variation to human health and disease.

  1. Assessment of Technologies Used to Characterize Wildlife Populations in the Offshore Environment

    Energy Technology Data Exchange (ETDEWEB)

    Duberstein, Corey A.; Tagestad, Jerry D.; Larson, Kyle B.

    2011-12-09

    Wind energy development in the offshore environment can have both direct and indirect effects on wildlife, yet little is known about most species that use near-shore and offshore waters due in part to the difficulty involved in studying animals in remote, challenging environments. Traditional methods to characterize offshore wildlife populations include shipboard observations. Technological advances have provided researches with an array of technologies to gather information about fauna from afar. This report describes the use and application of radar, thermal and optical imagery, and acoustic detection technologies for monitoring birds, bats, and marine mammals in offshore environments.

  2. Immunohistochemical characterization of feline mast cell tumors.

    Science.gov (United States)

    Mallett, C L; Northrup, N C; Saba, C F; Rodriguez, C O; Rassnick, K M; Gieger, T L; Childress, M O; Howerth, E W

    2013-01-01

    Expression of histamine, serotonin, and KIT was evaluated in 61 archived feline mast cell tumors (MCTs) from the skin (n = 29), spleen (n = 17), and gastrointestinal (GI) tract (n = 15) using immunohistochemistry. Twenty-eight percent of cutaneous MCTs, 18% of splenic MCTs, and 53% of GI MCTs displayed histamine immunoreactivity. Serotonin immunoreactivity was detected in 3 GI and 1 cutaneous MCT. Sixty-nine percent of cutaneous MCTs, 35% of splenic MCTs, and 33% of GI MCTs were positive for KIT. Expression of these biogenic amines and KIT was less common than expected. Results of this study suggest heterogeneity in feline MCTs based on anatomic location. Further studies are needed to explain the significance of these differences.

  3. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  4. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Razieh Alipour

    2010-01-01

    Conclusions: Both cell populations derived from adipose tissue and dental pulp showed common phenotypic markers of mesenchymal stem cells. In conclusion, mesenchymal stem cells could be isolated and cultured successfully from dental pulp of human exfo-liated deciduous teeth, they are very good candidates for treatment and prevention of human diseases.

  5. Culture and characterization of mammary cancer stem cells in mammospheres.

    Science.gov (United States)

    Piscitelli, Eleonora; Cocola, Cinzia; Thaden, Frank Rüdiger; Pelucchi, Paride; Gray, Brian; Bertalot, Giovanni; Albertini, Alberto; Reinbold, Rolland; Zucchi, Ileana

    2015-01-01

    Mammospheres (MMs) are a model for culturing and maintaining mammary gland stem cells (SCs) or cancer stem cells (CSCs) ex situ. As MMs recapitulate the micro-niche of the mammary gland or a tumor, MMs are a model for studying the properties of SCs or CSCs, and for mapping, isolating, and characterizing the SC/CSC generated lineages. Cancer stem cells share with normal SCs the properties of self-renewal and the capacity to generate all cell types and organ structures of the mammary gland. Analysis of human tumor samples suggests that CSCs are heterogeneous in terms of proliferation and differentiation potential. Mammospheres from CSCs likewise display heterogeneity. This heterogeneity makes analysis of CSC generated MMs challenging. To identify the unique and diverse properties of MM derived CSCs, comparative analysis with MMs obtained from normal SCs is required. Here we present protocols for identifying and enriching cells with SC features from a cancer cell line using the LA7CSCs as a model. A comprehensive and comparative approach for identifying, isolating, and characterizing MMs from SCs and CSCs from human breast is also introduced. In addition, we describe detailed procedures for identifying, isolating, and characterizing mammary gland specific cell types, generated during MM formation.

  6. Isolation and characterization of a spontaneously immortalized bovine retinal pigmented epithelial cell line

    Directory of Open Access Journals (Sweden)

    Griffiths T Daniel

    2009-05-01

    Full Text Available Abstract Background The Retinal Pigmented Epithelium (RPE is juxtaposed with the photoreceptor outer segments of the eye. The proximity of the photoreceptor cells is a prerequisite for their survival, as they depend on the RPE to remove the outer segments and are also influenced by RPE cell paracrine factors. RPE cell death can cause a progressive loss of photoreceptor function, which can diminish vision and, over time, blindness ensues. Degeneration of the retina has been shown to induce a variety of retinopathies, such as Stargardt's disease, Cone-Rod Dystrophy (CRD, Retinitis Pigmentosa (RP, Fundus Flavimaculatus (FFM, Best's disease and Age-related Macular Degeneration (AMD. We have cultured primary bovine RPE cells to gain a further understanding of the mechanisms of RPE cell death. One of the cultures, named tRPE, surpassed senescence and was further characterized to determine its viability as a model for retinal diseases. Results The tRPE cell line has been passaged up to 150 population doublings and was shown to be morphologically similar to primary cells. They have been characterized to be of RPE origin by reverse transcriptase PCR and immunocytochemistry using the RPE-specific genes RPE65 and CRALBP and RPE-specific proteins RPE65 and Bestrophin. The tRPE cells are also immunoreactive to vimentin, cytokeratin and zonula occludens-1 antibodies. Chromosome analysis indicates a normal diploid number. The tRPE cells do not grow in suspension or in soft agar. After 3H thymidine incorporation, the cells do not appear to divide appreciably after confluency. Conclusion The tRPE cells are immortal, but still exhibit contact inhibition, serum dependence, monolayer growth and secrete an extra-cellular matrix. They retain the in-vivo morphology, gene expression and cell polarity. Additionally, the cells endocytose exogenous melanin, A2E and purified lipofuscin granules. This cell line may be a useful in-vitro research model for retinal

  7. Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population.

    Science.gov (United States)

    DeWard, Aaron D; Cramer, Julie; Lagasse, Eric

    2014-10-23

    Because the esophageal epithelium lacks a defined stem cell niche, it is unclear whether all basal epithelial cells in the adult esophagus are functionally equivalent. In this study, we showed that basal cells in the mouse esophagus contained a heterogeneous population of epithelial cells, similar to other rapidly cycling tissues such as the intestine or skin. Using a combination of cell-surface markers, we separated primary esophageal tissue into distinct cell populations that harbored differences in stem cell potential. We also used an in vitro 3D organoid assay to demonstrate that Sox2, Wnt, and bone morphogenetic protein signaling regulate esophageal self-renewal. Finally, we labeled proliferating basal epithelial cells in vivo to show differing cell-cycle profiles and proliferation kinetics. Based on our results, we propose that a nonquiescent stem cell population resides in the basal epithelium of the mouse esophagus.

  8. Cellular Heterogeneity in the Mouse Esophagus Implicates the Presence of a Nonquiescent Epithelial Stem Cell Population

    Directory of Open Access Journals (Sweden)

    Aaron D. DeWard

    2014-10-01

    Full Text Available Because the esophageal epithelium lacks a defined stem cell niche, it is unclear whether all basal epithelial cells in the adult esophagus are functionally equivalent. In this study, we showed that basal cells in the mouse esophagus contained a heterogeneous population of epithelial cells, similar to other rapidly cycling tissues such as the intestine or skin. Using a combination of cell-surface markers, we separated primary esophageal tissue into distinct cell populations that harbored differences in stem cell potential. We also used an in vitro 3D organoid assay to demonstrate that Sox2, Wnt, and bone morphogenetic protein signaling regulate esophageal self-renewal. Finally, we labeled proliferating basal epithelial cells in vivo to show differing cell-cycle profiles and proliferation kinetics. Based on our results, we propose that a nonquiescent stem cell population resides in the basal epithelium of the mouse esophagus.

  9. Isolation and characterization of renal erythropoietin-producing cells from genetically produced anemia mice.

    Directory of Open Access Journals (Sweden)

    Xiaoqing Pan

    Full Text Available Understanding the nature of renal erythropoietin-producing cells (REPs remains a central challenge for elucidating the mechanisms involved in hypoxia and/or anemia-induced erythropoietin (Epo production in adult mammals. Previous studies have shown that REPs are renal peritubular cells, but further details are lacking. Here, we describe an approach to isolate and characterize REPs. We bred mice bearing an Epo gene allele to which green fluorescent protein (GFP reporter cDNA was knocked-in (Epo(GFP with mice bearing an Epo gene allele lacking the 3' enhancer (Epo(Δ3'E. Mice harboring the mutant Epo(GFP/Δ3'E gene exhibited anemia (average Hematocrit 18% at 4 to 6 days after birth, and this perinatal anemia enabled us to identify and purify REPs based on GFP expression from the kidney. Light and confocal microscopy revealed that GFP immunostaining was confined to fibroblastic cells that reside in the peritubular interstitial space, confirming our previous observation in Epo-GFP transgenic reporter assays. Flow cytometry analyses revealed that the GFP fraction constitutes approximately 0.2% of the whole kidney cells and 63% of GFP-positive cells co-express CD73 (a marker for cortical fibroblasts and Epo-expressing cells in the kidney. Quantitative RT-PCR analyses confirmed that Epo expression was increased by approximately 100-fold in the purified population of REPs compared with that of the unsorted cells or CD73-positive fraction. Gene expression analyses showed enrichment of Hif2α and Hif3α mRNA in the purified population of REPs. The genetic approach described here provides a means to isolate a pure population of REPs, allowing the analysis of gene expression of a defined population of cells essential for Epo production in the kidney. This has provided evidence that positive regulation by HIF2α and negative regulation by HIF3α might be necessary for correct renal Epo induction.

  10. A new pathotype characterization of Daxing and Huangyuan populations of cereal cyst nematode (Heterodera avenae) in China

    Institute of Scientific and Technical Information of China (English)

    CUI Jiang-kuan; HUANG Wen-kun; PENG Huan; LIU Shi-ming; WANG Gao-feng; KONG Lin-an; PENG De-liang

    2015-01-01

    The cereal cyst nematode (CCN, Heteroder aavenae) causes serious yield loss on cereal crops, especial y wheat, worldwide. Daxing population in Beijing City and Huangyuan population in Qinghai Province, China, are two CCN populations. In this study, the CCN pathotypes of Daxing and Huangyuan populations were characterized by tests on 23 standard“International Test Assortment”with the local species Wenmai 19 as the susceptible control. Tested materials were grouped by three nematode populations’ virulence on resistant genes (Rha1, Rha2, Rha3, Cre1) and nonresistant genes, varieties and lines. Both Daxing and Huangyuan populations were avirulent to Ortolan (Ha1). Barley cvs. Ortolan, Siri, Morocco, Bajo Aragon 1-1, and Martin 403-2 were al resistant to both populations. Cultivars Herta, Harlan 43 and wheat Iskamish-K-2-light were al susceptible to Huangyuan population, al of them, however, were resistant to Daxing population. The other ifve oats were al resistant to the two tested CCN populations. Except Iskamisch K-2-light, al the other wheat cultivars (Capa, Lo-ros×Koga, AUS 10894, and Psathias) were susceptible to Daxing population. Because the pathotypes of the two tested CCN populations in Beijing and Qinghai were not identical to any of the 13 pathotypes previously characterized by the test assortment, we classiifed Daxing and Huangyuan populations as the new pathotypes, named Ha91.

  11. Human Lymphoid Tissues Harbor a Distinct CD69+CXCR6+ NK Cell Population.

    Science.gov (United States)

    Lugthart, Gertjan; Melsen, Janine E; Vervat, Carly; van Ostaijen-Ten Dam, Monique M; Corver, Willem E; Roelen, Dave L; van Bergen, Jeroen; van Tol, Maarten J D; Lankester, Arjan C; Schilham, Marco W

    2016-07-01

    Knowledge of human NK cells is based primarily on conventional CD56(bright) and CD56(dim) NK cells from blood. However, most cellular immune interactions occur in lymphoid organs. Based on the coexpression of CD69 and CXCR6, we identified a third major NK cell subset in lymphoid tissues. This population represents 30-60% of NK cells in marrow, spleen, and lymph node but is absent from blood. CD69(+)CXCR6(+) lymphoid tissue NK cells have an intermediate expression of CD56 and high expression of NKp46 and ICAM-1. In contrast to circulating NK cells, they have a bimodal expression of the activating receptor DNAX accessory molecule 1. CD69(+)CXCR6(+) NK cells do not express the early markers c-kit and IL-7Rα, nor killer cell Ig-like receptors or other late-differentiation markers. After cytokine stimulation, CD69(+)CXCR6(+) NK cells produce IFN-γ at levels comparable to CD56(dim) NK cells. They constitutively express perforin but require preactivation to express granzyme B and exert cytotoxicity. After hematopoietic stem cell transplantation, CD69(+)CXCR6(+) lymphoid tissue NK cells do not exhibit the hyperexpansion observed for both conventional NK cell populations. CD69(+)CXCR6(+) NK cells constitute a separate NK cell population with a distinct phenotype and function. The identification of this NK cell population in lymphoid tissues provides tools to further evaluate the cellular interactions and role of NK cells in human immunity.

  12. Fabrication and characterization of monolithic solid oxide fuel cells

    Science.gov (United States)

    Minh, N. Q.; Horne, C. R.; Liu, F. S.; Moffatt, D. M.; Staszak, P. R.

    The monolithic solid oxide fuel cell (MSOFC) is an all-ceramic structure in which cell components are configured in a compact corrugated array. The MSOFC shows promise for use in a wide range of sizes (kilowatt to megawatt) and a broad spectrum of applications (electric utility, cogeneration, on-site, and aerospace power). A process based on the tape calendering technique is being developed for the fabrication of the MSOFC. MSOFC single cells have been fabricated by this process without cracking or delamination. Stacks of various sizes have been formed and processed to demonstrate fabricability of the monolithic structure. Extensive physical, chemical, electrical, and electrochemical characterization of fabricated samples has been carried out to confirm the required properties of each cell component. The characterization results reported have been used to support material and fabrication improvements.

  13. Performance Characterization of High Energy Commercial Lithium-ion Cells

    Science.gov (United States)

    Schneidegger, Brianne T.

    2010-01-01

    The NASA Glenn Research Center Electrochemistry Branch performed characterization of commercial lithium-ion cells to determine the cells' performance against Exploration Technology Development Program (ETDP) Key Performance Parameters (KPP). The goals of the ETDP Energy Storage Project require significant improvements in the specific energy of lithium-ion technology over the state-of-the-art. This work supports the high energy cell development for the Constellation customer Lunar Surface Systems (LSS). In support of these goals, testing was initiated in September 2009 with high energy cylindrical cells obtained from Panasonic and E-One Moli. Both manufacturers indicated the capability of their cells to deliver specific energy of at least 180 Wh/kg or higher. Testing is being performed at the NASA Glenn Research Center to evaluate the performance of these cells under temperature, rate, and cycling conditions relevant to the ETDP goals for high energy cells. The cell-level specific energy goal for high energy technology is 180 Wh/kg at a C/10 rate and 0 C. The threshold value is 165 Wh/kg. The goal is to operate for at least 2000 cycles at 100 percent DOD with greater than 80 percent capacity retention. The Panasonic NCR18650 cells were able to deliver nearly 200 Wh/kg at the aforementioned conditions. The E-One Moli ICR18650J cells also met the specific energy goal by delivering 183 Wh/kg. Though both cells met the goal for specific energy, this testing was only one portion of the testing required to determine the suitability of commercial cells for the ETDP. The cells must also meet goals for cycle life and safety. The results of this characterization are summarized in this report.

  14. Isolation and characterisation of human gingival margin-derived STRO-1/MACS1 and MACS2 cell populations

    Institute of Scientific and Technical Information of China (English)

    Karim M Fawzy El-Sayed; Sebastian Paris; Christian Graetz; Neemat Kassem; Mohamed Mekhemar; Hendrick Ungefroren; Fred Fandrich; Christof Dorfer

    2015-01-01

    Recently, gingival margin-derived stem/progenitor cells isolated via STRO-1/magnetic activated cell sorting (MACS) showed remarkable periodontal regenerative potential in vivo. As a second-stage investigation, the present study’s aim was to perform in vitro characterisation and comparison of the stem/progenitor cell characteristics of sorted STRO-1-positive (MACS1) and STRO-1-negative (MACS2) cell populations from the human free gingival margin. Cells were isolated from the free gingiva using a minimally invasive technique and were magnetically sorted using anti-STRO-1 antibodies. Subsequently, the MACS1 and MACS2 cell fractions were characterized by flow cytometry for expression of CD14, CD34, CD45, CD73, CD90, CD105, CD146/MUC18 and STRO-1. Colony-forming unit (CFU) and multilineage differentiation potential were assayed for both cell fractions. Mineralisation marker expression was examined using real-time polymerase chain reaction (PCR). MACS1 and MACS2 cell fractions showed plastic adherence. MACS1 cells, in contrast to MACS2 cells, showed all of the predefined mesenchymal stem/progenitor cell characteristics and a significantly higher number of CFUs (P,0.01). More than 95%of MACS1 cells expressed CD105, CD90 and CD73;lacked the haematopoietic markers CD45, CD34 and CD14, and expressed STRO-1 and CD146/MUC18. MACS2 cells showed a different surface marker expression profile, with almost no expression of CD14 or STRO-1, and more than 95%of these cells expressed CD73, CD90 and CD146/MUC18, as well as the haematopoietic markers CD34 and CD45 and CD105. MACS1 cells could be differentiated along osteoblastic, adipocytic and chondroblastic lineages. In contrast, MACS2 cells demonstrated slight osteogenic potential. Unstimulated MACS1 cells showed significantly higher expression of collagen I (P,0.05) and collagen III (P,0.01), whereas MACS2 cells demonstrated higher expression of osteonectin (P,0.05;Mann–Whitney). The present study is the first to compare gingival

  15. Characterization of small, mononuclear blood cells from salmon having high phagocytic capacity and ability to differentiate into dendritic like cells.

    Directory of Open Access Journals (Sweden)

    Gyri T Haugland

    Full Text Available Phagocytes are the principal component of the innate immune system, playing a key role in the clearance of foreign particles that include potential pathogens. In vertebrates, both neutrophils and mononuclear cells like monocytes, macrophages and dendritic cells are all professional phagocytes. In teleosts, B-lymphocytes also have potent phagocytic ability. We have isolated a population of small (<5 µm, mononuclear blood cells from Atlantic salmon (Salmo salar L. not previously characterized. In order to identify them, we have performed morphological, gene expression, flow cytometry, cytochemical, ultrastructural and functional analyses. Interestingly, they highly express the gene encoding CD83, the most characteristic cell surface marker for dendritic cells in mammals, and MHC class II limited to professional antigen presenting cells. They did not express genes nor did they have cell markers for B-cells, T-cells, monocytes/macrophages or neutrophils as shown by qRT-PCR, flow cytometry and immunoblotting. A remarkable feature of these cells is their potent phagocytic capacity. Their oxygen-independent killing mechanism, as shown by intense acid phosphatase staining, is supported by lack of respiratory burst and myeloperoxidase activity and the acid phosphatase's sensitivity to tartrate. They show a high level of morphological plasticity, as, upon stimulation with mitogens, they change morphology and obtain branching protrusions similarly to dendritic cells. We suggest, based on our findings, that the small, round cells described here are progenitor cells with potential to differentiate into dendritic like cells, although we can not exclude the possibility that they represent a novel cell type.

  16. Comprehensive Molecular Characterization of Papillary Renal Cell Carcinoma

    Science.gov (United States)

    Linehan, W. Marston; Spellman, Paul T.; Ricketts, Christopher J.; Creighton, Chad J.; Fei, Suzanne S.; Davis, Caleb; Wheeler, David A.; Murray, Bradley A.; Schmidt, Laura; Vocke, Cathy D.; Peto, Myron; Al Mamun, Abu Amar M.; Shinbrot, Eve; Sethi, Anurag; Brooks, Samira; Rathmell, W. Kimryn; Brooks, Angela N.; Hoadley, Katherine A.; Robertson, A. Gordon; Brooks, Denise; Bowlby, Reanne; Sadeghi, Sara; Shen, Hui; Weisenberger, Daniel J.; Bootwalla, Moiz; Baylin, Stephen B.; Laird, Peter W.; Cherniack, Andrew D.; Saksena, Gordon; Haake, Scott; Li, Jun; Liang, Han; Lu, Yiling; Mills, Gordon B.; Akbani, Rehan; Leiserson, Mark D.M.; Raphael, Benjamin J.; Anur, Pavana; Bottaro, Donald; Albiges, Laurence; Barnabas, Nandita; Choueiri, Toni K.; Czerniak, Bogdan; Godwin, Andrew K.; Hakimi, A. Ari; Ho, Thai; Hsieh, James; Ittmann, Michael; Kim, William Y.; Krishnan, Bhavani; Merino, Maria J.; Mills Shaw, Kenna R.; Reuter, Victor E.; Reznik, Ed; Shelley, Carl Simon; Shuch, Brian; Signoretti, Sabina; Srinivasan, Ramaprasad; Tamboli, Pheroze; Thomas, George; Tickoo, Satish; Burnett, Kenneth; Crain, Daniel; Gardner, Johanna; Lau, Kevin; Mallery, David; Morris, Scott; Paulauskis, Joseph D.; Penny, Robert J.; Shelton, Candace; Shelton, W. Troy; Sherman, Mark; Thompson, Eric; Yena, Peggy; Avedon, Melissa T.; Bowen, Jay; Gastier-Foster, Julie M.; Gerken, Mark; Leraas, Kristen M.; Lichtenberg, Tara M.; Ramirez, Nilsa C.; Santos, Tracie; Wise, Lisa; Zmuda, Erik; Demchok, John A.; Felau, Ina; Hutter, Carolyn M.; Sheth, Margi; Sofia, Heidi J.; Tarnuzzer, Roy; Wang, Zhining; Yang, Liming; Zenklusen, Jean C.; Zhang, Jiashan (Julia); Ayala, Brenda; Baboud, Julien; Chudamani, Sudha; Liu, Jia; Lolla, Laxmi; Naresh, Rashi; Pihl, Todd; Sun, Qiang; Wan, Yunhu; Wu, Ye; Ally, Adrian; Balasundaram, Miruna; Balu, Saianand; Beroukhim, Rameen; Bodenheimer, Tom; Buhay, Christian; Butterfield, Yaron S.N.; Carlsen, Rebecca; Carter, Scott L.; Chao, Hsu; Chuah, Eric; Clarke, Amanda; Covington, Kyle R.; Dahdouli, Mahmoud; Dewal, Ninad; Dhalla, Noreen; Doddapaneni, HarshaVardhan; Drummond, Jennifer; Gabriel, Stacey B.; Gibbs, Richard A.; Guin, Ranabir; Hale, Walker; Hawes, Alicia; Hayes, D. Neil; Holt, Robert A.; Hoyle, Alan P.; Jefferys, Stuart R.; Jones, Steven J.M.; Jones, Corbin D.; Kalra, Divya; Kovar, Christie; Lewis, Lora; Li, Jie; Ma, Yussanne; Marra, Marco A.; Mayo, Michael; Meng, Shaowu; Meyerson, Matthew; Mieczkowski, Piotr A.; Moore, Richard A.; Morton, Donna; Mose, Lisle E.; Mungall, Andrew J.; Muzny, Donna; Parker, Joel S.; Perou, Charles M.; Roach, Jeffrey; Schein, Jacqueline E.; Schumacher, Steven E.; Shi, Yan; Simons, Janae V.; Sipahimalani, Payal; Skelly, Tara; Soloway, Matthew G.; Sougnez, Carrie; Tam, Angela; Tan, Donghui; Thiessen, Nina; Veluvolu, Umadevi; Wang, Min; Wilkerson, Matthew D.; Wong, Tina; Wu, Junyuan; Xi, Liu; Zhou, Jane; Bedford, Jason; Chen, Fengju; Fu, Yao; Gerstein, Mark; Haussler, David; Kasaian, Katayoon; Lai, Phillip; Ling, Shiyun; Radenbaugh, Amie; Van Den Berg, David; Weinstein, John N.; Zhu, Jingchun; Albert, Monique; Alexopoulou, Iakovina; Andersen, Jeremiah J; Auman, J. Todd; Bartlett, John; Bastacky, Sheldon; Bergsten, Julie; Blute, Michael L.; Boice, Lori; Bollag, Roni J.; Boyd, Jeff; Castle, Erik; Chen, Ying-Bei; Cheville, John C.; Curley, Erin; Davies, Benjamin; DeVolk, April; Dhir, Rajiv; Dike, Laura; Eckman, John; Engel, Jay; Harr, Jodi; Hrebinko, Ronald; Huang, Mei; Huelsenbeck-Dill, Lori; Iacocca, Mary; Jacobs, Bruce; Lobis, Michael; Maranchie, Jodi K.; McMeekin, Scott; Myers, Jerome; Nelson, Joel; Parfitt, Jeremy; Parwani, Anil; Petrelli, Nicholas; Rabeno, Brenda; Roy, Somak; Salner, Andrew L.; Slaton, Joel; Stanton, Melissa; Thompson, R. Houston; Thorne, Leigh; Tucker, Kelinda; Weinberger, Paul M.; Winemiller, Cythnia; Zach, Leigh Anne; Zuna, Rosemary

    2016-01-01

    Background Papillary renal cell carcinoma, accounting for 15% of renal cell carcinoma, is a heterogeneous disease consisting of different types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal cell carcinoma; no effective forms of therapy for advanced disease exist. Methods We performed comprehensive molecular characterization utilizing whole-exome sequencing, copy number, mRNA, microRNA, methylation and proteomic analyses of 161 primary papillary renal cell carcinomas. Results Type 1 and Type 2 papillary renal cell carcinomas were found to be different types of renal cancer characterized by specific genetic alterations, with Type 2 further classified into three individual subgroups based on molecular differences that influenced patient survival. MET alterations were associated with Type 1 tumors, whereas Type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-ARE pathway. A CpG island methylator phenotype (CIMP) was found in a distinct subset of Type 2 papillary renal cell carcinoma characterized by poor survival and mutation of the fumarate hydratase (FH) gene. Conclusions Type 1 and Type 2 papillary renal cell carcinomas are clinically and biologically distinct. Alterations in the MET pathway are associated with Type 1 and activation of the NRF2-ARE pathway with Type 2; CDKN2A loss and CIMP in Type 2 convey a poor prognosis. Furthermore, Type 2 papillary renal cell carcinoma consists of at least 3 subtypes based upon molecular and phenotypic features. PMID:26536169

  17. Mast Cell Tumor in Dogs – Incidence and Histopathological Characterization

    OpenAIRE

    Grabarević, Željko; Bubić Špoljar, Jadranka; Gudan Kurilj, Andrea; Šoštarić-Zuckermann, Ivan-Conrado; Artuković, Branka; Hohšteter, Marko; Beck, Ana; Džaja, Petar; Maltar Strmečki, Nadica

    2009-01-01

    Incidence of mast cell tumors, their distribution according to sex, breed, age and localisation in Croatia is not established yet. Also, the statistical significance of the various histopathological parameters according to Patnaik’s scheme, in the diagnostics of the tumor grade was not performed. Investigation analysed mast cell tumors histopathologicaly characterized at the Department of General Pathology and Pathological Morphology of the Veterinary Faculty Zagreb from January 1st 2002 to D...

  18. Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100)

    Institute of Scientific and Technical Information of China (English)

    Banchob Sripa; Saman Leungwattanawanit; Takayuki Nitta; Chaisiri Wongkham; Vajarabhongsa Bhudhisawasdi; Anucha Puapairoj; Chongrak Sripa; Masanao Miwa

    2005-01-01

    AIM To establish and dharacterize a nev cholangiocarcinoma cell line from a patient living in the Opisthorchis viverrini (O. viverrini) endemic area of Northeast Thailand.METHODS: Fresh liver biopsy and bile specimens were obtained from a 65-year-old Thai woman with cholangiocarcinoma of the porta hepatis. After digestion, the cells were cultured in Ham's F12 media. The established cell line was then characterized for growth kinetics, cell morphology, imm unocytochemistry and cytogenetics. Tumorigenicity of the cell line was determined by heterotransplanting in nude mice. RESULTS: The primary tumor was a poorly differentiated tubular adenocarcinoma. Examination of the bile revealed malignant cells with O. viverrini eggs. The cholangiocarcinoma cell line KKU-100 was established 4 mo after the primary culture-population doubling time was 72 h. KKU-100 possesses compact and polygonal-shapedepithelial cells. Immunocytochemically, this cell line exhibited cytokeratin, EMA, CEA, and CA125, but not α-fetoprotein (AFP), CA19-9, desmin, c-met, or p53. Such protein expressions parallel those of the primary tumor. Cytogenetic analysis identified aneuploidy karyotypes with a modal chromosome number of 78 and marked chromosomal structural changes. Inoculation of KKU-100 cells into nude mice produced a transplantable, poorly differentiated aden-ocarcinoma, similar to the original tumor.CONCLUSION: KKJ-100 is the first egg-proven, Opisthorchis- associated cholangiocarcinoma cell line, which should prove useful for further investigations of the tumor biology of this cancer.

  19. Nano-characterization of two closely related melanoma cell lines with different metastatic potential.

    Science.gov (United States)

    Gostek, Justyna; Prauzner-Bechcicki, Szymon; Nimmervoll, Benedikt; Mayr, Katrin; Pabijan, Joanna; Hinterdorfer, Peter; Chtcheglova, Lilia A; Lekka, Małgorzata

    2015-02-01

    Cutaneous malignant melanoma is one of the most lethal types of skin cancer. Its progression passes through several steps, leading to the appearance of a new population of cells with aggressive biological potential. Here, we focused on the nano-characterization of two different melanoma cell lines with similar morphological appearance but different metastatic potential, namely, WM115 from vertical growth phase (VGP) and WM266-4 derived from metastasis to skin. The first cell line represents cells that progressed to the VGP, while the WM266-4 cell line denotes cells from the metastasis to skin. Exploring with a combination of atomic force and fluorescence microscopes, our goal was to identify cell surface characteristics in both cell lines that may determine differences in the cellular nano-mechanical properties. Cell elasticity was found to be affected by the presence of F-actin-based flexible ridges, rich in F-actin co-localized with β1 integrins in the studied cell lines. These results point out how progressive changes in the surface structure of melanoma cells can affect their bionanomechanical properties.

  20. Identification and Characterization of the Dermal Panniculus Carnosus Muscle Stem Cells

    Directory of Open Access Journals (Sweden)

    Neia Naldaiz-Gastesi

    2016-09-01

    Full Text Available The dermal Panniculus carnosus (PC muscle is important for wound contraction in lower mammals and represents an interesting model of muscle regeneration due to its high cell turnover. The resident satellite cells (the bona fide muscle stem cells remain poorly characterized. Here we analyzed PC satellite cells with regard to developmental origin and purported function. Lineage tracing shows that they originate in Myf5+, Pax3/Pax7+ cell populations. Skin and muscle wounding increased PC myofiber turnover, with the satellite cell progeny being involved in muscle regeneration but with no detectable contribution to the wound-bed myofibroblasts. Since hematopoietic stem cells fuse to PC myofibers in the absence of injury, we also studied the contribution of bone marrow-derived cells to the PC satellite cell compartment, demonstrating that cells of donor origin are capable of repopulating the PC muscle stem cell niche after irradiation and bone marrow transplantation but may not fully acquire the relevant myogenic commitment.

  1. A cell sorting protocol for selecting high-producing sub-populations of Sf9 and High Five™ cells.

    Science.gov (United States)

    Vidigal, João; Dias, Mafalda M; Fernandes, Fabiana; Patrone, Marco; Bispo, Cláudia; Andrade, Cláudia; Gardner, Rui; Carrondo, Manuel J T; Alves, Paula M; Teixeira, Ana P

    2013-12-01

    Insect cell lines such as Sf9 and High Five™ have been widely used to produce recombinant proteins mostly by the lytic baculovirus vector system. We have recently established an expression platform in Sf9 cells using a fluorescence-based recombinase mediated cassette exchange (RMCE) strategy which has similar development timelines but avoids baculovirus infection. To expedite cell engineering efforts, a robust fluorescence-activated cell sorting (FACS) protocol optimized for insect cells was developed here. The standard sorting conditions used for mammalian cells proved to be unsuitable, resulting in post-sorting viabilities below 10% for both cell lines. We found that the extreme sensitivity to the shear stress displayed by Sf9 and High Five™ cells was the limiting factor, and using Pluronic F-68 in the cell suspension could increase post-sorting viabilities in a dose dependent manner. The newly developed protocol was then used to sort stable populations of both cell lines tagged with a DsRed-expressing cassette. Before sorting, the average fluorescence intensity of the Sf9 cell population was 3-fold higher than that of the High Five™ cell population. By enriching with the 10% strongest DsRed-fluorescent cells, the productivity of both cell populations could be successfully improved. The established sorting protocol potentiates the use of RMCE technology for recombinant protein production in insect cells.

