WorldWideScience

Sample records for characterization utilizing 3-dimensional

  1. Spinorial characterizations of surfaces into 3-dimensional psuedo-Riemannian space forms

    OpenAIRE

    Lawn , Marie-Amélie; Roth , Julien

    2011-01-01

    9 pages; We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. For Lorentzian surfaces, this generalizes a recent work of the first author in $\\mathbb{R}^{2,1}$ to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well ...

  2. Spinorial Characterizations of Surfaces into 3-dimensional Pseudo-Riemannian Space Forms

    International Nuclear Information System (INIS)

    Lawn, Marie-Amélie; Roth, Julien

    2011-01-01

    We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. This generalizes a recent work of the first author for spacelike immersed Lorentzian surfaces in ℝ 2,1 to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well as for spacelike and timelike immersions of surfaces of signature (0, 2), hence achieving a complete spinorial description for this class of pseudo-Riemannian immersions.

  3. Characterization of 3-dimensional superconductive thin film components for gravitational experiments in space

    Energy Technology Data Exchange (ETDEWEB)

    Hechler, S.; Nawrodt, R.; Nietzsche, S.; Vodel, W.; Seidel, P. [Friedrich-Schiller-Univ. Jena (Germany). Inst. fuer Festkoerperphysik; Dittus, H. [ZARM, Univ. Bremen (Germany); Loeffler, F. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2007-07-01

    Superconducting quantum interference devices (SQUIDs) are used for high precise gravitational experiments. One of the most impressive experiments is the satellite test of the equivalence principle (STEP) of NASA/ESA. The STEP mission aims to prove a possible violation of Einstein's equivalence principle at an extreme level of accuracy of 1 part in 10{sup 18} in space. In this contribution we present an automatically working measurement equipment to characterize 3-dimensional superconducting thin film components like i.e. pick-up coils and test masses for STEP. The characterization is done by measurements of the transition temperature between the normal and the superconducting state using a special built anti-cryostat. Above all the setup was designed for use in normal LHe transport Dewars. The sample chamber has a volume of 150 cm{sup 3} and can be fully temperature controlled over a range from 4.2 K to 300 K with a resolution of better then 100 mK. (orig.)

  4. Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery

    DEFF Research Database (Denmark)

    Shearing, P.R.; Howard, L.E.; Jørgensen, Peter Stanley

    2010-01-01

    The 3-dimensional microstructure of a porous electrode from a lithium-ion battery has been characterized for the first time. We use X-ray tomography to reconstruct a 43 × 348 × 478 μm sample volume with voxel dimensions of 480 nm, subsequent division of the reconstructed volumes into sub...

  5. Image-Based 3-Dimensional Characterization of Laryngotracheal Stenosis in Children

    Directory of Open Access Journals (Sweden)

    Lee S. McDaniel PhD

    2018-01-01

    Full Text Available Objectives Describe a technique for the description and classification of laryngotracheal stenosis in children using 3-dimensional reconstructions of the airway from computed tomography (CT scans. Study Design Cross-sectional. Setting Academic tertiary care children’s hospital. Subjects and Methods Three-dimensional models of the subglottic airway lumen were created using CT scans from 54 children undergoing imaging for indications other than airway disease. The base lumen models were deformed in software to simulate subglottic airway segments with 0%, 25%, 50%, and 75% stenoses for each subject. Statistical analysis of the airway geometry was performed using metrics extracted from the lumen centerlines. The centerline analysis was used to develop a system for subglottic stenosis assessment and classification from patient-specific airway imaging. Results The scaled hydraulic diameter gradient metric derived from intersectional changes in the lumen can be used to accurately classify and quantitate subglottic stenosis in the airway based on CT scan imaging. Classification is most accurate in the clinically relevant 25% to 75% range of stenosis. Conclusions Laryngotracheal stenosis is a complex diagnosis requiring an understanding of the airway lumen configuration, anatomical distortions of the airway framework, and alterations of respiratory aerodynamics. Using image-based airway models, we have developed a metric that accurately captures subglottis patency. While not intended to replace endoscopic evaluation and existing staging systems for laryngotracheal stenosis, further development of these techniques will facilitate future studies of upper airway computational fluid dynamics and the clinical evaluation of airway disease.

  6. Renal calyceal anatomy characterization with 3-dimensional in vivo computerized tomography imaging.

    Science.gov (United States)

    Miller, Joe; Durack, Jeremy C; Sorensen, Mathew D; Wang, James H; Stoller, Marshall L

    2013-02-01

    Calyceal selection for percutaneous renal access is critical for safe, effective performance of percutaneous nephrolithotomy. Available anatomical evidence is contradictory and incomplete. We present detailed renal calyceal anatomy obtained from in vivo 3-dimentional computerized tomography renderings. A total of 60 computerized tomography urograms were randomly selected. The renal collecting system was isolated and 3-dimensional renderings were constructed. The primary plane of each calyceal group of 100 kidneys was determined. A coronal maximum intensity projection was used for simulated percutaneous access. The most inferior calyx was designated calyx 1. Moving superiorly, the subsequent calyces were designated calyx 2 and, when present, calyx 3. The surface rendering was rotated to assess the primary plane of the calyceal group and the orientation of the select calyx. The primary plane of the upper pole calyceal group was mediolateral in 95% of kidneys and the primary plane of the lower pole calyceal group was anteroposterior in 95%. Calyx 2 was chosen in 90 of 97 simulations and it was appropriate in 92%. Calyx 3 was chosen in 7 simulations but it was appropriate in only 57%. Calyx 1 was not selected in any simulation and it was anteriorly oriented in 75% of kidneys. Appropriate lower pole calyceal access can be reliably accomplished with an understanding of the anatomical relationship between individual calyceal orientation and the primary plane of the calyceal group. Calyx 2 is most often appropriate for accessing the anteroposterior primary plane of the lower pole. Calyx 1 is most commonly oriented anterior. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Characterization of chemical contaminants generated by a desktop fused deposition modeling 3-dimensional Printer.

    Science.gov (United States)

    Stefaniak, Aleksandr B; LeBouf, Ryan F; Yi, Jinghai; Ham, Jason; Nurkewicz, Timothy; Schwegler-Berry, Diane E; Chen, Bean T; Wells, J Raymond; Duling, Matthew G; Lawrence, Robert B; Martin, Stephen B; Johnson, Alyson R; Virji, M Abbas

    2017-07-01

    Printing devices are known to emit chemicals into the indoor atmosphere. Understanding factors that influence release of chemical contaminants from printers is necessary to develop effective exposure assessment and control strategies. In this study, a desktop fused deposition modeling (FDM) 3-dimensional (3-D) printer using acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA) filaments and two monochrome laser printers were evaluated in a 0.5 m 3 chamber. During printing, chamber air was monitored for vapors using a real-time photoionization detector (results expressed as isobutylene equivalents) to measure total volatile organic compound (TVOC) concentrations, evacuated canisters to identify specific VOCs by off-line gas chromatography-mass spectrometry (GC-MS) analysis, and liquid bubblers to identify carbonyl compounds by GC-MS. Airborne particles were collected on filters for off-line analysis using scanning electron microscopy with an energy dispersive x-ray detector to identify elemental constituents. For 3-D printing, TVOC emission rates were influenced by a printer malfunction, filament type, and to a lesser extent, by filament color; however, rates were not influenced by the number of printer nozzles used or the manufacturer's provided cover. TVOC emission rates were significantly lower for the 3-D printer (49-3552 µg h -1 ) compared to the laser printers (5782-7735 µg h -1 ). A total of 14 VOCs were identified during 3-D printing that were not present during laser printing. 3-D printed objects continued to off-gas styrene, indicating potential for continued exposure after the print job is completed. Carbonyl reaction products were likely formed from emissions of the 3-D printer, including 4-oxopentanal. Ultrafine particles generated by the 3-D printer using ABS and a laser printer contained chromium. Consideration of the factors that influenced the release of chemical contaminants (including known and suspected asthmagens such as styrene and

  8. Characterization of 3-Dimensional PET Systems for Accurate Quantification of Myocardial Blood Flow.

    Science.gov (United States)

    Renaud, Jennifer M; Yip, Kathy; Guimond, Jean; Trottier, Mikaël; Pibarot, Philippe; Turcotte, Eric; Maguire, Conor; Lalonde, Lucille; Gulenchyn, Karen; Farncombe, Troy; Wisenberg, Gerald; Moody, Jonathan; Lee, Benjamin; Port, Steven C; Turkington, Timothy G; Beanlands, Rob S; deKemp, Robert A

    2017-01-01

    Three-dimensional (3D) mode imaging is the current standard for PET/CT systems. Dynamic imaging for quantification of myocardial blood flow with short-lived tracers, such as 82 Rb-chloride, requires accuracy to be maintained over a wide range of isotope activities and scanner counting rates. We proposed new performance standard measurements to characterize the dynamic range of PET systems for accurate quantitative imaging. 82 Rb or 13 N-ammonia (1,100-3,000 MBq) was injected into the heart wall insert of an anthropomorphic torso phantom. A decaying isotope scan was obtained over 5 half-lives on 9 different 3D PET/CT systems and 1 3D/2-dimensional PET-only system. Dynamic images (28 × 15 s) were reconstructed using iterative algorithms with all corrections enabled. Dynamic range was defined as the maximum activity in the myocardial wall with less than 10% bias, from which corresponding dead-time, counting rates, and/or injected activity limits were established for each scanner. Scatter correction residual bias was estimated as the maximum cavity blood-to-myocardium activity ratio. Image quality was assessed via the coefficient of variation measuring nonuniformity of the left ventricular myocardium activity distribution. Maximum recommended injected activity/body weight, peak dead-time correction factor, counting rates, and residual scatter bias for accurate cardiac myocardial blood flow imaging were 3-14 MBq/kg, 1.5-4.0, 22-64 Mcps singles and 4-14 Mcps prompt coincidence counting rates, and 2%-10% on the investigated scanners. Nonuniformity of the myocardial activity distribution varied from 3% to 16%. Accurate dynamic imaging is possible on the 10 3D PET systems if the maximum injected MBq/kg values are respected to limit peak dead-time losses during the bolus first-pass transit. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  9. Characterization qualitative and potentialities of utilization of ...

    African Journals Online (AJOL)

    Characterization qualitative and potentialities of utilization of methacomposts of poultry in the nurseries aboveground. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN ... Journal of Fundamental and Applied Sciences.

  10. 3-dimensional Charge Collection Efficiency

    CERN Document Server

    Kodak, Umut

    2013-01-01

    In this project, we designed a simulation program to create the efficiency map of a 3 dimensional rectangular detector. Efficiency is calculated by observing the collected charge at the output. Using this simulation program, one can observe the inefficient regions at not only on the surface of detector but at the depths of detector.

  11. Preparation, characterization and utilization of starch nanoparticles.

    Science.gov (United States)

    Kim, Hee-Young; Park, Sung Soo; Lim, Seung-Taik

    2015-02-01

    Starch is one of the most abundant biopolymers in nature and is typically isolated from plants in the form of micro-scale granules. Recent studies reported that nano-scale starch particles could be readily prepared from starch granules, which have unique physical properties. Because starch is environmentally friendly, starch nanoparticles are suggested as one of the promising biomaterials for novel utilization in foods, cosmetics, medicines as well as various composites. An overview of the most up-to-date information regarding the starch nanoparticles including the preparation processes and physicochemical characterization will be presented in this review. Additionally, the prospects and outlooks for the industrial utilization of starch nanoparticles will be discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Molecular characterization of autochthonous hydrocarbon utilizing ...

    African Journals Online (AJOL)

    Prof. Ogunji

    Materials and Methods ... culturable hydrocarbon utilizing bacteria (HUB) were enumerated by vapour phase ... hydrocarbon utilizing bacterial isolates by boiling method according to ... obtained in this investigation are consistent with past field studies (Kostka et ... Microbial and other related changes in a Niger sediment.

  13. Ultrahigh Resolution 3-Dimensional Imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop innovative instrumentation for the rapid, 3-dimensional imaging of biological tissues with cellular resolution. Our approach...

  14. Sociodemographic characterization of ECT utilization in Hawaii.

    Science.gov (United States)

    Ona, Celia M; Onoye, Jane M; Goebert, Deborah; Hishinuma, Earl; Bumanglag, R Janine; Takeshita, Junji; Carlton, Barry; Fukuda, Michael

    2014-03-01

    Minimal research has been done on sociodemographic differences in utilization of electroconvulsive therapy (ECT) for refractory depression, especially among Asian Americans and Pacific Islanders. This study examined sociodemographic and diagnostic variables using retrospective data from Hawaii, an island state with predominantly Asian Americans and Pacific Islanders. Retrospective data were obtained from an inpatient and outpatient database of ECT patients from 2008 to 2010 at a tertiary care community hospital on O'ahu, Hawaii. There was a significant increase in overall ECT utilization from 2008 to 2009, with utilization remaining stable from 2009 to 2010. European Americans (41%) and Japanese Americans (29%) have relatively higher rates of receiving ECT, and Filipino Americans and Native Hawaiians have relatively lower rates in comparison with their population demographics. Japanese Americans received significantly more ECT procedures than European Americans. Electroconvulsive therapy is underutilized by certain sociodemographic groups that may benefit most from the treatment. There are significant differences in ECT usage based on ethnicity. Such differences may be related to help-seeking behavior, economic differences, and/or attitudes regarding mental illness. Further research is needed to elucidate the reasons for differences in utilization.

  15. Development and Validation of a 3-Dimensional CFB Furnace Model

    Science.gov (United States)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  16. Isolation and Characterization of Hydrocarbon-utilizing Bacteria from ...

    African Journals Online (AJOL)

    Isolation and Characterization of Hydrocarbon-utilizing Bacteria from Petroleum Sludge Samples obtained from Crude Oil Processing Facility in Nigeria. ... Journal Home > Vol 21, No 2 (2017) > ... Algeria (5); Benin (2); Botswana (3); Burkina Faso (3); Cameroon (8); Congo, Republic (1); Côte d'Ivoire (4); Egypt, Arab Rep.

  17. Characterization of hydrocarbon utilizing bacteria in tropical marine ...

    African Journals Online (AJOL)

    Hydrocarbon utilizing bacteria present in Nembe waterside sediments, a marine habitat in Port Harcourt, Nigeria, were characterized using standard culture dependent techniques. The sediment samples were collected along the navigational route with an Eckman sediment grab (Wild Life Supply Co., NY). The samples had ...

  18. Note on 3-dimensional Regge calculus

    International Nuclear Information System (INIS)

    Soda, Jiro

    1991-01-01

    We shall study 3-dimensional Regge calculus with concentrating the role of the Bianchi identity. As a result, the number of the physical variables is determined to be 12g - 12(g > 1). The reason why Rocek and Williams derived the exact result of Deser, Jackiw and 'tHooft is clarified. (author)

  19. Properties of 3-dimensional line location models

    DEFF Research Database (Denmark)

    Brimberg, Jack; Juel, Henrik; Schöbel, Anita

    2002-01-01

    We consider the problem of locating a line with respect to some existing facilities in 3-dimensional space, such that the sum of weighted distances between the line and the facilities is minimized. Measuring distance using the l\\_p norm is discussed, along with the special cases of Euclidean...

  20. On 3-Dimensional Stability of Reshaping Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Frigaard, Peter

    1989-01-01

    The paper deals with the 3-dimensional stability of the type of rubble mound breakwaters where reshaping of the mound due to wave action is foreseen in the design. Such breakwaters are commonly named sacrificial types and berm types. The latter is due to the relatively large volume of armour stones...

  1. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Science.gov (United States)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  2. Virtual 3-dimensional preoperative planning with the dextroscope for excision of a 4th ventricular ependymoma.

    Science.gov (United States)

    Anil, S M; Kato, Y; Hayakawa, M; Yoshida, K; Nagahisha, S; Kanno, T

    2007-04-01

    Advances in computer imaging and technology have facilitated enhancement in surgical planning with a 3-dimensional model of the surgical plan of action utilizing advanced visualization tools in order to plan individual interactive operations with the aid of the dextroscope. This provides a proper 3-dimensional imaging insight to the pathological anatomy and sets a new dimension in collaboration for training and education. The case of a seventeen-year-old female, being operated with the aid of a preoperative 3-dimensional virtual reality planning and the practical application of the neurosurgical operation, is presented. This young lady presented with a two-year history of recurrent episodes of severe, global, throbbing headache with episodes of projectile vomiting associated with shoulder pain which progressively worsened. She had no obvious neurological deficits on clinical examination. CT and MRI showed a contrast-enhancing midline posterior fossa space-occupying lesion. Utilizing virtual imaging technology with the aid of a dextroscope which generates stereoscopic images, a 3-dimensional image was produced with the CT and MRI images. A preoperative planning for excision of the lesion was made and a real-time 3-dimensional volume was produced and surgical planning with the dextroscope was made and the lesion excised. Virtual reality has brought new proportions in 3-dimensional planning and management of various complex neuroanatomical problems that are faced during various operations. Integration of 3-dimensional imaging with stereoscopic vision makes understanding the complex anatomy easier and helps improve decision making in patient management.

  3. Characterization of PTO and Idle Behavior for Utility Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Adam W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Konan, Arnaud M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Eric S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kelly, Kenneth J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Prohaska, Robert S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-28

    This report presents the results of analyses performed on utility vehicle data composed primarily of aerial lift bucket trucks sampled from the National Renewable Energy Laboratory's Fleet DNA database to characterize power takeoff (PTO) and idle operating behavior for utility trucks. Two major data sources were examined in this study: a 75-vehicle sample of Odyne electric PTO (ePTO)-equipped vehicles drawn from multiple fleets spread across the United States and 10 conventional PTO-equipped Pacific Gas and Electric fleet vehicles operating in California. Novel data mining approaches were developed to identify PTO and idle operating states for each of the datasets using telematics and controller area network/onboard diagnostics data channels. These methods were applied to the individual datasets and aggregated to develop utilization curves and distributions describing PTO and idle behavior in both absolute and relative operating terms. This report also includes background information on the source vehicles, development of the analysis methodology, and conclusions regarding the study's findings.

  4. 3-dimensional interactive space (3DIS)

    International Nuclear Information System (INIS)

    Veitch, S.; Veitch, J.; West, S.J.

    1991-01-01

    This paper reports on the 3DIS security system which uses standard CCTV cameras to create 3-Dimensional detection zones around valuable assets within protected areas. An intrusion into a zone changes light values and triggers an alarm that is annunciated, while images from multiple cameras are recorded. 3DIS lowers nuisance alarm rates and provides superior automated surveillance capability. Performance is improved over 2-D systems because activity around, above or below the zone does to cause an alarm. Invisible 3-D zones protect assets as small as a pin or as large as a 747 jetliner. Detection zones are created by excising subspaces from the overlapping fields of view of two or more video cameras. Hundred of zones may co-exist, operating simultaneously. Intrusion into any 3-D zone will cause a coincidental change in light values, triggering an alarm specific to that space

  5. Synthesis, characterization and potential utility of doped ceramics based catalysts

    Science.gov (United States)

    Sharma, Ritika; Yadav, Deepshikha; Singh, G. P.; Vyas, G.; Bhojak, N.

    2018-05-01

    Excessive utilization of petrol, diesel and other fossil fuels, continuous increase in their prices, and the big problem of carbon dioxide mission have encouraged scientists and technologist to find either new sources of energy or to develop technologies for the sustainable utilization of fuel. Biofuels are the only energy technologies that can resolve the problem of carbon dioxide emission in the atmosphere as well as reduce the amount of fossil fuel burned. Bio ethanol and biodiesel are the most common types of biofuel which are being used at present. Biodiesel has become more interesting for all the researchers in present scenario. Various feedstock viz. edible, nonedible oils, waste cooking oil, animal fat, algae etc, are using for the production of biodiesel worldwide according to their availability. Selection of efficient heterogeneous catalysts for biodiesel preparation still needs more attention of researchers. The present investigation deals with determination of synthesis, characterization and applications of doped ceramic based materials in different medium. Two of doped ceramic based catalysts which has been potentially used for the production of biodiesel. The Engine performance of biodiesel samples, made from industrial waste oils and ceramic based catalyst, have also been investigated and found up to satisfactory levels.

  6. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ethan, E-mail: ethan.davis4@huskers.unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States); Liu, Ying; Jiang, Lijia; Lu, Yongfeng [Laser Assisted Nano Engineering Lab, Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, 209N Scott Engineering Center, Lincoln, NE 68588-0511 (United States); Ndao, Sidy, E-mail: sndao2@unl.edu [Nano & Microsystems Research Laboratory, Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, W342 Nebraska Hall, Lincoln, NE 68588-0526 (United States)

    2017-01-15

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  7. Wetting characteristics of 3-dimensional nanostructured fractal surfaces

    International Nuclear Information System (INIS)

    Davis, Ethan; Liu, Ying; Jiang, Lijia; Lu, Yongfeng; Ndao, Sidy

    2017-01-01

    Highlights: • Hierarchically structured surfaces were fabricated on the micro/nano-scale. • These structures reduced the contact angle of the inherently hydrophilic material. • Similar surfaces have applications in two-phase heat transfer and microfluidics. - Abstract: This article reports the fabrication and wetting characteristics of 3-dimensional nanostructured fractal surfaces (3DNFS). Three distinct 3DNFS surfaces, namely cubic, Romanesco broccoli, and sphereflake were fabricated using two-photon direct laser writing. Contact angle measurements were performed on the multiscale fractal surfaces to characterize their wetting properties. Average contact angles ranged from 66.8° for the smooth control surface to 0° for one of the fractal surfaces. The change in wetting behavior was attributed to modification of the interfacial surface properties due to the inclusion of 3-dimensional hierarchical fractal nanostructures. However, this behavior does not exactly obey existing surface wetting models in the literature. Potential applications for these types of surfaces in physical and biological sciences are also discussed.

  8. 3-Dimensional Agent Representations Increase Generosity in a Naturalistic Setting

    DEFF Research Database (Denmark)

    Krátký, Jan; McGraw, John J.; Xygalatas, Dimitris

    do not always act as deliberative, rational actors. Various studies have investigated the effects of both material cues and complex environmental settings on behavioral choices. One particularly common and salient aspect of the environment involves cues related to intentional agents, whether...... they be our conspecifics, non-human species or supernatural beings. A number of studies have found that exposing participants to cues of agency increase prosocial or cooperative behavior. In two separate studies, we investigated the role dimensionality plays in priming inferences of agency. In contrast...... to previous studies utilizing 2-dimensional images, 3-dimensional representations share morphological elements with real life agents which may enhance the salience of the cues. Higher activation of agency detection, in turn, ought to trigger stronger reputational concerns and thus further amplify prosocial...

  9. ISOLATION AND CHARACTERIZATION OF A NOVEL BENZOATE- UTILIZING Serratia marcescens

    Directory of Open Access Journals (Sweden)

    ANTONIUS SUWANTO

    2003-01-01

    Full Text Available A new benzoate-utilizing strain, Serratia marcescens DS-8, isolated from the environment was characterized. The strain was enterobacilli, Gram negative, mesophilic, non ha lophilic, and aerobic bacterium that showed motile ovale-rod shaped cells. The isolate produced extracellular chitinase, protease, and prodigiosin (a red pigment pr oduced by several Serratia strains yielding bright red or pink colonies. A physiological assay using Microbact* test showed that the strain was closely related to Klebsiella ozaenae (49.85% and Serratia liquefaciens (24.42%, respectively. However, 16S rRNA sequence analysis indicated that the strain was closely related to S. marcescens DSM 30121 with similarity level of 98%. DS-8 strain was able to synthesize its own vitamins. Optimum growth in benzoate was obtained at pH between 7-8.5 and NaCl concentration of 1- 1.5% (w/v. The isolate could grow in benzoate-containing medium up to 10 mM. Other carbon sources that could support the growth of DS-8 were casamino acid, glutamate, glucose, acetate, potato star ch, and ethanol.

  10. Characterization of Rare Earth Element Minerals in Coal Utilization Byproducts

    Energy Technology Data Exchange (ETDEWEB)

    Montross, Scott N. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Verba, Circe A. [National Energy Technology Lab. (NETL), Albany, OR (United States). Research Innovation Center; Collins, Keith [National Energy Technology Lab. (NETL), Albany, OR (United States). Research Innovation Center

    2017-07-17

    The United States currently produces over 100 million tons of coal utilization byproducts (CUB) per year in the form of fly ash, bottom ash, slag, and flue gas (American Coal Ash Association (ACCA), 2015). But this “waste material” also contains potentially useful levels of rare earth elements (REE). Rare earth elements are crucial for many existing and emerging technologies, but the U.S. lacks a domestic, sustainable REE source. Our project explored the possibility of developing a supply of REEs for U.S. technologies by extracting REEs from CUBs. This work offers the potential to reduce our dependence on other countries for supply of these critical elements (NETL, REE 2016 Project Portfolio). Geologic and diagenetic history, industrial preparation methods, and the specific combustion process all play major roles in the composition of CUB. During combustion, inorganic mineral phases of coal particles are fluidized at temperatures higher than 1400oC, so inorganic mineral materials are oxidized, fused, disintegrated, or agglomerated into larger spherical and amorphous (non-crystalline) particles. The original mineralogy of the coal-containing rock and heating/cooling of the material significantly affects the composition and morphology of the particles in the combustion byproduct (Kutchko and Kim, 2006). Thus, different types of coal/refuse/ash must be characterized to better understand mineral evolution during the combustion process. Our research focused on developing a working model to address how REE minerals behave during the combustion process: this research should help determine the most effective engineering methods for extracting REEs from CUBs. We used multimodal imaging and image processing techniques to characterize six rock and ash samples from different coal power plants with respect to morphology, grain size, presence of mineral phases, and elemental composition. The results of these characterization activities provided thresholds for realizing the

  11. The value of preoperative 3-dimensional over 2-dimensional valve analysis in predicting recurrent ischemic mitral regurgitation after mitral annuloplasty

    NARCIS (Netherlands)

    Wijdh-den Hamer, Inez J.; Bouma, Wobbe; Lai, Eric K.; Levack, Melissa M.; Shang, Eric K.; Pouch, Alison M.; Eperjesi, Thomas J.; Plappert, Theodore J.; Yushkevich, Paul A.; Hung, Judy; Mariani, Massimo A.; Khabbaz, Kamal R.; Gleason, Thomas G.; Mahmood, Feroze; Acker, Michael A.; Woo, Y. Joseph; Cheung, Albert T.; Gillespie, Matthew J.; Jackson, Benjamin M.; Gorman, Joseph H.; Gorman, Robert C.

    Objectives: Repair for ischemic mitral regurgitation with undersized annuloplasty is characterized by high recurrence rates. We sought to determine the value of pre-repair 3-dimensional echocardiography over 2-dimensional echocardiography in predicting recurrence at 6 months. Methods: Intraoperative

  12. 3-dimensional analysis of FELIX brick with hole

    International Nuclear Information System (INIS)

    Lee, Taek-Kyung; Lee, Soo-Young; Ra, Jung-Woong

    1987-01-01

    Electromagnetic induction on FELIX brick with a hole has been analyzed with 3-Dimensional EDDYNET computer code. Incorporating loop currents on hexahedral meshes, the 3-Dimensional EDDYNET program solves eddy current problems by a network approach, and provides good accuracy even for coarse meshes. (author)

  13. Individualized Physical 3-dimensional Kidney Tumor Models Constructed From 3-dimensional Printers Result in Improved Trainee Anatomic Understanding.

    Science.gov (United States)

    Knoedler, Margaret; Feibus, Allison H; Lange, Andrew; Maddox, Michael M; Ledet, Elisa; Thomas, Raju; Silberstein, Jonathan L

    2015-06-01

    To evaluate the effect of 3-dimensionally (3D) printed physical renal models with enhancing masses on medical trainee characterization, localization, and understanding of renal malignancy. Proprietary software was used to import standard computed tomography (CT) cross-sectional imaging into 3D printers to create physical models of renal units with enhancing renal lesions in situ. Six different models were printed from a transparent plastic resin; the normal parenchyma was printed in a clear, translucent plastic, with a red hue delineating the suspicious renal lesion. Medical students, who had completed their first year of training, were given an overview and tasked with completion of RENAL nephrometry scores, separately using CT imaging and 3D models. Trainees were also asked to complete a questionnaire about their experience. Variability between trainees was assessed by intraclass correlation coefficients (ICCs), and kappa statistics were used to compare the trainee to experts. Overall trainee nephrometry score accuracy was significantly improved with the 3D model vs CT scan (P renal mass. Physical 3D models using readily available printing techniques improve trainees' understanding and characterization of individual patients' enhancing renal lesions. Published by Elsevier Inc.

  14. Utilization of Nkpuma-Akpatakpa clay in ceramics: characterization ...

    African Journals Online (AJOL)

    Nkpuma – Akpatakpa clay was analysed for its ceramics suitability. Chemical, mechanical and spectral characterization of the clay was carried out to obtain more information from this clay found in commercial quantity at Ebonyi State Nigeria. The XRD analysis showed that the principal minerals in the clay are quartz, ...

  15. Stepper Motor Characterization Utilizing Borland Delphi 5.0

    International Nuclear Information System (INIS)

    Yoyok-Dwi-Setyo-Pambudi, Darlis

    2005-01-01

    Characterization of 12-Watt, Shinano Kensi, Japan. Stepper Motors series TEAC P.No.14769070.90 had been conducted. Knowledge obtained from this characteristic test can be exploited in motor stepper application in the field of robotics, the appliance of las automatization and also the metal clippers equipment. Test characteristic was performed by using computer program Borland Delphi version 5.0. The result showed that by using input delay time 10 ms, the quickest turn around frequency of the motor is 0.5 Hz. The longer delay time tend to make a rotation frequency became lower, it also mean the moving of motor became slower. (author)

  16. Microarray Dot Electrodes Utilizing Dielectrophoresis for Cell Characterization

    Directory of Open Access Journals (Sweden)

    Fatimah Ibrahim

    2013-07-01

    Full Text Available During the last three decades; dielectrophoresis (DEP has become a vital tool for cell manipulation and characterization due to its non-invasiveness. It is very useful in the trend towards point-of-care systems. Currently, most efforts are focused on using DEP in biomedical applications, such as the spatial manipulation of cells, the selective separation or enrichment of target cells, high-throughput molecular screening, biosensors and immunoassays. A significant amount of research on DEP has produced a wide range of microelectrode configurations. In this paper; we describe the microarray dot electrode, a promising electrode geometry to characterize and manipulate cells via DEP. The advantages offered by this type of microelectrode are also reviewed. The protocol for fabricating planar microelectrodes using photolithography is documented to demonstrate the fast and cost-effective fabrication process. Additionally; different state-of-the-art Lab-on-a-Chip (LOC devices that have been proposed for DEP applications in the literature are reviewed. We also present our recently designed LOC device, which uses an improved microarray dot electrode configuration to address the challenges facing other devices. This type of LOC system has the capability to boost the implementation of DEP technology in practical settings such as clinical cell sorting, infection diagnosis, and enrichment of particle populations for drug development.

  17. Real-time 3-dimensional contrast-enhanced ultrasound in detecting hemorrhage of blunt renal trauma.

    Science.gov (United States)

    Xu, Rui-Xue; Li, Ye-Kuo; Li, Ting; Wang, Sha-Sha; Yuan, Gui-Zhong; Zhou, Qun-Fang; Zheng, Hai-Rong; Yan, Fei

    2013-10-01

    The objective of this study is to evaluate the diagnostic value of real-time 3-dimensional contrast-enhanced ultrasound in the hemorrhage of blunt renal trauma. Eighteen healthy New Zealand white rabbits were randomly divided into 3 groups. Blunt renal trauma was performed on each group by using minitype striker. Ultrasonography, color Doppler flow imaging, and contrast-enhanced 2-dimensional and real-time 3-dimensional ultrasound were applied before and after the strike. The time to shock and blood pressure were subjected to statistical analysis. Then, a comparative study of ultrasound and pathology was carried out. All the struck kidneys were traumatic. In the ultrasonography, free fluid was found under the renal capsule. In the color Doppler flow imaging, active hemorrhage was not identified. In 2-dimensional contrast-enhanced ultrasound, active hemorrhage of the damaged kidney was characterized. Real-time 3-dimensional contrast-enhanced ultrasound showed a real-time and stereoscopic ongoing bleeding of the injured kidney. The wider the hemorrhage area in 4-dimensional contrast-enhanced ultrasound was, the faster the blood pressure decreased. Real-time 3-dimensional contrast-enhanced ultrasound is a promising noninvasive tool for stereoscopically and vividly detecting ongoing hemorrhage of blunt renal trauma in real time. © 2013.

  18. Characterization of chestnut (Castanea sativa, mill starch for industrial utilization

    Directory of Open Access Journals (Sweden)

    Demiate Ivo Mottin

    2001-01-01

    Full Text Available Studies were conducted to characterize the chestnut and its starch. Chemical composition of the chestnuts showed high level of starch. Moisture level in the raw nuts was around 50g/100g in wet basis and starch content, around 80g/100g in dry basis; other nut flour components were protein (5.58 g/100g, lipid (5.39 g/100g, crude fiber (2.34 g/100g and ash (2.14 g/100g. Starch fraction was chemically characterized in order to identify the granule quality as compared with those of cassava and corn. This fraction showed more lipids and proteins than the other starches. Chestnut starch granules showed peculiar shape, smaller than the control starches and low amount of damaged units. Chemical composition concerning amylose : amylopectin ratio was intermediate to that presented by cassava and corn starch granules. Water absorption at different temperatures as well as solubility were also intermediate but closer to that presented by cassava granules. The same behavior was observed in the interaction with dimethyl-sulfoxide. Native starch granules and those submitted to enzymatic treatment with commercial alpha-amylase and also with enzymes from germinated wheat were observed by scanning electronic microscopy. Water suspensions of chestnut starch granules were heated to form pastes that were studied comparatively to those obtained with cassava and corn starches. Viscographic pattern of chestnut starch pastes showed a characteristic profile with high initial viscosity but peak absence, high resistance to mechanical stirring under hot conditions and high final viscosity. There was no way to compare it with the paste viscographic profiles obtained with the control starches. Chestnut starch pastes were stable down to pH 4 but unstable at pH 3. The water losses observed in the chestnut starch pastes after freeze-thaw cycles showed more similarity to the pattern observed in corn starch pastes as well as clarity and strength of the gel. In general the results

  19. Mannheim Curves in Nonflat 3-Dimensional Space Forms

    Directory of Open Access Journals (Sweden)

    Wenjing Zhao

    2015-01-01

    Full Text Available We consider the Mannheim curves in nonflat 3-dimensional space forms (Riemannian or Lorentzian and we give the concept of Mannheim curves. In addition, we investigate the properties of nonnull Mannheim curves and their partner curves. We come to the conclusion that a necessary and sufficient condition is that a linear relationship with constant coefficients will exist between the curvature and the torsion of the given original curves. In the case of null curve, we reveal that there are no null Mannheim curves in the 3-dimensional de Sitter space.

  20. Controlled teleportation of a 3-dimensional bipartite quantum state

    International Nuclear Information System (INIS)

    Cao Haijing; Chen Zhonghua; Song Heshan

    2008-01-01

    A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state

  1. 3-Dimensional printing guide template assisted percutaneous vertebroplasty: Technical note.

    Science.gov (United States)

    Li, Jian; Lin, JiSheng; Yang, Yong; Xu, JunChuan; Fei, Qi

    2018-06-01

    Percutaneous vertebroplasty (PVP) is currently considered as an effective treatment for pain caused by acute osteoporotic vertebral compression fracture. Recently, puncture-related complications are increasingly reported. It's important to find a precise technique to reduce the puncture-related complications. We report a case and discussed the novel surgical technique with step-by-step operating procedures, to introduce the precise PVP assisted by a 3-dimensional printing guide template. Based on the preoperative CT scan and infrared scan data, a well-designed individual guide template could be established in a 3-dimensional reconstruction software and printed out by a 3-dimensional printer. In real operation, by matching the guide template to patient's back skin, cement needles' insertion orientation and depth were easily established. Only 14 times C-arm fluoroscopy with HDF mode (total exposure dose was 4.5 mSv) were required during the procedure. The operation took only 17 min. Cement distribution in the vertebral body was very good without any puncture-related complications. Pain was significantly relieved after surgery. In conclusion, the novel precise 3-dimensional printing guide template system may allow (1) comprehensive visualization of the fractured vertebral body and the individual surgical planning, (2) the perfect fitting between skin and guide template to ensure the puncture stability and accuracy, and (3) increased puncture precision and decreased puncture-related complications, surgical time and radiation exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Interactive multimedia-based teaching material for 3-dimensional geometry

    Science.gov (United States)

    Prabowo, A.; Anggoro, R. P.; Astuti, D.; Fahmi, S.

    2017-12-01

    This study aims to develop the interactive multimedia-based teaching material for 3-dimensional geometry in junior high school. The product was produced through the stages of define, design, develop, and disseminate. Two media experts and two teaching experts had validated it. They judged that the product developed was valid. It had been revised based on their advice. It has been disseminated to 15 mathematics teachers and tried to 30 students of junior high school. Teachers stated that this product gives a new form of teaching material in 3-dimensional geometry. According to the student, the product is interesting. It can motivate them to study mathematics, help them to master the material and increase their interest in mathematics.

  3. Application of 3-dimensional CAD modeling system in nuclear plants

    International Nuclear Information System (INIS)

    Suwa, Minoru; Saito, Shunji; Nobuhiro, Minoru

    1990-01-01

    Until now, the preliminary work for mutual components in nuclear plant were readied by using plastic models. Recently with the development of computer graphic techniques, we can display the components on the graphics terminal, better than with use of plastic model and actual plants. The computer model can be handled, both telescopically and microscopically. A computer technique called 3-dimensional CAD modeling system was used as the preliminary work and design system. Through application of this system, database for nuclear plants was completed in arrangement step. The data can be used for piping design, stress analysis, shop production, testing and site construction, in all steps. In addition, the data can be used for various planning works, even after starting operation of plant. This paper describes the outline of the 3-dimensional CAD modeling system. (author)

  4. Cohomological rigidity of manifolds defined by 3-dimensional polytopes

    Science.gov (United States)

    Buchstaber, V. M.; Erokhovets, N. Yu.; Masuda, M.; Panov, T. E.; Park, S.

    2017-04-01

    A family of closed manifolds is said to be cohomologically rigid if a cohomology ring isomorphism implies a diffeomorphism for any two manifolds in the family. Cohomological rigidity is established here for large families of 3-dimensional and 6-dimensional manifolds defined by 3-dimensional polytopes. The class \\mathscr{P} of 3-dimensional combinatorial simple polytopes P different from tetrahedra and without facets forming 3- and 4-belts is studied. This class includes mathematical fullerenes, that is, simple 3- polytopes with only 5-gonal and 6-gonal facets. By a theorem of Pogorelov, any polytope in \\mathscr{P} admits in Lobachevsky 3-space a right-angled realisation which is unique up to isometry. Our families of smooth manifolds are associated with polytopes in the class \\mathscr{P}. The first family consists of 3-dimensional small covers of polytopes in \\mathscr{P}, or equivalently, hyperbolic 3-manifolds of Löbell type. The second family consists of 6-dimensional quasitoric manifolds over polytopes in \\mathscr{P}. Our main result is that both families are cohomologically rigid, that is, two manifolds M and M' from either family are diffeomorphic if and only if their cohomology rings are isomorphic. It is also proved that if M and M' are diffeomorphic, then their corresponding polytopes P and P' are combinatorially equivalent. These results are intertwined with classical subjects in geometry and topology such as the combinatorics of 3-polytopes, the Four Colour Theorem, aspherical manifolds, a diffeomorphism classification of 6-manifolds, and invariance of Pontryagin classes. The proofs use techniques of toric topology. Bibliography: 69 titles.

  5. Visualized fuelling process and 3 dimensional reactivity device and core monitor

    International Nuclear Information System (INIS)

    Patterson, B.; Cusson, R.; Crowell, T.

    2006-01-01

    A new reactor fueling animated graphical display and a 3 dimensional view of the reactor core display are presented that are useful for the physics fuelling engineer, the Control Room Operators, the fuel handling operators and the fuel handling support engineers. Data is downloaded from the online fuelling computer to a data server that is network accessible. The fuelling display and 3Dview display can run on any network connected Computer. The animated graphical fuelling display offers a huge reduction in cognitive workload for all users. The authors recommend that animated graphical displays be developed and utilized wherever personnel have to visualize complex equipment operation. (author)

  6. Characterization of coal blends for effective utilization in thermal power plants

    International Nuclear Information System (INIS)

    Santhosh Raaj, S.; Arumugam, S.; Muthukrishnan, M.; Krishnamoorthy, S.; Anantharaman, N.

    2016-01-01

    Highlights: • This work will assist utilities to decide on the choice of coals for blending. • Conventional and advanced analytical techniques were used for characterization. • Fuel ratio, burnout profile, ash chemistry and carbon burnout are key factors. • Basic properties were additive while carbon burnout was non additive for the blends. - Abstract: This paper deals with the characterization of coal blends using various conventional and advanced analytical techniques. There has been an increasing trend in utilizing imported coals for power generation in India and utilities are resorting to blended coal firing for various reasons, both financially as well as technically. Characterization studies were carried out on 2 combinations of Indian and imported coal blends. Conventional characterization such as proximate and ultimate analysis and determination of calorific value were carried out for the raw coals and blends as per ASTM standards. Following this thermal and mineral analysis of the samples were carried out using thermo gravimetric analyzer (TGA), X-ray fluorescence spectrometer (XRF) and computer controlled scanning electron microscope (CCSEM). Combustion experiments were also conducted using drop tube furnace (DTF) to determine the burnout of the raw coals and blends. The selection of technically suitable coal combination for blending, based on these characterization studies, has been detailed.

  7. A study of 3-dimensionally periodic carbon nanostructures

    Science.gov (United States)

    Yin, Ming; Bleiweiss, Michael; Amirzadeh, Jafar; Datta, Timir; Arammash, Fouzi

    2012-02-01

    Electronic structures with intricate periodic 3-dimensional arrangements at the submicron scale were investigated. These may be fabricated using artificial porous opal substrates as the templates in which the targeted conducting medium is introduced. In the past these materials were reported to show interesting electronic behaviors. [Michael Bleiweiss, et al ``Localization and Related Phenomena in Multiply Connected Nanostructured,'' BAPS, Z30.011, Nanostructured Materials Session, March 2001, Seattle]. Several materials were studied in particular disordered carbon which has been reported to show quantum transport including fractional hall steps. The results of these measurements, including the observation of localization phenomena, will be discussed. Comparisons will be made with literature data.

  8. On ruled surface in 3-dimensional almost contact metric manifold

    Science.gov (United States)

    Karacan, Murat Kemal; Yuksel, Nural; Ikiz, Hasibe

    In this paper, we study ruled surface in 3-dimensional almost contact metric manifolds by using surface theory defined by Gök [Surfaces theory in contact geometry, PhD thesis (2010)]. We also studied the theory of curves using cross product defined by Camcı. In this study, we obtain the distribution parameters of the ruled surface and then some results and theorems are presented with special cases. Moreover, some relationships among asymptotic curve and striction line of the base curve of the ruled surface have been found.

  9. One New Method to Generate 3-Dimensional Virtual Mannequin

    Science.gov (United States)

    Xiu-jin, Shi; Zhi-jun, Wang; Jia-jin, Le

    The personal virtual mannequin is very important in electronic made to measure (eMTM) system. There is one new easy method to generate personal virtual mannequin. First, the characteristic information of customer's body is got from two photos. Secondly, some human body part templates corresponding with the customer are selected from the templates library. Thirdly, these templates are modified and assembled according to certain rules to generate a personalized 3-dimensional human, and then the virtual mannequin is realized. Experimental result shows that the method is easy and feasible.

  10. Structural characterization of bentonite clays for utilization as nanofillers in nanocomposites

    International Nuclear Information System (INIS)

    Oliveira, Carlos Ivan Ribeiro de; Rocha, Marisa Cristina Guimares; Vogas, Arthur Considera

    2014-01-01

    Clays of different composition have been used in the development of polymer nanocomposites. However, the utilization of bentonite clays has been emphasized in Brazil, mainly due to their availability.The best known and studied deposits of bentonite clays are located in the state of Paraiba. However, these deposits are becoming exhausted after decades of exploitation. In this context, the aim of this work is to proceed the physical-mineralogical characterization of bentonite clays recently discovered in Cubati, PB. In order to achieve this objective, the samples underwent a particle size classification step and were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. Results of X-ray diffraction showed that the samples are composed of smectite, and kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the clays have predominantly different exchangeable cations. (author)

  11. Pathophysiology of Degenerative Mitral Regurgitation: New 3-Dimensional Imaging Insights.

    Science.gov (United States)

    Antoine, Clemence; Mantovani, Francesca; Benfari, Giovanni; Mankad, Sunil V; Maalouf, Joseph F; Michelena, Hector I; Enriquez-Sarano, Maurice

    2018-01-01

    Despite its high prevalence, little is known about mechanisms of mitral regurgitation in degenerative mitral valve disease apart from the leaflet prolapse itself. Mitral valve is a complex structure, including mitral annulus, mitral leaflets, papillary muscles, chords, and left ventricular walls. All these structures are involved in physiological and pathological functioning of this valvuloventricular complex but up to now were difficult to analyze because of inherent limitations of 2-dimensional imaging. The advent of 3-dimensional echocardiography, computed tomography, and cardiac magnetic resonance imaging overcoming these limitations provides new insights into mechanistic analysis of degenerative mitral regurgitation. This review will detail the contribution of quantitative and qualitative dynamic analysis of mitral annulus and mitral leaflets by new imaging methods in the understanding of degenerative mitral regurgitation pathophysiology. © 2018 American Heart Association, Inc.

  12. Scientific visualization of 3-dimensional optimized stellarator configurations

    International Nuclear Information System (INIS)

    Spong, D.A.

    1998-01-01

    The design techniques and physics analysis of modern stellarator configurations for magnetic fusion research rely heavily on high performance computing and simulation. Stellarators, which are fundamentally 3-dimensional in nature, offer significantly more design flexibility than more symmetric devices such as the tokamak. By varying the outer boundary shape of the plasma, a variety of physics features, such as transport, stability, and heating efficiency can be optimized. Scientific visualization techniques are an important adjunct to this effort as they provide a necessary ergonomic link between the numerical results and the intuition of the human researcher. The authors have developed a variety of visualization techniques for stellarators which both facilitate the design optimization process and allow the physics simulations to be more readily understood

  13. Review of 3-Dimensional Printing on Cranial Neurosurgery Simulation Training.

    Science.gov (United States)

    Vakharia, Vejay N; Vakharia, Nilesh N; Hill, Ciaran S

    2016-04-01

    Shorter working times, reduced operative exposure to complex procedures, and increased subspecialization have resulted in training constraints within most surgical fields. Simulation has been suggested as a possible means of acquiring new surgical skills without exposing patients to the surgeon's operative "learning curve." Here we review the potential impact of 3-dimensional printing on simulation and training within cranial neurosurgery and its implications for the future. In accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a comprehensive search of PubMed, OVID MEDLINE, Embase, and the Cochrane Database of Systematic Reviews was performed. In total, 31 studies relating to the use of 3-dimensional (3D) printing within neurosurgery, of which 16 were specifically related to simulation and training, were identified. The main impact of 3D printing on neurosurgical simulation training was within vascular surgery, where patient-specific replication of vascular anatomy and pathologies can aid surgeons in operative planning and clip placement for reconstruction of vascular anatomy. Models containing replicas of brain tumors have also been reconstructed and used for training purposes, with some providing realistic representations of skin, subcutaneous tissue, bone, dura, normal brain, and tumor tissue. 3D printing provides a unique means of directly replicating patient-specific pathologies. It can identify anatomic variation and provide a medium in which training models can be generated rapidly, allowing the trainee and experienced neurosurgeon to practice parts of operations preoperatively. Future studies are required to validate this technology in comparison with current simulators and show improved patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Isolation and characterization of yeasts capable of efficient utilization of hemicellulosic hydrolyzate as the carbon source.

    Science.gov (United States)

    Cassa-Barbosa, L A; Procópio, R E L; Matos, I T S R; Filho, S A

    2015-09-28

    Few yeasts have shown the potential to efficiently utilize hemicellulosic hydrolyzate as the carbon source. In this study, microorganisms isolated from the Manaus region in Amazonas, Brazil, were characterized based on their utilization of the pentoses, xylose, and arabinose. The yeasts that showed a potential to assimilate these sugars were selected for the better utilization of lignocellulosic biomass. Two hundred and thirty seven colonies of unicellular microorganisms grown on hemicellulosic hydrolyzate, xylose, arabinose, and yeast nitrogen base selective medium were analyzed. Of these, 231 colonies were subjected to sugar assimilation tests. One hundred and twenty five of these were shown to utilize hydrolyzed hemicellulose, xylose, or arabinose as the carbon source for growth. The colonies that showed the best growth (N = 57) were selected, and their internal transcribed spacer-5.8S rDNA was sequenced. The sequenced strains formed four distinct groups in the phylogenetic tree, and showed a high percentage of similarity with Meyerozyma caribbica, Meyerozyma guilliermondii, Trichosporon mycotoxinivorans, Trichosporon loubieri, Pichia kudriavzevii, Candida lignohabitans, and Candida ethanolica. The discovery of these xylose-fermenting yeasts could attract widespread interest, as these can be used in the cost-effective production of liquid fuel from lignocellulosic materials.

  15. PWR core safety analysis with 3-dimensional methods

    International Nuclear Information System (INIS)

    Gensler, A.; Kühnel, K.; Kuch, S.

    2015-01-01

    Highlights: • An overview of AREVA’s safety analysis codes their coupling is provided. • The validation base and licensing applications of these codes are summarized. • Coupled codes and methods provide improved margins and non-conservative results. • Examples for REA and inadvertent opening of the pressurizer safety valve are given. - Abstract: The main focus of safety analysis is to demonstrate the required safety level of the reactor core. Because of the demanding requirements, the quality of the safety analysis strongly affects the confidence in the operational safety of a reactor. To ensure the highest quality, it is essential that the methodology consists of appropriate analysis tools, an extensive validation base, and last but not least highly educated engineers applying the methodology. The sophisticated 3-dimensional core models applied by AREVA ensure that all physical effects relevant for safety are treated and the results are reliable and conservative. Presently AREVA employs SCIENCE, CASMO/NEMO and CASCADE-3D for pressurized water reactors. These codes are currently being consolidated into the next generation 3D code system ARCADIA®. AREVA continuously extends the validation base, including measurement campaigns in test facilities and comparisons of the predictions of steady state and transient measured data gathered from plants during many years of operation. Thus, the core models provide reliable and comprehensive results for a wide range of applications. For the application of these powerful tools, AREVA is taking benefit of its interdisciplinary know-how and international teamwork. Experienced engineers of different technical backgrounds are working together to ensure an appropriate interpretation of the calculation results, uncertainty analysis, along with continuously maintaining and enhancing the quality of the analysis methodologies. In this paper, an overview of AREVA’s broad application experience as well as the broad validation

  16. Enrichment of reactive macerals in coal: its characterization and utilization in coke making

    Science.gov (United States)

    Nag, Debjani; Kopparthi, P.; Dash, P. S.; Saxena, V. K.; Chandra, S.

    2018-01-01

    Macerals in coal are of different types: reactive and inert. These macerals are differ in their physical and chemical properties. Column flotation method has been used to separate the reactive macerals in a non-coking coal. The enriched coal is then characterized in order to understand the changes in the coking potential by different techniques. It is then used in making of metallurgical coke by proper blending with other coals. Enriched coal enhance the properties of metallurgical coke. This shows a path of utilization of non-coking coal in metallurgical coke making.

  17. Characterization of ion beam irradiated 304 stainless steel utilizing nanoindentation and Laue microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lupinacci, A. [Department of Materials Science and Engineering, University of California, Berkeley, CA (United States); Chen, K., E-mail: kchenlbl@gmail.com [Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Li, Y. [Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano), State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, Shaanxi 710049 (China); Kunz, M. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Jiao, Z.; Was, G.S. [Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI (United States); Abad, M.D. [Department of Nuclear Engineering, University of California, Berkeley, CA (United States); Minor, A.M. [Department of Materials Science and Engineering, University of California, Berkeley, CA (United States); National Center for Electron Microscopy, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Hosemann, P., E-mail: Peterh@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, CA (United States)

    2015-03-15

    Characterizing irradiation damage in materials utilized in light water reactors is critical for both material development and application reliability. Here we use both nanoindentation and Laue microdiffraction to characterize both the mechanical response and microstructure evolution due to irradiation. Two different irradiation conditions were considered in 304 stainless steel: 1 dpa and 10 dpa. In addition, an annealed condition of the 10 dpa specimen for 1 h at 500 °C was evaluated. Nanoindentation revealed an increase in hardness due to irradiation and also revealed that hardness saturated in the 10 dpa case. Broadening using Laue microdiffraction peaks indicates a significant plastic deformation in the irradiated area that is in good agreement with both the SRIM calculations and the nanoindentation results.

  18. Nevada Test Site Perspective on Characterization and Loading of Legacy Transuranic Drums Utilizing the Central Characterization Project

    International Nuclear Information System (INIS)

    R.G. Lahoud; J. F. Norton; I. L. Siddoway; L. W. Griswold

    2006-01-01

    The Nevada Test Site (NTS) has successfully completed a multi-year effort to characterize and ship 1860 legacy transuranic (TRU) waste drums for disposal at the Waste Isolation Pilot Plant (WIPP), a permanent TRU disposal site. This has been a cooperative effort among the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), the U.S. Department of Energy, Carlsbad Field Office (DOE/CBFO), the NTS Management and Operations (M and O) contractor Bechtel Nevada (BN), and various contractors under the Central Characterization Project (CCP) umbrella. The success is due primarily to the diligence, perseverance, and hard work of each of the contractors, the DOE/CBFO, and NNSA/NSO, along with the support of the U.S. Department of Energy, Headquarters (DOE/HQ). This paper presents, from an NTS perspective, the challenges and successes of utilizing the CCP for obtaining a certified characterization program, sharing responsibilities for characterization, data validation, and loading of TRU waste with BN to achieve disposal at WIPP from a Small Quantity Site (SQS) such as the NTS. The challenges in this effort arose from two general sources. First, the arrangement of DOE/CBFO contractors under the CCP performing work and certifying waste at the NTS within a Hazard Category 2 (HazCat 2) non-reactor nuclear facility operated by BN, presented difficult challenges. The nuclear safety authorization basis, safety liability and responsibility, conduct of operations, allocation and scheduling of resources, and other issues were particularly demanding. The program-level and field coordination needed for the closely interrelated characterization tasks was extensive and required considerable effort by all parties. The second source of challenge was the legacy waste itself. None of the waste was generated at the NTS. The waste was generated at Lawrence Livermore National Laboratory (LLNL), Lawrence Berkeley Laboratory (LBL), Lynchburg, Rocky

  19. Cerebral av angiomas: 3-dimensional demonstration by spiral CT

    International Nuclear Information System (INIS)

    Rieger, J.; Hosten, N.; Neumann, K.; Lemke, A.J.; Langer, R.; Lanksch, W.R.; Pfeifer, K.J.; Felix, R.

    1994-01-01

    In 20 patients with known or suspected supratentorial arteriovenous malformations, an attempt was made to see how far CT angiography with 3-dimensional reconstructions is able to make a diagnosis and to differentiate the various components of the angioma. Spiral CT was performed following an intravenous bolus injection of 60-80 ml of iodine containing contrast medium. In all patients the diagnosis was confirmed by intra-arterial DSA of the vertebral vessels. In 13 patients, av malformations could be diagnosed following multiplanar 3-D reconstructions which agreed with the findings on DSA. The large supplying vessels, the nidus and the large draining veins could be defined with certainty. In 6 patients follow-up examination after embolisation was performed. The results could be demonstrated in three dimensions and the success of treatment could be documented unequivocally. CT angiography with 3-D reconstruction is able to supply important information in the majority of intracranial av malformations, both during initial investigation and following treatment. (orig.) [de

  20. A 3-Dimensional Atlas of Human Tongue Muscles

    Science.gov (United States)

    SANDERS, IRA; MU, LIANCAI

    2013-01-01

    The human tongue is one of the most important yet least understood structures of the body. One reason for the relative lack of research on the human tongue is its complex anatomy. This is a real barrier to investigators as there are few anatomical resources in the literature that show this complex anatomy clearly. As a result, the diagnosis and treatment of tongue disorders lags behind that for other structures of the head and neck. This report intended to fill this gap by displaying the tongue’s anatomy in multiple ways. The primary material used in this study was serial axial images of the male and female human tongue from the Visible Human (VH) Project of the National Library of Medicine. In addition, thick serial coronal sections of three human tongues were rendered translucent. The VH axial images were computer reconstructed into serial coronal sections and each tongue muscle was outlined. These outlines were used to construct a 3-dimensional computer model of the tongue that allows each muscle to be seen in its in vivo anatomical position. The thick coronal sections supplement the 3-D model by showing details of the complex interweaving of tongue muscles throughout the tongue. The graphics are perhaps the clearest guide to date to aid clinical or basic science investigators in identifying each tongue muscle in any part of the human tongue. PMID:23650264

  1. Distance stereotest using a 3-dimensional monitor for adult subjects.

    Science.gov (United States)

    Kim, Jongshin; Yang, Hee Kyung; Kim, Youngmin; Lee, Byoungho; Hwang, Jeong-Min

    2011-06-01

    To evaluate the validity and test-retest reliability of a contour-based 3-dimensional (3-D) monitor distance stereotest (distance 3-D stereotest) and to measure the maximum horizontal disparity that can be fused with disparity vergence for determining the largest measurable disparity of true stereopsis. Observational case series. Sixty-four normal adult subjects (age range, 23 to 39 years) were recruited. Contour-based circles (crossed disparity, 5000 to 20 seconds of arc; Microsoft Visual Studio C(++) 6.0; Microsoft, Inc, Seattle, Washington, USA) were generated on a 3-D monitor (46-inch stereoscopic display) using polarization glasses and were presented to subjects with normal binocularity at 3 m. While the position of the stimulus changed among 4 possible locations, the subjects were instructed to press the corresponding position of the stimulus on a keypad. The results with the new distance 3-D stereotest were compared with those from the distance Randot stereotest. The results of the distance 3-D stereotest and the distance Randot stereotests were identical in 64% and within 1 disparity level in 97% of normal adults. Scores obtained with the 2 tests showed a statistically significant correlation (r = 0.324, P = .009). The half-width of the 95% limit of agreement was 0.47 log seconds of arc (1.55 octaves) using the distance 3-D stereotest--similar to or better than that obtained with conventional distance stereotests. The maximum binocular disparity that can be fused with vergence was 1828 ± 794 seconds of arc (range, 4000 to 500). The distance 3-D stereotest showed good concordance with the distance Randot stereotest and relatively good test-retest reliability, supporting the validity of the distance 3-D stereotest. The normative data set obtained from the present study can serve as a useful reference for quantitative assessment of a wide range of binocular sensory abnormalities. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. The 3-dimensional construction of the Rae craton, central Canada

    Science.gov (United States)

    Snyder, David B.; Craven, James A.; Pilkington, Mark; Hillier, Michael J.

    2015-10-01

    Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.

  3. 3-Dimensional Microorifice Fabricated Utilizing Single Undercut Etching Process for Producing Ultrasmall Water and Chitosan Droplets

    Directory of Open Access Journals (Sweden)

    Che-Hsin Lin

    2013-01-01

    Full Text Available This research reports a microfluidic device for producing small droplets via a microorifice and a T-junction structure. The orifice is fabricated using an isotropic undercut etching process of amorphous glass materials. Since the equivalent hydraulic diameter of the produced microorifice can be as small as 1.1 μm, the microdevice can easily produce droplets of the size smaller than 10 μm in diameter. In addition, a permanent hydrophobic coating technique is also applied to modify the main channel to be hydrophobic to enhance the formation of water-based droplets. Experimental results show that the developed microfluidic chip with the ultrasmall orifice can steadily produce water-in-oil droplets with different sizes. Uniform water-in-oil droplets with the size from 60 μm to 6.5 μm in diameter can be formed by adjusting the flow rate ratio of the continuous phase and the disperse phases from 1 to 7. Moreover, curable linear polymer of chitosan droplets with the size smaller than 100 μm can also be successfully produced using the developed microchip device. The microfluidic T-junction with a micro-orifice developed in the present study provides a simple yet efficient way to produce various droplets of different sizes.

  4. Use of 3-dimensional computed tomography to detect a barium-masked fish bone causing esophageal perforation.

    Science.gov (United States)

    Tsukiyama, Atsushi; Tagami, Takashi; Kim, Shiei; Yokota, Hiroyuki

    2014-01-01

    Computed tomography (CT) is useful for evaluating esophageal foreign bodies and detecting perforation. However, when evaluation is difficult owing to the previous use of barium as a contrast medium, 3-dimensional CT may facilitate accurate diagnosis. A 49-year-old man was transferred to our hospital with the diagnosis of esophageal perforation. Because barium had been used as a contrast medium for an esophagram performed at a previous hospital, horizontal CT and esophageal endoscopy could not be able to identify the foreign body or characterize the lesion. However, 3-dimensional CT clearly revealed an L-shaped foreign body and its anatomical relationships in the mediastinum. Accordingly, we removed the foreign body using an upper gastrointestinal endoscope. The foreign body was the premaxillary bone of a sea bream. The patient was discharged without complications.

  5. Registration of 3-dimensional facial photographs for clinical use.

    Science.gov (United States)

    Maal, Thomas J J; van Loon, Bram; Plooij, Joanneke M; Rangel, Frits; Ettema, Anke M; Borstlap, Wilfred A; Bergé, Stefaan J

    2010-10-01

    To objectively evaluate treatment outcomes in oral and maxillofacial surgery, pre- and post-treatment 3-dimensional (3D) photographs of the patient's face can be registered. For clinical use, it is of great importance that this registration process is accurate (photographs were captured at 3 different times: baseline (T(0)), after 1 minute (T(1)), and 3 weeks later (T(2)). Furthermore, a 3D photograph of the volunteer laughing (T(L)) was acquired to investigate the effect of facial expression. Two different registration methods were used to register the photographs acquired at all different times: surface-based registration and reference-based registration. Within the surface-based registration, 2 different software packages (Maxilim [Medicim NV, Mechelen, Belgium] and 3dMD Patient [3dMD LLC, Atlanta, GA]) were used to register the 3D photographs acquired at the various times. The surface-based registration process was repeated with the preprocessed photographs. Reference-based registration (Maxilim) was performed twice by 2 observers investigating the inter- and intraobserver error. The mean registration errors are small for the 3D photographs at rest (0.39 mm for T(0)-T(1) and 0.52 mm for T(0)-T(2)). The mean registration error increased to 1.2 mm for the registration between the 3D photographs acquired at T(0) and T(L). The mean registration error for the reference-based method was 1.0 mm for T(0)-T(1), 1.1 mm for T(0)-T(2), and 1.5 mm for T(0) and T(L). The mean registration errors for the preprocessed photographs were even smaller (0.30 mm for T(0)-T(1), 0.42 mm for T(0)-T(2), and 1.2 mm for T(0) and T(L)). Furthermore, a strong correlation between the results of both software packages used for surface-based registration was found. The intra- and interobserver error for the reference-based registration method was found to be 1.2 and 1.0 mm, respectively. Surface-based registration is an accurate method to compare 3D photographs of the same individual at

  6. The 3-dimensional core model DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, U.; Mittag, S.; Rohde, U.

    1999-01-01

    Analyzing the safety margins in transients and accidents of nuclear reactors 3-dimensional models of the core were used to avoid conservative assumptions needed for point kinetics or 1-dimensional models. Therefore, the 3D code DYN3D has been developed for the analysis of reactivity initiated accidents (RIA) in thermal nuclear reactors. The power distributions are calculated with the help of nodal expansion methods (NEM) for hexagonal and Cartesian geometry. The fuel rod model and the thermohydraulic part provide fuel temperatures, coolant temperatures and densities as well as boron concentrations for the calculation of feedback effects on the basis of cross section libraries generated by cell codes. Safety relevant parameters like maximum fuel and cladding temperatures, critical heat flux and degree of cladding oxidation are estimated. DYN3D can analyze RIA initiated by moved control rods and/or perturbations of the coolant flow. Stationary and transient boundary conditions for the coolant flow, the core inlet temperatures and boron concentrations at the core inlet have to be given. For analyzing more complex transients the code DYN3D is coupled with the plant model ATHLET of the GRS. The extensive validation work accomplished for DYN3D is presented in several examples. Some applications of the code are described. (orig.) [Deutsch] Die Verwendung 3-dimensionaler Kernmodelle zur Untersuchung der Sicherheitsreserven bei Uebergangsprozessen und Stoerfaellen in Kernreaktoren vermeidet konservative Annahmen, die bei der Benutzung des Punktmodells oder 1-dimensionaler Modelle erforderlich sind. Aus diesen Gruenden wurde das 3-dimensionale Rechenprogramm DYN3D fuer die Untersuchung von Reaktivitaetsstoerfaellen in thermischen Reaktoren entwickelt. Die Leistungsverteilung wird mit nodalen Methoden fuer hexagonale oder kartesische Geometrie berechnet. Das Brennstabmodell und der thermohydraulische Teil von DYN3D liefert die Brennstofftemperaturen, Kuehlmitteltemperaturen

  7. Characterization of the malignity of tumors in the central nervous system utilizing the correlation dimension analysis

    International Nuclear Information System (INIS)

    Pereira, D.; Zambrano, C.; Martin L, M.

    1998-01-01

    In the present work it is proposed a method for the characterization of the irregularities present in the edges of malignant leisure of central nervous system over axial images generated through Nuclear magnetic Resonance by images. Through the use of techniques of digital images processing was possible to locate, extract and generate temporal series. These temporal series were utilized using the correlation dimension concept for producing a parameter which takes different values depending of the leisure type. It is demonstrated that this type of analysis suffers in a very acceptable form independently of the errors which can be generate by the fact that in the practice of temporal series obtained they are composed by a reduced number of points. (Author)

  8. Environmental waste site characterization utilizing aerial photographs, remote sensing, and surface geophysics

    International Nuclear Information System (INIS)

    Pope, P.; Van Eeckhout, E.; Rofer, C.; Baldridge, S.; Ferguson, J.; Jiracek, G.; Balick, L.; Josten, N.; Carpenter, M.

    1996-01-01

    Six different techniques were used to delineate 40 year old trench boundary at Los Alamos National Laboratory. Data from historical aerial photographs, a magnetic gradient survey, airborne multispectral and thermal infra-red imagery, seismic refraction, DC resistivity, and total field magnetometry were utilized in this process. Each data set indicated a southern and northern edge for the trench. Average locations and 95% confidence limits for each edge were determined along a survey line perpendicular to the trench. Trench edge locations were fairly consistent among all six techniques. Results from a modeling effort performed with the total magnetic field data was the least consistent. However, each method provided unique and complementary information, and the integration of all this information led to a more complete characterization of the trench boundaries and contents

  9. Characterization and constructive utilization of sludge produced in clari-flocculation unit of water treatment plant

    Science.gov (United States)

    Ahmad, Tarique; Ahmad, Kafeel; Alam, Mehtab

    2018-03-01

    All water treatment plants produce waste/residue amid the treatment of raw water. This study selectively investigates the clariflocculator sludge for its physicochemical characteristics and potential reuse options. Sieve analysis, XRF, SEM, XRD, FTIR, and TG-DTA instrumental techniques have been used to characterize the sludge sample. Results show that clariflocculator sludge contains about 78% fine sand having grain size range 150-75 μm. SiO2, Al2O3, Fe2O3 and CaO constitute the maximum percentage of chemical compounds present in the sludge and quartz is the main crystalline phase of the sludge. Recycling and reuse of this sludge, especially, as fine sand in preparing mortar, concrete mix and other civil engineering products would pave the way for constructive utilization with safe and sustainable sludge management strategies.

  10. Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source.

    Science.gov (United States)

    Mohandas, S P; Balan, L; Lekshmi, N; Cubelio, S S; Philip, R; Bright Singh, I S

    2017-03-01

    Production and characterization of polyhydroxybutyrate (PHB) from moderately halophilic bacterium Vibrio harveyi MCCB 284 isolated from tunicate Phallusia nigra. Twenty-five bacterial isolates were obtained from tunicate samples and three among them exhibited an orange fluorescence in Nile red staining indicating the presence of PHB. One of the isolates, MCCB 284, which showed rapid growth and good polymer yield, was identified as V. harveyi. The optimum conditions of the isolate for the PHB production were pH 8·0, sodium chloride concentration 20 g l -1 , inoculum size 0·5% (v/v), glycerol 20 g l -1 and 72 h of incubation at 30°C. Cell dry weight (CDW) of 3·2 g l -1 , PHB content of 2·3 g l -1 and final PHB yield of 1·2 g l -1 were achieved. The extracted PHB was characterized by FTIR, NMR and DSC-TGA techniques. An isolate of V. harveyi that could effectively utilize glycerol for growth and PHB accumulation was obtained from tunicate P. nigra. PHB produced was up to 72% based on CDW. This is the first report of an isolate of V. harveyi which utilizes glycerol as the sole carbon source for PHB production with high biomass yield. This isolate could be of use as candidate species for commercial PHB production using glycerol as the feed stock or as source of genes for recombinant PHB production or for synthetic biology. © 2016 The Society for Applied Microbiology.

  11. Characterization of Niobium Oxide Films Deposited by High Target Utilization Sputter Sources

    International Nuclear Information System (INIS)

    Chow, R; Ellis, A D; Loomis, G E; Rana, S I

    2007-01-01

    High quality, refractory metal, oxide coatings are required in a variety of applications such as laser optics, micro-electronic insulating layers, nano-device structures, electro-optic multilayers, sensors and corrosion barriers. A common oxide deposition technique is reactive sputtering because the kinetic mechanism vaporizes almost any solid material in vacuum. Also, the sputtered molecules have higher energies than those generated from thermal evaporation, and so the condensates are smoother and denser than those from thermally-evaporated films. In the typical sputtering system, target erosion is a factor that drives machine availability. In some situations such as nano-layered capacitors, where the device's performance characteristics depends on thick layers, target life becomes a limiting factor on the maximizing device functionality. The keen interest to increase target utilization in sputtering has been addressed in a variety of ways such as target geometry, rotating magnets, and/or shaped magnet arrays. Also, a recent sputtering system has been developed that generates a high density plasma, directs the plasma beam towards the target in a uniform fashion, and erodes the target in a uniform fashion. The purpose of this paper is to characterize and compare niobia films deposited by two types of high target utilization sputtering sources, a rotating magnetron and a high density plasma source. The oxide of interest in this study is niobia because of its high refractive index. The quality of the niobia films were characterized spectroscopically in optical transmission, ellipsometrically, and chemical stoichiometry with X-ray photo-electron spectroscopy. The refractive index, extinction coefficients, Cauchy constants were derived from the ellipsometric modeling. The mechanical properties of coating density and stress are also determined

  12. The pneumatic carrier facility in Dhruva reactor: commissioning, characterization and utilization

    International Nuclear Information System (INIS)

    Reddy, A.V.R.; Newton Nathaniel, T.; Nair, A.G.C.; Acharya, R.; Lahiri, D.K.; Kulkarni, U.S.; Sengupta, C.; Duraisamy, S.; Shukla, D.K.; Chakrabarty, K.; Ghosh, R.; Mondal, S.K.; Gujar, H.G.

    2007-11-01

    The 100 MWt power Dhruva research reactor, BARC is provided with pneumatic carrier facility (PCF) to carry out R and D work using short-lived (seconds to minutes) radioisotopes in the fields like neutron activation analysis (NAA) and nuclear fission. The samples are kept inside a high density polypropylene capsule (rabbit), which is pneumatically sent to the irradiation position in the core and retrieved after a preset time of irradiation. After the irradiation, radioactivity assay is carried out using high resolution gamma ray spectrometry with HPGe detector coupled to PC based MCA. The availability of high neutron flux (∼ 5 x 10 13 cm -2 s -1 at 50 MWt power) and shorter retrieval time (∼5 seconds) make it possible to measure short-lived isotopes with enhanced sensitivity. This report describes the salient features of this facility, characterization of the neutron spectrum at this irradiation position and its utilization. The PCF is being extensively utilized for analytical applications using NAA as well as nuclear fission studies. A brief description of analysis of some samples of geological, environmental and biological origin, nuclear materials as well as reference materials is included in this report. Protocol and check list for carrying out PCF irradiations and gamma spectrometric assay are also given at the end of the report. (author)

  13. Preparation and characterization of clay bonded high strength silica refractory by utilizing agriculture waste

    International Nuclear Information System (INIS)

    Bhardwaj, A.; Hossain, S.K.S.; Majh, M.R.

    2017-01-01

    Clay bonded silica refractory was prepared by utilizing agriculture waste called rice husk ash (RHA) and refractory grog. Various samples were prepared with different compositions based upon partial replacement of quartz by RHA. Rectangular samples were prepared by following semi dry process prior to pressing in a uniaxial hydraulic press and sintering at a temperature of 1200°C in air atmosphere. Various physical, mechanical and thermal characterizations were done like X-ray diffraction (XRD), scanning electron microscope (SEM), apparent porosity (AP), bulk density (BD), cold crushing strength (CCS), refractoriness and thermal conductivity measurement. The sample utilizing 30% of RHA was considered most optimum composition which produced cold crushing strength of 38MPa and thermal conductivity of 2.08W/mK at 800°C with a considerable good refractoriness. Enhancement in the mechanical as well as thermal properties may be considered as attributed to the amorphous silica which has reacted more easily and efficiently with other material surrounding giving rise to the densification and produced stable crystalline phase to the refractory material. These promising characteristics suggests that the RHA may lead to be used as a potential material for the preparation of clay bonded high strength silica refractories. [es

  14. Unsaturated flow characterization utilizing water content data collected within the capillary fringe

    Science.gov (United States)

    Baehr, Arthur; Reilly, Timothy J.

    2014-01-01

    An analysis is presented to determine unsaturated zone hydraulic parameters based on detailed water content profiles, which can be readily acquired during hydrological investigations. Core samples taken through the unsaturated zone allow for the acquisition of gravimetrically determined water content data as a function of elevation at 3 inch intervals. This dense spacing of data provides several measurements of the water content within the capillary fringe, which are utilized to determine capillary pressure function parameters via least-squares calibration. The water content data collected above the capillary fringe are used to calculate dimensionless flow as a function of elevation providing a snapshot characterization of flow through the unsaturated zone. The water content at a flow stagnation point provides an in situ estimate of specific yield. In situ determinations of capillary pressure function parameters utilizing this method, together with particle-size distributions, can provide a valuable supplement to data libraries of unsaturated zone hydraulic parameters. The method is illustrated using data collected from plots within an agricultural research facility in Wisconsin.

  15. Utility of bromide and heat tracers for aquifer characterization affected by highly transient flow conditions

    Science.gov (United States)

    Ma, Rui; Zheng, Chunmiao; Zachara, John M.; Tonkin, Matthew

    2012-08-01

    A tracer test using both bromide and heat tracers conducted at the Integrated Field Research Challenge site in Hanford 300 Area (300A), Washington, provided an instrument for evaluating the utility of bromide and heat tracers for aquifer characterization. The bromide tracer data were critical to improving the calibration of the flow model complicated by the highly dynamic nature of the flow field. However, most bromide concentrations were obtained from fully screened observation wells, lacking depth-specific resolution for vertical characterization. On the other hand, depth-specific temperature data were relatively simple and inexpensive to acquire. However, temperature-driven fluid density effects influenced heat plume movement. Moreover, the temperature data contained "noise" caused by heating during fluid injection and sampling events. Using the hydraulic conductivity distribution obtained from the calibration of the bromide transport model, the temperature depth profiles and arrival times of temperature peaks simulated by the heat transport model were in reasonable agreement with observations. This suggested that heat can be used as a cost-effective proxy for solute tracers for calibration of the hydraulic conductivity distribution, especially in the vertical direction. However, a heat tracer test must be carefully designed and executed to minimize fluid density effects and sources of noise in temperature data. A sensitivity analysis also revealed that heat transport was most sensitive to hydraulic conductivity and porosity, less sensitive to thermal distribution factor, and least sensitive to thermal dispersion and heat conduction. This indicated that the hydraulic conductivity remains the primary calibration parameter for heat transport.

  16. Characterization of Vancomycin Reactions and Linezolid Utilization in the Pediatric Population.

    Science.gov (United States)

    Lin, Samantha K; Mulieri, Kevin M; Ishmael, Faoud T

    Red man syndrome (RMS) occurs because of non-IgE-mediated histamine release. Unlike vancomycin allergy, which necessitates the use of an alternative drug (often linezolid), RMS does not typically preclude further vancomycin use. Care should be taken to differentiate these reaction types from one another to prevent unnecessary vancomycin avoidance. To characterize vancomycin reaction types in our population, and to determine whether having a reaction consistent with RMS is associated with otherwise unexplained vancomycin avoidance and linezolid use. We retrospectively reviewed charts for children with documented vancomycin reactions. We classified the in-hospital reactions via an objective analysis and estimated the prevalence of different reaction types. We then identified children who received linezolid over 3 years, and investigated reasons for linezolid use instead of vancomycin. Of the 78 in-hospital reactions we characterized, 72 (92%) were objectively consistent with RMS, 5 we could not objectively classify (2 most likely RMS, 3 more suspicious for possible IgE-mediated allergy), and 1 was a non-RMS/non-IgE reaction. Of 60 children who received linezolid, 19 had previous reactions consistent with RMS, which should not preclude further vancomycin. Nevertheless, only 7 of 19 (37%) had a clear explanation for receiving linezolid instead of vancomycin compared with 32 of 39 (82%) children without previous vancomycin reactions (P linezolid utilization. We propose that this may be related to how reactions appear in the electronic medical record. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. A Characterization of the Utility of Using Artificial Intelligence to Test Two Artificial Intelligence Systems

    Directory of Open Access Journals (Sweden)

    Jeremy Straub

    2013-05-01

    Full Text Available An artificial intelligence system, designed for operations in a real-world environment faces a nearly infinite set of possible performance scenarios. Designers and developers, thus, face the challenge of validating proper performance across both foreseen and unforeseen conditions, particularly when the artificial intelligence is controlling a robot that will be operating in close proximity, or may represent a danger, to humans. While the manual creation of test cases allows limited testing (perhaps ensuring that a set of foreseeable conditions trigger an appropriate response, this may be insufficient to fully characterize and validate safe system performance. An approach to validating the performance of an artificial intelligence system using a simple artificial intelligence test case producer (AITCP is presented. The AITCP allows the creation and simulation of prospective operating scenarios at a rate far exceeding that possible by human testers. Four scenarios for testing an autonomous navigation control system are presented: single actor in two-dimensional space, multiple actors in two-dimensional space, single actor in three-dimensional space, and multiple actors in three-dimensional space. The utility of using the AITCP is compared to that of human testers in each of these scenarios.

  18. Utility of High Temporal Resolution Observations for Heat Health Event Characterization

    Science.gov (United States)

    Palecki, M. A.

    2017-12-01

    Many heat health watch systems produce a binary on/off warning when conditions are predicted to exceed a given threshold during a day. Days with warnings and their mortality/morbidity statistics are analyzed relative to days not warned to determine the impacts of the event on human health, the effectiveness of warnings, and other statistics. The climate analyses of the heat waves or extreme temperature events are often performed with hourly or daily observations of air temperature, humidity, and other measured or derived variables, especially the maxima and minima of these data. However, since the beginning of the century, 5-minute observations are readily available for many weather and climate stations in the United States. NOAA National Centers for Environmental Information (NCEI) has been collecting 5-minute observations from the NOAA Automated Surface Observing System (ASOS) stations since 2000, and from the U.S. Climate Reference Network (USCRN) stations since 2005. This presentation will demonstrate the efficacy of utilizing 5-minute environmental observations to characterize heat waves by counting the length of time conditions exceed extreme thresholds based on individual and multiple variables and on derived variables such as the heat index. The length and depth of recovery periods between daytime heating periods will also be examined. The length of time under extreme conditions will influence health outcomes for those directly exposed. Longer periods of dangerous conditions also could increase the chances for poor health outcomes for those only exposed intermittently through cumulative impacts.

  19. A new concept in biometric identification 3-dimensional hand geometry

    International Nuclear Information System (INIS)

    Sidlauskas, D.P.

    1987-01-01

    A new type of biometric identifier which utilizes hand outline measurements made in three dimensions is described. This device uses solid state imaging with no moving parts. The important characteristics of accuracy, speed, user tolerability, small template size, low power, portability and reliability are discussed. A complete stand-alone biometric access control station with sufficient memory for 10,000 users and weighing less than 10 pounds has been built and tested. A test was conducted involving daily use by 112 users over a seven week period during which over 6300 access attempts were made. The single try equal error rate was found to be 0.4%. There were no false rejects when three tries were allowed before access was denied. Defeat with an artifact is difficult because the hand must be copied in all three dimensions

  20. Scaling Relations and Self-Similarity of 3-Dimensional Reynolds-Averaged Navier-Stokes Equations.

    Science.gov (United States)

    Ercan, Ali; Kavvas, M Levent

    2017-07-25

    Scaling conditions to achieve self-similar solutions of 3-Dimensional (3D) Reynolds-Averaged Navier-Stokes Equations, as an initial and boundary value problem, are obtained by utilizing Lie Group of Point Scaling Transformations. By means of an open-source Navier-Stokes solver and the derived self-similarity conditions, we demonstrated self-similarity within the time variation of flow dynamics for a rigid-lid cavity problem under both up-scaled and down-scaled domains. The strength of the proposed approach lies in its ability to consider the underlying flow dynamics through not only from the governing equations under consideration but also from the initial and boundary conditions, hence allowing to obtain perfect self-similarity in different time and space scales. The proposed methodology can be a valuable tool in obtaining self-similar flow dynamics under preferred level of detail, which can be represented by initial and boundary value problems under specific assumptions.

  1. SOME PROBLEMS ON JUMP CONDITIONS OF SHOCK WAVES IN 3-DIMENSIONAL SOLIDS

    Institute of Scientific and Technical Information of China (English)

    LI Yong-chi; YAO Lei; HU Xiu-zhang; CAO Jie-dong; DONG Jie

    2006-01-01

    Based on the general conservation laws in continuum mechanics, the Eulerian and Lagrangian descriptions of the jump conditions of shock waves in 3-dimensional solids were presented respectively. The implication of the jump conditions and their relations between each other, particularly the relation between the mass conservation and the displacement continuity, were discussed. Meanwhile the shock wave response curves in 3-dimensional solids, i.e. the Hugoniot curves were analysed, which provide the foundation for studying the coupling effects of shock waves in 3-dimensional solids.

  2. Preparation and characterization of clay bonded high strength silica refractory by utilizing agriculture waste

    Directory of Open Access Journals (Sweden)

    Aman Bhardwaj

    2017-11-01

    Full Text Available Clay bonded silica refractory was prepared by utilizing agriculture waste called rice husk ash (RHA and refractory grog. Various samples were prepared with different compositions based upon partial replacement of quartz by RHA. Rectangular samples were prepared by following semi dry process prior to pressing in a uniaxial hydraulic press and sintering at a temperature of 1200 °C in air atmosphere. Various physical, mechanical and thermal characterizations were done like X-ray diffraction (XRD, scanning electron microscope (SEM, apparent porosity (AP, bulk density (BD, cold crushing strength (CCS, refractoriness and thermal conductivity measurement. The sample utilizing 30% of RHA was considered most optimum composition which produced cold crushing strength of 38 MPa and thermal conductivity of 2.08 W/m K at 800 °C with a considerable good refractoriness. Enhancement in the mechanical as well as thermal properties may be considered as attributed to the amorphous silica which has reacted more easily and efficiently with other material surrounding giving rise to the densification and produced stable crystalline phase to the refractory material. These promising characteristics suggests that the RHA may lead to be used as a potential material for the preparation of clay bonded high strength silica refractories. Resumen: Se preparó sílice refractaria unida a arcilla con residuos agrícolas conocidos como ceniza de cascarilla de arroz (rice husk ash [RHA] y grog refractario. Se prepararon varias muestras con diferentes composiciones basadas en la sustitución parcial de cuarzo por RHA. Las muestras rectangulares se prepararon siguiendo un proceso semiseco antes de prensarlas en una prensa hidráulica uniaxial y sinterizarlas a una temperatura de 1.200 °C en atmósfera de aire. Se realizaron diversas caracterizaciones físicas, mecánicas y térmicas, como la difracción de rayos X, el microscopio electrónico de barrido, la porosidad

  3. Comparing 3-dimensional virtual methods for reconstruction in craniomaxillofacial surgery.

    Science.gov (United States)

    Benazzi, Stefano; Senck, Sascha

    2011-04-01

    In the present project, the virtual reconstruction of digital osteomized zygomatic bones was simulated using different methods. A total of 15 skulls were scanned using computed tomography, and a virtual osteotomy of the left zygomatic bone was performed. Next, virtual reconstructions of the missing part using mirror imaging (with and without best fit registration) and thin plate spline interpolation functions were compared with the original left zygomatic bone. In general, reconstructions using thin plate spline warping showed better results than the mirroring approaches. Nevertheless, when dealing with skulls characterized by a low degree of asymmetry, mirror imaging and subsequent registration can be considered a valid and easy solution for zygomatic bone reconstruction. The mirroring tool is one of the possible alternatives in reconstruction, but it might not always be the optimal solution (ie, when the hemifaces are asymmetrical). In the present pilot study, we have verified that best fit registration of the mirrored unaffected hemiface and thin plate spline warping achieved better results in terms of fitting accuracy, overcoming the evident limits of the mirroring approach. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Bioactive glass-poly (ε-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks

    International Nuclear Information System (INIS)

    Yun, Hui-suk; Kim, Seung-eon; Park, Eui Kyun

    2011-01-01

    Hierarchically mesoporous-macroporous-giant-porous bioactive glass/poly ε-caprolactone (PCL) composite scaffolds were prepared using a combination of the sol-gel method, evaporation-induced self-assembly process in the presence of nonionic triblock copolymer, EO 100 PO 65 EO 100 (F127), as template, salt leaching method, and rapid prototyping techniques. F127 acts as a template, inducing the formation of mesopores, NaCl with sizes between 25 and 33 μm provides macro-pores after leaching, and rapid prototyping produces giant-pores. The structure and morphology of the scaffolds were characterized by the field emission scanning electron microscopy, transmission electron microscopy, and Hg porosimetry. The mechanical properties of the scaffolds were examined by the dynamic mechanical analysis. Their in vitro bioactivities were confirmed by immersing the scaffolds in simulated body fluid. Their biocompatibilities were also evaluated by culturing human bone marrow stromal cells on the scaffolds. The scaffolds show good molding capabilities, mechanical properties, 3 dimensionally well-interconnected pore structures, bioactivities, and biocompatibilities in vitro. Depending on the amount of NaCl, the scaffolds also show unique sponge-like properties, but still retain better mechanical properties than general salt leaching derived PCL scaffolds. All of the data provide good evidence that the obtained scaffolds possess excellent potential for applications in the fields of tissue engineering and drug storage.

  5. Multiattribute Utility Theory without Expected Utility Foundations

    NARCIS (Netherlands)

    Stiggelbout, A.M.; Wakker, P.P.

    1995-01-01

    Methods for determining the form of utilities are needed for the implementation of utility theory in specific decisions. An important step forward was achieved when utility theorists characterized useful parametric families of utilities, and simplifying decompositions of multiattribute utilities.

  6. Multiattribute utility theory without expected utility foundations

    NARCIS (Netherlands)

    Wakker, P.P.; Miyamoto, J.

    1996-01-01

    Methods for determining the form of utilities are needed for the implementation of utility theory in specific decisions. An important step forward was achieved when utility theorists characterized useful parametric families of utilities, and simplifying decompositions of multiattribute utilities.

  7. The application of a 3 dimensional image scanner to the strain measurement

    International Nuclear Information System (INIS)

    Mazda, Taiji; Ogawa, Hiroshi; Suzuki, Michiaki; Nakano, Yasuo.

    1993-01-01

    A large strain measuring method for a laminated seismic isolation rubber, which will be introduced to reactor buildings of the Demonstration Fast Breeder Reactor (DFBR), was developed. With using strain gages, it is difficult to measure the large strain under the large displacement condition. With using the optical instruments, it is also impossible to measure the strain of a 3 dimensional object. We developed a new measuring method in which strain is calculated from a 3 dimensional deformation with using a 3 dimensional image scanner. This method is noncontact measuring method, and it can measure the strain of a 3 dimensional object under the large deformation. This work is one part of 'The Development of FBR Seismic Isolation system' operated by Central Research Institute of Electric Power Industry. (author)

  8. Various approaches to the modelling of large scale 3-dimensional circulation in the Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Shaji, C.; Bahulayan, N.; Rao, A.D.; Dube, S.K.

    In this paper, the three different approaches to the modelling of large scale 3-dimensional flow in the ocean such as the diagnostic, semi-diagnostic (adaptation) and the prognostic are discussed in detail. Three-dimensional solutions are obtained...

  9. Advancing biomarker research: utilizing 'Big Data' approaches for the characterization and prevention of bipolar disorder.

    Science.gov (United States)

    McIntyre, Roger S; Cha, Danielle S; Jerrell, Jeanette M; Swardfager, Walter; Kim, Rachael D; Costa, Leonardo G; Baskaran, Anusha; Soczynska, Joanna K; Woldeyohannes, Hanna O; Mansur, Rodrigo B; Brietzke, Elisa; Powell, Alissa M; Gallaugher, Ashley; Kudlow, Paul; Kaidanovich-Beilin, Oksana; Alsuwaidan, Mohammad

    2014-08-01

    To provide a strategic framework for the prevention of bipolar disorder (BD) that incorporates a 'Big Data' approach to risk assessment for BD. Computerized databases (e.g., Pubmed, PsychInfo, and MedlinePlus) were used to access English-language articles published between 1966 and 2012 with the search terms bipolar disorder, prodrome, 'Big Data', and biomarkers cross-referenced with genomics/genetics, transcriptomics, proteomics, metabolomics, inflammation, oxidative stress, neurotrophic factors, cytokines, cognition, neurocognition, and neuroimaging. Papers were selected from the initial search if the primary outcome(s) of interest was (were) categorized in any of the following domains: (i) 'omics' (e.g., genomics), (ii) molecular, (iii) neuroimaging, and (iv) neurocognitive. The current strategic approach to identifying individuals at risk for BD, with an emphasis on phenotypic information and family history, has insufficient predictive validity and is clinically inadequate. The heterogeneous clinical presentation of BD, as well as its pathoetiological complexity, suggests that it is unlikely that a single biomarker (or an exclusive biomarker approach) will sufficiently augment currently inadequate phenotypic-centric prediction models. We propose a 'Big Data'- bioinformatics approach that integrates vast and complex phenotypic, anamnestic, behavioral, family, and personal 'omics' profiling. Bioinformatic processing approaches, utilizing cloud- and grid-enabled computing, are now capable of analyzing data on the order of tera-, peta-, and exabytes, providing hitherto unheard of opportunities to fundamentally revolutionize how psychiatric disorders are predicted, prevented, and treated. High-throughput networks dedicated to research on, and the treatment of, BD, integrating both adult and younger populations, will be essential to sufficiently enroll adequate samples of individuals across the neurodevelopmental trajectory in studies to enable the characterization

  10. Characterization of nanostructures in the live cell plasma membrane utilizing advanced single molecule fluorescence techniques

    International Nuclear Information System (INIS)

    Brameshuber, M.

    2009-01-01

    lipid-lipid or protein-lipid interactions, protein-protein interactions play of mayor role for the regulation of cell metabolism and function. In this thesis I further characterized the interaction between human CD4, the major co-receptor in T cell activation, and human Lck, the protein tyrosine kinase essential for early T cell signaling using an ultra-sensitive fluorescence-based method. Interaction dynamics were studied in detail by performing photobleaching experiments and single molecule brightness analysis. This enabled a combined mobility and stoichiometry analysis of Lck-molecules interacting with the captured CD4 protein. In the last part of my thesis I present a single molecule fluorescence study using a variant of an oxidized phospholipid - which is known to induce apoptosis - to probe the structure of the cellular plasmamembrane. The cells were illuminated using a recently introduced technique which utilizes a highly inclined and laminated optical sheet (HILO) to reduce background signal arising from intracellular fluorophores or from cellular autofluorescence. Our data demonstrate the relevance of plasma membrane properties for uptake of oxidized phospholipids, and indicate a novel indirect mechanism for the control of endocytosis. (author) [de

  11. Application of the Garrlic Algorithm for the Characterization of Dust and Marine Particles Utilizing the Lidar-Sunphotometer Synergy

    Directory of Open Access Journals (Sweden)

    Tsekeri Alexandra

    2016-01-01

    Full Text Available The importance of studying the vertical distribution of aerosol plumes is prominent in regional and climate studies. The new Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC provides this opportunity combining active and passive ground-based remote sensing from lidar and sunphotometer measurements. Here, we utilize GARRLiC capabilities for the characterization of Saharan dust and marine particles at the Eastern Mediterranean region during the Characterization of Aerosol mixtures of Dust And Marine origin Experiment (CHARADMExp. Two different case studies are presented, a dust-dominated case which we managed to characterize successfully in terms of the particle microphysical properties and their vertical distribution and a case of two separate layers of marine and dust particles for which the characterization proved to be more challenging.

  12. Comparison of personal computer with CT workstation in the evaluation of 3-dimensional CT image of the skull

    International Nuclear Information System (INIS)

    Kang, Bok Hee; Kim, Kee Deog; Park, Chang Seo

    2001-01-01

    To evaluate the usefulness of the reconstructed 3-dimensional image on the personal computer in comparison with that of the CT workstation by quantitative comparison and analysis. The spiral CT data obtained from 27 persons were transferred from the CT workstation to a personal computer, and they were reconstructed as 3-dimensional image on the personal computer using V-works 2.0 TM . One observer obtained the 14 measurements on the reconstructed 3-dimensional image on both the CT workstation and the personal computer. Paired test was used to evaluate the intraobserver difference and the mean value of the each measurement on the CT workstation and the personal computer. Pearson correlation analysis and % imcongruence were also performed. I-Gn, N-Gn, N-A, N-Ns, B-A and G-Op did not show any statistically significant difference (p>0.05), B-O, B-N, Eu-Eu, Zy-Zy, Biw, D-D, Orbrd R, and L had statistically significant difference (p<0.05), but the mean values of the differences of all measurements were below 2 mm, except for D-D. The value of correlation coefficient γ was greater than 0.95 at I-Gn, N-Gn, N-A, N-Ns, B-A, B-N, G-Op, Eu-Eu, Zy-Zy, and Biw, and it was 0.75 at B-O, 0.78 at D-D, and 0.82 at both Orbrb R and L. The % incongruence was below 4% at I-Gn, N-Gn, N-A, N-Ns, B-A, B-N, G-Op, Eu-Eu, Zy-Zy, and Biw, and 7.18%, 10.78%, 4.97%, 5.89% at B-O, D-D, Orbrb R and L respectively. It can be considered that the utilization of the personal computer has great usefulness in reconstruction of the 3-dimensional image when it comes to the economics, accessibility and convenience, except for thin bones and the landmarks which and difficult to be located

  13. Longitudinal Dynamics of 3-Dimensional Components of Selfhood After Severe Traumatic Brain Injury: A qEEG Case Study.

    Science.gov (United States)

    Fingelkurts, Andrew A; Fingelkurts, Alexander A

    2017-09-01

    In this report, we describe the case of a patient who sustained extremely severe traumatic brain damage with diffuse axonal injury in a traffic accident and whose recovery was monitored during 6 years. Specifically, we were interested in the recovery dynamics of 3-dimensional components of selfhood (a 3-dimensional construct model for the complex experiential selfhood has been recently proposed based on the empirical findings on the functional-topographical specialization of 3 operational modules of brain functional network responsible for the self-consciousness processing) derived from the electroencephalographic (EEG) signal. The analysis revealed progressive (though not monotonous) restoration of EEG functional connectivity of 3 modules of brain functional network responsible for the self-consciousness processing, which was also paralleled by the clinically significant functional recovery. We propose that restoration of normal integrity of the operational modules of the self-referential brain network may underlie the positive dynamics of 3 aspects of selfhood and provide a neurobiological mechanism for their recovery. The results are discussed in the context of recent experimental studies that support this inference. Studies of ongoing recovery after severe brain injury utilizing knowledge about each separate aspect of complex selfhood will likely help to develop more efficient and targeted rehabilitation programs for patients with brain trauma.

  14. Characterization of acetate-utilizing methanogenic bacteria, depending on varying acetate concentrations, in a biogas plant. Phase 1

    International Nuclear Information System (INIS)

    Ahring, B.K.

    1994-12-01

    The present report contains the results of a project concerning behaviour of acetate-utilizing methanogenic bacteria in mesophilic and thermophilic biogas plants, collected in 1992 - 1994 period. Labelled acetates (2-C 14 -CH 3 COOH) have been used to characterize the types of methane bacteria populations in the Danish biogas plants, the optimum acetate concentration for these bacteria and acetate metabolism in mesophilic and thermophilic biogas reactors with low acetate concentrations. 2 publications are included. (EG)

  15. Axes of resistance for tooth movement: does the center of resistance exist in 3-dimensional space?

    Science.gov (United States)

    Viecilli, Rodrigo F; Budiman, Amanda; Burstone, Charles J

    2013-02-01

    The center of resistance is considered the most important reference point for tooth movement. It is often stated that forces through this point will result in tooth translation. The purpose of this article is to report the results of numeric experiments testing the hypothesis that centers of resistance do not exist in space as 3-dimensional points, primarily because of the geometric asymmetry of the periodontal ligament. As an alternative theory, we propose that, for an arbitrary tooth, translation references can be determined by 2-dimensional projection intersections of 3-dimensional axes of resistance. Finite element analyses were conducted on a maxillary first molar model to determine the position of the axes of rotation generated by 3-dimensional couples. Translation tests were performed to compare tooth movement by using different combinations of axes of resistance as references. The couple-generated axes of rotation did not intersect in 3 dimensions; therefore, they do not determine a 3-dimensional center of resistance. Translation was obtained by using projection intersections of the 2 axes of resistance perpendicular to the force direction. Three-dimensional axes of resistance, or their 2-dimensional projection intersections, should be used to plan movement of an arbitrary tooth. Clinical approximations to a small 3-dimensional "center of resistance volume" might be adequate in nearly symmetric periodontal ligament cases. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  16. Structural characterization of the PTS IIA and IIB proteins associated with pneumococcal fucose utilization.

    Science.gov (United States)

    Higgins, Melanie A; Hamilton, Aileen M; Boraston, Alisdair B

    2017-05-01

    Streptococcus pneumoniae harbors a significant number of transporters, including phosphotransferase (PTS) systems, allowing the bacterium to utilize a number of different carbohydrates for metabolic and other purposes. The genes encoding for one PTS transport system in particular (EII fuc ) are found within a fucose utilization operon in S. pneumoniae TIGR4. Here, we report the three-dimensional structures of IIA fuc and IIB fuc providing evidence that this PTS system belongs to the EII man family. Additionally, the predicted metabolic pathway for this distinctive fucose utilization system suggests that EII fuc transports the H-disaccharide blood group antigen, which would represent a novel PTS transporter specificity. Proteins 2017; 85:963-968. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Structural characterization of bentonite clays for utilization as nanofillers in nanocomposites; Caracterizacao estrutural de argilas bentoniticas para utilizacao como nanocargas

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Carlos Ivan Ribeiro de; Rocha, Marisa Cristina Guimares; Vogas, Arthur Considera, E-mail: carlosivanr@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Instituto Politecnico; Silva, Ana Lucia Nazareth da [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Instituto de Macromoleculas Professora Eloisa Mano; Bertolino, Luiz Carlos [Centro de Tecnologia Mineral (CETEM/MCTI), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    Clays of different composition have been used in the development of polymer nanocomposites. However, the utilization of bentonite clays has been emphasized in Brazil, mainly due to their availability.The best known and studied deposits of bentonite clays are located in the state of Paraiba. However, these deposits are becoming exhausted after decades of exploitation. In this context, the aim of this work is to proceed the physical-mineralogical characterization of bentonite clays recently discovered in Cubati, PB. In order to achieve this objective, the samples underwent a particle size classification step and were characterized by X-ray fluorescence, X-ray diffraction, infrared spectroscopy, thermal analysis and scanning electron microscopy. Results of X-ray diffraction showed that the samples are composed of smectite, and kaolinite and quartz. The characterization of the samples by FTIR confirmed these results. Results of chemical analysis showed that the clays have predominantly different exchangeable cations. (author)

  18. Coal and energy: a southern perspective. Regional characterization report for the National Coal Utilization Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Boercker, F. D.; Davis, R. M.; Goff, F. G.; Olson, J. S.; Parzyck, D. C.

    1977-08-01

    This publication is the first of several reports to be produced for the National Coal Utilization Assessment, a program sponsored by the Assistant Administrator for Environment and Safety through the Division of Technology Overview of ERDA. The purpose of the report is to present the state and regional perspective on energy-related issues, especially those concerning coal production and utilization for 12 southern states. This report compiles information on the present status of: (1) state government infrastructure that deals with energy problems; (2) the balance between energy consumption and energy production; (3) the distribution of proved reserves of various mineral energy resources; (4) the major characteristics of the population; (5) the important features of the environment; and (6) the major constraints to increased coal production and utilization as perceived by the states and regional agencies. Many energy-related characteristics described vary significantly from state to state within the region. Regional and national generalizations obscure these important local variations. The report provides the state and regional perspective on energy issues so that these issues may be considered objectively and incorporated into the National Coal Utilization Assessment. This Assessment is designed to provide useful outputs for national, regional, and local energy planners.

  19. Multiattribute Utility Theory without Expected Utility Foundations

    NARCIS (Netherlands)

    J. Miyamoto (John); P.P. Wakker (Peter)

    1996-01-01

    textabstractMethods for determining the form of utilities are needed for the implementation of utility theory in specific decisions. An important step forward was achieved when utility theorists characterized useful parametric families of utilities and simplifying decompositions of multiattribute

  20. A Fortran program (RELAX3D) to solve the 3 dimensional Poisson (Laplace) equation

    International Nuclear Information System (INIS)

    Houtman, H.; Kost, C.J.

    1983-09-01

    RELAX3D is an efficient, user friendly, interactive FORTRAN program which solves the Poisson (Laplace) equation Λ 2 =p for a general 3 dimensional geometry consisting of Dirichlet and Neumann boundaries approximated to lie on a regular 3 dimensional mesh. The finite difference equations at these nodes are solved using a successive point-iterative over-relaxation method. A menu of commands, supplemented by HELP facility, controls the dynamic loading of the subroutine describing the problem case, the iterations to converge to a solution, and the contour plotting of any desired slices, etc

  1. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORN{sup TM}

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan [Korea Nuclear Fuel Company, Taejon (Korea, Republic of); Kim, Yo-han; Sung, Chang-kyung [KEPRI, Taejon (Korea, Republic of); Song, Jae-seung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod.

  2. 3-Dimensional Methodology for the Control Rod Ejection Accident Analysis Using UNICORNTM

    International Nuclear Information System (INIS)

    Jang, Chan-su; Um, Kil-sup; Ahn, Dawk-hwan; Kim, Yo-han; Sung, Chang-kyung; Song, Jae-seung

    2006-01-01

    The control rod ejection accident has been analyzed with STRIKIN-II code using the point kinetics model coupled with conservative factors to address the three dimensional aspects. This may result in a severe transient with very high fuel enthalpy deposition. KNFC, under the support of KEPRI and KAERI, is developing 3-dimensional methodology for the rod ejection accident analysis using UNICORNTM (Unified Code of RETRAN, TORC and MASTER). For this purpose, 3-dimensional MASTER-TORC codes, which have been combined with the dynamic-link library by KAERI, are used in the transient analysis of the core and RETRAN code is used to estimate the enthalpy deposition in the hot rod

  3. Environmental waste site characterization utilizing aerial photographs and satellite imagery: Three sites in New Mexico, USA

    International Nuclear Information System (INIS)

    Van Eeckhout, E.; Pope, P.; Becker, N.; Wells, B.; Lewis, A.; David, N.

    1996-01-01

    The proper handling and characterization of past hazardous waste sites is becoming more and more important as world population extends into areas previously deemed undesirable. Historical photographs, past records, current aerial satellite imagery can play an important role in characterizing these sites. These data provide clear insight into defining problem areas which can be surface samples for further detail. Three such areas are discussed in this paper: (1) nuclear wastes buried in trenches at Los Alamos National Laboratory, (2) surface dumping at one site at Los Alamos National Laboratory, and (3) the historical development of a municipal landfill near Las Cruces, New Mexico

  4. Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria.

    Science.gov (United States)

    Shrout, Joshua D; Scheetz, Todd E; Casavant, Thomas L; Parkin, Gene F

    2005-04-01

    Recent studies have shown that perchlorate (ClO(4) (-)) can be degraded by some pure-culture and mixed-culture bacteria with the addition of hydrogen. This paper describes the isolation of two hydrogen-utilizing perchlorate-degrading bacteria capable of using inorganic carbon for growth. These autotrophic bacteria are within the genus Dechloromonas and are the first Dechloromonas species that are microaerophilic and incapable of growth at atmospheric oxygen concentrations. Dechloromonas sp. JDS5 and Dechloromonas sp. JDS6 are the first perchlorate-degrading autotrophs isolated from a perchlorate-contaminated site. Measured hydrogen thresholds were higher than for other environmentally significant, hydrogen-utilizing, anaerobic bacteria (e.g., halorespirers). The chlorite dismutase activity of these bacteria was greater for autotrophically grown cells than for cells grown heterotrophically on lactate. These bacteria used fumarate as an alternate electron acceptor, which is the first report of growth on an organic electron acceptor by perchlorate-reducing bacteria.

  5. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of an Inflatable Module

    Science.gov (United States)

    Valle, Gerard D.; Selig, Molly; Litteken, Doug; Oliveras, Ovidio

    2012-01-01

    This paper documents the integration of a large hatch penetration into an inflatable module. This paper also documents the comparison of analytical load predictions with measured results utilizing strain measurement. Strain was measured by utilizing photogrammetric measurement and through measurement obtained from strain gages mounted to selected clevises that interface with the structural webbings. Bench testing showed good correlation between strain measurement obtained from an extensometer and photogrammetric measurement especially after the fabric has transitioned through the low load/high strain region of the curve. Test results for the full-scale torus showed mixed results in the lower load and thus lower strain regions. Overall strain, and thus load, measured by strain gages and photogrammetry tracked fairly well with analytical predictions. Methods and areas of improvements are discussed.

  6. Using Health Care Utilization and Publication Patterns to Characterize the Research Portfolio and to Plan Future Research Investments.

    Directory of Open Access Journals (Sweden)

    Luba Katz

    Full Text Available Government funders of biomedical research are under increasing pressure to demonstrate societal benefits of their investments. A number of published studies attempted to correlate research funding levels with the societal burden for various diseases, with mixed results. We examined whether research funded by the Department of Veterans Affairs (VA is well aligned with current and projected veterans' health needs. The organizational structure of the VA makes it a particularly suitable setting for examining these questions.We used the publication patterns and dollar expenditures of VA-funded researchers to characterize the VA research portfolio by disease. We used health care utilization data from the VA for the same diseases to define veterans' health needs. We then measured the level of correlation between the two and identified disease groups that were under- or over-represented in the research portfolio relative to disease expenditures. Finally, we used historic health care utilization trends combined with demographic projections to identify diseases and conditions that are increasing in costs and/or patient volume and consequently represent potential targets for future research investments.We found a significant correlation between research volume/expenditures and health utilization. Some disease groups were slightly under- or over-represented, but these deviations were relatively small. Diseases and conditions with the increasing utilization trend at the VA included hypertension, hypercholesterolemia, diabetes, hearing loss, sleeping disorders, complications of pregnancy, and several mental disorders.Research investments at the VA are well aligned with veteran health needs. The VA can continue to meet these needs by supporting research on the diseases and conditions with a growing number of patients, costs of care, or both. Our approach can be used by other funders of disease research to characterize their portfolios and to plan research

  7. Using Health Care Utilization and Publication Patterns to Characterize the Research Portfolio and to Plan Future Research Investments.

    Science.gov (United States)

    Katz, Luba; Fink, Rebecca V; Bozeman, Samuel R; McNeil, Barbara J

    2014-01-01

    Government funders of biomedical research are under increasing pressure to demonstrate societal benefits of their investments. A number of published studies attempted to correlate research funding levels with the societal burden for various diseases, with mixed results. We examined whether research funded by the Department of Veterans Affairs (VA) is well aligned with current and projected veterans' health needs. The organizational structure of the VA makes it a particularly suitable setting for examining these questions. We used the publication patterns and dollar expenditures of VA-funded researchers to characterize the VA research portfolio by disease. We used health care utilization data from the VA for the same diseases to define veterans' health needs. We then measured the level of correlation between the two and identified disease groups that were under- or over-represented in the research portfolio relative to disease expenditures. Finally, we used historic health care utilization trends combined with demographic projections to identify diseases and conditions that are increasing in costs and/or patient volume and consequently represent potential targets for future research investments. We found a significant correlation between research volume/expenditures and health utilization. Some disease groups were slightly under- or over-represented, but these deviations were relatively small. Diseases and conditions with the increasing utilization trend at the VA included hypertension, hypercholesterolemia, diabetes, hearing loss, sleeping disorders, complications of pregnancy, and several mental disorders. Research investments at the VA are well aligned with veteran health needs. The VA can continue to meet these needs by supporting research on the diseases and conditions with a growing number of patients, costs of care, or both. Our approach can be used by other funders of disease research to characterize their portfolios and to plan research investments.

  8. Characterization and detection of a widely distributed gene cluster that predicts anaerobic choline utilization by human gut bacteria.

    Science.gov (United States)

    Martínez-del Campo, Ana; Bodea, Smaranda; Hamer, Hilary A; Marks, Jonathan A; Haiser, Henry J; Turnbaugh, Peter J; Balskus, Emily P

    2015-04-14

    Elucidation of the molecular mechanisms underlying the human gut microbiota's effects on health and disease has been complicated by difficulties in linking metabolic functions associated with the gut community as a whole to individual microorganisms and activities. Anaerobic microbial choline metabolism, a disease-associated metabolic pathway, exemplifies this challenge, as the specific human gut microorganisms responsible for this transformation have not yet been clearly identified. In this study, we established the link between a bacterial gene cluster, the choline utilization (cut) cluster, and anaerobic choline metabolism in human gut isolates by combining transcriptional, biochemical, bioinformatic, and cultivation-based approaches. Quantitative reverse transcription-PCR analysis and in vitro biochemical characterization of two cut gene products linked the entire cluster to growth on choline and supported a model for this pathway. Analyses of sequenced bacterial genomes revealed that the cut cluster is present in many human gut bacteria, is predictive of choline utilization in sequenced isolates, and is widely but discontinuously distributed across multiple bacterial phyla. Given that bacterial phylogeny is a poor marker for choline utilization, we were prompted to develop a degenerate PCR-based method for detecting the key functional gene choline TMA-lyase (cutC) in genomic and metagenomic DNA. Using this tool, we found that new choline-metabolizing gut isolates universally possessed cutC. We also demonstrated that this gene is widespread in stool metagenomic data sets. Overall, this work represents a crucial step toward understanding anaerobic choline metabolism in the human gut microbiota and underscores the importance of examining this microbial community from a function-oriented perspective. Anaerobic choline utilization is a bacterial metabolic activity that occurs in the human gut and is linked to multiple diseases. While bacterial genes responsible for

  9. The Mobile Surface Contamination Monitor II environmental radiological characterization utilizing GPS/GIS technologies

    International Nuclear Information System (INIS)

    Wendling, M.A.

    1993-05-01

    Time, cost, and most importantly quality of data are the three factors to measure the success of field radiological characterizations. The application of coupling radiation detection instrumentation to a GPS receiver has dramatically increased the data quality achievable compared to traditional environmental radiological survey methods. Improvements in verifying adequate spatial coverage of an area while collecting data and at,the same time reducing field time requirements can be realized. Data acquired during the recent implementation of the Mobile Surface Contamination Monitor 11 (MSCM-11) will be presented to demonstrate the advantages of this system over traditional radiological survey methods. The comparison will include time and manpower requirements. Linking the complimentary GPS, GIS and radiation detection technologies on a mobile tractor based platform has provided a tool to provide radiological characterization data faster, cheaper, and better to assist in the Environmental Restoration Mission of the Hanford Site

  10. Benefits of utilizing CellProfiler as a characterization tool for U–10Mo nuclear fuel

    International Nuclear Information System (INIS)

    Collette, R.; Douglas, J.; Patterson, L.; Bahun, G.; King, J.; Keiser, D.; Schulthess, J.

    2015-01-01

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium–molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellular measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries. - Graphical abstract: Display Omitted - Highlights: • A technique is developed to score U–10Mo FIB-SEM image quality using CellProfiler. • The pass/fail metric is based on image illumination, focus, and area scratched. • Automated image analysis is performed in pipeline fashion to characterize images. • Fission gas void, interaction layer, and grain boundary coverage data is extracted. • Preliminary characterization results demonstrate consistency of the algorithm

  11. Utilization of Neurophysiological Protocols to Characterize Soldier Response to Irritant Gases. Phase 1.

    Science.gov (United States)

    1990-02-15

    DAMM7-89-C-9136 7. PERFORMING ORGANIZATION NAME(S) AND AOO«£S$<£S) Northeast Reserach Institute, Inc Suite A-100 309 Farmington Avenue...is no widely accepted methodology or protocol lor the assessment of human toxicity induced by exposure to irritant gases. Most procedures used by the...employing the appropriate analytical methodologies necessary to more precisely characterize the complex mixture of low-boiling volatilcs, aerosols, and

  12. Benefits of utilizing CellProfiler as a characterization tool for U–10Mo nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Collette, R.; Douglas, J.; Patterson, L.; Bahun, G. [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401 (United States); Keiser, D.; Schulthess, J. [Nuclear Fuels and Materials Division, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-6188 (United States)

    2015-07-15

    Automated image processing techniques have the potential to aid in the performance evaluation of nuclear fuels by eliminating judgment calls that may vary from person-to-person or sample-to-sample. Analysis of in-core fuel performance is required for design and safety evaluations related to almost every aspect of the nuclear fuel cycle. This study presents a methodology for assessing the quality of uranium–molybdenum fuel images and describes image analysis routines designed for the characterization of several important microstructural properties. The analyses are performed in CellProfiler, an open-source program designed to enable biologists without training in computer vision or programming to automatically extract cellular measurements from large image sets. The quality metric scores an image based on three parameters: the illumination gradient across the image, the overall focus of the image, and the fraction of the image that contains scratches. The metric presents the user with the ability to ‘pass’ or ‘fail’ an image based on a reproducible quality score. Passable images may then be characterized through a separate CellProfiler pipeline, which enlists a variety of common image analysis techniques. The results demonstrate the ability to reliably pass or fail images based on the illumination, focus, and scratch fraction of the image, followed by automatic extraction of morphological data with respect to fission gas voids, interaction layers, and grain boundaries. - Graphical abstract: Display Omitted - Highlights: • A technique is developed to score U–10Mo FIB-SEM image quality using CellProfiler. • The pass/fail metric is based on image illumination, focus, and area scratched. • Automated image analysis is performed in pipeline fashion to characterize images. • Fission gas void, interaction layer, and grain boundary coverage data is extracted. • Preliminary characterization results demonstrate consistency of the algorithm.