  2. Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Atay, Safinur [Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY (United States); Gercel-Taylor, Cicek [Obstetrics, Gynecology and Women' s Health, University of Louisville School of Medicine, Louisville, KY (United States); Kesimer, Mehmet [Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC (United States); Taylor, Douglas D., E-mail: ddtaylor@louisville.edu [Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY (United States); Obstetrics, Gynecology and Women' s Health, University of Louisville School of Medicine, Louisville, KY (United States)

    2011-05-01

    Exosomes represent an important intercellular communication vehicle, mediating events essential for the decidual microenvironment. While we have demonstrated exosome induction of pro-inflammatory cytokines, to date, no extensive characterization of trophoblast-derived exosomes has been provided. Our objective was to provide a morphologic and proteomic characterization of these exosomes. Exosomes were isolated from the conditioned media of Swan71 human trophoblast cells by ultrafiltration and ultracentrifugation. These were analyzed for density (sucrose density gradient centrifugation), morphology (electron microscopy), size (dynamic light scattering) and protein composition (Ion Trap mass spectrometry and western immunoblotting). Based on density gradient centrifugation, microvesicles from Sw71 cells exhibit a density between 1.134 and 1.173 g/ml. Electron microscopy demonstrated that microvesicles from Sw71 cells exhibit the characteristic cup-shaped morphology of exosomes. Dynamic light scattering showed a bell-shaped curve, indicating a homogeneous population with a mean size of 165 nm {+-} 0.5 nm. Ion Trap mass spectrometry demonstrated the presence of exosome marker proteins (including CD81, Alix, cytoskeleton related proteins, and Rab family). The MS results were confirmed by western immunoblotting. Based on morphology, density, size and protein composition, we defined the release of exosomes from extravillous trophoblast cells and provide their first extensive characterization. This characterization is essential in furthering our understanding of 'normal' early pregnancy.

  3. Establishment and characterization of feeder-cell-dependent bovine fetal liver cell lines

    Science.gov (United States)

    The establishment and initial characterization of bovine fetal liver cell lines is described. Bovine fetal hepatocytes were cultured from the liver of a 34-day bovine fetus by physical disruption of the liver tissue. Released liver cells and clumps of cells were plated on STO feeder layers and wer...

  4. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations

    DEFF Research Database (Denmark)

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas;

    2016-01-01

    BACKGROUND: Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous h......MSC population. METHODS: Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high......-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. RESULTS: In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts...

  5. Population differences in the rate of proliferation of international HapMap cell lines.

    Science.gov (United States)

    Stark, Amy L; Zhang, Wei; Zhou, Tong; O'Donnell, Peter H; Beiswanger, Christine M; Huang, R Stephanie; Cox, Nancy J; Dolan, M Eileen

    2010-12-10

    The International HapMap Project is a resource for researchers containing genotype, sequencing, and expression information for EBV-transformed lymphoblastoid cell lines derived from populations across the world. The expansion of the HapMap beyond the four initial populations of Phase 2, referred to as Phase 3, has increased the sample number and ethnic diversity available for investigation. However, differences in the rate of cellular proliferation between the populations can serve as confounders in phenotype-genotype studies using these cell lines. Within the Phase 2 populations, the JPT and CHB cell lines grow faster (p HapMap panels into discovery and replication sets must take this into consideration.

  6. Single-cell analysis of population context advances RNAi screening at multiple levels

    NARCIS (Netherlands)

    Snijder, Berend; Sacher, Raphael; Rämö, Pauli; Liberali, Prisca; Mench, Karin; Wolfrum, Nina; Burleigh, Laura; Scott, Cameron C; Verheije, Monique H; Mercer, Jason; Moese, Stefan; Heger, Thomas; Theusner, Kristina; Jurgeit, Andreas; Lamparter, David; Balistreri, Giuseppe; Schelhaas, Mario; De Haan, Cornelis A M; Marjomäki, Varpu; Hyypiä, Timo; Rottier, Peter J M; Sodeik, Beate; Marsh, Mark; Gruenberg, Jean; Amara, Ali; Greber, Urs; Helenius, Ari; Pelkmans, Lucas

    2012-01-01

    Isogenic cells in culture show strong variability, which arises from dynamic adaptations to the microenvironment of individual cells. Here we study the influence of the cell population context, which determines a single cell's microenvironment, in image-based RNAi screens. We developed a comprehensi

  7. Identification of various testicular cell populations in pubertal and adult cockerels

    Science.gov (United States)

    Precise identification of the male germinal stem cell population is important for their practical use in programs dedicated to the integration of exogenous genetic material in testicular tissues. In the present study, our aim was to identify germinal cell populations in the testes of pubertal and ad...

  8. Establishment and characterization of rat portal myofibroblast cell lines.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available The major sources of scar-forming myofibroblasts during liver fibrosis are activated hepatic stellate cells (HSC and portal fibroblasts (PF. In contrast to well-characterized HSC, PF remain understudied and poorly defined. This is largely due to the facts that isolation of rodent PF for functional studies is technically challenging and that PF cell lines had not been established. To address this, we have generated two polyclonal portal myofibroblast cell lines, RGF and RGF-N2. RGF and RGF-N2 were established from primary PF isolated from adult rat livers that underwent culture activation and subsequent SV40-mediated immortalization. Specifically, Ntpdase2/Cd39l1-sorted primary PF were used to generate the RGF-N2 cell line. Both cell lines were functionally characterized by RT-PCR, immunofluorescence, immunoblot and bromodeoxyuridine-based proliferation assay. First, immortalized RGF and RGF-N2 cells are positive for phenotypic myofibroblast markers alpha smooth muscle actin, type I collagen alpha-1, tissue inhibitor of metalloproteinases-1, PF-specific markers elastin, type XV collagen alpha-1 and Ntpdase2/Cd39l1, and mesenchymal cell marker ecto-5'-nucleotidase/Cd73, while negative for HSC-specific markers desmin and lecithin retinol acyltransferase. Second, both RGF and RGF-N2 cell lines are readily transfectable using standard methods. Finally, RGF and RGF-N2 cells attenuate the growth of Mz-ChA-1 cholangiocarcinoma cells in co-culture, as previously demonstrated for primary PF. Immortalized rat portal myofibroblast RGF and RGF-N2 cell lines express typical markers of activated PF-derived myofibroblasts, are suitable for DNA transfection, and can effectively inhibit cholangiocyte proliferation. Both RGF and RGF-N2 cell lines represent novel in vitro cellular models for the functional studies of portal (myofibroblasts and their contribution to the progression of liver fibrosis.

  9. Genetic and environmental characterization of Abies alba Mill. populations at its western rear edge

    Directory of Open Access Journals (Sweden)

    Sancho-Knapik, D.

    2014-12-01

    Full Text Available The genetic structure of ten Abies alba populations at the western rear edge in the Spanish Pyrenees was characterized and compared with two German populations, looking for the role of climatic factors in the fir decline. Growth, defoliation, aridity and cumulative summer water deficit summer were also characterized. Spanish populations show a lower genetic diversity and a high genetic differentiation than German ones, mainly established by an East (higher diversity-West (lower diversity gradient. The three defoliated populations are the western ones, with higher summer aridity. Contrastingly, the southern population (Guara shows climatic variables close to western sites but without defoliation and with a higher genetic diversity, indicating a possible adaptation to the sub-Mediterranean conditions. Silver fir in the Spanish Pyrenees constitutes a “stable” rear edge because of their isolation, small sized and small genetic diversity. Western Pyrenean sites subjected to dryer conditions and presenting lower genetic diversity are prone to drought-induced mortality in the context of global warming.Se ha caracterizado la estructura genética de diez poblaciones de Abies alba en la retaguardia occidental de su distribución en el Pirineo español en comparación con dos poblaciones de Alemania, buscando la influencia de factores climáticos en el decaimiento del abeto. También se caracterizó crecimiento, defoliación, aridez y déficit acumulado de agua durante el verano. Las poblaciones españolas mostraron una menor diversidad genética y una mayor diferenciación genética que las poblaciones alemanas, establecida principalmente a través de un eje Este (mayor diversidad-Oeste (menor diversidad. Las tres poblaciones con defoliación son las del suroeste, con mayor aridez estival. Por el contrario, la población más meridional (Guara muestra variables climáticas cercanas a estas poblaciones del suroeste pero sin defoliación y con mayor

  10. Phenotypic characterization of the population of creole wool ewes in the highlands of Puebla State, Mexico.

    Science.gov (United States)

    Vargas-López, Samuel; Guerrero-Rodríguez, Juan de Dios; Rojas-Álvarez, Joel; Bustamante-González, Angel

    2012-12-01

    This study characterized the population of wool ewes in the highlands of the State of Puebla, Mexico, considering traits such as fleece color, weight, and body measurements. In this region, dominated by a temperate climate, sheep are a traditional animal species for farming systems. To carry out the work, 2,082 ewes were randomly selected from 14 communities and 124 flocks belonging to the six municipalities that have the largest inventory of sheep in the state. For each ewe, live weight, breed, fleece color pattern, and 18 other body measurements were recorded. Descriptive statistics were estimated for weight and body traits and the morphotype was classified by multivariate analysis. Factor analysis identified the bulk, size, and breed standard as the attributes that best describe the population of ewes. These elements varied in importance among the groups (p < 0.05). Cluster analysis helped to classify the population into small black-faced ewes (28.5 %), small white ewes (11.9 %), black-faced medium-sized ewes (24.1 %), large ewes (12.3 %), and white medium-sized ewes (23.2 %). The groups identified were similar to creole sheep present in rural communities in other environments, but have lower morphostructural values than specialized breeds.

  11. First Report of Heterorhabditis amazonensis from Venezuela and Characterization of Three Populations.

    Science.gov (United States)

    Morales, Naiyulin; Morales-Montero, Patricia; Puza, Vladimir; San-Blas, Ernesto

    2016-09-01

    During a survey in western Venezuela in 2011, three new populations of Heterorhabditis amazonensis (LPV081, LPV156, and LPV498) were isolated. Some differences were found in terms of morphometry compared with the original description; however, the distance from the anterior end to the excretory pore is the most variable character; significantly shorter in all infective juveniles and in other developmental stages depending on the population. According to a Principal Component Analysis, LPV498 possesses more differences in morphometric characteristics and can be separated from the other two. Those intraspecific differences could be attributed to the geographic origin of the nematode. Molecular studies of ITS regions demonstrated that the sequences of the Venezuelan strains were identical to those of the type species originally isolated in the Brazilian Amazonian forest. This is an interesting fact because in several studies on heterorhabditids, intraspecific variability has been recorded. Herein, we present the first report of H. amazonensis in Venezuela and the characterization of three populations of this species.

  12. A sub-cellular viscoelastic model for cell population mechanics.

    Directory of Open Access Journals (Sweden)

    Yousef Jamali

    Full Text Available Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and 'in silico' (computational models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM, effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the

  13. Genetic diversity in normal cell populations is the earliest stage of oncogenesis leading to intra-tumor heterogeneity

    Directory of Open Access Journals (Sweden)

    Cory L Howk

    2013-04-01

    Full Text Available Random mutations and epigenetic alterations provide a rich substrate for microevolutionary phenomena to occur in proliferating epithelial tissues. Genetic diversity resulting from random mutations in normal cells is critically important for understanding the genetic basis of oncogenesis. However, evaluation of the cell-specific role of individual (epi-genetic alterations in living tissues is extremely difficult from a direct experimental perspective. We have developed a theoretical model for uterine epithelial cell proliferation. Computational simulations have shown that a base-line mutation rate of two mutations per cell division is sufficient to explain sporadic endometrial cancer as a rare evolutionary consequence with an incidence similar to that reported in SEER data. Simulation of the entire oncogenic process has allowed us to analyze the features of the tumor initiating cells and their clonal expansion. Analysis of the malignant features of individual cancer cells, such as de-differentiation status, proliferation potential, and immortalization status, permits a mathematical characterization of malignancy and a comparison of intra-tumor heterogeneity between individual tumors. We found, under the conditions specified, that cancer stem cells account for approximately 7% of the total cancer cell population. Taken together, our mathematical modeling describes the genetic diversity and evolution in a normal cell population at the early stages of oncogenesis and characterizes intra-tumor heterogeneity. This model has explored the role of accumulation of a large number of genetic alterations in oncogenesis as an alternative to traditional biological approaches emphasizing the driving role of a small number of genetic mutations, and this accumulation, along with environmental factors, has a significant impact on the growth advantage of and selection pressure on individual cancer cells and the resulting tumor composition and progression.

  14. Human mesenchymal stromal cells : biological characterization and clinical application

    NARCIS (Netherlands)

    Bernardo, Maria Ester

    2010-01-01

    This thesis focuses on the characterization of the biological and functional properties of human mesenchymal stromal cells (MSCs), isolated from different tissue sources. The differentiation capacity of MSCs from fetal and adult tissues has been tested and compared. Umbilical cord blood (UCB) has be

  15. Photoluminescence Excitation Spectroscopy Characterization of Cadmium Telluride Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Moore, James E.; Wang, Xufeng; Grubbs, Elizabeth K.; Drayton, Jennifer; Johnston, Steve; Levi, Dean; Lundstrom, Mark S.; Bermel, Peter

    2016-11-21

    The use of steady-state photoluminescence spectroscopy as a contactless characterization tool, suitable for inline optical characterization, has been previously demonstrated for high efficiency solar cells such as GaAs. In this paper, we demonstrate the use of PLE characterization on a thin film CdS/CdTe np heterojunction solar cell, and compare the results to measured EQE and I-V data. In contrast to previous work on high-quality GaAs, the PLE and EQE spectra do not match closely here. We still find, however, that reliable material parameters can be extracted from the PLE measurements. We also provide a physical explanation of the limits defining the cases when the PLE and EQE spectra may be expected to match.

  16. Fundamental Limits to Collective Concentration Sensing in Cell Populations

    Science.gov (United States)

    Fancher, Sean; Mugler, Andrew

    2017-02-01

    The precision of concentration sensing is improved when cells communicate. Here we derive the physical limits to concentration sensing for cells that communicate over short distances by directly exchanging small molecules (juxtacrine signaling), or over longer distances by secreting and sensing a diffusive messenger molecule (autocrine signaling). In the latter case, we find that the optimal cell spacing can be large, due to a trade-off between maintaining communication strength and reducing signal cross-correlations. This leads to the surprising result that sparsely packed communicating cells sense concentrations more precisely than densely packed communicating cells. We compare our results to data from a wide variety of communicating cell types.

  17. Microfluidic channel for characterizing normal and breast cancer cells

    Science.gov (United States)

    TruongVo, T. N.; Kennedy, R. M.; Chen, H.; Chen, A.; Berndt, A.; Agarwal, M.; Zhu, L.; Nakshatri, H.; Wallace, J.; Na, S.; Yokota, H.; Ryu, J. E.

    2017-03-01

    A microfluidic channel was designed and fabricated for the investigation of behaviors of normal and cancer cells in a narrow channel. A specific question addressed in this study was whether it is possible to distinguish normal versus cancer cells by detecting their stationary and passing behaviors through a narrow channel. We hypothesized that due to higher deformability, softer cancer cells will pass through the channel further and quicker than normal cells. Two cell lines, employed herein, were non-tumor breast epithelial cells (MCF-10A; 11.2  ±  2.4 µm in diameter) and triple negative breast cancer cells (MDA-MB-231; 12.4  ±  2.1 µm in diameter). The microfluidic channel was 300 µm long and linearly tapered with a width of 30 µm at an inlet to 5 µm at an outlet. The result revealed that MDA-MB-231 cells entered and stuck further toward the outlet than MCF-10A cells in response to a slow flow (2 µl min‑1). Further, in response to a fast flow (5 µl min‑1), the passage time (mean  ±  s.d.) was 26.6  ±  43.9 s for normal cells (N  =  158), and 1.9  ±  1.4 s for cancer cells (N  =  128). The measurement of stiffness by atomic force microscopy as well as model-based predictions pointed out that MDA-MB-231 cells are significantly softer than MCF-10A cells. Collectively, the result in this study suggests that analysis of an individual cell’s behavior through a narrow channel can characterize deformable cancer cells from normal ones, supporting the possibility of enriching circulating tumor cells using novel microfluidics-based analysis.

  18. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities.

    Science.gov (United States)

    Müller, Susann; Nebe-von-Caron, Gerhard

    2010-07-01

    The still poorly explored world of microbial functioning is about to be uncovered by a combined application of old and new technologies. Bacteria, especially, are still in the dark with respect to their phylogenetic affiliations as well as their metabolic capabilities and functions. However, with the advent of sophisticated flow cytometric and cell sorting technologies in microbiological labs, there is now the possibility to gain this knowledge at the single-cell level without cumbersome cultivation approaches. Cytometry also facilitates the understanding of physiological diversity in seemingly likewise acting populations. Both individuality and diversity lead to the complex and concerted actions of microbial consortia. This review provides an overview of the state of the art in the field. It deals with the handling of microorganisms from the very beginning (i.e. sampling, and detachment and fixation procedures) and goes on to discuss the pitfalls and problems in analysing cells without any further treatment. If information cannot be gained by specific staining procedures, phylogenetic technologies, transcriptomic and proteomic approaches may be options for achieving advanced insights. All in all, flow cytometry will be a mediator technology to gain a deeper insight into the heterogeneity of populations and the functioning of microbial communities.

  19. Characterization of spheres derived from canine mammary gland adenocarcinoma cell lines.

    Science.gov (United States)

    Michishita, Masaki; Akiyoshi, Rui; Yoshimura, Hisashi; Katsumoto, Takuo; Ichikawa, Hitoshi; Ohkusu-Tsukada, Kozo; Nakagawa, Takayuki; Sasaki, Nobuo; Takahashi, Kimimasa

    2011-10-01

    There is increasing evidence for the presence of cancer stem cells in several solid tumors, and these cancer stem cells have a potential role in tumor initiation, aggression, and recurrence. The stem cell-like properties of spheres derived from canine mammary tumors remain largely elusive. We attempted to induce sphere formation using four cell lines of canine mammary adenocarcinoma, and characterized the spheres derived from a CHMp line in vitro and in vivo. The CHMp-derived spheres showed predominantly CD44+CD24- population, higher expression of stem cell-related genes, such as CD133, Notch3 and MDR, and higher resistance to doxorubicin compared with the CHMp-derived adherent cells. Xenograft transplantations in nude mice demonstrated that only 1 × 10(4)sphere cells were sufficient for tumor formation. Use of the sphere assay on these sphere-derived tumors showed that sphere-forming cells were present in the tumors, and were maintained in serial transplantation. We propose that spheres derived from canine mammary adenocarcinoma cell lines possess a potential characteristic of cancer stem cells. Spheres derived from canine mammary tumors could be a powerful tool with which to investigate novel therapeutic drugs and to elucidate the molecular and cellular mechanisms that underlie tumorigenesis.

  20. Genetic characterization of wild swamp deer populations: ex situ conservation and forensics implications.

    Science.gov (United States)

    Kumar, Ved Prakash; Shrivastwa, Anupam; Nigam, Parag; Kumar, Dhyanendra; Goyal, Surendra Prakash

    2016-10-26

    Swamp deer (Rucervus duvaucelii) is an endemic, Scheduled I species under the Wildlife (Protection) Act 1972, India. According to variations in antler size, it has been classified into three subspecies, namely Western (R. duvaucelii duvaucelii), Central (R. duvaucelii branderi), and Eastern (R. duvaucelii ranjitsinhii). For planning effective ex situ and in situ conservation of a wide-ranging species in different bioclimatic regions and in wildlife forensic, the use of genetic characterization in defining morpho/ecotypes has been suggested because of the geographic clines and reproductive isolation. In spite of these morphotypes, very little is known about the genetic characteristics of the three subspecies, hence no strict subspecies-based breeding plan for retaining the evolutionary characteristics in captive populations for subsequent re-introduction is available except for a few studies. We describe the genetic characteristics of these three subspecies using cytochrome b of the mtDNA genome (400 bp). The DNA sequence data indicated 11 variable sites within the three subspecies. Two paraphyletic clades, namely the Central India and Western-Eastern populations were found, whereas the Western and Eastern populations are monophyletic with a bootstrap value of 69% within the clade. We suggest the need of sorting these three subspecies using different molecular mtDNA markers in zoos for captive breeding purposes so as to retain the genetic diversity of the separate geographic clines and to use a subspecies-specific fixed-state nucleotide to assess the extent of poaching to avoid any population demography stochastically in India.

  1. Wave characterization for mammalian cell culture: residence time distribution.

    Science.gov (United States)

    Rodrigues, Maria Elisa; Costa, Ana Rita; Henriques, Mariana; Azeredo, Joana; Oliveira, Rosário

    2012-02-15

    The high dose requirements of biopharmaceutical products led to the development of mammalian cell culture technologies that increase biomanufacturing capacity. The disposable Wave bioreactor is one of the most promising technologies, providing ease of operation and no cross-contamination, and using an innovative undulation movement that ensures good mixing and oxygen transfer without cell damage. However, its recentness demands further characterization. This study evaluated the residence time distribution (RTD) in Wave, allowing the characterization of mixing and flow and the comparison with ideal models and a Stirred tank reactor (STR) used for mammalian cell culture. RTD was determined using methylene blue with pulse input methodology, at three flow rates common in mammalian cell culture (3.3×10(-5)m(3)/h, 7.9×10(-5)m(3)/h, and 1.25×10(-4)m(3)/h) and one typical of microbial culture (5×10(-3)m(3)/h). Samples were taken periodically and the absorbance read at 660nm. It was observed that Wave behavior diverted from ideal models, but was similar to STR. Therefore, the deviations are not related to the particular Wave rocking mechanism, but could be associated with the inadequacy of these reactors to operate in continuous mode or to a possible inability of the theoretical models to properly describe the behavior of reactors designed for mammalian cell culture. Thus, the development of new theoretical models could better characterize the performance of these reactors.

  2. A population of human brain cells expressing phenotypic markers of more than one lineage can be induced in vitro to differentiate into mesenchymal cells.

    Science.gov (United States)

    Rieske, Piotr; Augelli, Brian J; Stawski, Robert; Gaughan, John; Azizi, S Ausim; Krynska, Barbara

    2009-02-01

    Proliferating astrocytic cells from germinal, as well as mature areas of brain parenchyma, have the characteristics of neural stem/progenitor cells and are capable of generating both neurons and glia. We previously reported that primary fetal human brain cells, designated as Normal Human Astrocytes (NHA), expressed, in addition to GFAP, Vimentin and Nestin, low levels of betaIII-Tubulin, an early neuronal marker, and differentiated into neurons and astrocytes in vitro. Here, we showed that primary NHA cells co-express low levels of mesenchymal markers Fibronectin and Collagen-1 in culture. These cells transitioned into mesenchymal-like cells when cultured in adherent conditions in serum containing media. The mesenchymal-like derivatives of these cells were characterized based on their morphological changes, high expression of Vimentin and extracellular matrix (ECM) proteins, Collagen-1 and Fibronectin, and decline of neural markers. When incubated in osteogenic and adipogenic induction media, the mesenchymal-like cells differentiated into osteoblasts and adipocytes. Furthermore, NHA cells express markers of neural crest cells, SOX-10 and p75. These data support the idea of ectoderm-derived mesenchymal lineages. These findings suggest that a population of primitive fetal brain cells with neural/neural crest/mesenchymal phenotype, resembles the remarkable phenotypic plasticity of neural crest cells, and differentiates into adipocytes and osteocytes under the influence of environmental factors.

  3. A Comprehensive Review of Optical Stretcher for Cell Mechanical Characterization at Single-Cell Level

    Directory of Open Access Journals (Sweden)

    Tie Yang

    2016-05-01

    Full Text Available This paper presents a comprehensive review of the development of the optical stretcher, a powerful optofluidic device for single cell mechanical study by using optical force induced cell stretching. The different techniques and the different materials for the fabrication of the optical stretcher are first summarized. A short description of the optical-stretching mechanism is then given, highlighting the optical force calculation and the cell optical deformability characterization. Subsequently, the implementations of the optical stretcher in various cell-mechanics studies are shown on different types of cells. Afterwards, two new advancements on optical stretcher applications are also introduced: the active cell sorting based on cell mechanical characterization and the temperature effect on cell stretching measurement from laser-induced heating. Two examples of new functionalities developed with the optical stretcher are also included. Finally, the current major limitation and the future development possibilities are discussed.

  4. Label-free characterization of white blood cells by measuring 3D refractive index maps

    CERN Document Server

    Yoon, Jonghee; Park, HyunJoo; Choi, Chulhee; Jang, Seongsoo; Park, YongKeun

    2015-01-01

    The characterization of white blood cells (WBCs) is crucial for blood analyses and disease diagnoses. However, current standard techniques rely on cell labeling, a process which imposes significant limitations. Here we present three-dimensional (3D) optical measurements and the label-free characterization of mouse WBCs using optical diffraction tomography. 3D refractive index (RI) tomograms of individual WBCs are constructed from multiple two-dimensional quantitative phase images of samples illuminated at various angles of incidence. Measurements of the 3D RI tomogram of WBCs enable the separation of heterogeneous populations of WBCs using quantitative morphological and biochemical information. Time-lapse tomographic measurements also provide the 3D trajectory of micrometer-sized beads ingested by WBCs. These results demonstrate that optical diffraction tomography can be a useful and versatile tool for the study of WBCs.

  5. Characterization of the highly variable bioavailability of tiludronate in normal volunteers using population pharmacokinetic methodologies.

    Science.gov (United States)

    Maier, G A; Lockwood, G F; Oppermann, J A; Wei, G; Bauer, P; Fedler-Kelly, J; Grasela, T

    1999-01-01

    Currently, the use of classical bioequivalence criteria is being called into question for certain classes of drugs such as bisphosphonates. These compounds typically possess a wide therapeutic index but may be characterized by low and variable absorption. The purpose of this communication was to characterize the highly variable bioavailability of tiludronate using a population pharmacokinetic method (NONMEM program) and compare the results to a standard 2 way cross-over bioequivalence trial in healthy subjects. Over 3500 plasma samples from 153 healthy subjects, representing 12 different clinical trials were pooled for mixed effect modeling purposes (complete data set). These studies, conducted under single and multiple dose conditions, contained all the directly comparable data available in healthy subjects administered a 400 mg dose of tiludronate. A two compartment model with first order absorption was fit to the plasma concentration-time data and a term for relative bioavailability (BA) was included. Intersubject and residual variability were modeled using a constant coefficient of variation (CCV) model. A pilot model development data set was obtained from a 24 subject cross-over bioequivalence study. Population estimates of BA and its associated 90% confidence interval of 1.12 and 0.89-1.35 compared favorably to standard bioequivalence methodology (1.15 and 0.93-1.42, respectively). Since a good fit of predicted and observed plasma concentrations as well as estimates of BA were obtained, a two compartment model with a term for BA was then applied to the complete data set. Under these conditions, BA and its 90% confidence interval were found to be 1.17 and 0.98-1.36. Intersubject variability of 31%, compared with 38% in the pilot model development data set and residual variability of 38% were seen. No differences in absorption characteristics as measured by Ka were found. Good agreement between the population pharmacokinetic parameters were observed when the

  6. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K., E-mail: mishima-k@dent.showa-u.ac.jp

    2013-05-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities.

  7. Derivation, characterization and retinal differentiation of induced pluripotent stem cells

    Indian Academy of Sciences (India)

    Subba Rao Mekala; Vasundhara Vauhini; Usha Nagarajan; Savitri Maddileti; Subhash Gaddipati; Indumathi Mariappan

    2013-03-01

    Millions of people world over suffer visual disability due to retinal dystrophies which can be age-related or a genetic disorder resulting in gradual degeneration of the retinal pigmented epithelial (RPE) cells and photoreceptors. Therefore, cell replacement therapy offers a great promise in treating such diseases. Since the adult retina does not harbour any stem cells, alternative stem cell sources like the embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) offer a great promise for generating different cell types of the retina. Here, we report the derivation of four iPSC lines from mouse embryonic fibroblasts (MEFs) using a cocktail of recombinant retroviruses carrying the genes for Oct4, Sox2, Klf4 and cMyc. The iPS clone MEF-4F3 was further characterized for stemness marker expression and stable reprogramming by immunocytochemistry, FACS and RT-PCR analysis. Methylation analysis of the nanog promoter confirmed the reprogrammed epigenetic state. Pluripotency was confirmed by embryoid body (EB) formation and lineage-specific marker expression. Also, upon retinal differentiation, patches of pigmented cells with typical cobble-stone phenotype similar to RPE cells are generated within 6 weeks and they expressed ZO-1 (tight junction protein), RPE65 and bestrophin (mature RPE markers) and showed phagocytic activity by the uptake of fluorescent latex beads.

  8. Poroelasticity of cell nuclei revealed through atomic force microscopy characterization

    Science.gov (United States)

    Wei, Fanan; Lan, Fei; Liu, Bin; Liu, Lianqing; Li, Guangyong

    2016-11-01

    With great potential in precision medical application, cell biomechanics is rising as a hot topic in biology. Cell nucleus, as the largest component within cell, not only contributes greatly to the cell's mechanical behavior, but also serves as the most vital component within cell. However, cell nucleus' mechanics is still far from unambiguous up to now. In this paper, we attempted to characterize and evaluate the mechanical property of isolated cell nuclei using Atomic Force Microscopy with a tipless probe. As indicated from typical indentation, changing loading rate and stress relaxation experiment results, cell nuclei showed significant dynamically mechanical property, i.e., time-dependent mechanics. Furthermore, through theoretical analysis, finite element simulation and stress relaxation experiment, the nature of nucleus' mechanics was better described by poroelasticity, rather than viscoelasticity. Therefore, the essence of nucleus' mechanics was clarified to be poroelastic through a sophisticated analysis. Finally, we estimated the poroelastic parameters for nuclei of two types of cells through a combination of experimental data and finite element simulation.

  9. 3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma.

    Science.gov (United States)

    Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang

    2016-03-01

    The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively.

  10. Further characterization of the first seminoma cell line TCam-2.

    Science.gov (United States)

    de Jong, Jeroen; Stoop, Hans; Gillis, Ad J M; Hersmus, Remko; van Gurp, Ruud J H L M; van de Geijn, Gert-Jan M; van Drunen, Ellen; Beverloo, H Berna; Schneider, Dominik T; Sherlock, Jon K; Baeten, John; Kitazawa, Sohei; van Zoelen, E Joop; van Roozendaal, Kees; Oosterhuis, J Wolter; Looijenga, Leendert H J

    2008-03-01

    Testicular germ cell tumors of adolescents and adults (TGCTs) can be classified into seminomatous and nonseminomatous tumors. Various nonseminomatous cell lines, predominantly embryonal carcinoma, have been established and proven to be valuable for pathobiological and clinical studies. So far, no cell lines have been derived from seminoma which constitutes more than 50% of invasive TGCTs. Such a cell line is essential for experimental investigation of biological characteristics of the cell of origin of TGCTs, i.e., carcinoma in situ of the testis, which shows characteristics of a seminoma cell. Before a cell line can be used as model, it must be verified regarding its origin and characteristics. Therefore, a multidisciplinary approach was undertaken on TCam-2 cells, supposedly the first seminoma cell line. Fluorescence in situ hybridization, array comparative genomic hybridization, and spectral karyotyping demonstrated an aneuploid DNA content, with gain of 12p, characteristic for TGCTs. Genome wide mRNA and microRNA expression profiling supported the seminoma origin, in line with the biallelic expression of imprinted genes IGF2/H19 and associated demethylation of the imprinting control region. Moreover, the presence of specific markers, demonstrated by immunohistochemistry, including (wild type) KIT, stem cell factor, placental alkaline phosphatase, OCT3/4 (also demonstrated by a specific Q-PCR) and NANOG, and the absence of CD30, SSX2-4, and SOX2, confirms that TCam-2 is a seminoma cell line. Although mutations in oncogenes and tumor suppressor genes are rather rare in TGCTs, TCam-2 had a mutated BRAF gene (V600E), which likely explains the fact that these cells could be propagated in vitro. In conclusion, TCam-2 is the first well-characterized seminoma-derived cell line, with an exceptional mutation, rarely found in TGCTs.