  13. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods

    Science.gov (United States)

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu

    2014-01-01

    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although there…

  14. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    Science.gov (United States)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  15. Validation of a Novel 3-Dimensional Sonographic Method for Assessing Gastric Accommodation in Healthy Adults

    NARCIS (Netherlands)

    Buisman, Wijnand J; van Herwaarden-Lindeboom, MYA; Mauritz, Femke A; El Ouamari, Mourad; Hausken, Trygve; Olafsdottir, Edda J; van der Zee, David C; Gilja, Odd Helge

    OBJECTIVES: A novel automated 3-dimensional (3D) sonographic method has been developed for measuring gastric volumes. This study aimed to validate and assess the reliability of this novel 3D sonographic method compared to the reference standard in 3D gastric sonography: freehand magneto-based 3D

  16. Middle School Students' Reasoning about 3-Dimensional Objects: A Case Study

    Science.gov (United States)

    Okumus, Samet

    2016-01-01

    According to the National Council of Teacher of Mathematics (NCTM) (2000), K-12 students should be given an opportunity to develop their spatial reasoning abilities. One of the topics that may allow students to develop their spatial skills is forming 3-dimensional objects using spinning and extrusion methods. Also, extrusion and spinning methods…

  17. On Maximal Surfaces in Certain Non-Flat 3-Dimensional Robertson-Walker Spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Alfonso, E-mail: aromero@ugr.es [Universidad de Granada, Departamento de Geometria y Topologia (Spain); Rubio, Rafael M., E-mail: rmrubio@uco.es [Universidad de Cordoba, Departamento de Matematicas, Campus de Rabanales (Spain)

    2012-09-15

    An upper bound for the integral, on a geodesic disc, of the squared length of the gradient of a distinguished function on any maximal surface in certain non-flat 3-dimensional Robertson-Walker spacetimes is obtained. As an application, a new proof of a known Calabi-Bernstein's theorem is given.

  18. Dynamics of large scale 3-dimensional circulation of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Swapna, P.

    -diagnostic and prognostic modes. Such a model could identify both the local and remote forcing of the Indian Ocean circulation. The other objectives of the thesis are the following: (i) To study the steady state 3-dimensional circulation of Indian Ocean based on semi...

  19. The Wilson loop expectation values in 2-and 3-dimensional SU(2) LGT

    International Nuclear Information System (INIS)

    Li Zhibing; Zheng Weihong; Guo Shuohong

    1989-01-01

    An improved Monte Carlo scheme is applied to the computation of expectation values of nxm Wilson loops in both 2-and 3-dimensional SU(2) lattice gauge theories. The results are compared with those simulated by the discrete group Y 120 and the exact results in two dimensions

  20. Full 3-dimensional digital workflow for multicomponent dental appliances A proof of concept

    NARCIS (Netherlands)

    Meer, van der Joerd; Vissink, Arjan; Ren, Yijin

    Background. The authors used a 3-dimensional (3D) printer and a bending robot to produce a multicomponent dental appliance to assess whether 3D digital models of the dentition are applicable for a full digital workflow. Methods. The authors scanned a volunteer's dentition with an intraoral scanner

  1. Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilization.

    Science.gov (United States)

    Geber, A; Williamson, P R; Rex, J H; Sweeney, E C; Bennett, J E

    1992-01-01

    In order to isolate the structural gene involved in sucrose utilization, we screened a sucrose-induced Candida albicans cDNA library for clones expressing alpha-glucosidase activity. The C. albicans maltase structural gene (CAMAL2) was isolated. No other clones expressing alpha-glucosidase activity. were detected. A genomic CAMAL2 clone was obtained by screening a size-selected genomic library with the cDNA clone. DNA sequence analysis reveals that CAMAL2 encodes a 570-amino-acid protein which shares 50% identity with the maltase structural gene (MAL62) of Saccharomyces carlsbergensis. The substrate specificity of the recombinant protein purified from Escherichia coli identifies the enzyme as a maltase. Northern (RNA) analysis reveals that transcription of CAMAL2 is induced by maltose and sucrose and repressed by glucose. These results suggest that assimilation of sucrose in C. albicans relies on an inducible maltase enzyme. The family of genes controlling sucrose utilization in C. albicans shares similarities with the MAL gene family of Saccharomyces cerevisiae and provides a model system for studying gene regulation in this pathogenic yeast. Images PMID:1400249

  2. An overview on characterization, utilization and leachate analysis of biomedical waste incinerator ash.

    Science.gov (United States)

    Rajor, Anita; Xaxa, Monika; Mehta, Ratika; Kunal

    2012-10-15

    Solid waste management is one of the major global environmental issues, as there is continuous increase in industrial globalization and generation of waste. Solid wastes encompass the heterogeneous mass of throwaways from the urban community as well as the homogeneous accumulations of agricultural, industrial and mineral wastes. Biomedical waste pose a significant impact on health and environment. A proper waste management system should be required to dispose hazardous biomedical waste and incineration should be the best available technology to reduce the volume of this hazardous waste. The incineration process destroys pathogens and reduces the waste volume and weight but leaves a solid material called biomedical waste ash as residue which increases the levels of heavy metals, inorganic salts and organic compounds in the environment. Disposal of biomedical waste ash in landfill may cause contamination of groundwater as metals are not destroyed during incineration. The limited space and the high cost for land disposal led to the development of recycling technologies and the reuse of ash in different systems. In order to minimize leaching of its hazardous components into the environment several studies confirmed the successful utilization of biomedical waste ash in agriculture and construction sector. This paper presents the overview on the beneficial use of ash in agriculture and construction materials and its leachate characteristics. This review also stressed on the need to further evaluate the leachate studies of the ashes and slag for their proper disposal and utilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Microstructure characterization of multi-phase composites and utilization of phase change materials and recycled rubbers in cementitious materials

    Science.gov (United States)

    Meshgin, Pania

    2011-12-01

    This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.

  4. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of Inflatable Modules

    Science.gov (United States)

    Mohammed, Anil

    2011-01-01

    This paper focuses on integrating a large hatch penetration into inflatable modules of various constructions. This paper also compares load predictions with test measurements. The strain was measured by utilizing photogrammetric methods and strain gages mounted to select clevises that interface with the structural webbings. Bench testing showed good correlation between strain data collected from an extensometer and photogrammetric measurements, even when the material transitioned from the low load to high load strain region of the curve. The full-scale torus design module showed mixed results as well in the lower load and high strain regions. After thorough analysis of photogrammetric measurements, strain gage measurements, and predicted load, the photogrammetric measurements seem to be off by a factor of two.

  5. Characterization and utilization of the permeate and retentate obtained after “dead-end” ultrafiltration

    Directory of Open Access Journals (Sweden)

    Vasić Vesna M.

    2013-01-01

    Full Text Available In the recent years, with the increase in bioethanol production, the increasing amounts of distillery wastewater are generated. Such wastewater (stillage is one of the most polluted waste product of the food and beverage industries. The present study evaluates the treatment of distillery wastewater by ultrafiltration (UF, in order to reduce its pollution and evaluate the composition of the permeate and retentate. Polyethersulfone ultrafiltration membrane with molecular weight cut-off (MWCO 30000 Da, was used for the experiments. The UF was carried out in dead-end mode. The results of the analyses of the permeate and retentate obtained after ultrafiltration were considered as well as different ways for their further utilization. The pollutant level in the permeate was decreased significantly in comparison to the raw stillage, and suspended solids were completely removed from the stillage. [Projekat Ministarstva nauke Republike Srbije, br. TR 31002

  6. Isolation and characterization of a new hydrogen-utilizing bacterium from the rumen.

    Science.gov (United States)

    Rieu-Lesme, F; Fonty, G; Doré, J

    1995-01-01

    A new H2/CO2-utilizing acetogenic bacterium was isolated from the rumen of a mature deer. This is the first report of a spore-forming Gram-negative bacterial species from the rumen. The organism was a strictly anaerobic, motile rod and was able to grow autotrophically on hydrogen and carbon dioxide. Acetate was the major product detected. Glucose, fructose and lactate were also fermented heterotrophically. The optimum pH for growth was 7.0-7.5, and the optimum temperature was 37-42 degrees C. Yeast extract was required for growth and rumen fluid was highly stimulatory. The DNA base ratio was 52.9 +/- 0.5 mol% G+C. On the basis of these characteristics and fermentation products, the isolate was considered to be different from acetogenic bacteria described previously.

  7. Utility of immunodeficient mouse models for characterizing the preclinical pharmacokinetics of immunogenic antibody therapeutics.

    Science.gov (United States)

    Myzithras, Maria; Bigwarfe, Tammy; Li, Hua; Waltz, Erica; Ahlberg, Jennifer; Giragossian, Craig; Roberts, Simon

    Prior to clinical studies, the pharmacokinetics (PK) of antibody-based therapeutics are characterized in preclinical species; however, those species can elicit immunogenic responses that can lead to an inaccurate estimation of PK parameters. Immunodeficient (SCID) transgenic hFcRn and C57BL/6 mice were used to characterize the PK of three antibodies that were previously shown to be immunogenic in mice and cynomolgus monkeys. Four mouse strains, Tg32 hFcRn SCID, Tg32 hFcRn, SCID and C57BL/6, were administered adalimumab (Humira®), mAbX and mAbX-YTE at 1 mg/kg, and in SCID strains there was no incidence of immunogenicity. In non-SCID strains, drug-clearing ADAs appeared after 4-7 days, which affected the ability to accurately calculate PK parameters. Single species allometric scaling of PK data for Humira® in SCID and hFcRn SCID mice resulted in improved human PK predictions compared to C57BL/6 mice. Thus, the SCID mouse model was demonstrated to be a useful tool for assessing the preclinical PK of immunogenic therapeutics.

  8. Rapid detailed characterization of concrete shielding blocks utilizing internal natural radionuclides for calibration

    International Nuclear Information System (INIS)

    McDonald, R.J.; Smith, A.R.; Hurley, D.L.; Norman, E.B.; Schoonover, M.R.

    1998-01-01

    Following many years of productive research, the 184-inch Cyclotron, the SuperHILAC, and the BEVALAC accelerators at the Berkeley Laboratory were closed, leaving thousands of concrete shielding blocks available for reuse, recycling, or disposal. The process history of these blocks precludes free release pending radiological characterization. This paper describes a procedure whereby a high efficiency shielded germanium spectrometer is used to rapidly characterize natural and man-made activity within the blocks. The spectrometer is moved up to the block and 5 minutes of data are collected at the point on the block that registers highest on a micro-R meter. Sensitivity is better than 1 pCi/g (0.037 Bq/g) for Co-60 and Eu-152, the prominent man-made activities observed. One-time calibration of the detector system is obtained from a sample of concrete, drilled with a hammer drill, counted in our low-background facility, and compared to crushed rock with known U, Th, and K activity. A simple relationship exists between the counts/minute observed in a characteristic gamma-ray peak and the activity in the block. (author)

  9. Rapid detailed characterization of concrete shielding blocks utilizing internal natural radionuclides for calibration

    International Nuclear Information System (INIS)

    McDonald, R.J.; Smith, A.R.; Norman, E.B.; Cowles, D.

    1995-10-01

    Following many years of productive work, the SuperHILAC and Bevalac accelerators at Lawrence Berkeley National Laboratory were closed, leaving thousands of concrete shielding blocks available for reuse or disposal. The process history of these blocks as shielding precludes free release pending radiological characterization. This paper presents a method for the rapid characterization of gamma-ray-emitting radioisotopes in large samples of earth-like materials: concrete shielding blocks in this case. Active regions are identified with a sensitive radiation-survey instrument and then examined in detail with a high-efficiency lead-shielded Ge spectrometer. Naturally-occurring gamma-ray emissions from the decays of uranium, thorium, and potassium are used to calibrate the spectrometer. A simple relationship exists between the observed counting rate in a characteristic gamma ray and the activity in the block. This method, taking only tens of minutes per sample at the nano-Curie/gram sensitivity level, replaces much of the expensive coring and laboratory analysis methods needed otherwise

  10. A 3-Dimensional Biomimetic Platform to Interrogate the Safety of Autologous Fat Transfer in the Setting of Breast Cancer.

    Science.gov (United States)

    Toyoda, Yoshiko; Celie, Karel-Bart; Xu, Jonathan T; Buro, Justin S; Jin, Julia; Lin, Alexandra J; Brown, Kristy A; Spector, Jason A

    2018-04-01

    Obesity is a known risk factor for the development and prognosis of breast cancer. Adipocytes have been identified as a source of exogenous lipids in other cancer types and may similarly provide energy to fuel malignant survival and growth in breast cancer. This relationship is of particular relevance to plastic surgery, because many reconstructions after oncologic mastectomy achieve optimal aesthetics and durability using adjunctive autologous fat transfer (AFT). Despite the increasing ubiquity and promise of AFT, many unanswered questions remain, including safety in the setting of breast cancer. Clinical studies to examine this question are underway, but an in vitro system is critical to elucidate the complex interplay between the cells that normally reside at the surgical recipient site. To study these interactions and characterize possible lipid transfer between adipocytes to breast cancer cells, we designed a 3-dimensional in vitro model using primary patient-derived tissues. Breast adipose tissue was acquired from patients undergoing breast reduction surgery. The tissue was enzymatically digested and sorted to retrieve adipocytes and adipose stromal cells. Polydimethylsiloxane wells were filled with type I collagen-encapsulated adipocytes labeled with the fluorescent lipid dye boron dipyrromethene, as well as unlabeled adipose stromal cells. A monolayer of red fluorescently labeled MDA-MB-231 and MDA-MB-468 breast cancer cells was seeded on the surface of the construct. Lipid transfer at the interface between adipocytes and breast cancer cells was analyzed. Confocal microscopy revealed a dense culture of native adipocytes containing fluorescent lipid droplets in the 3-dimensional collagen culture platform. RFP-positive breast cancer cells were found in close proximity to lipid-laden adipocytes. Lipid transfer from adipocytes to breast cancer cells was observed by the presence of boron dipyrromethene-positive lipid droplets within RFP-labeled breast cancer

  11. Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Tangyunyong, Paiboon; Miller, Mary A.; Cole, Edward Isaac, Jr.

    2012-03-01

    We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

  12. A new characterization method of the microstructure by utilizing the macroscopic composition gradient in alloys

    International Nuclear Information System (INIS)

    Miyazaki, T.; Koyama, T.; Kobayashi, S.

    1996-01-01

    A new experimental method to determine the phase boundary and phase equilibrium is accomplished by - means of analytical transmission electron microscopy for alloys with a macroscopic composition gradient. The various phase boundaries, i.e. the coherent binodal and spinodal lines, incoherent binodal line and order/disorder transformation line are distinctly determined for the Cu-Ti alloy and the other alloy systems. Furthermore, the equilibrium compositions at the interface of precipitate/matrix can experimentally be obtained for various particle sizes, and thus the Gibbs-Thomson's relation is verified. It is expected that the composition gradient method proposed in the present will become an important experimental method of the microstructural characterization

  13. Characterization, treatment and utilization of rice husk ash in production processes of the industrial branch

    International Nuclear Information System (INIS)

    Stracke, Marcelo Paulo; Schmidt, Julia Isabel; Steffen, Ana Cristina; Sokolovicz, Boris; Kieckow, Flavio

    2016-01-01

    The rice husk ash (CCA) is a black powder rich in silica (contents above 90%) with many industrial applications. The ash was obtained from a rice processing industry in the state of Rio Grande do Sul. In this work the purpose is to characterize the rice husk ash and eliminate the residual carbon by methods such as acid leaching. The white ash is obtained by a chemical process followed by heating between 600 and 800 °C. The results were analyzed in DR-X, TGA and DSC. The DR-X analysis showed that the samples present high levels of silica in the crystalline form of quartz, cristobalite and tridymite. The white ash was obtained with high purity and presented a good result in the manufacture of paints. (author)

  14. Method and apparatus for surface characterization and process control utilizing radiation from desorbed particles

    International Nuclear Information System (INIS)

    Feldman, L.C.; Kraus, J.S.; Tolk, N.H.; Traum, M.M.; Tully, J.C.

    1983-01-01

    Emission of characteristic electromagnetic radiation in the infrared, visible, or UV from excited particles, typically ions, molecules, or neutral atoms, desorbed from solid surfaces by an incident beam of low-momentum probe radiation has been observed. Disclosed is a method for characterizing solid surfaces based on the observed effect, with low-momentum probe radiation consisting of electrons or photons. Further disclosed is a method for controlling manufacturing processes that is also based on the observed effect. The latter method can, for instance, be advantageously applied in integrated circuit-, integrated optics-, and magnetic bubble device manufacture. Specific examples of applications of the method are registering of masks, control of a direct-writing processing beam, end-point detection in etching, and control of a processing beam for laser- or electron-beam annealing or ion implantation

  15. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    International Nuclear Information System (INIS)

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-01-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI - , F - , and SO 4 = . We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements

  16. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    Energy Technology Data Exchange (ETDEWEB)

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-11-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI{sup -}, F{sup -}, and SO{sub 4}{sup =}. We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements.

  17. Characterization and utilization potential of basalt rock from East-Lampung district

    Science.gov (United States)

    Isnugroho, K.; Hendronursito, Y.; Birawidha, D. C.

    2018-01-01

    The aim of this research was to study the petrography and chemical properties of basalt rock from East Lampung district, Lampung province. Petrography analysis was performed using a polarization microscope, and analysis of chemical composition using X-RF method. From the analysis of basalt rock samples, the mineral composition consists of pyroxene, plagioclase, olivine, and opaque minerals. Basic mass of basalt rock samples is, composed of plagioclase and pyroxene with subhedral-anhedral shape, forming intergranular texture, and uniform distribution. Mineral plagioclase is colorless and blade shape, transformed into opaque minerals with a size of basalt rock samples, consisting of 37.76-59.64 SiO2; 10.10-20.93 Fe2O3; 11.77-14.32 Al2O3; 5.57-14.75 CaO; 5.37-9.15 MgO; 1.40-3.34 Na2O. From the calculation, obtained the value of acidity ratio (Ma) = 3.81. With these values, indicate that the basalt rock from East Lampung district has the potential to be utilized as stone wool fiber.

  18. Improving the Characterization of Arctic Coastline Ecosystem Change near Utqiagvik, Alaska Utilizing Multiyear Terrestrial Laser Scanning

    Science.gov (United States)

    Escarzaga, S. M.; Cody, R. P.; Vargas, S. A., Jr.; Fuson, T.; Hodge, B. E.; Tweedie, C. E.

    2017-12-01

    The Arctic Ocean comprises the largest coastline on Earth and is undergoing environmental change on a level disproportionate to those in lower-latitudes. In the US Arctic, coastal erosion rates along the North Slope of Alaska show that they are among highest in the nation at an average rate of 1.4 meters per year. Despite their importance to biogeochemical cycling, Native village infrastructure and providing pristine species habitat, Arctic coastlines and near shore environments are relatively understudied due to logistical challenges of conducting fieldwork in these locations. This study expands on past efforts which showed dGPS foot surveys work well at describing planar erosion on less complex permafrost bluff types like those seen on the higher-energy coasts east of Utqiagvik, Alaska along the Beaufort Sea where the main mechanism of erosion happens by block failure caused by wave action. However, coastal bluffs along the Chukchi Sea to the west are more complex and variable in terms of form and mechanisms of erosion. Here, where wide beaches tend to buffer wave action, thermal erosion and permafrost slumping produce slower erosion rates. Terrestrial Laser Scanning (TLS) has been applied across a multitude of terrain types, including coastlines spanning various ecosystems. Additionally, this approach allows 3D modeling of fine scale geomorphological features which can facilitate modeling of erosion rates in these areas. This study utilizes a six year time series of TLS on a section of coastal permafrost bluff along the Chukchi Sea south of Utqiagvik. The aim of the work presented is to better understand spatio-temporal trends of coastal bluff face erosion, bluff top subsidence and how these landscape microtopographic changes are coupled to ecosystem changes and land cover types. Preliminary analysis suggests a high rate of stability of the bluff face over the TLS record with most of the detectable permafrost subsidence happening closer to the coastal bluff edge.

  19. A Quantitative Assessment of Lip Movements in Different Facial Expressions Through 3-Dimensional on 3-Dimensional Superimposition: A Cross-Sectional Study.

    Science.gov (United States)

    Gibelli, Daniele; Codari, Marina; Pucciarelli, Valentina; Dolci, Claudia; Sforza, Chiarella

    2017-11-23

    The quantitative assessment of facial modifications from mimicry is of relevant interest for the rehabilitation of patients who can no longer produce facial expressions. This study investigated a novel application of 3-dimensional on 3-dimensional superimposition for facial mimicry. This cross-sectional study was based on 10 men 30 to 40 years old who underwent stereophotogrammetry for neutral, happy, sad, and angry expressions. Registration of facial expressions on the neutral expression was performed. Root mean square (RMS) point-to-point distance in the labial area was calculated between each facial expression and the neutral one and was considered the main parameter for assessing facial modifications. In addition, effect size (Cohen d) was calculated to assess the effects of labial movements in relation to facial modifications. All participants were free from possible facial deformities, pathologies, or trauma that could affect facial mimicry. RMS values of facial areas differed significantly among facial expressions (P = .0004 by Friedman test). The widest modifications of the lips were observed in happy expressions (RMS, 4.06 mm; standard deviation [SD], 1.14 mm), with a statistically relevant difference compared with the sad (RMS, 1.42 mm; SD, 1.15 mm) and angry (RMS, 0.76 mm; SD, 0.45 mm) expressions. The effect size of labial versus total face movements was limited for happy and sad expressions and large for the angry expression. This study found that a happy expression provides wider modifications of the lips than the other facial expressions and suggests a novel procedure for assessing regional changes from mimicry. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Glucuronoyl Esterase Screening and Characterization Assays Utilizing Commercially Available Benzyl Glucuronic Acid Ester

    Directory of Open Access Journals (Sweden)

    Hampus Sunner

    2015-09-01

    Full Text Available Research on glucuronoyl esterases (GEs has been hampered by the lack of enzyme assays based on easily obtainable substrates. While benzyl d-glucuronic acid ester (BnGlcA is a commercially available substrate that can be used for GE assays, several considerations regarding substrate instability, limited solubility and low apparent affinities should be made. In this work we discuss the factors that are important when using BnGlcA for assaying GE activity and show how these can be applied when designing BnGlcA-based GE assays for different applications: a thin-layer chromatography assay for qualitative activity detection, a coupled-enzyme spectrophotometric assay that can be used for high-throughput screening or general activity determinations and a HPLC-based detection method allowing kinetic determinations. The three-level experimental procedure not merely facilitates routine, fast and simple biochemical characterizations but it can also give rise to the discovery of different GEs through an extensive screening of heterologous Genomic and Metagenomic expression libraries.

  1. High-value utilization of eucalyptus kraft lignin: Preparation and characterization as efficient dye dispersant.

    Science.gov (United States)

    Zhang, Hui; Yu, Boming; Zhou, Wanpeng; Liu, Xinxin; Chen, Fangeng

    2018-04-01

    The dark color of industrial lignin is the main obstacle for their high value-added use in areas such as dyestuff dispersants. A kind of light-colored lignosulfonate with favorable dispersibility and remarkable stain resistance is prepared using fractionated eucalyptus kraft lignin. The fractionated lignins named as D (insoluble part) and X (soluble part) and sulfonated lignin fractions named as SD and SX are characterized by FTIR spectroscopy, 1 H NMR spectroscopy, GPC and brightness test. The results reveal that fraction X presents a lower molecular weight but a higher hydroxyl content than that of fraction D, which lead to the differences on the SO 3 H content, dispersibility and color performance of SD and SX. The sulfonated fractions perform a similar molecular weight to that of unsulfonated lignins and show light color due to the phenolic hydroxyl blocking of 1,4-BS (1,4-butane sultone) and the postprocessing of sodium borohydride. The SX that performs the best of all exhibits obvious decrease on phenolic hydroxyl groups and increase on brightness value which is improved by 85.8% compared with control sample. The SX reaches the highest level (grade 5) in the dispersibility test and presents remarkable stain resistance on different textiles, especially on the dacron and cotton. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Characterizing the glymphatic influx by utilizing intracisternal infusion of fluorescently conjugated cadaverine.

    Science.gov (United States)

    Zhang, Cui; Lin, Jun; Wei, Fang; Song, Jian; Chen, Wenyue; Shan, Lidong; Xue, Rong; Wang, Guoqing; Tao, Jin; Zhang, Guoxing; Xu, Guang-Yin; Wang, Linhui

    2018-05-15

    Accumulating evidence supports that cerebrospinal fluid (CSF) in the subarachnoid space (SAS) could reenter the brain parenchyma via the glymphatic influx. The present study was designed to characterize the detailed pathway of subarachnoid CSF influx by using a novel CSF tracer. Fluorescently conjugated cadaverine (A488-ca), for the first time, was employed to investigate CSF movement in the brain. Following intracisternal infusion of CSF tracers, mice brain was sliced and prepared for fluorescence imaging. Some brain sections were immunostained in order to observe tracer distribution and cellular uptake. A488-ca moved into the brain parenchyma rapidly, and the influx was time and region dependent. A488-ca entered the mice brain more readily and spread more widely than another commonly used CSF tracer-fluorescently conjugated ovalbumin (OA-45). Furthermore, A488-ca could enter the brain parenchyma either along the paravascular space or across the pial surface. Suppression of glymphatic transport by administration with acetazolamide strikingly reduced the influx of A488-ca. More importantly, relative to OA-45 largely remained in the extracellular space, A488-ca exhibited obvious cellular uptake by astrocytes surrounding the blood vessels and neurons in the cerebral cortex. Subarachnoid CSF could flow into the brain parenchyma via the glymphatic influx, in which the transcellular pathway was faithfully traced by intracisternal infusion with fluorescently conjugated cadaverine. These observations extend our comprehension on the glymphatic influx pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Automatic segmentation and 3-dimensional display based on the knowledge of head MRI images

    International Nuclear Information System (INIS)

    Suzuki, Hidetomo; Toriwaki, Jun-ichiro.

    1987-01-01

    In this paper we present a procedure which automatically extracts soft tissues, such as subcutaneous fat, brain, and cerebral ventricle, from the multislice MRI images of head region, and displays their 3-dimensional images. Segmentation of soft tissues is done by use of an iterative thresholding. In order to select the optimum threshold value automatically, we introduce a measure to evaluate the goodness of segmentation into this procedure. When the measure satisfies given conditions, iteration of thresholding terminates, and the final result of segmentation is extracted by using the current threshold value. Since this procedure can execute segmentation and calculation of the goodness measure in each slice automatically, it remarkably decreases efforts of users. Moreover, the 3-dimensional display of the segmented tissues shows that this procedure can extract the shape of each soft tissue with reasonable precision for clinical use. (author)

  4. Exact, rotational, infinite energy, blowup solutions to the 3-dimensional Euler equations

    International Nuclear Information System (INIS)

    Yuen, Manwai

    2011-01-01

    In this Letter, we construct a new class of blowup or global solutions with elementary functions to the 3-dimensional compressible or incompressible Euler and Navier-Stokes equations. And the corresponding blowup or global solutions for the incompressible Euler and Naiver-Stokes equations are also given. Our constructed solutions are similar to the famous Arnold-Beltrami-Childress (ABC) flow. The obtained solutions with infinite energy can exhibit the interesting behaviors locally. Furthermore, due to divu → =0 for the solutions, the solutions also work for the 3-dimensional incompressible Euler and Navier-Stokes equations. -- Highlights: → We construct a new class of solutions to the 3D compressible or incompressible Euler and Navier-Stokes equations. → The constructed solutions are similar to the famous Arnold-Beltrami-Childress flow. → The solutions with infinite energy can exhibit the interesting behaviors locally.

  5. An Individualized 3-Dimensional Designed and Printed Conformer After Dermis Fat Grafting for Complex Sockets.

    Science.gov (United States)

    Mourits, Daphne L; Remmers, Jelmer S; Tan, Stevie H; Moll, Annette C; Hartong, Dyonne T

    2018-04-03

    To introduce a novel technique to design individually customized conformers for postenucleation sockets with dermis fat implants. We use a 3-dimensional scan of the frontal face/orbit and eyelid contour to design an individualized conformer. This polymethylmetacrylate printed conformer is adapted to patients' socket, palpebral fissures, horizontal eyelid aperture, curvature of the eyelids, and mean diameter of patients' contralateral eye. Sutures through holes in the inferior part of the conformer and in the extension can be placed to fixate the conformer and anchor fornix deepening sutures. A correct fitting conformer can be printed and attached to the socket and eyelids. The shape of this conformer can be used subsequently postsurgically to design the ocular prosthesis. Presurgical planning is important to anticipate for a functional socket to adequately fit an artificial eye. The presented technique using 3-dimensional imaging, designing, and printing promises to prevent conformer extrusion and forniceal shortening.

  6. Born-Infeld determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael, E-mail: ferraro@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Fiorini, Franco, E-mail: franco@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2010-08-30

    In the context of Born-Infeld determinantal gravity formulated in an n-dimensional spacetime with absolute parallelism, we found an exact 3-dimensional vacuum circular symmetric solution without cosmological constant consisting in a rotating spacetime with non-singular behavior. The space behaves at infinity as the conical geometry typical of 3-dimensional General Relativity without cosmological constant. However, the solution has no conical singularity because the space ends at a minimal circle that no freely falling particle can ever reach in a finite proper time. The space is curved, but no divergences happen since the curvature invariants vanish at both asymptotic limits. Remarkably, this very mechanism also forbids the existence of closed timelike curves in such a spacetime.

  7. Born-Infeld determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Fiorini, Franco

    2010-01-01

    In the context of Born-Infeld determinantal gravity formulated in an n-dimensional spacetime with absolute parallelism, we found an exact 3-dimensional vacuum circular symmetric solution without cosmological constant consisting in a rotating spacetime with non-singular behavior. The space behaves at infinity as the conical geometry typical of 3-dimensional General Relativity without cosmological constant. However, the solution has no conical singularity because the space ends at a minimal circle that no freely falling particle can ever reach in a finite proper time. The space is curved, but no divergences happen since the curvature invariants vanish at both asymptotic limits. Remarkably, this very mechanism also forbids the existence of closed timelike curves in such a spacetime.

  8. The application of 3-dimensional CAT scan reconstruction for maxillofacial deformities

    International Nuclear Information System (INIS)

    Shimbashi, Takeshi; Tomonari, Hiroshi; Ishii, Masahiro; Sakurai, Nobuaki; Kodachi, Ken; Kubo, Eiichi; Tsuchida, Yoshitaka; Takagi, Hiroshi.

    1987-01-01

    It has been found very useful to recognize craniofacial deformities 3-dimensionally, and to observe 3-D Cat scan reconstructions that have been performed by others. Thus, starting in 1985, we have developed a 3-D CT system that combines conventional X-ray CAT scan hardware to a 3-Dimensional display software. In this paper we report on our 3-CT system, its basic algorithm, and its basic processes, i.e., the threshold process, the perspective process, the shading process and the display. The mixture shading which we have developed makes 3-D displays clearer and more natural. Also, we have applied our 3-D display to 39 cases of maxillofacial diformities. (author)

  9. Identification, characterization and utilization of unigene derived microsatellite markers in tea (Camellia sinensis L.

    Directory of Open Access Journals (Sweden)

    Mohapatra Trilochan

    2009-05-01

    Full Text Available Abstract Background Despite great advances in genomic technology observed in several crop species, the availability of molecular tools such as microsatellite markers has been limited in tea (Camellia sinensis L.. The development of microsatellite markers will have a major impact on genetic analysis, gene mapping and marker assisted breeding. Unigene derived microsatellite (UGMS markers identified from publicly available sequence database have the advantage of assaying variation in the expressed component of the genome with unique identity and position. Therefore, they can serve as efficient and cost effective alternative markers in such species. Results Considering the multiple advantages of UGMS markers, 1,223 unigenes were predicted from 2,181 expressed sequence tags (ESTs of tea (Camellia sinensis L.. A total of 109 (8.9% unigenes containing 120 SSRs were identified. SSR abundance was one in every 3.55 kb of EST sequences. The microsatellites mainly comprised of di (50.8%, tri (30.8%, tetra (6.6%, penta (7.5% and few hexa (4.1% nucleotide repeats. Among the dinucleotide repeats, (GAn.(TCn were most abundant (83.6%. Ninety six primer pairs could be designed form 83.5% of SSR containing unigenes. Of these, 61 (63.5% primer pairs were experimentally validated and used to investigate the genetic diversity among the 34 accessions of different Camellia spp. Fifty one primer pairs (83.6% were successfully cross transferred to the related species at various levels. Functional annotation of the unigenes containing SSRs was done through gene ontology (GO characterization. Thirty six (60% of them revealed significant sequence similarity with the known/putative proteins of Arabidopsis thaliana. Polymorphism information content (PIC ranged from 0.018 to 0.972 with a mean value of 0.497. The average heterozygosity expected (HE and observed (Ho obtained was 0.654 and 0.413 respectively, thereby suggesting highly heterogeneous nature of tea. Further, test

  10. The Origin of Chern-Simons Modified Gravity from an 11 + 3-Dimensional Manifold

    Directory of Open Access Journals (Sweden)

    J. A. Helayël-Neto

    2017-01-01

    Full Text Available It is our aim to show that the Chern-Simons terms of modified gravity can be understood as generated by the addition of a 3-dimensional algebraic manifold to an initial 11-dimensional space-time manifold; this builds up an 11+3-dimensional space-time. In this system, firstly, some fields living in the bulk join the fields that live on the 11-dimensional manifold, so that the rank of the gauge fields exceeds the dimension of the algebra; consequently, there emerges an anomaly. To solve this problem, another 11-dimensional manifold is included in the 11+3-dimensional space-time, and it interacts with the initial manifold by exchanging Chern-Simon fields. This mechanism is able to remove the anomaly. Chern-Simons terms actually produce an extra manifold in the pair of 11-dimensional manifolds of the 11+3-space-time. Summing up the topology of both the 11-dimensional manifolds and the topology of the exchanged Chern-Simons manifold in the bulk, we conclude that the total topology shrinks to one, which is in agreement with the main idea of the Big Bang theory.

  11. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion.

    Science.gov (United States)

    Weaver, Cole A; Miller, Steven F; da Fontoura, Clarissa S G; Wehby, George L; Amendt, Brad A; Holton, Nathan E; Allareddy, Veeratrishul; Southard, Thomas E; Moreno Uribe, Lina M

    2017-03-01

    Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes DUSP6,ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P centroid size, a proxy for dentoalveolar size variation with 4p16.1 and SNAI1. Specific genetic pathways associated with 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Utility of Characterizing and Monitoring Suspected Underground Nuclear Sites with VideoSAR

    Science.gov (United States)

    Dauphin, S. M.; Yocky, D. A.; Riley, R.; Calloway, T. M.; Wahl, D. E.

    2016-12-01

    Sandia National Laboratories proposed using airborne synthetic aperture RADAR (SAR) collected in VideoSAR mode to characterize the Underground Nuclear Explosion Signature Experiment (UNESE) test bed site at the Nevada National Security Site (NNSS). The SNL SAR collected airborne, Ku-band (16.8 GHz center frequency), 0.2032 meter ground resolution over NNSS in August 2014 and X-band (9.6 GHz), 0.1016 meter ground resolution fully-polarimetric SAR in April 2015. This paper reports the findings of processing and exploiting VideoSAR for creating digital elevation maps, detecting cultural artifacts and exploiting full-circle polarimetric signatures. VideoSAR collects a continuous circle of phase history data, therefore, imagery can be formed over the 360-degrees of the site. Since the Ku-band VideoSAR had two antennas suitable for interferometric digital elevation mapping (DEM), DEMs could be generated over numerous aspect angles, filling in holes created by targets with height by imaging from all sides. Also, since the X-band VideoSAR was fully-polarimetric, scattering signatures could be gleaned from all angles also. Both of these collections can be used to find man-made objects and changes in elevation that might indicate testing activities. VideoSAR provides a unique, coherent measure of ground objects allowing one to create accurate DEMS, locate man-made objects, and identify scattering signatures via polarimetric exploitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. The authors would like to thank the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development, for sponsoring this work. We would also like to thank the Underground Nuclear Explosion Signatures Experiment team, a multi

  13. Development of a 3-dimensional calculation model of the Danish research reactor DR3 to analyse a proposal to a new core design called ring-core

    Energy Technology Data Exchange (ETDEWEB)

    Nonboel, E

    1985-07-01

    A 3-dimensional calculation model of the Danish research reactor DR3 has been developed. Demands of a more effective utilization of the reactor and its facilities has required a more detailed calculation tool than applied so far. A great deal of attention has been devoted to the treatment of the coarse control arms. The model has been tested against measurements with satisfying results. Furthermore the model has been used to analyse a proposal to a new core design called ring-core where 4 central fuel elements are replaced by 4 dummy elements to increase the thermal flux in the center of the reactor. (author)

  14. Characterizing the utility of the TMPA real-time product for hydrologic predictions over global river basins across scales

    Science.gov (United States)

    Gao, H.; Zhang, S.; Nijssen, B.; Zhou, T.; Voisin, N.; Sheffield, J.; Lee, K.; Shukla, S.; Lettenmaier, D. P.

    2017-12-01

    Despite its errors and uncertainties, the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis real-time product (TMPA-RT) has been widely used for hydrological monitoring and forecasting due to its timely availability for real-time applications. To evaluate the utility of TMPA-RT in hydrologic predictions, many studies have compared modeled streamflows driven by TMPA-RT against gauge data. However, because of the limited availability of streamflow observations in data sparse regions, there is still a lack of comprehensive comparisons for TMPA-RT based hydrologic predictions at the global scale. Furthermore, it is expected that its skill is less optimal at the subbasin scale than the basin scale. In this study, we evaluate and characterize the utility of the TMPA-RT product over selected global river basins during the period of 1998 to 2015 using the TMPA research product (TMPA-RP) as a reference. The Variable Infiltration Capacity (VIC) model, which was calibrated and validated previously, is adopted to simulate streamflows driven by TMPA-RT and TMPA-RP, respectively. The objective of this study is to analyze the spatial and temporal characteristics of the hydrologic predictions by answering the following questions: (1) How do the precipitation errors associated with the TMPA-RT product transform into streamflow errors with respect to geographical and climatological characteristics? (2) How do streamflow errors vary across scales within a basin?

  15. Analysis and Characterization of Damage and Failure Utilizing a Generalized Composite Material Model Suitable for Use in Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Khaled, Bilal; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    A material model which incorporates several key capabilities which have been identified by the aerospace community as lacking in state-of-the art composite impact models is under development. In particular, a next generation composite impact material model, jointly developed by the FAA and NASA, is being implemented into the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage, and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters (such as modulus and strength). The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is utilized to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in the various coordinate directions. Due to the fact that the plasticity and damage models are uncoupled, test procedures and methods to both characterize the damage model and to covert the material stress-strain curves from the true (damaged) stress space to the effective (undamaged) stress space have been developed. A methodology has been developed to input the experimentally determined composite failure surface in a tabulated manner. An analytical approach is then utilized to track how close the current stress state is to the failure surface.

  16. Sex Differences in Patients With CAM Deformities With Femoroacetabular Impingement: 3-Dimensional Computed Tomographic Quantification.

    Science.gov (United States)

    Yanke, Adam B; Khair, M Michael; Stanley, Robert; Walton, David; Lee, Simon; Bush-Joseph, Charles A; Espinoza Orías, Alejandro; Espinosa Orias, Alejandro A; Inoue, Nozomu; Nho, Shane J

    2015-12-01

    To determine if significant differences exist between male and female CAM deformities using quantitative 3-dimensional (3D) volume and location analysis. Retrospective analysis of preoperative computed tomographic (CT) scans for 138 femurs (69 from male patients and 69 from female patients) diagnosed with impingement from November 2009 to November 2011 was completed. Those patients who presented with hip complaints and had a history, physical examination (limited range of motion, positive impingement signs), plain radiographs (anteroposterior pelvis, 90° Dunn view, false profile view), and magnetic resonance images consistent with femoroacetabular impingement (FAI) and in whom a minimum of 6 months of conservative therapy (oral anti-inflammatory agents, physical therapy, and activity modification) had failed were indicated for arthroscopic surgery and had a preoperative CT scan. Scans were segmented, converted to point cloud data, and analyzed with a custom-written computer program. Analysis included mean CAM height and volume, head radius, and femoral version. Differences were analyzed using an unpaired t test with significance set at P position ± the 2:51 o'clock position to the 3:28 o'clock position ± the 1:59 o'clock position, with an average span from the 3:06 o'clock position ± the 1:29 o'clock position (male patients, the 11:23 o'clock position ± the 0:46 o'clock position to the 3:05 o'clock position ± the 1:20 o'clock position; female patients, the 11:33 o'clock position ± the 0:37 o'clock position to the 2:27 o'clock position ± the 0:45 o'clock position). There were no differences in the posterior (P = .60) or anterior (P = .14) extent of CAM deformities. However, the span on the clock face of the CAM deformities varied when comparing men with women (male patients, the 3:43 o'clock position ± the 1:29 o'clock position; female patients, the 2:54 o'clock position ± the 1:09 o'clock position; P = .02). Our data show that female CAM deformities

  17. Clinical application of human adipose tissue-derived mesenchymal stem cells in progressive hemifacial atrophy (Parry-Romberg disease) with microfat grafting techniques using 3-dimensional computed tomography and 3-dimensional camera.

    Science.gov (United States)

    Koh, Kyung Suk; Oh, Tae Suk; Kim, Hoon; Chung, In Wook; Lee, Kang Woo; Lee, Hyo Bo; Park, Eun Jung; Jung, Jae Seob; Shin, Il Seob; Ra, Jeong Chan; Choi, Jong Woo

    2012-09-01

    Parry-Romberg disease is a rare condition that results in progressive hemifacial atrophy, involving the skin, dermis, subcutaneous fat, muscle, and, finally, cartilage and bone. Patients have been treated with dermofat or fat grafts or by microvascular free flap transfer. We hypothesized that adipose-derived stem cells (ASCs) may improve the results of microfat grafting through enhancing angiogenesis. We evaluated the utility of ASC in microfat grafting of patients with Parry-Romberg disease by measuring the change in the hemifacial volumes after injection of ASCs with microfat grafts or microfat grafts alone. In April 2008, this investigation was approved by the Korean Food and Drug Administration and the institutional review board of the Asan Medical Center (Seoul, Korea) that monitor investigator-initiated trials. Between May 2008 and January 2009, 10 volunteers with Parry-Romberg disease (5 men and 5 women; mean age, 28 y) were recruited; 5 received ASC and microfat grafts and 5 received microfat grafts only. The mean follow-up period was 15 months. Adipose-derived stem cells were obtained from abdominal fat by liposuction and were cultured for 2 weeks. On day 14, patients were injected with fat grafts alone or plus (in the test group) 1 × 10 ASCs. Patients were evaluated postoperatively using a 3-dimensional camera and 3-dimensional CT scans, and grafted fat volumes were objectively calculated. Successful outcomes were evident in all 5 patients receiving microfat grafts and ASCs, and the survival of grafted fat was better than in patients receiving microfat grafts alone. Before surgery, the mean difference between ipsilateral and contralateral hemiface volume in patients receiving microfat grafts and ASCs was 21.71 mL decreasing to 4.47 mL after surgery. Overall resorption in this ASC group was 20.59%. The mean preoperative difference in hemiface volume in those receiving microfat grafts alone was 8.32 mL decreasing to 3.89 mL after surgery. Overall

  18. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Rahn, Helene, E-mail: helene.rahn@gmail.com [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany); Alexiou, Christoph [ENT-Department, Section for Experimental Oncology and Nanomedicine (Else Kröner-Fresenius-Stiftungsprofessur), University Hospital Erlangen, Waldstraße 1, Erlangen 91054 (Germany); Trahms, Lutz [Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, Berlin 10587 (Germany); Odenbach, Stefan [Institute of Fluid Mechanics, Chair of Magnetofluiddynamics, Technische Universitaet Dresden, Dresden 01069 (Germany)

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration. - Highlights: • Local cancer treatments are promising in reducing negative side effects occurring during conventional chemotherapy. • The nanoparticles play an important role in delivering drugs to the designated area during local cancer treatments as magnetic drug targeting. • We study the nanoparticles distribution in tumor tissue after magnetic drug targeting with X-ray computed tomography. • We achieved a 3-dimensional quantification of the nanoparticles content in tumor tissue out of digital tomographic data.

  19. Development of a 3-dimensional seismic isolation floor for computer systems

    International Nuclear Information System (INIS)

    Kurihara, M.; Shigeta, M.; Nino, T.; Matsuki, T.

    1991-01-01

    In this paper, we investigated the applicability of a seismic isolation floor as a method for protecting computer systems from strong earthquakes, such as computer systems in nuclear power plants. Assuming that the computer system is guaranteed for 250 cm/s 2 of input acceleration in the horizontal and vertical directions as the seismic performance, the basic design specification of the seismic isolation floor is considered as follows. Against S 1 level earthquakes, the maximum acceleration response of the seismic isolation floor in the horizontal and vertical directions is kept less than 250 cm/s 2 to maintain continuous computer operation. Against S 2 level earthquakes, the isolation floor allows large horizontal movement and large displacement of the isolation devices to reduce the acceleration response, although it is not guaranteed to be less than 250 cm/s 2 . By reducing the acceleration response, however, serious damage to the computer systems is reduced, so that they can be restarted after an earthquake. Usually, seismic isolation floor systems permit 2-dimensional (horizontal) isolation. However, in the case of just-under-seated earthquakes, which have large vertical components, the vertical acceleration response of this system is amplified by the lateral vibration of the frame of the isolation floor. Therefore, in this study a 3-dimensional seismic isolation floor, including vertical isolation, was developed. This paper describes 1) the experimental results of the response characteristics of the 3-dimensional seismic isolation floor built as a trial using a 3-dimensional shaking table, and 2) comparison of a 2-dimensional analytical model, for motion in one horizontal direction and the vertical direction, to experimental results. (J.P.N.)

  20. [In Vitro and In Vivo Biocompatibility of a Novel, 3-Dimensional Cellulose Matrix Structure].

    Science.gov (United States)

    Dunda, S E; Ranker, M; Pallua, N; Machens, H-G; Ravichandran, A; Schantz, J-T

    2015-12-01

    Biological and physical characteristics of matrices are one essential factor in creating bioartificial tissue. In this study, a new 3-dimensional cellulose matrix (Xellulin(®)) was tested in terms of biocompatibility and applicability for tissue engineering in vitro and in vivo. The tested matrix Xellulin(®) is a natural hydrological gel-matrix containing bacterial cellulose and water. To evaluate the cell biocompatibilty, cell adherence and proliferation characteristics in vitro, the matrix was cultured with human fibroblasts. Further in vivo studies were carried out by transplanting preadipocytes of 4- to 6-week-old Wistar rats with 3 different conditions: a) Xellulin(®) including 500 000 preadipocytes subcutaneous, b) Xellulin(®) including 500 000 preadipocytes within an in vivo bioreactor chamber, c) Xellulin(®) without cells subcutaneous as control. After explantation on day 14 histomorphological and immunohistochemical evaluations were performed. In vitro study revealed an excellent biocompatibility with good cell adherence of the fibroblasts on the matrix and evidence of cell proliferation and creation of a 3-dimensional cell network. In vivo neocapillarisation could be shown in all groups with evidence of erythrocytes (H/E staining) and endothelial vascular cells (RECA-1-staining). A significantly higher vascular density was shown in vascularised bioreactor group (18.4 vessels/100 000 µm(2) (group b) vs. 8.1 (group a), pmatrix was noticed. The promising in vitro results concerning cell adherence and proliferation on the tested matrix could be confirmed in vivo with an evidence of 3-dimensional neocapillarisation. Cell survival was higher in the vascularised group, but without significance. Long-term tests (28-42 days) need to be carried out to evaluate long-term cell survival and the matrix stability. Furthermore, studies concerning the implementation of the matrix within anatomic structures as well as long-term biocompatibility are needed.

  1. Dental implant customization using numerical optimization design and 3-dimensional printing fabrication of zirconia ceramic.

    Science.gov (United States)

    Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min

    2017-05-01

    This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Indentation in the Right Ventricle by an Incomplete Pericardium on 3-Dimensional Reconstructed Computed Tomography

    Directory of Open Access Journals (Sweden)

    Hak Ju Kim

    2017-08-01

    Full Text Available We report the case of a 17-year-old girl who presented with an indentation in the right ventricle caused by an incomplete pericardium on preoperative 3-dimensional reconstructed computed tomography. She was to undergo surgery for a partial atrioventricular septal defect and secundum atrial septal defect. Preoperative electrocardiography revealed occasional premature ventricular beats. We found the absence of the left side of the pericardium intraoperatively, and this absence caused strangulation of the diaphragmatic surface of the right ventricle. After correcting the lesion, the patient’s rhythm disturbances improved.

  3. Fractal dimensions from a 3-dimensional intermittency analysis in e+e- annihilation

    International Nuclear Information System (INIS)

    Behrend, H.J.; Criegee, L.; Field, J.H.; Franke, G.; Jung, H.; Meyer, J.; Podobrin, O.; Schroeder, V.; Winter, G.G.; Bussey, P.J.; Campbell, A.J.; Hendry, D.; Lumsdon, S.J.; Skillicorn, I.O.; Ahme, J.; Blobel, V.; Feindt, M.; Fenner, H.; Harjes, J.; Koehne, J.H.; Peters, J.H.; Spitzer, H.; Weihrich, T.; Boer, W. de; Buschhorn, G.; Grindhammer, G.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kroha, H.; Lueers, D.; Oberlack, H.; Schacht, P.; Scholz, S.; Wiedenmann, W.; Davier, M.; Grivaz, J.F.; Haissinski, J.; Journe, V.; Le Diberder, F.; Veillet, J.J.; Cozzika, G.; Ducros, Y.; Alexander, G.; Beck, A.; Bella, G.; Grunhaus, J.; Klatchko, A.; Levy, A.; Milstene, C.

    1990-10-01

    The intermittency structure of multihadronic e + e - annihilation is analyzed by evaluating the factorial moments F 2 -F 5 in 3-dimensional Lorentz invariant phase space as a function of the resolution scale. We interpret our data in the language of fractal objects. It turns out that the fractal dimension depends on the resolution scale in a way that can be attributed to geometrical resolution effects and dynamical effects, such as the π 0 Dalitz decay. The LUND 7.2 hadronization model provides an excellent description of the data. There is no indication of unexplained multiplicity fluctuations in small phase space regions. (orig.)

  4. 3-dimensional lattice studies of the electroweak phase transition at MHiggs∼ 70 GeV

    International Nuclear Information System (INIS)

    Guertler, M.; Perlt, H.; Schiller, A.; Ilgenfritz, E.M.; Kripfganz, J.

    1996-06-01

    We study the electroweak phase transition by lattice simulations of an effective 3-dimensional theory, for a Higgs mass of about 70 GeV. Exploiting, among others, a variant of the equal weight criterion of phase equilibrium, we obtain transition temperature, latent heat and surface tension, and compare with M H ∼35 GeV. In the broken phase masses and Higgs condensates are compared to perturbation theory. For the symmetric phase, bound state masses and the static force are determined. (orig.)

  5. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer.

    Science.gov (United States)

    Baek, Min-Hyun; Kim, Dae-Yeon; Kim, Namkug; Rhim, Chae Chun; Kim, Jong-Hyeok; Nam, Joo-Hyun

    2016-08-01

    We used a 3-dimensional (3D) printer to create anatomical replicas of real lesions and tested its application in cervical cancer. Our study patient decided to undergo radical hysterectomy after seeing her 3D model which was then used to plan and simulate this surgery. Using 3D printers to create patient-specific 3D tumor models may aid cervical cancer patients make treatment decisions. This technology will lead to better surgical and oncological outcomes for cervical cancer patients. J. Surg. Oncol. 2016;114:150-152. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hodges, Joseph C., E-mail: joseph.hodges@utsouthwestern.edu [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Beg, Muhammad S. [Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States); Das, Prajnan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Meyer, Jeffrey [Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas (United States)

    2014-07-15

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.

  7. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    International Nuclear Information System (INIS)

    Hodges, Joseph C.; Beg, Muhammad S.; Das, Prajnan; Meyer, Jeffrey

    2014-01-01

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities

  8. Perfect 3-dimensional lattice actions for 4-dimensional quantum field theories at finite temperature

    International Nuclear Information System (INIS)

    Kerres, U.; Mack, G.; Palma, G.

    1994-12-01

    We propose a two-step procedure to study the order of phase transitions at finite temperature in electroweak theory and in simplified models thereof. In a first step a coarse grained free energy is computed by perturbative methods. It is obtained in the form of a 3-dimensional perfect lattice action by a block spin transformation. It has finite temperature dependent coefficients. In this way the UV-problem and the infrared problem is separated in a clean way. In the second step the effective 3-dimensional lattice theory is treated in a nonperturbative way, either by the Feynman-Bololiubov method (solution of a gap equation), by real space renormalization group methods, or by computer simulations. In this paper we outline the principles for φ 4 -theory and scalar electrodynamics. The Balaban-Jaffe block spin transformation for the gauge field is used. It is known how to extend this transformation to the nonabelian case, but this will not be discussed here. (orig.)

  9. Evaluation of applicability of lead damper to 3-dimensional isolation system based on loading tests

    International Nuclear Information System (INIS)

    Matsuda, Akihiro

    2003-01-01

    To develop a damper for 3-dimensional base isolation system, horizontal and vertical mechanical properties, effect of loading frequency on vertical mechanical properties, coupled properties between horizontal and vertical directions, stability performance due to cyclic deformation are evaluated experimentally using scale models of lead damper originally developed for horizontal base isolation system. Loading test results are summarized as follows; 1) The lead damper has good vertical damping performance, in that the vertical yield load of the lead damper is three times as large as that for the horizontal direction, and the lead damper shows plastic behavior in the small deformation region. 2) The lead damper shows enough stability for static vertical displacement of ±40 mm. 3) the lead damper shows high stability performance for dynamic cyclic loading test using motions of isolation layer calculated by earthquake response analysis of FBR building subjected to S2-earthquake motion. Thus, applicability of the lead damper to 3-dimensional isolation system is shown from these results. (author)

  10. Automated, non-linear registration between 3-dimensional brain map and medical head image

    International Nuclear Information System (INIS)

    Mizuta, Shinobu; Urayama, Shin-ichi; Zoroofi, R.A.; Uyama, Chikao

    1998-01-01

    In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)

  11. The anatomy of the aging face: volume loss and changes in 3-dimensional topography.

    Science.gov (United States)

    Coleman, Sydney R; Grover, Rajiv

    2006-01-01

    Facial aging reflects the dynamic, cumulative effects of time on the skin, soft tissues, and deep structural components of the face, and is a complex synergy of skin textural changes and loss of facial volume. Many of the facial manifestations of aging reflect the combined effects of gravity, progressive bone resorption, decreased tissue elasticity, and redistribution of subcutaneous fullness. A convenient method for assessing the morphological effects of aging is to divide the face into the upper third (forehead and brows), middle third (midface and nose), and lower third (chin, jawline, and neck). The midface is an important factor in facial aesthetics because perceptions of facial attractiveness are largely founded on the synergy of the eyes, nose, lips, and cheek bones (central facial triangle). For aesthetic purposes, this area should be considered from a 3-dimensional rather than a 2-dimensional perspective, and restoration of a youthful 3-dimensional facial topography should be regarded as the primary goal in facial rejuvenation. Recent years have seen a significant increase in the number of nonsurgical procedures performed for facial rejuvenation. Patients seeking alternatives to surgical procedures include those who require restoration of lost facial volume, those who wish to enhance normal facial features, and those who want to correct facial asymmetry. Important factors in selecting a nonsurgical treatment option include the advantages of an immediate cosmetic result and a short recovery time.

  12. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion

    Science.gov (United States)

    Weaver, Cole A.; Miller, Steven F.; da Fontoura, Clarissa S. G.; Wehby, George L.; Amendt, Brad A.; Holton, Nathan E.; Allareddy, Veeratrishul; Southard, Thomas E.; Moreno Uribe, Lina M.

    2017-01-01

    Introduction Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes, DUSP6, ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (malocclusions. Thus, much of the genetic variation underlying the dentofacial phenotypic variation associated with malocclusion remains unknown. In this study, we evaluated associations between common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. Methods Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. Results Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P eruptions. Suggestive associations were found with TBX1 AJUBA, SNAI3 SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant after the Bonferroni correction (P malocclusions were identified. PMID:28257739

  13. Myocardial Deformation Measured by 3-Dimensional Speckle Tracking in Children and Adolescents With Systemic Arterial Hypertension.

    Science.gov (United States)

    Navarini, Susanne; Bellsham-Revell, Hannah; Chubb, Henry; Gu, Haotian; Sinha, Manish D; Simpson, John M

    2017-12-01

    Systemic arterial hypertension predisposes children to cardiovascular risk in childhood and adult life. Despite extensive study of left ventricular (LV) hypertrophy, detailed 3-dimensional strain analysis of cardiac function in hypertensive children has not been reported. The aim of this study was to evaluate LV mechanics (strain, twist, and torsion) in young patients with hypertension compared with a healthy control group and assess factors associated with functional measurements. Sixty-three patients (26 hypertension and 37 normotensive) were enrolled (mean age, 14.3 and 11.4 years; 54% men and 41% men, respectively). All children underwent clinical evaluation and echocardiographic examination, including 3-dimensional strain. There was no difference in LV volumes and ejection fraction between the groups. Myocardial deformation was significantly reduced in those with hypertension compared with controls. For hypertensive and normotensive groups, respectively, global longitudinal strain was -15.1±2.3 versus -18.5±1.9 ( P hypertensive and normotensive children, but children with hypertension had significantly lower strain indices. Whether reduced strain might predict future cardiovascular risk merits further longitudinal study. © 2017 American Heart Association, Inc.

  14. Physical properties of root cementum: Part I. A new method for 3-dimensional evaluation.

    Science.gov (United States)

    Malek, S; Darendeliler, M A; Swain, M V

    2001-08-01

    Cementum is a nonuniform connective tissue that covers the roots of human teeth. Investigation of the physical properties of cementum may help in understanding or evaluating any possible connection to root resorption. A variety of engineering tests are available to investigate these properties. However, the thickness of the cementum layer varies, and this limits the applicability of these techniques in determining the physical properties of cementum. Hardness testing with Knoop and Vickers indentations overcame some of these limitations, but they prohibited the retrieval and retesting of the sample and therefore the testing was restricted to one area or section of the tooth. Another limiting factor with the existing techniques was the risk of artifacts related to the embedding material such as acrylic. A new method to investigate the physical properties of human premolar cementum was developed to obtain a 3-dimensional map of these properties with the Ultra Micro Indentation System (UMIS-2000; Commonwealth Scientific and Industrial Research Organization, Campbell, Australia). UMIS-2000 is a nano-indentation instrument for investigation of the properties of the near-surface region of materials. Premolars were harvested from orthodontic patients requiring extractions and then mounted on a newly designed surveyor that allowed sample retrieval and 3-dimensional rotation. This novel method enabled the quantitative testing of root surface cementum, on all 4 root surfaces, extending from the apex to the cementoenamel junction at 60 different sites.

  15. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles.

    Science.gov (United States)

    Hoelting, Lisa; Scheinhardt, Benjamin; Bondarenko, Olesja; Schildknecht, Stefan; Kapitza, Marion; Tanavde, Vivek; Tan, Betty; Lee, Qian Yi; Mecking, Stefan; Leist, Marcel; Kadereit, Suzanne

    2013-04-01

    Nanoparticles (NPs) have been shown to accumulate in organs, cross the blood-brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Here, we developed a human embryonic stem cell (hESC)-derived 3-dimensional (3-D) in vitro model that allows for testing of potential developmental neurotoxicants. Early central nervous system PAX6(+) precursor cells were generated from hESCs and differentiated further within 3-D structures. The 3-D model was characterized for neural marker expression revealing robust differentiation toward neuronal precursor cells, and gene expression profiling suggested a predominantly forebrain-like development. Altered neural gene expression due to exposure to non-cytotoxic concentrations of the known developmental neurotoxicant, methylmercury, indicated that the 3-D model could detect DNT. To test for specific toxicity of NPs, chemically inert polyethylene NPs (PE-NPs) were chosen. They penetrated deep into the 3-D structures and impacted gene expression at non-cytotoxic concentrations. NOTCH pathway genes such as HES5 and NOTCH1 were reduced in expression, as well as downstream neuronal precursor genes such as NEUROD1 and ASCL1. FOXG1, a patterning marker, was also reduced. As loss of function of these genes results in severe nervous system impairments in mice, our data suggest that the 3-D hESC-derived model could be used to test for Nano-DNT.

  16. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003.

    Science.gov (United States)

    O'Connell Motherway, Mary; Kinsella, Michael; Fitzgerald, Gerald F; van Sinderen, Douwe

    2013-01-01

    Several prebiotics, such as inulin, fructo-oligosaccharides and galacto-oligosaccharides, are widely used commercially in foods and there is convincing evidence, in particular for galacto-oligosaccharides, that prebiotics can modulate the microbiota and promote bifidobacterial growth in the intestinal tract of infants and adults. In this study we describe the identification and functional characterization of the genetic loci responsible for the transport and metabolism of purified galacto-oligosaccharides (PGOS) by Bifidobacterium breve UCC2003. We further demonstrate that an extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for partial degradation of PGOS components with a high degree of polymerization. These partially hydrolysed PGOS components are presumed to be transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further degraded to galactose and glucose monomers that feed into the bifid shunt. This work significantly advances our molecular understanding of bifidobacterial PGOS metabolism and its associated genetic machinery to utilize this prebiotic. © 2012 The Authors. Published by Society for Applied Microbiology and Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  17. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003

    Science.gov (United States)

    O'Connell Motherway, Mary; Kinsella, Michael; Fitzgerald, Gerald F; Sinderen, Douwe

    2013-01-01

    Several prebiotics, such as inulin, fructo-oligosaccharides and galacto-oligosaccharides, are widely used commercially in foods and there is convincing evidence, in particular for galacto-oligosaccharides, that prebiotics can modulate the microbiota and promote bifidobacterial growth in the intestinal tract of infants and adults. In this study we describe the identification and functional characterization of the genetic loci responsible for the transport and metabolism of purified galacto-oligosaccharides (PGOS) by Bifidobacterium breve UCC2003. We further demonstrate that an extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for partial degradation of PGOS components with a high degree of polymerization. These partially hydrolysed PGOS components are presumed to be transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further degraded to galactose and glucose monomers that feed into the bifid shunt. This work significantly advances our molecular understanding of bifidobacterial PGOS metabolism and its associated genetic machinery to utilize this prebiotic. PMID:23199239

  18. Production, optimization and characterization of lactic acid by Lactobacillus delbrueckii NCIM 2025 from utilizing agro-industrial byproduct (cane molasses).

    Science.gov (United States)

    Srivastava, Abhinay Kumar; Tripathi, Abhishek Dutt; Jha, Alok; Poonia, Amrita; Sharma, Nitya

    2015-06-01

    In the present work Lactobacillus delbrueckii was used to utilize agro-industrial byproduct (cane molasses) for lactic acid production under submerged fermentation process. Screening of LAB was done by Fourier transform infra red spectroscopy (FTIR). Effect of different amino acids (DL-Phenylalanine, L-Lysine and DL-Aspartic acid) on the fermentation process was done by high performance liquid chromatography (HPLC). Central composite rotatable design (CCRD) was used to optimize the levels of three parameters viz. tween 80, amino acid and cane molasses concentration during fermentative production of lactic acid. Under optimum condition lactic acid production was enhanced from 55.89 g/L to 84.50 g/L. Further, validation showed 81.50 g/L lactic acid production. Scale up was done on 7.5 L fermentor. Productivity was found to be 3.40 g/L/h which was higher than previous studies with reduced fermentation time from 24 h to 12 h. Further characterization of lactic acid was done by FTIR.

  19. Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Here, we report the controllable fabrication of transparent conductive films (TCFs) for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks of single-walled carbon nanotube (SWCNT)/poly(3

  20. Utilization of the Differential Die-Away Self-Interrogation Technique for Characterization and Verification of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-27

    New nondestructive assay techniques are sought to better characterize spent nuclear fuel. One of the NDA instruments selected for possible deployment is differential die-away self-interrogation (DDSI). The proposed DDSI approach for spent fuel assembly assay utilizes primarily the spontaneous fission and (α, n) neutrons in the assemblies as an internal interrogating radiation source. The neutrons released in spontaneous fission or (α,n) reactions are thermalized in the surrounding water and induce fission in fissile isotopes, thereby creating a measurable signal from isotopes of interest that would be otherwise difficult to measure. The DDSI instrument employs neutron coincidence counting with 3He tubes and list-mode-based data acquisition to allow for production of Rossi-alpha distributions (RADs) in post-processing. The list-mode approach to data collection and subsequent construction of RADs has expanded the analytical possibilities, as will be demonstrated throughout this thesis. One of the primary advantages is that the measured signal in the form of a RAD can be analyzed in its entirety including determination of die-away times in different time domains. This capability led to the development of the early die-away method, a novel leakage multiplication determination method which is tested throughout the thesis on different sources in simulation space and fresh fuel experiments. The early die-away method is a robust, accurate, improved method of determining multiplication without the need for knowledge of the (α,n) source term. The DDSI technique and instrument are presented along with the many novel capabilities enabled by and discovered through RAD analysis. Among the new capabilities presented are the early die-away method, total plutonium content determination, and highly sensitive missing pin detection. Simulation of hundreds of different spent and fresh fuel assemblies were used to develop the analysis algorithms and the techniques were tested on a

  1. Utility of single-energy and dual-energy computed tomography in clot characterization: An in-vitro study.

    Science.gov (United States)

    Brinjikji, Waleed; Michalak, Gregory; Kadirvel, Ramanathan; Dai, Daying; Gilvarry, Michael; Duffy, Sharon; Kallmes, David F; McCollough, Cynthia; Leng, Shuai

    2017-06-01

    Background and purpose Because computed tomography (CT) is the most commonly used imaging modality for the evaluation of acute ischemic stroke patients, developing CT-based techniques for improving clot characterization could prove useful. The purpose of this in-vitro study was to determine which single-energy or dual-energy CT techniques provided optimum discrimination between red blood cell (RBC) and fibrin-rich clots. Materials and methods Seven clot types with varying fibrin and RBC densities were made (90% RBC, 99% RBC, 63% RBC, 36% RBC, 18% RBC and 0% RBC with high and low fibrin density) and their composition was verified histologically. Ten of each clot type were created and scanned with a second generation dual source scanner using three single (80 kV, 100 kV, 120 kV) and two dual-energy protocols (80/Sn 140 kV and 100/Sn 140 kV). A region of interest (ROI) was placed over each clot and mean attenuation was measured. Receiver operating characteristic curves were calculated at each energy level to determine the accuracy at differentiating RBC-rich clots from fibrin-rich clots. Results Clot attenuation increased with RBC content at all energy levels. Single-energy at 80 kV and 120 kV and dual-energy 80/Sn 140 kV protocols allowed for distinguishing between all clot types, with the exception of 36% RBC and 18% RBC. On receiver operating characteristic curve analysis, the 80/Sn 140 kV dual-energy protocol had the highest area under the curve for distinguishing between fibrin-rich and RBC-rich clots (area under the curve 0.99). Conclusions Dual-energy CT with 80/Sn 140 kV had the highest accuracy for differentiating RBC-rich and fibrin-rich in-vitro thrombi. Further studies are needed to study the utility of non-contrast dual-energy CT in thrombus characterization in acute ischemic stroke.

  2. Truck Rollover Characterization for Class-8 Tractor-Trailers Utilizing Standard Dual Tires and New-Generation Single Tires

    Energy Technology Data Exchange (ETDEWEB)

    Capps, Gary [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center; Knee, Bill [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center; Franzese, Oscar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center; Pollock, Paul [Dana Corporation, Kalamazoo, MI (United States). Commercial Vehicle Systems Division; Coleman, Daniel [Dana Corporation, Kalamazoo, MI (United States). Commercial Vehicle Systems Division; Janajreh, Ibrahim [Michelin Americas Research and Development Corporation, Greenville, SC (United States); Haas, Steven [Michelin Americas Research and Development Corporation, Greenville, SC (United States); Frey, Norm [Michelin Americas Research and Development Corporation, Greenville, SC (United States); Law, Harry [Clemson Univ., SC (United States). Fluor Daniel Engineering Innovation Building; Johnson, Eric [Clemson Univ., SC (United States). Fluor Daniel Engineering Innovation Building; Lawson, Robert [Clemson Univ., SC (United States). Fluor Daniel Engineering Innovation Building; Petrolino, Joe [National Transportation Research Center, Inc., Knoxville, TN (United States); Rice, Dave [National Transportation Research Center, Inc., Knoxville, TN (United States)

    2005-07-30

    The Heavy Truck Rollover Characterization Project is a major research effort conducted by the National Transportation Research Center, Inc. (NTRCI) in partnership with Oak Ridge National Laboratory (ORNL), Dana Corporation (Dana), Michelin Americas Research and Development Corporation (Michelin) and Clemson University (Clemson), under the NTRCIs Heavy Vehicle Safety Research Center (HVSRC) for the Federal Highway Administration (FHWA). ORNL provided the day-to-day management of the project. The expertise mix of this team coupled with complementary research needs and interests, and a positive can-do attitude provided an extremely positive experimental research opportunity for all involved. Furthermore, this team supplied significant and valuable resources that provided a strong positive benchmark regarding the ability to conduct research within a public-private partnership. The work conducted by this team focused on initial efforts to generate data and information on heavy truck rollover not currently available in the industry. It reflects efforts within Phases 1 and 2 of a longer-term four-phase research program. A 1999 Peterbilt 379 class-8 tractor and 2004 Wabash dry freight van trailer were the test vehicles utilized in this effort. Both were instrumented with a number of sensors to capture the dynamics of the tractor and trailer as it engaged in various testing maneuvers that included: an evasive maneuver, swept sine, constant radius, and a run-off-the-road maneuver. The run-off-the-road maneuver was discontinued because the test track could not safety accommodate such a maneuver. These maneuvers were carried out utilizing both standard dual tires and new-generation dual tires in six test series. Two test series also included the use of a wider-slider suspension. Outriggers were placed on the test vehicle to assure that an actual rollover would not occur, however, the tests were designed to generate lift-off of tires during the tests. One of the main objectives

  3. Morphometric analysis of the femur in cerebral palsy: 3-dimensional CT study.

    Science.gov (United States)

    Gose, Shinichi; Sakai, Takashi; Shibata, Toru; Murase, Tsuyoshi; Yoshikawa, Hideki; Sugamoto, Kazuomi

    2010-09-01

    The cause of hip disorder in cerebral palsy (CP) has been thought to involve muscle imbalance, flexion, and adduction contracture of the hip joint, acetabular dysplasia, and femoral growth abnormalities. The aim of this study was to quantitatively evaluate the 3-dimensional femoral geometry and subluxation/dislocation of the hip in spastic CP using 3D-CT reconstructed images of the pelvis and the femur, focusing on the femoral growth abnormalities in CP. Between June 2006 and September 2009, 186 hips in 93 bilateral spastic CP patients, including spastic diplegia (SD) in 73 patients and spastic quadriplegia (SQ) in 20 patients, who had not received any surgical treatment, were investigated using 3D-CT at our hospital. There were 59 boys and 34 girls with an average age of 5.3 years (range: 2.6 to 6.8 y). As an index for the femoral geometry, the neck-shaft angle, the femoral anteversion, and the femoral offset were 3-dimensionally measured. The center of the acetabulum and the femoral head were determined to calculate the CT migration percentage as the distance between these centers divided by the femoral head diameter. To elucidate the factors related to hip subluxation/dislocation, the relationships between the neck-shaft angle, the femoral anteversion, the femoral offset, and the CT migration percentage were investigated. The mean neck-shaft angle was 150.4+/-9.4 degrees (range: 129.4 to 173.2 degrees). The mean femoral anteversion was 44.4+/-13.6 degrees (range: 5.8 to 84.0 degrees). The mean CT migration percentage was 22.4+/-22.7% (range: 3 to 129%). There was positive correlation between the CT migration percentage and the neck-shaft angle (r=0.49). Hips with large CT migration percentage tended to show coxa valga. There was an inverse correlation between the neck-shaft angle and the femoral offset (r=-0.90), but no correlation between the CT migration percentage and the femoral anteversion (r=0.26), between the femoral offset and the femoral anteversion (r

  4. Photoprotection by pistachio bioactives in a 3-dimensional human skin equivalent tissue model.

    Science.gov (United States)

    Chen, C-Y Oliver; Smith, Avi; Liu, Yuntao; Du, Peng; Blumberg, Jeffrey B; Garlick, Jonathan

    2017-09-01

    Reactive oxygen species (ROS) generated during ultraviolet (UV) light exposure can induce skin damage and aging. Antioxidants can provide protection against oxidative injury to skin via "quenching" ROS. Using a validated 3-dimensional (3D) human skin equivalent (HSE) tissue model that closely mimics human skin, we examined whether pistachio antioxidants could protect HSE against UVA-induced damage. Lutein and γ-tocopherol are the predominant lipophilic antioxidants in pistachios; treatment with these compounds prior to UVA exposure protected against morphological changes to the epithelial and connective tissue compartments of HSE. Pistachio antioxidants preserved overall skin thickness and organization, as well as fibroblast morphology, in HSE exposed to UVA irradiation. However, this protection was not substantiated by the analysis of the proliferation of keratinocytes and apoptosis of fibroblasts. Additional studies are warranted to elucidate the basis of these discordant results and extend research into the potential role of pistachio bioactives promoting skin health.

  5. 3-Dimensional numerical simulation of sodium spray fire accidents in LMFBRs

    International Nuclear Information System (INIS)

    Zhang Bin; Zhu Jizhou; Han Lang

    2005-01-01

    In order to estimate and foresee the sequence of sodium spray fires that may occur in the liquid metal cooled fast breeder reactors (LMFBRs), this paper develops a program to analyze such sodium fire accidents. The present study gives a 3-dimensional numerical analysis code for sodium spray fires. The spatial distributions of gas temperature and chemical species concentrations in the cell that sodium spray fires happened are given. This paper gives detailed explanation of combustion models and heat transfer models that applied in the program. And the calculation procedure and method in solving the fluid field are narrated in detail. Good agreements of an overall transient behavior are obtained in a sodium spray combustion test analysis. The comparison between the analytical and experimental results shows that the program presented in this paper is creditable and reasonable for simulating the sodium spray fires. (author)

  6. Development of 6-axis portable manipulator which traces over 3-dimensional curved surface for ultrasonic inspection

    International Nuclear Information System (INIS)

    Hayashi, Tetsuji; Tsuzuki, Satoshi; Tsunewaki, Hiroshi.

    1993-01-01

    A 6-axis portable manipulator, weighing 120 N (12.3 kg) which traces over a 3-dimensional curved surface for ultrasonic testing has been developed. The manipulator body is made of carbon-fiber-reinforced plastic and magnesium alloy. A feature of the system is that deviation of the manipulator from its nominal path caused by arm bending due to its own weight can be corrected. The deviation is calculated by premeasuring spring coefficients and hysteresis characteristics of the arm structure. In a mock-up calibration performance test the accuracy was shown to be as high as that of a human inspector. The manipulator can be installed within 3 minutes by a single person. Joint angles are calculated with a direct memory access (DMA) handler using a poling method. Signals are transmitted to servo-controllers through an optical fiber of 2.5 Mbps. (author)

  7. Renormalization group aspects of 3-dimensional Pure U(1) lattice gauge theory

    International Nuclear Information System (INIS)

    Gopfert, M.; Mack, G.

    1983-01-01

    A few surprises in a recent study of the 3-dimensional pure U(1) lattice gauge theory model, from the point of view of the renormalization group theory, are discussed. Since the gauge group U(1) of this model is abelian, the model is subject to KramersWannier duality transformation. One obtains a ferromagnet with a global symmetry group Z. The duality transformation shows that the surface tension alpha of the model equals the strong tension of the U(1) gauge model. A theorem to represent the true asymptotic behaviour of alpha is derived. A second theorem considers the correlation functions. Discrepiancies between the theorems result in a solution that ''is regarded as a catastrophe'' in renormalization group theory. A lesson is drawn: To choose a good block spin in a renormalization group procedure, know what the low lying excitations of the theory are, to avoid integrating some of them by mischief

  8. 3-dimensional numerical modelling of rolling of superconducting Ag/BSCCO tape

    DEFF Research Database (Denmark)

    Eriksen, Morten; Bech, Jakob Ilsted; Seifi, Behrouz

    2000-01-01

    and Ø126 mm) have been investigated. It is found that it is possible to perform numerical simulation with 3D models of flat rolling of multifilament wire. Two 3D models have been used; 3D pressing with rolls and 3D rolling. 3D pressing with rolls have the advance that the simulation time is lower than...... in the 3D rolling. The 3D models have the advantage compared to 2D pressing that they can predict the 3 dimensional flow in the flat rolling, which has been showed to be very imported for the super conduction properties......Numerical simulation of the deformation process during flat rolling of multifilament HTS tapes has been investigated using a commercial FEM program, ELFEN. The numerical models were built up in 2D and 3D using a Drucker-Prager/Cap model for the powder. Three different roll diameters (Ø24 mm, Ø85 mm...

  9. A High Molecular-Mass Anoxybacillus sp. SK3-4 Amylopullulanase: Characterization and Its Relationship in Carbohydrate Utilization

    Directory of Open Access Journals (Sweden)

    Kian Mau Goh

    2013-05-01

    Full Text Available An amylopullulanase of the thermophilic Anoxybacillus sp. SK3-4 (ApuASK was purified to homogeneity and characterized. Though amylopullulanases larger than 200 kDa are rare, the molecular mass of purified ApuASK appears to be approximately 225 kDa, on both SDS-PAGE analyses and native-PAGE analyses. ApuASK was stable between pH 6.0 and pH 8.0 and exhibited optimal activity at pH 7.5. The optimal temperature for ApuASK enzyme activity was 60 °C, and it retained 54% of its total activity for 240 min at 65 °C. ApuASK reacts with pullulan, starch, glycogen, and dextrin, yielding glucose, maltose, and maltotriose. Interestingly, most of the previously described amylopullulanases are unable to produce glucose and maltose from these substrates. Thus, ApuASK is a novel, high molecular-mass amylopullulanase able to produce glucose, maltose, and maltotriose from pullulan and starch. Based on whole genome sequencing data, ApuASK appeared to be the largest protein present in Anoxybacillus sp. SK3-4. The α-amylase catalytic domain present in all of the amylase superfamily members is present in ApuASK, located between the cyclodextrin (CD-pullulan-degrading N-terminus and the α-amylase catalytic C-terminus (amyC domains. In addition, the existence of a S-layer homology (SLH domain indicates that ApuASK might function as a cell-anchoring enzyme and be important for carbohydrate utilization in a streaming hot spring.

  10. Exploiting BAC-end sequences for the mining, characterization and utility of new short sequences repeat (SSR) markers in Citrus.

    Science.gov (United States)

    Biswas, Manosh Kumar; Chai, Lijun; Mayer, Christoph; Xu, Qiang; Guo, Wenwu; Deng, Xiuxin

    2012-05-01

    The aim of this study was to develop a large set of microsatellite markers based on publicly available BAC-end sequences (BESs), and to evaluate their transferability, discriminating capacity of genotypes and mapping ability in Citrus. A set of 1,281 simple sequence repeat (SSR) markers were developed from the 46,339 Citrus clementina BAC-end sequences (BES), of them 20.67% contained SSR longer than 20 bp, corresponding to roughly one perfect SSR per 2.04 kb. The most abundant motifs were di-nucleotide (16.82%) repeats. Among all repeat motifs (TA/AT)n is the most abundant (8.38%), followed by (AG/CT)n (4.51%). Most of the BES-SSR are located in the non-coding region, but 1.3% of BES-SSRs were found to be associated with transposable element (TE). A total of 400 novel SSR primer pairs were synthesized and their transferability and polymorphism tested on a set of 16 Citrus and Citrus relative's species. Among these 333 (83.25%) were successfully amplified and 260 (65.00%) showed cross-species transferability with Poncirus trifoliata and Fortunella sp. These cross-species transferable markers could be useful for cultivar identification, for genomic study of Citrus, Poncirus and Fortunella sp. Utility of the developed SSR marker was demonstrated by identifying a set of 118 markers each for construction of linkage map of Citrus reticulata and Poncirus trifoliata. Genetic diversity and phylogenetic relationship among 40 Citrus and its related species were conducted with the aid of 25 randomly selected SSR primer pairs and results revealed that citrus genomic SSRs are superior to genic SSR for genetic diversity and germplasm characterization of Citrus spp.

  11. Accuracy of 3-dimensional curvilinear measurements on digital models with intraoral scanners.

    Science.gov (United States)

    Mack, Spencer; Bonilla, Tammy; English, Jeryl D; Cozad, Benjamin; Akyalcin, Sercan

    2017-09-01

    Our objectives were to evaluate and compare the digital dental models generated from 2 commercial intraoral scanners with manual measurements when performing 3-dimensional surface measurements along a curved line (curvilinear). Dry mandibles (n = 61) with intact dentition were used. The mandibles were digitized using 2 chair-side intraoral scanners: Cadent iTero (Align Technology, San Jose, Calif) and Lythos Digital Impression system (Ormco, Orange, Calif). Digitized 3-dimensional models were converted to individual stereolithography files and used with commercial software to obtain the curvilinear measurements. Manual measurements were carried out directly on the mandibular teeth. Measurements were made on different locations on the dental arch in various directions. One-sample t tests and linear regression analyses were performed. To further graphically examine the accuracy between the different methods, Bland-Altman plots were computed. The level of significance was set at P 0.05). Bland-Altman analysis showed no fixed bias of 1 approach vs the other, and random errors were detected in all comparisons. Although the mean biases of the digital models obtained by the iTero and Lythos scanners, when compared with direct caliper measurements, were low, the comparison of the 2 intraoral scanners yielded the lowest mean bias. No comparison displayed statistical significance for the t scores; this indicated the absence of proportional bias in these comparisons. The intraoral scanners tested in this study produced digital dental models that were comparatively accurate when performing direct surface measurements along a curved line in 3 dimensions. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  12. Effect of dental technician disparities on the 3-dimensional accuracy of definitive casts.

    Science.gov (United States)

    Emir, Faruk; Piskin, Bulent; Sipahi, Cumhur

    2017-03-01

    Studies that evaluated the effect of dental technician disparities on the accuracy of presectioned and postsectioned definitive casts are lacking. The purpose of this in vitro study was to evaluate the accuracy of presectioned and postsectioned definitive casts fabricated by different dental technicians by using a 3-dimensional computer-aided measurement method. An arch-shaped metal master model consisting of 5 abutments resembling prepared mandibular incisors, canines, and first molars and with a 6-degree total angle of convergence was designed and fabricated by computer-aided design and computer-aided manufacturing (CAD-CAM) technology. Complete arch impressions were made (N=110) from the master model, using polyvinyl siloxane (PVS) and delivered to 11 dental technicians. Each technician fabricated 10 definitive casts with dental stone, and the obtained casts were numbered. All casts were sectioned, and removable dies were obtained. The master model and the presectioned and postsectioned definitive casts were digitized with an extraoral scanner, and the virtual master model and virtual presectioned and postsectioned definitive casts were obtained. All definitive casts were compared with the master model by using computer-aided measurements, and the 3-dimensional accuracy of the definitive casts was determined with best fit alignment and represented in color-coded maps. Differences were analyzed using univariate analyses of variance, and the Tukey honest significant differences post hoc tests were used for multiple comparisons (α=.05). The accuracy of presectioned and postsectioned definitive casts was significantly affected by dental technician disparities (Ptechnician differences. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. The virtual nose: a 3-dimensional virtual reality model of the human nose.

    Science.gov (United States)

    Vartanian, A John; Holcomb, Joi; Ai, Zhuming; Rasmussen, Mary; Tardy, M Eugene; Thomas, J Regan

    2004-01-01

    The 3-dimensionally complex interplay of soft tissue, cartilaginous, and bony elements makes the mastery of nasal anatomy difficult. Conventional methods of learning nasal anatomy exist, but they often involve a steep learning curve. Computerized models and virtual reality applications have been used to facilitate teaching in a number of other complex anatomical regions, such as the human temporal bone and pelvic floor. We present a 3-dimensional (3-D) virtual reality model of the human nose. Human cadaveric axial cross-sectional (0.33-mm cuts) photographic data of the head and neck were used. With 460 digitized images, individual structures were traced and programmed to create a computerized polygonal model of the nose. Further refinements to this model were made using a number of specialized computer programs. This 3-D computer model of the nose was then programmed to operate as a virtual reality model. Anatomically correct 3-D model of the nose was produced. High-resolution images of the "virtual nose" demonstrate the nasal septum, lower lateral cartilages, middle vault, bony dorsum, and other structural details of the nose. Also, the model can be combined with a separate virtual reality model of the face and its skin cover as well as the skull. The user can manipulate the model in space, examine 3-D anatomical relationships, and fade superficial structures to reveal deeper ones. The virtual nose is a 3-D virtual reality model of the nose that is accurate and easy to use. It can be run on a personal computer or in a specialized virtual reality environment. It can serve as an effective teaching tool. As the first virtual reality model of the nose, it establishes a virtual reality platform from which future applications can be launched.

  14. The effectiveness of an interactive 3-dimensional computer graphics model for medical education.

    Science.gov (United States)

    Battulga, Bayanmunkh; Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki

    2012-07-09

    Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. To determine the educational effectiveness of interactive 3DCG. We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures.

  15. Effect of print layer height and printer type on the accuracy of 3-dimensional printed orthodontic models.

    Science.gov (United States)

    Favero, Christian S; English, Jeryl D; Cozad, Benjamin E; Wirthlin, John O; Short, Megan M; Kasper, F Kurtis

    2017-10-01

    Three-dimensional (3D) printing technologies enable production of orthodontic models from digital files; yet a range of variables associated with the process could impact the accuracy and clinical utility of the models. The objective of this study was to investigate the effect of print layer height on the accuracy of orthodontic models printed 3 dimensionally using a stereolithography format printer and to compare the accuracy of orthodontic models fabricated with several commercially available 3D printers. Thirty-six identical models were produced with a stereolithography-based 3D printer using 3 layer heights (n = 12 per group): 25, 50, and 100 μm. Forty-eight additional models were printed using 4 commercially available 3D printers (n = 12 per group). Each printed model was digitally scanned and compared with the input file via superimposition analysis using a best-fit algorithm to assess accuracy. Statistically significant differences were found in the average overall deviations of models printed at each layer height, with the 25-μm and 100-μm layer height groups having the greatest and least deviations, respectively. Statistically significant differences were also found in the average overall deviations of models produced using the various 3D printer models, but all values fell within clinically acceptable limits. The print layer height and printer model can affect the accuracy of a 3D printed orthodontic model, but the impact should be considered with respect to the clinical tolerances associated with the envisioned application. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  16. Construction of 3-dimensional ZnO-nanoflower structures for high quantum and photocurrent efficiency in dye sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Bayram, E-mail: bkilic@yalova.edu.tr [Yalova University, Department of Energy Systems Engineering, Faculty of Engineering, 77100 Yalova (Turkey); Günes, Taylan; Besirli, Ilknur; Sezginer, Merve [Yalova University, Department of Energy Systems Engineering, Faculty of Engineering, 77100 Yalova (Turkey); Tuzemen, Sebahattin [Department of Physics, Faculty of Science, Atatürk University, Erzurum 25240 (Turkey)

    2014-11-01

    Graphical abstract: - Highlights: • The structural and optical characterizations of ZnO nanoflowers were carried out on ITO by hydrothermal method. • Dye sensitized solar cell based ZnO nanoflowers were constructed on substrate. • The surface morphology effect on quantum efficiency and solar conversion efficiency were investigated. - Abstract: 3-dimensional ZnO nanoflower were obtained on FTO (F:SnO{sub 2}) substrate by hydrothermal method in order to produce high efficiency dye sensitized solar cells (DSSCs). We showed that nanoflowers structures have nanoscale branches that stretch to fill gaps on the substrate and these branches of nano-leaves provide both a larger surface area and a direct pathway for electron transport along the channels. It was found that the solar conversion efficiency and quantum efficiency (QE) or incident photon to current conversion efficiencies (IPCE) is highly dependent on nanoflower surface due to high electron injection process. The highest solar conversion efficiency of 5.119 and QE of 60% was obtained using ZnO nanoflowers/N719 dye/I{sup −}/I{sup −}{sub 3} electrolyte. In this study, three dimensional (3D)-nanoflower and one dimensional (1D)-nanowires ZnO nanostructures were also compared against each other in respect to solar conversion efficiency and QE measurements. In the case of the 1D-ZnO nanowire conversion efficiency (η) of 2.222% and IPCE 47% were obtained under an illumination of 100 mW/cm{sup 2}. It was confirmed that the performance of the 3D-nanoflowers was better than about 50% that of the 1D-nanowire dye-sensitized solar cells.

  17. Incorporation of multilayered silver nanoparticles into polymer brushes as 3-dimensional SERS substrates and their application for bacteria detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qian; Wang, Xiang-Dong; Tian, Ting; Chu, Li-Qiang, E-mail: chuliqiang@tust.edu.cn

    2017-06-15

    Highlights: • POEGMA/AgNPs composite film prepared via the in-stacking method is employed as 3D SERS substrate. • Control over POEGMA chain length is achieved via SI-ATRP method. • Influence of POEGMA chain length and in-stacking process on SERS performance is investigated. • The 3D SERS substrate is used for the ultrasensitive detection of ATP and S. aureus. - Abstract: Surface-enhanced Raman scattering (SERS) sensors have been extensively studied for ultrasensitive detection of diverse chemical or biological analytes. Facile fabrication of highly sensitive SERS substrates is believed to be of crucial importance in these analytical applications. In this regard, the preparation of 3-dimensional (3D) SERS substrates are explored via the incorporation of multilayered silver nanoparticles (AgNPs) into poly (oligo(ethylene glycol) methacrylate) (POEGMA) brushes by repeating the immersion-rinsing-drying steps for different lengths of time (i.e., the so-called in-stacking method). The POEGMA brushes of different chain lengths are synthesized by surface-initiated atom transfer radical polymerization (ATRP) with various reaction time. The resulting POEGMA/AgNP nanocomposites are characterized by FE-SEM, UV–vis and Raman spectroscopy. FE-SEM and UV–vis results indicate that the AgNPs are successfully incorporated into the POEGMA brushes with a 3D configuration. The nanocomposite films are employed as SERS substrates for the detection of a Raman reporter molecule (i.e., 4-aminothiophenol), giving rise to an enhancement factor of up to 1.29 × 10{sup 7} and also having relatively good uniformity and reproducibility. The obtained 3D SERS substrates are also used for the detection of a typical gram-positive bacterium, Staphylococcus aureus. The limit of detection is found to be as low as ca. 8 CFU/mL.

  18. The Investigation of Accuracy of 3 Dimensional Models Generated From Point Clouds with Terrestrial Laser Scanning

    Science.gov (United States)

    Gumus, Kutalmis; Erkaya, Halil

    2013-04-01

    In Terrestrial laser scanning (TLS) applications, it is necessary to take into consideration the conditions that affect the scanning process, especially the general characteristics of the laser scanner, geometric properties of the scanned object (shape, size, etc.), and its spatial location in the environment. Three dimensional models obtained with TLS, allow determining the geometric features and relevant magnitudes of the scanned object in an indirect way. In order to compare the spatial location and geometric accuracy of the 3-dimensional model created by Terrestrial laser scanning, it is necessary to use measurement tools that give more precise results than TLS. Geometric comparisons are performed by analyzing the differences between the distances, the angles between surfaces and the measured values taken from cross-sections between the data from the 3-dimensional model created with TLS and the values measured by other measurement devices The performance of the scanners, the size and shape of the scanned objects are tested using reference objects the sizes of which are determined with high precision. In this study, the important points to consider when choosing reference objects were highlighted. The steps up to processing the point clouds collected by scanning, regularizing these points and modeling in 3 dimensions was presented visually. In order to test the geometric correctness of the models obtained by Terrestrial laser scanners, sample objects with simple geometric shapes such as cubes, rectangular prisms and cylinders that are made of concrete were used as reference models. Three dimensional models were generated by scanning these reference models with Trimble Mensi GS 100. The dimension of the 3D model that is created from point clouds was compared with the precisely measured dimensions of the reference objects. For this purpose, horizontal and vertical cross-sections were taken from the reference objects and generated 3D models and the proximity of

  19. Comparison of 'system thermal-hydraulics-3 dimensional reactor kinetics' coupled calculations using the MARS 1D and 3D modules and the MASTER code

    International Nuclear Information System (INIS)

    Jung, J. J.; Joo, H. K.; Lee, W. J.; Ji, S. K.; Jung, B. D.

    2002-01-01

    KAERI has developed the coupled 'system thermal-hydraulics - 3 dimensional reactor kinetics' code, MARS/MASTER since 1998. However, there is a limitation in the existing MARS/MASTER code; that is, to perform the coupled calculations using MARS/MASTER, we have to utilize the hydrodynamic model and the heat structure model of the MARS '3D module'. In some transients, reactor kinetics behavior is strongly multi-dimensional, but core thermal-hydraulic behavior remains in one-dimensional manner. For efficient analysis of such transients, we coupled the MARS 1D module with MASTER. The new feature has been assessed by the 'OECD NEA Main Steam Line Break (MSLB) benchmark exercise III' simulations

  20. Duplication of complete dentures using general-purpose handheld optical scanner and 3-dimensional printer: Introduction and clinical considerations.

    Science.gov (United States)

    Kurahashi, Kosuke; Matsuda, Takashi; Goto, Takaharu; Ishida, Yuichi; Ito, Teruaki; Ichikawa, Tetsuo

    2017-01-01

    To introduce a new clinical procedure for fabricating duplicates of complete dentures by bite pressure impression using digital technology, and to discuss its clinical significance. The denture is placed on a rotary table and the 3-dimensional form of the denture is digitized using a general-purpose handheld optical scanner. The duplicate denture is made of polylactic acid by a 3-dimensional printer using the 3-dimensional data. This procedure has the advantages of wasting less material, employing less human power, decreasing treatment time at the chair side, lowering the rates of contamination, and being readily fabricated at the time of the treatment visit. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  1. An experimental study for qualitatively diagnosing stapes lesions by helical 3-dimensional CT

    International Nuclear Information System (INIS)

    Kawaue, Akifumi; Kuki, Kiyonori; Yamanaka, Noboru; Nishimura, Michihiko

    2001-01-01

    To evaluate qualitative diagnosis of stapes lesions by 3-dimensional computed tomography (3D-CT) combined with superselective image processing (3D-SS) of stapes, we studied helical 3D-CT on a phantom model of the temporal bone. Two stapes models were used-1 made from the bone filler, Celatite, consistent in bone density but changing in cross sectional area, and the other made from an apacerum rod used in quantitative computed tomography (QCT), consistent in cross sectional area but changing in bone density. These stapes models were put into a skull phantom and analyzed by helical 3D-CT. The influence of the tympanic cavity conditions on CT images of stapes was evaluated by filling the phantom model with Vaseline following 3D selective reconstruction. In all stapes models, lowering the lower CT window width threshold resulted in an enlarged cross-sectional area of the model. The higher the bone density, the lower the increase in cross-sectional area in the image. The stapes model with lower density had greater influence on the imaging by tympanic cavity conditions and was likely to be misdiagnosed as showing higher bone density. Based on the experimental study, 3D-SS by helical 3D-CT appears to be a useful measure for qualitatively diagnosing stapes lesions. (author)

  2. Polarized light microscopy for 3-dimensional mapping of collagen fiber architecture in ocular tissues.

    Science.gov (United States)

    Yang, Bin; Jan, Ning-Jiun; Brazile, Bryn; Voorhees, Andrew; Lathrop, Kira L; Sigal, Ian A

    2018-04-06

    Collagen fibers play a central role in normal eye mechanics and pathology. In ocular tissues, collagen fibers exhibit a complex 3-dimensional (3D) fiber orientation, with both in-plane (IP) and out-of-plane (OP) orientations. Imaging techniques traditionally applied to the study of ocular tissues only quantify IP fiber orientation, providing little information on OP fiber orientation. Accurate description of the complex 3D fiber microstructures of the eye requires quantifying full 3D fiber orientation. Herein, we present 3dPLM, a technique based on polarized light microscopy developed to quantify both IP and OP collagen fiber orientations of ocular tissues. The performance of 3dPLM was examined by simulation and experimental verification and validation. The experiments demonstrated an excellent agreement between extracted and true 3D fiber orientation. Both IP and OP fiber orientations can be extracted from the sclera and the cornea, providing previously unavailable quantitative 3D measures and insight into the tissue microarchitecture. Together, the results demonstrate that 3dPLM is a powerful imaging technique for the analysis of ocular tissues. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Systematic Review of the Use of 3-Dimensional Printing in Surgical Teaching and Assessment.

    Science.gov (United States)

    Langridge, Benjamin; Momin, Sheikh; Coumbe, Ben; Woin, Evelina; Griffin, Michelle; Butler, Peter

    The use of 3-dimensional (3D) printing in medicine has rapidly expanded in recent years as the technology has developed. The potential uses of 3D printing are manifold. This article provides a systematic review of the uses of 3D printing within surgical training and assessment. A structured literature search of the major literature databases was performed in adherence to PRISMA guidelines. Articles that met predefined inclusion and exclusion criteria were appraised with respect to the key objectives of the review and sources of bias were analysed. Overall, 49 studies were identified for inclusion in the qualitative analysis. Heterogeneity in study design and outcome measures used prohibited meaningful meta-analysis. 3D printing has been used in surgical training across a broad range of specialities but most commonly in neurosurgery and otorhinolaryngology. Both objective and subjective outcome measures have been studied, demonstrating the usage of 3D printed models in training and education. 3D printing has also been used in anatomical education and preoperative planning, demonstrating improved outcomes when compared to traditional educational methods and improved patient outcomes, respectively. 3D printing technology has a broad range of potential applications within surgical education and training. Although the field is still in its relative infancy, several studies have already demonstrated its usage both instead of and in addition to traditional educational methods. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  4. Development of sodium droplet combustion analysis methodology using direct numerical simulation in 3-dimensional coordinate (COMET)

    International Nuclear Information System (INIS)

    Okano, Yasushi; Ohira, Hiroaki

    1998-08-01

    In the early stage of sodium leak event of liquid metal fast breeder reactor, LMFBR, liquid sodium flows out from a piping, and ignition and combustion of liquid sodium droplet might occur under certain environmental condition. Compressible forced air flow, diffusion of chemical species, liquid sodium droplet behavior, chemical reactions and thermodynamic properties should be evaluated with considering physical dependence and numerical connection among them for analyzing combustion of sodium liquid droplet. A direct numerical simulation code was developed for numerical analysis of sodium liquid droplet in forced convection air flow. The numerical code named COMET, 'Sodium Droplet COmbustion Analysis METhodology using Direct Numerical Simulation in 3-Dimensional Coordinate'. The extended MAC method was used to calculate compressible forced air flow. Counter diffusion among chemical species is also calculated. Transport models of mass and energy between droplet and surrounding atmospheric air were developed. Equation-solving methods were used for computing multiphase equilibrium between sodium and air. Thermodynamic properties of chemical species were evaluated using dynamic theory of gases. Combustion of single sphere liquid sodium droplet in forced convection, constant velocity, uniform air flow was numerically simulated using COMET. Change of droplet diameter with time was closely agree with d 2 -law of droplet combustion theory. Spatial distributions of combustion rate and heat generation and formation, decomposition and movement of chemical species were analyzed. Quantitative calculations of heat generation and chemical species formation in spray combustion are enabled for various kinds of environmental condition by simulating liquid sodium droplet combustion using COMET. (author)

  5. Scaffold Free Bio-orthogonal Assembly of 3-Dimensional Cardiac Tissue via Cell Surface Engineering

    Science.gov (United States)

    Rogozhnikov, Dmitry; O'Brien, Paul J.; Elahipanah, Sina; Yousaf, Muhammad N.

    2016-12-01

    There has been tremendous interest in constructing in vitro cardiac tissue for a range of fundamental studies of cardiac development and disease and as a commercial system to evaluate therapeutic drug discovery prioritization and toxicity. Although there has been progress towards studying 2-dimensional cardiac function in vitro, there remain challenging obstacles to generate rapid and efficient scaffold-free 3-dimensional multiple cell type co-culture cardiac tissue models. Herein, we develop a programmed rapid self-assembly strategy to induce specific and stable cell-cell contacts among multiple cell types found in heart tissue to generate 3D tissues through cell-surface engineering based on liposome delivery and fusion to display bio-orthogonal functional groups from cell membranes. We generate, for the first time, a scaffold free and stable self assembled 3 cell line co-culture 3D cardiac tissue model by assembling cardiomyocytes, endothelial cells and cardiac fibroblast cells via a rapid inter-cell click ligation process. We compare and analyze the function of the 3D cardiac tissue chips with 2D co-culture monolayers by assessing cardiac specific markers, electromechanical cell coupling, beating rates and evaluating drug toxicity.

  6. Relationship of maxillary 3-dimensional posterior occlusal plane to mandibular spatial position and morphology.

    Science.gov (United States)

    Coro, Jorge C; Velasquez, Roberto L; Coro, Ivette M; Wheeler, Timothy T; McGorray, Susan P; Sato, Sadao

    2016-07-01

    The purpose of this study was to examine the relationship of the 3-dimensional (3D) posterior occlusal plane (POP) and the mandibular 3D spatial position. The relationship of the POP to mandibular morphology was also investigated. Retrospective data from a convenience sample of pretreatment diagnostic cone-beam computed tomography scans were rendered using InVivo software (Anatomage, San Jose, Calif). The sample consisted of 111 subjects (51 male, 60 female) and included growing and nongrowing subjects of different races and ethnicities. The 3D maxillary POP was defined by selecting the cusp tips of the second premolars and the second molars on the rendered images of the subjects. The angles made by this plane, in reference to the Frankfort horizontal plane, were measured against variables that described the mandibular position in the coronal, sagittal, and axial views. The POP was also compared with bilateral variables that described mandibular morphology. There were significant differences of the POP among the different skeletal malocclusions (P <0.0001). The POP showed significant correlations with mandibular position in the sagittal (P <0.0001), coronal (P <0.05), and axial (P <0.05) planes. The POP also showed a significant correlation with mandibular morphology (P <0.0001). These findings suggest that there is a distinct and significant relationship between the 3D POP and the mandibular spatial position and its morphology. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  7. 3-DIMENSIONAL Numerical Modeling on the Combustion and Emission Characteristics of Biodiesel in Diesel Engines

    Science.gov (United States)

    Yang, Wenming; An, Hui; Amin, Maghbouli; Li, Jing

    2014-11-01

    A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.

  8. The 3-Dimensional Fermi Liquid Description for the Iron-Based Superconductors

    Science.gov (United States)

    Misawa, Setsuo

    2018-01-01

    The quasiparticles in the normal state of iron-based superconductors have been shown to behave universally as a 3-dimensional Fermi liquid. Because of interactions and the presence of sharp Fermi surfaces, the quasiparticle energy contains, as a function of the momentum \\varvec{p}, a term of the form ( p - p_0)^3 ln {( |p-p_0|/p_0)} , where p = | \\varvec{p} | and p_0 is the Fermi momentum. The electronic specific heat coefficient, magnetic susceptibility (Knight shift), electrical resistivity, Hall coefficient and thermoelectric power divided by temperature follow, as functions of temperature T, the logarithmic formula a-b T^2 ln {(T/T^*)}, a, b and T^* being constant; these formulae have been shown to explain the observed data for all iron-based superconductors. It is shown that the concept of non-Fermi liquids or anomalous metals which appears in the literature is not needed for descriptions of the present systems. When the superconducting transition temperature TC and the b / a value for the resistivity are plotted as functions of the doping content x, there appear various characteristic diagrams in which regions of positive correlation and those of negative correlation between TC and b / a are interconnected; from these diagrams, we may make speculations about the types of superconductivity and the crossover between them.

  9. Multilevel Spondylolysis Repair Using the "Smiley Face" Technique with 3-Dimensional Intraoperative Spinal Navigation.

    Science.gov (United States)

    Voisin, Mathew R; Witiw, Christopher D; Deorajh, Ryan; Guha, Daipayan; Oremakinde, Adetunji; Wang, Shelly; Yang, Victor

    2018-01-01

    Multilevel spondylolysis is a rare cause of progressive lower back pain, and patients who fail conservative management are treated surgically. Direct repair methods can maintain mobility and lead to decreased morbidity compared with spinal fusion in single-level spondylolysis. In this paper, we present a patient with nonadjacent multilevel spondylolysis who underwent the "smiley face" technique of direct multilevel repair without fusion using 3-dimensional intraoperative spinal navigation. Bilateral spondylolysis at L3 and L5 with associated spondylolisthesis in a 50-year-old male was repaired using the "smiley face" technique. Patient-reported outcomes, including the Oswestry Disability Index (ODI) and visual analog scale scores for back and leg pain, were assessed preoperatively along with 6 weeks and 4 months postoperatively. Postoperative computed tomography imaging showed precise screw insertion and rod placement along with stable hardware alignment in follow-up imaging. The patient's ODI and lower back visual analog scale scores decreased from 25 to 8 and 7.5 to 4, respectively, correlating to an excellent outcome on ODI. Direct repair and avoidance of fusion is possible and can provide good functional outcomes in patients with nonadjacent multilevel spondylolysis and associated spondylolisthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Advanced 3-dimensional electron kinetic calculations for the current drive problem in magnetically confined thermonuclear plasmas

    International Nuclear Information System (INIS)

    Peysson, Y.; Decker, J.; Bers, A.; Ram, A.; Harvey, R.

    2004-01-01

    Accurate and fast electron kinetic calculations is a challenging issue for realistic simulations of thermonuclear tokamak plasmas. Relativistic corrections and electron trajectory effects must be fully taken into account for high temperature burning plasmas, while codes should also consistently describe wave-particle resonant interactions in presence of locally large gradients close to internal transport barrier. In that case, neoclassical effects may come into play and self-consistent evaluation of both the radio-frequency and bootstrap currents must be performed. In addition, a complex interplay between momentum and radial electron dynamics may take place, in presence of a possible energy dependent radial transport. Besides the physics needs, there are considerable numerical issues to solve, in order to reduce computer time consumption and memory requirements at an acceptable level, so that kinetic calculations may be valuably incorporated in a chain of codes which determines plasma equilibrium and wave propagation. So far, fully implicit 3-dimensional calculations based on a finite difference scheme and an incomplete L and U matrices factorization have been found to be so most effective method to reach this goal. A review of the present status in this active field of physics is presented, with an emphasis on possible future improvements. (authors)

  11. Casting of 3-dimensional footwear prints in snow with foam blocks.

    Science.gov (United States)

    Petraco, Nicholas; Sherman, Hal; Dumitra, Aurora; Roberts, Marcel

    2016-06-01

    Commercially available foam blocks are presented as an alternative material for the casting and preservation of 3-dimensional footwear impressions located in snow. The method generates highly detailed foam casts of questioned footwear impressions. These casts can be compared to the known outsole standards made from the suspects' footwear. Modification of the commercially available foam casting blocks is simple and fast. The foam block is removed and a piece of cardboard is secured to one side of the block with painter's masking tape. The prepared foam block is then placed back into its original box, marked appropriately, closed and stored until needed. When required the foam block is carefully removed from its storage box and gently placed, foam side down, over the questioned footwear impression. Next, the crime scene technician's hands are placed on top of the cardboard and pressure is gently applied by firmly pressing down onto the impression. The foam cast is removed, dried and placed back into its original container and sealed. The resulting 3D impressions can be directly compared to the outsole of known suspected item(s) of footwear. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Real-time interpolation for true 3-dimensional ultrasound image volumes.

    Science.gov (United States)

    Ji, Songbai; Roberts, David W; Hartov, Alex; Paulsen, Keith D

    2011-02-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1-2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm(3) voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery.

  13. A customized bolus produced using a 3-dimensional printer for radiotherapy.

    Science.gov (United States)

    Kim, Shin-Wook; Shin, Hun-Joo; Kay, Chul Seung; Son, Seok Hyun

    2014-01-01

    Boluses are used in high-energy radiotherapy in order to overcome the skin sparing effect. In practice though, commonly used flat boluses fail to make a perfect contact with the irregular surface of the patient's skin, resulting in air gaps. Hence, we fabricated a customized bolus using a 3-dimensional (3D) printer and evaluated its feasibility for radiotherapy. We designed two kinds of bolus for production on a 3D printer, one of which was the 3D printed flat bolus for the Blue water phantom and the other was a 3D printed customized bolus for the RANDO phantom. The 3D printed flat bolus was fabricated to verify its physical quality. The resulting 3D printed flat bolus was evaluated by assessing dosimetric parameters such as D1.5 cm, D5 cm, and D10 cm. The 3D printed customized bolus was then fabricated, and its quality and clinical feasibility were evaluated by visual inspection and by assessing dosimetric parameters such as Dmax, Dmin, Dmean, D90%, and V90%. The dosimetric parameters of the resulting 3D printed flat bolus showed that it was a useful dose escalating material, equivalent to a commercially available flat bolus. Analysis of the dosimetric parameters of the 3D printed customized bolus demonstrated that it is provided good dose escalation and good contact with the irregular surface of the RANDO phantom. A customized bolus produced using a 3D printer could potentially replace commercially available flat boluses.

  14. Tunneling currents between carbon nanotubes inside the 3-dimensional potential of a dielectric matrix

    Directory of Open Access Journals (Sweden)

    M. S. Tsagarakis

    2017-07-01

    Full Text Available We have examined the tunneling currents between CNTs dispersed in a dielectric matrix as is normally the case in a tensile stress or toxic gas sensors. Due to the randomness of the immersion process the CNTs are at random angles and configurations between them, thus producing a 3-dimensional potential (3-D. We have produced a method that solves the Laplace equation for this type of problem and uses the WKB formulation to calculate the transmission coefficient between CNTs. We have then shown that the tunneling currents between a pair of CNTs depend critically on their relative angle and configuration. In particular we have shown that the tunneling currents do not occur only along a CNT tip to CNT tip configuration but other more efficient paths exist which give a current higher by two orders of magnitude from what a simple 1D theory would give. On the other hand the tunneling current between non-coplanar CNTs is negligible. We conclude that such phenomena cannot be analyzed by a simple 1-dimensional WKB theory and the percolation threshold necessary for conduction may be lower than the one such a theory would predict.

  15. SBNCT plan: A 3-dimensional treatment planning system for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Reinstein, L.E.; Ramsay, E.B.; Gajewski, J.; Ramamoorthy, S.; Meek, A.G.

    1993-01-01

    The need for accurate and comprehensive 3-dimensional treatment planning for boron neutron capture therapy (BNCT) has been debated for the past several years. Although many argue against the need for elaborate and expensive treatment planning programs which mimic conventional radiotherapy planning systems, it is clear that in order to realize significant gains over conventional fractionated radiation therapy, patients must be treated to the edge of normal tissue tolerance. Just how close to this edge is dictated by the uncertainties in dosimetry. Hence the focus of BNCT planning is the determination of dose distribution throughout normal tissue volumes. Although precise geometric manipulation of the epithermal neutron beam is not achievable, the following variables play an important role in BNCT optimization: patient orientation, dose fractionation, number of fields, megawatt-minutes per fraction, use of surface bolus, and use of collimation. Other variables which are not as easily adjustable and would not, therefore, be part of treatment planning optimization, include external patient contour, internal patient heterogeneities, boron compound distributions, and RBE's. The boron neutron capture therapy planning system developed at SUNY Stony Brook (SBNCT-Plan) was designed as an interactive graphic tool to assist the radiation oncologist in generating the optimum plan for a neutron capture treatment

  16. Development and validation of a septoplasty training model using 3-dimensional printing technology.

    Science.gov (United States)

    AlReefi, Mahmoud A; Nguyen, Lily H P; Mongeau, Luc G; Haq, Bassam Ul; Boyanapalli, Siddharth; Hafeez, Nauman; Cegarra-Escolano, Francois; Tewfik, Marc A

    2017-04-01

    Providing alternative training modalities may improve trainees' ability to perform septoplasty. Three-dimensional printing has been shown to be a powerful tool in surgical training. The objectives of this study were to explain the development of our 3-dimensional (3D) printed septoplasty training model, to assess its face and content validity, and to present evidence supporting its ability to distinguish between levels of surgical proficiency. Imaging data of a patient with a nasal septal deviation was selected for printing. Printing materials reproducing the mechanical properties of human tissues were selected based on literature review and prototype testing. Eight expert rhinologists, 6 senior residents, and 6 junior residents performed endoscopic septoplasties on the model and completed a postsimulation survey. Performance metrics in quality (final product analysis), efficiency (time), and safety (eg, perforation length, nares damage) were recorded and analyzed in a study-blind manner. The model was judged to be anatomically correct and the steps performed realistic, with scores of 4.05 ± 0.82 and 4.2 ± 1, respectively, on a 5-point Likert scale. Ninety-two percent of residents desired the simulator to be integrated into their teaching curriculum. There was a significant difference (p simulator training models for septoplasty. Our model incorporates 2 different materials mixed into the 3 relevant consistencies necessary to simulate septoplasty. Our findings provide evidence supporting the validity of the model. © 2016 ARS-AAOA, LLC.

  17. Diagnosis of 3-dimensional geometry and stress corrosion cracking in steam generator tubes

    International Nuclear Information System (INIS)

    Lee, D.H.; Choi, M.S.; Hur, D.H.; Kim, K.M.; Han, J.H.; Song, M.H.

    2015-01-01

    Most of the corrosive degradations in steam generator tubes of nuclear power plants are closely related to the residual stress existing in the local region of a geometric change, that is, an expansion transition, u-bend, dent, bulge, etc. Therefore, accurate information on a geometric anomaly (precursor of degradation) in a tube is a prerequisite to the activity of pre- and in-service non destructive inspection for a precise and earlier detection of a defect in order to prevent a failure during an operation, and also for a root cause analysis of a failure. In this paper, a new diagnostic eddy current probe technology which has simultaneous dual function of a 3-dimensional geometry measurement and defect detection in steam generator tube is introduced. The D-Probe is a rotary type eddy current coil probe equipped with 3 different eddy current coil units (surface riding type plus-point and pancake coils for defect detection, and non-surface riding type shielded high frequency pancake coil for tube profile measurement). A specific data analysis software has been developed. By comparing the eddy current data from the defect with those from the geometric changes, the relationship between the degradation and geometric changes can be revealed. Also, it supplies information on tube location at which defect is most probable and thus, a more efficient detection of earlier degradation. The use of D-probe and analysis software has been demonstrated for steam generator tubes with various geometric anomalies in manufacturing and operating nuclear power plants

  18. Guided Autotransplantation of Teeth: A Novel Method Using Virtually Planned 3-dimensional Templates.

    Science.gov (United States)

    Strbac, Georg D; Schnappauf, Albrecht; Giannis, Katharina; Bertl, Michael H; Moritz, Andreas; Ulm, Christian

    2016-12-01

    The aim of this study was to introduce an innovative method for autotransplantation of teeth using 3-dimensional (3D) surgical templates for guided osteotomy preparation and donor tooth placement. This report describes autotransplantation of immature premolars as treatment of an 11-year-old boy having suffered severe trauma with avulsion of permanent maxillary incisors. This approach uses modified methods from guided implant surgery by superimposition of Digital Imaging and Communications in Medicine files and 3D data sets of the jaws in order to predesign 3D printed templates with the aid of a fully digital workflow. The intervention in this complex case could successfully be accomplished by performing preplanned virtual transplantations with guided osteotomies to prevent bone loss and ensure accurate donor teeth placement in new recipient sites. Functional and esthetic restoration could be achieved by modifying methods used in guided implant surgery and prosthodontic rehabilitation. The 1-year follow-up showed vital natural teeth with physiological clinical and radiologic parameters. This innovative approach uses the latest diagnostic methods and techniques of guided implant surgery, enabling the planning and production of 3D printed surgical templates. These accurate virtually predesigned surgical templates could facilitate autotransplantation in the future by full implementation of recommended guidelines, ensuring an atraumatic surgical protocol. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Full 3-dimensional digital workflow for multicomponent dental appliances: A proof of concept.