  11. Analysing the Influence of the Spontaneous Aneuploidy Frequency on the Cell Population System Cultivation

    Directory of Open Access Journals (Sweden)

    G. A. Nefedov

    2015-01-01

    Full Text Available The paper provides a qualitative analysis of M.S. Vinogradova's nonlinear model for dynamics of the cell population system. This system describes the stem cells cultivation in vitro under resource constraints. The system consists of two populations, namely: population of normal cells and population of abnormal cells. Resource constraints are considered as linear dependences of mitosis parameters on the normalized densities of each population.One of the key parameters that effects on the realization of the system evolution scenarios is a parameter that determines a share of the normal cells, which pass, when dividing, into population of the abnormal cells. The paper analyses both the existence conditions of the rest points and the changes of the evolution scenarios of population system with changing abovementioned parameter and other system parameters held fixed. It is shown that there is a saddle-node bifurcation in the system; the bifurcation value of the parameter is found. The paper shows the interval of parameter values in which the favorable scenarios of population system evolution are implemented. It also presents results of mathematical modeling.

  12. Cellular and molecular characterization of multipolar Map5-expressing cells: a subset of newly generated, stage-specific parenchymal cells in the mammalian central nervous system.

    Science.gov (United States)

    Crociara, Paola; Parolisi, Roberta; Conte, Daniele; Fumagalli, Marta; Bonfanti, Luca

    2013-01-01

    Although extremely interesting in adult neuro-glio-genesis and promising as an endogenous source for repair, parenchymal progenitors remain largely obscure in their identity and physiology, due to a scarce availability of stage-specific markers. What appears difficult is the distinction between real cell populations and various differentiation stages of the same population. Here we focused on a subset of multipolar, polydendrocyte-like cells (mMap5 cells) expressing the microtubule associated protein 5 (Map5), which is known to be present in most neurons. We characterized the morphology, phenotype, regional distribution, proliferative dynamics, and stage-specific marker expression of these cells in the rabbit and mouse CNS, also assessing their existence in other mammalian species. mMap5 cells were never found to co-express the Ng2 antigen. They appear to be a population of glial cells sharing features but also differences with Ng2+progenitor cells. We show that mMap5 cells are newly generated, postmitotic parenchymal elements of the oligodendroglial lineage, thus being a stage-specific population of polydendrocytes. Finally, we report that the number of mMap5 cells, although reduced within the brain of adult/old animals, can increase in neurodegenerative and traumatic conditions.

  13. Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations

    Science.gov (United States)

    Sadick, Jessica S.; Boutin, Molly E.; Hoffman-Kim, Diane; Darling, Eric M.

    2016-01-01

    Cellular heterogeneity is inherent in most human tissues, making the investigation of specific cell types challenging. Here, we describe a novel, fixation/intracellular target-based sorting and protein extraction method to provide accurate protein characterization for cell subpopulations. Validation and feasibility tests were conducted using homogeneous, neural cell lines and heterogeneous, rat brain cells, respectively. Intracellular proteins of interest were labeled with fluorescent antibodies for fluorescence-activated cell sorting. Reproducible protein extraction from fresh and fixed samples required lysis buffer with high concentrations of Tris-HCl and sodium dodecyl sulfate as well as exposure to high heat. No deterioration in protein amount or quality was observed for fixed, sorted samples. For the feasibility experiment, a primary rat subpopulation of neuronal cells was selected for based on high, intracellular β-III tubulin signal. These cells showed distinct protein expression differences from the unsorted population for specific (phosphorylated tau) and non-specific (total tau) protein targets. Our approach allows for determining more accurate protein profiles directly from cell types of interest and provides a platform technology in which any cell subpopulation can be biochemically investigated. PMID:27666089

  14. Characterization of vascular smooth muscle cell phenotype in long-term culture.

    Science.gov (United States)

    Absher, M; Woodcock-Mitchell, J; Mitchell, J; Baldor, L; Low, R; Warshaw, D

    1989-02-01

    Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavior, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concomitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression.

  15. Characterization of the natural killer T-cell response in an adoptive transfer model of atherosclerosis.

    Science.gov (United States)

    VanderLaan, Paul A; Reardon, Catherine A; Sagiv, Yuval; Blachowicz, Lydia; Lukens, John; Nissenbaum, Michael; Wang, Chyung-Ru; Getz, Godfrey S

    2007-03-01

    Natural killer T (NKT) cells have recently been implicated in atherogenesis, primarily for their ability to recognize and respond to lipid antigens. Because the atherosclerotic lesion is characterized by the retention and modification of lipids in the vascular wall, NKT cells may be involved in promoting the local vascular inflammatory response. Here, we investigate the proatherogenic role of NKT cells in an adoptive transfer model of atherosclerosis, using as recipients immune-deficient, atherosclerosis-susceptible RAG1(-/-)LDLR(-/-) mice. The adoptive transfer of an NKT cell-enriched splenocyte population from Valpha14Jalpha18 T-cell receptor transgenic mice resulted in a 73% increase in aortic root lesion area compared with recipients of NKT cell-deficient splenocytes derived from CD1d(-/-) mice after 12 weeks of Western-type diet feeding. The total serum from hypercholesterolemic mice leads to a small but significant activation of Valpha14Jalpha18 T-cell receptor-expressing hybridoma line by dendritic cells that is CD1d-dependent. Therefore, these studies demonstrate that NKT cells are proatherogenic in the absence of exogenous stimulation, and this activity is likely associated with endogenous lipid antigens carried by lipoproteins in the circulation and perhaps also in the atherosclerotic plaque.

  16. Imbalance of placental regulatory T cell and Th17 cell population dynamics in the FIV-infected pregnant cat

    Directory of Open Access Journals (Sweden)

    Boudreaux Crystal E

    2012-05-01

    Full Text Available Abstract Background An appropriate balance in placental regulatory T cells (Tregs, an immunosuppressive cell population, and Th17 cells, a pro-inflammatory cell population, is essential in allowing tolerance of the semi-allogeneic fetus. TGF-β and IL-6 are cytokines that promote differentiation of Tregs and Th17 cells from a common progenitor; aberrant expression of the cytokines may perturb the balance in the two cell populations. We previously reported a pro-inflammatory placental environment with decreased levels of FoxP3, a Treg marker, and increased levels of IL-6 in the placentas of FIV-infected cats at early pregnancy. Thus, we hypothesized that FIV infection in the pregnant cat causes altered placental Treg and Th17 cell populations, possibly resulting in placental inflammation. Methods We examined the effect of FIV infection on Treg and Th17 populations in placentas at early pregnancy using quantitative confocal microscopy to measure FoxP3 or RORγ, a Th17 marker, and qPCR to quantify expression of the key cytokines TGF-β and IL-6. Results FoxP3 and RORγ were positively correlated in FIV-infected placentas at early pregnancy, but not placentas from normal cats, indicating virus-induced alteration in the balance of these cell populations. In control cats the expression of IL-6 and RORγ was positively correlated as predicted, but this relationship was disrupted in infected animals. TGF-β was reduced in infected queens, an occurrence that could dysregulate both Treg and Th17 cell populations. Co-expression analyses revealed a highly significant positive correlation between IL-6 and TGF-β expression in control animals that did not occur in infected animals. Conclusion Collectively, these data point toward potential disruption in the balance of Treg and Th17 cell populations that may contribute to FIV-induced inflammation in the feline placenta.

  17. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Lowes, Lori E. [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Allan, Alison L., E-mail: alison.allan@lhsc.on.ca [London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 4L6 (Canada); Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1 (Canada); Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 4L6 (Canada); Lawson Health Research Institute, London, ON N6C 2R5 (Canada)

    2014-03-13

    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch{sup ®} system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing.

  18. Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    Directory of Open Access Journals (Sweden)

    Lori E. Lowes

    2014-03-01

    Full Text Available Although circulating tumor cells (CTCs were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch® system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH, multiplex RT-PCR, microarray, and genomic sequencing.

  19. Detection and Characterization of Circulating Tumour Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Liangxuan Zhang

    2016-06-01

    Full Text Available Multiple myeloma (MM remains an incurable disease despite recent therapeutic improvements. The ability to detect and characterize MM circulating tumour cells (CTCs in peripheral blood provides an alternative to replace or augment invasive bone marrow (BM biopsies with a simple blood draw, providing real-time, clinically relevant information leading to improved disease manage‐ ment and therapy selection. Here we have developed and qualified an enrichment-free, cell-based immunofluores‐ cence MM CTC assay that utilizes an automated digital pathology algorithm to distinguish MM CTCs from white blood cells (WBCs on the basis of CD138 and CD45 expression levels, as well as a number of morphological parameters. These MM CTCs were further characterized for expression of phospho-ribosomal protein S6 (pS6 as a readout for PI3K/AKT pathway activation. Clinical feasi‐ bility of the assay was established by testing blood samples from a small cohort of patients, where we detected popu‐ lations of both CD138pos and CD138neg MM CTCs. In this study, we developed an immunofluorescent cell-based assay to detect and characterize CTCs in MM.

  20. Characterization of tendon cell cultures of the human rotator cuff

    Directory of Open Access Journals (Sweden)

    S Pauly

    2010-07-01

    Full Text Available tator cuff tears are common soft tissue injuries of the musculoskeletal system that heal by formation of repair tissue and may lead to high retear rates and joint dysfunction. In particular, tissue from chronic, large tendon tears is of such degenerative nature that it may be prone to retear after surgical repair. Besides several biomechanical approaches, biologically based strategies such as application of growth factors may be promising for increasing cell activity and production of extracellular tendon matrix at the tendon-to-bone unit. As a precondition for subsequent experimental growth factor application, the aim of the present study was to establish and characterize a human rotator cuff tendon cell culture.Long head biceps (LHB- and supraspinatus muscle (SSP- tendon samples from donor patients undergoing shoulder surgery were cultivated and examined at the RNA level for expression of collagen type-I, -II and -III, biglycan, decorin, tenascin-C, aggrecan, osteocalcin, tenomodulin and scleraxis (by Real-time PCR. Finally, results were compared to chondrocytes and osteoblasts as control cells.An expression pattern was found which may reflect a human rotator cuff tenocyte-like cell culture. Both SSP and LHB tenocyte-like cells differed from chondrocyte cell cultures in terms of reduced expression of collagen type-II (p≤0.05 and decorin while higher levels of collagen type-I were seen (p≤0.05. With respect to osteoblasts, tenocyte-like cells expressed lower levels of osteocalcin (p≤0.05 as well as tenascin C, biglycan and collagen type-III. Expression of scleraxis, tenomodulin and aggrecan was similar between all cell types.This study represents a characterization of tenocyte-like cells from the human rotator cuff as close as possible. It helps analyzing their biological properties and allows further studies to improve production of tendon matrix and osteofibroblastic integration at the tendon-bone unit following tendon repair.

  1. Single Cell Dynamics Causes Pareto-Like Effect in Stimulated T Cell Populations.

    Science.gov (United States)

    Cosette, Jérémie; Moussy, Alice; Onodi, Fanny; Auffret-Cariou, Adrien; Neildez-Nguyen, Thi My Anh; Paldi, Andras; Stockholm, Daniel

    2015-12-09

    Cell fate choice during the process of differentiation may obey to deterministic or stochastic rules. In order to discriminate between these two strategies we used time-lapse microscopy of individual murine CD4 + T cells that allows investigating the dynamics of proliferation and fate commitment. We observed highly heterogeneous division and death rates between individual clones resulting in a Pareto-like dominance of a few clones at the end of the experiment. Commitment to the Treg fate was monitored using the expression of a GFP reporter gene under the control of the endogenous Foxp3 promoter. All possible combinations of proliferation and differentiation were observed and resulted in exclusively GFP-, GFP+ or mixed phenotype clones of very different population sizes. We simulated the process of proliferation and differentiation using a simple mathematical model of stochastic decision-making based on the experimentally observed parameters. The simulations show that a stochastic scenario is fully compatible with the observed Pareto-like imbalance in the final population.

  2. A Knockin Reporter Allows Purification and Characterization of mDA Neurons from Heterogeneous Populations

    Directory of Open Access Journals (Sweden)

    Ninuo Xia

    2017-03-01

    Full Text Available Generation of midbrain dopaminergic (mDA neurons from human pluripotent stem cells provides a platform for inquiry into basic and translational studies of Parkinson’s disease (PD. However, heterogeneity in differentiation in vitro makes it difficult to identify mDA neurons in culture or in vivo following transplantation. Here, we report the generation of a human embryonic stem cell (hESC line with a tyrosine hydroxylase (TH-RFP (red fluorescent protein reporter. We validated that RFP faithfully mimicked TH expression during differentiation. Use of this TH-RFP reporter cell line enabled purification of mDA-like neurons from heterogeneous cultures with subsequent characterization of neuron transcriptional and epigenetic programs (global binding profiles of H3K27ac, H3K4me1, and 5-hydroxymethylcytosine [5hmC] at four different stages of development. We anticipate that the tools and data described here will contribute to the development of mDA neurons for applications in disease modeling and/or drug screening and cell replacement therapies for PD.

  3. Three photosynthetic patterns characterized by cluster analysis of gas exchange data in two rice populations

    Institute of Scientific and Technical Information of China (English)

    Zaisong; Ding; Tao; Li; Xianguo; Zhu; Xuefang; Sun; Suhua; Huang; Baoyuan; Zhou; Ming; Zhao

    2014-01-01

    Plant photosynthetic rate is affected by stomatal status and internal CO2 carboxylation. Understanding which process determines photosynthetic rate is essential for developing strategies for breeding crops with high photosynthetic efficiency. In this study, we identified different physiological patterns of photosynthetic rate in two different rice populations. Photosynthetic gas exchange parameters were measured during the flowering stage in two rice populations. Clustering and correlation analyses were performed on the resulting data. Five or six groups were defined by K-means clustering according to differences in net photosynthetic rates(Pn). According to differences in stomatal conductance(gs) and carboxylation efficiency(CE), each group was clustered into three subgroups characterized by physiological patterns stomatal pattern, carboxylation pattern, and intermediate pattern. Pn was significantly correlated with gs(r = 0.810) and CE(r = 0.531). Pn was also significantly correlated with gs and CE in the three physiological patterns. The correlation coefficients were highest in the stomatal pattern(0.905 and 0.957) and lowest in the carboxylation pattern(0.825 and 0.859). Higher correlation coefficients between Pn and gs or CE in the three physiological patterns indicate that clustering is very important for understanding factors limiting rice photosynthesis. ? 2013 Production and hosting by Elsevier B.V. on behalf of Crop Science Society of China

  4. Molecular characterization of microbial populations in groundwater sources and sand filters for drinking water production.

    Science.gov (United States)

    de Vet, W W J M; Dinkla, I J T; Muyzer, G; Rietveld, L C; van Loosdrecht, M C M

    2009-01-01

    In full-scale drinking water production from groundwater, subsurface aeration is an effective means of enhancing the often troublesome process of nitrification. Until now the exact mechanism, however, has been unknown. By studying the microbial population we can improve the understanding of this process. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments of bacteria, archaea and ammonia-oxidizing bacteria was used to characterize the microbial populations in raw groundwater and trickling filters of an active nitrifying surface aerated system and an inactive non-surface aerated system. Only in the active filter were nitrifying microorganisms found above the detection limit of the method. In ammonia oxidation in this groundwater filter both bacteria and archaea played a role, while members belonging to the genus Nitrospira were the only nitrite-oxidizing species found. The subsurface aerated groundwater did not contain any of the nitrifying organisms active in the filter above the detection limit, but did contain Gallionella species that might play a major role in iron oxidation in the filter.

  5. Three photosynthetic patterns characterized by cluster analysis of gas exchange data in two rice populations

    Directory of Open Access Journals (Sweden)

    Zaisong Ding

    2014-02-01

    Full Text Available Plant photosynthetic rate is affected by stomatal status and internal CO2 carboxylation. Understanding which process determines photosynthetic rate is essential for developing strategies for breeding crops with high photosynthetic efficiency. In this study, we identified different physiological patterns of photosynthetic rate in two different rice populations. Photosynthetic gas exchange parameters were measured during the flowering stage in two rice populations. Clustering and correlation analyses were performed on the resulting data. Five or six groups were defined by K-means clustering according to differences in net photosynthetic rates (Pn. According to differences in stomatal conductance (gs and carboxylation efficiency (CE, each group was clustered into three subgroups characterized by physiological patterns stomatal pattern, carboxylation pattern, and intermediate pattern. Pn was significantly correlated with gs (r = 0.810 and CE (r = 0.531. Pn was also significantly correlated with gs and CE in the three physiological patterns. The correlation coefficients were highest in the stomatal pattern (0.905 and 0.957 and lowest in the carboxylation pattern (0.825 and 0.859. Higher correlation coefficients between Pn and gs or CE in the three physiological patterns indicate that clustering is very important for understanding factors limiting rice photosynthesis.

  6. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  7. Characterization of bortezomib-adapted I-45 mesothelioma cells

    Directory of Open Access Journals (Sweden)

    Peddaboina Chander

    2010-05-01

    Full Text Available Abstract Background Bortezomib, a proteasome-specific inhibitor, has emerged as a promising cancer therapeutic agent. However, development of resistance to bortezomib may pose a challenge to effective anticancer therapy. Therefore, characterization of cellular mechanisms involved in bortezomib resistance and development of effective strategies to overcome this resistance represent important steps in the advancement of bortezomib-mediated cancer therapy. Results The present study reports the development of I-45-BTZ-R, a bortezomib-resistant cell line, from the bortezomib-sensitive mesothelioma cell line I-45. I-45-BTZ-R cells showed no cross-resistance to the chemotherapeutic drugs cisplatin, 5-fluorouracil, and doxorubicin. Moreover, the bortezomib-adapted I-45-BTZ-R cells had decreased growth kinemics and did not over express proteasome subunit β5 (PSMB5 as compared to parental I-45 cells. I-45-BTZ-R cells and parental I-45 cells showed similar inhibition of proteasome activity, but I-45-BTZ-R cells exhibited much less accumulation of ubiquitinated proteins following exposure to 40 nm bortezomib. Further studies revealed that relatively low doses of bortezomib did not induce an unfolded protein response (UPR in the bortezomib-adapted cells, while higher doses induced UPR with concomitant cell death, as evidenced by higher expression of the mitochondrial chaperone protein Bip and the endoplasmic reticulum (ER stress-related pro-apoptotic protein CHOP. In addition, bortezomib exposure did not induce the accumulation of the pro-apoptotic proteins p53, Mcl-1S, and noxa in the bortezomib-adapted cells. Conclusion These results suggest that UPR evasion, together with reduced pro-apoptotic gene induction, accounts for bortezomib resistance in the bortezomib-adapted mesothelioma cell line I-45-BTZ-R.

  8. Index sorting resolves heterogeneous murine hematopoietic stem cell populations

    Science.gov (United States)

    Schulte, Reiner; Wilson, Nicola K.; Prick, Janine C.M.; Cossetti, Chiara; Maj, Michal K.; Gottgens, Berthold; Kent, David G.

    2015-01-01

    Recent advances in the cellular and molecular biology of single stem cells have uncovered significant heterogeneity in the functional properties of stem cell populations. This has prompted the development of approaches to study single cells in isolation, often performed using multiparameter flow cytometry. However, many stem cell populations are too rare to test all possible cell surface marker combinations, and virtually nothing is known about functional differences associated with varying intensities of such markers. Here we describe the use of index sorting for further resolution of the flow cytometric isolation of single murine hematopoietic stem cells (HSCs). Specifically, we associate single-cell functional assay outcomes with distinct cell surface marker expression intensities. High levels of both CD150 and EPCR associate with delayed kinetics of cell division and low levels of differentiation. Moreover, cells that do not form single HSC-derived clones appear in the 7AADdim fraction, suggesting that even low levels of 7AAD staining are indicative of less healthy cell populations. These data indicate that when used in combination with single-cell functional assays, index sorting is a powerful tool for refining cell isolation strategies. This approach can be broadly applied to other single-cell systems, both to improve isolation and to acquire additional cell surface marker information. PMID:26051918

  9. A high-content image-based method for quantitatively studying context-dependent cell population dynamics.

    Science.gov (United States)

    Garvey, Colleen M; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C; Agus, David B; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M

    2016-01-01

    Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays.

  10. Essential oil characterization of two Azorean Cryptomeria japonica populations and their biological evaluations.

    Science.gov (United States)

    Moiteiro, Cristina; Esteves, Teresa; Ramalho, Luís; Rojas, Rosario; Alvarez, Sandra; Zacchino, Susana; Bragança, Helena

    2013-12-01

    Essential oils from foliage, bark and heartwood of Cryptomeriajaponica D. Don from Azores Archipelago (Portugal) were analyzed by GC and GC-MS. Two populations, of black and reddish heartwood color, were studied. The main compounds found in the foliage of both populations were alpha-pinene (9.6-29.5%), (+)-phyllocladene (3.5-26.5%), ent-kaur-16-ene (0.2-20.6%), sabinene (0.5-19.9%) and limonene (1.4-11.5%), with a large variation in individual compounds from each population. Heartwood oils were characterized by a high content of cubebol (2.8-39.9%) and epi-cubebol (4.1-26.9%) isomers, which were absent in the foliage. Elemol and eudesmol isomers were found in the foliage and heartwood oils, while (+)-phyllocladene was absent in heartwood. Black and reddish bark oils were composed of the diterpenes dehydroferruginol (1.9-5.1%) and ferruginol (2.6-11.5%), along with the sesquiterpenes delta-cadinene (10.4-15.9%), alpha-muurolene (3.3-5.4%), epi-zonarene (4.0-5.0%), cubenol (9.3-14.0%), tau-muurolol (4.8-10.7%), beta-eudesmol (3.0-9.9%), gamma-eudesmol (1.9-7.0%) and hedycariol (1.4-6.2%). Azorean C. japonica oils exhibited significant chemical differences compared with native plants from Asia. The essential oils showed moderate antimicrobial activity against the pathogenic fungus Cryptococcus neoformans and human pathogenic bacteria (especially against multidrug-resistant Mycobacterium tuberculosis). The antimicrobial activity of the essential oils may be attributed to compounds such as ent-kaur-16-ene, (+)-phyllocladene, ferruginol and elemol, which are present in different proportions within the complex oil mixture. These results suggest a potential use for C. japonica oils obtained from wood industry leftovers.

  11. Characterization of genetic sequence variation of 58 STR loci in four major population groups.

    Science.gov (United States)

    Novroski, Nicole M M; King, Jonathan L; Churchill, Jennifer D; Seah, Lay Hong; Budowle, Bruce

    2016-11-01

    Massively parallel sequencing (MPS) can identify sequence variation within short tandem repeat (STR) alleles as well as their nominal allele lengths that traditionally have been obtained by capillary electrophoresis. Using the MiSeq FGx Forensic Genomics System (Illumina), STRait Razor, and in-house excel workbooks, genetic variation was characterized within STR repeat and flanking regions of 27 autosomal, 7 X-chromosome and 24 Y-chromosome STR markers in 777 unrelated individuals from four population groups. Seven hundred and forty six autosomal, 227 X-chromosome, and 324 Y-chromosome STR alleles were identified by sequence compared with 357 autosomal, 107 X-chromosome, and 189 Y-chromosome STR alleles that were identified by length. Within the observed sequence variation, 227 autosomal, 156 X-chromosome, and 112 Y-chromosome novel alleles were identified and described. One hundred and seventy six autosomal, 123 X-chromosome, and 93 Y-chromosome sequence variants resided within STR repeat regions, and 86 autosomal, 39 X-chromosome, and 20 Y-chromosome variants were located in STR flanking regions. Three markers, D18S51, DXS10135, and DYS385a-b had 1, 4, and 1 alleles, respectively, which contained both a novel repeat region variant and a flanking sequence variant in the same nucleotide sequence. There were 50 markers that demonstrated a relative increase in diversity with the variant sequence alleles compared with those of traditional nominal length alleles. These population data illustrate the genetic variation that exists in the commonly used STR markers in the selected population samples and provide allele frequencies for statistical calculations related to STR profiling with MPS data.

  12. Contribution of spoligotyping to the characterization of the population structure of Mycobacterium tuberculosis isolates in Portugal.

    Science.gov (United States)

    David, Suzana; Ribeiro, Diana Raposo; Antunes, Abílio; Portugal, Clara; Sancho, Luísa; de Sousa, José Germano

    2007-09-01

    Tuberculosis is a major health problem in Portugal. To begin characterizing the population structure of Mycobacterium tuberculosis, spoligotyping was used for the systematic typing, through consecutive sampling, of patient isolates from the Amadora-Sintra area of Greater Lisbon. Distribution amongst major spoligotype families, including the Latin American Mediterranean (LAM), T, Haarlem and Beijing, was compared to that of the international spoligotype database SpolDB4 and to the European countries of traditional Portuguese immigration represented in SpolDB4. Spoligotypes from 665 isolates were analyzed and 97 shared international types (SITs) identified. In SpolDB4 Portugal is represented by part of the spoligotypes from this study explaining the reduced number of unidentified patterns. The importance of the LAM family, and especially of LAM1 and LAM9 sub-families that alone represented 38% of all the isolates in this study as compared to 8% relative to the European sub group, led us to believe that at least in this respect the population structure was closer to that of Africa and South America than to Europe. Spoligotypes characteristic of Portugal or Portuguese related settings were identified. These included SIT244 a T1 sub-family predominant in Portugal and Bangladesh, SIT64 a LAM 6 sub-family common to Portugal and Brazil, and SIT1106 a LAM 9 sub-family. These studies were the first in Portugal stressing the importance of monitoring the population structure of M. tuberculosis isolates, an important step towards gaining an understanding of tuberculosis and the dynamics of this disease.

  13. Error baseline rates of five sample preparation methods used to characterize RNA virus populations

    Science.gov (United States)

    Kugelman, Jeffrey R.; Wiley, Michael R.; Nagle, Elyse R.; Reyes, Daniel; Pfeffer, Brad P.; Kuhn, Jens H.; Sanchez-Lockhart, Mariano; Palacios, Gustavo F.

    2017-01-01

    Individual RNA viruses typically occur as populations of genomes that differ slightly from each other due to mutations introduced by the error-prone viral polymerase. Understanding the variability of RNA virus genome populations is critical for understanding virus evolution because individual mutant genomes may gain evolutionary selective advantages and give rise to dominant subpopulations, possibly even leading to the emergence of viruses resistant to medical countermeasures. Reverse transcription of virus genome populations followed by next-generation sequencing is the only available method to characterize variation for RNA viruses. However, both steps may lead to the introduction of artificial mutations, thereby skewing the data. To better understand how such errors are introduced during sample preparation, we determined and compared error baseline rates of five different sample preparation methods by analyzing in vitro transcribed Ebola virus RNA from an artificial plasmid-based system. These methods included: shotgun sequencing from plasmid DNA or in vitro transcribed RNA as a basic “no amplification” method, amplicon sequencing from the plasmid DNA or in vitro transcribed RNA as a “targeted” amplification method, sequence-independent single-primer amplification (SISPA) as a “random” amplification method, rolling circle reverse transcription sequencing (CirSeq) as an advanced “no amplification” method, and Illumina TruSeq RNA Access as a “targeted” enrichment method. The measured error frequencies indicate that RNA Access offers the best tradeoff between sensitivity and sample preparation error (1.4−5) of all compared methods. PMID:28182717

  14. 75 FR 54351 - Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop

    Science.gov (United States)

    2010-09-07

    ... HUMAN SERVICES Food and Drug Administration Cell and Gene Therapy Clinical Trials in Pediatric... public workshop entitled ``Cell and Gene Therapy Clinical Trials in Pediatric Populations.'' The purpose... therapy clinical researchers, and other stakeholders regarding best practices related to cell and...

  15. Electrical impedance characterization of cell growth on interdigitated microelectrode array.

    Science.gov (United States)

    Lee, Gi Hyun; Pyun, Jae-Chul; Cho, Sungbo

    2014-11-01

    Electrical cell-substrate impedance sensing is a method for label-free and real-time monitoring of biological cells, which has been increasingly employed in the diagnostic and pharmaceutical industries. In this study, we fabricated an interdigitated electrode (IDE) array, which consists of 10 fingers, with a length of 1.2 mm, width of 50 μm, spacing of 50 μm, and thickness of 75 nm. The impedance spectra of the fabricated IDE were measured without or with cells in the frequency range of 100 Hz to 100 kHz using a lock-in amplifier based system and characterized by equivalent circuit modelling. Regarding the total impedance as a series resistance (R) and capacitance (C) model, R and C parameters were traced at a selected frequency during cell growth. It was able to monitor cell adherence and proliferation dependent on the behaviours and characteristics of cells on the fabricated IDE array by monitoring RC parameters. The degree of changes in RC value during cell growth was dependent on the type of cells used.

  16. Isolation and Characterization of Poliovirus in Cell Culture Systems.

    Science.gov (United States)

    Thorley, Bruce R; Roberts, Jason A

    2016-01-01

    The isolation and characterization of enteroviruses by cell culture was accepted as the "gold standard" by clinical virology laboratories. Methods for the direct detection of all enteroviruses by reverse transcription polymerase chain reaction, targeting a conserved region of the genome, have largely supplanted cell culture as the principal diagnostic procedure. However, the World Health Organization's Global Polio Eradication Initiative continues to rely upon cell culture to isolate poliovirus due to the lack of a reliable sensitive genetic test for direct typing of enteroviruses from clinical specimens. Poliovirus is able to infect a wide range of mammalian cell lines, with CD155 identified as the primary human receptor for all three seroytpes, and virus replication leads to an observable cytopathic effect. Inoculation of cell lines with extracts of clinical specimens and subsequent passaging of the cells leads to an increased virus titre. Cultured isolates of poliovirus are suitable for testing by a variety of methods and remain viable for years when stored at low temperature.This chapter describes general procedures for establishing a cell bank and routine passaging of cell lines. While the sections on specimen preparation and virus isolation focus on poliovirus, the protocols are suitable for other enteroviruses.

  17. Retracing circulating tomour cells for biomarker characterization after enumeration

    DEFF Research Database (Denmark)

    Frandsen, Anders S.; Fabisiewicz, Anna; Jagiello-Gruszfeld, Agnieszka;

    2015-01-01

    to map and retrace individual CTCs from breast-cancer patients and nucleated cells from healthy blood donors using the CytoTrack platform. For proof of the retracing concept, CTC HER2 characterization by immunofluorescence was tested. Results: CTCs were detected and enumerated in three of four blood...... samples from breast-cancer patients and the locations of each individual CTCs were mapped on the discs. Nucleated cells were retraced on seven discs with 96.6%±8.5% recovery on five fields of view on each disc. Shifting of field of view for retracing was measured to 4-29 μm. In a blood sample from a HER2......-positive breast-cancer patient, CTC enumeration and mapping was followed by HER2 characterization and retracing to demonstrate downstream immunofluorescence analysis of the CTC. Conclusion: Mapping and retracing of CTCs enables downstream analysis of individual CTCs for existing and future cancer genotypic...

  18. A synthetic circuit for selectively arresting daughter cells to create aging populations.

    Science.gov (United States)

    Afonso, Bruno; Silver, Pamela A; Ajo-Franklin, Caroline M

    2010-05-01

    The ability to engineer genetic programs governing cell fate will permit new safeguards for engineered organisms and will further the biological understanding of differentiation and aging. Here, we have designed, built and implemented a genetic device in the budding yeast Saccharomyces cerevisiae that controls cell-cycle progression selectively in daughter cells. The synthetic device was built in a modular fashion by combining timing elements that are coupled to the cell cycle, i.e. cell-cycle specific promoters and protein degradation domains, and an enzymatic domain which conditionally confers cell arrest. Thus, in the presence of a drug, the device is designed to arrest growth of only newly-divided daughter cells in the population. Indeed, while the engineered cells grow normally in the absence of drug, with the drug the engineered cells display reduced, linear growth on the population level. Fluorescence microscopy of single cells shows that the device induces cell arrest exclusively in daughter cells and radically shifts the age distribution of the resulting population towards older cells. This device, termed the 'daughter arrester', provides a blueprint for more advanced devices that mimic developmental processes by having control over cell growth and death.

  19. An endogenous inhibitor of angiogenesis inversely correlates with side population phenotype and function in human lung cancer cells.