    Science.gov (United States)

    van der Meer, W Joerd; Vissink, Arjan; Ren, Yijin

    2016-04-01

    The authors used a 3-dimensional (3D) printer and a bending robot to produce a multicomponent dental appliance to assess whether 3D digital models of the dentition are applicable for a full digital workflow. The authors scanned a volunteer's dentition with an intraoral scanner (Lava Chairside Oral Scanner C.O.S., 3M). A digital impression was used to design 2 multicomponent orthodontic appliances. Biocompatible acrylic baseplates were produced with the aid of a 3D printer. The metal springs and clasps were produced by a bending robot. The fit of the 2 appliances was assessed by 2 experienced orthodontists. The authors assessed both orthodontic appliances with the volunteer's dentition and found the fit to be excellent. Clinicians can fully produce a multicomponent dental appliance consisting of both an acrylic baseplate and other parts, such as clasps, springs, or screws, using a digital workflow process without the need for a physical model of the patient's dentition. Plaster models can be superfluous for orthodontic treatment as digital models can be used in all phases of a full digital workflow in orthodontics. The arduous task of making a multicomponent dental appliance that involves bending wires can possibly be replaced by a computer, design software, a 3D printer, and a bending robot. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.

  20. Design and Implementation of a CO2 Flood Utilizing Advanced Reservoir Characterization and Horizontal Injection Wells In a Shallow Shelf Carbonate Approaching Waterflood Depletion, Class II

    Energy Technology Data Exchange (ETDEWEB)

    Wier, Don R. Chimanhusky, John S.; Czirr, Kirk L.; Hallenbeck, Larry; Gerard, Matthew G.; Dollens, Kim B.; Owen, Rex; Gaddis, Maurice; Moshell, M.K.

    2002-11-18

    The purpose of this project was to economically design an optimum carbon dioxide (CO2) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO2 horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields.

  1. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    Science.gov (United States)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  2. SU-E-T-104: Development of 3 Dimensional Dosimetry System for Gamma Knife

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, K; Kwak, J; Cho, B; Lee, D; Ahn, S [Asan Medical Center, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: The aim of this study was to develop a new 3 dimensional dosimetry system to verify the dosimetric accuracy of Leksell Gamma Knife-Perfexion™ (LGK) (Elekta, Norcross, GA). Methods: We designed and manufactured a lightweight dosimetry instrument to be equipped with the head frame to LGK. It consists of a head phantom, a scintillator, a CCD camera and a step motor. The 10×10 cm2 sheet of Gd2O3;Tb phosphor or Gafchromic EBT3 film was located at the center of the 16 cm diameter hemispherical PMMA, the head phantom. The additional backscatter compensating material of 1 cm thick PMMA plate was placed downstream of the phosphor sheet. The backscatter plate was transparent for scintillation lights to reach the CCD camera with 1200×1200 pixels by 5.2 um pitch. With This equipment, 300 images with 0.2 mm of slice gap were acquired under three collimator setups (4mm, 8mm and 16mm), respectively. The 2D projected doses from 3D distributions were compared with the exposured film dose. Results: As all doses normalized by the maximum dose value in 16 mm setup, the relative differences between the equipment dose and film dose were 0.2% for 4mm collimator and 0.5% for 8mm. The acquisition of 300 images by the equipment took less than 3 minutes. Conclusion: The new equipment was verified to be a good substitute to radiochromic film, with which required more time and resources. Especially, the new methods was considered to provide much convenient and faster solution in the 3D dose acquisition for LGK.

  3. Using a clinical protocol for orthognathic surgery and assessing a 3-dimensional virtual approach: current therapy.

    Science.gov (United States)

    Quevedo, Luis A; Ruiz, Jessica V; Quevedo, Cristobal A

    2011-03-01

    Oral and maxillofacial surgeons who perform orthognathic surgery face major changes in their practices, and these challenges will increase in the near future, because the extraordinary advances in technology applied to our profession are not only amazing but are becoming the standard of care as they promote improved outcomes for our patients. Orthognathic surgery is one of the favorite areas of practicing within the scope of practice of an oral and maxillofacial surgeon. Our own practice in orthognathic surgery has completed over 1,000 surgeries of this type. Success is directly related to the consistency and capability of the surgical-orthodontic team to achieve predictable, stable results, and our hypothesis is that a successful result is directly related to the way we take our records and perform diagnosis and treatment planning following basic general principles. Now that we have the opportunity to plan and treat 3-dimensional (3D) problems with 3D technology, we should enter into this new era with appropriate standards to ensure better results, instead of simply enjoying these new tools, which will clearly show not only us but everyone what we do when we perform orthognathic surgery. Appropriate principles need to be taken into account when implementing this new technology. In other words, new technology is welcome, but we do not have to reinvent the wheel. The purpose of this article is to review the current protocol that we use for orthognathic surgery and compare it with published protocols that incorporate new 3D and virtual technology. This report also describes our approach to this new technology. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Predictors of Hypothyroidism in Hodgkin Lymphoma Survivors After Intensity Modulated Versus 3-Dimensional Radiation Therapy.

    Science.gov (United States)

    Pinnix, Chelsea C; Cella, Laura; Andraos, Therese Y; Ayoub, Zeina; Milgrom, Sarah A; Gunther, Jillian; Thosani, Sonali; Wogan, Christine; Conson, Manuel; D'Avino, Vittoria; Oki, Yasuhiro; Fanale, Michelle; Lee, Hun J; Neelapu, Sattva; Fayad, Luis; Hagemeister, Frederick; Rodriguez, M Alma; Nastoupil, Loretta J; Nieto, Yago; Qiao, Wei; Pacelli, Roberto; Dabaja, Bouthaina

    2018-03-14

    To identify predictors of hypothyroidism after chemoradiation therapy for Hodgkin lymphoma (HL) and to compare outcomes after intensity modulated radiation therapy (IMRT) with those after 3-dimensional (3D) conformal radiation therapy (CRT). Ninety patients who underwent involved-site IMRT in 2009 through 2014 were evaluated for treatment-induced hypothyroidism, defined as elevated thyroid-stimulating hormone or decreased free thyroxine levels (or both). Receiver operating characteristic curve analysis identified individuals at low versus high risk based on dosimetric variables. Dosimetric cutoff points were verified with an external data set of 50 patients who underwent 3D-CRT. In the IMRT group, most patients (75 [83%]) had stage II HL, and the median prescribed dose was 30.6 Gy; in the 3D-CRT group, 32 patients (64%) had stage II HL, and the median prescribed dose was 32.0 Gy. No differences were found in the proportions of patients with bilateral (P = .982) or unilateral (P = .074) neck involvement between the 2 groups. Hypothyroidism rates were marginally higher in the IMRT group, with estimated 3-year rates of freedom from hypothyroidism of 56.1% in the 3D-CRT group and 40% in the IMRT group (P = .057). Univariate analysis showed that smaller thyroid volume and higher thyroid dose were associated with hypothyroidism in both groups (P hypothyroidism (P = .001 and P hypothyroidism (P hypothyroidism after either IMRT or 3D-CRT for HL. IMRT may confer a higher risk than 3D-CRT unless a treatment avoidance structure is used during planning. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Evaluation of xerostomia following 3 dimensional conformal radiotherapy for nasopharyngeal cancer patients

    International Nuclear Information System (INIS)

    Park, Young Je; Ahn, Yong Chan; Park, Won; Ju, Sang Gyu; Nam, Hee Rim; Oh, Dong Ryul; Park, Hee Chul

    2006-01-01

    This study is to evaluate the xerostomia following 3-dimensional conformal radiation therapy (3D CRT) in nasopharynx cancer patients using the xerostomia questionnaire score (XQS). Questionnaire study was done on 51 patients with nasopharynx cancer who received 3D CRT from Dec. 2000 to Aug. 2005. 3D CRT technique is based on 'serial shrinking field' concept by 3 times of computed tomography (CT) simulation. Total target dose to the primary tumor was 72 Gy with 1.8 Gy daily fractions. Xerostomia was assessed with 4-questions XQS, and the associations between XQS and time elapsed after RT, age, sex, stage, concurrent chemotherapy, an parotid dose were analyzed. Concurrent chemotherapy was given to 40 patients and RT alone was given to 11 patients. The median time elapsed after 3D CRT was 20 (1 ∼ 58) months and the mean XQS of all 51 patients was 8.4 ± 1.9 (6 ∼ 14). XQS continuously and significantly decreased over time after 3D CRT (χ 2 -0.484, ρ < 0.05). There was no significant difference in XQS according to sex, age, and stag. However, XQS of concurrent chemotherapy patients was significantly higher than RT alone patients (ρ = 0.001). XQS of patients receiving total mean parotid dose ≥ 35 Gy was significantly higher than < 35 Gy (ρ = 0.05). Decreasing tendency of XQS over time after 3D CRT was observed. Concurrent chemotherapy and total mean parotid dose ≥ 35 Gy were suggested to adversely affect radiation-induced xerostomia

  6. A customized bolus produced using a 3-dimensional printer for radiotherapy.

    Directory of Open Access Journals (Sweden)

    Shin-Wook Kim

    Full Text Available OBJECTIVE: Boluses are used in high-energy radiotherapy in order to overcome the skin sparing effect. In practice though, commonly used flat boluses fail to make a perfect contact with the irregular surface of the patient's skin, resulting in air gaps. Hence, we fabricated a customized bolus using a 3-dimensional (3D printer and evaluated its feasibility for radiotherapy. METHODS: We designed two kinds of bolus for production on a 3D printer, one of which was the 3D printed flat bolus for the Blue water phantom and the other was a 3D printed customized bolus for the RANDO phantom. The 3D printed flat bolus was fabricated to verify its physical quality. The resulting 3D printed flat bolus was evaluated by assessing dosimetric parameters such as D1.5 cm, D5 cm, and D10 cm. The 3D printed customized bolus was then fabricated, and its quality and clinical feasibility were evaluated by visual inspection and by assessing dosimetric parameters such as Dmax, Dmin, Dmean, D90%, and V90%. RESULTS: The dosimetric parameters of the resulting 3D printed flat bolus showed that it was a useful dose escalating material, equivalent to a commercially available flat bolus. Analysis of the dosimetric parameters of the 3D printed customized bolus demonstrated that it is provided good dose escalation and good contact with the irregular surface of the RANDO phantom. CONCLUSIONS: A customized bolus produced using a 3D printer could potentially replace commercially available flat boluses.

  7. The Interobserver Variability and Diagnostic Performance of 3-Dimensional Breast Ultrasound

    International Nuclear Information System (INIS)

    Lyou, Chae Yeon; Kim, Sun Mi; Jang, Mi Jung; Kim, Sung Won; Kang, Eun Young; Park, So Yeon; Moon, Woo Kyung

    2011-01-01

    We wanted to evaluate the interobserver variability and diagnostic performance of 3-dimensional (3D) breast ultrasound (US) as compared with that of 2- dimensional (2D) US. We included 150 patients who received US-guided core biopsy and 3D US between June 2009 and April 2010. Three breast imaging radiologists analyzed the 2D and 3D US images using the Breast Imaging Reporting and Data System (BI-RADS) lexicon. The intra-observer agreement and inter-observer agreement were calculated. The sensitivity and specificity of 2D and 3D US were evaluated. The intra-observer agreement between 2D and 3D US was mostly slight or fair agreement. However, in terms of the final category, there was substantial agreement for all three radiologists. The inter-observer agreement of 3D US was similar to that of 2D US (moderate agreement for shape, orientation, circumscribed margin and boundary: fair agreement for indistinct margin, angular margin, microlobulated margin, echo pattern and final category). The sensitivity of 3D US for breast cancer was higher than that of 2D US for two radiologists (2D vs. 3D for reader 2: 55.8% vs. 61.5%, 2D vs. 3D for reader 3: 59.6% vs. 63.5%), and the specificity of 3D US was lower than that of 2D US for all the readers (2D vs. 3D for reader 1: 90.8% vs. 86.7%, 2D vs. 3D for reader 2: 90.8% vs. 87.8%, 2D vs. 3D for reader 3: 94.9% vs. 90.8%), but the difference was not significant (p ≥ 0.05). The interobserver variability and diagnostic performance of 3D breast US were similar to those of 2D US

  8. Extensions of the 3-dimensional plasma transport code E3D

    International Nuclear Information System (INIS)

    Runov, A.; Schneider, R.; Kasilov, S.; Reiter, D.

    2004-01-01

    One important aspect of modern fusion research is plasma edge physics. Fluid transport codes extending beyond the standard 2-D code packages like B2-Eirene or UEDGE are under development. A 3-dimensional plasma fluid code, E3D, based upon the Multiple Coordinate System Approach and a Monte Carlo integration procedure has been developed for general magnetic configurations including ergodic regions. These local magnetic coordinates lead to a full metric tensor which accurately accounts for all transport terms in the equations. Here, we discuss new computational aspects of the realization of the algorithm. The main limitation to the Monte Carlo code efficiency comes from the restriction on the parallel jump of advancing test particles which must be small compared to the gradient length of the diffusion coefficient. In our problems, the parallel diffusion coefficient depends on both plasma and magnetic field parameters. Usually, the second dependence is much more critical. In order to allow long parallel jumps, this dependence can be eliminated in two steps: first, the longitudinal coordinate x 3 of local magnetic coordinates is modified in such a way that in the new coordinate system the metric determinant and contra-variant components of the magnetic field scale along the magnetic field with powers of the magnetic field module (like in Boozer flux coordinates). Second, specific weights of the test particles are introduced. As a result of increased parallel jump length, the efficiency of the code is about two orders of magnitude better. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Choroidal thinning in diabetes type 1 detected by 3-dimensional 1060 nm optical coherence tomography.

    Science.gov (United States)

    Esmaeelpour, Marieh; Brunner, Simon; Ansari-Shahrezaei, Siamak; Shahrezaei, Siamak Ansari; Nemetz, Susanne; Povazay, Boris; Kajic, Vedran; Drexler, Wolfgang; Binder, Susanne

    2012-10-03

    To map choroidal (ChT) and retinal thickness (RT) in patients with diabetes type 1 with and without maculopathy and retinopathy in order to compare them with healthy subjects using high speed 3-dimensional (3D) 1060 nm optical coherence tomography (OCT). Thirty-three eyes from 33 diabetes type 1 subjects (23-57 years, 15 male) divided into groups of without pathology (NDR) and with pathology (DR; including microaneurysms, exudates, clinically significant macular-oedema and proliferative retinopathy) were compared with 20 healthy axial eye length and age-matched subjects (24-57 years, 9 male), imaged by high speed (60.000 A-scans/s) 3D 1060 nm OCT performed over 36° × 36° field of view. Ocular health status, disease duration, body mass index, haemoglobin-A1c, and blood pressure (bp) measurements were recorded. Subfoveal ChT, and 2D topographic maps between retinal pigment epithelium and the choroidal/scleral-interface, were automatically generated and statistically analyzed. Subfoveal ChT (mean ± SD, μm) for healthy eyes was 388 ± 109; significantly thicker than all diabetic groups, 291 ± 64 for NDR, and 303 ± 82 for DR (ANOVA P 0.05). Compared with healthy eyes and the NDR, the averaged DR ChT-map demonstrated temporal thinning that extended superiorly and temporal-inferiorly (unpaired t-test, P 0.05). ChT is decreased in diabetes type 1, independent of the absence of pathology and of diabetic disease duration. In eyes with pathology, 3D 1060 nm OCT averaged maps showed an extension of the thinning area matching retinal lesions and suggesting its involvement on onset or progression of disease.

  10. Reproducibility of a 3-dimensional gyroscope in measuring shoulder anteflexion and abduction

    Directory of Open Access Journals (Sweden)

    Penning Ludo I F

    2012-07-01

    Full Text Available Abstract Background Few studies have investigated the use of a 3-dimensional gyroscope for measuring the range of motion (ROM in the impaired shoulder. Reproducibility of digital inclinometer and visual estimation is poor. This study aims to investigate the reproducibility of a tri axial gyroscope in measurement of anteflexion, abduction and related rotations in the impaired shoulder. Methods Fifty-eight patients with either subacromial impingement (27 or osteoarthritis of the shoulder (31 participated. Active anteflexion, abduction and related rotations were measured with a tri axial gyroscope according to a test retest protocol. Severity of shoulder impairment and patient perceived pain were assessed by the Disability of Arm Shoulder and Hand score (DASH and the Visual Analogue Scale (VAS. VAS scores were recorded before and after testing. Results In two out of three hospitals patients with osteoarthritis (n = 31 were measured, in the third hospital patients with subacromial impingement (n = 27. There were significant differences among hospitals for the VAS and DASH scores measured before and after testing. The mean differences between the test and retest means for anteflexion were −6 degrees (affected side, 9 (contralateral side and for abduction 15 degrees (affected side and 10 degrees (contralateral side. Bland & Altman plots showed that the confidence intervals for the mean differences fall within −6 up to 15 degrees, individual test - retest differences could exceed these limits. A simulation according to ‘Generalizability Theory’ produces very good coefficients for anteflexion and related rotation as a comprehensive measure of reproducibility. Optimal reproducibility is achieved with 2 repetitions for anteflexion. Conclusions Measurements were influenced by patient perceived pain. Differences in VAS and DASH might be explained by different underlying pathology. These differences in shoulder pathology however did not alter

  11. Osseous Anatomy of the Distal Radioulnar Joint: An Assessment Using 3-Dimensional Modeling and Clinical Implications.

    Science.gov (United States)

    Daneshvar, Parham; Willing, Ryan; Pahuta, Markian; Grewal, Ruby; King, Graham J W

    2016-11-01

    Using a novel technique, we assess and describe the distal radioulnar joint (DRUJ) anatomy. The purpose of this study was to provide the anatomic dimensions of the DRUJ and to evaluate contralateral symmetry. Computed tomography images of 100 cadaveric forearms were obtained. Three-dimensional models of the radius and ulna were generated and evaluated using 3-dimensional modeling software. Measurements of the radius of curvature of the sigmoid notch (SN) and ulnar head (UH), as well as the length of the SN and volar and dorsal lips were performed in the axial and coronal sequences. In addition, mid-coronal angular measurements were made of the SN and UH to quantify the obliquity of the DRUJ. All coronal measurements were performed with the forearm set to neutral rotation. The average ulnar variance was -0.9 ± 1.8 mm. The radius of curvature of the UH (8.2 ± 1.3 mm) was markedly smaller than that of the SN (18.2 ± 8.5 mm). The length of the SN in coronal sequences increased from volar to dorsal by 65%. The mid-coronal angle (DRUJ obliquity) of the SN and UH measured 6.0 ± 9.9° and 18.0 ± 9.9°, respectively. A direct inverse correlation was demonstrated in the obliquity of the DRUJ and ulnar variance. All anatomic measurements were similar when comparing bilateral specimens. The SN length tends to increase in size from volar to dorsal. Bilateral specimens from the same individual demonstrate similarities and can be cautiously used for comparison. The relationships and measurements demonstrated in this study can be a guide when considering reconstructive procedures or dealing with complex fractures involving the DRUJ. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  12. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sumida, Iori, E-mail: sumida@radonc.med.osaka-u.ac.jp [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Suzuki, Osamu; Seo, Yuji [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Isohashi, Fumiaki [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan); Yoshioka, Yasuo [Department of Radiation Oncology, Osaka University Graduate School of Medicine, Osaka (Japan); Ogawa, Kazuhiko [Department of Radiation Oncology, NTT West Osaka Hospital, Osaka (Japan)

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  13. New stereoacuity test using a 3-dimensional display system in children.

    Directory of Open Access Journals (Sweden)

    Sang Beom Han

    Full Text Available The previously developed 3-dimensional (3D display stereoacuity tests were validated only at distance. We developed a new stereoacuity test using a 3D display that works both at near and distance and evaluated its validity in children with and without strabismus. Sixty children (age range, 6 to 18 years with variable ranges of stereoacuity were included. Side-by-side randot images of 4 different simple objects (star, circle, rectangle, and triangle with a wide range of crossed horizontal disparities (3000 to 20 arcsec were randomly displayed on a 3D monitor with MATLAB (Matworks, Inc., Natick, MA, USA and were presented to subjects wearing shutter glasses at 0.5 m and 3 m. The 3D image was located in front of (conventional or behind (proposed the background image on the 3D monitor. The results with the new 3D stereotest (conventional and proposed were compared with those of the near and distance Randot stereotests. At near, the Bland-Altman plots of the conventional and proposed 3D stereotest did not show significant difference, both of which were poorer than the Randot test. At distance, the results of the proposed 3D stereotest were similar to the Randot test, but the conventional 3D stereotest results were better than those of the other two tests. The results of the proposed 3D stereotest and Randot stereotest were identical in 83.3% at near and 88.3% at distance. More than 95% of subjects showed concordance within 2 grades between the 2 tests at both near and distance. In conclusion, the newly proposed 3D stereotest shows good concordance with the Randot stereotests in children with and without strabismus.

  14. 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains.

    Science.gov (United States)

    Azim, Kasum; Fiorelli, Roberto; Zweifel, Stefan; Hurtado-Chong, Anahi; Yoshikawa, Kazuaki; Slomianka, Lutz; Raineteau, Olivier

    2012-01-01

    Recent studies suggest that the subventricular zone (SVZ) of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling "stem" cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to accurately assess neural

  15. 3-dimensional examination of the adult mouse subventricular zone reveals lineage-specific microdomains.

    Directory of Open Access Journals (Sweden)

    Kasum Azim

    Full Text Available Recent studies suggest that the subventricular zone (SVZ of the lateral ventricle is populated by heterogeneous populations of stem and progenitor cells that, depending on their exact location, are biased to acquire specific neuronal fates. This newly described heterogeneity of SVZ stem and progenitor cells underlines the necessity to develop methods for the accurate quantification of SVZ stem and progenitor subpopulations. In this study, we provide 3-dimensional topographical maps of slow cycling "stem" cells and progenitors based on their unique cell cycle properties. These maps revealed that both cell populations are present throughout the lateral ventricle wall as well as in discrete regions of the dorsal wall. Immunodetection of transcription factors expressed in defined progenitor populations further reveals that divergent lineages have clear regional enrichments in the rostro-caudal as well as in the dorso-ventral span of the lateral ventricle. Thus, progenitors expressing Tbr2 and Dlx2 were confined to dorsal and dorso-lateral regions of the lateral ventricle, respectively, while Mash1+ progenitors were more homogeneously distributed. All cell populations were enriched in the rostral-most region of the lateral ventricle. This diversity and uneven distribution greatly impede the accurate quantification of SVZ progenitor populations. This is illustrated by measuring the coefficient of error of estimates obtained by using increasing section sampling interval. Based on our empirical data, we provide such estimates for all progenitor populations investigated in this study. These can be used in future studies as guidelines to judge if the precision obtained with a sampling scheme is sufficient to detect statistically significant differences between experimental groups if a biological effect is present. Altogether, our study underlines the need to consider the SVZ of the lateral ventricle as a complex 3D structure and define methods to

  16. Fabrication of 3-Dimensional Porous Graphene Materials for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Jiang, Yu; Jiang, Zhong-Jie; Cheng, Shuang; Liu, Meilin

    2014-01-01

    A simple two-step procedure involving hydrothermal reaction and subsequent calcination has been employed to synthesis porous graphene material, which exhibits significantly high electrochemical performance when used as the anode in lithium ion batteries. - Highlights: • A PGM been synthesized by a simple two-step process involving hydrothermal reaction and subsequent calcination. • The PGM exhibits exhibit a significantly high specific surface area. • The PGM can deliver large capacities and excellent cycling performance when used in LIBs. • The high electrochemical performance of the PGM is attributed to its unique porous structure with more disordered carbon atoms. - Abstract: A 3-dimensional porous graphene material (PGM) has been synthesized using a simple two-step process: hydrothermal reaction and calcination. Hydrothermal reaction of graphene oxide (GO) in the presence of resorcinol and glutaraldehyde leads to covalent grafting of partially reduced GO with glutaraldehyde and the deposition of phenolic resin. Subsequent calcination of the composite consisting of phenolic resin deposited on partially reduced GO in the presence of KOH produces structurally stable, highly porous graphene material with a specific surface area of ∼1,066 ± 2 m 2 g −1 . When used as an active electrode material in a lithium battery, the PGM exhibits an initial discharge capacity of ∼1,538 mAh g −1 , which is significantly higher than those of graphite and other carbonaceous materials reported previously. More importantly, when cycled at higher discharge/charge rates, the PGM-based electrodes still deliver large capacities and excellent cycling performance, demonstrating great potential for high-performance lithium-ion batteries. The attractive electrochemical performance of the PGM is attributed to its unique porous structure with large specific surface area and the presence of more disordered carbon atoms produced by the KOH activation

  17. High-resolution, 2- and 3-dimensional imaging of uncut, unembedded tissue biopsy samples.

    Science.gov (United States)

    Torres, Richard; Vesuna, Sam; Levene, Michael J

    2014-03-01

    Despite continuing advances in tissue processing automation, traditional embedding, cutting, and staining methods limit our ability for rapid, comprehensive visual examination. These limitations are particularly relevant to biopsies for which immediate therapeutic decisions are most necessary, faster feedback to the patient is desired, and preservation of tissue for ancillary studies is most important. The recent development of improved tissue clearing techniques has made it possible to consider use of multiphoton microscopy (MPM) tools in clinical settings, which could address difficulties of established methods. To demonstrate the potential of MPM of cleared tissue for the evaluation of unembedded and uncut pathology samples. Human prostate, liver, breast, and kidney specimens were fixed and dehydrated by using traditional histologic techniques, with or without incorporation of nucleic acid fluorescent stains into dehydration steps. A benzyl alcohol/benzyl benzoate clearing protocol was substituted for xylene. Multiphoton microscopy was performed on a home-built system. Excellent morphologic detail was achievable with MPM at depths greater than 500 μm. Pseudocoloring produced images analogous to hematoxylin-eosin-stained images. Concurrent second-harmonic generation detection allowed mapping of collagen. Subsequent traditional section staining with hematoxylin-eosin did not reveal any detrimental morphologic effects. Sample immunostains on renal tissue showed preservation of normal reactivity. Complete reconstructions of 1-mm cubic samples elucidated 3-dimensional architectural organization. Multiphoton microscopy on cleared, unembedded, uncut biopsy specimens shows potential as a practical clinical tool with significant advantages over traditional histology while maintaining compatibility with gold standard techniques. Further investigation to address remaining implementation barriers is warranted.

  18. Transabdominal ultrasonography, computed tomography and electronic portal imaging for 3-dimensional conformal radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Jereczek-Fossa, B.A.; Orecchia, R.; Cattani, F.; Garibaldi, C.; Cambria, R.; Valenti, M.; Ciocca, M.; Zerini, D.; Boboc, G.I.; Vavassori, A.; Ivaldi, G.B.; Kowalczyk, A.; Matei, D.V.; Cobelli, O. de

    2007-01-01

    Purpose: To evaluate the feasibility and accuracy of daily B-mode acquisition and targeting ultrasound-based prostate localization (BAT trademark) and to compare it with computed tomography (CT) and electronic portal imaging (EPI) in 3-dimensional conformal radiotherapy (3-D CRT) for prostate cancer. Patients and Methods: Ten patients were treated with 3-D CRT (72 Gy/30 fractions, 2.4 Gy/fraction, equivalent to 80 Gy/40 fractions, for α/β ratio of 1.5 Gy) and daily BAT-based prostate localization. For the first 5 fractions, CT and EPI were also performed in order to compare organ-motion and set-up error, respectively. Results: 287 BAT-, 50 CT- and 46 EPI-alignments were performed. The average BAT-determined misalignments in latero-lateral, antero-posterior and cranio-caudal directions were -0.9 mm ± 3.3 mm, 1.0 mm ± 4.0 mm and -0.9 mm ± 3.8 mm, respectively. The differences between BAT- and CT-determined organ-motion in latero-lateral, antero-posterior and cranio-caudal directions were 2.7 mm ± 1.9 mm, 3.9 ± 2.8 mm and 3.4 ± 3.0 mm, respectively. Weak correlation was found between BAT- and CT-determined misalignments in antero-posterior direction, while no correlation was observed in latero-lateral and cranio-caudal directions. The correlation was more significant when only data of good image-quality patients were analyzed (8 patients). Conclusion: BAT ensures the relative positions of target are the same during treatment and in treatment plan, however, the reliability of alignment is patient-dependent. The average BAT-determined misalignments were small, confirming the prevalence of random errors in 3-D CRT. Further study is warranted in order to establish the clinical value of BAT. (orig.)

  19. Treatment of severe porcine tracheomalacia with a 3-dimensionally printed, bioresorbable, external airway splint

    Science.gov (United States)

    Zopf, David A.; Flanagan, Colleen L.; Wheeler, Matthew; Hollister, Scott J.; Green, Glenn E.

    2015-01-01

    Importance The study demonstrates an application for 3-dimensional (3D) printing that may serve as an effective intervention for severe tracheobronchomalacia. Objective A novel 3D printed, bioresorbable airway splint is tested for efficacy in extending survival in an animal model of severe, life-threatening tracheobronchomalacia. Participants Evaluation of an external airway splint for severe, life-threatening tracheobronchomalacia in a porcine animal model. Setting Multi-institutional and multidisciplinary collaboration between biomedical engineering laboratories and an academic animal surgery center. Interventions Experimental analysis of a 3D printed, bioresorbable airway splint is assessed in a porcine animal model of life-threatening tracheobronchomalacia. The open-cylindrical, bellow shaped porous polycaprolactone splint is placed externally and designed to suspend the underlying collapsed airway. Control animals (n=3) undergoing tracheal cartilage division and inner tracheal lumen dissociation and experimental animals (n=3) receiving the same model with overlying placement of the newly developed airway splint were evaluated. Main Outcomes and Measures An animal model for severe, life-threatening tracheobronchomalacia is proposed. Complete or near complete tracheal lumen collapse was observed in each animal with resolution of symptoms in all of the experimental animals after splint placement. Using our severe tracheobronchomalacia animal model, survival was significantly longer in duration in the experimental group receiving the airway splint after model creation when compared to model creation alone (p = 0.0495). Mortality in the experimental group was related to infection. Conclusions A multidisciplinary effort producing a CAD/CAM, bioresorbable tracheobronchial splint was tested in a porcine model of severe tracheomalacia and was found to extend survival. PMID:24232078

  20. The Reliability of a Novel Mobile 3-dimensional Wound Measurement Device.

    Science.gov (United States)

    Anghel, Ersilia L; Kumar, Anagha; Bigham, Thomas E; Maselli, Kathryn M; Steinberg, John S; Evans, Karen K; Kim, Paul J; Attinger, Christopher E

    2016-11-01

    Objective assessment of wound dimensions is essential for tracking progression and determining treatment effectiveness. A reliability study was designed to establish intrarater and interrater reliability of a novel mobile 3-dimensional wound measurement (3DWM) device. Forty-five wounds were assessed by 2 raters using a 3DWM device to obtain length, width, area, depth, and volume measurements. Wounds were also measured manually, using a disposable ruler and digital planimetry. The intraclass correlation coefficient (ICC) was used to establish intrarater and interrater reliability. High levels of intrarater and interrater agreement were observed for area, length, and width; ICC = 0.998, 0.977, 0.955 and 0.999, 0.997, 0.995, respectively. Moderate levels of intrarater (ICC = 0.888) and interrater (ICC = 0.696) agreement were observed for volume. Lastly, depth yielded an intrarater ICC of 0.360 and an interrater ICC of 0.649. Measures from the 3DWM device were highly correlated with those obtained from scaled photography for length, width, and area (ρ = 0.997, 0.988, 0.997, P device yielded correlations of ρ = 0.990, 0.987, 0.996 with P device was found to be highly reliable for measuring wound areas for a range of wound sizes and types as compared to manual measurement and digital planimetry. The depth and therefore volume measurement using the 3DWM device was found to have a lower ICC, but volume ICC alone was moderate. Overall, this device offers a mobile option for objective wound measurement in the clinical setting.

  1. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario.

    Science.gov (United States)

    Yong, J H E; McGowan, T; Redmond-Misner, R; Beca, J; Warde, P; Gutierrez, E; Hoch, J S

    2016-06-01

    Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption.

  2. Realization of masticatory movement by 3-dimensional simulation of the temporomandibular joint and the masticatory muscles.

    Science.gov (United States)

    Park, Jong-Tae; Lee, Jae-Gi; Won, Sung-Yoon; Lee, Sang-Hee; Cha, Jung-Yul; Kim, Hee-Jin

    2013-07-01

    Masticatory muscles are closely involved in mastication, pronunciation, and swallowing, and it is therefore important to study the specific functions and dynamics of the mandibular and masticatory muscles. However, the shortness of muscle fibers and the diversity of movement directions make it difficult to study and simplify the dynamics of mastication. The purpose of this study was to use 3-dimensional (3D) simulation to observe the functions and movements of each of the masticatory muscles and the mandible while chewing. To simulate the masticatory movement, computed tomographic images were taken from a single Korean volunteer (30-year-old man), and skull image data were reconstructed in 3D (Mimics; Materialise, Leuven, Belgium). The 3D-reconstructed masticatory muscles were then attached to the 3D skull model. The masticatory movements were animated using Maya (Autodesk, San Rafael, CA) based on the mandibular motion path. During unilateral chewing, the mandible was found to move laterally toward the functional side by contracting the contralateral lateral pterygoid and ipsilateral temporalis muscles. During the initial mouth opening, only hinge movement was observed at the temporomandibular joint. During this period, the entire mandible rotated approximately 13 degrees toward the bicondylar horizontal plane. Continued movement of the mandible to full mouth opening occurred simultaneously with sliding and hinge movements, and the mandible rotated approximately 17 degrees toward the center of the mandibular ramus. The described approach can yield data for use in face animation and other simulation systems and for elucidating the functional components related to contraction and relaxation of muscles during mastication.

  3. Influence of White-Coat Hypertension on Left Ventricular Deformation 2- and 3-Dimensional Speckle Tracking Study.

    Science.gov (United States)

    Tadic, Marijana; Cuspidi, Cesare; Ivanovic, Branislava; Ilic, Irena; Celic, Vera; Kocijancic, Vesna

    2016-03-01

    We sought to compare left ventricular deformation in subjects with white-coat hypertension to normotensive and sustained hypertensive patients. This cross-sectional study included 139 untreated subjects who underwent 24-hour ambulatory blood pressure monitoring and completed 2- and 3-dimensional examination. Two-dimensional left ventricular multilayer strain analysis was also performed. White-coat hypertension was diagnosed if clinical blood pressure was elevated and 24-hour blood pressure was normal. Our results showed that left ventricular longitudinal and circumferential strains gradually decreased from normotensive controls across subjects with white-coat hypertension to sustained hypertensive group. Two- and 3-dimensional left ventricular radial strain, as well as 3-dimensional area strain, was not different between groups. Two-dimensional left ventricular longitudinal and circumferential strains of subendocardial and mid-myocardial layers gradually decreased from normotensive control to sustained hypertensive group. Longitudinal and circumferential strains of subepicardial layer did not differ between the observed groups. We concluded that white-coat hypertension significantly affects left ventricular deformation assessed by 2-dimensional traditional strain, multilayer strain, and 3-dimensional strain. © 2016 American Heart Association, Inc.

  4. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    Vivian M. Hsu, MD

    2014-09-01

    Conclusions: This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time.

  5. Overview of 3-year experience with large-scale electronic portal imaging device-based 3-dimensional transit dosimetry

    NARCIS (Netherlands)

    Mijnheer, Ben J.; González, Patrick; Olaciregui-Ruiz, Igor; Rozendaal, Roel A.; van Herk, Marcel; Mans, Anton

    2015-01-01

    To assess the usefulness of electronic portal imaging device (EPID)-based 3-dimensional (3D) transit dosimetry in a radiation therapy department by analyzing a large set of dose verification results. In our institution, routine in vivo dose verification of all treatments is performed by means of 3D

  6. Accurate particle speed prediction by improved particle speed measurement and 3-dimensional particle size and shape characterization technique

    DEFF Research Database (Denmark)

    Cernuschi, Federico; Rothleitner, Christian; Clausen, Sønnik

    2017-01-01

    Accurate particle mass and velocity measurement is needed for interpreting test results in erosion tests of materials and coatings. The impact and damage of a surface is influenced by the kinetic energy of a particle, i.e. particle mass and velocity. Particle mass is usually determined with optic...

  7. Use of dynamic 3-dimensional transvaginal and transrectal ultrasonography to assess posterior pelvic floor dysfunction related to obstructed defecation.

    Science.gov (United States)

    Murad-Regadas, Sthela M; Regadas Filho, Francisco Sergio Pinheiro; Regadas, Francisco Sergio Pinheiro; Rodrigues, Lusmar Veras; de J R Pereira, Jacyara; da S Fernandes, Graziela Olivia; Dealcanfreitas, Iris Daiana; Mendonca Filho, Jose Jader

    2014-02-01

    New ultrasound techniques may complement current diagnostic tools, and combined techniques may help to overcome the limitations of individual techniques for the diagnosis of anorectal dysfunction. A high degree of agreement has been demonstrated between echodefecography (dynamic 3-dimensional anorectal ultrasonography) and conventional defecography. Our aim was to evaluate the ability of a combined approach consisting of dynamic 3-dimensional transvaginal and transrectal ultrasonography by using a 3-dimensional biplane endoprobe to assess posterior pelvic floor dysfunctions related to obstructed defecation syndrome in comparison with echodefecography. This was a prospective, observational cohort study conducted at a tertiary-care hospital. Consecutive female patients with symptoms of obstructed defecation were eligible. Each patient underwent assessment of posterior pelvic floor dysfunctions with a combination of dynamic 3-dimensional transvaginal and transrectal ultrasonography by using a biplane transducer and with echodefecography. Kappa (κ) was calculated as an index of agreement between the techniques. Diagnostic accuracy (sensitivity, specificity, and positive and negative predictive values) of the combined technique in detection of posterior dysfunctions was assessed with echodefecography as the standard for comparison. A total of 33 women were evaluated. Substantial agreement was observed regarding normal relaxation and anismus. In detecting the absence or presence of rectocele, the 2 methods agreed in all cases. Near-perfect agreement was found for rectocele grade I, grade II, and grade III. Perfect agreement was found for entero/sigmoidocele, with near-perfect agreement for rectal intussusception. Using echodefecography as the standard for comparison, we found high diagnostic accuracy of transvaginal and transrectal ultrasonography in the detection of posterior dysfunctions. This combined technique should be compared with other dynamic techniques and

  8. Modeling and boundary force control of microcantilevers utilized in atomic force microscopy for cellular imaging and characterization

    Science.gov (United States)

    Eslami, Sohrab

    This dissertation undertakes the theoretical and experimental developments microcantilevers utilized in Atomic Force Microscopy (AFM) with applications to cellular imaging and characterization. The capability of revealing the inhomogeneties or interior of ultra-small materials has been of most interest to many researchers. However, the fundamental concept of signal and image formation remains unexplored and not fully understood. For his, a semi-empirical nonlinear force model is proposed to show that virtual frequency generation, regarded as the simplest synthesized subsurface probe, occurs optimally when the force is tuned to the van der Waals form. This is the first-time observation of a novel theoretical dynamic multi-frequency force microscopy that has not been already reported. Owing to the broad applications of microcantilevers in the nanoscale imaging and microscopic techniques, there is an essential feeling to study and propose a comprehensive model of such systems. Therefore, in the theoretical part of this dissertation, a distributed-parameters representation modeling of the microcantilever along with a general interaction force comprising of two attractive and repulsive components with general amplitude and power terms is studied. This model is investigated in a general 2D Cartesian coordinate to consider the motions of the probe with a tip mass. There is an excitation at the microcantilever's base such that the end of the beam is subject to the proposed general force. These forces are very sensitive to the amplitude and power terms of these parts; on the other hand, atomic intermolecular force is a function of the distance such that this distance itself is also a function of the interaction force that will result in a nonlinear implicit equation. From a parametric study in the probe-sample excitation, it is shown that the predicted behavior of the generated difference-frequency oscillation amplitude agrees well with experimental measurements. Following

  9. Functional Tricuspid Regurgitation Caused by Chronic Atrial Fibrillation: A Real-Time 3-Dimensional Transesophageal Echocardiography Study.

    Science.gov (United States)

    Utsunomiya, Hiroto; Itabashi, Yuji; Mihara, Hirotsugu; Berdejo, Javier; Kobayashi, Sayuki; Siegel, Robert J; Shiota, Takahiro

    2017-01-01

    Functional tricuspid regurgitation (TR) with a structurally normal tricuspid valve (TV) may occur secondary to chronic atrial fibrillation (AF). However, the clinical and echocardiographic differences according to functional TR subtypes are unclear. Therefore, characterization of functional TR because of chronic AF (AF-TR) remains undetermined. To investigate the prevalence of AF-TR, 437 patients with moderate to severe TR underwent 3-dimensional (3D) transesophageal echocardiography. TR severity was determined by the averaged vena contracta width on apical and parasternal inflow views. The prevalence of AF-TR was 9.2%, whereas that of functional TR because of left-sided heart disease was 45.3%. Clinical features of AF-TR included advanced age, female sex, greater right atrial than left atrial enlargement and lower systolic pulmonary artery pressure compared with left-sided heart disease-TR with sinus rhythm (all P<0.05). In 3D TV assessment, patients with AF-TR had a larger TV annular area with weaker annular contraction (both P<0.001) but a smaller tethering angle (P<0.001) despite a similar leaflet coaptation status compared with patients with left-sided heart disease-TR with sinus rhythm. On multivariable analysis, only the TV annular area in midsystole (coefficient, 0.059; 95% confidence interval, 0.041-0.078 per 100 mm 2 ; P<0.001) was associated with TR severity in AF-TR. The annular area was more closely correlated with the right atrial volume than right ventricular end-systolic volume in AF-TR (P<0.001). AF-TR is not rare and is associated with advanced age and right atrial enlargement. TV deformations and their association with right heart remodeling differ between AF-TR and left-sided heart disease-TR. Our results suggest that in patients with TR secondary to AF, TV annuloplasty should be effective because this entity has annular dilatation without leaflet deformation. © 2017 American Heart Association, Inc.

  10. Characterization of Mauritius parakeet (Psittacula eques) microsatellite loci and their cross-utility in other parrots (Psittacidae, Aves).

    Science.gov (United States)

    Raisin, Claire; Dawson, Deborah A; Greenwood, Andrew G; Jones, Carl G; Groombridge, Jim J

    2009-07-01

    We characterized 21 polymorphic microsatellite loci in the endangered Mauritius parakeet (Psittacula eques). Loci were isolated from a Mauritius parakeet genomic library that had been enriched separately for eight different repeat motifs. Loci were characterized in up to 43 putatively unrelated Mauritius parakeets from a single population inhabiting the Black River Gorges National Park, Mauritius. Each locus displayed between three and nine alleles, with the observed heterozygosity ranging between 0.39 and 0.96. All loci were tested in 10 other parrot species. Despite testing few individuals, between seven and 21 loci were polymorphic in each of seven species tested. © 2009 Blackwell Publishing Ltd.

  11. Optical Coherence Tomography Angiography for Assessment of the 3-Dimensional Structures of Polypoidal Choroidal Vasculopathy.

    Science.gov (United States)

    Chi, Yu-Tien; Yang, Chang-Hao; Cheng, Cheng-Kuo

    2017-12-01

    Investigating the quantitative 3-dimensional (3-D) anatomy of polypoidal complex is important for a better understanding of the pathogenesis of polypoidal choroidal vasculopathy (PCV). To quantitatively evaluate the 3-D characteristics of polypoidal structures, branching vascular networks (BVNs), and origin of PCV using optical coherence tomography angiography (OCTA) and multiple image systems. A prospective, observational study was conducted in 47 consecutive Taiwanese patients (47 eyes) from May 21, 2015, to April 30, 2017. All participants were scanned with the Optovue-RTVue-XR-Avanti OCTA system. Patients in whom PCV was identified on OCTA were examined to define characteristics and structures of the original spouting vessels (stalks) from the choroid, polypoidal structures, and BVNs on OCTA. Quantitative analysis of 3-D structures of the polypoidal complex. Among the 47 patients, the mean (SD) patient age was 68.9 (8.0) years, and 28 (59.6%) men were included. Clear images of polypoidal structures could be detected in 17 eyes (36.2%, 22 polypoidal structures), BVNs in 26 eyes (55.3%, 26 tufts of BVNs), and stalks of origin from the choroid in 26 eyes (55.3%, 26 stalks) on the en face plane on OCTA. All polypoidal structures were found at a mean (SD) height of 45.3 (36.1) μm above the retinal pigment epithelium (RPE) reference plane that was preset by the machine, while the BVNs were found at a mean (SD) depth of 28.6 (14.2) μm below the RPE reference plane and the choroidal stalks at 80.4 (24.4) μm below RPE reference plane. The mean (SD) thickness of polypoidal structures was 38.4 (15.5) μm and of BVNs, 60.2 (25.0) μm. The polypoidal structures were all above the Bruch membrane within the dome of the RPE detachment, the choroidal stalks were all in the choroid layer. The BVNs could be either above (up to 18 μm), within, or below (up to 28 μm) the Bruch membrane and were in proximity to the double layers of flattened RPE detachment. These results

  12. SCEC-VDO: A New 3-Dimensional Visualization and Movie Making Software for Earth Science Data

    Science.gov (United States)

    Milner, K. R.; Sanskriti, F.; Yu, J.; Callaghan, S.; Maechling, P. J.; Jordan, T. H.

    2016-12-01

    Researchers and undergraduate interns at the Southern California Earthquake Center (SCEC) have created a new 3-dimensional (3D) visualization software tool called SCEC Virtual Display of Objects (SCEC-VDO). SCEC-VDO is written in Java and uses the Visualization Toolkit (VTK) backend to render 3D content. SCEC-VDO offers advantages over existing 3D visualization software for viewing georeferenced data beneath the Earth's surface. Many popular visualization packages, such as Google Earth, restrict the user to views of the Earth from above, obstructing views of geological features such as faults and earthquake hypocenters at depth. SCEC-VDO allows the user to view data both above and below the Earth's surface at any angle. It includes tools for viewing global earthquakes from the U.S. Geological Survey, faults from the SCEC Community Fault Model, and results from the latest SCEC models of earthquake hazards in California including UCERF3 and RSQSim. Its object-oriented plugin architecture allows for the easy integration of new regional and global datasets, regardless of the science domain. SCEC-VDO also features rich animation capabilities, allowing users to build a timeline with keyframes of camera position and displayed data. The software is built with the concept of statefulness, allowing for reproducibility and collaboration using an xml file. A prior version of SCEC-VDO, which began development in 2005 under the SCEC Undergraduate Studies in Earthquake Information Technology internship, used the now unsupported Java3D library. Replacing Java3D with the widely supported and actively developed VTK libraries not only ensures that SCEC-VDO can continue to function for years to come, but allows for the export of 3D scenes to web viewers and popular software such as Paraview. SCEC-VDO runs on all recent 64-bit Windows, Mac OS X, and Linux systems with Java 8 or later. More information, including downloads, tutorials, and example movies created fully within SCEC-VDO is

  13. Scaling analyses of the spectral dimension in 3-dimensional causal dynamical triangulations

    Science.gov (United States)

    Cooperman, Joshua H.

    2018-05-01

    The spectral dimension measures the dimensionality of a space as witnessed by a diffusing random walker. Within the causal dynamical triangulations approach to the quantization of gravity (Ambjørn et al 2000 Phys. Rev. Lett. 85 347, 2001 Nucl. Phys. B 610 347, 1998 Nucl. Phys. B 536 407), the spectral dimension exhibits novel scale-dependent dynamics: reducing towards a value near 2 on sufficiently small scales, matching closely the topological dimension on intermediate scales, and decaying in the presence of positive curvature on sufficiently large scales (Ambjørn et al 2005 Phys. Rev. Lett. 95 171301, Ambjørn et al 2005 Phys. Rev. D 72 064014, Benedetti and Henson 2009 Phys. Rev. D 80 124036, Cooperman 2014 Phys. Rev. D 90 124053, Cooperman et al 2017 Class. Quantum Grav. 34 115008, Coumbe and Jurkiewicz 2015 J. High Energy Phys. JHEP03(2015)151, Kommu 2012 Class. Quantum Grav. 29 105003). I report the first comprehensive scaling analysis of the small-to-intermediate scale spectral dimension for the test case of the causal dynamical triangulations of 3-dimensional Einstein gravity. I find that the spectral dimension scales trivially with the diffusion constant. I find that the spectral dimension is completely finite in the infinite volume limit, and I argue that its maximal value is exactly consistent with the topological dimension of 3 in this limit. I find that the spectral dimension reduces further towards a value near 2 as this case’s bare coupling approaches its phase transition, and I present evidence against the conjecture that the bare coupling simply sets the overall scale of the quantum geometry (Ambjørn et al 2001 Phys. Rev. D 64 044011). On the basis of these findings, I advance a tentative physical explanation for the dynamical reduction of the spectral dimension observed within causal dynamical triangulations: branched polymeric quantum geometry on sufficiently small scales. My analyses should facilitate attempts to employ the spectral

  14. 3-Dimensional numerical simulations of the dynamics of the Venusian mesosphere and thermosphere

    Science.gov (United States)

    Tingle, S.; Mueller-Wodarg, I. C.

    2009-12-01

    We present the first results from a new 3-dimensional numerical simulation of the steady state dynamics of the Venusian mesosphere and thermosphere (60-300 km). We have adapted the dynamical core of the Titan thermosphere global circulation model (GCM) [1] to a steady state background atmosphere. Our background atmosphere is derived from a hydrostatic combination of the VTS3 [2] and Venus International Reference Atmosphere (VIRA) [3] empirical models, which are otherwise discontinuous at their 100 km interface. We use 4th order polynomials to link the VTS3 and VIRA thermal profiles and employ hydrostatic balance to derive a consistent density profile. We also present comparisons of our background atmosphere to data from the ESA Venus Express Mission. The thermal structure of the Venusian mesosphere is relatively well documented; however, direct measurements of wind speeds are limited. Venus’ slow rotation results in a negligible Coriolis force. This suggests that the zonal circulation should arise from cyclostrophic balance; where the equatorward component of the centrifugal force balances poleward meridional pressure gradients [4]. The sparseness of direct and in-situ measurements has resulted in the application of cyclostrophic balance to measured thermal profiles to derive wind speeds [5] [6] [7] [8]. However, cyclostrophic balance is only strictly valid at mid latitudes (˜ ± 30-75°) and its applicability to the Venusian mesosphere has not been conclusively demonstrated. Our simulations, by solving the full Navier-Stokes momentum equation, will enable us assess the validity of cyclostrophic balance as a description of mesospheric dynamics. This work is part of an ongoing project to develop the first GCM to encompass the atmosphere from the cloud tops into the thermosphere. When complete, this model will enable self-consistent calculations of the dynamics, energy and composition of the atmosphere. It will thus provide a framework to address many of the

  15. Serial Changes in 3-Dimensional Supraspinatus Muscle Volume After Rotator Cuff Repair.

    Science.gov (United States)

    Chung, Seok Won; Oh, Kyung-Soo; Moon, Sung Gyu; Kim, Na Ra; Lee, Ji Whan; Shim, Eungjune; Park, Sehyung; Kim, Youngjun

    2017-08-01

    There is considerable debate on the recovery of rotator cuff muscle atrophy after rotator cuff repair. To evaluate the serial changes in supraspinatus muscle volume after rotator cuff repair by using semiautomatic segmentation software and to determine the relationship with functional outcomes. Case series; Level of evidence, 4. Seventy-four patients (mean age, 62.8 ± 8.8 years) who underwent arthroscopic rotator cuff repair and obtained 3 consecutive (preoperatively, immediately postoperatively, and later postoperatively [≥1 year postoperatively]) magnetic resonance imaging (MRI) scans having complete Y-views were included. We generated a 3-dimensional (3D) reconstructed model of the supraspinatus muscle by using in-house semiautomatic segmentation software (ITK-SNAP) and calculated both the 2-dimensional (2D) cross-sectional area and 3D volume of the muscle in 3 different views (Y-view, 1 cm medial to the Y-view [Y+1 view], and 2 cm medial to the Y-view [Y+2 view]) at the 3 time points. The area and volume changes at each time point were evaluated according to repair integrity. Later postoperative volumes were compared with immediately postoperative volumes, and their relationship with various clinical factors and the effect of higher volume increases on range of motion, muscle power, and visual analog scale pain and American Shoulder and Elbow Surgeons scores were evaluated. The interrater reliabilities were excellent for all measurements. Areas and volumes increased immediately postoperatively as compared with preoperatively; however, only volumes on the Y+1 view and Y+2 view significantly increased later postoperatively as compared with immediately postoperatively ( P < .05). There were 9 patients with healing failure, and area and volume changes were significantly less later postoperatively compared with immediately postoperatively at all measurement points in these patients ( P < .05). After omitting the patients with healing failure, volume increases

  16. Morphologic evaluation and classification of facial asymmetry using 3-dimensional computed tomography.

    Science.gov (United States)

    Baek, Chaehwan; Paeng, Jun-Young; Lee, Janice S; Hong, Jongrak

    2012-05-01

    A systematic classification is needed for the diagnosis and surgical treatment of facial asymmetry. The purposes of this study were to analyze the skeletal structures of patients with facial asymmetry and to objectively classify these patients into groups according to these structural characteristics. Patients with facial asymmetry and recent computed tomographic images from 2005 through 2009 were included in this study, which was approved by the institutional review board. Linear measurements, angles, and reference planes on 3-dimensional computed tomograms were obtained, including maxillary (upper midline deviation, maxilla canting, and arch form discrepancy) and mandibular (menton deviation, gonion to midsagittal plane, ramus height, and frontal ramus inclination) measurements. All measurements were analyzed using paired t tests with Bonferroni correction followed by K-means cluster analysis using SPSS 13.0 to determine an objective classification of facial asymmetry in the enrolled patients. Kruskal-Wallis test was performed to verify differences among clustered groups. P < .05 was considered statistically significant. Forty-three patients (18 male, 25 female) were included in the study. They were classified into 4 groups based on cluster analysis. Their mean age was 24.3 ± 4.4 years. Group 1 included subjects (44% of patients) with asymmetry caused by a shift or lateralization of the mandibular body. Group 2 included subjects (39%) with a significant difference between the left and right ramus height with menton deviation to the short side. Group 3 included subjects (12%) with atypical asymmetry, including deviation of the menton to the short side, prominence of the angle/gonion on the larger side, and reverse maxillary canting. Group 4 included subjects (5%) with severe maxillary canting, ramus height differences, and menton deviation to the short side. In this study, patients with asymmetry were classified into 4 statistically distinct groups according to

  17. [Constructing 3-dimensional colorized digital dental model assisted by digital photography].

    Science.gov (United States)

    Ye, Hong-qiang; Liu, Yu-shu; Liu, Yun-song; Ning, Jing; Zhao, Yi-jiao; Zhou, Yong-sheng

    2016-02-18

    To explore a method of constructing universal 3-dimensional (3D) colorized digital dental model which can be displayed and edited in common 3D software (such as Geomagic series), in order to improve the visual effect of digital dental model in 3D software. The morphological data of teeth and gingivae were obtained by intra-oral scanning system (3Shape TRIOS), constructing 3D digital dental models. The 3D digital dental models were exported as STL files. Meanwhile, referring to the accredited photography guide of American Academy of Cosmetic Dentistry (AACD), five selected digital photographs of patients'teeth and gingivae were taken by digital single lens reflex camera (DSLR) with the same exposure parameters (except occlusal views) to capture the color data. In Geomagic Studio 2013, after STL file of 3D digital dental model being imported, digital photographs were projected on 3D digital dental model with corresponding position and angle. The junctions of different photos were carefully trimmed to get continuous and natural color transitions. Then the 3D colorized digital dental model was constructed, which was exported as OBJ file or WRP file which was a special file for software of Geomagic series. For the purpose of evaluating the visual effect of the 3D colorized digital model, a rating scale on color simulation effect in views of patients'evaluation was used. Sixteen patients were recruited and their scores on colored and non-colored digital dental models were recorded. The data were analyzed using McNemar-Bowker test in SPSS 20. Universal 3D colorized digital dental model with better color simulation was constructed based on intra-oral scanning and digital photography. For clinical application, the 3D colorized digital dental models, combined with 3D face images, were introduced into 3D smile design of aesthetic rehabilitation, which could improve the patients' cognition for the esthetic digital design and virtual prosthetic effect. Universal 3D colorized

  18. Effect of Stereoscopic Anaglyphic 3-Dimensional Video Didactics on Learning Neuroanatomy.

    Science.gov (United States)

    Goodarzi, Amir; Monti, Sara; Lee, Darrin; Girgis, Fady

    2017-11-01

    The teaching of neuroanatomy in medical education has historically been based on didactic instruction, cadaveric dissections, and intraoperative experience for students. Multiple novel 3-dimensional (3D) modalities have recently emerged. Among these, stereoscopic anaglyphic video is easily accessible and affordable, however, its effects have not yet formally been investigated. This study aimed to investigate if 3D stereoscopic anaglyphic video instruction in neuroanatomy could improve learning for content-naive students, as compared with 2-dimensional (2D) video instruction. A single-site controlled prospective case control study was conducted at the School of Education. Content knowledge was assessed at baseline, followed by the presentation of an instructional neuroanatomy video. Participants viewed the video in either 2D or 3D format and then completed a written test of skull base neuroanatomy. Pretest and post-test performances were analyzed with independent Student's t-tests and analysis of covariance. Our study was completed by 249 subjects. At baseline, the 2D (n = 124, F = 97) and 3D groups (n = 125, F = 96) were similar, although the 3D group was older by 1.7 years (P = 0.0355) and the curricula of participating classes differed (P < 0.0001). Average scores for the 3D group were higher for both pretest (2D, M = 19.9%, standard deviation [SD] = 12.5% vs. 3D, M = 23.9%, SD = 14.9%, P = 0.0234) and post-test performances (2D, M = 68.5%, SD = 18.6% vs. 3D, M = 77.3%, SD = 18.8%, P = 0.003), but the magnitude of improvement across groups did not reach statistical significance (2D, M = 48.7%, SD = 21.3%, vs. 3D, M = 53.5%, SD = 22.7%, P = 0.0855). Incorporation of 3D video instruction into curricula without careful integration is insufficient to promote learning over 2D video. Published by Elsevier Inc.