    Science.gov (United States)

    Han, H; Bourboulia, D; Jensen-Taubman, S; Isaac, B; Wei, B; Stetler-Stevenson, W G

    2014-02-27

    The side population (SP) in human lung cancer cell lines and tumors is enriched with cancer stem cells. An endogenous inhibitor of angiogenesis known as tissue inhibitor of matrix metalloproteinase-2 (TIMP-2), characterized for its ability to inhibit matrix metalloproteinases (MMPs), has been shown by several laboratories to impede tumor progression through MMP-dependent or -independent mechanisms. We recently reported that forced expression of TIMP-2, as well as the modified form Ala+TIMP-2 (that lacks MMP inhibitory activity) significantly blocks growth of A549 human lung cancer cells in vivo. However, the mechanisms underlying TIMP-2 antitumor effects are not fully characterized. Here, we examine the hypothesis that the TIMP-2 antitumor activity may involve regulation of the SP in human lung cancer cells. Indeed, using Hoechst dye efflux assay and flow cytometry, as well as quantitative reverse transcriptase-PCR analysis, we found that endogenous TIMP-2 mRNA levels showed a significant inverse correlation with SP fraction size in six non-small cell lung cancer cell lines. In A549 cells expressing increased levels of TIMP-2, a significant decrease in SP was observed, and this decrease was associated with lowered gene expression of ABCG2, ABCB1 and AKR1C1. Functional analysis of A549 cells showed that TIMP-2 overexpression increased chemosensitivity to cytotoxic drugs. The SP isolated from TIMP-2-overexpressing A549 cells also demonstrated impaired migratory capacity compared with the SP from empty vector control. More importantly, our data provide strong evidence that these TIMP-2 functions occur independent of MMP inhibition, as A549 cells overexpressing Ala+TIMP-2 exhibited identical behavior to those overexpressing TIMP-2 alone. Our findings provide the first indication that TIMP-2 modulates SP phenotype and function, and suggests that TIMP-2 may act as an endogenous suppressor of the SP in human lung cancer cells.

  20. CHARACTERIZATION AND ANALISYS OF A FURNACE TO FABRICATE SOLAR CELLS

    OpenAIRE

    Sérgio Boscato Garcia; Adriano Moehlecke; Izete Zanesco

    2013-01-01

    The solar cell industry has presented high growth rates and dealt with a large portfolio of suppliers for specific equipments like diffusion furnaces needed to produce the pn junction in the fabrication of silicon devices. The aim of this paper is to present the thermal analysis and the characterization of diffusions carried out in the first diffusion furnace developed and fabricated in Brazil. Longitudinal and radial temperature profiles were measured and analyzed. Results of the...

  1. Cell Invasion in Collagen Scaffold Architectures Characterized by Percolation Theory

    OpenAIRE

    Ashworth, Jennifer C; Mehr, Marco; Buxton, Paul G.; Best, Serena M.; Cameron, Ruth E.

    2015-01-01

    This is the final version of the article. It first appeared from Wiley at http://dx.doi.org/10.1002/adhm.201500197. The relationship between biological scaffold interconnectivity and cell migration is an important but poorly understood factor in tissue regeneration. Here a scale-independent technique for characterization of collagen scaffold interconnectivity is presented, using a combination of X-ray microcomputed tomography and percolation theory. Confocal microscopy of connective tissu...

  2. Topological defects in confined populations of spindle-shaped cells

    Science.gov (United States)

    Duclos, Guillaume; Erlenkämper, Christoph; Joanny, Jean-François; Silberzan, Pascal

    2017-01-01

    Most spindle-shaped cells (including smooth muscles and sarcomas) organize in vivo into well-aligned `nematic’ domains, creating intrinsic topological defects that may be used to probe the behaviour of these active nematic systems. Active non-cellular nematics have been shown to be dominated by activity, yielding complex chaotic flows. However, the regime in which live spindle-shaped cells operate, and the importance of cell-substrate friction in particular, remains largely unexplored. Using in vitro experiments, we show that these active cellular nematics operate in a regime in which activity is effectively damped by friction, and that the interaction between defects is controlled by the system’s elastic nematic energy. Due to the activity of the cells, these defects behave as self-propelled particles and pairwise annihilate until all displacements freeze as cell crowding increases. When confined in mesoscopic circular domains, the system evolves towards two identical +1/2 disclinations facing each other. The most likely reduced positions of these defects are independent of the size of the disk, the cells’ activity or even the cell type, but are well described by equilibrium liquid crystal theory. These cell-based systems thus operate in a regime more stable than other active nematics, which may be necessary for their biological function.

  3. Establishment and initial characterization of SOX2-overexpressing NT2/D1 cell clones.

    Science.gov (United States)

    Drakulic, D; Krstic, A; Stevanovic, M

    2012-05-15

    SOX2, a universal marker of pluripotent stem cells, is a transcription factor that helps control embryonic development in vertebrates; its expression persists in neural stem/progenitor cells into adulthood. Considering the critical role of the SOX2 transcription factor in the regulation of genes required for self-renewal and pluripotency of stem cells, we developed and characterized SOX2-overexpressing NT2/D1 cell clones. Using Southern blot and semi-quantitative RT-PCR, we confirmed integration and expression of exogenous SOX2 in three NT2/D1 cell clones. Overexpression of the SOX2 gene was detected in two of these clones. SOX2 overexpression in NT2/D1 cell clones resulted in altered expression of key pluripotency genes OCT4 and NANOG. Furthermore, SOX2-overexpressing NT2/D1 cell clones entered into retinoic acid-dependent neural differentiation, even when there was elevated SOX2 expression. After 21 days of induction by retinoic acid, expression of neural markers (neuroD1 and synaptophysin) was higher in induced cell clones than in induced parental cells. The cell clone with SOX2 overexpression had an approximately 1.3-fold higher growth rate compared to parental cells. SOX2 overexpression did not increase the population of cells undergoing apoptosis. Taken together, we developed two SOX2-overexpressing cell clones, with constitutive SOX2 expression after three weeks of retinoic acid treatment. SOX2 overexpression resulted in altered expression of pluripotency-related genes, increased proliferation, and altered expression of neural markers after three weeks of retinoic acid treatment.

  4. Characterization of Selectin Ligands on Hematopoietic Stem Cells

    KAUST Repository

    Mahmood, Hanan

    2013-05-18

    Successful bone marrow (BM) transplantation requires the homing of the transplanted hematopoietic stem/progenitor cells (HSPCs) to their bone marrow niche, where they undergo differentiation to form mature cells that are eventually released into the peripheral blood. However, the survival rate of patients receiving BM transplants is poor since many of the transplanted HSPCs do not make it to their BM niches in the recipient’s body. Since the availability of HSPCs from traditional sources is limited, transplanting more number of HSPCs is not a solution to this problem. This study aims to characterize the adhesion molecules mediating cell migration in order to better understand the adhesion mechanisms of HSCs with the bone marrow endothelium. This will aid in developing future tools to improve the clinical transplantation of HSPCs. This study also aims to understand the factors that influence HSPC proliferation in the bone marrow niche. E-selectin plays an important role in the process of homing; however, its ligands on HSPCs are not well characterized. We used western blotting and immunoprecipitation to show that endomucin is expressed on HSPCs and plays a role in the binding of HSPCs to E-selectin. We also studied the effect of recombinant E-selectin on the expression of a newly characterized E-selectin ligand in our lab, CD34, in HSPCs. This will provide us insight into novel roles for endomucin and E-selectin and help us to understand the factors influencing HSPC migration to BM endothelium.

  5. In Vivo Monitoring of Multiple Circulating Cell Populations Using Two-photon Flow Cytometry.

    Science.gov (United States)

    Tkaczyk, Eric R; Zhong, Cheng Frank; Ye, Jing Yong; Myc, Andrzej; Thomas, Thommey; Cao, Zhengyi; Duran-Struuck, Raimon; Luker, Kathryn E; Luker, Gary D; Norris, Theodore B; Baker, James R

    2008-02-15

    To detect and quantify multiple distinct populations of cells circulating simultaneously in the blood of living animals, we developed a novel optical system for two-channel, two-photon flow cytometry in vivo. We used this system to investigate the circulation dynamics in live animals of breast cancer cells with low (MCF-7) and high (MDA-MB-435) metastatic potential, showing for the first time that two different populations of circulating cells can be quantified simultaneously in the vasculature of a single live mouse. We also non-invasively monitored a population of labeled, circulating red blood cells for more than two weeks, demonstrating that this technique can also quantify the dynamics of abundant cells in the vascular system for prolonged periods of time. These data are the first in vivo application of multichannel flow cytometry utilizing two-photon excitation, which will greatly enhance our capability to study circulating cells in cancer and other disease processes.

  6. Merging Mixture Components for Cell Population Identification in Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Greg Finak

    2009-01-01

    Full Text Available We present a framework for the identification of cell subpopulations in flow cytometry data based on merging mixture components using the flowClust methodology. We show that the cluster merging algorithm under our framework improves model fit and provides a better estimate of the number of distinct cell subpopulations than either Gaussian mixture models or flowClust, especially for complicated flow cytometry data distributions. Our framework allows the automated selection of the number of distinct cell subpopulations and we are able to identify cases where the algorithm fails, thus making it suitable for application in a high throughput FCM analysis pipeline. Furthermore, we demonstrate a method for summarizing complex merged cell subpopulations in a simple manner that integrates with the existing flowClust framework and enables downstream data analysis. We demonstrate the performance of our framework on simulated and real FCM data. The software is available in the flowMerge package through the Bioconductor project.

  7. Human Embryonic St me Cell Lines fromthe Chinese Population and Differentiation to Liver and Muscle Cell Types

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We have established 6 hES cell lines from IVF surplus blastocysts. Characterization of these lines have shown that 4 of the 6 lines meet all of the criterion (Science) for hES cell lines and 2 of them display most characteristics of hES cells but do not form teratoma. In order to produce hES cell lines without using mouse feeders, we have produced a hES cell line using feeders derived from hES cells themselves, and showed that hES-derived feeders are capable of supporting the derivation of new hES cell line...

  8. Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior

    Science.gov (United States)

    Cai, Li; Hayes, Nancy L.; Takahashi, Takao; Caviness, Verne S Jr; Nowakowski, Richard S.

    2002-01-01

    Mechanisms that regulate neuron production in the developing mouse neocortex were examined by using a retroviral lineage marking method to determine the sizes of the lineages remaining in the proliferating population of the ventricular zone during the period of neuron production. The distribution of clade sizes obtained experimentally in four different injection-survival paradigms (E11-E13, E11-E14, E11-E15, and E12-E15) from a total of over 500 labeled lineages was compared with that obtained from three models in which the average behavior of the proliferating population [i.e., the proportion of cells remaining in the proliferative population (P) vs. that exiting the proliferative population (Q)] was quantitatively related to lineage size distribution. In model 1, different proportions of asymmetric, symmetric terminal, and symmetric nonterminal cell divisions coexisted during the entire developmental period. In model 2, the developmental period was divided into two epochs: During the first, asymmetric and symmetric nonterminal cell divisions occurred, but, during the second, asymmetric and symmetric terminal cell divisions occurred. In model 3, the shifts in P and Q are accounted for by changes in the proportions of the two types of symmetric cell divisions without the inclusion of any asymmetric cell divisions. The results obtained from the retroviral experiments were well accounted for by model 1 but not by model 2 or 3. These findings demonstrate that: 1) asymmetric and both types of symmetric cell divisions coexist during the entire period of neurogenesis in the mouse, 2) neuron production is regulated in the proliferative population by the independent decisions of the two daughter cells to reenter S phase, and 3) neurons are produced by both asymmetric and symmetric terminal cell divisions. In addition, the findings mean that cell death and/or tangential movements of cells in the proliferative population occur at only a low rate and that there are no

  9. Molecular Characterization of TP53 Gene in Human Populations Exposed to Low-Dose Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Igor Brasil-Costa

    2013-01-01

    Full Text Available Ionizing radiation, such as that emitted by uranium, may cause mutations and consequently lead to neoplasia in human cells. The TP53 gene acts to maintain genomic integrity and constitutes an important biomarker of susceptibility. The present study investigated the main alterations observed in exons 4, 5, 6, 7, and 8 of the TP53 gene and adjacent introns in Amazonian populations exposed to radioactivity. Samples were collected from 163 individuals. Occurrence of the following alterations was observed: (i a missense exchange in exon 4 (Arg72Pro; (ii 2 synonymous exchanges, 1 in exon 5 (His179His, and another in exon 6 (Arg213Arg; (iii 4 intronic exchanges, 3 in intron 7 (C → T at position 13.436; C → T at position 13.491; T → G at position 13.511 and 1 in intron 8 (T → G at position 13.958. Alteration of codon 72 was found to be an important risk factor for cancer development (P=0.024; OR=6.48; CI: 1.29–32.64 when adjusted for age and smoking. Thus, TP53 gene may be an important biomarker for carcinogenesis susceptibility in human populations exposed to ionizing radiation.

  10. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations.

    Science.gov (United States)

    Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor; Yiu, Humphrey H P; Polyak, Boris; Chari, Divya M

    2015-01-01

    Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology sites. For neuroregenerative applications, this approach is limited by the lack of available neurocompatible MPs, and low cell labeling achieved in neural stem/precursor populations. We demonstrate that high magnetite content, self-sedimenting polymeric MPs [unfunctionalized poly(lactic acid) coated, without a transfecting component] achieve efficient labeling (≥90%) of primary neural stem cells (NSCs)-a 'hard-to-label' transplant population of major clinical relevance. Our protocols showed high safety with respect to key stem cell regenerative parameters. Critically, labeled cells were effectively localized in an in vitro flow system by magnetic force highlighting the translational potential of the methods used.

  11. Population red blood cell folate concentrations for prevention of neural tube defects: bayesian model

    OpenAIRE

    MOLLOY, ANNE

    2014-01-01

    PUBLISHED OBJECTIVE: To determine an optimal population red blood cell (RBC) folate concentration for the prevention of neural tube birth defects. DESIGN: Bayesian model. SETTING: Data from two population based studies in China. PARTICIPANTS: 247,831 participants in a prospective community intervention project in China (1993-95) to prevent neural tube defects with 400 μg/day folic acid supplementation and 1194 participants in a population based randomized trial (20...

  12. Characterization of mesenchymal stem cells derived from equine adipose tissue

    Directory of Open Access Journals (Sweden)

    A.M. Carvalho

    2013-08-01

    Full Text Available Stem cell therapy has shown promising results in tendinitis and osteoarthritis in equine medicine. The purpose of this work was to characterize the adipose-derived mesenchymal stem cells (AdMSCs in horses through (1 the assessment of the capacity of progenitor cells to perform adipogenic, osteogenic and chondrogenic differentiation; and (2 flow cytometry analysis using the stemness related markers: CD44, CD90, CD105 and MHC Class II. Five mixed-breed horses, aged 2-4 years-old were used to collect adipose tissue from the base of the tail. After isolation and culture of AdMSCs, immunophenotypic characterization was performed through flow cytometry. There was a high expression of CD44, CD90 and CD105, and no expression of MHC Class II markers. The tri-lineage differentiation was confirmed by specific staining: adipogenic (Oil Red O, osteogenic (Alizarin Red, and chondrogenic (Alcian Blue. The equine AdMSCs are a promising type of adult progenitor cell for tissue engineering in veterinary medicine.

  13. Computational Biology Methods for Characterization of Pluripotent Cells.

    Science.gov (United States)

    Araúzo-Bravo, Marcos J

    2016-01-01

    Pluripotent cells are a powerful tool for regenerative medicine and drug discovery. Several techniques have been developed to induce pluripotency, or to extract pluripotent cells from different tissues and biological fluids. However, the characterization of pluripotency requires tedious, expensive, time-consuming, and not always reliable wet-lab experiments; thus, an easy, standard quality-control protocol of pluripotency assessment remains to be established. Here to help comes the use of high-throughput techniques, and in particular, the employment of gene expression microarrays, which has become a complementary technique for cellular characterization. Research has shown that the transcriptomics comparison with an Embryonic Stem Cell (ESC) of reference is a good approach to assess the pluripotency. Under the premise that the best protocol is a computer software source code, here I propose and explain line by line a software protocol coded in R-Bioconductor for pluripotency assessment based on the comparison of transcriptomics data of pluripotent cells with an ESC of reference. I provide advice for experimental design, warning about possible pitfalls, and guides for results interpretation.

  14. An altered endometrial CD8 tissue resident memory T cell population in recurrent miscarriage.

    Science.gov (United States)

    Southcombe, J H; Mounce, G; McGee, K; Elghajiji, A; Brosens, J; Quenby, S; Child, T; Granne, I

    2017-01-23

    When trying to conceive 1% of couples have recurrent miscarriages, defined as three or more consecutive pregnancy losses. This is not accounted for by the known incidence of chromosomal aneuploidy in miscarriage, and it has been suggested that there is an immunological aetiology. The endometrial mucosa is populated by a variety of immune cells which in addition to providing host pathogen immunity must facilitate pregnancy. Here we characterise the endometrial CD8-T cell population during the embryonic window of implantation and find that the majority of cells are tissue resident memory T cells with high levels of CD69 and CD103 expression, proteins that prevent cells egress. We demonstrate that unexplained recurrent miscarriage is associated with significantly decreased expression of the T-cell co-receptor CD8 and tissue residency marker CD69. These cells differ from those found in control women, with less expression of CD127 indicating a lack of homeostatic cell control through IL-7 signalling. Nevertheless this population is resident in the endometrium of women who have RM, more than three months after the last miscarriage, indicating that the memory CD8-T cell population is altered in RM patients. This is the first evidence of a differing pre-pregnancy phenotype in endometrial immune cells in RM.

  15. Characterization of epicardial-derived cardiac interstitial cells: differentiation and mobilization of heart fibroblast progenitors.

    Directory of Open Access Journals (Sweden)

    Adrián Ruiz-Villalba

    Full Text Available The non-muscular cells that populate the space found between cardiomyocyte fibers are known as 'cardiac interstitial cells' (CICs. CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC. Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease.

  16. Characterization of hybrids between bovine (MDBK) and mouse (L-cell) cell lines.

    Science.gov (United States)

    Chinchar, V G; Floyd, A D; Chinchar, G D; Taylor, M W

    1979-02-01

    Hypoxanthine-guanine phosphoribosyltransferase (HGPRT)-deficient mutants of a bovine kidney cell line (MDBK) were selected following mutagenesis with ethylmethane sulfonate or ICR-170G. MDBK mutants were hybridized to thymidine kinase-deficient L cells and selected in HAT medium. Parental and hybrid cells were characterized for isozyme patterns of lactic dehydrogenase malate dehydrogenase, glucose-6-phosphate dehydrogenase, and glutamate oxalate transaminase. Chromosomes of MDBK can be distinguished from mouse L cells by configuration and by fluorescent staining with Hoechst 33-258 stain. Hybrid cells contained both MDBK and L-cell chromosomes and had elevated DNA content. MDBK cells are normally restrictive for mengovirus replication. Both permissive and restrictive hybrids were found. Our data indicate that there was preferential loss of MDBK chromosomes in the hybrid cell lines.

  17. Characterization of a novel miniature cell culture device

    Science.gov (United States)

    Moore, Sandra K.; Kleis, Stanley J.

    2008-05-01

    Recent advancements in the field of microfluidics have generated much interest in the advent of a miniaturized cell culture device. In this study, we developed a novel miniature culture system (cells, either prokaryotic or eukaryotic in type, for both 1 g and microgravity applications. The miniature culture system may advance the development of microanalytical remote monitoring tools such as biological sentinels, biosensors, and lab-on-a-chip. Integrating the autonomous miniature culture system with a microanalytical device makes a powerful biological tool. Cells can be cultured long-term, harvested, and released directly into an analytical tool without the need for human interaction through fluid dynamic manipulations. This work characterizes the miniature bioreactor system through numerical and experimental proof of concept studies.

  18. Nondestructive characterization methods for monolithic solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ellingson, W.A.

    1993-01-01

    Monolithic solid oxide fuel cells (MSOFCS) represent a potential breakthrough in fuel cell technology, provided that reliable fabrication methods can be developed. Fabrication difficulties arise in several steps of the processing: First is the fabrication of uniform thin (305 {mu}m) single-layer and trilayer green tapes (the trilayer tapes of anode/electrolyte/cathode and anode/interconnect/cathode must have similar coefficients of thermal expansion to sinter uniformly and to have the necessary electrochemical properties); Second is the development of fuel and oxidant channels in which residual stresses are likely to develop in the tapes; Third is the fabrication of a ``complete`` cell for which the bond quality between layers and the quality of the trilayers must be established; and Last, attachment of fuel and oxidant manifolds and verification of seal integrity. Purpose of this report is to assess nondestructive characterization methods that could be developed for application to laboratory, prototype, and full-scale MSOFCs.

  19. Characterizing neutral genomic diversity and selection signatures in indigenous populations of Moroccan goats (Capra hircus using WGS data

    Directory of Open Access Journals (Sweden)

    Badr eBenjelloun

    2015-04-01

    Full Text Available Since the time of their domestication, goats (Capra hircus have evolved in a large variety of locally adapted populations in response to different human and environmental pressures. In the present era, many indigenous populations are threatened with extinction due to their substitution by cosmopolitan breeds, while they might represent highly valuable genomic resources. It is thus crucial to characterize the neutral and adaptive genetic diversity of indigenous populations. A fine characterization of whole genome variation in farm animals is now possible by using new sequencing technologies. We sequenced the complete genome at 12X coverage of 44 goats geographically representative of the three phenotypically distinct indigenous populations in Morocco. The study of mitochondrial genomes showed a high diversity exclusively restricted to the haplogroup A. The 44 nuclear genomes showed a very high diversity (24 million variants associated with low linkage disequilibrium. The overall genetic diversity was weakly structured according to geography and phenotypes. When looking for signals of positive selection in each population we identified many candidate genes, several of which gave insights into the metabolic pathways or biological processes involved in the adaptation to local conditions (e.g. panting in warm/desert conditions. This study highlights the interest of WGS data to characterize livestock genomic diversity. It illustrates the valuable genetic richness present in indigenous populations that have to be sustainably managed and may represent valuable genetic resources for the long-term preservation of the species.

  20. Characterizing neutral genomic diversity and selection signatures in indigenous populations of Moroccan goats (Capra hircus) using WGS data.

    Science.gov (United States)

    Benjelloun, Badr; Alberto, Florian J; Streeter, Ian; Boyer, Frédéric; Coissac, Eric; Stucki, Sylvie; BenBati, Mohammed; Ibnelbachyr, Mustapha; Chentouf, Mouad; Bechchari, Abdelmajid; Leempoel, Kevin; Alberti, Adriana; Engelen, Stefan; Chikhi, Abdelkader; Clarke, Laura; Flicek, Paul; Joost, Stéphane; Taberlet, Pierre; Pompanon, François

    2015-01-01

    Since the time of their domestication, goats (Capra hircus) have evolved in a large variety of locally adapted populations in response to different human and environmental pressures. In the present era, many indigenous populations are threatened with extinction due to their substitution by cosmopolitan breeds, while they might represent highly valuable genomic resources. It is thus crucial to characterize the neutral and adaptive genetic diversity of indigenous populations. A fine characterization of whole genome variation in farm animals is now possible by using new sequencing technologies. We sequenced the complete genome at 12× coverage of 44 goats geographically representative of the three phenotypically distinct indigenous populations in Morocco. The study of mitochondrial genomes showed a high diversity exclusively restricted to the haplogroup A. The 44 nuclear genomes showed a very high diversity (24 million variants) associated with low linkage disequilibrium. The overall genetic diversity was weakly structured according to geography and phenotypes. When looking for signals of positive selection in each population we identified many candidate genes, several of which gave insights into the metabolic pathways or biological processes involved in the adaptation to local conditions (e.g., panting in warm/desert conditions). This study highlights the interest of WGS data to characterize livestock genomic diversity. It illustrates the valuable genetic richness present in indigenous populations that have to be sustainably managed and may represent valuable genetic resources for the long-term preservation of the species.

  1. Progesterone Levels Associate with a Novel Population of CCR5+CD38+ CD4 T Cells Resident in the Genital Mucosa with Lymphoid Trafficking Potential.

    Science.gov (United States)

    Swaims-Kohlmeier, Alison; Haaland, Richard E; Haddad, Lisa B; Sheth, Anandi N; Evans-Strickfaden, Tammy; Lupo, L Davis; Cordes, Sarah; Aguirre, Alfredo J; Lupoli, Kathryn A; Chen, Cheng-Yen; Ofotukun, Igho; Hart, Clyde E; Kohlmeier, Jacob E

    2016-07-01

    The female genital tract (FGT) provides a means of entry to pathogens, including HIV, yet immune cell populations at this barrier between host and environment are not well defined. We initiated a study of healthy women to characterize resident T cell populations in the lower FGT from lavage and patient-matched peripheral blood to investigate potential mechanisms of HIV sexual transmission. Surprisingly, we observed FGT CD4 T cell populations were primarily CCR7(hi), consistent with a central memory or recirculating memory T cell phenotype. In addition, roughly half of these CCR7(hi) CD4 T cells expressed CD69, consistent with resident memory T cells, whereas the remaining CCR7(hi) CD4 T cells lacked CD69 expression, consistent with recirculating memory CD4 T cells that traffic between peripheral tissues and lymphoid sites. HIV susceptibility markers CCR5 and CD38 were increased on FGT CCR7(hi) CD4 T cells compared with blood, yet migration to the lymphoid homing chemokines CCL19 and CCL21 was maintained. Infection with GFP-HIV showed that FGT CCR7(hi) memory CD4 T cells are susceptible HIV targets, and productive infection of CCR7(hi) memory T cells did not alter chemotaxis to CCL19 and CCL21. Variations of resident CCR7(hi) FGT CD4 T cell populations were detected during the luteal phase of the menstrual cycle, and longitudinal analysis showed the frequency of this population positively correlated to progesterone levels. These data provide evidence women may acquire HIV through local infection of migratory CCR7(hi) CD4 T cells, and progesterone levels predict opportunities for HIV to access these novel target cells.

  2. Characterization of tendon cell cultures of the human rotator cuff.

    Science.gov (United States)

    Pauly, S; Klatte, F; Strobel, C; Schmidmaier, G; Greiner, S; Scheibel, M; Wildemann, B

    2010-07-26

    Rotator cuff tears are common soft tissue injuries of the musculoskeletal system that heal by formation of repair tissue and may lead to high retear rates and joint dysfunction. In particular, tissue from chronic, large tendon tears is of such degenerative nature that it may be prone to retear after surgical repair. Besides several biomechanical approaches, biologically based strategies such as application of growth factors may be promising for increasing cell activity and production of extracellular tendon matrix at the tendon-to-bone unit. As a precondition for subsequent experimental growth factor application, the aim of the present study was to establish and characterize a human rotator cuff tendon cell culture. Long head biceps (LHB)- and supraspinatus muscle (SSP)- tendon samples from donor patients undergoing shoulder surgery were cultivated and examined at the RNA level for expression of collagen type-I, -II and -III, biglycan, decorin, tenascin-C, aggrecan, osteocalcin, tenomodulin and scleraxis (by Real-time PCR). Finally, results were compared to chondrocytes and osteoblasts as control cells. An expression pattern was found which may reflect a human rotator cuff tenocyte-like cell culture. Both SSP and LHB tenocyte-like cells differed from chondrocyte cell cultures in terms of reduced expression of collagen type-II (ptendon matrix and osteofibroblastic integration at the tendon-bone unit following tendon repair.

  3. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay.

    Directory of Open Access Journals (Sweden)

    Kaoru Miyazaki

    Full Text Available BACKGROUND: Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP, but not endometrial main population cells (EMP, exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay. METHODOLOGY/PRINCIPAL FINDINGS: ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom, a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells. CONCLUSIONS/SIGNIFICANCE: We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo

  4. Quantitative measurement of retinal ganglion cell populations via histology-based random forest classification.

    Science.gov (United States)

    Hedberg-Buenz, Adam; Christopher, Mark A; Lewis, Carly J; Fernandes, Kimberly A; Dutca, Laura M; Wang, Kai; Scheetz, Todd E; Abràmoff, Michael D; Libby, Richard T; Garvin, Mona K; Anderson, Michael G

    2016-05-01

    The inner surface of the retina contains a complex mixture of neurons, glia, and vasculature, including retinal ganglion cells (RGCs), the final output neurons of the retina and primary neurons that are damaged in several blinding diseases. The goal of the current work was two-fold: to assess the feasibility of using computer-assisted detection of nuclei and random forest classification to automate the quantification of RGCs in hematoxylin/eosin (H&E)-stained retinal whole-mounts; and if possible, to use the approach to examine how nuclear size influences disease susceptibility among RGC populations. To achieve this, data from RetFM-J, a semi-automated ImageJ-based module that detects, counts, and collects quantitative data on nuclei of H&E-stained whole-mounted retinas, were used in conjunction with a manually curated set of images to train a random forest classifier. To test performance, computer-derived outputs were compared to previously published features of several well-characterized mouse models of ophthalmic disease and their controls: normal C57BL/6J mice; Jun-sufficient and Jun-deficient mice subjected to controlled optic nerve crush (CONC); and DBA/2J mice with naturally occurring glaucoma. The result of these efforts was development of RetFM-Class, a command-line-based tool that uses data output from RetFM-J to perform random forest classification of cell type. Comparative testing revealed that manual and automated classifications by RetFM-Class correlated well, with 83.2% classification accuracy for RGCs. Automated characterization of C57BL/6J retinas predicted 54,642 RGCs per normal retina, and identified a 48.3% Jun-dependent loss of cells at 35 days post CONC and a 71.2% loss of RGCs among 16-month-old DBA/2J mice with glaucoma. Output from automated analyses was used to compare nuclear area among large numbers of RGCs from DBA/2J mice (n = 127,361). In aged DBA/2J mice with glaucoma, RetFM-Class detected a decrease in median and mean nucleus size

  5. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

    Directory of Open Access Journals (Sweden)

    Siebler Mario

    2009-08-01

    Full Text Available Abstract Background The present work was performed to investigate the ability of two different embryonic stem (ES cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs, progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. Results While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2, only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2–4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated

  6. Characterization of neuronal populations in the human trigeminal ganglion and their association with latent herpes simplex virus-1 infection.

    Directory of Open Access Journals (Sweden)

    Sarah E Flowerdew

    Full Text Available Following primary infection Herpes simplex virus-1 (HSV-1 establishes lifelong latency in the neurons of human sensory ganglia. Upon reactivation HSV-1 can cause neurological diseases such as facial palsy, vestibular neuritis or encephalitis. Certain populations of sensory neurons have been shown to be more susceptible to latent infection in the animal model, but this has not been addressed in human tissue. In the present study, trigeminal ganglion (TG neurons expressing six neuronal marker proteins were characterized, based on staining with antibodies against the GDNF family ligand receptor Ret, the high-affinity nerve growth factor receptor TrkA, neuronal nitric oxide synthase (nNOS, the antibody RT97 against 200 kDa neurofilament, calcitonin gene-related peptide and peripherin. The frequencies of marker-positive neurons and their average neuronal sizes were assessed, with TrkA-positive (61.82% neurons being the most abundant, and Ret-positive (26.93% the least prevalent. Neurons positive with the antibody RT97 (1253 µm(2 were the largest, and those stained against peripherin (884 µm(2 were the smallest. Dual immunofluorescence revealed at least a 4.5% overlap for every tested marker combination, with overlap for the combinations TrkA/Ret, TrkA/RT97 and Ret/nNOS lower, and the overlap between Ret/CGRP being higher than would be expected by chance. With respect to latent HSV-1 infection, latency associated transcripts (LAT were detected using in situ hybridization (ISH in neurons expressing each of the marker proteins. In contrast to the mouse model, co-localization with neuronal markers Ret or CGRP mirrored the magnitude of these neuron populations, whereas for the other four neuronal markers fewer marker-positive cells were also LAT-ISH+. Ret and CGRP are both known to label neurons related to pain signaling.

  7. Regulatory effects on the population dynamics and wave propagation in a cell lineage model.

    Science.gov (United States)

    Wang, Mao-Xiang; Ma, Yu-Qiang; Lai, Pik-Yin

    2016-03-21

    We consider the interplay of cell proliferation, cell differentiation (and de-differentiation), cell movement, and the effect of feedback regulations on the population and propagation dynamics of different cell types in a cell lineage model. Cells are assumed to secrete and respond to negative feedback molecules which act as a control on the cell lineage. The cell densities are described by coupled reaction-diffusion partial differential equations, and the propagating wave front solutions in one dimension are investigated analytically and by numerical solutions. In particular, wavefront propagation speeds are obtained analytically and verified by numerical solutions of the equations. The emphasis is on the effects of the feedback regulations on different stages in the cell lineage. It is found that when the progenitor cell is negatively regulated, the populations of the cell lineage are strongly down-regulated with the steady growth rate of the progenitor cell being driven to zero beyond a critical regulatory strength. An analytic expression for the critical regulation strength in terms of the model parameters is derived and verified by numerical solutions. On the other hand, if the inhibition is acting on the differentiated cells, the change in the population dynamics and wave propagation speed is small. In addition, it is found that only the propagating speed of the progenitor cells is affected by the regulation when the diffusion of the differentiated cells is large. In the presence of de-differentiation, the effect on down-regulating the progenitor population is weakened and there is no effect on the propagation speed due to regulation, suggesting that the effect of regulatory control is diminished by de-differentiation pathways.