  19. Measurement of the buccolingual inclination of teeth: manual technique vs 3-dimensional software.

    Science.gov (United States)

    Nouri, Mahtab; Abdi, Amir Hossein; Farzan, Arash; Mokhtarpour, Faraneh; Baghban, AliReza Akbarzadeh

    2014-10-01

    In this study, we aimed to measure the inclination of teeth on dental casts by a manual technique with the tooth inclination protractor (TIP; MBI, Newport, United Kingdom) and a newly designed 3-dimensional (3D) software program. The correlation of the 2 techniques was evaluated, and the reliability of each technique was assessed separately. This study was conducted on 36 dental casts of normal, well-aligned Class I occlusions; we assessed 432 teeth. All casts had a normal Class I occlusion. After determining the facial axis of the clinical crown and the facial axis points on the dental casts, we measured the inclinations of the incisors and posterior teeth up to the first molars in each dental arch relative to Andrews' occlusal plane and the posterior occlusal plane using the TIP. Moreover, the casts were scanned by a structured-light 3D scanner. The inclination of teeth relative to the occlusal plane was determined using the new software. To assess the reliability, measurements of all teeth from 15 casts were repeated twice by the 2 methods. Intraclass correlation coefficient and Dahlberg's formula were used for calculation of correlation and reliability. Overall, the 2 techniques were not significantly different in the measurements of the inclinations of the teeth in both jaws. The ranges of Dahlberg's formula were 3.1° to 5.8° for the maxilla and 3.3° to 5.9° for the mandible. The overall correlation of the 2 techniques according to the intraclass correlation coefficient was 0.91. For calculation of reliability, the intraclass correlation coefficients for the TIP and the 3D method were 0.73 and 0.82, respectively. The TIP and the 3D software showed a high correlation for measurement of the inclinations of maxillary and mandibular teeth relative to the occlusal plane. Also, the reproducibility of the measurements in each method was high. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  20. Absolute quantification of myocardial blood flow with 13N-ammonia and 3-dimensional PET.

    Science.gov (United States)

    Schepis, Tiziano; Gaemperli, Oliver; Treyer, Valerie; Valenta, Ines; Burger, Cyrill; Koepfli, Pascal; Namdar, Mehdi; Adachi, Itaru; Alkadhi, Hatem; Kaufmann, Philipp A

    2007-11-01

    The aim of this study was to compare 2-dimensional (2D) and 3-dimensional (3D) dynamic PET for the absolute quantification of myocardial blood flow (MBF) with (13)N-ammonia ((13)N-NH(3)). 2D and 3D MBF measurements were collected from 21 patients undergoing cardiac evaluation at rest (n = 14) and during standard adenosine stress (n = 7). A lutetium yttrium oxyorthosilicate-based PET/CT system with retractable septa, enabling the sequential acquisition of 2D and 3D images within the same patient and study, was used. All 2D studies were performed by injecting 700-900 MBq of (13)N-NH(3). For 14 patients, 3D studies were performed with the same injected (13)N-NH(3) dose as that used in 2D studies. For the remaining 7 patients, 3D images were acquired with a lower dose of (13)N-NH(3), that is, 500 MBq. 2D images reconstructed by use of filtered backprojection (FBP) provided the reference standard for MBF measurements. 3D images were reconstructed by use of Fourier rebinning (FORE) with FBP (FORE-FBP), FORE with ordered-subsets expectation maximization (FORE-OSEM), and a reprojection algorithm (RP). Global MBF measurements derived from 3D PET with FORE-FBP (r = 0.97), FORE-OSEM (r = 0.97), and RP (r = 0.97) were well correlated with those derived from 2D FBP (all Ps measurements between 3D FORE-FBP and 2D FBP and between 3D FORE-OSEM and 2D FBP were 0.01 +/- 0.14 and 0.01 +/- 0.15 mL/min/g, respectively. The mean +/- SD difference in global MBF measurements between 3D RP and 2D FBP was 0.00 +/- 0.16 mL/min/g. The best correlation between 2D PET and 3D PET performed with the lower injected activity was found for the 3D FORE-FBP reconstruction algorithm (r = 0.95, P measurements of MBF with 3D PET and (13)N-NH(3) were in excellent agreement with those obtained with the 2D technique, even when a lower activity was injected.

  1. Reconstruction of Hyaline Cartilage Deep Layer Properties in 3-Dimensional Cultures of Human Articular Chondrocytes.

    Science.gov (United States)

    Nanduri, Vibudha; Tattikota, Surendra Mohan; T, Avinash Raj; Sriramagiri, Vijaya Rama Rao; Kantipudi, Suma; Pande, Gopal

    2014-06-01

    Articular cartilage (AC) injuries and malformations are commonly noticed because of trauma or age-related degeneration. Many methods have been adopted for replacing or repairing the damaged tissue. Currently available AC repair methods, in several cases, fail to yield good-quality long-lasting results, perhaps because the reconstructed tissue lacks the cellular and matrix properties seen in hyaline cartilage (HC). To reconstruct HC tissue from 2-dimensional (2D) and 3-dimensional (3D) cultures of AC-derived human chondrocytes that would specifically exhibit the cellular and biochemical properties of the deep layer of HC. Descriptive laboratory study. Two-dimensional cultures of human AC-derived chondrocytes were established in classical medium (CM) and newly defined medium (NDM) and maintained for a period of 6 weeks. These cells were suspended in 2 mm-thick collagen I gels, placed in 24-well culture inserts, and further cultured up to 30 days. Properties of chondrocytes, grown in 2D cultures and the reconstructed 3D cartilage tissue, were studied by optical and scanning electron microscopic techniques, immunohistochemistry, and cartilage-specific gene expression profiling by reverse transcription polymerase chain reaction and were compared with those of the deep layer of native human AC. Two-dimensional chondrocyte cultures grown in NDM, in comparison with those grown in CM, showed more chondrocyte-specific gene activity and matrix properties. The NDM-grown chondrocytes in 3D cultures also showed better reproduction of deep layer properties of HC, as confirmed by microscopic and gene expression analysis. The method used in this study can yield cartilage tissue up to approximately 1.6 cm in diameter and 2 mm in thickness that satisfies the very low cell density and matrix composition properties present in the deep layer of normal HC. This study presents a novel and reproducible method for long-term culture of AC-derived chondrocytes and reconstruction of cartilage

  2. Characterization, expression, and mutation of the Lactococcus lactis galPMKTE genes, involved in galactose utilization via the Leloir pathway

    NARCIS (Netherlands)

    Groossiord, B.P.; Luesink, E.J.; Vaughan, E.E.; Arnaud, A.; Vos, de W.M.

    2003-01-01

    A cluster containing five similarly oriented genes involved in the metabolism of galactose via the Leloir pathway in Lactococcus lactis subsp. cremoris MG1363 was cloned and characterized. The order of the genes is galPMKTE, and these genes encode a galactose permease (GalP), an aldose I-epimerase

  3. BWR Mark I pressure suppression study: characterization of the vertical load function utilizing bench top model tests

    International Nuclear Information System (INIS)

    McCauley, E.W.; Lai, W.

    1977-02-01

    A study was conducted to characterize the mechanisms which give rise to observed oscillations in the vertical load function (VLF) of bench top pool dynamics tests. This is part of a continuing investigation at the Lawrence Livermore Laboratory of the General Electric Mark I Nuclear Reactor pressure suppression system

  4. Leading research and study report for fiscal 1998. Research and study of 3-dimensional ion processing technologies; 1998 nendo sendo chosa kenkyu hokokusho. Sanjigen ion kako gijutsu no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Reported are the results of 'Research of 3-Dimensional Ion Processing Technologies.' Tasks to solve before the practical application of 3-dimensional technologies are extracted, and the possible effects of the new technologies on the creation of novel industries are investigated. In the field of new processing technologies, the special characteristics, current state, and tasks to solve are reported concerning the implantation technology, film formation technology, and hybridization which utilize plasma ion implantation. In the field of element technologies for device development, the current state and tasks of high-density plasma generation, homogeneous implantation, etc., are taken up, and the need is mentioned of inductively coupled plasma and surface wave excited plasma. As regards homogeneous implantation, the need is mentioned of technologies for forming matrix sheaths and pulsed plasma. In the field of 3-dimensional ion processing technologies application to the production of commercial goods, large items and their components such as automobiles, rollers, turbines, etc., are taken up, and the surface reforming technologies are reported, with reference made to their current state, tasks, predicted future market, concurrent technologies, feasibility of their application, the hopes and expectations they have aroused, etc. (NEDO)

  5. Leading research and study report for fiscal 1998. Research and study of 3-dimensional ion processing technologies; 1998 nendo sendo chosa kenkyu hokokusho. Sanjigen ion kako gijutsu no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Reported are the results of 'Research of 3-Dimensional Ion Processing Technologies.' Tasks to solve before the practical application of 3-dimensional technologies are extracted, and the possible effects of the new technologies on the creation of novel industries are investigated. In the field of new processing technologies, the special characteristics, current state, and tasks to solve are reported concerning the implantation technology, film formation technology, and hybridization which utilize plasma ion implantation. In the field of element technologies for device development, the current state and tasks of high-density plasma generation, homogeneous implantation, etc., are taken up, and the need is mentioned of inductively coupled plasma and surface wave excited plasma. As regards homogeneous implantation, the need is mentioned of technologies for forming matrix sheaths and pulsed plasma. In the field of 3-dimensional ion processing technologies application to the production of commercial goods, large items and their components such as automobiles, rollers, turbines, etc., are taken up, and the surface reforming technologies are reported, with reference made to their current state, tasks, predicted future market, concurrent technologies, feasibility of their application, the hopes and expectations they have aroused, etc. (NEDO)

  6. Characterization of Chemokine Receptor Utilization of Viruses in the Latent Reservoir for Human Immunodeficiency Virus Type 1

    Science.gov (United States)

    Pierson, Theodore; Hoffman, Trevor L.; Blankson, Joel; Finzi, Diana; Chadwick, Karen; Margolick, Joseph B.; Buck, Christopher; Siliciano, Janet D.; Doms, Robert W.; Siliciano, Robert F.

    2000-01-01

    Latently infected resting CD4+ T cells provide a long-term reservoir for human immunodeficiency virus type 1 (HIV-1) and are likely to represent the major barrier to virus eradication in patients on combination antiretroviral therapy. The mechanisms by which viruses enter the latent reservoir and the nature of the chemokine receptors involved have not been determined. To evaluate the phenotype of the virus in this compartment with respect to chemokine receptor utilization, full-length HIV-1 env genes were cloned from latently infected cells and assayed functionally. We demonstrate that the majority of the viruses in the latent reservoir utilize CCR5 during entry, although utilization of several other receptors, including CXCR4, was observed. No alternative coreceptors were shown to be involved in a systematic fashion. Although R5 viruses are present in the latent reservoir, CCR5 was not expressed at high levels on resting CD4+ T cells. To understand the mechanism by which R5 viruses enter latent reservoir, the ability of an R5 virus, HIV-1 Ba-L, to infect highly purified resting CD4+ T lymphocytes from uninfected donors was evaluated. Entry of Ba-L could be observed when virus was applied at a multiplicity approaching 1. However, infection was limited to a subset of cells expressing low levels of CCR5 and markers of immunologic memory. Naive cells could not be infected by an R5 virus even when challenged with a large inoculum. Direct cell fractionation studies showed that latent virus is present predominantly in resting memory cells but also at lower levels in resting naive cells. Taken together, these findings provide support for the hypothesis that the direct infection of naive T cells is not the major mechanism by which the latent infection of resting T cells is established. PMID:10933689

  7. Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source.

    Science.gov (United States)

    Nakajima-Kambe, T; Onuma, F; Kimpara, N; Nakahara, T

    1995-06-01

    Various soil samples were screened for the presence of microorganisms which have the ability to degrade polyurethane compounds. Two strains with good polyurethane degrading activity were isolated. The more active strain was tentatively identified as Comamonas acidovorans. This strain could utilize polyester-type polyurethanes but not the polyether-type polyurethanes as sole carbon and nitrogen sources. Adipic acid and diethylene glycol were probably the main degradation products when polyurethane was supplied as a sole carbon and nitrogen source. When ammonium nitrate was used as nitrogen source, only diethylene glycol was detected after growth on polyurethane.

  8. Characterizing the Incentive Compatible and Pareto Optimal Efficiency Space for Two Players, k Items, Public Budget and Quasilinear Utilities

    Directory of Open Access Journals (Sweden)

    Anat Lerner

    2014-04-01

    Full Text Available We characterize the efficiency space of deterministic, dominant-strategy incentive compatible, individually rational and Pareto-optimal combinatorial auctions in a model with two players and k nonidentical items. We examine a model with multidimensional types, private values and quasilinear preferences for the players with one relaxation: one of the players is subject to a publicly known budget constraint. We show that if it is publicly known that the valuation for the largest bundle is less than the budget for at least one of the players, then Vickrey-Clarke-Groves (VCG uniquely fulfills the basic properties of being deterministic, dominant-strategy incentive compatible, individually rational and Pareto optimal. Our characterization of the efficient space for deterministic budget constrained combinatorial auctions is similar in spirit to that of Maskin 2000 for Bayesian single-item constrained efficiency auctions and comparable with Ausubel and Milgrom 2002 for non-constrained combinatorial auctions.

  9. Editorial Commentary: Single-Image Slice Magnetic Resonance Imaging Assessments Do Not Predict 3-Dimensional Muscle Volume.

    Science.gov (United States)

    Brand, Jefferson C

    2016-01-01

    No single-image magnetic resonance imaging (MRI) assessment-Goutallier classification, Fuchs classification, or cross-sectional area-is predictive of whole-muscle volume or fatty atrophy of the supraspinatus or infraspinatus. Rather, 3-dimensional MRI measurement of whole-muscle volume and fat-free muscle volume is required and is associated with shoulder strength, which is clinically relevant. Three-dimensional MRI may represent a new gold standard for assessment of the rotator cuff musculature using imaging and may help to predict the feasibility of repair of a rotator cuff tear as well as the postoperative outcome. Unfortunately, 3-dimensional MRI assessment of muscle volume is labor intensive and is not widely available for clinical use. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  10. 3-dimensional earthquake response analysis of embedded reactor building using hybrid model of boundary elements and finite elements

    International Nuclear Information System (INIS)

    Muto, K.; Motosaka, M.; Kamata, M.; Masuda, K.; Urao, K.; Mameda, T.

    1985-01-01

    In order to investigate the 3-dimensional earthquake response characteristics of an embedded structure with consideration for soil-structure interaction, the authors have developed an analytical method using 3-dimensional hybrid model of boundary elements (BEM) and finite elements (FEM) and have conducted a dynamic analysis of an actual nuclear reactor building. This paper describes a comparative study between two different embedment depths in soil as elastic half-space. As the results, it was found that the earthquake response intensity decreases with the increase of the embedment depth and that this method was confirmed to be effective for investigating the 3-D response characteristics of embedded structures such as deflection pattern of each floor level, floor response spectra in high frequency range. (orig.)

  11. Expected utility without utility

    OpenAIRE

    Castagnoli, E.; Licalzi, M.

    1996-01-01

    This paper advances an interpretation of Von Neumann–Morgenstern’s expected utility model for preferences over lotteries which does not require the notion of a cardinal utility over prizes and can be phrased entirely in the language of probability. According to it, the expected utility of a lottery can be read as the probability that this lottery outperforms another given independent lottery. The implications of this interpretation for some topics and models in decision theory are considered....

  12. The application of 3-dimensional printing for preoperative planning in oral and maxillofacial surgery in dogs and cats

    OpenAIRE

    Winer, JN; Verstraete, FJM; Cissell, DD; Lucero, S; Athanasiou, KA; Arzi, B

    2017-01-01

    © 2017 The American College of Veterinary Surgeons Objective: To describe the application of 3-dimensional (3D) printing in advanced oral and maxillofacial surgery (OMFS) and to discuss the benefits of this modality in surgical planning, student and resident training, and client education. Study design: Retrospective case series. Animals: Client-owned dogs (n = 28) and cats (n = 4) with 3D printing models of the skulls. Methods: The medical records of 32 cases with 3D printing prior to major ...

  13. The feasibility study on 3-dimensional fluorescent x-ray computed tomography using the pinhole effect for biomedical applications.

    Science.gov (United States)

    Sunaguchi, Naoki; Yuasa, Tetsuya; Hyodo, Kazuyuki; Zeniya, Tsutomu

    2013-01-01

    We propose a 3-dimensional fluorescent x-ray computed tomography (CT) pinhole collimator, aimed at providing molecular imaging with quantifiable measures and sub-millimeter spatial resolution. In this study, we demonstrate the feasibility of this concept and investigate imaging properties such as spatial resolution, contrast resolution and quantifiable measures, by imaging physical phantoms using a preliminary imaging system developed with monochromatic synchrotron x rays constructed at the BLNE-7A experimental line at KEK, Japan.

  14. Isolation and characterization of macaroni penguin (Eudyptes chrysolophus) microsatellite loci and their utility in other penguin species (Spheniscidae, AVES).

    Science.gov (United States)

    Ahmed, Sophia; Hart, Tom; Dawson, Deborah A; Horsburgh, Gavin J; Trathan, Philip N; Rogers, Alex D

    2009-11-01

    We report the characterization of 25 microsatellite loci isolated from the macaroni penguin (Eudyptes chrysolophus). Thirteen loci were arranged into four multiplex sets for future genetic studies of macaroni penguin populations. All 25 loci were tested separately in each of four other penguin species [Adélie penguin (Pygoscelis adeliae), chinstrap penguin (Pygoscelis antarctica), gentoo penguin (Pygoscelis papua) and king penguin (Aptenodytes patagonicus)]. Between eight and 12 loci were polymorphic per species. These loci are expected to be useful for studies of population genetic structure in a range of penguin species. © 2009 Blackwell Publishing Ltd.

  15. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis

    Science.gov (United States)

    Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe

    2017-01-01

    The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms. PMID:28617843

  16. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis.

    Science.gov (United States)

    Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe; Chai, Yunrong

    2017-01-01

    The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms.

  17. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    KAUST Repository

    Imperatori, W.; Mai, Paul Martin

    2012-01-01

    examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means

  18. Blood biomarkers in moderate-to-severe traumatic brain injury: potential utility of a multimarker approach in characterizing outcome

    Directory of Open Access Journals (Sweden)

    Alex P Di Battista

    2015-05-01

    Full Text Available Background: Blood biomarkers are valuable tools for elucidating the complex cellular and molecular mechanisms underlying traumatic brain injury (TBI pathophysiology. Profiling distinct classes of biomarkers could aid in the identification and characterization of both initial injury and secondary pathological processes. The purpose of this study was to characterize the prognostic performance, both individually and combined, of a recently developed multimarker panel of circulating biomarkers reflecting specific pathogenic mechanisms including neuroinflammation, oxidative damage and neuroregeneration, in moderate-to-severe TBI patients. Materials and Methods: Peripheral blood samples were drawn from 85 isolated TBI patients (n=60 severe, n=25 moderate at hospital admission, 6-, 12-, and 24-h post-injury. Mortality and neurological outcome were assessed using the extended Glasgow Outcome Score (GOSE. A multiplex platform was designed on MULTI-SPOT® plates to simultaneously analyze human plasma levels of s100 calcium binding protein (s100B, glial fibrillary acidic protein (GFAP, neuron specific enolase (NSE, brain derived neurotrophic factor (BDNF, monocyte chemoattractant protein (MCP-1, intercellular adhesion molecule (ICAM-5, and peroxiredoxin (PRDX-6. Results: Unfavorable outcome was associated with elevations in s100B, GFAP and MCP-1. Mortality was related to differences in 6 of 7 markers analyzed. Combined admission concentrations of s100B, GFAP and MCP-1 were able to discriminate favorable versus unfavorable outcome (AUC = 0.83, and survival versus death (AUC = 0.87, although not significantly better than s100B alone (AUC = 0.82 and 0.86, respectively. Conclusion: The multimarker panel of TBI-related biomarkers performed well in discriminating between unfavorable and favorable outcomes in the acute period after moderate-to-severe TBI. However, these combined biomarkers did not outperform s100B alone.

  19. Identification and characterization of a novel outer membrane protein receptor required for hemin utilization in Vibrio vulnificus

    Science.gov (United States)

    Datta, Shreya

    2011-01-01

    Vibrio vulnificus, the cause of septicemia and serious wound infection in humans and fishes, require iron for its pathogenesis. Hemin uptake through the outer membrane receptor, HupA, is one of its many mechanisms by which it acquires iron. We report here the identification of an additional TonB-dependent hemin receptor HvtA, that is needed in conjunction with the HupA protein for optimal hemin utilization. The HvtA protein is significantly homologous to other outer membrane hemin receptors and its expression in trans restored the uptake of hemin and hemoglobin, the latter to a weaker extent, in a mutant strain that was defective in both receptors. Quantitative RT-PCR suggested that transcription of the hvtA gene was iron regulated. The operon containing the hvtA gene is homologous to the operon in V. cholerae containing the hemin receptor gene hutR suggesting a vertical transmission of the hvtA cluster from V. cholerae to V. vulnificus. PMID:22015545

  20. Improving Range Estimation of a 3-Dimensional Flash Ladar via Blind Deconvolution

    Science.gov (United States)

    2010-09-01

    limitation of the simplistic model and adaptation of the higher fidelity model is the catalyst of the material in Chapters V and VI. In order to...characterization has been done previously in fields such as heterodyne Light Detection and Ranging (LiDAR), RADAR, and positron emisson tomography (PET) [20...Figure 6.13(b). These values for pt are consistent with the values from the previous section. Considering all the above optimal pulse-width studies

  1. Rail Shear and Short Beam Shear Properties of Various 3-Dimensional (3-D) Woven Composites

    Science.gov (United States)

    2016-01-01

    the preforms. It is a low- viscosity 2-phased toughened epoxy resin system consisting of part A (resin mixture of diglycidylether epoxy toughener...Delamination resistant laminates by Z-fiber pinning. Composites: Part A. 2005;36:55–64. 6. Clay S, Pommer A. Z-pin stubble technology advanced research...characterization of montmorillonite clay -filled SC-15 epoxy. Materials Letters. 2006;60:869–873. Approved for public release; distribution is

  2. Operational Performance Characterization of a Heat Pump System Utilizing Recycled Water as Heat Sink and Heat Source in a Cool and Dry Climate

    Directory of Open Access Journals (Sweden)

    Piljae Im

    2018-01-01

    Full Text Available The wastewater leaving from homes and businesses contains abundant low-grade energy, which can be utilized through heat pump technology to heat and cool buildings. Although the energy in the wastewater has been successfully utilized to condition buildings in other countries, it is barely utilized in the United States, until recently. In 2013, the Denver Museum of Nature & Science at Denver, the United States implemented a unique heat pump system that utilizes recycled wastewater from a municipal water system to cool and heat its 13,000 m2 new addition. This recycled water heat pump (RWHP system uses seven 105 kW (cooling capacity modular water-to-water heat pumps (WWHPs. Each WWHP uses R-410A refrigerant, has two compressors, and can independently provide either 52 °C hot water (HW or 7 °C chilled water (CHW to the building. This paper presents performance characterization results of this RWHP system based on the measured data from December 2014 through August 2015. The annual energy consumption of the RWHP system was also calculated and compared with that of a baseline Heating, Ventilation, and Air Conditioning (HVAC system which meets the minimum energy efficiencies that are allowed by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE 90.1-2013. The performance analysis results indicate that recycled water temperatures were favorable for effective operation of heat pumps. As a result, on an annual basis, the RWHP system avoided 50% of source energy consumption (resulting from reduction in natural gas consumption although electricity consumption was increased slightly, reduced CO2 emissions by 41%, and saved 34% in energy costs as compared with the baseline system.

  3. Characterizing, measuring, and utilizing the resolution of CT imagery for improved quantification of fine-scale features

    Energy Technology Data Exchange (ETDEWEB)

    Ketcham, Richard A., E-mail: ketcham@jsg.utexas.edu; Hildebrandt, Jordan

    2014-04-01

    Quantitative results extracted from computed tomographic (CT) data sets should be the same across resolutions and between different instruments and laboratory groups. Despite the proliferation of scanners and data processing methods and tools, and scientific studies utilizing them, relatively little emphasis has been given to ensuring that these results are comparable or reproducible. This issue is particularly pertinent when the features being imaged and measured are of the same order size as data voxels, as is often the case with fracture apertures, pore throats, and cell walls. We have created a tool that facilitates quantification of the spatial resolution of CT data via its point-spread function (PSF), in which the user draws a traverse across a sharp interface between two materials and a Gaussian PSF is fitted to the blurring across that interface. Geometric corrections account for voxel shape and the angle of the traverse to the interface, which does not need to be orthogonal. We use the tool to investigate a series of grid phantoms scanned at varying conditions and observe how the PSF varies within and between slices. The PSF increases with increasing radial distance within slices, and can increase tangentially with increasing radial distance in CT data sets acquired with relatively few projections. The PSF between CT slices is similar to that within slices when a 2-D detector is used, but is much sharper when the data are acquired one slice at a time with a collimated linear detector array. The capability described here can be used not only to calibrate processing algorithms that use deconvolution operations, but it can also help evaluate scans on a routine basis within and between CT research groups, and with respect to the features within the imagery that are being measured.

  4. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Preoperative Treatment of Extremity Soft Tissue Sarcomas

    Energy Technology Data Exchange (ETDEWEB)

    Richard, Patrick, E-mail: patrjr@uw.edu [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Phillips, Mark; Smith, Wade [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States); Davidson, Darin [Department of Orthopedic Surgery, University of Washington, Seattle, Washington (United States); Kim, Edward; Kane, Gabrielle [Department of Radiation Oncology, University of Washington, Seattle, Washington (United States)

    2016-07-01

    Purpose: Create a cost-effectiveness model comparing preoperative intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3DCRT) for extremity soft tissue sarcomas. Methods and Materials: Input parameters included 5-year local recurrence rates, rates of acute wound adverse events, and chronic toxicities (edema, fracture, joint stiffness, and fibrosis). Health-state utilities were used to calculate quality-adjusted life years (QALYs). Overall treatment costs per QALY or incremental cost-effectiveness ratio (ICER) were calculated. Roll-back analysis was performed using average costs and utilities to determine the baseline preferred radiation technique. One-way, 2-way, and probabilistic sensitivity analyses (PSA) were performed for input parameters with the largest impact on the ICER. Results: Overall treatment costs were $17,515.58 for 3DCRT compared with $22,920.51 for IMRT. The effectiveness was higher for IMRT (3.68 QALYs) than for 3DCRT (3.35 QALYs). The baseline ICER for IMRT was $16,842.75/QALY, making it the preferable treatment. The ICER was most sensitive to the probability of local recurrence, upfront radiation costs, local recurrence costs, certain utilities (no toxicity/no recurrence, grade 1 toxicity/no local recurrence, grade 4 toxicity/no local recurrence), and life expectancy. Dominance patterns emerged when the cost of 3DCRT exceeded $15,532.05 (IMRT dominates) or the life expectancy was under 1.68 years (3DCRT dominates). Furthermore, preference patterns changed based on the rate of local recurrence (threshold: 13%). The PSA results demonstrated that IMRT was the preferred cost-effective technique for 64% of trials compared with 36% for 3DCRT. Conclusions: Based on our model, IMRT is the preferred technique by lowering rates of local recurrence, severe toxicities, and improving QALYs. From a third-party payer perspective, IMRT should be a supported approach for extremity soft tissue sarcomas.

  5. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Preoperative Treatment of Extremity Soft Tissue Sarcomas

    International Nuclear Information System (INIS)

    Richard, Patrick; Phillips, Mark; Smith, Wade; Davidson, Darin; Kim, Edward; Kane, Gabrielle

    2016-01-01

    Purpose: Create a cost-effectiveness model comparing preoperative intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3DCRT) for extremity soft tissue sarcomas. Methods and Materials: Input parameters included 5-year local recurrence rates, rates of acute wound adverse events, and chronic toxicities (edema, fracture, joint stiffness, and fibrosis). Health-state utilities were used to calculate quality-adjusted life years (QALYs). Overall treatment costs per QALY or incremental cost-effectiveness ratio (ICER) were calculated. Roll-back analysis was performed using average costs and utilities to determine the baseline preferred radiation technique. One-way, 2-way, and probabilistic sensitivity analyses (PSA) were performed for input parameters with the largest impact on the ICER. Results: Overall treatment costs were $17,515.58 for 3DCRT compared with $22,920.51 for IMRT. The effectiveness was higher for IMRT (3.68 QALYs) than for 3DCRT (3.35 QALYs). The baseline ICER for IMRT was $16,842.75/QALY, making it the preferable treatment. The ICER was most sensitive to the probability of local recurrence, upfront radiation costs, local recurrence costs, certain utilities (no toxicity/no recurrence, grade 1 toxicity/no local recurrence, grade 4 toxicity/no local recurrence), and life expectancy. Dominance patterns emerged when the cost of 3DCRT exceeded $15,532.05 (IMRT dominates) or the life expectancy was under 1.68 years (3DCRT dominates). Furthermore, preference patterns changed based on the rate of local recurrence (threshold: 13%). The PSA results demonstrated that IMRT was the preferred cost-effective technique for 64% of trials compared with 36% for 3DCRT. Conclusions: Based on our model, IMRT is the preferred technique by lowering rates of local recurrence, severe toxicities, and improving QALYs. From a third-party payer perspective, IMRT should be a supported approach for extremity soft tissue sarcomas.

  6. In Vivo Characterization of a Wireless Telemetry Module for a Capsule Endoscopy System Utilizing a Conformal Antenna.

    Science.gov (United States)

    Faerber, Julia; Cummins, Gerard; Pavuluri, Sumanth Kumar; Record, Paul; Rodriguez, Adrian R Ayastuy; Lay, Holly S; McPhillips, Rachael; Cox, Benjamin F; Connor, Ciaran; Gregson, Rachael; Clutton, Richard Eddie; Khan, Sadeque Reza; Cochran, Sandy; Desmulliez, Marc P Y

    2018-02-01

    This paper describes the design, fabrication, packaging, and performance characterization of a conformal helix antenna created on the outside of a capsule endoscope designed to operate at a carrier frequency of 433 MHz within human tissue. Wireless data transfer was established between the integrated capsule system and an external receiver. The telemetry system was tested within a tissue phantom and in vivo porcine models. Two different types of transmission modes were tested. The first mode, replicating normal operating conditions, used data packets at a steady power level of 0 dBm, while the capsule was being withdrawn at a steady rate from the small intestine. The second mode, replicating the worst-case clinical scenario of capsule retention within the small bowel, sent data with stepwise increasing power levels of -10, 0, 6, and 10 dBm, with the capsule fixed in position. The temperature of the tissue surrounding the external antenna was monitored at all times using thermistors embedded within the capsule shell to observe potential safety issues. The recorded data showed, for both modes of operation, a low error transmission of 10 -3 packet error rate and 10 -5 bit error rate and no temperature increase of the tissue according to IEEE standards.

  7. Analysis and Characterization of Damage Utilizing an Orthotropic Generalized Composite Material Model Suitable for Use in Impact Problems

    Science.gov (United States)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther

    2016-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased usage in the aerospace and automotive communities. In order to address a series of issues identified by the aerospace community as being desirable to include in a next generation composite impact model, an orthotropic, macroscopic constitutive model incorporating both plasticity and damage suitable for implementation within the commercial LS-DYNA computer code is being developed. The plasticity model is based on extending the Tsai-Wu composite failure model into a strain hardening-based orthotropic plasticity model with a non-associative flow rule. The evolution of the yield surface is determined based on tabulated stress-strain curves in the various normal and shear directions and is tracked using the effective plastic strain. To compute the evolution of damage, a strain equivalent semi-coupled formulation is used in which a load in one direction results in a stiffness reduction in multiple material coordinate directions. A detailed analysis is carried out to ensure that the strain equivalence assumption is appropriate for the derived plasticity and damage formulations that are employed in the current model. Procedures to develop the appropriate input curves for the damage model are presented and the process required to develop an appropriate characterization test matrix is discussed

  8. XPS utilization in the characterization of glycerol based polyesters; Utilizacao de XPS na caracterizacao de poliesteres a base de glicerol

    Energy Technology Data Exchange (ETDEWEB)

    Brioude, M.M.; Miranda, C.S.; Pereira, R.; Ohara, L.; Bargiela, P.; Rocha, M.G.M.C.; Jose, N.M., E-mail: mgcr@ufba.b [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Inst. de Quimica

    2010-07-01

    X-ray photoelectron spectroscopy-XPS allows the determination of all elements of the periodical table, except hydrogen and helium, and is a very used technique for the polymers characterization, its spectra constitutes a 'fingerprint' of the material. Two samples of polymers were prepared from glycerol and fumaric acid and glycerol and terephthalic acid, with a molar ratio of 1:1 and 1:1.5. The general spectra show the presence of carbon and oxygen, the main components of the polymer. From the binding energies values of the C1s and O1s high resolution spectra it was possible to determine the carbon functional groups. Their concentration were determined and the presence of the aromatic carbon in the terephthalic polyesters was observed, and also similar proportions of aliphatic carbon and ester groups in the fumaric acid polyesters. For both polyesters, an amount of carboxyl group appears, indicating the terminal non-reacted groups. These results were confirmed qualitatively by FTIR. (author)

  9. Characterizing Global Flood Wave Travel Times to Optimize the Utility of Near Real-Time Satellite Remote Sensing Products

    Science.gov (United States)

    Allen, G. H.; David, C. H.; Andreadis, K. M.; Emery, C. M.; Famiglietti, J. S.

    2017-12-01

    USGS gauge stations located along a diverse collection of river reaches. These results provide a scientific rationale for optimizing the utility of existing and future NRT river-observation products.

  10. Characterization of corn landraces planted grown in the campos gerais region (Paraná, Brazil for industrial utilization

    Directory of Open Access Journals (Sweden)

    Alessandra Teixeira Barbosa Pinto

    2009-11-01

    Full Text Available This work has the objective of characterizing twenty corn landraces grown in the Campos Gerais region (Paraná State in relation to its chemical composition (moisture, ash, protein, ether extract, dietary fiber and starch and physical properties (weight of 1000 grains, real density, flotation index, granulometry and color. In addition, also the lab scale processing of the kernels from the varieties was carried out for producing starch; starch purity was evaluated by measuring its protein contamination. Amylose contents and viscoamylograph profile were also evaluated. The results showed that the evaluated landraces have differences in chemical composition as well as in pericarp/endosperm/germ proportions and consequently it should have different industrial applications and interest for plant breeding.Esse trabalho teve o objetivo de caracterizar vinte variedades de milho crioulo cultivadas na região dos Campos Gerais (Estado do Paraná em relação a sua composição química (umidade, cinzas, proteína, extrato etéreo, fibra alimentar e amido e propriedades físicas (peso de 1000 grãos, densidade real, índice de flotação, granulometria e cor Além disso, foi feito o processamento dos grãos em escala de laboratório para a extração do amido, sendo mensurado o teor de proteína. Foram avaliados os conteúdos de amilose e o perfil viscoamilográfico. Os resultados mostraram que os milhos apresentaram diferentes composições químicas e proporções pericarpo/endosperma/ gérmen e consequentemente podem ter diferentes aplicações industriais e interesse ao melhoramento de plantas.

  11. Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production

    Directory of Open Access Journals (Sweden)

    Shi Shuobo

    2012-02-01

    Full Text Available Abstract Background Wax ester synthases (WSs can synthesize wax esters from alcohols and fatty acyl coenzyme A thioesters. The knowledge of the preferred substrates for each WS allows the use of yeast cells for the production of wax esters that are high-value materials and can be used in a variety of industrial applications. The products of WSs include fatty acid ethyl esters, which can be directly used as biodiesel. Results Here, heterologous WSs derived from five different organisms were successfully expressed and evaluated for their substrate preference in Saccharomyces cerevisiae. We investigated the potential of the different WSs for biodiesel (that is, fatty acid ethyl esters production in S. cerevisiae. All investigated WSs, from Acinetobacter baylyi ADP1, Marinobacter hydrocarbonoclasticus DSM 8798, Rhodococcus opacus PD630, Mus musculus C57BL/6 and Psychrobacter arcticus 273-4, have different substrate specificities, but they can all lead to the formation of biodiesel. The best biodiesel producing strain was found to be the one expressing WS from M. hydrocarbonoclasticus DSM 8798 that resulted in a biodiesel titer of 6.3 mg/L. To further enhance biodiesel production, acetyl coenzyme A carboxylase was up-regulated, which resulted in a 30% increase in biodiesel production. Conclusions Five WSs from different species were functionally expressed and their substrate preference characterized in S. cerevisiae, thus constructing cell factories for the production of specific kinds of wax ester. WS from M. hydrocarbonoclasticus showed the highest preference for ethanol compared to the other WSs, and could permit the engineered S. cerevisiae to produce biodiesel.

  12. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Directory of Open Access Journals (Sweden)

    L. E. Pracht

    2018-03-01

    Full Text Available Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC. In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic

  13. Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: tracking carbon compositional change during microbial utilization

    Science.gov (United States)

    Pracht, Lara E.; Tfaily, Malak M.; Ardissono, Robert J.; Neumann, Rebecca B.

    2018-03-01

    Bioavailable organic carbon in aquifer recharge waters and sediments can fuel microbial reactions with implications for groundwater quality. A previous incubation experiment showed that sedimentary organic carbon (SOC) mobilized off sandy sediment collected from an arsenic-contaminated and methanogenic aquifer in Bangladesh was bioavailable; it was transformed into methane. We used high-resolution mass spectrometry to molecularly characterize this mobilized SOC, reference its composition against dissolved organic carbon (DOC) in surface recharge water, track compositional changes during incubation, and advance understanding of microbial processing of organic carbon in anaerobic environments. Organic carbon mobilized off aquifer sediment was more diverse, proportionately larger, more aromatic, and more oxidized than DOC in surface recharge. Mobilized SOC was predominately composed of terrestrially derived organic matter and had characteristics signifying that it evaded microbial processing within the aquifer. Approximately 50 % of identified compounds in mobilized SOC and in DOC from surface recharge water contained sulfur. During incubation, after mobilized SOC was converted into methane, new organosulfur compounds with high S-to-C ratios and a high nominal oxidation state of carbon (NOSC) were detected. We reason that these detected compounds formed abiotically following microbial reduction of sulfate to sulfide, which could have occurred during incubation but was not directly measured or that they were microbially synthesized. Most notably, microbes transformed all carbon types during incubation, including those currently considered thermodynamically unviable for microbes to degrade in anaerobic conditions (i.e., those with a low NOSC). In anaerobic environments, energy yields from redox reactions are small and the amount of energy required to remove electrons from highly reduced carbon substrates during oxidation decreases the thermodynamic favorability of

  14. Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple

    Science.gov (United States)

    2012-01-01

    Background Apple is an economically important fruit crop worldwide. Developing a genetic linkage map is a critical step towards mapping and cloning of genes responsible for important horticultural traits in apple. To facilitate linkage map construction, we surveyed and characterized the distribution and frequency of perfect microsatellites in assembled contig sequences of the apple genome. Results A total of 28,538 SSRs have been identified in the apple genome, with an overall density of 40.8 SSRs per Mb. Di-nucleotide repeats are the most frequent microsatellites in the apple genome, accounting for 71.9% of all microsatellites. AT/TA repeats are the most frequent in genomic regions, accounting for 38.3% of all the G-SSRs, while AG/GA dimers prevail in transcribed sequences, and account for 59.4% of all EST-SSRs. A total set of 310 SSRs is selected to amplify eight apple genotypes. Of these, 245 (79.0%) are found to be polymorphic among cultivars and wild species tested. AG/GA motifs in genomic regions have detected more alleles and higher PIC values than AT/TA or AC/CA motifs. Moreover, AG/GA repeats are more variable than any other dimers in apple, and should be preferentially selected for studies, such as genetic diversity and linkage map construction. A total of 54 newly developed apple SSRs have been genetically mapped. Interestingly, clustering of markers with distorted segregation is observed on linkage groups 1, 2, 10, 15, and 16. A QTL responsible for malic acid content of apple fruits is detected on linkage group 8, and accounts for ~13.5% of the observed phenotypic variation. Conclusions This study demonstrates that di-nucleotide repeats are prevalent in the apple genome and that AT/TA and AG/GA repeats are the most frequent in genomic and transcribed sequences of apple, respectively. All SSR motifs identified in this study as well as those newly mapped SSRs will serve as valuable resources for pursuing apple genetic studies, aiding the apple breeding

  15. Isolation and characterization of polymorphic microsatellite markers in the black spiny tailed iguana (Ctenosaura pectinata) and their cross-utility in other Ctenosaura.

    Science.gov (United States)

    Zarza, Eugenia; Pereyra, Ricardo T; Reynoso, Victor H; Emerson, Brent C

    2009-01-01

    We isolated and characterized 10 polymorphic microsatellite loci from the Mexican black iguana (Ctenosaura pectinata) and assessed levels of polymorphism in sampling sites located in the northern areas of the species' distribution range. Two to 19 alleles per locus and observed heterozygosity ranging from 0.15 to 0.96 were detected. These markers will be useful to describe population genetic structure, the extent of gene flow in contact zones, to study the mating system of the species and to address conservation genetics issues. Additionally, we evaluated the potential utility of these markers for studies of other species within the genus Ctenosaura (i.e. C. hemilopha, C. similis and C. oaxacana). © 2009 The Authors. Journal compilation © 2009 Blackwell Publishing Ltd.

  16. Preliminary assessment of the health and environmental effects of coal utilization in the midwest. Volume I. Energy scenarios, technology characterizations, air and water resource impacts, and health effects

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    An initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin is presented. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for the period 1975 to 2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. Included are: (1) a characterization of the energy demand and siting scenarios, coal related technologies, and coal resources, and (2) the related impacts on air quality, water availability, water quality, and human health.

  17. Development of monograph titled "augmented chemistry aldehida & keton" with 3 dimensional (3D) illustration as a supplement book on chemistry learning

    Science.gov (United States)

    Damayanti, Latifah Adelina; Ikhsan, Jaslin

    2017-05-01

    Integration of information technology in education more rapidly performed in a medium of learning. Three-dimensional (3D) molecular modeling was performed in Augmented Reality as a tangible manifestation of increasingly modern technology utilization. Based on augmented reality, three-dimensional virtual object is projected in real time and the exact environment. This paper reviewed the uses of chemical learning supplement book of aldehydes and ketones which are equipped with three-dimensional molecular modeling by which students can inspect molecules from various viewpoints. To plays the 3D illustration printed on the book, smartphones with the open-source software of the technology based integrated Augmented Reality can be used. The aims of this research were to develop the monograph of aldehydes and ketones with 3 dimensional (3D) illustrations, to determine the specification of the monograph, and to determine the quality of the monograph. The quality of the monograph is evaluated by experiencing chemistry teachers on the five aspects of contents/materials, presentations, language and images, graphs, and software engineering, resulted in the result that the book has a very good quality to be used as a chemistry learning supplement book.

  18. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging.

    Science.gov (United States)

    Hsu, Vivian M; Wes, Ari M; Tahiri, Youssef; Cornman-Homonoff, Joshua; Percec, Ivona

    2014-09-01

    The aim of this study is to evaluate and quantify dynamic soft-tissue strain in the human face using real-time 3-dimensional imaging technology. Thirteen subjects (8 women, 5 men) between the ages of 18 and 70 were imaged using a dual-camera system and 3-dimensional optical analysis (ARAMIS, Trilion Quality Systems, Pa.). Each subject was imaged at rest and with the following facial expressions: (1) smile, (2) laughter, (3) surprise, (4) anger, (5) grimace, and (6) pursed lips. The facial strains defining stretch and compression were computed for each subject and compared. The areas of greatest strain were localized to the midface and lower face for all expressions. Subjects over the age of 40 had a statistically significant increase in stretch in the perioral region while lip pursing compared with subjects under the age of 40 (58.4% vs 33.8%, P = 0.015). When specific components of lip pursing were analyzed, there was a significantly greater degree of stretch in the nasolabial fold region in subjects over 40 compared with those under 40 (61.6% vs 32.9%, P = 0.007). Furthermore, we observed a greater degree of asymmetry of strain in the nasolabial fold region in the older age group (18.4% vs 5.4%, P = 0.03). This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time.

  19. Comparison between Radiographic (2-dimensional and 3-dimensional) and Histologic Findings of Periapical Lesions Treated with Apical Surgery.

    Science.gov (United States)

    Bornstein, Michael M; Bingisser, Andreas C; Reichart, Peter A; Sendi, Pedram; Bosshardt, Dieter D; von Arx, Thomas

    2015-06-01

    The aim of this study was to evaluate the concordance of 2- and 3-dimensional radiography and histopathology in the diagnosis of periapical lesions. Patients were consecutively enrolled in this study provided that preoperative periapical radiography (PR) and cone-beam computed tomographic imaging of the tooth to be treated with apical surgery were performed. The periapical lesional tissue was histologically analyzed by 2 blinded examiners. The final histologic diagnosis was compared with the radiographic assessments of 4 blinded observers. The initial study material included 62 teeth in the same number of patients. Four lesions had to be excluded during processing, resulting in a final number of 58 evaluated cases (31 women and 27 men, mean age = 55 years). The final histologic diagnosis of the periapical lesions included 55 granulomas (94.8%) and 3 cysts (5.2%). Histologic analysis of the tissue samples from the apical lesions exhibited an almost perfect agreement between the 2 experienced investigators with an overall agreement of 94.83% (kappa = 0.8011). Radiographic assessment overestimated cysts by 28.4% (cone-beam computed tomographic imaging) and 20.7% (periapical radiography), respectively. Comparing the correlation of the radiographic diagnosis of 4 observers with the final histologic diagnosis, 2-dimensional (kappa = 0.104) and 3-dimensional imaging (kappa = 0.111) provided only minimum agreement. To establish a final diagnosis of an apical radiolucency, the tissue specimen should be evaluated histologically and specified as a granuloma (with/without epithelium) or a cyst. Analysis of 2-dimensional and 3-dimensional radiographic images alike results only in a tentative diagnosis that should be confirmed with biopsy. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Designing and manufacturing an auricular prosthesis using computed tomography, 3-dimensional photographic imaging, and additive manufacturing: a clinical report.

    Science.gov (United States)

    Liacouras, Peter; Garnes, Jonathan; Roman, Norberto; Petrich, Anton; Grant, Gerald T

    2011-02-01

    The method of fabricating an auricular prosthesis by digitally positioning a mirror image of the soft tissue, then designing and using rapid prototyping to produce the mold, can reduce the steps and time needed to create a prosthesis by the traditional approach of sculpting either wax or clay. The purpose of this clinical report is to illustrate how the use of 3-dimensional (3-D) photography, computer technology, and additive manufacturing can extensively reduce many of the preliminary procedures currently used to create an auricular prosthesis. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  1. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    KAUST Repository

    Imperatori, W.

    2012-12-06

    The heterogeneous nature of Earth\\'s crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0–10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2–5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5–10 per cent

  2. Structural and Functional Characterization of a Short-Chain Flavodoxin Associated with a Noncanonical 1,2-Propanediol Utilization Bacterial Microcompartment

    Energy Technology Data Exchange (ETDEWEB)

    Plegaria, Jefferson S. [MSU-DOE; Sutter, Markus [MSU-DOE; Molecular; Ferlez, Bryan [MSU-DOE; Aussignargues, Clément [MSU-DOE; Niklas, Jens [Solar; Poluektov, Oleg G. [Solar; Fromwiller, Ciara [MSU-DOE; TerAvest, Michaela [Department; amp, Molecular Biology, Michigan State University, East; Utschig, Lisa M. [Solar; Tiede, David M. [Solar; Kerfeld, Cheryl A. [MSU-DOE; Molecular; Department; amp, Molecular Biology, Michigan State University, East; Berkeley Synthetic Biology Institute, Berkeley, California 94720, United States

    2017-09-21

    Bacterial microcompartments (BMCs) are proteinaceous organelles that encapsulate enzymes involved in CO2 fixation (carboxysomes). or carbon catabolism (metabolosomes). Metabolosomes share a common core of enzymes and a distinct signature enzyme for substrate degradation that defines the function of the BMC (e,g., propanediol or ethanolamine utilization BMCs, or glycyl-radical enzyme microcompartments). Loci encoding metabolosomes also typically contain genes for proteins that support organelle function, such as regulation, transport of substrate, and cofactor (e.g., vitamin B-12) synthesis and recycling. Flavoproteins are frequently among these ancillary gene products, suggesting that these redox active proteins play an undetermined function in many metabolosomes. Here, we report the first characterization of a BMC-associated flavodoxin (Fld1C), a small flavoprotein, derived from the noncanonical 1,2-propanediol utilization BMC locus (PDU1C) of Lactobacillus reuteri. The 2.0 angstrom X-ray structure of Fld1C displays the alpha/beta flavodoxin fold, which noncovalently binds a single flavin mononucleotide molecule. Fld1C is a short-chain flavodoxin with redox potentials of -240 +/- 3 mV oxidized/semiquinone and -344 +/- 1 mV semiquinone/hydroquinone versus the standard hydrogen electrode at pH 7.5. It can participate in an electron transfer reaction with a photoreductant to form a stable semiquinone species. Collectively, our structural and functional results suggest that PDU1C BMCs encapsulate Fld1C to store and transfer electrons for the reactivation and/or recycling of the B-12 cofactor utilized by the signature enzyme.

  3. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition.

    Science.gov (United States)

    Rhee, Ye-Kyu; Huh, Yoon-Hyuk; Cho, Lee-Ra; Park, Chan-Jin

    2015-12-01

    The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (Pimpression and the smallest difference was seen between dual-arch and full-arch impression. The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P.05).

  4. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

    Science.gov (United States)

    Rhee, Ye-Kyu

    2015-01-01

    PURPOSE The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (Pimpression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P.05). PMID:26816576

  5. Improved planning of endoscopic sinonasal surgery from 3-dimensional images with Osirix® and stereolithography.

    Science.gov (United States)

    Sánchez-Gómez, Serafín; Herrero-Salado, Tomás F; Maza-Solano, Juan M; Ropero-Romero, Francisco; González-García, Jaime; Ambrosiani-Fernández, Jesús

    2015-01-01

    The high variability of sinonasal anatomy requires the best knowledge of its three-dimensional (3D) conformation to perform surgery more safely and efficiently. The aim of the study was to validate the utility of Osirix® and stereolithography in improving endoscopic sinonasal surgery planning. Osirix® was used as a viewer and Digital Imaging and Communications in Medicine (DICOM) 3D imaging manager to improve planning for 114 sinonasal endoscopic operations with polyposis (86) and chronic rhinosinusitis (CRS) (28). Stereolithography rapid prototyping was used for 7 frontoethmoidal mucoceles. Using Osirix® and stereolithography, a greater number of anatomical structures were identified and this was done faster, with a statistically-significant clinical-radiological correlation (Pvirtual reality, allows surgeons to perform endoscopic sinonasal surgery with greater confidence and in less time than using 2D images. Residents also achieve surgical competence faster, more safely and with fewer complications. This beneficial impact is increased when the surgical team has stereolithography rapid prototyping in more complex cases. Copyright © 2014 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  6. Development of the algorithm for obtaining 3-dimensional information using the structured light

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong Uk; Lee, Jae Hyub; Kim, Chung Soo [Korea University of Technology and Education, Cheonan (Korea)

    1998-03-01

    The utilization of robot in atomic power plants or nuclear-related facilities has grown rapidly. In order to perform preassigned jobs using robot in nuclear-related facilities, advanced technology extracting 3D information of objects is essential. We have studied an algorithm to extract 3D information of objects using laser slit light and camera, and developed the following hardware system and algorithms. (1) We have designed and fabricated the hardware system which consists of laser light and two cameras. The hardware system can be easily installed on the robot. (2) In order to reduce the occlusion problem when measuring 3D information using laser slit light and camera, we have studied system with laser slit light and two cameras and developed algorithm to synthesize 3D information obtained from two cameras. (2) For easy use of obtained 3D information, we expressed it as digital distance image format and developed algorithm to interpolate 3D information of points which is not obtained. (4) In order to simplify calibration of the camera's parameter, we have also designed an fabricated LED plate, and developed an algorithm detecting the center position of LED automatically. We can certify the efficiency of developed algorithm and hardware system through experimental results. 16 refs., 26 figs., 1 tabs. (Author)

  7. [Rapid 3-Dimensional Models of Cerebral Aneurysm for Emergency Surgical Clipping].

    Science.gov (United States)

    Konno, Takehiko; Mashiko, Toshihiro; Oguma, Hirofumi; Kaneko, Naoki; Otani, Keisuke; Watanabe, Eiju

    2016-08-01

    We developed a method for manufacturing solid models of cerebral aneurysms, with a shorter printing time than that involved in conventional methods, using a compact 3D printer with acrylonitrile-butadiene-styrene(ABS)resin. We further investigated the application and utility of this printing system in emergency clipping surgery. A total of 16 patients diagnosed with acute subarachnoid hemorrhage resulting from cerebral aneurysm rupture were enrolled in the present study. Emergency clipping was performed on the day of hospitalization. Digital Imaging and Communication in Medicine(DICOM)data obtained from computed tomography angiography(CTA)scans were edited and converted to stereolithography(STL)file formats, followed by the production of 3D models of the cerebral aneurysm by using the 3D printer. The mean time from hospitalization to the commencement of surgery was 242 min, whereas the mean time required for manufacturing the 3D model was 67 min. The average cost of each 3D model was 194 Japanese Yen. The time required for manufacturing the 3D models shortened to approximately 1 hour with increasing experience of producing 3D models. Favorable impressions for the use of the 3D models in clipping were reported by almost all neurosurgeons included in this study. Although 3D printing is often considered to involve huge costs and long manufacturing time, the method used in the present study requires shorter time and lower costs than conventional methods for manufacturing 3D cerebral aneurysm models, thus making it suitable for use in emergency clipping.

  8. PolySac3DB: an annotated data base of 3 dimensional structures of polysaccharides

    Directory of Open Access Journals (Sweden)

    Sarkar Anita

    2012-11-01

    via the web-interface utilizing the search engine and can be accessed at http://polysac3db.cermav.cnrs.fr.

  9. 3-dimensional self-calibrating coastal oil spill trajectory tracking and contaminant transport using HF radar

    International Nuclear Information System (INIS)

    Ojo, T.O.; Bonner, J.S.

    2002-01-01

    A study was conducted to demonstrate the dynamic behaviour of the turbulent mixing process in coastal environments for both advection and dispersion transport. The spatial variability of the coefficients that characterize the process was also examined. Every transport model should be calibrated to include specific information regarding geomorphology and climatic conditions. HF-radar equipment eliminates the need for model-recalibration and validation for transport models of coefficients which have spatial-temporal variations. The HF-radar has a grid resolution of 1000 m, providing real-time velocity coefficients by measuring surface currents. Dispersion coefficients can be derived from velocity time-series using the principle of Autocorrelation Functions (ACF) for time series. This concept was applied to two Gulf of Mexico bays in Texas, Corpus Christi and Matagorda. It was determined that the within-bay spatial variability of dispersion coefficients were many orders of magnitude higher than between-bay variability. The proposed model effectively reduced model complexity. The results of a 3-D dimensional contaminant transport model was presented. It was successfully used in the simulation of a contaminant spill scenario in the two bays using spatially distributed time-dependent transport coefficients. 5 refs., 8 figs

  10. Characterizing the developmental transcriptome of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae) through comparative genomic analysis with Drosophila melanogaster utilizing modENCODE datasets.

    Science.gov (United States)

    Geib, Scott M; Calla, Bernarda; Hall, Brian; Hou, Shaobin; Manoukis, Nicholas C

    2014-10-28

    The oriental fruit fly, Bactrocera dorsalis, is an important pest of fruit and vegetable crops throughout Asia, and is considered a high risk pest for establishment in the mainland United States. It is a member of the family Tephritidae, which are the most agriculturally important family of flies, and can be considered an out-group to well-studied members of the family Drosophilidae. Despite their importance as pests and their relatedness to Drosophila, little information is present on B. dorsalis transcripts and proteins. The objective of this paper is to comprehensively characterize the transcripts present throughout the life history of B. dorsalis and functionally annotate and analyse these transcripts relative to the presence, expression, and function of orthologous sequences present in Drosophila melanogaster. We present a detailed transcriptome assembly of B. dorsalis from egg through adult stages containing 20,666 transcripts across 10,799 unigene components. Utilizing data available through Flybase and the modENCODE project, we compared expression patterns of these transcripts to putative orthologs in D. melanogaster in terms of timing, abundance, and function. In addition, temporal expression patterns in B. dorsalis were characterized between stages, to establish the constitutive or stage-specific expression patterns of particular transcripts. A fully annotated transcriptome assembly is made available through NCBI, in addition to corresponding expression data. Through characterizing the transcriptome of B. dorsalis through its life history and comparing the transcriptome of B. dorsalis to the model organism D. melanogaster, a database has been developed that can be used as the foundation to functional genomic research in Bactrocera flies and help identify orthologous genes between B. dorsalis and D. melanogaster. This data provides the foundation for future functional genomic research that will focus on improving our understanding of the physiology and

  11. The design of two color interferometer system for the 3-dimensional analysis of plasma density evolution on KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.C., E-mail: kclee@nfri.re.kr [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Juhn, J.-W.; Nam, Y.U.; Kim, Y.S.; Wi, H.M. [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Kim, S.W.; Ghim, Y.-C. [Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of)

    2016-12-15

    Highlights: • A Two Color Interferometer (TCI) system is designed for 3-D measurement of KSTAR. • TCI is consists of 10.6 μm CO2 laser and 0.63 μm HeNe laser with tangential 5 channels. • 2 channels are installed in 2016 and 5 channel operation is planned in 2017. - Abstract: A 5-channel two color interferometer (TCI) system has been designed on KSTAR. TCI system is designed for tangential beam paths, which will combine with two existing interferometer systems of vertical and radial beam paths, so that it will provide 3-dimensional measurement of electron density evolution. TCI system uses wavelengths of 10.6 μm by a CO{sub 2} laser and 0.633 μm by a HeNe laser. The system compensates the vibrational noise by using two colors and avoids refraction by short wavelengths. The main purpose of the TCI is to generate routine measurement of the line integrated plasma density for the real time density control on KSTAR. The 5-channels will provide profile data for the density. Time resolution of the system is expected to be 500 kHz or higher in order to measure 3-dimensional density fluctuations for ELMs and other MHD activities including TAE modes. The system is planned to be working on KSTAR 2016 campaign with 1–2 channels.