  8. Isolation and characterization of cancer stem-like cells from MHCC97H Cell Lines

    Institute of Scientific and Technical Information of China (English)

    Shanyong Yi; Kejun Nan; Aihua Yuan; Chuangxin Lu

    2009-01-01

    Objective:To identify and isolate CD133 positive cancer stem-like cells (CD133+ cells) from the highly invasive human hepatocellular carcinoma cell line(MHCC97H), and examine their potential for clonogenicity and tumorigenicity. Methods: CD133+ and CD133- cells were isolated from MHCC97H cell line by magnetic bead cell sorting(MACS), and the potentials of CD133+ cells for colony formation and tumorigenicity were evaluated by soft agar cloning and tumor formation following nude mice inoculation. Results:CD133+ cells represent a minority(0.5-2.0%) of the tumor cell population with a greater colony-forming efficiency and greater tumor production ability. The colony-forming efficiency of CD133+ cells in soft agar was significantly higher than CD133- cells(36.8±1.4 vs 12.9±0.8, P<0.05).After 6 weeks, 3/5 mice inoculated with 1 × 103 CD133+ cells, 4/5 with 1 × 104 CD133+ cells and 5/5 with 1 × 105 CD133+ cells developed detectable tumors at the injection site, while only one tumor was found in mice treated with same numbers of CD133- cells. Conclusion: CD133 may be a hallmark of liver cancer stem cells (CSC) in human hepatocellular carcinoma(HCC), because the CD133+ cells identified and isolated with anti-CD133 labeled magnetic beads from MHCC97H cell line exhibit high potentials for clonogenicity and tumorigenicity. These CD133+ cells might contribute to hepatocarcinogenesis, as well as the growth and recurrence of human HCC, and therefore may be a useful target for anti-cancer therapy.

  9. Atypical cell populations associated with acquired resistance to cytostatics and cancer stem cell features: the role of mitochondria in nuclear encapsulation.

    Science.gov (United States)

    Díaz-Carballo, David; Gustmann, Sebastian; Jastrow, Holger; Acikelli, Ali Haydar; Dammann, Philip; Klein, Jacqueline; Dembinski, Ulrike; Bardenheuer, Walter; Malak, Sascha; Araúzo-Bravo, Marcos J; Schultheis, Beate; Aldinger, Constanze; Strumberg, Dirk

    2014-11-01

    Until recently, acquired resistance to cytostatics had mostly been attributed to biochemical mechanisms such as decreased intake and/or increased efflux of therapeutics, enhanced DNA repair, and altered activity or deregulation of target proteins. Although these mechanisms have been widely investigated, little is known about membrane barriers responsible for the chemical imperviousness of cell compartments and cellular segregation in cytostatic-treated tumors. In highly heterogeneous cross-resistant and radiorefractory cell populations selected by exposure to anticancer agents, we found a number of atypical recurrent cell types in (1) tumor cell cultures of different embryonic origins, (2) mouse xenografts, and (3) paraffin sections from patient tumors. Alongside morphologic peculiarities, these populations presented cancer stem cell markers, aberrant signaling pathways, and a set of deregulated miRNAs known to confer both stem-cell phenotypes and highly aggressive tumor behavior. The first type, named spiral cells, is marked by a spiral arrangement of nuclei. The second type, monastery cells, is characterized by prominent walls inside which daughter cells can be seen maturing amid a rich mitochondrial environment. The third type, called pregnant cells, is a giant cell with a syncytium-like morphology, a main nucleus, and many endoreplicative functional progeny cells. A rare fourth cell type identified in leukemia was christened shepherd cells, as it was always associated with clusters of smaller cells. Furthermore, a portion of resistant tumor cells displayed nuclear encapsulation via mitochondrial aggregation in the nuclear perimeter in response to cytostatic insults, probably conferring imperviousness to drugs and long periods of dormancy until nuclear eclosion takes place. This phenomenon was correlated with an increase in both intracellular and intercellular mitochondrial traffic as well as with the uptake of free extracellular mitochondria. All these cellular

  10. Characterization and optimization of polymer electrolyte fuel cell electrodes

    Science.gov (United States)

    Boyer, Christopher Carter

    Experimental characterization and modeling were combined to find a procedure for optimizing the design of polymer electrolyte membrane fuel cell (PEMFC) electrodes. The mass transfer and kinetic properties of the active layer used in electrodes fabricated at the Center for Electrochemical Systems and Hydrogen Research (CESHR) were characterized as a function of electrolyte polymer content NafionRTM, DuPont, Fayetteville, NC) and catalyst loading for different types of platinum catalysts (E-Tek, Natick, MA). Expressions from limiting cases of the fuel cell model showed the combination of electrode materials for maximum current density at maximum catalyst utilization. Models describing the fuel cell behavior were selected and used to explain how different operating pressures affect the system power density and efficiency. An "inert layer" method was developed to determine the effective proton conductivity of the active layer. A "buffer layer" method was developed to determine the oxygen diffusivity in the gas pores. A review of the literature and experiments at CESHR was used to determine the oxygen reduction activity of the active layer. Finally, a fitting method was developed to measure the agglomerate diffusivity from cell tests. A PEMFC model demonstrated that operating the fuel cell pressurized can improve the power density at high currents because of oxygen mass transport. limitations in the substrate. However. as better electrode designs improve oxygen mass transfer, pressurized operation will lose this advantage. In addition, the model confirmed that oxygen enrichment systems require too much energy to separate oxygen from air to improve the net performance of a fuel cell. From limiting approximations of the solutions of the differential material balances in the fuel cell model, a simple set of analytical expressions were derived that predict the optimum active layer thickness and maximum current density based on the materials of construction and operating

  11. Infection Spread and Virus Release in Vitro in Cell Populations as a System with Percolation

    Science.gov (United States)

    Ochoa, Juan G. Diaz

    The comprehension of the innate immune system of cell populations is not only of interest to understand systems in vivo but also in vitro, for example, in the control of the release of viral particles for the production of vaccines. In this report I introduce a model, based on dynamical networks, that simulates the cell signaling responsible for this innate immune response and its effect on the infection spread and virus production. The central motivation is to represent a cell population that is constantly mixed in a bio-reactor where there is a cell-to-cell signaling of cytokines (which are proteins responsible for the activation of the antiviral response inside the cell). Such signaling allows the definition of clusters of linked immune cells. Additionally, depending on the density of links, it is possible to identify critical threshold parameters associated to a percolation phase transition. I show that the control of this antiviral response is equivalent to a percolation process.

  12. HLA-targeted flow cytometric sorting of blood cells allows separation of pure and viable microchimeric cell populations.

    Science.gov (United States)

    Drabbels, Jos J M; van de Keur, Carin; Kemps, Berit M; Mulder, Arend; Scherjon, Sicco A; Claas, Frans H J; Eikmans, Michael

    2011-11-10

    Microchimerism is defined by the presence of low levels of nonhost cells in a person. We developed a reliable method for separating viable microchimeric cells from the host environment. For flow cytometric cell sorting, HLA antigens were targeted with human monoclonal HLA antibodies (mAbs). Optimal separation of microchimeric cells (present at a proportion as low as 0.01% in artificial mixtures) was obtained with 2 different HLA mAbs, one targeting the chimeric cells and the other the background cells. To verify purity of separated cell populations, flow-sorted fractions of 1000 cells were processed for DNA analysis by HLA-allele-specific and Y-chromosome-directed real-time quantitative PCR assays. After sorting, PCR signals of chimeric DNA markers in the positive fractions were significantly enhanced compared with those in the presort samples, and they were similar to those in 100% chimeric control samples. Next, we demonstrate applicability of HLA-targeted FACS sorting after pregnancy by separating chimeric maternal cells from child umbilical cord mononuclear cells. Targeting allelic differences with anti-HLA mAbs with FACS sorting allows maximal enrichment of viable microchimeric cells from a background cell population. The current methodology enables reliable microchimeric cell detection and separation in clinical specimens.

  13. Two-dimensional electronic spectroscopy can fully characterize the population transfer in molecular systems

    Science.gov (United States)

    Dostál, Jakub; Benešová, Barbora; Brixner, Tobias

    2016-09-01

    Excitation energy transfer in complex systems often proceeds through series of intermediate states. One of the goals of time-resolved spectroscopy is to identify the spectral signatures of all of them in the acquired experimental data and to characterize the energy transfer scheme between them. It is well known that in the case of transient absorption spectra such decomposition is ambiguous even if many simplifying considerations are taken. In contrast to transient absorption, absorptive 2D spectra intuitively resemble population transfer matrices. Therefore, it seems possible to decompose the 2D spectra unambiguously. Here we show that all necessary information is encoded in the combination of absorptive 2D and linear absorption spectra. We set up a simple model describing a broad class of absorptive 2D spectra and prove analytically that they can be inverted uniquely towards physical parameters fully determining the species-associated spectra of individual constituents together with all connecting intrinsic rate constants. Due to the matrix formulation of the model, it is suitable for fast computer calculation necessary to efficiently perform the inversion numerically by fitting the combination of experimental 2D and absorption spectra. Moreover, the model allows for decomposition of the 2D spectrum into its stimulated emission, ground-state bleach, and excited-state absorption components almost unambiguously. The numerical procedure is illustrated exemplarily.

  14. Mitochondrial DNA deletion mutations in adult mouse cardiac side population cells

    Energy Technology Data Exchange (ETDEWEB)

    Lushaj, Entela B., E-mail: lushaj@surgery.wisc.edu [Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792 (United States); Lozonschi, Lucian; Barnes, Maria; Anstadt, Emily; Kohmoto, Takushi [Division of Cardiothoracic Surgery, Department of Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792 (United States)

    2012-06-01

    We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.

  15. Antibiotic regimen based on population analysis of residing persister cells eradicates Staphylococcus epidermidis biofilms.

    Science.gov (United States)

    Yang, Shoufeng; Hay, Iain D; Cameron, David R; Speir, Mary; Cui, Bintao; Su, Feifei; Peleg, Anton Y; Lithgow, Trevor; Deighton, Margaret A; Qu, Yue

    2015-12-21

    Biofilm formation is a major pathogenicity strategy of Staphylococcus epidermidis causing various medical-device infections. Persister cells have been implicated in treatment failure of such infections. We sought to profile bacterial subpopulations residing in S. epidermidis biofilms, and to establish persister-targeting treatment strategies to eradicate biofilms. Population analysis was performed by challenging single biofilm cells with antibiotics at increasing concentrations ranging from planktonic minimum bactericidal concentrations (MBCs) to biofilm MBCs (MBCbiofilm). Two populations of "persister cells" were observed: bacteria that survived antibiotics at MBCbiofilm for 24/48 hours were referred to as dormant cells; those selected with antibiotics at 8 X MICs for 3 hours (excluding dormant cells) were defined as tolerant-but-killable (TBK) cells. Antibiotic regimens targeting dormant cells were tested in vitro for their efficacies in eradicating persister cells and intact biofilms. This study confirmed that there are at least three subpopulations within a S. epidermidis biofilm: normal cells, dormant cells, and TBK cells. Biofilms comprise more TBK cells and dormant cells than their log-planktonic counterparts. Using antibiotic regimens targeting dormant cells, i.e. effective antibiotics at MBCbiofilm for an extended period, might eradicate S. epidermidis biofilms. Potential uses for this strategy are in antibiotic lock techniques and inhaled aerosolized antibiotics.

  16. CHARACTERIZATION AND ANALISYS OF A FURNACE TO FABRICATE SOLAR CELLS

    Directory of Open Access Journals (Sweden)

    Sérgio Boscato Garcia

    2013-06-01

    Full Text Available The solar cell industry has presented high growth rates and dealt with a large portfolio of suppliers for specific equipments like diffusion furnaces needed to produce the pn junction in the fabrication of silicon devices. The aim of this paper is to present the thermal analysis and the characterization of diffusions carried out in the first diffusion furnace developed and fabricated in Brazil. Longitudinal and radial temperature profiles were measured and analyzed. Results of the characterization defined a processing zone of 200 mm with temperature variation lower than 6°C for the temperatures up to 965°C. In the processing zone, 40 silicon wafers can be processed. Diffusion processes were performed in monocrystalline silicon wafers and n+ regions doped with phosphorus presented standard deviation of sheet resistance slightly higher than that obtained in imported commercial furnaces. Wafer contamination was not observed during diffusion processes and the minority carrier lifetime was improved.

  17. Creation and characterization of a cell-death reporter cell line for hepatitis C virus infection

    Science.gov (United States)

    Chen, Zhilei; Simeon, Rudo; Chockalingam, Karuppiah; Rice, Charles M.

    2010-01-01

    The present study describes the creation and characterization of a hepatoma cell line, n4mBid, that supports all stages of the hepatitis C virus (HCV) life cycle and strongly reports HCV infection by a cell-death phenotype. The n4mBid cell line is derived from the highly HCV-permissive Huh-7.5 hepatoma cell line and contains a modified Bid protein (mBid) that is cleaved and activated by the HCV serine protease NS3-4A. N4mBid exhibited a 10–20 fold difference in cell viability between the HCV-infected and mock-infected states, while the parental Huh-7.5 cells showed <2 fold difference under the same conditions. The pronounced difference in n4mBid cell viability between the HCV- and mock-infected states in a 96-well plate format points to its usefulness in cell survival-based high-throughput screens for anti-HCV molecules. The degree of cell death was found to be proportional to the intracellular load of HCV. HCV-low n4mBid cells, expressing an anti-HCV short hairpin RNA, showed a significant growth advantage over naïve cells and could be rapidly enriched after HCV infection, suggesting the possibility of using n4mBid cells for the cell survival-based selection of genetic anti-HCV factors. PMID:20188762

  18. Numerical characterization of a microscale solid-oxide fuel cell

    Science.gov (United States)

    Sun, Chen-li; Ou, Hsien-Chih

    In this study, a single unit of planar micro-solid-oxide fuel cell (μSOFC) is investigated numerically to evaluate the influences of flow channel design, oxygen composition, and thermal operating conditions on cell performance. Four flow channel designs are examined under the co-flow configuration: serpentine, double serpentine, rod bundle, and oblique rib. For all designs, the contacts areas of interconnect to electrodes are kept consistent to maintain the ohmic losses at the same level. To characterize the mass transport effects, there are three different compositions, 100% O 2, 50% O 2/50% N 2 and air, fed to the cathode inlet. Different thermal conditions, adiabatic and isothermal, are applied to the outer boundary of the μSOFC and the results are compared. The outcomes suggest that both thermal conditions and oxidant composition show remarkable influences on μSOFC performance. Under adiabatic conditions, the rise of cell temperature causes a decrease in reversible voltage, deteriorating the overall cell competence. When oxygen is diluted with nitrogen, local gas diffusion becomes dominant to the cathode reaction. Bulk flow, on the other hand, plays a minor role in cell performance since there is little deviation in the polarization curves for all flow channel designs, even at high current densities. For comparison, the flow visualization technique is employed to observe the transport phenomena in various flow channel designs. The flow patterns are found to resemble the concentration distribution, providing a useful tool to design μSOFCs.

  19. Cellular and Phenotypic Characterization of Canine Osteosarcoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Marie E. Legare, Jamie Bush, Amanda K. Ashley, Taka Kato, William H. Hanneman

    2011-01-01

    Full Text Available Canine and human osteosarcoma (OSA have many similarities, with the majority of reported cases occurring in the appendicular skeleton, gender predominance noted, high rate of metastasis at the time of presentation, and a lack of known etiology for this devastating disease. Due to poor understanding of the molecular mechanisms underlying OSA, we have characterized seven different OSA canine cell lines: Abrams, D17, Grey, Hughes, Ingles, Jarques, and Marisco and compared them to U2, a human OSA cell line, for the following parameters: morphology, growth, contact inhibition, migrational tendencies, alkaline phosphatase staining, heterologous tumor growth, double-strand DNA breaks, and oxidative damage. All results demonstrated the positive characteristics of the Abrams cell line for use in future studies of OSA. Of particular interest, the robust growth of a subcutaneous tumor and rapid pulmonary metastasis of the Abrams cell line in an immunocompromised mouse shows incredible potential for the future use of Abrams as a canine OSA model. Further investigations utilizing a canine cell model of OSA, such as Abrams, will be invaluable to understanding the molecular events underlying OSA, pharmaceutical inhibition of metastasis, and eventual prevention of this devastating disease.

  20. Delay equation formulation of a cyclin-structured cell population model

    NARCIS (Netherlands)

    Borges, Ricardo; Calsina, Angel; Cuadrado, Silvia; Diekmann, Odo

    2014-01-01

    The aim of this paper is to derive a system of two renewal equations from individual-level assumptions concerning a cyclin-structured cell population. Nonlinearity arises from the assumption that the rate at which quiescent cells become proliferating is determined by feedback. In fact, we assume tha

  1. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-01-01

    Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression.

  2. PLGA-encapsulated perfluorocarbon nanoparticles for simultaneous visualization of distinct cell populations by (19)F MRI

    NARCIS (Netherlands)

    Srinivas, M.; Tel, J.; Schreibelt, G.; Bonetto, F.J.; Cruz, L.J.; Amiri, H.; Heerschap, A.; Figdor, C.G.; Vries, I.J.M. de

    2015-01-01

    AIM: In vivo imaging using (19)F MRI is advantageous, due to its ability to quantify cell numbers, but is limited for a lack of suitable labels. Here, we formulate two stable and clinically applicable labels for tracking two populations of primary human dendritic cells (DCs) simultaneously. MATERIAL

  3. The epidermis comprises autonomous compartments maintained by distinct stem cell populations

    DEFF Research Database (Denmark)

    Page, Mahalia E; Lombard, Patrick; Ng, Felicia

    2013-01-01

    populations. In contrast, upon wounding, stem cell progeny from multiple compartments acquire lineage plasticity and make permanent contributions to regenerating tissue. We further show that oncogene activation in Lrig1(+ve) cells drives hyperplasia but requires auxiliary stimuli for tumor formation...

  4. Comparison of pollen gene flow among four European beech (Fagus sylvatica L.) populations characterized by different management regimes

    NARCIS (Netherlands)

    Piotti, A.; Leonardi, S.; Buiteveld, J.; Geburek, T.; Gerber, S.; Kramer, K.; Vettori, C.; Vendramin, G.G.

    2012-01-01

    The study of the dispersal capability of a species can provide essential information for the management and conservation of its genetic variability. Comparison of gene flow rates among populations characterized by different management and evolutionary histories allows one to decipher the role of fac

  5. Phenotypic and Molecular Characterization of Domestic Cat (Felis catus) Spermatogonial Stem Cells.

    Science.gov (United States)

    Powell, Robin H; Galiguis, Jason; Biancardi, Monica N; Pope, C Earle; Leibo, Stanley P; Wang, Guoshun; Gómez, Martha C

    2016-07-01

    In many mammalian species, surface markers have been used to obtain enriched populations of spermatogonial stem cells (SSCs) for assisted reproduction and other applications; however, little is known about the expression patterns of feline SSCs. In this study, we assessed expression of the SSC surface markers commonly used in other species, KIT, ITGA6, CD9, GFRalpha1, ADGRA3, and THY1, in addition to the less frequently used pluripotent markers TRA-1-60, TRA-1-81, SSEA-1, and SSEA-4 in SSCs of both prepubertal and adult domestic cats (Felis catus). To further characterize cat SSCs, we sorted cells using SSC-specific markers and evaluated the expression of the pluripotent transcription factors NANOG, POU5F1, and SOX2 and the proto-oncogene MYC within these populations. We concluded that SSC surface markers used in other mammalian species were not specific for identifying cat SSCs. However, the pluripotent markers we evaluated were more specific to cat spermatogonia, and the presence of SSEA-1 and SSEA-4 in fewer and primarily individual cells suggests that these two markers may be used for enrichment of cat SSCs. The expression of pluripotent transcription factors at mRNA level by single-stained cells positive for SSEA-4 and by dual-stained cells positive for both GFRalpha1 and SSEA-4 reflects the undifferentiated stage of cat SSCs. The absence of transcription factors in double-stained cells positive for only one marker implies the loss of the stem cell-like identity with the loss of either GFRalpha1 or SSEA-4. Further investigation is warranted to elucidate the biological characteristics of these spermatogonial subpopulations.

  6. Growth Kinetics, Characterization, and Plasticity of Human Menstrual Blood Stem Cells

    Directory of Open Access Journals (Sweden)

    Davood Mehrabani

    2016-03-01

    Full Text Available One of the readily available sources of mesenchymal stem cells (MSCs is menstrual blood-derived stem cells (Men-SCs, which exhibit characteristics similar to other types of MSCs. This study was performed to determine the growth kinetics, plasticity, and characterization of Men-SCs in women. During spring 2014 in the southern Iranian city of Shiraz, menstrual blood (5 mL was obtained from 10 women on their third day of menstruation in 2 age groups of 30 to 40 and 40 to 50 years old. Ficoll was used to separate the mononuclear cell fraction. After the Men-SCs were cultured, they were subcultured up to passage 4. Growth behavior and population doubling time were evaluated by seeding 5×104 cells into 12- and 24-well culture plates, and the colonies were enumerated. The expression of CD44, CD90, and CD34 was evaluated. The osteogenic potential was assessed by alizarin red staining. The Men-SCs were shown to be plastic adherent and spindle-shaped. Regarding the growth curves in the 12- and 24-well culture plates, it was demonstrated that in the women aged between 30 and 40 years, population doubling time was 55.5 and 62 hours, respectively, while these values in the women aged between 40 and 50 years were 70.4 and 72.4 hours, correspondingly. Positive expression of CD44 and CD90 and negative expression of CD34 were noted. In the osteogenic differentiation medium, the cells differentiated toward osteoblasts. As human Men-SCs are easily collectable without any invasive procedure and are a safe and rapid source of MSCs, they can be a good candidate for stem cell banking and cell transplantation in women.

  7. Methods and insights from the characterization of osteoprogenitor cells of bats (Mammalia: Chiroptera).

    Science.gov (United States)

    Ball, H C; Moussa, F M; Mbimba, T; Orman, R; Safadi, F F; Cooper, L N

    2016-07-01

    Osteoprogenitor cells contribute to the development and maintenance of skeletal tissues. Bats are unique model taxa whose cellular processes are poorly understood, especially in regards to skeletal biology. Forelimb bones of bats, unlike those of terrestrial mammals, bend during flight and function in controlled deformation. As a first step towards understanding the molecular processes governing deposition of this flexible bone matrix, we provide the first method for isolation and differentiation of cell populations derived from the bone marrow and cortical bone of bats, and compare results with those harvested from C57BL/6J mice. Osteogenic capacity of these cells was assessed via absolute quantitative real-time PCR (qPCR) and through quantification of in vitro mineral deposition. Results indicate the differentiated bone cells of bats display significantly lower gene expression of known osteogenic markers (Runt-related transcription factor (RUNX2), osteocalcin (BGLAP) and osterix (SP7)), and deposit a less-mineralized matrix compared with murine controls. By characterizing the in vitro performance of osteoprogenitor cells throughout differentiation and matrix production, this study lays the ground work for in vitro manipulations of bat stem and osteoprogenitor cells and extends our understanding of the cellular diversity across mammals that occupy different habitats.

  8. Proteome characterization of sea star coelomocytes--the innate immune effector cells of echinoderms.

    Science.gov (United States)

    Franco, Catarina F; Santos, Romana; Coelho, Ana V

    2011-09-01

    Sea star coelomic fluid is in contact with all internal organs, carrying signaling molecules and a large population of circulating cells, the coelomocytes. These cells, also known as echinoderm blood cells, are responsible for the innate immune responses and are also known to have an important role in the first stage of regeneration, i.e. wound closure, necessary to prevent disruption of the body fluid balance and to limit the invasion of pathogens. This study focuses on the proteome characterization of these multifunctional cells. The identification of 358 proteins was achieved using a combination of two techniques for protein separation (1-D SDS-PAGE followed by nanoLC and 2-D SDS-PAGE) and MALDI-TOF/TOF MS for protein identification. To our knowledge, the present report represents the first comprehensive list of sea star coelomocyte proteins, constituting an important database to validate many echinoderm-predicted proteins. Evidence for new pathways in these particular echinoderm cells are also described, and thus representing a valuable resource to stimulate future studies aiming to unravel the homology with vertebrate immune cells and particularly the origins of the immune system itself.

  9. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Jorge E. Ramirez

    2016-12-01

    Full Text Available The brain’s control of movement is thought to involve coordinated activity between cerebellar Purkinje cells. The results reported here demonstrate that somatic Ca2+ imaging is a faithful reporter of Na+-dependent “simple spike” pauses and enables us to optically record changes in firing rates in populations of Purkinje cells in brain slices and in vivo. This simultaneous calcium imaging of populations of Purkinje cells reveals a striking spatial organization of pauses in Purkinje cell activity between neighboring cells. The source of this organization is shown to be the presynaptic gamma-Aminobutyric acid producing (GABAergic network, and blocking ionotropic gamma-Aminobutyric acid receptor (GABAARs abolishes the synchrony. These data suggest that presynaptic interneurons synchronize (inactivity between neighboring Purkinje cells, and thereby maximize their effect on downstream targets in the deep cerebellar nuclei.

  10. Evidence of distinct tumour-propagating cell populations with different properties in primary human hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Federico Colombo

    Full Text Available BACKGROUND AND AIMS: Increasing evidence that a number of malignancies are characterised by tumour cell heterogeneity has recently been published, but there is still a lack of data concerning liver cancers. The aim of this study was to investigate and characterise tumour-propagating cell (TPC compartments within human hepatocellular carcinoma (HCC. METHODS: After long-term culture, we identified three morphologically different tumour cell populations in a single HCC specimen, and extensively characterised them by means of flow cytometry, fluorescence microscopy, karyotyping and microarray analyses, single cell cloning, and xenotransplantation in NOD/SCID/IL2Rγ/⁻ mice. RESULTS: The primary cell populations (hcc-1, -2 and -3 and two clones generated by means of limiting dilutions from hcc-1 (clone-1/7 and -1/8 differently expressed a number of tumour-associated stem cell markers, including EpCAM, CD49f, CD44, CD133, CD56, Thy-1, ALDH and CK19, and also showed different doubling times, drug resistance and tumorigenic potential. Moreover, we found that ALDH expression, in combination with CD44 or Thy-1 negativity or CD56 positivity identified subpopulations with a higher clonogenic potential within hcc-1, hcc-2 and hcc-3 primary cell populations, respectively. Karyotyping revealed the clonal evolution of the cell populations and clones within the primary tumour. Importantly, the primary tumour cell population with the greatest tumorigenic potential and drug resistance showed more chromosomal alterations than the others and contained clones with epithelial and mesenchymal features. CONCLUSIONS: Individual HCCs can harbor different self-renewing tumorigenic cell types expressing a variety of morphological and phenotypical markers, karyotypic evolution and different gene expression profiles. This suggests that the models of hepatic carcinogenesis should take into account TPC heterogeneity due to intratumour clonal evolution.

  11. The characterization of fibrocyte-like cells: a novel fibroblastic cell of the placenta.

    Science.gov (United States)

    Riddell, M R; Winkler-Lowen, B; Chakrabarti, S; Dunk, C; Davidge, S T; Guilbert, L J

    2012-03-01

    The placenta is a highly vascularized organ thus angiogenesis is a key process in placental development. The contribution that different cells in the villous stroma play in placental angiogenesis is largely unknown. In this study we identified a novel stromal cell type in sections of term placenta which is morphologically fibroblastic and expressing the fibroblast marker TE-7 but also positive for the monocytic markers CD115 and CD14 and designated these cells as fibrocyte-like cells. Populations of fibrocyte-like cells from the placenta were isolated by two methods: culture of adherence-selected placental cells and, for higher purity, by CD45 fluorescence activated cell sorting (FACS). Fibrocyte-like cell conditioned medium increased endothelial tubule-like structure formation 2-fold versus control medium. Both pro-angiogenic growth factors vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF) and the anti-angiogenic factor soluble-Flt were found in the conditioned medium. Neutralizing antibodies against VEGF and b-FGF reduced endothelial cell tubule-like structures to control levels. These data suggests that fibrocyte-like cells, a previously unidentified cell of the villous stroma, may play an important role in the regulation of placental angiogenesis.

  12. Notch inhibition suppresses nasopharyngeal carcinoma by depleting cancer stem-like side population cells.

    Science.gov (United States)

    Yu, Shudong; Zhang, Ruxin; Liu, Fenye; Wang, Hong; Wu, Jing; Wang, Yanqing

    2012-08-01

    The cancer stem cell (CSC) is responsible for the initiation, proliferation and radiation resistance. Side population (SP) cells are a rare subset of cells enriched with CSCs. The targeting of key signaling pathways that are active in CSCs is a therapeutic approach to treating cancer. Notch signaling is important for the self-renewal and maintenance of stem cells. Our previous studies demonstrated that downregulation of Notch signaling could enhance radiosensitivity of nasopharyngeal carcinoma (NPC) cells. In this study, we found that Notch signaling was highly activated in SP cells compared with that of non-SP (NSP) cells of NPC. Therefore, Notch inhibition could reduce the proportion of SP cells. As SP cells decreased, proliferation, anti-apoptosis and tumorigenesis were also decreased. This study shows that Notch inhibition may be a promising clinical approach in CSC-targeting therapy for NPC.

  13. Chromosomal characterization of cultured populations of Chilean coho salmon (Oncorhynchus kistuch

    Directory of Open Access Journals (Sweden)

    Nelson Colihueque V.

    1999-03-01

    Full Text Available Chromosomal characterization of coho salmon samples from three fish farms in southern Chile (Polcura, Castro and Coyhaique was carried out in order to compare their chromosome constitutions. All populations had a 2n = 60; however, Polcura and Coyhaique had a different chromosome arm number (NF = 110; 40m + 10sm + 10st/t than Castro (NF = 108; 40m + 8sm + 12st/t. Variation in NF was due to chromosome pair 25, which was submetacentric in Coyhaique and Polcura, but subtelocentric in Castro. In all karyotypes, a large submetacentric chromosome pair exhibited an interstitial secondary constriction in the short arm. The observed variability in chromosome arm number agrees with previous reports for O. kisutch, and in this particular case it seemed to be caused by a pericentric inversion of pair 25. Cultured populations of Chilean coho salmon are, therefore, likely to be cytogenetically variable.A caracterização cromossômica de amostras de salmon tipo coho de três criações de peixes do sul do Chile (Polcura, Castro e Coyhaique foi feita com a intenção de comparar suas constituições cromossômicas. Todas as populações apresentaram 2n = 60; contudo, Polcura e Coyhaique tiveram um número de braços cromossômicos (NF = 110; 40m + 10sm + 10st/t diferente de Castro (NF = 108; 40m + 8sm + 12st/t. A variação no NF deveu-se ao par cromossômico 25, que era submetacêntrico em Coyhaique e Polcura e subtelocêntrico em Castro. Em todos os cariótipos, um grande par cromossômico submetacêntrico exibiu uma constrição secundária intersticial no braço curto. A variabilidade observada no número de braços cromossômicos concorda com relatos prévios para O. kisutch e, neste caso particular, parece ter sido causada por uma inversão pericêntrica no par 25. Portanto, populações cultivadas de salmão chileno do tipo coho provavelmente são citogeneticamente variáveis.

  14. a Simple Evolutionary Model for Cancer Cell Population and its Implications on Cancer Therapy

    Science.gov (United States)

    Yao, Peng; Wen, Shutang; Li, Baoshun; Li, Yuxiao

    We established a simple evolutionary model based on the cancer stem cell hypothesis. By taking cellular interactions into consideration, we introduced the evolutionary games theory into the quasispecies model. The fitness values are determined by both genotypes and cellular interactions. In the evolutionary model, a cancer cell population can evolve in different patterns. For single peak intrinsic fitness landscape, the evolution pattern can transit with increasing differentiation probability from malignant cells to benign cells in four different modes. For a large enough value of differentiation probability, the evolution is always the case that the malignant cells extinct ultimately, which might give some implications on cancer therapy.

  15. Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells

    Science.gov (United States)

    Chen, Qiuhong; Takada, Ritsuko; Noda, Chiyo; Kobayashi, Satoru; Takada, Shinji

    2016-01-01

    Accumulating evidence suggests that exosomes are heterogeneous in molecular composition and physical properties. Here we examined whether epithelial cells secrete a heterogeneous population of exosomes, and if that is the case, whether epithelial cell polarity affects release of different populations of exosomes, especially that of those carrying Wnt. Sucrose-density ultracentrifugation and molecular marker analysis revealed that different populations of exosomes or exosome-like vesicles were released from MDCK cells depending on the cell polarity. Wnt3a associated with these vesicles were detectable in culture media collected from both apical and basolateral sides of the cells. Basolaterally secreted Wnt3a were co-fractionated with a typical exosomal protein TSG101 in fractions having typical exosome densities. In contrast, most of apically secreted Wnt3a, as well as Wnt11, were co-fractionated with CD63 and Hsp70, which are also common to the most exosomes, but recovered in higher density fractions. Wnt3a exhibiting similar floatation behavior to the apically secreted ones were also detectable in the culture media of Wnt3a-expressing L and HEK293 cells. The lipidation of Wnt3a was required for its basolateral secretion in exosomes but was dispensable for the apical one. Thus, epithelial cells release Wnt via distinct populations of vesicles differing in secretion polarity and lipidation dependency. PMID:27765945

  16. Influence of molecular noise on the growth of single cells and bacterial populations.

    Directory of Open Access Journals (Sweden)

    Mischa Schmidt

    Full Text Available During the last decades experimental studies have revealed that single cells of a growing bacterial population are significantly exposed to molecular noise. Important sources for noise are low levels of metabolites and enzymes that cause significant statistical variations in the outcome of biochemical reactions. In this way molecular noise affects biological processes such as nutrient uptake, chemotactic tumbling behavior, or gene expression of genetically identical cells. These processes give rise to significant cell-to-cell variations of many directly observable quantities such as protein levels, cell sizes or individual doubling times. In this study we theoretically explore if there are evolutionary benefits of noise for a growing population of bacteria. We analyze different situations where noise is either suppressed or where it affects single cell behavior. We consider two specific examples that have been experimentally observed in wild-type Escherichia coli cells: (i the precision of division site placement (at which molecular noise is highly suppressed and (ii the occurrence of noise-induced phenotypic variations in fluctuating environments. Surprisingly, our analysis reveals that in these specific situations both regulatory schemes [i.e. suppression of noise in example (i and allowance of noise in example (ii] do not lead to an increased growth rate of the population. Assuming that the observed regulatory schemes are indeed caused by the presence of noise our findings indicate that the evolutionary benefits of noise are more subtle than a simple growth advantage for a bacterial population in nutrient rich conditions.

  17. Repeated cisplatin treatment can lead to a multiresistant tumor cell population with stem cell features and sensitivity to 3-bromopyruvate.

    Science.gov (United States)

    Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B; Fuxe, Jonas; Shoshan, Maria

    2012-12-01

    Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC 50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations.

  18. Changes in the population of perivascular cells in the bone tissue remodeling zones under microgravity

    Science.gov (United States)

    Katkova, Olena; Rodionova, Natalia; Shevel, Ivan

    2016-07-01

    Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular

  19. Isolation and characterization of rice lesion mimic mutants from a T-DNA tagged population

    Institute of Scientific and Technical Information of China (English)

    LI Shutian; PEI Zhongyou; LUO Lijuan; TIAN Yingchuan; HE Chaozu

    2005-01-01

    A rice ( Oryza sativa L. ssp. japonica cv. Nipponbare) T-DNA tagged population consisting of about 7000 individual lines was generated and screened for rice lesion mimic mutants in the T1 generation. Ten lines were found to develop spontaneous lesions in the absence of pathogen infection and displayed distinct lesion phenotypes. These mutants were tentatively designated as lm1 -lm10 (for lesion mimic), respectively. Lesion formation of lm mutants was developmentally regulated, and all the mutants showed stunted growth and reduced fertility. Genetic analysis demonstrated that all the mutations were recessive, and five partially fertile mutants (lm4-lm8) were derived from different loci. Mimic lesions occurring on the leaves of lm mutants resulted from cell death as revealed by trypan blue staining. Six of them ( lm3 -lm8 ) exhibited enhanced resistance to five bacterial blight isolates, indicating their wide-spectrum resistance to this pathogen. These results imply that some lesion mimic mutations of rice might be involved in disease resistance signaling pathways,and that isolation of these mutated genes may be useful for elucidating molecular mechanisms of plant disease resistance. Among the mutants, only one mutant, lm6, was preliminarily shown to cosegregate with the inserted T-DNA in its T1 generation, making it feasible to isolate the gene responsible for the phenotype of this mutant.

  20. A novel approach for characterizing microsatellite instability in cancer cells.

    Directory of Open Access Journals (Sweden)

    Yuheng Lu

    Full Text Available Microsatellite instability (MSI is characterized by the expansion or contraction of DNA repeat tracts as a consequence of DNA mismatch repair deficiency (MMRD. Accurate detection of MSI in cancer cells is important since MSI is associated with several cancer subtypes and can help inform therapeutic decisions. Although experimental assays have been developed to detect MSI, they typically depend on a small number of known microsatellite loci or mismatch repair genes and have limited reliability. Here, we report a novel genome-wide approach for MSI detection based on the global detection of insertions and deletions (indels in microsatellites found in expressed genes. Our large-scale analyses of 20 cancer cell lines and 123 normal individuals revealed striking indel features associated with MSI: there is a significant increase of short microsatellite deletions in MSI samples compared to microsatellite stable (MSS ones, suggesting a mechanistic bias of repair efficiency between insertions and deletions in normal human cells. By incorporating this observation into our MSI scoring metric, we show that our approach can correctly distinguish between MSI and MSS cancer cell lines. Moreover, when we applied this approach to primal tumor samples, our metric is also well consistent with diagnosed MSI status. Thus, our study offers new insight into DNA mismatch repair system, and also provides a novel MSI diagnosis method for clinical oncology with better reliability.

  1. Identification and functional characterization of cardiac pacemaker cells in zebrafish.

    Directory of Open Access Journals (Sweden)

    Federico Tessadori

    Full Text Available In the mammalian heart a conduction system of nodes and conducting cells generates and transduces the electrical signals evoking myocardial contractions. Specialized pacemaker cells initiating and controlling cardiac contraction rhythmicity are localized in an anatomically identifiable structure of myocardial origin, the sinus node. We previously showed that in mammalian embryos sinus node cells originate from cardiac progenitors expressing the transcription factors T-box transcription factor 3 (Tbx3 and Islet-1 (Isl1. Although cardiac development and function are strikingly conserved amongst animal classes, in lower vertebrates neither structural nor molecular distinguishable components of a conduction system have been identified, questioning its evolutionary origin. Here we show that zebrafish embryos lacking the LIM/homeodomain-containing transcription factor Isl1 display heart rate defects related to pacemaker dysfunction. Moreover, 3D reconstructions of gene expression patterns in the embryonic and adult zebrafish heart led us to uncover a previously unidentified, Isl1-positive and Tbx2b-positive region in the myocardium at the junction of the sinus venosus and atrium. Through their long interconnecting cellular protrusions the identified Isl1-positive cells form a ring-shaped structure. In vivo labeling of the Isl1-positive cells by transgenic technology allowed their isolation and electrophysiological characterization, revealing their unique pacemaker activity. In conclusion we demonstrate that Isl1-expressing cells, organized as a ring-shaped structure around the venous pole, hold the pacemaker function in the adult zebrafish heart. We have thereby identified an evolutionary conserved, structural and molecular distinguishable component of the cardiac conduction system in a lower vertebrate.

  2. Circulating human B and plasma cells. Age-associated changes in counts and detailed characterization of circulating normal CD138- and CD138+ plasma cells.

    Science.gov (United States)

    Caraux, Anouk; Klein, Bernard; Paiva, Bruno; Bret, Caroline; Schmitz, Alexander; Fuhler, Gwenny M; Bos, Nico A; Johnsen, Hans E; Orfao, Alberto; Perez-Andres, Martin

    2010-06-01

    Generation of B and plasma cells involves several organs with a necessary cell trafficking between them. A detailed phenotypic characterization of four circulating B-cell subsets (immature-, naïve-, memory- B-lymphocytes and plasma cells) of 106 healthy adults was realized by multiparametric flow cytometry. We show that CD10, CD27 and CD38 is the minimal combination of subsetting markers allowing unequivocal identification of immature (CD10(+)CD27(-)CD38(+), 6+/-6 cells/microL), naïve (CD10(-)CD27(-)CD38(-), 125+/-90 cells/microL), memory B lymphocytes (CD10(-)CD27(+)CD38(-), 58+/-42 cells/microL), and plasma cells (CD10(-)CD27(++)CD38(++), 2.1+/-2.1 cells/microL) within circulating CD19(+) cells. From these four subsets, only memory B lymphocytes and plasma cells decreased with age, both in relative and absolute counts. Circulating plasma cells split into CD138(-) (57+/-12%) and CD138(+) (43+/-12%) cells, the latter displaying a more mature phenotypic profile: absence of surface immunoglobulin, lower CD45 positivity and higher amounts of cytoplasmic immunoglobulin, CD38 and CD27. Unlike B lymphocytes, both populations of plasma cells are KI-67(+) and show weak CXCR4 expression.

  3. Phenotypic and genotypic characterization of enteroaggregative Escherichia coli isolates from pediatric population in Pakistan.

    Science.gov (United States)

    Khalil, Uzma; Younus, Mahwish; Asghar, Naeem; Siddiqui, Fariha; Gómez-Duarte, Oscar G; Wren, Brendan W; Bokhari, Habib

    2016-10-01

    Enteroaggregative Escherichia coli (EAEC) are a leading cause of diarrhea among children. The objective of this study was to define the frequency of EAEC among diarrheal children from flood-affected areas as well as sporadic cases, determine multidrug resistance, and evaluation of virulence using an in vivo model of pathogenesis. Stool samples were collected from 225 diarrheal children from 2010 to 2011 from flood-affected areas as well as from sporadic cases in Pakistan. Identified EAEC isolates were characterized by phylogrouping, antibiotic resistance patterns including the extended-spectrum beta lactamase spectrum, single nucleotide polymorphism detection in gyrA and parC, and virulence potential using wax worm, G. mellonella. A total of 35 (12.5%) confirmed EAEC isolates were identified among 225 E. coli isolates. EAEC isolates displayed high resistance to tetracycline, ampicillin, and cefaclor. A total of 34.28% were ESBL positive. Single nucleotide polymorphism detection revealed 37.14% and 68.57% isolates were positive for SNPs in gyrA (A660 -T660 ) and parC (C330 -T330 ), respectively. Phylogrouping revealed that B2 phylogroup was more prevalent among all EAEC isolates tested followed by D, A, B1, and non-typeable (NT). Infection of G. mellonella with EAEC showed that killing infective dose was 100% higher than E. coli DH5 alpha control. EAEC are prevalent among Pakistani children with diarrhea, they are highly resistant to antibiotics, and predominantly fall into B2 phylogroup. Epidemiologic surveillance of EAEC and other E. coli pathotypes is critical to assess not only the role of these pathogens in diarrheal disease but also to determine the extent of multidrug resistance among the population.

  4. Structural Characterization of Prosopis africana Populations (Guill., Perrott., and Rich. Taub in Benin

    Directory of Open Access Journals (Sweden)

    Towanou Houètchégnon

    2015-01-01

    Full Text Available The structural characterization of Prosopis africana of Benin was studied on the basis of forest inventory conducted in three different vegetation types (savannah, fallow, and field and three climate zones. The data collected in 139 plots of 1000 m2 each related to the diameter at breast (1.3 m above ground, total height, identification, and measurement of DBH related P. africana species height. Tree-ring parameters such as Blackman and Green indices, basal area, average diameter, height of Lorey, and density were calculated and interpreted. Dendrometric settings of vegetation type and climate zone (Guinea, Sudan-Guinea, and Sudan were compared through analysis of variance (ANOVA. There is a significant difference in dendrometric settings according to the type of vegetation and climate zone. Basal area, density, and average diameter are, respectively, 4.47 m2/ha, 34.95 stems/ha, and 37.02 cm in the fields; 3.01 m2/ha, 34.74 stems/ha, and 33.66 cm in fallows; 3.31 m2/ha, 52.39 stems/ha, and 29.61 cm in the savannahs. The diameter distribution and height observed at the theoretical Weibull distribution show that the diameter and height of the populations of the species are present in all positively skewed distributions or asymmetric left, a characteristic of single-species stands with predominance of young individuals or small diameters or heights.

  5. Characterization report for Building 301 Hot Cell Facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    During the period from October, 1997, through March, 1998, ANL-E Health Physics conducted a pre-D and D characterization of Building 301, referred to as the Hot Cell Facility. While primary emphasis was placed on radiological evaluation, the presence of non-nuclear hazardous and toxic material was also included in the scope of the characterization. This is one of the early buildings on the ANL-E site, and was heavily used in the 1950`s and 1960`s for various nuclear reaction and reactor design studies. Some degree of cleanup and contamination fixation was done in the 1970`s, so that the building could be used with a minimum of risk of personnel contamination. Work records are largely nonexistent for the early history of the building, so that any assumptions about extent and type of contamination had to be kept very open in the survey planning process. The primary contaminant was found to be painted-over Cs-137 embedded in the concrete floors, although a variety of other nuclides consistent with the work said to have been performed were found in smaller quantities. Due to leaks and drips through the floor, a relatively modest amount of soil contamination was found in the service trench under the building, not penetrating deeply. Two contaminated, disconnected drain lines leaving the building could not be traced by site records, and remain a problem for remediation. The D and D Characterization Plan was fulfilled.

  6. The evolution of carrying capacity in constrained and expanding tumour cell populations.

    Science.gov (United States)

    Gerlee, Philip; Anderson, Alexander R A

    2015-08-12

    Cancer cells are known to modify their micro-environment such that it can sustain a larger population, or, in ecological terms, they construct a niche which increases the carrying capacity of the population. It has however been argued that niche construction, which benefits all cells in the tumour, would be selected against since cheaters could reap the benefits without paying the cost. We have investigated the impact of niche specificity on tumour evolution using an individual based model of breast tumour growth, in which the carrying capacity of each cell consists of two components: an intrinsic, subclone-specific part and a contribution from all neighbouring cells. Analysis of the model shows that the ability of a mutant to invade a resident population depends strongly on the specificity. When specificity is low selection is mostly on growth rate, while high specificity shifts selection towards increased carrying capacity. Further, we show that the long-term evolution of the system can be predicted using adaptive dynamics. By comparing the results from a spatially structured versus well-mixed population we show that spatial structure restores selection for carrying capacity even at zero specificity, which poses a solution to the niche construction dilemma. Lastly, we show that an expanding population exhibits spatially variable selection pressure, where cells at the leading edge exhibit higher growth rate and lower carrying capacity than those at the centre of the tumour.

  7. Side population analysis using a violet-excited cell-permeable DNA binding dye.

    Science.gov (United States)

    Telford, William G; Bradford, Jolene; Godfrey, William; Robey, Robert W; Bates, Susan E

    2007-04-01

    Hoechst 33342 side population (SP) analysis is a common method for identifying stem cells in mammalian hematopoietic and nonhematopoietic tissues. Although widely employed for stem cell analysis, this method requires an ultraviolet (UV) laser to excite Hoechst 33342. Flow cytometers equipped with UV sources are not common because of the cost of both the laser and optics that can transmit light UV light. Violet laser sources are inexpensive and are now common fixtures on flow cytometers, but have been previously shown to provide insufficient Hoechst dye excitation for consistent resolution of SP cells. One solution to this problem is to identify additional fluorescent substrates with the same pump specificity as Hoechst 33342, but with better violet excitation characteristics. DyeCycle Violet reagent has emission characteristics similar to those of Hoechst 33342, but with a longer wavelength excitation maxima (369 nm). When this dye is loaded into hematopoietic cells, a sharply resolved side population was also observed, similar in appearance to that seen with Hoechst 33342. Unlike Hoechst SP, DCV SP was similar in appearance with both violet and UV excitation. DCV SP could be inhibited fumitremorgin C, and showed the same membrane pump specificity as Hoechst 33342. Simultaneous immunophenotyping with stem cell markers in mouse bone marrow demonstrated that DCV SP was restricted to the stem cell lineage(-) Sca-1(+) c-kit(+) cells population, as is Hoechst SP. Pending confirmation by functional analysis of DCV SP cells, these results suggest that DCV efflux identified approximately the same stem cell population as did Hoechst 33342 efflux. Substituting DCV for Hoechst 33342 in the SP technique may, therefore, allow side population analysis on flow cytometers with violet lasers.

  8. SSR characterization of Oryza glumaepatula populations from the Brazilian Amazon and Cerrado biomes.

    Science.gov (United States)

    Abreu, Aluana Gonçalves; Rosa, Thalita Marra; Borba, Tereza Cristina de Oliveira; Vianello, Rosana Pereira; Rangel, Paulo Hideo Nakano; Brondani, Claudio

    2015-08-01

    The level and distribution of the genetic variability in 18 natural populations of Oryza glumaepatula that were collected from two Brazilian states were estimated using a set of 23 highly informative SSR markers. Samples comprising 78 and 117 individuals from populations of the states of Tocantins and Roraima, respectively, were evaluated in order to integrate and support previous studies that were carried out with populations of O. glumaepatula from Brazil. A total of 189 alleles were identified with an average of 8.22 alleles per locus. The 11 populations from Roraima presented, in combination, a higher genetic diversity (HE = 0.245) compared with that of the seven populations from Tocantins (HE = 0.212). All of the populations showed high and significant inbreeding values (mean f = 0.59); however, the mean was higher in Tocantins populations, indicating a higher gene flow in Roraima populations. The overall coefficient of genetic differentiation (FST) among the populations was high and significant (0.59) and was higher in Tocantins due to the isolation of each population, in contrast to Roraima, where gene flow occurred more frequently. The SSR panel used in this work resulted to be informative (polymorphism information content = 0.201) for assessing genetic structure in O. glumaepatula populations.

  9. Characterization of protocadherin-1 expression in primary bronchial epithelial cells : association with epithelial cell differentiation

    NARCIS (Netherlands)

    Koning, Henk; Sayers, Ian; Stewart, Ceri E.; de Jong, Debora; ten Hacken, Nick H. T.; Postma, Dirkje S.; van Oosterhout, Antoon J. M.; Nawijn, Martijn C.; Koppelman, Gerard H.

    2012-01-01

    Protocadherin-1 (PCDH1) is a novel susceptibility gene for asthma that is expressed in airway epithelium. We aimed to characterize PCDH1 mRNA transcripts and protein expression in primary bronchial epithelial cells and to determine regulation of PCDH1 during mucociliary differentiation. Total RNA an

  10. Attenuated Toxoplasma gondii Stimulates Immunity to Pancreatic Cancer by Manipulation of Myeloid Cell Populations.

    Science.gov (United States)

    Sanders, Kiah L; Fox, Barbara A; Bzik, David J

    2015-08-01

    Suppressive myeloid cells represent a significant barrier to the generation of productive antitumor immune responses to many solid tumors. Eliminating or reprogramming suppressive myeloid cells to abrogate tumor-associated immune suppression is a promising therapeutic approach. We asked whether treatment of established aggressive disseminated pancreatic cancer with the immunotherapeutic attenuated Toxoplasma gondii vaccine strain CPS would trigger tumor-associated myeloid cells to generate therapeutic antitumor immune responses. CPS treatment significantly decreased tumor-associated macrophages and markedly increased dendritic cell infiltration of the pancreatic tumor microenvironment. Tumor-resident macrophages and dendritic cells, particularly cells actively invaded by CPS, increased expression of costimulatory molecules CD80 and CD86 and concomitantly boosted their production of IL12. CPS treatment increased CD4(+) and CD8(+) T-cell infiltration into the tumor microenvironment, activated tumor-resident T cells, and increased IFNγ production by T-cell populations. CPS treatment provided a significant therapeutic benefit in pancreatic tumor-bearing mice. This therapeutic benefit depended on IL12 and IFNγ production, MyD88 signaling, and CD8(+) T-cell populations. Although CD4(+) T cells exhibited activated effector phenotypes and produced IFNγ, CD4(+) T cells as well as natural killer cells were not required for the therapeutic benefit. In addition, CD8(+) T cells isolated from CPS-treated tumor-bearing mice produced IFNγ after re-exposure to pancreatic tumor antigen, suggesting this immunotherapeutic treatment stimulated tumor cell antigen-specific CD8(+) T-cell responses. This work highlights the potency and immunotherapeutic efficacy of CPS treatment and demonstrates the significance of targeting tumor-associated myeloid cells as a mechanism to stimulate more effective immunity to pancreatic cancer.

  11. Effects of beta interferon on human fibroblasts at different population doubling levels. Proliferation, cell volume, thymidine uptake, and DNA synthesis

    OpenAIRE

    1984-01-01

    Cellular aging had no effect on the ability of beta interferon to increase cell volume and population doubling time in 76-109 cells, a line of human skin fibroblasts. However, DNA synthesis in cells at high population doubling levels (PDL 55-70) was inhibited after 72 h of beta interferon treatment (1,000 U/ml) while no inhibition of DNA synthesis was observed in cells at middle population doubling levels (PDL 30-40).

  12. [Heterocysts with reduced cell walls in populations of cycad cyanobionts].

    Science.gov (United States)

    Baulina, O I; Lobakova, E S

    2003-01-01

    The ultrastructure of the cyanobionts of the greenhouse-grown cycads Cycads circinalis, Ceratozamia mexicana, and Encephalartos villosus was studied. In addition to heterocysts with the typical ultrastructure, the cyanobiont microcolonies also contained altered heterocysts with reduced cell walls, which might dominate in all regions of the coralloid roots. The altered heterocysts represented a protoplast enclosed in a heterocyst-specific envelope with additional layers. Some heterocysts contained an additional reticular protoplast-enclosing sheath below the heterocyst-specific envelope, whereas the other heterocysts contained an additional electron-opaque outer layer. The substance of the inner sheath of the former heterocysts resembled the polysaccharides of mucilage, which fills the intercellular space of plant tissues, whereas the electron-opaque outer layer of the latter heterocysts probably had a protein nature. The substances that constitute the sheath and the outer layer are likely to be synthesized intracellularly and then released with the aid of membrane-bounded vesicles or by channels in the cytoplasmic membrane.

  13. Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis.

    Science.gov (United States)

    Moignard, Victoria; Macaulay, Iain C; Swiers, Gemma; Buettner, Florian; Schütte, Judith; Calero-Nieto, Fernando J; Kinston, Sarah; Joshi, Anagha; Hannah, Rebecca; Theis, Fabian J; Jacobsen, Sten Eirik; de Bruijn, Marella F; Göttgens, Berthold

    2013-04-01

    Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease.

  14. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population.

    Science.gov (United States)

    Morrison, Jamie I; Lööf, Sara; He, Pingping; Simon, András

    2006-01-30

    In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.

  15. An Emerging Approach for Parallel Quantification of Intracellular Protozoan Parasites and Host Cell Characterization Using TissueFAXS Cytometry.

    Science.gov (United States)

    Schmid, Maximilian; Dufner, Bianca; Dürk, Julius; Bedal, Konstanze; Stricker, Kristina; Prokoph, Lukas Ali; Koch, Christoph; Wege, Anja K; Zirpel, Henner; van Zandbergen, Ger; Ecker, Rupert; Boghiu, Bogdan; Ritter, Uwe

    2015-01-01

    Characterization of host-pathogen interactions is a fundamental approach in microbiological and immunological oriented disciplines. It is commonly accepted that host cells start to change their phenotype after engulfing pathogens. Techniques such as real time PCR or ELISA were used to characterize the genes encoding proteins that are associated either with pathogen elimination or immune escape mechanisms. Most of such studies were performed in vitro using primary host cells or cell lines. Consequently, the data generated with such approaches reflect the global RNA expression or protein amount recovered from all cells in culture. This is justified when all host cells harbor an equal amount of pathogens under experimental conditions. However, the uptake of pathogens by phagocytic cells is not synchronized. Consequently, there are host cells incorporating different amounts of pathogens that might result in distinct pathogen-induced protein biosynthesis. Therefore, we established a technique able to detect and quantify the number of pathogens in the corresponding host cells using immunofluorescence-based high throughput analysis. Paired with multicolor staining of molecules of interest it is now possible to analyze the infection profile of host cell populations and the corresponding phenotype of the host cells as a result of parasite load.

  16. Characterization of microsatellites for population genetic analyses of the fungus-growing termite Odontotermes formosanus (Isoptera: Termitidae).

    Science.gov (United States)

    Husseneder, Claudia; Garner, Susan P; Huang, Qiuying; Booth, Warren; Vargo, Edward L

    2013-10-01

    The fungus-growing subterranean termite Odontotermes formosanus Shiraki (Isoptera: Termitidae) is a destructive pest in Southeast Asia. To facilitate studies on the biology, ecology, and control of O. formosanus, we isolated and characterized nine novel microsatellite loci from a mixed partial genomic library of O. formosanus and the sympatric Macrotermes barneyi Light enriched for di-, tri-, and tetranucleotide repeats. We screened these loci in three populations of O. formosanus from China. All loci were polymorphic. Three loci showed heterozygote deficit possibly because of the presence of null alleles. The remaining six loci with 4-15 alleles per locus and an average observed heterozygosity of 0.15-0.60 across populations were used for population genetic analysis. Populations from different provinces (Guangdong, Jiangxi, and Hubei) were genetically differentiated, but the genetic distance between populations was surprisingly small (FST: 0.03-0.08) and the gene flow was considerable (Nem: 3-8), despite the geographical distance being >300 km. Genetic diversity within populations was low (allelic richness: 5.1-6.3) compared with other subterranean dwelling termites, but consistent with the diversity in species of the family Termitidae. Microsatellite markers developed for O. formosanus will allow further studies to examine the phylogeography, population genetic and colony breeding structure, dispersal ranges, and size of foraging territories in this and closely related species, as well as aid in assessing treatment success.

  17. Numerical characterization of a microscale solid-oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Chen-li; Ou, Hsien-Chih [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Section 4 Keelung Road, Taipei 10607 (China)

    2008-10-15

    In this study, a single unit of planar micro-solid-oxide fuel cell ({mu}SOFC) is investigated numerically to evaluate the influences of flow channel design, oxygen composition, and thermal operating conditions on cell performance. Four flow channel designs are examined under the co-flow configuration: serpentine, double serpentine, rod bundle, and oblique rib. For all designs, the contacts areas of interconnect to electrodes are kept consistent to maintain the ohmic losses at the same level. To characterize the mass transport effects, there are three different compositions, 100% O{sub 2}, 50% O{sub 2}/50% N{sub 2} and air, fed to the cathode inlet. Different thermal conditions, adiabatic and isothermal, are applied to the outer boundary of the {mu}SOFC and the results are compared. The outcomes suggest that both thermal conditions and oxidant composition show remarkable influences on {mu}SOFC performance. Under adiabatic conditions, the rise of cell temperature causes a decrease in reversible voltage, deteriorating the overall cell competence. When oxygen is diluted with nitrogen, local gas diffusion becomes dominant to the cathode reaction. Bulk flow, on the other hand, plays a minor role in cell performance since there is little deviation in the polarization curves for all flow channel designs, even at high current densities. For comparison, the flow visualization technique is employed to observe the transport phenomena in various flow channel designs. The flow patterns are found to resemble the concentration distribution, providing a useful tool to design {mu}SOFCs. (author)

  18. Cell therapy of pain: Characterization of human fetal chromaffin cells at early adrenal medulla development.

    Science.gov (United States)

    Zhou, H; Aziza, J; Sol, J C; Courtade-Saïdi, M; Chatelin, S; Evra, C; Parant, O; Lazorthes, Y; Jozan, S

    2006-04-01

    Adult adrenal chromaffin cells are being utilized for therapeutic transplantation. With the prospect of using fetal chromaffin cells in pain therapy, we studied their phenotype, proliferative power, function, and growth in vitro and in situ in order to determine the optimal time for implantation. Between 7 and 10 gestational weeks (GW), we isolated, in vitro, two types of chromaffin cells with a noradrenergic phenotype akin to that observed, in situ. Among the adherent chromaffin cells first observed in vitro, only a few samples expressed met-enkephalin, whereas almost all the neurosphere-like colonies, which appeared later, expressed it. However, neither of the two types of populations expressed an adrenergic phenotype in line with that observed in situ. At the upper limits of the voluntary abortion period authorized in France, this phenotype (12 GW) and met-enkephalin expression (13 GW) were evidenced in situ. For the first time in man, we demonstrate the secretion of noradrenaline in vitro by the two populations of cells. Consistent with this result, we also noted dopamine beta hydroxylase (DbetaH) mRNA expression in vitro and in situ within this period. These observations on the expression of these biological factors indicate that 9-10 GW would be the best stage for sampling these cells for preclinical transplantation experiments.

  19. Lineage Tracing and Cell Ablation Identify a Post-Aire-Expressing Thymic Epithelial Cell Population

    Directory of Open Access Journals (Sweden)

    Todd C. Metzger

    2013-10-01

    Full Text Available Thymic epithelial cells in the medulla (mTECs play a critical role in enforcing central tolerance through expression and presentation of tissue-specific antigens (TSAs and deletion of autoreactive thymocytes. TSA expression requires autoimmune regulator (Aire, a transcriptional activator present in a subset of mTECs characterized by high CD80 and major histocompatibility complex II expression and a lack of potential for differentiation or proliferation. Here, using an Aire-DTR transgenic line, we show that short-term ablation specifically targets Aire+ mTECs, which quickly undergo RANK-dependent recovery. Repeated ablation also affects Aire− mTECs, and using an inducible Aire-Cre fate-mapping system, we find that this results from the loss of a subset of mTECs that showed prior expression of Aire, maintains intermediate TSA expression, and preferentially migrates toward the center of the medulla. These results clearly identify a distinct stage of mTEC development and underscore the diversity of mTECs that play a key role in maintaining tolerance.

  20. Markers for Characterization of Bone Marrow Multipotential Stromal Cells

    Directory of Open Access Journals (Sweden)

    Sally A. Boxall

    2012-01-01

    Full Text Available Given the observed efficacy of culture-expanded multipotential stromal cells, also termed mesenchymal stem cells (MSCs, in the treatment of graft-versus host and cardiac disease, it remains surprising that purity and potency characterization of manufactured cell batches remains rather basic. In this paper, we will initially discuss surface and molecular markers that were proposed to serve as the indicators of the MSC potency, in terms of their proliferative potential or the ability to differentiate into desired lineages. The second part of this paper will be dedicated to a critical discussion of surface markers of uncultured (i.e., native bone marrow (BM MSCs. Although no formal consensus has yet been reached on which markers may be best suited for prospective BM MSC isolation, markers that cross-react with MSCs of animal models (such as CD271 and W8-B2/MSCA-1 may have the strongest translational value. Whereas small animal models are needed to discover the in vivo function on these markers, large animal models are required for safety and efficacy testing of isolated MSCs, particularly in the field of bone and cartilage tissue engineering.

  1. A population of planetary systems from Kepler data that are characterized by short-period, Earth-sized planets

    Science.gov (United States)

    Steffen, Jason H.; Coughlin, Jeffrey

    2017-01-01

    From an analysis of the Quarter 1-17 Kepler planet candidate catalog we compare systems with single transiting planets to systems with multiple transiting planets. We find a distinct population of exoplanetary systems that is characterized by short-period, Earth sized planets. This difference in system architecture likely indicates a different branch in the system's formation or dynamical evolution relative to the typical Kepler system. We estimate that at least 17% of systems containing a hot Earth planet are members of this population. When we account for detection efficiency, these systems occur with a frequency similar to the hot Jupiters.

  2. Generation and Characterization of Erythroid Cells from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells: An Overview

    Directory of Open Access Journals (Sweden)

    Kai-Hsin Chang

    2011-01-01

    Full Text Available Because of the imbalance in the supply and demand of red blood cells (RBCs, especially for alloimmunized patients or patients with rare blood phenotypes, extensive research has been done to generate therapeutic quantities of mature RBCs from hematopoietic stem cells of various sources, such as bone marrow, peripheral blood, and cord blood. Since human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs can be maintained indefinitely in vitro, they represent potentially inexhaustible sources of donor-free RBCs. In contrast to other ex vivo stem-cell-derived cellular therapeutics, tumorigenesis is not a concern, as RBCs can be irradiated without marked adverse effects on in vivo function. Here, we provide a comprehensive review of the recent publications relevant to the generation and characterization of hESC- and iPSC-derived erythroid cells and discuss challenges to be met before the eventual realization of clinical usage of these cells.