  12. Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model

    International Nuclear Information System (INIS)

    Um, Ki Doo; Lee, Byung Do

    2004-01-01

    This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works 3.0) and RP model fabrication were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. There were relative error percentage in absolute value of 0.97, 1.98, 3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  13. Influence of slice thickness of computed tomography and type of rapid protyping on the accuracy of 3-dimensional medical model

    Energy Technology Data Exchange (ETDEWEB)

    Um, Ki Doo; Lee, Byung Do [Wonkwang University College of Medicine, Iksan (Korea, Republic of)

    2004-03-15

    This study was to evaluate the influence of slice thickness of computed tomography (CT) and rapid protyping (RP) type on the accuracy of 3-dimensional medical model. Transaxial CT data of human dry skull were taken from multi-detector spiral CT. Slice thickness were 1, 2, 3 and 4 mm respectively. Three-dimensional image model reconstruction using 3-D visualization medical software (V-works 3.0) and RP model fabrication were followed. 2-RP models were 3D printing (Z402, Z Corp., Burlington, USA) and Stereolithographic Apparatus model. Linear measurements of anatomical landmarks on dry skull, 3-D image model, and 2-RP models were done and compared according to slice thickness and RP model type. There were relative error percentage in absolute value of 0.97, 1.98, 3.83 between linear measurements of dry skull and image models of 1, 2, 3 mm slice thickness respectively. There was relative error percentage in absolute value of 0.79 between linear measurements of dry skull and SLA model. There was relative error difference in absolute value of 2.52 between linear measurements of dry skull and 3D printing model. These results indicated that 3-dimensional image model of thin slice thickness and stereolithographic RP model showed relative high accuracy.

  14. Comparison of Neck Screw and Conventional Fixation Techniques in Mandibular Condyle Fractures Using 3-Dimensional Finite Element Analysis.

    Science.gov (United States)

    Conci, Ricardo Augusto; Tomazi, Flavio Henrique Silveira; Noritomi, Pedro Yoshito; da Silva, Jorge Vicente Lopes; Fritscher, Guilherme Genehr; Heitz, Claiton

    2015-07-01

    To compare the mechanical stress on the mandibular condyle after the reduction and fixation of mandibular condylar fractures using the neck screw and 2 other conventional techniques according to 3-dimensional finite element analysis. A 3-dimensional finite element model of a mandible was created and graphically simulated on a computer screen. The model was fixed with 3 different techniques: a 2.0-mm plate with 4 screws, 2 plates (1 1.5-mm plate and 1 2.0-mm plate) with 4 screws, and a neck screw. Loads were applied that simulated muscular action, with restrictions of the upper movements of the mandible, differentiation of the cortical and medullary bone, and the virtual "folds" of the plates and screws so that they could adjust to the condylar surface. Afterward, the data were exported for graphic visualization of the results and quantitative analysis was performed. The 2-plate technique exhibited better stability in regard to displacement of fractures, deformity of the synthesis materials, and minimum and maximum tension values. The results with the neck screw were satisfactory and were similar to those found when a miniplate was used. Although the study shows that 2 isolated plates yielded better results compared with the other groups using other fixation systems and methods, the neck screw could be an option for condylar fracture reduction. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  15. A Systematic Review to Uncover a Universal Protocol for Accuracy Assessment of 3-Dimensional Virtually Planned Orthognathic Surgery.

    Science.gov (United States)

    Gaber, Ramy M; Shaheen, Eman; Falter, Bart; Araya, Sebastian; Politis, Constantinus; Swennen, Gwen R J; Jacobs, Reinhilde

    2017-11-01

    The aim of this study was to systematically review methods used for assessing the accuracy of 3-dimensional virtually planned orthognathic surgery in an attempt to reach an objective assessment protocol that could be universally used. A systematic review of the currently available literature, published until September 12, 2016, was conducted using PubMed as the primary search engine. We performed secondary searches using the Cochrane Database, clinical trial registries, Google Scholar, and Embase, as well as a bibliography search. Included articles were required to have stated clearly that 3-dimensional virtual planning was used and accuracy assessment performed, along with validation of the planning and/or assessment method. Descriptive statistics and quality assessment of included articles were performed. The initial search yielded 1,461 studies. Only 7 studies were included in our review. An important variability was found regarding methods used for 1) accuracy assessment of virtually planned orthognathic surgery or 2) validation of the tools used. Included studies were of moderate quality; reviewers' agreement regarding quality was calculated to be 0.5 using the Cohen κ test. On the basis of the findings of this review, it is evident that the literature lacks consensus regarding accuracy assessment. Hence, a protocol is suggested for accuracy assessment of virtually planned orthognathic surgery with the lowest margin of error. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  16. Real-time 3-dimensional fetal echocardiography with an instantaneous volume-rendered display: early description and pictorial essay.

    Science.gov (United States)

    Sklansky, Mark S; DeVore, Greggory R; Wong, Pierre C

    2004-02-01

    Random fetal motion, rapid fetal heart rates, and cumbersome processing algorithms have limited reconstructive approaches to 3-dimensional fetal cardiac imaging. Given the recent development of real-time, instantaneous volume-rendered sonographic displays of volume data, we sought to apply this technology to fetal cardiac imaging. We obtained 1 to 6 volume data sets on each of 30 fetal hearts referred for formal fetal echocardiography. Each volume data set was acquired over 2 to 8 seconds and stored on the system's hard drive. Rendered images were subsequently processed to optimize translucency, smoothing, and orientation and cropped to reveal "surgeon's eye views" of clinically relevant anatomic structures. Qualitative comparison was made with conventional fetal echocardiography for each subject. Volume-rendered displays identified all major abnormalities but failed to identify small ventricular septal defects in 2 patients. Important planes and views not visualized during the actual scans were generated with minimal processing of rendered image displays. Volume-rendered displays tended to have slightly inferior image quality compared with conventional 2-dimensional images. Real-time 3-dimensional echocardiography with instantaneous volume-rendered displays of the fetal heart represents a new approach to fetal cardiac imaging with tremendous clinical potential.

  17. Evaluation on activation activity of reactor in JRR-2 applied 3 dimensional model to neutron flux calculation

    International Nuclear Information System (INIS)

    Kishimoto, Katsumi; Arigane, Kenji

    2005-03-01

    Revaluation to activation activity of reactor evaluated at the notification of dismantling submitted in 1997 was carried out in JRR-2 where decommissioning was advanced now. In the revaluation, estimation accuracy on neutron streaming at various horizontal experimental tubes was improved by applying 3 dimensional model to neutron transport calculation that had been carried out by 2 dimensional model, and calculating with TORT. As the result, excessive overestimations on horizontal experimental tubes and biological shield that had greatly contributed to total activation activity in evaluation at the notification of dismantling was revised, sum of their activation activities in the revaluation decreased to 1/18 (case after 1 year from the permanent shutdown of reactor) of evaluation at the notification of dismantling, and the structural materials that had large activation activity were changed. By the above, it was shown that introducing 3 dimensional model was effective in evaluation on activation activity of the research reactor that had a lot of various experimental tubes. Total activation activity of reactor by the revaluation depended on control rods, thermal shield plates and horizontal experimental tubes, and the value after 1 year from the permanent shutdown of reactor was 1.9x10 14 Bq. (author)

  18. The precision and reliability evaluation of 3-dimensional printed damaged bone and prosthesis models by stereo lithography appearance.

    Science.gov (United States)

    Zou, Yun; Han, Qing; Weng, Xisheng; Zou, Yongwei; Yang, Yingying; Zhang, Kesong; Yang, Kerong; Xu, Xiaolin; Wang, Chenyu; Qin, Yanguo; Wang, Jincheng

    2018-02-01

    Recently, clinical application of 3D printed model was increasing. However, there was no systemic study for confirming the precision and reliability of 3D printed model. Some senior clinical doctors mistrusted its reliability in clinical application. The purpose of this study was to evaluate the precision and reliability of stereolithography appearance (SLA) 3D printed model.Some related parameters were selected to research the reliability of SLA 3D printed model. The computed tomography (CT) data of bone/prosthesis and model were collected and 3D reconstructed. Some anatomical parameters were measured and statistical analysis was performed; the intraclass correlation coefficient (ICC) was used to was used to evaluate the similarity between the model and real bone/prosthesis. the absolute difference (mm) and relative difference (%) were conducted. For prosthesis model, the 3-dimensional error was measured.There was no significant difference in the anatomical parameters except max height (MH) of long bone. All the ICCs were greater than 0.990. The maximum absolute and relative difference were 0.45 mm and 1.10%; The 3-dimensional error analysis showed that positive/minus distance were 0.273 mm/0.237 mm.The application of SLA 3D printed model in diagnosis and treatment process of complex orthopedic disease was reliable and precise.

  19. The effect of material composition of 3-dimensional graphene oxide and self-doped polyaniline nanocomposites on DNA analytical sensitivity.

    Science.gov (United States)

    Yang, Tao; Chen, Huaiyin; Yang, Ruirui; Wang, Xinxing; Nan, Fuxin; Jiao, Kui

    2015-09-01

    Until now, morphology effects of 2-dimensional or 3-dimensional graphene nanocomposites and the effect of material composition on the biosensors have been rarely reported. In this paper, the various nanocomposites based on graphene oxide and self-doped polyaniline nanofibres for studying the effect of morphology and material composition on DNA sensitivity were directly reported. The isolation and dispersion of graphene oxide were realized via intercalated self-doped polyaniline and ultrasonication, where the ultrasonication prompts the aggregates of graphite oxide to break up and self-doped polyaniline to diffuse into the stacked graphene oxide. Significant electrochemical enhancement has been observed due to the existence of self-doped polyaniline, which bridges the defects for electron transfer and, in the mean time, increases the basal spacing between graphene oxide sheets. Different morphologies can result in different ssDNA surface density, which can further influence the hybridization efficiency. Compared with 2-dimensional graphene oxide, self-doped polyaniline and other morphologies of nanocomposites, 3-dimensional graphene oxide-self-doped polyaniline nanowalls exhibited the highest surface density and hybridization efficiency. Furthermore, the fabricated biosensors presented the broad detection range with the low detection limit due to the specific surface area, a large number of electroactive species, and open accessible space supported by nanowalls. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Open and disconnected magnetic field lines within coronal mass ejections in the solar wind: Evidence for 3-dimensional reconnection

    Science.gov (United States)

    Gosling, J. T.; Birn, J.; McComas, D. J.; Phillips, J. L.; Hesse, M.

    1995-01-01

    Measurements of suprathermal electron fluxes in the solar wind at energies greater than approximatley 80 eV indicate that magnetic field lines within coronal mass ejections. CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, a preliminary reexamination of events previously identified as CMEs in the ISEE 3 data reveals that about 1/4 of all such events contain limited regions where field lines appear to be either connected to the Sun at only one end or connected to the outer heliosphere at both ends. Similar intervals of open and disconnected field lines within CMEs have been identified in the Ulysses observations. We believe that these anomalous field topologies within CMEs are most naturally interpreted in terms of 3-dimensional reconnection behind CMEs close to the Sun. Such reconnection also provides a natural explanation both for the flux rope topology of many CMEs as well as the coronal loops formed during long-duration solar soft X ray events. Although detailed numerical simulations of 3-dimensional reconnection behind CMEs are not yet available, such simulations have been done for the qualitatively similar geometry that prevails within the geomagnetic tail. Those simulations of plasmoid formation in the geomagnetic tail do produce the mixture of field topologies within plasmoids discussed here for CMEs.

  1. The design of two color interferometer system for the 3-dimensional analysis of plasma density evolution on KSTAR

    International Nuclear Information System (INIS)

    Lee, K.C.; Juhn, J.-W.; Nam, Y.U.; Kim, Y.S.; Wi, H.M.; Kim, S.W.; Ghim, Y.-C.

    2016-01-01

    Highlights: • A Two Color Interferometer (TCI) system is designed for 3-D measurement of KSTAR. • TCI is consists of 10.6 μm CO2 laser and 0.63 μm HeNe laser with tangential 5 channels. • 2 channels are installed in 2016 and 5 channel operation is planned in 2017. - Abstract: A 5-channel two color interferometer (TCI) system has been designed on KSTAR. TCI system is designed for tangential beam paths, which will combine with two existing interferometer systems of vertical and radial beam paths, so that it will provide 3-dimensional measurement of electron density evolution. TCI system uses wavelengths of 10.6 μm by a CO 2 laser and 0.633 μm by a HeNe laser. The system compensates the vibrational noise by using two colors and avoids refraction by short wavelengths. The main purpose of the TCI is to generate routine measurement of the line integrated plasma density for the real time density control on KSTAR. The 5-channels will provide profile data for the density. Time resolution of the system is expected to be 500 kHz or higher in order to measure 3-dimensional density fluctuations for ELMs and other MHD activities including TAE modes. The system is planned to be working on KSTAR 2016 campaign with 1–2 channels.

  2. Leiomyoma Cells in 3-Dimensional Cultures Demonstrate an Attenuated Response to Fasudil, a Rho-Kinase Inhibitor, When Compared to 2-Dimensional Cultures

    Science.gov (United States)

    Malik, Minnie; Britten, Joy; Segars, James

    2014-01-01

    Uterine leiomyomata are common benign tumors in women of reproductive age and demonstrate an attenuated response to mechanical signaling that involves Rho and integrins. To further characterize the impairment in Rho signaling, we studied the effect of Rho-kinase inhibitor, fasudil, on extracellular matrix production, in 2-dimensional (2D) and 3-dimensional (3D) cultures of leiomyoma and myometrial cells. Leiomyoma 2D cultures demonstrated a rapid decrease in gene transcripts and protein for fibronectin, procollagen 1A, and versican. In 3D cultures, fibronectin and procollagen 1A proteins demonstrated increased levels at lower concentrations of fasudil, followed by a concentration-dependent decrease. Versican protein increased up to 3-fold, whereas fibromodulin demonstrated a significant decrease of 1.92-fold. Myometrial 2D or 3D cultures demonstrated a decrease in all proteins after 72 hours of treatment. The 3D leiomyoma cultures demonstrated a significant increase in active RhoA, followed by a concentration-dependent decrease at higher concentrations. A concentration-dependent increase in phospho-extracellular regulated signal kinase and proapoptotic protein Bax was observed in 3D leiomyoma cultures. Fasudil relaxed the contraction of the 3D collagen gels caused by myometrium and leiomyoma cell growth. These findings indicate that the altered state of Rho signaling in leiomyoma was more clearly observed in 3D cultures. The results also suggest that fasudil may have clinical applicability for treatment of uterine leiomyoma. PMID:25084783

  3. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials

    Directory of Open Access Journals (Sweden)

    Hurt Robert H

    2011-05-01

    Full Text Available Abstract Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90 and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs. Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2 of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1 as well as profibrotic (M2 phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model

  4. Automatic detection of patient identification and positioning errors in radiation therapy treatment using 3-dimensional setup images.

    Science.gov (United States)

    Jani, Shyam S; Low, Daniel A; Lamb, James M

    2015-01-01

    To develop an automated system that detects patient identification and positioning errors between 3-dimensional computed tomography (CT) and kilovoltage CT planning images. Planning kilovoltage CT images were collected for head and neck (H&N), pelvis, and spine treatments with corresponding 3-dimensional cone beam CT and megavoltage CT setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. For positioning errors, setup and planning images were misaligned by 1 to 5 cm in the 6 anatomical directions for H&N and pelvis patients. Spinal misalignments were simulated by misaligning to adjacent vertebral bodies. Image pairs were assessed using commonly used image similarity metrics as well as custom-designed metrics. Linear discriminant analysis classification models were trained and tested on the imaging datasets, and misclassification error (MCE), sensitivity, and specificity parameters were estimated using 10-fold cross-validation. For patient identification, our workflow produced MCE estimates of 0.66%, 1.67%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivity and specificity ranged from 97.5% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 95.4% and 97.7%. MCEs for 1-cm H&N/pelvis misalignments were 1.3%/5.1% and 9.1%/8.6% for TomoTherapy and TrueBeam images, respectively. Two-centimeter MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. MCEs for vertebral body misalignments were 4.8% and 3.6% for TomoTherapy and TrueBeam images, respectively. Patient identification and gross misalignment errors can be robustly and automatically detected using 3-dimensional setup images of different energies across 3 commonly treated anatomical sites. Copyright © 2015 American Society for Radiation Oncology. Published by

  5. Correlation Between Echodefecography and 3-Dimensional Vaginal Ultrasonography in the Detection of Perineal Descent in Women With Constipation Symptoms.

    Science.gov (United States)

    Murad-Regadas, Sthela M; Pinheiro Regadas, Francisco Sergio; Rodrigues, Lusmar V; da Silva Vilarinho, Adjra; Buchen, Guilherme; Borges, Livia Olinda; Veras, Lara B; da Cruz, Mariana Murad

    2016-12-01

    Defecography is an established method of evaluating dynamic anorectal dysfunction, but conventional defecography does not allow for visualization of anatomic structures. The purpose of this study was to describe the use of dynamic 3-dimensional endovaginal ultrasonography for evaluating perineal descent in comparison with echodefecography (3-dimensional anorectal ultrasonography) and to study the relationship between perineal descent and symptoms and anatomic/functional abnormalities of the pelvic floor. This was a prospective study. The study was conducted at a large university tertiary care hospital. Consecutive female patients were eligible if they had pelvic floor dysfunction, obstructed defecation symptoms, and a score >6 on the Cleveland Clinic Florida Constipation Scale. Each patient underwent both echodefecography and dynamic 3-dimensional endovaginal ultrasonography to evaluate posterior pelvic floor dysfunction. Normal perineal descent was defined on echodefecography as puborectalis muscle displacement ≤2.5 cm; excessive perineal descent was defined as displacement >2.5 cm. Of 61 women, 29 (48%) had normal perineal descent; 32 (52%) had excessive perineal descent. Endovaginal ultrasonography identified 27 of the 29 patients in the normal group as having anorectal junction displacement ≤1 cm (mean = 0.6 cm; range, 0.1-1.0 cm) and a mean anorectal junction position of 0.6 cm (range, 0-2.3 cm) above the symphysis pubis during the Valsalva maneuver and correctly identified 30 of the 32 patients in the excessive perineal descent group. The κ statistic showed almost perfect agreement (κ = 0.86) between the 2 methods for categorization into the normal and excessive perineal descent groups. Perineal descent was not related to fecal or urinary incontinence or anatomic and functional factors (sphincter defects, pubovisceral muscle defects, levator hiatus area, grade II or III rectocele, intussusception, or anismus). The study did not include a

  6. A multiattribute utility analysis of sites nominated for characterization for the first radioactive-waste repository: A decision-aiding methodology

    International Nuclear Information System (INIS)

    1986-05-01

    In December 1984, the Department of Energy (DOE) published draft environmental assessments (EAs) to support the proposed nomination of five sites and the recommendation of three sites for characterization for the first radioactive-waste repository. A chapter common to all the draft EAs (Chapter 7) presented rankings of the five sites against the postclosure and the preclosure technical siting guidelines. To determine which three sites appeared most favorable for recommendation for characterization, three simple quantitative methods were used to aggregate the rankings assigned to each site for the various technical guidelines. In response to numerous comments on the methods, the DOE has undertaken a formal application of one of them (hereafter referred to as the decision-aiding methodology) for the purpose of obtaining a more rigorous evaluation of the nominated sites. The application of the revised methodology is described in this report. The method of analysis is known as multiattribute utility analysis; it is a tool for providing insights as to which sites are preferable and why. The decision-aiding methodology accounts for all the fundamental considerations specified by the siting guidelines and uses as source information the data and evaluations reported or referenced in the EAs. It explicitly addresses the uncertainties and value judgments that are part of all siting problems. Furthermore, all scientific and value judgments are made explicit for the reviewer. An independent review of the application of the decision-aiding methodology has been conducted by the Board on Radioactive Waste Management of the National Academy of Sciences; the comments of the Board are included as an appendix to this report

  7. A multiattribute utility analysis of sites nominated for characterization for the first radioactive-waste repository: A decision-aiding methodology

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In December 1984, the Department of Energy (DOE) published draft environmental assessments (EAs) to support the proposed nomination of five sites and the recommendation of three sites for characterization for the first radioactive-waste repository. A chapter common to all the draft EAs (Chapter 7) presented rankings of the five sites against the postclosure and the preclosure technical siting guidelines. To determine which three sites appeared most favorable for recommendation for characterization, three simple quantitative methods were used to aggregate the rankings assigned to each site for the various technical guidelines. In response to numerous comments on the methods, the DOE has undertaken a formal application of one of them (hereafter referred to as the decision-aiding methodology) for the purpose of obtaining a more rigorous evaluation of the nominated sites. The application of the revised methodology is described in this report. The method of analysis is known as multiattribute utility analysis; it is a tool for providing insights as to which sites are preferable and why. The decision-aiding methodology accounts for all the fundamental considerations specified by the siting guidelines and uses as source information the data and evaluations reported or referenced in the EAs. It explicitly addresses the uncertainties and value judgments that are part of all siting problems. Furthermore, all scientific and value judgments are made explicit for the reviewer. An independent review of the application of the decision-aiding methodology has been conducted by the Board on Radioactive Waste Management of the National Academy of Sciences; the comments of the Board are included as an appendix to this report.

  8. Facile Preparation of Carbon-Nanotube-based 3-Dimensional Transparent Conducting Networks for Flexible Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-04-12

    Here, we report the controllable fabrication of transparent conductive films (TCFs) for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS). How baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (> 69 %, PET = 90 %), and good stability when subjected to cyclic loading (> 1000 cycles, better than indium tin oxide film) during processing. Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5×5 sensing pixels).

  9. 3-Dimensional Physiologic Postural Range of the Mandible: A Computerized-Assisted Technique—A Case Study

    Directory of Open Access Journals (Sweden)

    Todd Shewman

    2013-01-01

    Full Text Available Previous studies demonstrated that while the mandible assumes its resting position in space, antagonistic muscles should assume minimal muscle activity within a spatial range. This zone of mandibular rest has been mapped using physiologic parameters of muscle activity and incisal spatial kinematics. This case study expands on previous research by monitoring incisal and posterior jaw position and includes lateral pterygoid muscle activity, thus allowing for determining the spatial range including additional relevant coordinates and muscle activity. Four positions were evaluated: a maximum physiologic open position, a maximum physiologic closed position, physiologic rest position, and maximum physiologic protrusion position. Within the physiologic zone of rest formed by these 4 positions, the vertical and anterior borders of the envelope of function may be documented for the incisal and posterior mandible in true 3-dimensional fashion to assist the clinician in determining a physiologic interocclusal freeway space and vertical dimension of occlusion. Advantages and limitations are discussed.

  10. Digital assessment of preliminary impression accuracy for edentulous jaws: Comparisons of 3-dimensional surfaces between study and working casts.

    Science.gov (United States)

    Matsuda, Takashi; Goto, Takaharu; Kurahashi, Kosuke; Kashiwabara, Toshiya; Watanabe, Megumi; Tomotake, Yoritoki; Nagao, Kan; Ichikawa, Tetsuo

    2016-07-01

    The aim of this study was to compare 3-dimensional surfaces of study and working casts for edentulous jaws and to evaluate the accuracy of preliminary impressions with a view to the future application of digital dentistry for edentulous jaws. Forty edentulous volunteers were serially recruited. Nine dentists took preliminary and final impressions in a routine clinical work-up. The study and working casts were digitized using a dental 3-dimensional scanner. The two surface images were superimposed through a least-square algorithm using imaging software and compared qualitatively. Furthermore, the surface of each jaw was divided into 6 sections, and the difference between the 2 images was quantitatively evaluated. Overall inspection showed that the difference around residual ridges was small and that around borders were large. The mean differences in the upper and lower jaws were 0.26mm and 0.45mm, respectively. The maximum values of the differences showed that the upward change mainly occurred in the anterior residual ridge, and the downward change mainly in the posterior border seal, and the labial and buccal vestibules, whereas every border of final impression was shortened in the lower jaw. The accuracy in all areas except the border, which forms the foundation, was estimated to be less than 0.25mm. Using digital technology, we here showed the overall and sectional accuracy of the preliminary impression for edentulous jaws. In our clinic, preliminary impressions have been made using an alginate material while ensuring that the requisite impression area was covered. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  11. Pareto utility

    NARCIS (Netherlands)

    Ikefuji, M.; Laeven, R.J.A.; Magnus, J.R.; Muris, C.H.M.

    2013-01-01

    In searching for an appropriate utility function in the expected utility framework, we formulate four properties that we want the utility function to satisfy. We conduct a search for such a function, and we identify Pareto utility as a function satisfying all four desired properties. Pareto utility

  12. Characterization of two subsurface H2-utilizing bacteria, Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov., and their ecological roles.

    Science.gov (United States)

    Krumholz, L R; Harris, S H; Tay, S T; Suflita, J M

    1999-06-01

    We examined the relative roles of acetogenic and sulfate-reducing bacteria in H2 consumption in a previously characterized subsurface sandstone ecosystem. Enrichment cultures originally inoculated with ground sandstone material obtained from a Cretaceous formation in central New Mexico were grown with hydrogen in a mineral medium supplemented with 0.02% yeast extract. Sulfate reduction and acetogenesis occurred in these cultures, and the two most abundant organisms carrying out the reactions were isolated. Based on 16S rRNA analysis data and on substrate utilization patterns, these organisms were named Desulfomicrobium hypogeium sp. nov. and Acetobacterium psammolithicum sp. nov. The steady-state H2 concentrations measured in sandstone-sediment slurries (threshold concentration, 5 nM), in pure cultures of sulfate reducers (threshold concentration, 2 nM), and in pure cultures of acetogens (threshold concentrations 195 to 414 nM) suggest that sulfate reduction is the dominant terminal electron-accepting process in the ecosystem examined. In an experiment in which direct competition for H2 between D. hypogeium and A. psammolithicum was examined, sulfate reduction was the dominant process.

  13. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs.

    Science.gov (United States)

    Wang, Ruwei; Liu, Guijian; Zhang, Jiamei

    2015-12-15

    Coal-fired power plants (CFPPs) represent important source of atmospheric PAHs, however, their emission characterization are still largely unknown. In this work, the concentration, distribution and gas-particle partitioning of PM10- and gas-phase PAHs in flue gas emitted from different coal-fired utility boilers were investigated. Moreover, concentration and distribution in airborne PAHs from different functional areas of power plants were studied. People's inhalatory and dermal exposures to airborne PAHs at these sites were estimated and their resultant lung cancer and skin cancer risks were assessed. Results indicated that the boiler capacity and operation conditions have significant effect on PAH concentrations in both PM10 and gas phases due to the variation of combustion efficiency, whereas they take neglected effect on PAH distributions. The wet flue gas desulphurization (WFGD) takes significant effect on the scavenging of PAH in both PM10 and gas phases, higher scavenging efficiency were found for less volatile PAHs. PAH partitioning is dominated by absorption into organic matter and accompanied by adsorption onto PM10 surface. In addition, different partitioning mechanism is observed for individual PAHs, which is assumed arising from their chemical affinity and vapor pressure. Risk assessment indicates that both inhalation and dermal contact greatly contribute to the cancer risk for CFPP workers and nearby residents. People working in workshop are exposed to greater inhalation and dermal exposure risk than people living in nearby vicinity and working office. Copyright © 2015. Published by Elsevier B.V.

  14. Integrating Characterization of Smallholders’ Feeding Practices with On-Farm Feeding Trials to Improve Utilization of Crop Residues on Smallholder Farms

    Directory of Open Access Journals (Sweden)

    B. O. Kashongwe

    2017-01-01

    Full Text Available This study characterized wheat straw feeding practices in smallholder farms using cross sectional survey and the results informed the design of an experiment to improve the nutritive value of wheat straw with urea and yeast culture treatment. Three diets tested in 49 days’ feeding trial were farmers’ rainy season feeding practice (FP, addition of urea to wheat straw at the time of feeding (USWS, and 14 days’ incubation of straw with urea (UTWS. Yeast culture (15 g/day was mixed with commercial dairy meal at the point of feeding. Survey data identified farmers’ strategies in utilizing crop residues of which most important were improving storage facility (77.6%, adding molasses (54.5%, and buying a shredding machine (45.1%. On-farm feeding trial showed that intake was higher for UTWS than (p<0.05 for USWS while milk yield was higher with FP than (p<0.005 with UTWS or USWS but not different (p≥0.05 between UTWS and USWS. Results imply that farmers feeding practices of crop residues may be improved for dairy cows’ feeding and therefore UTWS could be used to support maintenance and milk production during dry season. Improving farmers feed storage facilities and training on incubation of wheat straw for dairy cattle feeding were recommended.

  15. Comparison of Toxicity Between Intensity-Modulated Radiotherapy and 3-Dimensional Conformal Radiotherapy for Locally Advanced Non-small-cell Lung Cancer.

    Science.gov (United States)

    Ling, Diane C; Hess, Clayton B; Chen, Allen M; Daly, Megan E

    2016-01-01

    The role of intensity-modulated radiotherapy (IMRT) in reducing treatment-related toxicity for locally advanced non-small-cell lung cancer (NSCLC) remains incompletely defined. We compared acute toxicity and oncologic outcomes in a large cohort of patients treated with IMRT or 3-dimensional conformal radiotherapy (3-DCRT), with or without elective nodal irradiation (ENI). A single-institution retrospective review was performed evaluating 145 consecutive patients with histologically confirmed stage III NSCLC treated with definitive chemoradiotherapy. Sixty-five (44.8%) were treated with 3-DCRT using ENI, 43 (30.0%) with 3-DCRT using involved-field radiotherapy (IFRT), and 37 (25.5%) with IMRT using IFRT. All patients received concurrent chemotherapy. Comparison of acute toxicities by treatment technique (IMRT vs. 3-DCRT) and extent of nodal irradiation (3-DCRT-IFRT vs. 3-DCRT-ENI) was performed for grade 2 or higher esophagitis or pneumonitis, number of acute hospitalizations, incidence of opioid requirement, percutaneous endoscopic gastrostomy utilization, and percentage weight loss during treatment. Local control and overall survival were analyzed by the Kaplan-Meier method. We identified no significant differences in any measures of acute toxicity by treatment technique or extent of nodal irradiation. There was a trend toward lower rates of grade 2 or higher pneumonitis among IMRT patients compared to 3-DCRT patients (5.4% vs. 23.0%; P = .065). Local control and overall survival were similar between cohorts. Acute and subacute toxicities were similar for patients treated with IMRT and with 3-DCRT with or without ENI, with a nonsignificant trend toward a reduction in pneumonitis with IMRT. Larger studies are needed to better define which patients will benefit from IMRT. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The Evaluation of 3-Dimensional Polymerization Changes of a Denture Resin Utilizing Injection Molding with Water Bath Polymerization and Microwave Polymerization

    Science.gov (United States)

    2016-06-01

    fiducial markers …..………………10 Figure 5: Point probe positions to find the mechanical center of the spheres ………………...10 Figure 6: FARO Arm...Methacrylate ADA …………………………………… American Dental Association ANOVA …………………………………… Analysis of Variance MANOVA …………………………………… Multivariate Analysis of...liquid system, as defined and directed by American Dental Association ( ADA ) specification 12.[2, 3] The powder, commonly known as the polymer

  17. Quantitative 3-dimensional imaging of auxin and cytokinin levels in transgenic soybean and medicago truncatula roots via two-photon induced fluorescence imaging

    Science.gov (United States)

    Fisher, Jon; Gaillard, Paul; Nurmalasari, Ni Putu Dewi; Fellbaum, Carl; Subramaniam, Sen; Smith, Steve

    2018-02-01

    Industrial nitrogen fertilizers account for nearly 50% of the fossil fuel costs in modern agriculture and contribute to soil and water pollution. Therefore, significant interest exists in understanding and characterizing the efficiency of nitrogen fixation, and the biochemical signaling pathways which orchestrate the plant-microbial symbiosis through which plants fix nitrogen. Legume plant species exhibit a particularly efficient nitrogen uptake mechanism, using root nodules which house nitrogen-fixing rhizobial bacteria. While nodule development has been widely studied, there remain significant gaps in understanding the regulatory hormones' role in plant development. In this work, we produce 3-dimensional maps of auxin (AX) and cytokinin (CK) hormone concentrations within model plant root tips and nodules with respect to root architecture and cell type. Soybean and Medicago plants were transfected with a two-color fluorescent vector with AXsensitive green fluorescent protein (GFP) and CK-sensitive TdTomato (TdT). 3D images of soybean root nodules were captured using two-photon induced fluorescence microscopy. The resulting images were computationally analyzed using the localization code first developed by Weeks and later adapted by Kilfoil, and analyzed in the context of the root architecture. Statistical analysis of the resulting 3D hormone level maps reproduce-well the known roles of AX and CK in developing plant roots, and are the first quantitative description of these regulatory hormones tied to specific plant architecture. The analytical methods used, and the spatial distribution of these key regulatory hormones in plant roots, nodule primordia and root nodules, and their statistical interpretation are presented.

  18. Validation of the Gate simulation platform in single photon emission computed tomography and application to the development of a complete 3-dimensional reconstruction algorithm

    International Nuclear Information System (INIS)

    Lazaro, D.

    2003-10-01

    Monte Carlo simulations are currently considered in nuclear medical imaging as a powerful tool to design and optimize detection systems, and also to assess reconstruction algorithms and correction methods for degrading physical effects. Among the many simulators available, none of them is considered as a standard in nuclear medical imaging: this fact has motivated the development of a new generic Monte Carlo simulation platform (GATE), based on GEANT4 and dedicated to SPECT/PET (single photo emission computed tomography / positron emission tomography) applications. We participated during this thesis to the development of the GATE platform within an international collaboration. GATE was validated in SPECT by modeling two gamma cameras characterized by a different geometry, one dedicated to small animal imaging and the other used in a clinical context (Philips AXIS), and by comparing the results obtained with GATE simulations with experimental data. The simulation results reproduce accurately the measured performances of both gamma cameras. The GATE platform was then used to develop a new 3-dimensional reconstruction method: F3DMC (fully 3-dimension Monte-Carlo) which consists in computing with Monte Carlo simulation the transition matrix used in an iterative reconstruction algorithm (in this case, ML-EM), including within the transition matrix the main physical effects degrading the image formation process. The results obtained with the F3DMC method were compared to the results obtained with three other more conventional methods (FBP, MLEM, MLEMC) for different phantoms. The results of this study show that F3DMC allows to improve the reconstruction efficiency, the spatial resolution and the signal to noise ratio with a satisfactory quantification of the images. These results should be confirmed by performing clinical experiments and open the door to a unified reconstruction method, which could be applied in SPECT but also in PET. (author)

  19. 3 dimensional distributions of NO2, CHOCHO, and HCHO measured by the University of Colorado 2D-MAX-DOAS during MAD-CAT

    Science.gov (United States)

    Ortega, Ivan; Sinreich, Roman; Volkamer, Rainer

    2014-05-01

    We present results of 2 dimensional Multi Axis-DOAS (2D-MAX-DOAS) measurements to infer 3-dimensional measurements of trace gases by characterizing boundary layer vertical profiles and near surface azimuth horizontal distribution of NO2 (14 angles covering 360°). We combine the established optimal estimation inversion with a new parameterization approach; the first method to derive NO2 tropospheric vertical profiles and boundary layer height and the second one to retrieve the azimuth horizontal distribution of near surface NO2 mixing ratios, both at multiple wavelengths (350 nm, 450 nm, and 560 nm). This was conducted for three cloud-free days in the framework of the intensive Multi Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany 2013. By retrieving NO2 at multiple wavelengths range-resolved distributions of NO2 are derived using an 'Onion-peeling' approach, i.e., exploiting the fact that the optical path lengths at different wavelengths probe different horizontal air masses. We also measure glyoxal (CHOCHO) and formaldehyde (HCHO) distributions, and present to our knowledge the first 3-dimesional trace-gas distribution measurements of CHOCHO by a ground-based instrument. We expand the 2D-MAX-DOAS capabilities to calculate azimuth ratios of HCHO-to-NO2 (RFN) and CHOCHO-to-NO2 (RGN) to pinpoint volatile organic compound (VOC) oxidation chemistry and CHOCHO-to-HCHO (RGF) ratios as an indicator of biogenic and/or anthropogenic VOC emissions. The results of RFN correlate well with RGN and we identify azimuth variations that indicate gradients in the VOC/NOx chemistry that leads to O3 and secondary aerosol production. While there is a clear diurnal pattern in the RFN and RGN, no such variations are observed in the RGF, which shows rather constant values below 0.04 throughout the day, consistent with previous measurements, and indicative of urban air masses.

  20. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs

    International Nuclear Information System (INIS)

    Wang, Ruwei; Liu, Guijian; Zhang, Jiamei

    2015-01-01

    Coal-fired power plants (CFPPs) represent important source of atmospheric PAHs, however, their emission characterization are still largely unknown. In this work, the concentration, distribution and gas-particle partitioning of PM_1_0- and gas-phase PAHs in flue gas emitted from different coal-fired utility boilers were investigated. Moreover, concentration and distribution in airborne PAHs from different functional areas of power plants were studied. People's inhalatory and dermal exposures to airborne PAHs at these sites were estimated and their resultant lung cancer and skin cancer risks were assessed. Results indicated that the boiler capacity and operation conditions have significant effect on PAH concentrations in both PM_1_0 and gas phases due to the variation of combustion efficiency, whereas they take neglected effect on PAH distributions. The wet flue gas desulphurization (WFGD) takes significant effect on the scavenging of PAH in both PM_1_0 and gas phases, higher scavenging efficiency were found for less volatile PAHs. PAH partitioning is dominated by absorption into organic matter and accompanied by adsorption onto PM_1_0 surface. In addition, different partitioning mechanism is observed for individual PAHs, which is assumed arising from their chemical affinity and vapor pressure. Risk assessment indicates that both inhalation and dermal contact greatly contribute to the cancer risk for CFPP workers and nearby residents. People working in workshop are exposed to greater inhalation and dermal exposure risk than people living in nearby vicinity and working office. - Highlights: • PAH distribution in PM_1_0 and gas phases primarily depend on the vapor pressure. • Combustion conditions and WFGD show typical effects on PAH level and profile. • PAH partitioning is dominated by absorption and also accompanied by adsorption. • Individual PAHs show different partitioning mechanisms in PM_1_0- and gas-phases. • People in workshop suffer greater cancer

  1. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruwei [CAS Key Laboratory of Crust-Mantle and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui (China); State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi' an 710075, Shanxi (China); Liu, Guijian, E-mail: lgj@ustc.edu.cn [CAS Key Laboratory of Crust-Mantle and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui (China); State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi' an 710075, Shanxi (China); Zhang, Jiamei [CAS Key Laboratory of Crust-Mantle and the Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui (China)

    2015-12-15

    Coal-fired power plants (CFPPs) represent important source of atmospheric PAHs, however, their emission characterization are still largely unknown. In this work, the concentration, distribution and gas-particle partitioning of PM{sub 10}- and gas-phase PAHs in flue gas emitted from different coal-fired utility boilers were investigated. Moreover, concentration and distribution in airborne PAHs from different functional areas of power plants were studied. People's inhalatory and dermal exposures to airborne PAHs at these sites were estimated and their resultant lung cancer and skin cancer risks were assessed. Results indicated that the boiler capacity and operation conditions have significant effect on PAH concentrations in both PM{sub 10} and gas phases due to the variation of combustion efficiency, whereas they take neglected effect on PAH distributions. The wet flue gas desulphurization (WFGD) takes significant effect on the scavenging of PAH in both PM{sub 10} and gas phases, higher scavenging efficiency were found for less volatile PAHs. PAH partitioning is dominated by absorption into organic matter and accompanied by adsorption onto PM{sub 10} surface. In addition, different partitioning mechanism is observed for individual PAHs, which is assumed arising from their chemical affinity and vapor pressure. Risk assessment indicates that both inhalation and dermal contact greatly contribute to the cancer risk for CFPP workers and nearby residents. People working in workshop are exposed to greater inhalation and dermal exposure risk than people living in nearby vicinity and working office. - Highlights: • PAH distribution in PM{sub 10} and gas phases primarily depend on the vapor pressure. • Combustion conditions and WFGD show typical effects on PAH level and profile. • PAH partitioning is dominated by absorption and also accompanied by adsorption. • Individual PAHs show different partitioning mechanisms in PM{sub 10}- and gas-phases. • People in

  2. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes.

    Science.gov (United States)

    Kyzar, Evan J; Pham, Mimi; Roth, Andrew; Cachat, Jonathan; Green, Jeremy; Gaikwad, Siddharth; Kalueff, Allan V

    2012-12-01

    Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Cognitive functions and stereopsis in patients with Parkinson's disease and Alzheimer's disease using 3-dimensional television: a case controlled trial.

    Directory of Open Access Journals (Sweden)

    Chan-Nyoung Lee

    Full Text Available Stereopsis or depth perception is an awareness of the distances of objects from the observer, and binocular disparity is a necessary component of recognizing objects through stereopsis. In the past studies, patients with neurodegenerative disease (Alzheimer dementia, AD; Parkinson's disease IPD have problems of stereopsis but they did not have actual stimulation of stereopsis. Therefore in this study, we used a 3-dimensional (3D movie on 3D television (TV for actual stereopsis stimulation. We propose research through analyzing differences between the three groups (AD, IPD, and Controls, and identified relations between the results from the Titmus Stereo Fly Test, and the 3D TV test. The study also looked into factors that affect the 3D TV test. Before allowing the patients to watch TV, we examined Titmus stereo Fly Test and cognitive test. We used the 3D version of a movie, of 17 minutes 1 second duration, and carried out a questionnaire about stereopsis. The scores of the stereopsis questionnaire were decreased in AD patients, compared with in IPD and controls, although they did not have any difference of Titmus Stereo Fly Test scores. In IPD patients, cognitive function (Montreal cognitive assessment, MoCA scores were correlated with the scores of the stereopsis questionnaire. We could conclude that Titmus fly test could not distinguish between the three groups and cognitive dysfunction contributes to actual stereopsis perception in IPD patients. Therefore the 3D TV test of AD and IPD patients was more effective than Titmus fly test.

  4. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study.

    Science.gov (United States)

    Mansuri, Samir; Abdulkhayum, Abdul Mujeeb; Gazal, Giath; Hussain, Mohammed Abid Zahir

    2013-12-01

    Surgical treatment of fracture mandible using an internal fixation has changed in the last decades to achieve the required rigidity, stability and immediate restoration of function. The aim of the study was to do a Prospective study of 10 patients to determine the efficacy of rectangular grid compression miniplates in mandibular fractures. This study was carried out using 2.0 rectangular grid compression miniplates and 8 mm multidirectional screws as a rigid internal fixation in 10 patients without post operative intermaxillary fixation (IMF). Follow up was done for period of 6 months. All fractures were healed with an absolute stability in post operative period. None of the patient complained of post operative difficulty in occlusion. Within the limits of this study, it can be concluded that rectangular grid compression miniplates was rigid, reliable and thus can be recommended for the treatment of mandibular angle fractures. How to cite this article: Mansuri S, Abdulkhayum AM, Gazal G, Hussain MA. Treatment of mandibular angle fracture with a 2mm, 3 dimensional rectangular grid compression miniplates: A prospective clinical study. J Int Oral Health 2013;5(6):93-100 .

  5. The application of 3-dimensional printing for preoperative planning in oral and maxillofacial surgery in dogs and cats.

    Science.gov (United States)

    Winer, Jenna N; Verstraete, Frank J M; Cissell, Derek D; Lucero, Steven; Athanasiou, Kyriacos A; Arzi, Boaz

    2017-10-01

    To describe the application of 3-dimensional (3D) printing in advanced oral and maxillofacial surgery (OMFS) and to discuss the benefits of this modality in surgical planning, student and resident training, and client education. Retrospective case series. Client-owned dogs (n = 28) and cats (n = 4) with 3D printing models of the skulls. The medical records of 32 cases with 3D printing prior to major OMFS were reviewed. Indications for 3D printing included preoperative planning for mandibular reconstruction after mandibulectomy (n = 12 dogs) or defect nonunion fracture (n = 6 dogs, 2 cats), mapping of ostectomy location for temporomandibular joint ankylosis or pseudoankylosis (n = 4 dogs), assessment of palatal defects (n = 2 dogs, 1 cat), improved understanding of complex anatomy in cases of neoplasia located in challenging locations (n = 2 dogs, 1 cat), and in cases of altered anatomy secondary to trauma (n = 2 dogs). In the authors' experience, 3D printed models serve as excellent tools for OMFS planning and resident training. Furthermore, 3D printed models are a valuable resource to improve clients' understanding of the pet's disorder and the recommended treatment. Three-dimensional printed models should be considered viable tools for surgical planning, resident training, and client education in candidates for complex OMFS. © 2017 The American College of Veterinary Surgeons.

  6. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2016-01-28

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  7. Human breast cancer histoid: an in vitro 3-dimensional co-culture model that mimics breast cancer tissue.

    Science.gov (United States)

    Kaur, Pavinder; Ward, Brenda; Saha, Baisakhi; Young, Lillian; Groshen, Susan; Techy, Geza; Lu, Yani; Atkinson, Roscoe; Taylor, Clive R; Ingram, Marylou; Imam, S Ashraf

    2011-12-01

    Progress in our understanding of heterotypic cellular interaction in the tumor microenvironment, which is recognized to play major roles in cancer progression, has been hampered due to unavailability of an appropriate in vitro co-culture model. The aim of this study was to generate an in vitro 3-dimensional human breast cancer model, which consists of cancer cells and fibroblasts. Breast cancer cells (UACC-893) and fibroblasts at various densities were co-cultured in a rotating suspension culture system to establish co-culture parameters. Subsequently, UACC-893, BT.20, or MDA.MB.453 were co-cultured with fibroblasts for 9 days. Co-cultures resulted in the generation of breast cancer histoid (BCH) with cancer cells showing the invasion of fibroblast spheroids, which were visualized by immunohistochemical (IHC) staining of sections (4 µm thick) of BCH. A reproducible quantitative expression of C-erbB.2 was detected in UACC-893 cancer cells in BCH sections by IHC staining and the Automated Cellular Imaging System. BCH sections also consistently exhibited qualitative expression of pancytokeratins, p53, Ki-67, or E-cadherin in cancer cells and that of vimentin or GSTPi in fibroblasts, fibronectin in the basement membrane and collagen IV in the extracellular matrix. The expression of the protein analytes and cellular architecture of BCH were markedly similar to those of breast cancer tissue.

  8. Implant-Abutment Contact Surfaces and Microgap Measurements of Different Implant Connections Under 3-Dimensional X-Ray Microtomography.

    Science.gov (United States)

    Scarano, Antonio; Valbonetti, Luca; Degidi, Marco; Pecci, Raffaella; Piattelli, Adriano; de Oliveira, P S; Perrotti, Vittoria

    2016-10-01

    The presence of a microgap between implant and abutment could produce a bacterial reservoir which could interfere with the long-term health of the periimplant tissues. The aim of this article was to evaluate, by x-ray 3-dimensional microtomography, implant-abutment contact surfaces and microgaps at the implant-abutment interface in different types of implant-abutment connections. A total of 40 implants were used in this in vitro study. Ten implants presented a screw-retained internal hexagon abutment (group I), 10 had a Morse Cone taper internal connection (group II), 10 another type of Morse Cone taper internal connection (group III), and 10 had a screwed trilobed connection (group IV). In both types of Morse Cone internal connections, there was no detectable separation at the implant-abutment in the area of the conical connection, and there was an absolute congruity without any microgaps between abutment and implant. No line was visible separating the implant and the abutment. On the contrary, in the screwed abutment implants, numerous gaps and voids were present. The results of this study support the hypothesis that different types of implant-abutment joints are responsible for the observed differences in bacterial penetration.

  9. Echocardiographic anatomy of the mitral valve: a critical appraisal of 2-dimensional imaging protocols with a 3-dimensional perspective.

    Science.gov (United States)

    Mahmood, Feroze; Hess, Philip E; Matyal, Robina; Mackensen, G Burkhard; Wang, Angela; Qazi, Aisha; Panzica, Peter J; Lerner, Adam B; Maslow, Andrew

    2012-10-01

    To highlight the limitations of traditional 2-dimensional (2D) echocardiographic mitral valve (MV) examination methodologies, which do not account for patient-specific transesophageal echocardiographic (TEE) probe adjustments made during an actual clinical perioperative TEE examination. Institutional quality-improvement project. Tertiary care hospital. Attending anesthesiologists certified by the National Board of Echocardiography. Using the technique of multiplanar reformatting with 3-dimensional (3D) data, ambiguous 2D images of the MV were generated, which resembled standard midesophageal 2D views. Based on the 3D image, the MV scallops visualized in each 2D image were recognized exactly by the position of the scan plane. Twenty-three such 2D MV images were created in a presentation from the 3D datasets. Anesthesia staff members (n = 13) were invited to view the presentation based on the 2D images only and asked to identify the MV scallops. Their responses were scored as correct or incorrect based on the 3D image. The overall accuracy was 30.4% in identifying the MV scallops. The transcommissural view was identified correctly >90% of the time. The accuracy of the identification of A1, A3, P1, and P3 scallops was <50%. The accuracy of the identification of A2P2 scallops was ≥50%. In the absence of information on TEE probe adjustments performed to acquire a specific MV image, it is possible to misidentify the scallops. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Evaluation of the Zone of Influence and Entrainment Impacts for an Intake Using a 3-Dimensional Hydrodynamic and Transport Model

    Directory of Open Access Journals (Sweden)

    Shwet Prakash

    2014-04-01

    Full Text Available Ballast water systems in large LNG carriers are essential for proper operations and stability. Water withdrawn from the surrounding environment to supply to the ballast can pose entrainment and impingement risk to the resident fish population. Quantification of these risks and the net effect on population is usually quite challenging and complex. Various methods over the last several decades have been developed and are available in the literature for quantification of entrainment of mobile and immobile lifestages of resident fish. In this study, a detailed 3-dimensional model was developed to estimate the entrainment of ichthyoplankton (fish eggs and larvae and fish from an estuarine environment during the repeated short-term operation of a ballast water intake for an LNG carrier. It was also used to develop a zone of influence to determine the ability of mobile life stages to avoid impingement. The ichthyoplankton model is an Equivalent Adult Model (EAM and assesses the number of breeding adults lost to the population. The EAM incorporates four different methods developed between 1978 and 2005. The study also considers the uncertainty in estimates for the lifestage data and, as such, performs sensitivity analyses to evaluate the confidence level achievable in such quantitative estimates for entrainment.

  11. Superconductivity and thermal property of MgB2/aluminum matrix composite materials fabricated by 3-dimensional penetration casting method

    International Nuclear Information System (INIS)

    Matsuda, Kenji; Saeki, Tomoaki; Nishimura, Katsuhiko; Ikeno, Susumu; Mori, Katsunori; Yabumoto, Yukinobu

    2006-01-01

    Superconductive MgB 2 /Al composite material with low and high volume fractions of particles were fabricated by our special pre-packing technique and 3-dimensional penetration casting method. The composite material showed homogeneous distribution of MgB 2 particles in the Al-matrix with neither any aggregation of particles nor defects such as cracks or cavities. The critical temperature of superconducting transition (T C ) was determined by electrical resistivity and magnetization to be about 37-39 K. Specific heat measurements further supported these T C findings. The Meissner effect was also verified in the liquid He, in which a piece of the composite floated above a permanent magnet. The thermal conductivity of the MgB 2 /Al composite material was about 25 W/K·m at 30K, a value much higher than those found for NbTi or Nb 3 Sn superconducting wires normally used in practice, which are 0.5 and 0.2 W/K·m at 10 K, respectively. A billet of the superconducting material was successfully hot-extruded, forming a rod. The same as the billet sample, the rod showed an onset T C of electrical resistivity of 39 K. (author)

  12. Computerized tomography with 3-dimensional reconstruction for the evaluation of renal size and arterial anatomy in the living kidney donor.

    Science.gov (United States)

    Janoff, Daniel M; Davol, Patrick; Hazzard, James; Lemmers, Michael J; Paduch, Darius A; Barry, John M

    2004-01-01

    Computerized tomography (CT) with 3-dimensional (3-D) reconstruction has gained acceptance as an imaging study to evaluate living renal donors. We report our experience with this technique in 199 consecutive patients to validate its predictions of arterial anatomy and kidney volumes. Between January 1997 and March 2002, 199 living donor nephrectomies were performed at our institution using an open technique. During the operation arterial anatomy was recorded as well as kidney weight in 98 patients and displacement volume in 27. Each donor had been evaluated preoperatively by CT angiography with 3-D reconstruction. Arterial anatomy described by a staff radiologist was compared with intraoperative findings. CT estimated volumes were reported. Linear correlation graphs were generated to assess the reliability of CT volume predictions. The accuracy of CT angiography for predicting arterial anatomy was 90.5%. However, as the number of renal arteries increased, predictive accuracy decreased. The ability of CT to predict multiple arteries remained high with a positive predictive value of 95.2%. Calculated CT volume and kidney weight significantly correlated (0.654). However, the coefficient of variation index (how much average CT volume differed from measured intraoperative volume) was 17.8%. CT angiography with 3-D reconstruction accurately predicts arterial vasculature in more than 90% of patients and it can be used to compare renal volumes. However, accuracy decreases with multiple renal arteries and volume comparisons may be inaccurate when the difference in kidney volumes is within 17.8%.

  13. Measurement of Trabecular Bone Parameters in Porcine Vertebral Bodies Using Multidetector CT: Evaluation of Reproducibility of 3-Dimensional CT Histomorphometry

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hwan; Goo, Jin Mo [Dept. of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); Moon Kyung Chul [Dept. of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul (Korea, Republic of); An, Sang Bu [Dept. of radiology, National Cancer Center, Goyang (Korea, Republic of); Kim, Kwang Gi [Dept. of Biomedical Engineering, Division of Basic and Applied Sciences, National Cancer Center, Goyang (Korea, Republic of)

    2011-05-15

    To evaluate the reproducibility of 3-dimensional histomorphometry for the microarchitecture analysis of trabecular bone parameters using multidetector computed tomography (MDCT). Thirty-six specimens from porcine vertebral bodies were imaged five times with a 64- detector row MDCT system using the same scan protocols. Locations of the specimens were nearly identical through the scans. Three-dimensional structural parameters of trabecular bone were derived from the five data sets using image analyzing software. The features measured by the analysis programs were trabecular bone volume, trabecular bone volume/tissue volume, trabecular thickness, trabecular separation, trabecular number, trabecular bone pattern factor, structural model index. The structural trabecular parameters showed excellent reproducibility through repeated scanning. Intraclass correlation coefficients of all seven structural parameters were in the range of 0.998 to 1.000. Coefficients of variation of the six structural parameters, excluding structural model index, were not over 1.6%. The measurement of the trabecular structural parameters using multidetector CT and three-dimensional histomophometry analysis program was validated and showed excellent reproducibility. This method could be used as a noninvasive and easily available test in a clinical setting.

  14. 3-dimensional free standing micro-structures by proton beam writing of Su 8-silver nanoParticle polymeric composite

    Science.gov (United States)

    Igbenehi, H.; Jiguet, S.

    2012-09-01

    Proton beam lithography a maskless direct-write lithographic technique (well suited for producing 3-Dimensional microstructures in a range of resist and semiconductor materials) is demonstrated as an effective tool in the creation of electrically conductive freestanding micro-structures in an Su 8 + Nano Silver polymer composite. The structures produced show non-ohmic conductivity and fit the percolation theory conduction model of tunneling of separated nanoparticles. Measurements show threshold switching and a change in conductivity of at least 4 orders of magnitude. The predictable range of protons in materials at a given energy is exploited in the creation of high aspect ratio, free standing micro-structures, made from a commercially available SU8 Silver nano-composite (GMC3060 form Gersteltec Inc. a negative tone photo-epoxy with added metallic nano-particles(Silver)) to create films with enhanced electrical properties when exposed and cured. Nano-composite films are directly written on with a finely focused MeV accelerated Proton particle beam. The energy loss of the incident proton beams in the target polymer nano- composite film is concentrated at the end of its range, where damage occurs; changing the chemistry of the nano-composite film via an acid initiated polymerization - creating conduction paths. Changing the energy of the incident beams provide exposed regions with different penetration and damage depth - exploited in the demonstrated cantilever microstructure.

  15. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    Science.gov (United States)

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  16. Experimental Validation of Plastic Mandible Models Produced by a "Low-Cost" 3-Dimensional Fused Deposition Modeling Printer.

    Science.gov (United States)

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-03-22

    The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field.

  17. The Accuracy of Prostate Cancer Localization Diagnosed on Transrectal Ultrasound-Guided Biopsy Compared to 3-Dimensional Transperineal Approach

    Directory of Open Access Journals (Sweden)

    Kevin Krughoff

    2013-01-01

    Full Text Available Background. Prostate cancer is often understaged following 12-core transrectal ultrasound- (TRUS- guided biopsies. Our goal is to understand where cancers are typically missed by this method. Methods. Transperineal 3-dimensional mapping biopsy (3DMB provides a more accurate depiction of disease status than transrectal ultrasound- (TRUS- guided biopsy. We compared 3DMB findings in men with prior TRUS-guided biopsies to determine grade and location of missed cancer. Results were evaluated for 161 men with low-risk organ confined prostate cancer. Results. The number of cancer-positive biopsy zones per patient with TRUS was 1.38 ± 1.21 compared to 3.33 ± 4.06 with 3DMB, with most newly discovered cancers originating from the middle lobe and apex. Approximately half of all newly discovered cancerous zones resulted from anterior 3DMB sampling. Gleason upgrade was recognized in 56 patients using 3DMB. When both biopsy methods found positive cores in a given zone, Gleason upgrades occurred most frequently in the middle left and right zones. TRUS cancer-positive zones not confirmed by 3DMB were most often the basal zones. Conclusion. Most cancer upgrades and cancers missed from TRUS biopsy originated in the middle left zone of the prostate, specifically in anterior regions. Anterior sampling may lead to more accurate diagnosis and appropriate followup.