  3. Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective

    Science.gov (United States)

    Bayramoglu, Bihter; Toubiana, David; van Vliet, Simon; Inglis, R. Fredrik; Shnerb, Nadav; Gillor, Osnat

    2017-02-01

    Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells’ close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies—or bet-hedging—as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population.

  4. Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective

    Science.gov (United States)

    Bayramoglu, Bihter; Toubiana, David; van Vliet, Simon; Inglis, R. Fredrik; Shnerb, Nadav; Gillor, Osnat

    2017-01-01

    Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells’ close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies—or bet-hedging—as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population. PMID:28165017

  5. Characterization of p75{sup +} ectomesenchymal stem cells from rat embryonic facial process tissue

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Xiujie; Liu, Luchuan; Deng, Manjing; Zhang, Li; Liu, Rui; Xing, Yongjun; Zhou, Xia [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042 (China); Nie, Xin, E-mail: dr.xinnie@gmail.com [Department of Stomatology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042 (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Ectomesenchymal stem cells (EMSCs) were found to migrate to rat facial processes at E11.5. Black-Right-Pointing-Pointer We successfully sorted p75NTR positive EMSCs (p75{sup +} EMSCs). Black-Right-Pointing-Pointer p75{sup +} EMSCs up to nine passages showed relative stable proliferative activity. Black-Right-Pointing-Pointer We examined the in vitro multilineage potential of p75{sup +} EMSCs. Black-Right-Pointing-Pointer p75{sup +}EMSCs provide an in vitro model for tooth morphogenesis. -- Abstract: Several populations of stem cells, including those from the dental pulp and periodontal ligament, have been isolated from different parts of the tooth and periodontium. The characteristics of such stem cells have been reported as well. However, as a common progenitor of these cells, ectomesenchymal stem cells (EMSCs), derived from the cranial neural crest have yet to be fully characterized. The aim of this study was to better understand the characteristics of EMSCs isolated from rat embryonic facial processes. Immunohistochemical staining showed that EMSCs had migrated to rat facial processes at E11.5, while the absence of epithelial invagination or tooth-like epithelium suggested that any epithelial-mesenchymal interactions were limited at this stage. The p75 neurotrophin receptor (p75NTR), a typical neural crest marker, was used to select p75NTR-positive EMSCs (p75{sup +} EMSCs), which were found to show a homogeneous fibroblast-like morphology and little change in the growth curve, proliferation capacity, and cell phenotype during cell passage. They also displayed the capacity to differentiate into diverse cell types under chemically defined conditions in vitro. p75{sup +} EMSCs proved to be homogeneous, stable in vitro and potentially capable of multiple lineages, suggesting their potential for application in dental or orofacial tissue engineering.

  6. Glutamic acid decarboxylase 67 expression by a distinct population of mouse vestibular supporting cells

    Directory of Open Access Journals (Sweden)

    Giancarlo eRusso

    2014-12-01

    Full Text Available The function of the enzyme glutamate decarboxylase (GAD is to convert glutamate in -aminobutyric acid (GABA.GAD exists as two major isoforms, termed GAD65 and GAD67,.that are usually expressed in GABA-containing neurons in the central nervous system. GAD65 has been proposed to be associated with GABA exocytosis whereas GAD67 with GABA metabolism. In the present immunofluorescence study, we have investigated the presence of the two GAD isoforms in the semicircular canal cristae of wild type and GAD67-GFP knock-in mice. While no evidence for GAD65 expression was found, GAD67 was detected in a distinct population of peripherally-located supporting cells, but not in hair cells or in centrally-located supporting cells. GABA, on the other hand, was found in all supporting cells. The present result indicate that only a discrete population of supporting cells use GAD67 to synthesize GABA. This is the first report of a marker that allows to distinguish two populations of supporting cells in the vestibular epithelium. On the other hand, the lack of GABA and GAD enzymes in hair cells excludes its involvement in afferent transmission.

  7. Label-free detection of neuronal differentiation in cell populations using high-throughput live-cell imaging of PC12 cells.

    Directory of Open Access Journals (Sweden)

    Sebastian Weber

    Full Text Available Detection of neuronal cell differentiation is essential to study cell fate decisions under various stimuli and/or environmental conditions. Many tools exist that quantify differentiation by neurite length measurements of single cells. However, quantification of differentiation in whole cell populations remains elusive so far. Because such populations can consist of both proliferating and differentiating cells, the task to assess the overall differentiation status is not trivial and requires a high-throughput, fully automated approach to analyze sufficient data for a statistically significant discrimination to determine cell differentiation. We address the problem of detecting differentiation in a mixed population of proliferating and differentiating cells over time by supervised classification. Using nerve growth factor induced differentiation of PC12 cells, we monitor the changes in cell morphology over 6 days by phase-contrast live-cell imaging. For general applicability, the classification procedure starts out with many features to identify those that maximize discrimination of differentiated and undifferentiated cells and to eliminate features sensitive to systematic measurement artifacts. The resulting image analysis determines the optimal post treatment day for training and achieves a near perfect classification of differentiation, which we confirmed in technically and biologically independent as well as differently designed experiments. Our approach allows to monitor neuronal cell populations repeatedly over days without any interference. It requires only an initial calibration and training step and is thereafter capable to discriminate further experiments. In conclusion, this enables long-term, large-scale studies of cell populations with minimized costs and efforts for detecting effects of external manipulation of neuronal cell differentiation.

  8. Taxonomic separation of hippocampal networks: principal cell populations and adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Roelof Maarten evan Dijk

    2016-03-01

    Full Text Available While many differences in hippocampal anatomy have been described between species, it is typically not clear if they are specific to a particular species and related to functional requirements or if they are shared by species of larger taxonomic units. Without such information, it is difficult to infer how anatomical differences may impact on hippocampal function, because multiple taxonomic levels need to be considered to associate behavioral and anatomical changes. To provide information on anatomical changes within and across taxonomic ranks, we present a quantitative assessment of hippocampal principal cell populations in 20 species or strain groups, with emphasis on rodents, the taxonomic group that provides most animals used in laboratory research. Of special interest is the importance of adult hippocampal neurogenesis in species-specific adaptations relative to other cell populations. Correspondence analysis of cell numbers shows that across taxonomic units, phylogenetically related species cluster together, sharing similar proportions of principal cell populations. CA3 and hilus are strong separators that place rodent species into a tight cluster based on their relatively large CA3 and small hilus while non-rodent species (including humans and non-human primates are placed on the opposite side of the spectrum. Hilus and CA3 are also separators within rodents, with a very large CA3 and rather small hilar cell populations separating mole-rats from other rodents that, in turn, are separated from each other by smaller changes in the proportions of CA1 and granule cells. When adult neurogenesis is included, the relatively small populations of young neurons, proliferating cells and hilar neurons become main drivers of taxonomic separation within rodents. The observations provide challenges to the computational modeling of hippocampal function, suggest differences in the organization of hippocampal information streams in rodent and non

  9. Further analyses of human kidney cell populations separated on the Space Shuttle

    Science.gov (United States)

    Stewart, Robin M.; Todd, Paul; Cole, Kenneth D.; Morrison, Dennis R.

    1992-01-01

    Cultured human embryonic kidney cells were separated into electrophoretic subpopulations in laboratory experiments and in two separation experiments on the STS-8 (Challenger) Space Shuttle flight using the mid-deck Continuous Flow Electrophoretic Separator (CFES). Populations of cells from each fraction were cultured for the lifetime of the cells, and supernatant medium was withdrawn and replaced at 4-day intervals. Withdrawn medium was frozen at -120 C for subsequent analysis. Enzyme assays, antibodies and gel electrophoresis were used as analytical tools for the detection and quantization of plasminogen activators in these samples. These assays of frozen-culture supernatant fluids confirmed the electrophoretic separation of plasminogen-activator-producing cells from nonproducing cells, the isolation of cells capable of sustained production, and the separation of cells that produce different plasminogen activators from one other.

  10. Approaches for cytogenetic and molecular analyses of small flow-sorted cell populations from childhood leukemia bone marrow samples

    DEFF Research Database (Denmark)

    Obro, Nina Friesgaard; Madsen, Hans O.; Ryder, Lars Peter;

    2011-01-01

    defined cell populations with subsequent analyses of leukemia-associated cytogenetic and molecular marker. The approaches described here optimize the use of the same tube of unfixed, antibody-stained BM cells for flow-sorting of small cell populations and subsequent exploratory FISH and PCR-based analyses....

  11. IDENTIFICATION AND KINETICS OF 2 RECENTLY BONE-MARROW-DERIVED B-CELL POPULATIONS IN PERIPHERAL LYMPHOID-TISSUES

    NARCIS (Netherlands)

    KROESE, FGM; DEBOER, NK; DEBOER, T; NIEUWENHUIS, P; KANTOR, AB; DEENEN, GJ

    1995-01-01

    In rats, the glycoprotein Thy-1 is expressed on recently bone marrow (BM)-generated B cells but not on mature recirculating follicular (RF) B cells. Here we demonstrate that Thy-1(+) B cells consist of two phenotypically distinct, but developmentally related, populations: a population of newly forme

  12. Immunohistochemical characterization of hepatic stem cell-related cells in developing human liver

    Institute of Scientific and Technical Information of China (English)

    XU Jun; HU Yong; WANG Jian; ZHOU Ji; ZHANG Taiping; YU Hongyu

    2007-01-01

    Little is known about the expression characteristics of the various kinds of possible markers in hepatic stem cells(HSCs)and other HSC-related cells in human fetal liver in various developmental stages.It is significant to investigate the immunohistochemical expression for better understanding of the origin,difierentiation and migration of HSCs in the developing human liver.H-E staining and immunohistochemical methods were used to observe the expression of hepatic/cholangiocellular differentiation markers(AFF,GST-π,CK7,CK19)and hematopoietic stem cell markers(CD34 and c-kit)in several kinds of HSC-related cells in thirty cases of fetal liver samples (4-35 weeks after pregnancy).AFP expression appears in fetal hepatocytes at four weeks'gestation.It Deaks at 16-24 weeks'gestation and decreases gradually afterwards.Finally,weak signals were only found in some ductal plate cells and a few limiting plate cells.GST-π was detected in hepatic cord cells from the sixth week and in the ductal plate cells from the eighth week.Twenty-six weeks later,only some ductal plate cells and a few limiting plate cells show positive signals.CK19 expression peaks during the 6th-11th weeks in hepatic cord cells and decreases gradually afterwards,except for the ductal plates.CK7 expression was limited in the ductal plate cells and bile ducts cells from the 14th week.CD34 and c-kit were detected at the eighth week in some ductal plate cells and a few mononuclear cells in the hepatic cords/mesenchymal tissue of portal areas.After 21 weeks.CD34 and c-kit were found only in ductal plate cells and a few mononuclear cells in the hepatic mesenchymal tissue of portal areas.Fetal hepatocytes at 4-16 weeks'gestation are mainly constituted by HSCs characterized with bi-potential differentiation capacity.At 16 weeks'gestation,most hepatic cord cells begin to differentiate into hepatocytes and abundant HSCs remain in ductal plate(the origin site of Hering canals).It is also indicated mat the

  13. Production, characterization and stability of organic solar cell devices

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgyan, S.A.

    2010-01-15

    Despite the fact that the field of organic photovoltaics (OPVs) is in a rapid progress, organic solar cells continue taking backstage roll in the growing markets of various solar technologies. The main challenge of the field is to develop devices that would possess all the optimal properties required for efficient, stable and cheap solar cells, i.e. devices that can deliver high photoconversion efficiencies and long lifetimes and can be efficiently produced in large scales using roll-to-roll coating technologies. This dissertation is primarily devoted to the issues of photoconversion efficiency and device lifetimes. In particular, descriptions of some practical approaches for different device designs and processing of active layer for typical small scale OPV devices were presented. The emphasis was put on some optimizing techniques for processing of active layer that can significantly improve the device photoconversion efficiency. The techniques were further applied for manufacturing and characterization of solar cell devices based on various materials. In particular, a number of thermocleavable polymers were studied and devices based on such materials were produced and characterized. The applicability of such materials in photovoltaic devices was shown and further challenges were discussed. Another task of this work was to manufacture and study inverted device structures and compare their properties with normal structure based devices. Device based on both structure were successfully produced with same level of performance in terms of photoconversion efficiency, yet with totally different stability performance. As another task, metal oxides, such as MoO{sub 3} or V{sub 2}O{sub 5} were studied in solar cell devices as buffer layers instead of PEDOT:PSS. Although the device efficiencies obtained with metal oxides were inferior to PEDOT based device, it was shown that such materials can possibly improve the device efficiency if the processing of the layers is

  14. Isolation and Molecular Characterization of Circulating Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Xi Luo

    2014-05-01

    Full Text Available Melanoma is an invasive malignancy with a high frequency of blood-borne metastases, but circulating tumor cells (CTCs have not been readily isolated. We adapted microfluidic CTC capture to a tamoxifen-driven B-RAF/PTEN mouse melanoma model. CTCs were detected in all tumor-bearing mice and rapidly declined after B-RAF inhibitor treatment. CTCs were shed early from localized tumors, and a short course of B-RAF inhibition following surgical resection was sufficient to dramatically suppress distant metastases. The large number of CTCs in melanoma-bearing mice enabled a comparison of RNA-sequencing profiles with matched primary tumors. A mouse melanoma CTC-derived signature correlated with invasiveness and cellular motility in human melanoma. CTCs were detected in smaller numbers in patients with metastatic melanoma and declined with successful B-RAF-targeted therapy. Together, the capture and molecular characterization of CTCs provide insight into the hematogenous spread of melanoma.

  15. New test and characterization methods for PV modules and cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.; Sommeling, P. [ECN Solar Energy, Petten (Netherlands); Scholten, H. [Solland, Heerlen (Netherlands); Muller, J. [Moser-Baer, Eindhoven (Netherlands); Grossiord, N. [Holst Centre, Eindhoven (Netherlands); Smits, C.; Blanco Mantecon, M. [Holland Innovative, Eindhoven (Netherlands); Verheijen, M.; Van Berkum, J. [Philips Innovation Services, Eindhoven (Netherlands)

    2012-08-15

    The results of the project geZONd (shared facility for solar module analysis and reliability testing) are described. The project was set up by Philips, ECN, Holst, Solland, OM and T and Holland Innovative. The partners have shared most of their testing and analysis equipment for PV modules and cells, and together developed new or improved methods (including the necessary application know-how). This enables faster and more efficient innovation projects for each partner, and via commercial exploitation for other interested parties. The project has concentrated on five failure modes: corrosion, delamination, moisture ingress, UV irradiation, and mechanical bending. Test samples represented all main PV technologies: wafer based PV and rigid and flexible thin-film PV. Breakthroughs are in very early detection of corrosion, in quantitative characterization of adhesion, in-situ detection of humidity and oxygen inside modules, and ultra-fast screening of materials on UV stability.

  16. Peripheral Immune Cell Populations Associated with Cognitive Deficits and Negative Symptoms of Treatment-Resistant Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Emilio Fernandez-Egea

    Full Text Available Hypothetically, psychotic disorders could be caused or conditioned by immunological mechanisms. If so, one might expect there to be peripheral immune system phenotypes that are measurable in blood cells as biomarkers of psychotic states.We used multi-parameter flow cytometry of venous blood to quantify and determine the activation state of 73 immune cell subsets for 18 patients with chronic schizophrenia (17 treated with clozapine, and 18 healthy volunteers matched for age, sex, BMI and smoking. We used multivariate methods (partial least squares to reduce dimensionality and define populations of differentially co-expressed cell counts in the cases compared to controls.Schizophrenia cases had increased relative numbers of NK cells, naïve B cells, CXCR5+ memory T cells and classical monocytes; and decreased numbers of dendritic cells (DC, HLA-DR+ regulatory T-cells (Tregs, and CD4+ memory T cells. Likewise, within the patient group, more severe negative and cognitive symptoms were associated with decreased relative numbers of dendritic cells, HLA-DR+ Tregs, and CD4+ memory T cells. Motivated by the importance of central nervous system dopamine signalling for psychosis, we measured dopamine receptor gene expression in separated CD4+ cells. Expression of the dopamine D3 (DRD3 receptor was significantly increased in clozapine-treated schizophrenia and covaried significantly with differentiated T cell classes in the CD4+ lineage.Peripheral immune cell populations and dopaminergic signalling are disrupted in clozapine-treated schizophrenia. Immuno-phenotypes may provide peripherally accessible and mechanistically specific biomarkers of residual cognitive and negative symptoms in this treatment-resistant subgroup of patients.

  17. Characterization of atrial natriuretic peptide degradation by cell-surface peptidase activity on endothelial cells

    Science.gov (United States)

    Frost, S. J.; Whitson, P. A.

    1993-01-01

    Atrial natriuretic peptide (ANP) is a fluid-regulating peptide hormone that promotes vasorelaxation, natriuresis, and diuresis. The mechanisms for the release of ANP and for its clearance from the circulation play important roles in modulating its biological effects. Recently, we have reported that the cell surface of an endothelial cell line, CPA47, could degrade 125I-ANP in the presence of EDTA. In this study, we have characterized this degradation of 125I-ANP. The kinetics of ANP degradation by the surface of CPA47 cells were first order, with a Km of 320 +/- 60 nM and Vmax of 35 +/- 14 pmol of ANP degraded/10 min/10(5) cells at pH 7.4. ANP is degraded by the surface of CPA47 cells over a broad pH range from 7.0-8.5. Potato carboxypeptidase inhibitor and bestatin inhibited 125I-ANP degradation, suggesting that this degradative activity on the surface of CPA47 cells has exopeptidase characteristics. The selectivity of CPA47 cell-surface degradation of ANP was demonstrated when 125I-ANP degradation was inhibited in the presence of neuropeptide Y and angiotensin I and II but not bradykinin, bombesin, endothelin-1, or substance P. The C-terminal amino acids phe26 and tyr28 were deduced to be important for ANP interaction with the cell-surface peptidase(s) based on comparison of the IC50 of various ANP analogues and other natriuretic peptides for the inhibition of ANP degradation. These data suggest that a newly characterized divalent cation-independent exopeptidase(s) that selectively recognizes ANP and some other vasoactive peptides exists on the surface of endothelial cells.

  18. Characterization of tumor cells and stem cells by differential nuclear methylation imaging

    Science.gov (United States)

    Tajbakhsh, Jian; Wawrowsky, Kolja A.; Gertych, Arkadiusz; Bar-Nur, Ori; Vishnevsky, Eugene; Lindsley, Erik H.; Farkas, Daniel L.

    2008-02-01

    DNA methylation plays a key role in cellular differentiation. Aberrant global methylation patterns are associated with several cancer types, as a result of changes in long-term activation status of up to 50% of genes, including oncogenes and tumor-suppressor genes, which are regulated by methylation and demethylation of promoter region CpG dinucleotides (CpG islands). Furthermore, DNA methylation also occurs in nonisland CpG sites (> 95% of the genome), present once per 80 dinucleotides on average. Nuclear DNA methylation increases during the course of cellular differentiation while cancer cells usually show a net loss in methylation. Given the large dynamic range in DNA methylation load, the methylation pattern of a cell can provide a valuable distinction as to its status during differentiation versus the disease state. By applying immunofluorescence, confocal microscopy and 3D image analysis we assessed the potential of differential nuclear distribution of methylated DNA to be utilized as a biomarker to characterize cells during development and when diseased. There are two major fields that may immediately benefit from this development: (1) the search for factors that contribute to pluripotency and cell fate in human embryonic stem cell expansion and differentiation, and (2) the characterization of tumor cells with regard to their heterogeneity in molecular composition and behavior. We performed topological analysis of the distribution of methylated CpG-sites (MeC) versus heterochromatin. This innovative approach revealed significant differences in colocalization patterns of MeC and heterochromatin-derived signals between undifferentiated and differentiated human embryonic stem cells, as well as untreated AtT20 mouse pituitary tumor cells compared to a subpopulation of these cells treated with 5-azacytidine for 48 hours.

  19. Fractal Characterization of Chromatin Decompaction in Live Cells.

    Science.gov (United States)

    Yi, Ji; Stypula-Cyrus, Yolanda; Blaha, Catherine S; Roy, Hemant K; Backman, Vadim

    2015-12-01

    Chromatin organization has a fundamental impact on the whole spectrum of genomic functions. Quantitative characterization of the chromatin structure, particularly at submicron length scales where chromatin fractal globules are formed, is critical to understanding this structure-function relationship. Such analysis is currently challenging due to the diffraction-limited resolution of conventional light microscopy. We herein present an optical approach termed inverse spectroscopic optical coherence tomography to characterize the mass density fractality of chromatin, and we apply the technique to observe chromatin decompaction in live cells. The technique makes it possible for the first time, to our knowledge, to sense intracellular morphology with length-scale sensitivity from ∼30 to 450 nm, thus primarily probing the higher-order chromatin structure, without resolving the actual structures. We used chromatin decompaction due to inhibition of histone deacytelases and measured the subsequent changes in the fractal dimension of the intracellular structure. The results were confirmed by transmission electron microscopy and confocal fluorescence microscopy.

  20. Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles.

    Science.gov (United States)

    Markov, Vladimir; Kusumi, Kenro; Tadesse, Mahlet G; William, Dilusha A; Hall, Dorian M; Lounev, Vitali; Carlton, Arlene; Leonard, Jay; Cohen, Rick I; Rappaport, Eric F; Saitta, Biagio

    2007-02-01

    Phenotypic heterogeneity has been observed among mesenchymal stem/stromal cell (MSC) populations, but specific genes associated with this variability have not been defined. To study this question, we analyzed two distinct isogenic MSC populations isolated from umbilical cord blood (UCB1 and UCB2). The use of isogenic populations eliminated differences contributed by genetic background. We characterized these UCB MSCs for cell morphology, growth kinetics, immunophenotype, and potential for differentiation. UCB1 displayed faster growth kinetics, higher population doublings, and increased adipogenic lineage differentiation compared to UCB2. However, osteogenic differentiation was stronger for the UCB2 population. To identify MSC-specific genes and developmental genes associated with observed phenotypic differences, we performed expression analysis using Affymetrix microarrays and compared them to bone marrow (BM) MSCs. We compared UCB1, UCB2, and BM and identified distinct gene expression patterns. Selected clusters were analyzed demonstrating that genes of multiple developmental pathways, such as transforming growth factor-beta (TGF-beta) and wnt genes, and markers of early embryonic stages and mesodermal differentiation displayed significant differences among the MSC populations. In undifferentiated UCB1 cells, multiple genes were significantly up-regulated (p < 0.0001): peroxisome proliferation activated receptor gamma (PPARG), which correlated with adipogenic differentiation capacities, hepatocyte growth factor (HGF), and stromal-derived factor 1 (SDF1/CXCL12), which could both potentially contribute to the higher growth kinetics observed in UCB1 cells. Overall, the results confirmed the presence of two distinct isogenic UCB-derived cell populations, identified gene profiles useful to distinguish MSC types with different lineage differentiation potentials, and helped clarify the heterogeneity observed in these cells.

  1. Catalysis of Protein Folding by Chaperones Accelerates Evolutionary Dynamics in Adapting Cell Populations

    OpenAIRE

    Murat Cetinbaş; Shakhnovich, Eugene I.

    2013-01-01

    Although molecular chaperones are essential components of protein homeostatic machinery, their mechanism of action and impact on adaptation and evolutionary dynamics remain controversial. Here we developed a physics-based ab initio multi-scale model of a living cell for population dynamics simulations to elucidate the effect of chaperones on adaptive evolution. The 6-loci genomes of model cells encode model proteins, whose folding and interactions in cellular milieu can be evaluated exactly f...

  2. Normalizing for individual cell population context in the analysis of high-content cellular screens

    Directory of Open Access Journals (Sweden)

    Knapp Bettina

    2011-12-01

    Full Text Available Abstract Background High-content, high-throughput RNA interference (RNAi offers unprecedented possibilities to elucidate gene function and involvement in biological processes. Microscopy based screening allows phenotypic observations at the level of individual cells. It was recently shown that a cell's population context significantly influences results. However, standard analysis methods for cellular screens do not currently take individual cell data into account unless this is important for the phenotype of interest, i.e. when studying cell morphology. Results We present a method that normalizes and statistically scores microscopy based RNAi screens, exploiting individual cell information of hundreds of cells per knockdown. Each cell's individual population context is employed in normalization. We present results on two infection screens for hepatitis C and dengue virus, both showing considerable effects on observed phenotypes due to population context. In addition, we show on a non-virus screen that these effects can be found also in RNAi data in the absence of any virus. Using our approach to normalize against these effects we achieve improved performance in comparison to an analysis without this normalization and hit scoring strategy. Furthermore, our approach results in the identification of considerably more significantly enriched pathways in hepatitis C virus replication than using a standard analysis approach. Conclusions Using a cell-based analysis and normalization for population context, we achieve improved sensitivity and specificity not only on a individual protein level, but especially also on a pathway level. This leads to the identification of new host dependency factors of the hepatitis C and dengue viruses and higher reproducibility of results.

  3. Brown adipose tissue harbors a distinct sub-population of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Dasa Medrikova

    Full Text Available Regulatory T (Treg cells are critical determinants of both immune responses and metabolic control. Here we show that systemic ablation of Treg cells compromised the adaptation of whole-body energy expenditure to cold exposure, correlating with impairment in thermogenic marker gene expression and massive invasion of pro-inflammatory macrophages in brown adipose tissue (BAT. Indeed, BAT harbored a unique sub-set of Treg cells characterized by a unique gene signature. As these Treg cells respond to BAT activation upon cold exposure, this study defines a BAT-specific Treg sub-set with direct implications for the regulation of energy homeostasis in response to environmental stress.

  4. Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary.

    Science.gov (United States)

    Parte, Seema; Bhartiya, Deepa; Telang, Jyoti; Daithankar, Vinita; Salvi, Vinita; Zaveri, Kusum; Hinduja, Indira

    2011-08-01

    The present study was undertaken to detect, characterize, and study differentiation potential of stem cells in adult rabbit, sheep, monkey, and menopausal human ovarian surface epithelium (OSE). Two distinct populations of putative stem cells (PSCs) of variable size were detected in scraped OSE, one being smaller and other similar in size to the surrounding red blood cells in the scraped OSE. The smaller 1-3 μm very small embryonic-like PSCs were pluripotent in nature with nuclear Oct-4 and cell surface SSEA-4, whereas the bigger 4-7 μm cells with cytoplasmic localization of Oct-4 and minimal expression of SSEA-4 were possibly the tissue committed progenitor stem cells. Pluripotent gene transcripts of Oct-4, Oct-4A, Nanog, Sox-2, TERT, and Stat-3 in human and sheep OSE were detected by reverse transcriptase-polymerase chain reaction. The PSCs underwent spontaneous differentiation into oocyte-like structures, parthenote-like structures, embryoid body-like structures, cells with neuronal-like phenotype, and embryonic stem cell-like colonies, whereas the epithelial cells transformed into mesenchymal phenotype by epithelial-mesenchymal transition in 3 weeks of OSE culture. Germ cell markers like c-Kit, DAZL, GDF-9, VASA, and ZP4 were immuno-localized in oocyte-like structures. In conclusion, as opposed to the existing view of OSE being a bipotent source of oocytes and granulosa cells, mammalian ovaries harbor distinct very small embryonic-like PSCs and tissue committed progenitor stem cells population that have the potential to develop into oocyte-like structures in vitro, whereas mesenchymal fibroblasts appear to form supporting granulosa-like somatic cells. Research at the single-cell level, including complete gene expression profiling, is required to further confirm whether postnatal oogenesis is a conserved phenomenon in adult mammals.

  5. Successful isolation, in vitro expansion and characterization of stem cells from Human Dental Pulp

    Directory of Open Access Journals (Sweden)

    Preethy SP

    2010-01-01

    acids (5 .Cell counting was done by Trypan Blue dye exclusion method and the cells were seeded in 6 well culture plates. The plates with cells were incubated at 37˚C with 5% CO2 for varying periods from 14 days-28 days. The cells were observed daily and media change was done every three days. RESULTS: Viable Dental Pulp tissue-cells were obtained after transportation of up to 48 hrs and the in vitro growth of cells was initially slow but colonies were identified from the 10th day onwards. The cells were harvested at different intervals of 14-28 days for each sample based on their growth and subjected to H & E staining .The H & E staining of the cultured cells of all the samples showed positive resultsCONCLUSION: We are able to transport extracted teeth and derive viable dental pulp tissue cells after enzymatic digestion and multiply them in culture after a maximum of 48 hrs after transportation. The cells could be grown in culture with a morphology resembling dental pulp stem cells while in culture expansion and in H&E studies. Further characterization of the cells is necessary to confirm their Stemness. References1.Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs in vitro and in vivo. Proc Natl Acad Sci U S A. 20002.Nosrat IV, Widenfalk J, Olson L, Nosrat CA. Dental pulp cells produce neurotrophic factors, interact with trigeminal neurons in vitro, and rescue motoneurons after spinal cord injury. Dev Biol. 2001 Oct 3.Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells. 2006 Nov4.Gandia C, Armiñan A, García-Verdugo JM, Lledó E, Ruiz A, Miñana MD, Sanchez-Torrijos J, Payá R, Mirabet V, Carbonell-Uberos F, Llop M, Montero JA, Sepúlveda P. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce

  6. Characterization of glyphosate-resistant goosegrass (Eleusine indica) populations in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Jing-chao; HUANG Hong-juan; WEI Shou-hui; ZHANG Chao-xian; HUANG Zhao-feng

    2015-01-01

    Goosegrass is a worst grass weed in orchards and turf. The increased use of glyphosate for goosegrass control has led to the occurrence of many resistant populations. Although glyphosate has been used to control weeds for the past 30 years in China, few reports are available on glyphosate-resistant (GR) googegrass. In this study, we determined the GR level of 14 goosegrass populations from Chengdu and Guangzhou, China. Glyphosate only control ed 3.1 and 25.0%of the populations SL5 and SL1, respectively, at the dose of 1 680 g acid equivalent (ae) ha–1 at 14 days after treatment (DAT). In contrast, the susceptible population (XD1) was completely (100%) control ed. The resistant index (RI) of SL5 and SL1 were 5.1 and 4.5, and the RI for SL2, SL3 and ZC1 were 4.2, 3.2 and 2.6, respectively. The RI for other populations was range from 1.8 to 2.5. Under the dose of glyphosate at 1 640 g ae ha–1 at 10 DAT, shikimate accumulation in susceptible population XD1 was 17.6 and 16.4 times higher than SL5 and SL1, respectively. And the chlorophyl content in the plant leaf of populations SL1, SL2 and SL5 were decreased slightly ranging from 22.6 to 28.0. These results conifrmed that the SL1, SL2, SL3, ZC1 and SL5 populations had evolved moderate resistance to glyphosate. This is the ifrst report for the GR goosegrass populations conifrmed in Chengdu, China.

  7. Characterization of the genetic variation present in CYP3A4 in three South African populations

    Directory of Open Access Journals (Sweden)

    Britt Ingrid Drögemöller

    2013-02-01

    Full Text Available TThe CYP3A4 enzyme is the most abundant human cytochrome P450 and is regarded as the most important enzyme involved in drug metabolism. Inter-individual and inter-population variability in gene expression and enzyme activity are thought to be influenced, in part, by genetic variation. Although Southern African individuals have been shown to exhibit the highest levels of genetic diversity, they have been under-represented in pharmacogenetic research to date. Therefore, the aim of this study was to identify genetic variation within CYP3A4 in three South African population groups comprising of 29 Khoisan, 65 Xhosa and 65 Mixed Ancestry individuals. To identify known and novel CYP3A4 variants, 15 individuals were randomly selected from each of the population groups for bi-directional Sanger sequencing of approximately 600 bp of the 5’-upstream region and all thirteen exons including flanking intronic regions. Genetic variants detected were genotyped in the rest of the cohort. In total, 24 SNPs were detected, including CYP3A4*12, CYP3A4*15, and the reportedly functional CYP3A4*1B promoter polymorphism, as well as two novel non-synonymous variants. These putatively functional variants, p.R162W and p.Q200H, were present in two of the three populations and all three populations, respectively, and in silico analysis predicted that the former would damage the protein product. Furthermore, the three populations were shown to exhibit distinct genetic profiles. These results confirm that South African populations show unique patterns of variation in the genes encoding xenobiotic metabolizing enzymes. This research suggests that population-specific genetic profiles for CYP3A4 and other drug metabolizing genes would be essential to make full use of pharmacogenetics in Southern Africa. Further investigation is needed to determine if the identified genetic variants influence CYP3A4 metabolism phenotype in these populations.

  8. TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development

    Science.gov (United States)

    Czerwińska, Patrycja; Shah, Parantu K.; Tomczak, Katarzyna; Klimczak, Marta; Mazurek, Sylwia; Sozańska, Barbara; Biecek, Przemysław; Korski, Konstanty; Filas, Violetta; Mackiewicz, Andrzej; Andersen, Jannik N.; Wiznerowicz, Maciej

    2017-01-01

    The expression of Tripartite motif-containing protein 28 (TRIM28)/Krüppel-associated box (KRAB)-associated protein 1 (KAP1), is elevated in at least 14 tumor types, including solid and hematopoietic tumors. High level of TRIM28 is associated with triple-negative subtype of breast cancer (TNBC), which shows higher aggressiveness and lower survival rates. Interestingly, TRIM28 is essential for maintaining the pluripotent phenotype in embryonic stem cells. Following on that finding, we evaluated the role of TRIM28 protein in the regulation of breast cancer stem cells (CSC) populations and tumorigenesis in vitro and in vivo. Downregulation of TRIM28 expression in xenografts led to deceased expression of pluripotency and mesenchymal markers, as well as inhibition of signaling pathways involved in the complex mechanism of CSC maintenance. Moreover, TRIM28 depletion reduced the ability of cancer cells to induce tumor growth when subcutaneously injected in limiting dilutions. Our data demonstrate that the downregulation of TRIM28 gene expression reduced the ability of CSCs to self-renew that resulted in significant reduction of tumor growth. Loss of function of TRIM28 leads to dysregulation of cell cycle, cellular response to stress, cancer cell metabolism, and inhibition of oxidative phosphorylation. All these mechanisms directly regulate maintenance of CSC population. Our original results revealed the role of the TRIM28 in regulating the CSC population in breast cancer. These findings may pave the way to novel and more effective therapies targeting cancer stem cells in breast tumors. PMID:27845900

  9. Characterization of rat and human Kupffer cells after cryopreservation.

    Science.gov (United States)

    Walbrun, Peter; Hellerbrand, Claus; Weiss, Thomas S; Netter, Susanne; Neumaier, Daniel; Gaebele, Erwin; Wiest, Reiner; Schoelmerich, Juergen; Froh, Matthias

    2007-04-01

    Kupffer cells (KC) are the resident macrophages of the liver and represent about 80% of the total fixed macrophage population. They are involved in disease states such as endotoxin shock, alcoholic liver diseases and other toxic-induced liver injury. They release physiologically active substances such as eicosanoids and inflammatory cytokines (IL-1, IL-6, TNFalpha), and produce free radical species. Thus, KC are attractive targets for anti-inflammatory therapies and potential candidates responsible for differences in inflammation in liver disease seen between different individuals. However, to perform parallel in vitro experiments with KC from different donors a suitable method for conservation of KC would be necessary. Therefore, the present study evaluated, whether rat and human KC can be frozen, stored and recovered without losing their functional integrity. Rat and human KC were isolated and either cultured under standard conditions (fresh KC) or cryopreserved in special freezing medium (cryopreserved KC). At least 24 h later, cryopreserved KC were thawed, brought into suspension and seeded in the same density as fresh cells for subsequent experiments. Viability of cultured KC was analyzed by trypan blue exclusion. LPS (or PBS as control) stimulation was performed at different time points and cytokine release was analyzed with IL-6 and TNFalpha ELISAs, respectively. Phagocytic capacity was investigated by using a specific phagocytosis assay and FACS analysis. The recovery rate after thawing was around 57% for rat and around 65% for human cryopreserved KC. The results indicate, that KC can successfully be cryopreserved with an adequate recovery rate of viable cells. The properties of fresh and frozen KC can also be compared after thawing. Freshly isolated and cryopreserved cultured KC showed near-normal morphology and did not differ in the cultivation profiles over a period of 72 h. One to three days after seeding, frozen rat or human KC also retained inducible

  10. A mutation-promotive role of nucleotide excision repair in cell cycle-arrested cell populations following UV irradiation.

    Science.gov (United States)

    Heidenreich, Erich; Eisler, Herfried; Lengheimer, Theresia; Dorninger, Petra; Steinboeck, Ferdinand

    2010-01-01

    Growing attention is paid to the concept that mutations arising in stationary, non-proliferating cell populations considerably contribute to evolution, aging, and pathogenesis. If such mutations are beneficial to the affected cell, in the sense of allowing a restart of proliferation, they are called adaptive mutations. In order to identify cellular processes responsible for adaptive mutagenesis in eukaryotes, we study frameshift mutations occurring during auxotrophy-caused cell cycle arrest in the model organism Saccharomyces cerevisiae. Previous work has shown that an exposure of cells to UV irradiation during prolonged cell cycle arrest resulted in an increased incidence of mutations. In the present work, we determined the influence of defects in the nucleotide excision repair (NER) pathway on the incidence of UV-induced adaptive mutations in stationary cells. The mutation frequency was decreased in Rad16-deficient cells and further decreased in Rad16/Rad26 double-deficient cells. A knockout of the RAD14 gene, the ortholog of the human XPA gene, even resulted in a nearly complete abolishment of UV-induced mutagenesis in cell cycle-arrested cells. Thus, the NER pathway, responsible for a normally accurate repair of UV-induced DNA damage, paradoxically is required for the generation and/or fixation of UV-induced frameshift mutations specifically in non-replicating cells.

  11. A host-parasite model for a two-type cell population

    CERN Document Server

    Alsmeyer, Gerold

    2012-01-01

    A host-parasite model is considered for a population of cells that can be of two types, A or B, and exhibits unilateral reproduction: while a B-cell always splits into two cells of the same type, the two daughter cells of an A-cell can be of any type. The random mechanism that describes how parasites within a cell multiply and are then shared into the daughter cells is allowed to depend on the hosting mother cell as well as its daughter cells. Focusing on the subpopulation of A-cells and its parasites, the model differs from the single-type model recently studied by Bansaye (2008) in that the sharing mechanism may be biased towards one of the two types. Main results are concerned with the nonextinctive case and provide information on the behavior, as $n\\to\\infty$, of the number A-parasites in generation n and the relative proportion of A- and B-cells in this generation which host a given number of parasites. As in (Bansaye,2008), proofs will make use of a so-called random cell line which, when conditioned to ...

  12. Microelectromechanical System-Based Sensing Arrays for Comparative in Vitro Nanotoxicity Assessment at Single Cell and Small Cell-Population Using Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Shah, Pratikkumar; Zhu, Xuena; Zhang, Xueji; He, Jin; Li, Chen-zhong

    2016-03-01

    The traditional in vitro nanotoxicity assessment approaches are conducted on a monolayer of cell culture. However, to study a cell response without interference from the neighbor cells, a single cell study is necessary; especially in cases of neuronal, cancerous, and stem cells, wherein an individual cell's fate is often not explained by the whole cell population. Nonetheless, a single cell does not mimic the actual in vivo environment and lacks important information regarding cell communication with its microenvironment. Both a single cell and a cell population provide important and complementary information about cells' behaviors. In this research, we explored nanotoxicity assessment on a single cell and a small cell population using electrochemical impedance spectroscopy and a microelectromechanical system (MEMS) device. We demonstrated a controlled capture of PC12 cells in different-sized microwells (to capture a different number of cells) using a combined method of surface functionalization and dielectrophoresis. The present approach provides a rapid nanotoxicity response as compared to other conventional approaches. This is the first study, to our knowledge, which demonstrates a comparative response of a single cell and small cell colonies on the same MEMS platform, when exposed to metaloxide nanoparticles. We demonstrated that the microenvironment of a cell is also accountable for cells' behaviors and their responses to nanomaterials. The results of this experimental study open up a new hypothesis to be tested for identifying the role of cell communication in spreading toxicity in a cell population.

  13. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells

    Science.gov (United States)

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel

    2015-01-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  14. Establishment and characterization of a cholangiocarcinoma cell line (RMCCA-1) from a Thai patient

    Institute of Scientific and Technical Information of China (English)

    Panthip Rattanasinganchan; Kawin Leelawat; Sa-ard Treepongkaruna; Chintana Tocharoentanaphol; Somboon Subwongcharoen; Tuangporn Suthiphongchai; Rutaiwan Tohtong

    2006-01-01

    AIM: To establish and characterize a new cell line derived from peripheral cholangiocarcinoma of a Thai patient.METHODS: The peripheral cholangiocarcinoma specimen surgically obtained from the patient was aseptically processed by washing and mincing before culturing in Ham's F12 medium containing 10% fetal bovine serum. After 3 mo, when the cell line has become homogeneous and stabilized, several features were investigated, including growth characteristics,immunofluorescence staining for cytokeratins, expression of tumor markers, chromosomal analysis by G-banding and multicolour fluorescence in situ hybridization (mFISH), in vitro migration and invasion characteristics.RESULTS: The RMCCA-1 cell line has been established.These cells proliferated as a monolayer with a population doubling time of 48 h. Immunofluorescence staining showed positive staining for human cytokeratin 7 and 19 verifying the biliary epithelial origin. RMCCA-1secreted carbohydrate antigen 19-9 (CA19-9), but insignificant levels of carcinoembryonic antigen (CEA)and α-fetoprotein (AFP). Chromosome analysis identified aneuploidy karyotypes with a modal chromosome number of 59. RMCCA-1 exhibited a low level of in vitro invasiveness, but a high degree of motility. The cell line exhibited a significant number of chromosomal aberrations as shown by mFISH and G-banding methods.CONCLUSION: A new cell line derived from peripheral cholangiocarcinoma of a Thai patient has been established. This cell line shows a low level of in vitro invasiveness, but a high degree of motility. It will serve as a valuable tool for further studies on tumor biology,molecular pathogenesis, metastatic mechanism and response to therapeutic drugs of cholangiocarcinoma.

  15. Characterization of subpopulation lacking both B-cell and plasma cell markers in Waldenstrom macroglobulinemia cell line.

    Science.gov (United States)

    Wada, Naoki; Zhan, Maosheng; Hori, Yumiko; Honma, Keiichiro; Ikeda, Jun-ichiro; Morii, Eiichi

    2014-01-01

    Cancer cells with tumorigenic potential are limited to a small population known as cancer-initiating cells (CICs). To date, CICs have not been identified in non-Hodgkin's lymphomas. Here, we investigated a candidate of CICs of an indolent non-Hodgkin's lymphoma, Waldenstrom macroglobulinemia (WM), using WM cell line MWCL-1. WM tumor expresses both B-cell and plasma cell markers, CD20 and CD138. When stained with anti-CD20 and anti-CD138 antibodies, MWCL-1 cells were classified into three subpopulations: CD20⁻ CD138⁻, CD20⁺ CD138⁻, and CD20⁺ CD138⁺. When cultured, CD20⁻ CD138⁻ cells yielded all three subpopulations, but CD20⁺ cells did not yield CD20⁻ CD138⁻ cells. Higher reactive oxygen species (ROS) expelling and in vitro colony formation activities were detected in CD20⁻ CD138⁻ cells than in CD20⁺ CD138⁻ and CD20⁺ CD138⁺ cells. When cultured in the absence of serum or with anti-cancer drug, CD20⁻ CD138⁻ cells were resistant to apoptosis. In contrast, CD20⁺ CD138⁺ cells were vulnerable to apoptosis in the same condition. In fact, the immunohistochemical analysis with clinical samples revealed that tumor cells in apoptosis were CD138-positive. The production of all three subpopulations, the efficient ROS expelling and in vitro colony-forming activities, and the resistance to apoptosis suggested that the CD20⁻ CD138⁻ cell might be a candidate of CICs in WM.

  16. A polarised population of dynamic microtubules mediates homeostatic length control in animal cells.

    Directory of Open Access Journals (Sweden)

    Remigio Picone

    Full Text Available Because physical form and function are intimately linked, mechanisms that maintain cell shape and size within strict limits are likely to be important for a wide variety of biological processes. However, while intrinsic controls have been found to contribute to the relatively well-defined shape of bacteria and yeast cells, the extent to which individual cells from a multicellular animal control their plastic form remains unclear. Here, using micropatterned lines to limit cell extension to one dimension, we show that cells spread to a characteristic steady-state length that is independent of cell size, pattern width, and cortical actin. Instead, homeostatic length control on lines depends on a population of dynamic microtubules that lead during cell extension, and that are aligned along the long cell axis as the result of interactions of microtubule plus ends with the lateral cell cortex. Similarly, during the development of the zebrafish neural tube, elongated neuroepithelial cells maintain a relatively well-defined length that is independent of cell size but dependent upon oriented microtubules. A simple, quantitative model of cellular extension driven by microtubules recapitulates cell elongation on lines, the steady-state distribution of microtubules, and cell length homeostasis, and predicts the effects of microtubule inhibitors on cell length. Together this experimental and theoretical analysis suggests that microtubule dynamics impose unexpected limits on cell geometry that enable cells to regulate their length. Since cells are the building blocks and architects of tissue morphogenesis, such intrinsically defined limits may be important for development and homeostasis in multicellular organisms.

  17. Differential Clonal Expansion in an Invading Cell Population: Clonal Advantage or Dumb Luck?

    Science.gov (United States)

    Newgreen, Donald F; Zhang, Dongcheng; Cheeseman, Bevan L; Binder, Benjamin J; Landman, Kerry A

    2017-01-01

    In neoplastic cell growth, clones and subclones are variable both in size and mutational spectrum. The largest of these clones are believed to represent those cells with mutations that make them the most "fit," in a Darwinian sense, for expansion in their microenvironment. Thus, the degree of quantitative clonal expansion is regarded as being determined by innate qualitative differences between the cells that originate each clone. Here, using a combination of mathematical modelling and clonal labelling experiments applied to the developmental model system of the forming enteric nervous system, we describe how cells which are qualitatively identical may consistently produce clones of dramatically different sizes: most clones are very small while a few clones we term "superstars" contribute most of the cells to the final population. The basis of this is minor stochastic variations ("luck") in the timing and direction of movement and proliferation of individual cells, which builds a local advantage for daughter cells that is cumulative. This has potentially important consequences. In cancers, especially before strongly selective cytotoxic therapy, the assumption that the largest clones must be the cells with deterministic proliferative ability may not always hold true. In development, the gradual loss of clonal diversity as "superstars" take over the population may erode the resilience of the system to somatic mutations, which may have occurred early in clonal growth.

  18. Tissue-resident adult stem cell populations of rapidly self-renewing organs

    NARCIS (Netherlands)

    Barker, N.; Bartfeld, S.; Clevers, H.

    2010-01-01

    The epithelial lining of the intestine, stomach, and skin is continuously exposed to environmental assault, imposing a requirement for regular self-renewal. Resident adult stem cell populations drive this renewal, and much effort has been invested in revealing their identity. Reliable adult stem cel

  19. A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations.

    Directory of Open Access Journals (Sweden)

    Conor Lawless

    Full Text Available Increases in cellular Reactive Oxygen Species (ROS concentration with age have been observed repeatedly in mammalian tissues. Concomitant increases in the proportion of replicatively senescent cells in ageing mammalian tissues have also been observed. Populations of mitotic human fibroblasts cultured in vitro, undergoing transition from proliferation competence to replicative senescence are useful models of ageing human tissues. Similar exponential increases in ROS with age have been observed in this model system. Tracking individual cells in dividing populations is difficult, and so the vast majority of observations have been cross-sectional, at the population level, rather than longitudinal observations of individual cells.One possible explanation for these observations is an exponential increase in ROS in individual fibroblasts with time (e.g. resulting from a vicious cycle between cellular ROS and damage. However, we demonstrate an alternative, simple hypothesis, equally consistent with these observations which does not depend on any gradual increase in ROS concentration: the Stochastic Step Model of Replicative Senescence (SSMRS. We also demonstrate that, consistent with the SSMRS, neither proliferation-competent human fibroblasts of any age, nor populations of hTERT overexpressing human fibroblasts passaged beyond the Hayflick limit, display high ROS concentrations. We conclude that longitudinal studies of single cells and their lineages are now required for testing hypotheses about roles and mechanisms of ROS increase during replicative senescence.

  20. Culture of isolated single cells from Taxus suspensions for the propagation of superior cell populations.

    Science.gov (United States)

    Naill, Michael C; Roberts, Susan C

    2005-11-01

    Single cells isolated from aggregated Taxus cuspidata cultures via enzymatic digestion were grown in suspension culture. High seeding density (4 x 10(5 )cells/ml) and the addition of cell-free conditioned medium were essential for growth. Doubling the concentration of the nutrients [ascorbic acid (150 g/l), glutamine (6.25 mM: ), and citric acid (150 g/l)] had no effect on single cell growth or viability. A specific growth rate of 0.11 days(-1) was achieved, which is similar to the observed growth rate of aggregated Taxus suspensions. The biocide, Plant Preservative Mixture, added at 0.2% (v/v) to all single cell cultures to prevent microbial contamination, had no significant effect on growth or viability. Following cell sorting, single cell cultures can be used to establish new cell lines for biotechnology applications or provide cells for further study.

  1. Ex vivo identification and characterization of a population of CD13

    NARCIS (Netherlands)

    C. Muñiz (Carmen); C. Teodosio (Cristina); A. Mayado (Andrea); A.T. Amaral (Ana Teresa); S. Matarraz (S.); P. Bárcena (Paloma); M.-L. Sánchez (M.); I. Alvarez-Twose (Iván); M. Díez-Campelo (M.); A.C. García-Montero (Andrés); J.F. Blanco (Juan F.); M.C. Del Cañizo (M.); J. Del Pino Montes (Javier); A. Orfao (Alberto)

    2015-01-01

    textabstractIntroduction: Mesenchymal stem cells (MSCs) are multipotent cells capable of self-renewal and multilineage differentiation. Their multipotential capacity and immunomodulatory properties have led to an increasing interest in their biological properties and therapeutic applications. Curren

  2. Characterization of the Amaranthus palmeri Physiological Response to Glyphosate in Susceptible and Resistant Populations.

    Science.gov (United States)

    Fernández-Escalada, Manuel; Gil-Monreal, Miriam; Zabalza, Ana; Royuela, Mercedes

    2016-01-13

    The herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate3-phosphate synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic pathway. The physiologies of an Amaranthus palmeri population exhibiting resistance to glyphosate by EPSPS gene amplification (NC-R) and a susceptible population (NC-S) were compared. The EPSPS copy number of NC-R plants was 47.5-fold the copy number of NC-S plants. Although the amounts of EPSPS protein and activity were higher in NC-R plants than in NC-S plants, the AAA concentrations were similar. The increases in total free amino acid and in AAA contents induced by glyphosate were more evident in NC-S plants. In both populations, the EPSPS protein increased after glyphosate exposure, suggesting regulation of gene expression. EPSPS activity seems tightly controlled in vivo. Carbohydrate accumulation and a slight induction of ethanol fermentation were detected in both populations.

  3. Characterizing parameters of Jatropha curcas cell cultures for microgravity studies

    Science.gov (United States)

    Vendrame, Wagner A.; Pinares, Ania

    2013-06-01

    Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters

  4. PREPARATION AND CHARACTERIZATION OF SOLID ELECTROLYTES: FUEL CELL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki

    1997-12-31

    The intent of this project with Federal Energy Technology Center (FETC)/Morgantown Energy Technology Center (METC) is to develop research infrastructure conductive to Fuel Cell research at Southern University and A and M College, Baton Route. A state of the art research laboratory (James Hall No.123 and No.114) for energy conversion and storage devices was developed during this project duration. The Solid State Ionics laboratory is now fully equipped with materials research instruments: Arbin Battery Cycling and testing (8 channel) unit, Electrochemical Analyzer (EG and G PAR Model 273 and Solartron AC impedance analyzer), Fuel Cell test station (Globe Tech), Differential Scanning Calorimeter (DSC-10), Thermogravimetric Analyzer (TGA), Scanning Tunneling Microscope (STM), UV-VIS-NIR Absorption Spectrometer, Fluorescence Spectrometer, FT-IR Spectrometer, Extended X-ray Absorption Fine Structure (EXAFS) measurement capability at Center for Advanced Microstructure and Devices (CAMD- a multimillion dollar DOE facility), Glove Box, gas hood chamber, high temperature furnaces, hydraulic press and several high performance computers. IN particular, a high temperature furnace (Thermodyne 6000 furnace) and a high temperature oven were acquired through this project funds. The PI Dr. R Bobba has acquired additional funds from federal agencies include NSF-Academic Research Infrastructure program and other DOE sites. They have extensively used the multimillion dollar DOE facility ''Center'' for Advanced Microstructures and Devices (CAMD) for electrochemical research. The students were heavily involved in the experimental EXAFS measurements and made use of their DCM beamline for EXAFS research. The primary objective was to provide hands on experience to the selected African American undergraduate and graduate students in experimental energy research.The goal was to develop research skills and involve them in the Preparation and Characterization of Solid

  5. Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture.

    Directory of Open Access Journals (Sweden)

    Devaveena Dey

    Full Text Available BACKGROUND: Cancer stem cells exhibit close resemblance to normal stem cells in phenotype as well as function. Hence, studying normal stem cell behavior is important in understanding cancer pathogenesis. It has recently been shown that human breast stem cells can be enriched in suspension cultures as mammospheres. However, little is known about the behavior of these cells in long-term cultures. Since extensive self-renewal potential is the hallmark of stem cells, we undertook a detailed phenotypic and functional characterization of human mammospheres over long-term passages. METHODOLOGY: Single cell suspensions derived from human breast 'organoids' were seeded in ultra low attachment plates in serum free media. Resulting primary mammospheres after a week (termed T1 mammospheres were subjected to passaging every 7th day leading to the generation of T2, T3, and T4 mammospheres. PRINCIPAL FINDINGS: We show that primary mammospheres contain a distinct side-population (SP that displays a CD24(low/CD44(low phenotype, but fails to generate mammospheres. Instead, the mammosphere-initiating potential rests within the CD44(high/CD24(low cells, in keeping with the phenotype of breast cancer-initiating cells. In serial sphere formation assays we find that even though primary (T1 mammospheres show telomerase activity and fourth passage T4 spheres contain label-retaining cells, they fail to initiate new mammospheres beyond T5. With increasing passages, mammospheres showed an increase in smaller sized spheres, reduction in proliferation potential and sphere forming efficiency, and increased differentiation towards the myoepithelial lineage. Significantly, staining for senescence-associated beta-galactosidase activity revealed a dramatic increase in the number of senescent cells with passage, which might in part explain the inability to continuously generate mammospheres in culture. CONCLUSIONS: Thus, the self-renewal potential of human breast stem cells is

  6. Three photosynthetic patterns characterized by cluster analysis of gas exchange data in two rice populations

    OpenAIRE

    2014-01-01

    Plant photosynthetic rate is affected by stomatal status and internal CO2 carboxylation. Understanding which process determines photosynthetic rate is essential for developing strategies for breeding crops with high photosynthetic efficiency. In this study, we identified different physiological patterns of photosynthetic rate in two different rice populations. Photosynthetic gas exchange parameters were measured during the flowering stage in two rice populations. Clustering and correlation an...

  7. Predicting population coverage of T-cell epitope-based diagnostics and vaccines

    Directory of Open Access Journals (Sweden)

    Newman Mark J

    2006-03-01

    Full Text Available Abstract Background T cells recognize a complex between a specific major histocompatibility complex (MHC molecule and a particular pathogen-derived epitope. A given epitope will elicit a response only in individuals that express an MHC molecule capable of binding that particular epitope. MHC molecules are extremely polymorphic and over a thousand different human MHC (HLA alleles are known. A disproportionate amount of MHC polymorphism occurs in positions constituting the peptide-binding region, and as a result, MHC molecules exhibit a widely varying binding specificity. In the design of peptide-based vaccines and diagnostics, the issue of population coverage in relation to MHC polymorphism is further complicated by the fact that different HLA types are expressed at dramatically different frequencies in different ethnicities. Thus, without careful consideration, a vaccine or diagnostic with ethnically biased population coverage could result. Results To address this issue, an algorithm was developed to calculate, on the basis of HLA genotypic frequencies, the fraction of individuals expected to respond to a given epitope set, diagnostic or vaccine. The population coverage estimates are based on MHC binding and/or T cell restriction data, although the tool can be utilized in a more general fashion. The algorithm was implemented as a web-application available at http://epitope.liai.org:8080/tools/population. Conclusion We have developed a web-based tool to predict population coverage of T-cell epitope-based diagnostics and vaccines based on MHC binding and/or T cell restriction data. Accordingly, epitope-based vaccines or diagnostics can be designed to maximize population coverage, while minimizing complexity (that is, the number of different epitopes included in the diagnostic or vaccine, and also minimizing the variability of coverage obtained or projected in different ethnic groups.

  8. Genetic characterization of Golden mahseer (Tor putitora) populations using mitochondrial DNA markers.

    Science.gov (United States)

    Sati, Jyoti; Kumar, Rohit; Sahoo, Prabhati Kumari; Patiyal, Rabindar S; Ali, Shahnawaz; Barat, Ashoktaru

    2015-02-01

    Golden Mahseer (Tor putitora) is an economically important fish of India and Southeast Asia. The present study examined the genetic variations between seven geographically isolated populations of T. putitora using Cyt b (Cytochrome b) and ATPase6/8 gene sequences of mitochondrial DNA. Analysis of 133 sequences of Cyt b (1141 bp) and 130 sequences of ATPase6/8 gene (842 bp) revealed 47 and 44 haplotypes, respectively. The estimated haplotype and nucleotide diversity was high in River Jia Bhoreli (Bhalukpong) population (h = 1.00000, π = 0.007121 for Cyt b and h = 0.90441 π = 0.004867 for ATPase6/8). Results of AMOVA indicated that majority of the genetic variations in both genes were due to variation among populations (60.79% for Cyt b and 51.41% for ATPase6/8 gene). The pairwise F(ST) comparison and neighbor-joining tree revealed high genetic divergence of River Jia Bhoreli population from other populations. The understanding of genetic variations of T. putitora populations will play a key role in conservation and management of this endangered fish species.

  9. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Singh Sandeep

    2012-09-01

    Full Text Available Abstract Background Cancer stem cells are thought to be responsible for the initiation and progression of cancers. In non-small cell lung cancers (NSCLCs, Hoechst 33342 dye effluxing side population (SP cells are shown to have stem cell like properties. The oncogenic capacity of cancer stem-like cells is in part due to their ability to self-renew; however the mechanistic correlation between oncogenic pathways and self-renewal of cancer stem-like cells has remained elusive. Here we characterized the SP cells at the molecular level and evaluated its ability to generate tumors at the orthotopic site in the lung microenvironment. Further, we investigated if the self-renewal of SP cells is dependent on EGFR mediated signaling. Results SP cells were detected and isolated from multiple NSCLC cell lines (H1650, H1975, A549, as well as primary human tumor explants grown in nude mice. SP cells demonstrated stem-like properties including ability to self-renew and grow as spheres; they were able to generate primary and metastatic tumors upon orthotopic implantation into the lung of SCID mice. In vitro study revealed elevated expression of stem cell associated markers like Oct4, Sox2 and Nanog as well as demonstrated intrinsic epithelial to mesenchymal transition features in SP cells. Further, we show that abrogation of EGFR, Src and Akt signaling through pharmacological or genetic inhibitors suppresses the self-renewal growth and expansion of SP-cells and resulted in specific downregulation of Sox2 protein expression. siRNA mediated depletion of Sox2 significantly blocked the SP phenotype as well as its self-renewal capacity; whereas other transcription factors like Oct4 and Nanog played a relatively lesser role in regulating self-renewal. Interestingly, Sox2 was elevated in metastatic foci of human NSCLC samples. Conclusions Our findings suggest that Sox2 is a novel target of EGFR-Src-Akt signaling in NSCLCs that modulates self-renewal and expansion of

  10. Analysis of in vitro secretion profiles from adipose-derived cell populations

    Directory of Open Access Journals (Sweden)

    Blaber Sinead P

    2012-08-01

    Full Text Available Abstract Background Adipose tissue is an attractive source of cells for therapeutic purposes because of the ease of harvest and the high frequency of mesenchymal stem cells (MSCs. Whilst it is clear that MSCs have significant therapeutic potential via their ability to secrete immuno-modulatory and trophic cytokines, the therapeutic use of mixed cell populations from the adipose stromal vascular fraction (SVF is becoming increasingly common. Methods In this study we have measured a panel of 27 cytokines and growth factors secreted by various combinations of human adipose-derived cell populations. These were 1. co-culture of freshly isolated SVF with adipocytes, 2. freshly isolated SVF cultured alone, 3. freshly isolated adipocytes alone and 4. adherent adipose-derived mesenchymal stem cells (ADSCs at passage 2. In addition, we produced an ‘in silico’ dataset by combining the individual secretion profiles obtained from culturing the SVF with that of the adipocytes. This was compared to the secretion profile of co-cultured SVF and adipocytes. Two-tailed t-tests were performed on the secretion profiles obtained from the SVF, adipocytes, ADSCs and the ‘in silico’ dataset and compared to the secretion profiles obtained from the co-culture of the SVF with adipocytes. A p-value of  Results A co-culture of SVF and adipocytes results in a distinct secretion profile when compared to all other adipose-derived cell populations studied. This illustrates that cellular crosstalk during co-culture of the SVF with adipocytes modulates the production of cytokines by one or more cell types. No biologically relevant differences were detected in the proteomes of SVF cultured alone or co-cultured with adipocytes. Conclusions The use of mixed adipose cell populations does not appear to induce cellular stress and results in enhanced secretion profiles. Given the importance of secreted cytokines in cell therapy, the use of a mixed cell population such as the

  11. Two developmentally distinct populations of neural crest cells contribute to the zebrafish heart.

    Science.gov (United States)

    Cavanaugh, Ann M; Huang, Jie; Chen, Jau-Nian

    2015-08-15

    Cardiac neural crest cells are essential for outflow tract remodeling in animals with divided systemic and pulmonary circulatory systems, but their contributions to cardiac development in animals with a single-loop circulatory system are less clear. Here we genetically labeled neural crest cells and examined their contribution to the developing zebrafish heart. We identified two populations of neural crest cells that contribute to distinct compartments of zebrafish cardiovascular system at different developmental stages. A stream of neural crest cells migrating through pharyngeal arches 1 and 2 integrates into the myocardium of the primitive heart tube between 24 and 30 h post fertilization and gives rise to cardiomyocytes. A second wave of neural crest cells migrating along aortic arch 6 envelops the endothelium of the ventral aorta and invades the bulbus arteriosus after three days of development. Interestingly, while inhibition of FGF signaling has no effect on the integration of neural crest cells to the primitive heart tube, it prevents these cells from contributing to the outflow tract, demonstrating disparate responses of neural crest cells to FGF signaling. Furthermore, neural crest ablation in zebrafish leads to multiple cardiac defects, including reduced heart rate, defective myocardial maturation and a failure to recruit progenitor cells from the second heart field. These findings add to our understanding of the contribution of neural crest cells to the developing heart and provide insights into the requirement for these cells in cardiac maturation.

  12. microRNA Expression Profiling of Side Population Cells in Human Lung Cancer and Preliminary Analysis

    OpenAIRE

    XU, XIAOTAO; Xiao LU; Sun, Jing; Shu, Yongqian

    2010-01-01

    Background and objective Recent studies indicate that the side population (SP) which is an enriched source of cancer stem cells (CSCs) is the root cause of tumor growth and development. SP appears to be highly resistant to chemo- and radio-therapy which becomes an important factor in tumor recurrence and metastasis. The aim of this study is to determine the difference of microRNA expression profiles between SP cells and non-SP cells so as to lay necessary basis for research on the function of...

  13. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  14. Pentoxifylline Inhibits WNT Signalling in β-Cateninhigh Patient-Derived Melanoma Cell Populations

    Science.gov (United States)

    Talar, Beata; Gajos-Michniewicz, Anna; Talar, Marcin; Chouaib, Salem; Czyz, Malgorzata

    2016-01-01

    Background The heterogeneity of melanoma needs to be addressed and combination therapies seem to be necessary to overcome intrinsic and acquired resistance to newly developed immunotherapies and targeted therapies. Although the role of WNT/β-catenin pathway in melanoma was early demonstrated, its contribution to the lack of the melanoma patient response