  18. The fastest field sport in the world: A case report on 3-dimensional printed hurling gloves to help prevent injury.

    Science.gov (United States)

    Harte, Daniel; Paterson, Abby

    2017-10-28

    Case series. Hand injuries are the most common injury observed in hurling although compliance in wearing protective gloves is reportedly low. To devise a glove that offers comfort, protection and freedom of movement, using the bespoke capabilities of 3-dimensional (3D) printing. Each player's "catching" hand was imaged using a 3D scanner to produce a bespoke glove that they later trialed and provided feedback. Nine players provided feedback. On average, the players favorably rated the glove for the protection offered. The average response on comfort was poor, and no players reported that glove aided performance during play. This feasibility study explores the versatility of 3D printing as a potential avenue to improve player compliance in wearing protective sportswear. Feedback will help refine glove design for future prototypes. Hurling is the primary focus in this study, but knowledge gains should be transferable to other sports that have a high incidence of hand injury. 4. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  19. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Santiago D. Solares

    2015-11-01

    Full Text Available This paper introduces a quasi-3-dimensional (Q3D viscoelastic model and software tool for use in atomic force microscopy (AFM simulations. The model is based on a 2-dimensional array of standard linear solid (SLS model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.

  20. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy.

    Science.gov (United States)

    Solares, Santiago D

    2015-01-01

    This paper introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.

  1. [Fabrication of 3-dimensional skull model with rapid prototyping technique and its primary application in repairing one case of cranio-maxillo-facial trauma].

    Science.gov (United States)

    Xia, Delin; Gui, Lai; Zhang, Zhiyong; Lu, Changsheng; Niu, Feng; Jin, Ji; Liu, Xiaoqing

    2005-10-01

    To investigate the methods of establishing 3-dimensional skull model using electron beam CT (EBCT) data rapid prototyping technique, and to discuss its application in repairing cranio-maxillo-facial trauma. The data were obtained by EBCT continuous volumetric scanning with 1.0 mm slice at thickness. The data were transferred to work-station for 3-dimensional surface reconstruction by computer-aided design software and the images were saved as STL file. The data can be used to control a laser rapid-prototyping device (AFS-320QZ) to construct geometric model. The material for the model construction is a kind of laser-sensitive resin power, which will become a mass when scanned by laser beam. The design and simulation of operation can be done on the model. The image data were transferred to the device slice by slice. Thus a geometric model is constructed according to the image data by repeating this process. Preoperative analysis, surgery simulation and implant of bone defect could be done on this computer-aided manufactured 3D model. One case of cranio-maxillo-facial bone defect resulting from trauma was reconstructed with this method. The EBCT scanning showed that the defect area was 4 cm x 6 cm. The nose was flat and deviated to left. The 3-dimensional skull was reconstructed with EBCT data and rapid prototyping technique. The model can display the structure of 3-dimensional anatomy and their relationship. The prefabricated implant by 3-dimensional model was well-matched with defect. The deformities of flat and deviated nose were corrected. The clinical result was satisfactory after a follow-up of 17 months. The 3-dimensional model of skull can replicate the prototype of disease and play an important role in the diagnosis and simulation of operation for repairing cranio-maxillo-facial trauma.

  2. Accuracy of both virtual and printed 3-dimensional models for volumetric measurement of alveolar clefts before grafting with alveolar bone compared with a validated algorithm: a preliminary investigation.

    Science.gov (United States)

    Kasaven, C P; McIntyre, G T; Mossey, P A

    2017-01-01

    Our objective was to assess the accuracy of virtual and printed 3-dimensional models derived from cone-beam computed tomographic (CT) scans to measure the volume of alveolar clefts before bone grafting. Fifteen subjects with unilateral cleft lip and palate had i-CAT cone-beam CT scans recorded at 0.2mm voxel and sectioned transversely into slices 0.2mm thick using i-CAT Vision. Volumes of alveolar clefts were calculated using first a validated algorithm; secondly, commercially-available virtual 3-dimensional model software; and finally 3-dimensional printed models, which were scanned with microCT and analysed using 3-dimensional software. For inter-observer reliability, a two-way mixed model intraclass correlation coefficient (ICC) was used to evaluate the reproducibility of identification of the cranial and caudal limits of the clefts among three observers. We used a Friedman test to assess the significance of differences among the methods, and probabilities of less than 0.05 were accepted as significant. Inter-observer reliability was almost perfect (ICC=0.987). There were no significant differences among the three methods. Virtual and printed 3-dimensional models were as precise as the validated computer algorithm in the calculation of volumes of the alveolar cleft before bone grafting, but virtual 3-dimensional models were the most accurate with the smallest 95% CI and, subject to further investigation, could be a useful adjunct in clinical practice. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Preoperative (3-dimensional) computed tomography lung reconstruction before anatomic segmentectomy or lobectomy for stage I non-small cell lung cancer.

    Science.gov (United States)

    Chan, Ernest G; Landreneau, James R; Schuchert, Matthew J; Odell, David D; Gu, Suicheng; Pu, Jiantao; Luketich, James D; Landreneau, Rodney J

    2015-09-01

    Accurate cancer localization and negative resection margins are necessary for successful segmentectomy. In this study, we evaluate a newly developed software package that permits automated segmentation of the pulmonary parenchyma, allowing 3-dimensional assessment of tumor size, location, and estimates of surgical margins. A pilot study using a newly developed 3-dimensional computed tomography analytic software package was performed to retrospectively evaluate preoperative computed tomography images of patients who underwent segmentectomy (n = 36) or lobectomy (n = 15) for stage 1 non-small cell lung cancer. The software accomplishes an automated reconstruction of anatomic pulmonary segments of the lung based on bronchial arborization. Estimates of anticipated surgical margins and pulmonary segmental volume were made on the basis of 3-dimensional reconstruction. Autosegmentation was achieved in 72.7% (32/44) of preoperative computed tomography images with slice thicknesses of 3 mm or less. Reasons for segmentation failure included local severe emphysema or pneumonitis, and lower computed tomography resolution. Tumor segmental localization was achieved in all autosegmented studies. The 3-dimensional computed tomography analysis provided a positive predictive value of 87% in predicting a marginal clearance greater than 1 cm and a 75% positive predictive value in predicting a margin to tumor diameter ratio greater than 1 in relation to the surgical pathology assessment. This preoperative 3-dimensional computed tomography analysis of segmental anatomy can confirm the tumor location within an anatomic segment and aid in predicting surgical margins. This 3-dimensional computed tomography information may assist in the preoperative assessment regarding the suitability of segmentectomy for peripheral lung cancers. Published by Elsevier Inc.

  4. Reappraisal of Pediatric Diastatic Skull Fractures in the 3-Dimensional CT Era: Clinical Characteristics and Comparison of Diagnostic Accuracy of Simple Skull X-Ray, 2-Dimensional CT, and 3-Dimensional CT.

    Science.gov (United States)

    Sim, Sook Young; Kim, Hyun Gi; Yoon, Soo Han; Choi, Jong Wook; Cho, Sung Min; Choi, Mi Sun

    2017-12-01

    Diastatic skull fractures (DSFs) in children are difficult to detect in skull radiographs before they develop into growing skull fractures; therefore, little information is available on this topic. However, recent advances in 3-dimensional (3D) computed tomography (CT) imaging technology have enabled more accurate diagnoses of almost all forms of skull fracture. The present study was undertaken to document the clinical characteristics of DSFs in children and to determine whether 3D CT enhances diagnostic accuracy. Two hundred and ninety-two children younger than 12 years with skull fractures underwent simple skull radiography, 2-dimensional (2D) CT, and 3DCT. Results were compared with respect to fracture type, location, associated lesions, and accuracy of diagnosis. DSFs were diagnosed in 44 (15.7%) of children with skull fractures. Twenty-two patients had DSFs only, and the other 22 had DSFs combined with compound or mixed skull fractures. The most common fracture locations were the occipitomastoid (25%) and lambdoid (15.9%). Accompanying lesions consisted of subgaleal hemorrhages (42/44), epidural hemorrhages (32/44), pneumocephalus (17/44), and subdural hemorrhages (3/44). A total of 17 surgical procedures were performed on 15 of the 44 patients. Fourteen and 19 patients were confirmed to have DSFs by skull radiography and 2D CT, respectively, but 3D CT detected DSFs in 43 of the 44 children (P skull radiography or 2D CT for detecting DSFs. This finding indicates that 3D CT should be used routinely rather than 2D CT for the assessment of pediatric head trauma. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Image Quality of the 3 Dimensional Phase-Contrast Technique in an Intracranial Magnetic Resonance Angiography with Artifacts Caused by Orthodontic Devices: A Comparison with 3 Dimensional Time-of-Flight Technique

    International Nuclear Information System (INIS)

    Kang, Seong Jin; Kim, Young Soo; Hong, Hyun Sook; Kim, Dong Hun

    2011-01-01

    To evaluate the degree of image distortion caused by orthodontic devices during a intracranial magnetic resonance angiography (MRA), and to determine the effectiveness of the 3 dimensional phase-contrast (3D PC). Subjects were divided into group A (n = 20) wearing a home-made orthodontic device, and group B (n = 10) with an actual orthodontic device. A 3.0T MR scanner was used, applying 3D time-of-flight (TOF) and 3D PC. Two board-certified radiologists evaluated images independently based on a four point scale classifying segments of the circle of Willis. Magnetic susceptibility variations and contrast-to-noise ratio (CNR) on maximum intensity projection images were measured. In group A, scores of the 3D TOF and 3D PC were 2.84 ± 0.1 vs. 2.88 ± 0.1 (before) and 1.8 ± 0.4 vs 2.83 ± 0.1 (after wearing device), respectively. In group B, the scores of 3D TOF and 3D PC were 1.86 ± 0.43 and 2.81 ± 0.15 (p = 0.005), respectively. Magnetic susceptibility variations showed meaningful results after wearing the device (p = 0.0001). CNRs of the 3D PC before and after wearing device were 142.9 ± 6.6 vs. 140.8 ± 7.2 (p = 0.7507), respectively. In the 3D TOF, CNRs were 324.8 ± 25.4 vs. 466.3 ± 41.7 (p = 0.0001). The 3D PC may be a solution method for distorted images by magnetic susceptibility in the intracranial MRA compared with 3D TOF.

  6. Image Quality of the 3 Dimensional Phase-Contrast Technique in an Intracranial Magnetic Resonance Angiography with Artifacts Caused by Orthodontic Devices: A Comparison with 3 Dimensional Time-of-Flight Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seong Jin; Kim, Young Soo; Hong, Hyun Sook [Dept. of Radiology, Soonchunhyang University College of Medicine, Bucheon (Korea, Republic of); Kim, Dong Hun [Dept. of Radiology, Chosun University School of Medicine, Kwangju (Korea, Republic of)

    2011-07-15

    To evaluate the degree of image distortion caused by orthodontic devices during a intracranial magnetic resonance angiography (MRA), and to determine the effectiveness of the 3 dimensional phase-contrast (3D PC). Subjects were divided into group A (n = 20) wearing a home-made orthodontic device, and group B (n = 10) with an actual orthodontic device. A 3.0T MR scanner was used, applying 3D time-of-flight (TOF) and 3D PC. Two board-certified radiologists evaluated images independently based on a four point scale classifying segments of the circle of Willis. Magnetic susceptibility variations and contrast-to-noise ratio (CNR) on maximum intensity projection images were measured. In group A, scores of the 3D TOF and 3D PC were 2.84 {+-} 0.1 vs. 2.88 {+-} 0.1 (before) and 1.8 {+-} 0.4 vs 2.83 {+-} 0.1 (after wearing device), respectively. In group B, the scores of 3D TOF and 3D PC were 1.86 {+-} 0.43 and 2.81 {+-} 0.15 (p = 0.005), respectively. Magnetic susceptibility variations showed meaningful results after wearing the device (p = 0.0001). CNRs of the 3D PC before and after wearing device were 142.9 {+-} 6.6 vs. 140.8 {+-} 7.2 (p = 0.7507), respectively. In the 3D TOF, CNRs were 324.8 {+-} 25.4 vs. 466.3 {+-} 41.7 (p = 0.0001). The 3D PC may be a solution method for distorted images by magnetic susceptibility in the intracranial MRA compared with 3D TOF.

  7. Evaluating Z Scores to Quantify Levator Hiatal Distensibility by 3-Dimensional Ultrasonography in Nulliparas and Women With Pelvic Organ Prolapse.

    Science.gov (United States)

    Wen, Lieming; Liu, Minghui; Zhao, Baihua; Qing, Zhenzhen

    2018-03-12

    To use Z scores to quantify hiatal distensibility and to test the performance of Z scores for levator hiatal areas in predicting substantial pelvic organ prolapse (POP). We undertook a retrospective study of the data from 145 nulliparas and 166 patients with POP who had a clinical POP examination with 3-dimensional translabial ultrasonography. Z scores were used to normalize levator hiatal areas of nulliparas. The Z score model for the hiatal area was built by the formula Z score = (measured value - predicted mean value)/predicted standard deviation and was used to evaluate hiatal ballooning in women with POP. Valid data were gathered from 134 nulliparas and 159 patients with POP. POP stage 1 was found in 46 women, stage 2 in 62, stage 3 in 43, and stage 4 in 8. We built the Z score model as follows: Z-Av = (measured value - 17.15)/3.11, where Av represented the minimal levator hiatal area on the maximum Valsalva maneuver. The levator hiatal area was strongly related to the POP stage (P < .001). On a receiver operating characteristic curve analysis, the cutoff of Z-Av was 1 for POP stage 2 or higher (sensitivity, 77%; specificity, 60%) and substantial POP on ultrasonography (sensitivity, 84%; specificity, 75%). Hiatal distensibility can be exactly evaluated by Z-Av. A Z-Av value of less than 1.0 was defined as a "normal hiatal expansion," 1 to 3 as "mild ballooning," 3 to 5 as "moderate ballooning," 5 to 7 as "marked ballooning," and 7 or greater as "severe ballooning." © 2018 by the American Institute of Ultrasound in Medicine.

  8. Radiosensitivity of Patient-Derived Glioma Stem Cell 3-Dimensional Cultures to Photon, Proton, and Carbon Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chiblak, Sara; Tang, Zili [German Cancer Consortium, Heidelberg (Germany); Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg (Germany); Campos, Benito; Gal, Zoltan; Unterberg, Andreas [Division of Neurological Research, Department of Neurosurgery, University of Heidelberg Medical School, Heidelberg (Germany); Debus, Jürgen [German Cancer Consortium, Heidelberg (Germany); Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg (Germany); Herold-Mende, Christel [Division of Neurological Research, Department of Neurosurgery, University of Heidelberg Medical School, Heidelberg (Germany); Abdollahi, Amir, E-mail: a.amir@dkfz.de [German Cancer Consortium, Heidelberg (Germany); Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center, Heidelberg Institute of Radiation Oncology, University of Heidelberg Medical School and National Center for Tumor Diseases, German Cancer Research Center, Heidelberg (Germany)

    2016-05-01

    Purpose: To investigate the radiosensitivity of primary glioma stem cell (GSC) cultures with different CD133 status in a 3-dimensional (3D) model after photon versus proton versus carbon irradiation. Methods and Materials: Human primary GSC spheroid cultures were established from tumor specimens of six consented glioblastoma patients. Human U87MG was used as a classical glioblastoma radioresistant cell line. Cell suspensions were generated by mechanical dissociation of GSC spheroids and embedded in a semi-solid 3D matrix before irradiation. Spheroid-like colonies were manually counted by microscopy. Cells were also recovered and quantified by fluorescence. CD133 expression and DNA damage were evaluated by flow cytometry. Results: The fraction of CD133{sup +} cells varied between 0.014% and 96% in the six GSC cultures and showed a nonsignificant correlation with plating efficiency and survival fractions. The 4 most photon-radioresistant GSC cultures were NCH644, NCH421k, NCH441, and NCH636. Clonogenic survival for proton irradiation revealed relative biologic effectiveness (RBE) in the range of 0.7-1.20. However, carbon irradiation rendered the photon-resistant GSC cultures sensitive, with average RBE of 1.87-3.44. This effect was partly attributed to impaired capability of GSC to repair carbon ion–induced DNA double-strand breaks as determined by residual DNA repair foci. Interestingly, radiosensitivity of U87 cells was comparable to GSC cultures using clonogenic survival as the standard readout. Conclusions: Carbon irradiation is effective in GSC eradication with similar RBE ranges approximately 2-3 as compared with non-stem GSC cultures (U87). Our data strongly suggest further exploration of GSC using classic radiobiology endpoints such as the here-used 3D clonogenic survival assay and integration of additional GSC-specific markers.

  9. Endodontic Treatment of an Anomalous Anterior Tooth with the Aid of a 3-dimensional Printed Physical Tooth Model.

    Science.gov (United States)

    Byun, Chanhee; Kim, Changhwan; Cho, Seungryong; Baek, Seung Hoon; Kim, Gyutae; Kim, Sahng G; Kim, Sun-Young

    2015-06-01

    Endodontic treatment of tooth formation anomalies is a challenge to clinicians and as such requires a complete understanding of the aberrant root canal anatomy followed by careful root canal disinfection and obturation. Here, we report the use of a 3-dimensional (3D) printed physical tooth model including internal root canal structures for the endodontic treatment of a challenging tooth anomaly. A 12-year-old boy was referred for endodontic treatment of tooth #8. The tooth showed class II mobility with swelling and a sinus tract in the buccal mucosa and periapical radiolucency. The tooth presented a very narrow structure between the crown and root by distal concavity and a severely dilacerated root. Moreover, a perforation site with bleeding and another ditching site were identified around the cervical area in the access cavity. A translucent physical tooth model carrying the information on internal root canal structures was built through a 3-step process: data acquisition by cone-beam computed tomographic scanning, virtual modeling by image processing, and manufacturing by 3D printing. A custom-made guide jig was then fabricated to achieve a safe and precise working path to the root canal. Endodontic procedures including access cavity preparation were performed using the physical tooth model and the guide jig. At the 7-month follow-up, the endodontically treated tooth showed complete periapical healing with no clinical signs and symptoms. This case report describes a novel method of endodontic treatment of an anomalous maxillary central incisor with the aid of a physical tooth model and a custom-made guide jig via 3D printing technique. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Feasibility of Modified Anterior Odontoid Screw Fixation: Analysis of a New Trajectory Using 3-Dimensional Simulation Software.

    Science.gov (United States)

    Zhang, Li-Lian; Chen, Qi; Wang, Hao-Li; Xu, Hua-Zi; Tian, Nai-Feng

    2018-05-03

    Anterior odontoid screw fixation (AOSF) has been suggested as the optimal treatment for type II and some shallow type III odontoid fractures. However, only the classical surgical trajectory is available; no newer entry points or trajectories have been reported. We evaluated the anatomic feasibility of a new trajectory for AOSF using 3-dimensional (3D) screw insertion simulation software (Mimics). Computed tomography (CT) scans of patients (65 males and 59 females) with normal cervical structures were obtained consecutively, and the axes were reconstructed in 3 dimensions by Mimics software. Then simulated operations were performed using 2 new entry points below the superior articular process using bilateral screws of different diameters (group 1: 4 mm and 4 mm; group 2: 4 mm and 3.5 mm; group 3: 3.5 mm and 3.5 mm). The success rates and the required screw lengths were recorded and analyzed. The success rates were 79.03% for group 1, 95.16% for group 2, and 98.39% for group 3. The success rates for groups 2 and 3 did not differ significantly, and both were significantly better than the rate for group 1. The success rate was much higher in males than in females in group 1, but the success rate was similar in males and females in the other 2 groups. Screw lengths did not differ significantly among the 3 groups, but an effect of sex was apparent. Our modified trajectory is anatomically feasible for fixation of anterior odontoid fractures, but further anatomic experiments and clinical research are needed. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Automorphosis of higher plants in space is simulated by using a 3-dimensional clinostat or by application of chemicals

    Science.gov (United States)

    Miyamoto, K.; Hoshino, T.; Hitotsubashi, R.; Yamashita, M.; Ueda, J.

    In STS-95 space experiments, etiolated pea seedlings grown under microgravity conditions in space have shown to be automorphosis. Epicotyls were almost straight but the most oriented toward the direction far from their cotyledons with ca. 45 degrees from the vertical line as compared with that on earth. In order to know the mechanism of microgravity conditions in space to induce automorphosis, we introduced simulated microgravity conditions on a 3-dimensional clinostat, resulting in the successful induction of automorphosis-like growth and development. Kinetic studies revealed that epicotyls bent at their basal region or near cotyledonary node toward the direction far from the cotyledons with about 45 degrees in both seedlings grown on 1 g and under simulated microgravity conditions on the clinostat within 48 hrs after watering. Thereafter epicotyls grew keeping this orientation under simulated microgravity conditions on the clinostat, whereas those grown on 1 g changed the growth direction to vertical direction by negative gravitropic response. Automorphosis-like growth and development was induced by the application of auxin polar transport inhibitors (2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid, 9-hydroxyfluorene-9-carboxylic acid), but not an anti-auxin, p-chlorophenoxyisobutyric acid. Automorphosis-like epicotyl bending was also phenocopied by the application of inhibitors of stretch-activated channel, LaCl3 and GdCl3, and by the application of an inhibitor of protein kinase, cantharidin. These results suggest that automorphosis-like growth in epicotyls of etiolated pea seedlings is due to suppression of negative gravitropic responses on 1 g, and the growth and development of etiolated pea seedlings under 1 g conditions requires for normal activities of auxin polar transport and the gravisensing system relating to calcium channels. Possible mechanisms of perception and transduction of gravity signals to induce automorphosis are discussed.

  12. Comparison of 3-dimensional dose reconstruction system between fluence-based system and dose measurement-guided system

    Energy Technology Data Exchange (ETDEWEB)

    Nakaguchi, Yuji, E-mail: nkgc2003@yahoo.co.jp [Department of Radiological Technology, Kumamoto University Hospital, Kumamoto (Japan); Ono, Takeshi [Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Onitsuka, Ryota [Graduate School of Health Sciences, Kumamoto University, Kumamoto (Japan); Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai [Department of Radiological Technology, Kumamoto University Hospital, Kumamoto (Japan)

    2016-10-01

    COMPASS system (IBA Dosimetry, Schwarzenbruck, Germany) and ArcCHECK with 3DVH software (Sun Nuclear Corp., Melbourne, FL) are commercial quasi-3-dimensional (3D) dosimetry arrays. Cross-validation to compare them under the same conditions, such as a treatment plan, allows for clear evaluation of such measurement devices. In this study, we evaluated the accuracy of reconstructed dose distributions from the COMPASS system and ArcCHECK with 3DVH software using Monte Carlo simulation (MC) for multi-leaf collimator (MLC) test patterns and clinical VMAT plans. In a phantom study, ArcCHECK 3DVH showed clear differences from COMPASS, measurement and MC due to the detector resolution and the dose reconstruction method. Especially, ArcCHECK 3DVH showed 7% difference from MC for the heterogeneous phantom. ArcCHECK 3DVH only corrects the 3D dose distribution of treatment planning system (TPS) using ArcCHECK measurement, and therefore the accuracy of ArcCHECK 3DVH depends on TPS. In contrast, COMPASS showed good agreement with MC for all cases. However, the COMPASS system requires many complicated installation procedures such as beam modeling, and appropriate commissioning is needed. In terms of clinical cases, there were no large differences for each QA device. The accuracy of the compass and ArcCHECK 3DVH systems for phantoms and clinical cases was compared. Both systems have advantages and disadvantages for clinical use, and consideration of the operating environment is important. The QA system selection is depending on the purpose and workflow in each hospital.

  13. Radiosensitivity of Patient-Derived Glioma Stem Cell 3-Dimensional Cultures to Photon, Proton, and Carbon Irradiation

    International Nuclear Information System (INIS)

    Chiblak, Sara; Tang, Zili; Campos, Benito; Gal, Zoltan; Unterberg, Andreas; Debus, Jürgen; Herold-Mende, Christel; Abdollahi, Amir

    2016-01-01

    Purpose: To investigate the radiosensitivity of primary glioma stem cell (GSC) cultures with different CD133 status in a 3-dimensional (3D) model after photon versus proton versus carbon irradiation. Methods and Materials: Human primary GSC spheroid cultures were established from tumor specimens of six consented glioblastoma patients. Human U87MG was used as a classical glioblastoma radioresistant cell line. Cell suspensions were generated by mechanical dissociation of GSC spheroids and embedded in a semi-solid 3D matrix before irradiation. Spheroid-like colonies were manually counted by microscopy. Cells were also recovered and quantified by fluorescence. CD133 expression and DNA damage were evaluated by flow cytometry. Results: The fraction of CD133"+ cells varied between 0.014% and 96% in the six GSC cultures and showed a nonsignificant correlation with plating efficiency and survival fractions. The 4 most photon-radioresistant GSC cultures were NCH644, NCH421k, NCH441, and NCH636. Clonogenic survival for proton irradiation revealed relative biologic effectiveness (RBE) in the range of 0.7-1.20. However, carbon irradiation rendered the photon-resistant GSC cultures sensitive, with average RBE of 1.87-3.44. This effect was partly attributed to impaired capability of GSC to repair carbon ion–induced DNA double-strand breaks as determined by residual DNA repair foci. Interestingly, radiosensitivity of U87 cells was comparable to GSC cultures using clonogenic survival as the standard readout. Conclusions: Carbon irradiation is effective in GSC eradication with similar RBE ranges approximately 2-3 as compared with non-stem GSC cultures (U87). Our data strongly suggest further exploration of GSC using classic radiobiology endpoints such as the here-used 3D clonogenic survival assay and integration of additional GSC-specific markers.

  14. Custom-Made Titanium 3-Dimensional Printed Interbody Cages for Treatment of Osteoporotic Fracture-Related Spinal Deformity.

    Science.gov (United States)

    Siu, Timothy L; Rogers, Jeffrey M; Lin, Kainu; Thompson, Robert; Owbridge, Mark

    2018-03-01

    Advances in minimally invasive interbody fusion have greatly enhanced surgeons' capability to correct adult spinal deformity with reduced morbidity. However, the feasibility of such approaches is limited in patients with previous osteoporotic fractures as the resultant vertebral deformity renders the end plate geometry incongruous with conventional interbody implants. Current 3-dimensional (3D) printing technology offers a novel solution by fabricating custom-made implants tailored to individual anatomy. We present the results of a patient with osteoporotic lumbar fractures treated by such technology. A 74-year-old woman, with previous osteoporotic fractures at L2 and L3 resulting in concave deformity of the end plates, presented with intractable radiculopathy secondary to lateral recess and foraminal stenosis (L2-3 and L3-4). A minimally invasive lateral lumbar interbody fusion at L2-3 and L3-4 was considered favorable, but due to the associated vertebral collapse, off-the-shelf implants were not compatible with patient anatomy. In silico simulation based on preoperative computed tomography (CT) imaging was thus conducted to design customized cages to cater for the depressed recipient end plates and vertebral loss. The design was converted to implantable titanium cages through 3D additive manufacturing. At surgery, a tight fit between the implants and the targeted disk space was achieved. Postoperative CT scan confirmed excellent implant-end plate matching and restoration of lost disk space. The patient began to ambulate from postoperative day 1 and at 6-month follow-up resolution of radicular symptoms and CT evidence of interbody fusion were recorded. 3D-printed custom-made interbody cages can help overcome the difficulties in deformity correction secondary to osteoporotic fractures. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Chondroregulatory action of prolactin on proliferation and differentiation of mouse chondrogenic ATDC5 cells in 3-dimensional micromass cultures

    International Nuclear Information System (INIS)

    Seriwatanachai, Dutmanee; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2012-01-01

    Highlights: ► Mouse chondrogenic ATDC5 cells expressed PRL receptor mRNAs and proteins. ► Low PRL concentration (10 ng/mL) increased chondrocyte viability and differentiation. ► Higher PRL concentrations (⩾100 ng/mL) decreased viability and increased apoptosis. -- Abstract: A recent investigation in lactating rats has provided evidence that the lactogenic hormone prolactin (PRL) increases endochondral bone growth and bone elongation, presumably by accelerating apoptosis of hypertrophic chondrocytes in the growth plate and/or subsequent chondrogenic matrix mineralization. Herein, we demonstrated the direct chondroregulatory action of PRL on proliferation, differentiation and apoptosis of chondrocytes in 3-dimensional micromass culture of mouse chondrogenic ATDC5 cell line. The results showed that ATDC5 cells expressed PRL receptor (PRLR) transcripts, and responded typically to PRL by downregulating PRLR expression. Exposure to a low PRL concentration of 10 ng/mL, comparable to the normal levels in male and non-pregnant female rats, increased chondrocyte viability, differentiation, proteoglycan accumulation, and mRNA expression of several chondrogenic differentiation markers, such as Sox9, ALP and Hspg2. In contrast, high PRL concentrations of ⩾100 ng/mL, comparable to the levels in pregnancy or lactation, decreased chondrocyte viability by inducing apoptosis, with no effect on chondrogenic marker expression. It could be concluded that chondrocytes directly but differentially responded to non-pregnant and pregnant/lactating levels of PRL, thus suggesting the stimulatory effect of PRL on chondrogenesis in young growing individuals, and supporting the hypothesis of hypertrophic chondrocyte apoptosis in the growth plate of lactating rats.

  16. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

    International Nuclear Information System (INIS)

    Tasanapanont, Jintana; Apisariyakul, Janya; Wattanachai, Tanapan; Jotikasthira, Dhirawat; Sriwilas, Patiyut; Midtboe, Marit

    2017-01-01

    The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient (ICC) was used to assess intraobserver reliability. The root surface area measurements (230.11±41.97 mm"2) obtained using CBCT were slightly greater than those (229.31±42.46 mm2) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth

  17. Joint environmental assessment for western NPR-1 3-dimensional seismic project at Naval Petroleum Reserve No. 1, Kern County, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.

  18. Comparison of intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy as adjuvant therapy for gastric cancer.

    Science.gov (United States)

    Minn, A Yuriko; Hsu, Annie; La, Trang; Kunz, Pamela; Fisher, George A; Ford, James M; Norton, Jeffrey A; Visser, Brendan; Goodman, Karyn A; Koong, Albert C; Chang, Daniel T

    2010-08-15

    The current study was performed to compare the clinical outcomes and toxicity in patients treated with postoperative chemoradiotherapy for gastric cancer using intensity-modulated radiotherapy (IMRT) versus 3-dimensional conformal radiotherapy (3D CRT). Fifty-seven patients with gastric or gastroesophageal junction cancer were treated postoperatively: 26 with 3D CRT and 31 with IMRT. Concurrent chemotherapy was capecitabine (n=31), 5-fluorouracil (5-FU) (n=25), or none (n=1). The median radiation dose was 45 Gy. Dose volume histogram parameters for kidney and liver were compared between treatment groups. The 2-year overall survival rates for 3D CRT versus IMRT were 51% and 65%, respectively (P=.5). Four locoregional failures occurred each in the 3D CRT (15%) and the IMRT (13%) patients. Grade>or=2 acute gastrointestinal toxicity was found to be similar between the 3D CRT and IMRT patients (61.5% vs 61.2%, respectively) but more treatment breaks were needed (3 vs 0, respectively). The median serum creatinine from before radiotherapy to most recent creatinine was unchanged in the IMRT group (0.80 mg/dL) but increased in the 3D CRT group from 0.80 mg/dL to 1.0 mg/dL (P=.02). The median kidney mean dose was higher in the IMRT versus the 3D CRT group (13.9 Gy vs 11.1 Gy; P=.05). The median kidney V20 was lower for the IMRT versus the 3D CRT group (17.5% vs 22%; P=.17). The median liver mean dose for IMRT and 3D CRT was 13.6 Gy and 18.6 Gy, respectively (P=.19). The median liver V30 was 16.1% and 28%, respectively (PCancer Society.

  19. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, Masaki, E-mail: m-nakaya@kirin.co.jp [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Shimizu, Mari [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Uedono, Akira [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-08-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz.

  20. Comparison of 2 root surface area measurement methods: 3-dimensional laser scanning and cone-beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tasanapanont, Jintana; Apisariyakul, Janya; Wattanachai, Tanapan; Jotikasthira, Dhirawat [Dept. of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Chiang Mai (Thailand); Sriwilas, Patiyut [Dept. of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Midtboe, Marit [Dept. of Clinical Dentistry - Orthodontics, Faculty of Medicine and Dentistry, University of Bergen, Bergen (Norway)

    2017-06-15

    The aim of this study was to compare the use of 3-dimensional (3D) laser scanning and cone-beam computed tomography (CBCT) as methods of root surface measurement. Thirty teeth (15 maxillary first premolars and 15 mandibular first premolars) from 8 patients who required extractions for orthodontic treatment were selected. Before extraction, pre-treatment CBCT images of all the patients were recorded. First, a CBCT image was imported into simulation software (Mimics version 15.01; Materialise, Leuven, Belgium) and the root surface area of each tooth was calculated using 3-Matic (version 7.01, Materialise, Leuven, Belgium). After extraction, all the teeth were scanned and the root surface area of each extracted tooth was calculated. The root surface areas calculated using these 2 measurement methods were analyzed using the paired t-test (P<.05). Correlations between the 2 methods were determined by calculating the Pearson correlation coefficient. The intraclass correlation coefficient (ICC) was used to assess intraobserver reliability. The root surface area measurements (230.11±41.97 mm{sup 2}) obtained using CBCT were slightly greater than those (229.31±42.46 mm2) obtained using 3D laser scanning, but not significantly (P=.425). A high Pearson correlation coefficient was found between the CBCT and the 3D laser scanner measurements. The intraobserver ICC was 1.000 for 3D laser scanning and 0.990 for CBCT. This study presents a novel CBCT approach for measuring the root surface area; this technique can be used for estimating the root surface area of non-extracted teeth.

  1. Evaluation of the accuracy of 7 digital scanners: An in vitro analysis based on 3-dimensional comparisons.

    Science.gov (United States)

    Renne, Walter; Ludlow, Mark; Fryml, John; Schurch, Zach; Mennito, Anthony; Kessler, Ray; Lauer, Abigail

    2017-07-01

    As digital impressions become more common and more digital impression systems are released onto the market, it is essential to systematically and objectively evaluate their accuracy. The purpose of this in vitro study was to evaluate and compare the trueness and precision of 6 intraoral scanners and 1 laboratory scanner in both sextant and complete-arch scenarios. Furthermore, time of scanning was evaluated and correlated with trueness and precision. A custom complete-arch model was fabricated with a refractive index similar to that of tooth structure. Seven digital impression systems were used to scan the custom model for both posterior sextant and complete arch scenarios. Analysis was performed using 3-dimensional metrology software to measure discrepancies between the master model and experimental casts. Of the intraoral scanners, the Planscan was found to have the best trueness and precision while the 3Shape Trios was found to have the poorest for sextant scanning (PiTero >3Shape TRIOS 3 >Carestream 3500 >Planscan >CEREC Omnicam >CEREC Bluecam. The order of precision for complete-arch scanning was as follows: CS3500 >iTero >3Shape D800 >3Shape TRIOS 3 >CEREC Omnicam >Planscan >CEREC Bluecam. For the secondary outcome evaluating the effect time has on trueness and precision, the complete- arch scan time was highly correlated with both trueness (r=0.771) and precision (r=0.771). For sextant scanning, the Planscan was found to be the most precise and true scanner. For complete-arch scanning, the 3Shape Trios was found to have the best balance of speed and accuracy. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  2. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    International Nuclear Information System (INIS)

    Nakaya, Masaki; Shimizu, Mari; Uedono, Akira

    2014-01-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz

  3. Chondroregulatory action of prolactin on proliferation and differentiation of mouse chondrogenic ATDC5 cells in 3-dimensional micromass cultures

    Energy Technology Data Exchange (ETDEWEB)

    Seriwatanachai, Dutmanee [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok (Thailand); Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok (Thailand); Charoenphandhu, Narattaphol, E-mail: naratt@narattsys.com [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok (Thailand); Department of Physiology, Faculty of Science, Mahidol University, Bangkok (Thailand)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Mouse chondrogenic ATDC5 cells expressed PRL receptor mRNAs and proteins. Black-Right-Pointing-Pointer Low PRL concentration (10 ng/mL) increased chondrocyte viability and differentiation. Black-Right-Pointing-Pointer Higher PRL concentrations ( Greater-Than-Or-Slanted-Equal-To 100 ng/mL) decreased viability and increased apoptosis. -- Abstract: A recent investigation in lactating rats has provided evidence that the lactogenic hormone prolactin (PRL) increases endochondral bone growth and bone elongation, presumably by accelerating apoptosis of hypertrophic chondrocytes in the growth plate and/or subsequent chondrogenic matrix mineralization. Herein, we demonstrated the direct chondroregulatory action of PRL on proliferation, differentiation and apoptosis of chondrocytes in 3-dimensional micromass culture of mouse chondrogenic ATDC5 cell line. The results showed that ATDC5 cells expressed PRL receptor (PRLR) transcripts, and responded typically to PRL by downregulating PRLR expression. Exposure to a low PRL concentration of 10 ng/mL, comparable to the normal levels in male and non-pregnant female rats, increased chondrocyte viability, differentiation, proteoglycan accumulation, and mRNA expression of several chondrogenic differentiation markers, such as Sox9, ALP and Hspg2. In contrast, high PRL concentrations of Greater-Than-Or-Slanted-Equal-To 100 ng/mL, comparable to the levels in pregnancy or lactation, decreased chondrocyte viability by inducing apoptosis, with no effect on chondrogenic marker expression. It could be concluded that chondrocytes directly but differentially responded to non-pregnant and pregnant/lactating levels of PRL, thus suggesting the stimulatory effect of PRL on chondrogenesis in young growing individuals, and supporting the hypothesis of hypertrophic chondrocyte apoptosis in the growth plate of lactating rats.

  4. TU-FG-BRB-05: A 3 Dimensional Prompt Gamma Imaging System for Range Verification in Proton Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Draeger, E; Chen, H; Polf, J [University of Maryland School of Medicine, Baltimore, MD (United States); Mackin, D; Beddar, S [MD Anderson Cancer Center, Houston, TX (United States); Avery, S [University of Cape Town, Rondebosch (South Africa); Peterson, S

    2016-06-15

    Purpose: To report on the initial developments of a clinical 3-dimensional (3D) prompt gamma (PG) imaging system for proton radiotherapy range verification. Methods: The new imaging system under development consists of a prototype Compton camera to measure PG emission during proton beam irradiation and software to reconstruct, display, and analyze 3D images of the PG emission. For initial test of the system, PGs were measured with a prototype CC during a 200 cGy dose delivery with clinical proton pencil beams (ranging from 100 MeV – 200 MeV) to a water phantom. Measurements were also carried out with the CC placed 15 cm from the phantom for a full range 150 MeV pencil beam and with its range shifted by 2 mm. Reconstructed images of the PG emission were displayed by the clinical PG imaging software and compared to the dose distributions of the proton beams calculated by a commercial treatment planning system. Results: Measurements made with the new PG imaging system showed that a 3D image could be reconstructed from PGs measured during the delivery of 200 cGy of dose, and that shifts in the Bragg peak range of as little as 2 mm could be detected. Conclusion: Initial tests of a new PG imaging system show its potential to provide 3D imaging and range verification for proton radiotherapy. Based on these results, we have begun work to improve the system with the goal that images can be produced from delivery of as little as 20 cGy so that the system could be used for in-vivo proton beam range verification on a daily basis.

  5. Symmetry analysis and exact solutions of one class of (1+3)-dimensional boundary-value problems of the Stefan type

    OpenAIRE

    Kovalenko, S. S.

    2014-01-01

    We present the group classification of one class of (1+3)-dimensional nonlinear boundary-value problems of the Stefan type that simulate the processes of melting and evaporation of metals. The results obtained are used for the construction of the exact solution of one boundary-value problem from the class under study.

  6. Application of a parallel 3-dimensional hydrogeochemistry HPF code to a proposed waste disposal site at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Gwo, Jin-Ping; Yeh, Gour-Tsyh

    1997-01-01

    The objectives of this study are (1) to parallelize a 3-dimensional hydrogeochemistry code and (2) to apply the parallel code to a proposed waste disposal site at the Oak Ridge National Laboratory (ORNL). The 2-dimensional hydrogeochemistry code HYDROGEOCHEM, developed at the Pennsylvania State University for coupled subsurface solute transport and chemical equilibrium processes, was first modified to accommodate 3-dimensional problem domains. A bi-conjugate gradient stabilized linear matrix solver was then incorporated to solve the matrix equation. We chose to parallelize the 3-dimensional code on the Intel Paragons at ORNL by using an HPF (high performance FORTRAN) compiler developed at PGI. The data- and task-parallel algorithms available in the HPF compiler proved to be highly efficient for the geochemistry calculation. This calculation can be easily implemented in HPF formats and is perfectly parallel because the chemical speciation on one finite-element node is virtually independent of those on the others. The parallel code was applied to a subwatershed of the Melton Branch at ORNL. Chemical heterogeneity, in addition to physical heterogeneities of the geological formations, has been identified as one of the major factors that affect the fate and transport of contaminants at ORNL. This study demonstrated an application of the 3-dimensional hydrogeochemistry code on the Melton Branch site. A uranium tailing problem that involved in aqueous complexation and precipitation-dissolution was tested. Performance statistics was collected on the Intel Paragons at ORNL. Implications of these results on the further optimization of the code were discussed

  7. Fully 3-dimensional digitally planned reconstruction of a mandible with a free vascularized fibula and immediate placement of an implant-supported prosthetic construction

    NARCIS (Netherlands)

    Schepers, Rutger H.; Raghoebar, Gerry M.; Vissink, Arjan; Lahoda, Lars U.; Van der Meer, W. Joerd; Roodenburg, Jan L.; Reintsema, Harry; Witjes, Max J.

    Background Reconstruction of craniofacial defects becomes complex when dental implants are included for functional rehabilitation. We describe a fully 3-dimensional (3D) digitally planned reconstruction of a mandible and immediate prosthetic loading with a fibula graft in a 2-step surgical approach.

  8. Performance of human observers and an automatic 3-dimensional computer-vision-based locomotion scoring method to detect lameness and hoof lesions in dairy cows

    NARCIS (Netherlands)

    Schlageter-Tello, Andrés; Hertem, Van Tom; Bokkers, Eddie A.M.; Viazzi, Stefano; Bahr, Claudia; Lokhorst, Kees

    2018-01-01

    The objective of this study was to determine if a 3-dimensional computer vision automatic locomotion scoring (3D-ALS) method was able to outperform human observers for classifying cows as lame or nonlame and for detecting cows affected and nonaffected by specific type(s) of hoof lesion. Data

  9. Initial results of 3-dimensional 1H-magnetic resonance spectroscopic imaging in the localization of prostate cancer at 3 Tesla: should we use an endorectal coil?

    NARCIS (Netherlands)

    Yakar, D.; Heijmink, S.W.T.P.J.; Hulsbergen-van de Kaa, C.A.; Huisman, H.J.; Barentsz, J.O.; Futterer, J.J.; Scheenen, T.W.J.

    2011-01-01

    PURPOSE: The purpose of this study was to compare the diagnostic performance of 3 Tesla, 3-dimensional (3D) magnetic resonance spectroscopic imaging (MRSI) in the localization of prostate cancer (PCa) with and without the use of an endorectal coil (ERC). MATERIALS AND METHODS: Our prospective study

  10. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe

    DEFF Research Database (Denmark)

    Hatakeyama, Masahiko; Toyama, Takeshi; Nagai, Yasuyoshi

    2008-01-01

    Nanostructural evolution of Cr (Cr-rich) precipitates in a Cu-0.78%Cr-0.13%Zr alloy has been studied after aging and overaging (reaging) by laser assisted local electrode 3 dimensional atom probe (Laser-LEAP). This material is a candidate for the first wall and divertor components of future fusion...

  11. Autotransplantation of premolars with a 3-dimensional printed titanium replica of the donor tooth functioning as a surgical guide: proof of concept

    NARCIS (Netherlands)

    Verweij, J.P.; Moin, D.A.; Mensink, G.; Nijkamp, P.; Wismeijer, D.; van Merkesteyn, J.P.R.

    2016-01-01

    Purpose: Autotransplantation of premolars is a good treatment option for young patients who have missing teeth. This study evaluated the use of a preoperatively 3-dimensional (3D)-printed replica of the donor tooth that functions as a surgical guide during autotransplantation. Materials and Methods:

  12. 3-Dimensional Magnetic Resonance Spectroscopic Imaging at 3 Tesla for Early Response Assessment of Glioblastoma Patients During External Beam Radiation Therapy

    International Nuclear Information System (INIS)

    Muruganandham, Manickam; Clerkin, Patrick P.; Smith, Brian J.; Anderson, Carryn M.; Morris, Ann; Capizzano, Aristides A.; Magnotta, Vincent; McGuire, Sarah M.; Smith, Mark C.; Bayouth, John E.; Buatti, John M.

    2014-01-01

    Purpose: To evaluate the utility of 3-dimensional magnetic resonance (3D-MR) proton spectroscopic imaging for treatment planning and its implications for early response assessment in glioblastoma multiforme. Methods and Materials: Eighteen patients with newly diagnosed, histologically confirmed glioblastoma had 3D-MR proton spectroscopic imaging (MRSI) along with T2 and T1 gadolinium-enhanced MR images at simulation and at boost treatment planning after 17 to 20 fractions of radiation therapy. All patients received standard radiation therapy (RT) with concurrent temozolomide followed by adjuvant temozolomide. Imaging for response assessment consisted of MR scans every 2 months. Progression-free survival was defined by the criteria of MacDonald et al. MRSI images obtained at initial simulation were analyzed for choline/N-acetylaspartate ratios (Cho/NAA) on a voxel-by-voxel basis with abnormal activity defined as Cho/NAA ≥2. These images were compared on anatomically matched MRSI data collected after 3 weeks of RT. Changes in Cho/NAA between pretherapy and third-week RT scans were tested using Wilcoxon matched-pairs signed rank tests and correlated with progression-free survival, radiation dose and location of recurrence using Cox proportional hazards regression. Results: After a median follow-up time of 8.6 months, 50% of patients had experienced progression based on imaging. Patients with a decreased or stable mean or median Cho/NAA values had less risk of progression (P<.01). Patients with an increase in mean or median Cho/NAA values at the third-week RT scan had a significantly greater chance of early progression (P<.01). An increased Cho/NAA at the third-week MRSI scan carried a hazard ratio of 2.72 (95% confidence interval, 1.10-6.71; P=.03). Most patients received the prescription dose of RT to the Cho/NAA ≥2 volume, where recurrence most often occurred. Conclusion: Change in mean and median Cho/NAA detected at 3 weeks was a significant predictor of

  13. 3-Dimensional Magnetic Resonance Spectroscopic Imaging at 3 Tesla for Early Response Assessment of Glioblastoma Patients During External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Muruganandham, Manickam; Clerkin, Patrick P. [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Smith, Brian J. [Department of Biostatistics, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Anderson, Carryn M.; Morris, Ann [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Capizzano, Aristides A.; Magnotta, Vincent [Department of Radiology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); McGuire, Sarah M.; Smith, Mark C.; Bayouth, John E. [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States); Buatti, John M., E-mail: john-buatti@uiowa.edu [Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa (United States)

    2014-09-01

    Purpose: To evaluate the utility of 3-dimensional magnetic resonance (3D-MR) proton spectroscopic imaging for treatment planning and its implications for early response assessment in glioblastoma multiforme. Methods and Materials: Eighteen patients with newly diagnosed, histologically confirmed glioblastoma had 3D-MR proton spectroscopic imaging (MRSI) along with T2 and T1 gadolinium-enhanced MR images at simulation and at boost treatment planning after 17 to 20 fractions of radiation therapy. All patients received standard radiation therapy (RT) with concurrent temozolomide followed by adjuvant temozolomide. Imaging for response assessment consisted of MR scans every 2 months. Progression-free survival was defined by the criteria of MacDonald et al. MRSI images obtained at initial simulation were analyzed for choline/N-acetylaspartate ratios (Cho/NAA) on a voxel-by-voxel basis with abnormal activity defined as Cho/NAA ≥2. These images were compared on anatomically matched MRSI data collected after 3 weeks of RT. Changes in Cho/NAA between pretherapy and third-week RT scans were tested using Wilcoxon matched-pairs signed rank tests and correlated with progression-free survival, radiation dose and location of recurrence using Cox proportional hazards regression. Results: After a median follow-up time of 8.6 months, 50% of patients had experienced progression based on imaging. Patients with a decreased or stable mean or median Cho/NAA values had less risk of progression (P<.01). Patients with an increase in mean or median Cho/NAA values at the third-week RT scan had a significantly greater chance of early progression (P<.01). An increased Cho/NAA at the third-week MRSI scan carried a hazard ratio of 2.72 (95% confidence interval, 1.10-6.71; P=.03). Most patients received the prescription dose of RT to the Cho/NAA ≥2 volume, where recurrence most often occurred. Conclusion: Change in mean and median Cho/NAA detected at 3 weeks was a significant predictor of

  14. 3-Dimensional magnetic resonance spectroscopic imaging at 3 Tesla for early response assessment of glioblastoma patients during external beam radiation therapy.

    Science.gov (United States)

    Muruganandham, Manickam; Clerkin, Patrick P; Smith, Brian J; Anderson, Carryn M; Morris, Ann; Capizzano, Aristides A; Magnotta, Vincent; McGuire, Sarah M; Smith, Mark C; Bayouth, John E; Buatti, John M

    2014-09-01

    To evaluate the utility of 3-dimensional magnetic resonance (3D-MR) proton spectroscopic imaging for treatment planning and its implications for early response assessment in glioblastoma multiforme. Eighteen patients with newly diagnosed, histologically confirmed glioblastoma had 3D-MR proton spectroscopic imaging (MRSI) along with T2 and T1 gadolinium-enhanced MR images at simulation and at boost treatment planning after 17 to 20 fractions of radiation therapy. All patients received standard radiation therapy (RT) with concurrent temozolomide followed by adjuvant temozolomide. Imaging for response assessment consisted of MR scans every 2 months. Progression-free survival was defined by the criteria of MacDonald et al. MRSI images obtained at initial simulation were analyzed for choline/N-acetylaspartate ratios (Cho/NAA) on a voxel-by-voxel basis with abnormal activity defined as Cho/NAA ≥2. These images were compared on anatomically matched MRSI data collected after 3 weeks of RT. Changes in Cho/NAA between pretherapy and third-week RT scans were tested using Wilcoxon matched-pairs signed rank tests and correlated with progression-free survival, radiation dose and location of recurrence using Cox proportional hazards regression. After a median follow-up time of 8.6 months, 50% of patients had experienced progression based on imaging. Patients with a decreased or stable mean or median Cho/NAA values had less risk of progression (P<.01). Patients with an increase in mean or median Cho/NAA values at the third-week RT scan had a significantly greater chance of early progression (P<.01). An increased Cho/NAA at the third-week MRSI scan carried a hazard ratio of 2.72 (95% confidence interval, 1.10-6.71; P=.03). Most patients received the prescription dose of RT to the Cho/NAA ≥2 volume, where recurrence most often occurred. Change in mean and median Cho/NAA detected at 3 weeks was a significant predictor of early progression. The potential impact for risk

  15. DESIGN AND IMPLEMENTATION OF A CO2 FLOOD UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL INJECTION WELLS IN A SHALLOW SHELF CARBONATE APPROACHING WATERFLOOD DEPLETION

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Harpole; Ed G. Durrett; Susan Snow; J.S. Bles; Carlon Robertson; C.D. Caldwell; D.J. Harms; R.L. King; B.A. Baldwin; D. Wegener; M. Navarrette

    2002-09-01

    The purpose of this project was to economically design an optimum carbon dioxide (CO{sub 2}) flood for a mature waterflood nearing its economic abandonment. The original project utilized advanced reservoir characterization and CO{sub 2} horizontal injection wells as the primary methods to redevelop the South Cowden Unit (SCU). The development plans; project implementation and reservoir management techniques were to be transferred to the public domain to assist in preventing premature abandonment of similar fields. The Unit was a mature waterflood with water cut exceeding 95%. Oil must be mobilized through the use of a miscible or near-miscible fluid to recover significant additional reserves. Also, because the unit was relatively small, it did not have the benefit of economies of scale inherent in normal larger scale projects. Thus, new and innovative methods were required to reduce investment and operating costs. Two primary methods used to accomplish improved economics were use of reservoir characterization to restrict the flood to the higher quality rock in the unit and use of horizontal injection wells to cut investment and operating costs. The project consisted of two budget phases. Budget Phase I started in June 1994 and ended late June 1996. In this phase Reservoir Analysis, Characterization Tasks and Advanced Technology Definition Tasks were completed. Completion enabled the project to be designed, evaluated, and an Authority for Expenditure (AFE) for project implementation submitted to working interest owners for approval. Budget Phase II consisted of the implementation and execution of the project in the field. Phase II was completed in July 2001. Performance monitoring, during Phase II, by mid 1998 identified the majority of producing wells which under performed their anticipated withdrawal rates. Newly drilled and re-activated wells had lower offtake rates than originally forecasted. As a result of poor offtake, higher reservoir pressure was a concern

  16. Hydrogel Based 3-Dimensional (3D) System for Toxicity and High-Throughput (HTP) Analysis for Cultured Murine Ovarian Follicles

    Science.gov (United States)

    Zhou, Hong; Malik, Malika Amattullah; Arab, Aarthi; Hill, Matthew Thomas; Shikanov, Ariella

    2015-01-01

    Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D) mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN), preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP) in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR). The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased survival rate in

  17. Live animal assessments of rump fat and muscle score in Angus cows and steers using 3-dimensional imaging.

    Science.gov (United States)

    McPhee, M J; Walmsley, B J; Skinner, B; Littler, B; Siddell, J P; Cafe, L M; Wilkins, J F; Oddy, V H; Alempijevic, A

    2017-04-01

    The objective of this study was to develop a proof of concept for using off-the-shelf Red Green Blue-Depth (RGB-D) Microsoft Kinect cameras to objectively assess P8 rump fat (P8 fat; mm) and muscle score (MS) traits in Angus cows and steers. Data from low and high muscled cattle (156 cows and 79 steers) were collected at multiple locations and time points. The following steps were required for the 3-dimensional (3D) image data and subsequent machine learning techniques to learn the traits: 1) reduce the high dimensionality of the point cloud data by extracting features from the input signals to produce a compact and representative feature vector, 2) perform global optimization of the signatures using machine learning algorithms and a parallel genetic algorithm, and 3) train a sensor model using regression-supervised learning techniques on the ultrasound P8 fat and the classified learning techniques for the assessed MS for each animal in the data set. The correlation of estimating hip height (cm) between visually measured and assessed 3D data from RGB-D cameras on cows and steers was 0.75 and 0.90, respectively. The supervised machine learning and global optimization approach correctly classified MS (mean [SD]) 80 (4.7) and 83% [6.6%] for cows and steers, respectively. Kappa tests of MS were 0.74 and 0.79 in cows and steers, respectively, indicating substantial agreement between visual assessment and the learning approaches of RGB-D camera images. A stratified 10-fold cross-validation for P8 fat did not find any differences in the mean bias ( = 0.62 and = 0.42 for cows and steers, respectively). The root mean square error of P8 fat was 1.54 and 1.00 mm for cows and steers, respectively. Additional data is required to strengthen the capacity of machine learning to estimate measured P8 fat and assessed MS. Data sets for and continental cattle are also required to broaden the use of 3D cameras to assess cattle. The results demonstrate the importance of capturing

  18. Hydrogel Based 3-Dimensional (3D System for Toxicity and High-Throughput (HTP Analysis for Cultured Murine Ovarian Follicles.

    Directory of Open Access Journals (Sweden)

    Hong Zhou

    Full Text Available Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN, preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR. The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased

  19. The effectiveness and user perception of 3-dimensional digital human anatomy in an online undergraduate anatomy laboratory

    Science.gov (United States)

    Hilbelink, Amy Joanne

    2007-12-01

    The primary purpose of this study was to determine the effectiveness of implementing desktop 3-dimensional (3D) stereo images of human anatomy into an undergraduate human anatomy distance laboratory. User perceptions of 2D and 3D images were gathered via questionnaire in order to determine ease of use and level of satisfaction associated with the 3D software in the online learning environment. Mayer's (2001, p. 184) principles of design were used to develop the study materials that consisted of PowerPoint presentations and AVI files accessed via Blackboard. The research design employed a mixed-methods approach. Volunteers each were administered a demographic survey and were then stratified into groups based upon pre-test scores. A total sample size of 62 pairs was available for combined data analysis. Quantitative research questions regarding the effectiveness of 2D versus the 3D treatment were analyzed using a doubly-multivariate repeated measures (Doubly-MANOVA) design. Paired test scores achieved by undergraduates on a laboratory practical of identification and spatial relationships of the bones and features of a human skull were used in the analysis. The questionnaire designed to gather user perceptions consisted of quantitative and qualitative questions. Response frequencies were analyzed for the two groups and common themes were noted. Results revealed a statistically significant difference in group means for the main effect of the treatment groups 2D and 3D and for the variables of identification and relationship with the 3D group outperforming the 2D group on both dependent variables. Effect sizes were determined to be small, 0.215 for the identification variable and 0.359 for the relationship variable. Overall, all students liked the convenience of using PowerPoint and AVI files online. The 3D group felt their PowerPoint was more realistic than did the 2D group and both groups appreciated the detailed labeling of the online images. One third of the

  20. Anatomical region-dependent enhancement of 3-dimensional chondrogenic differentiation of human mesenchymal stem cells by soluble meniscus extracellular matrix.

    Science.gov (United States)

    Rothrauff, Benjamin B; Shimomura, Kazunori; Gottardi, Riccardo; Alexander, Peter G; Tuan, Rocky S

    2017-02-01

    decellularized meniscus tissue may promote homologous differentiation of progenitor cells, thereby enhancing fibrocartilage formation within a meniscal lesion. However, the meniscus possesses regional variation in ultrastructure, biochemical composition, and cell phenotype, which may affect the bioactivity of soluble ECM derived from different regions of decellularized menisci. In this study, we demonstrate that urea-extracted fractions of ECM derived from the inner and outer regions of menisci enhance chondrogenesis in mesenchymal stem cells seeded in 3-dimensional photocrosslinkable hydrogels and that this effect is more strongly mediated by inner meniscal ECM. These findings suggest region-specific bioactivity of decellularized meniscal ECM. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. A snapshot into the uptake and utilization of potential oligosaccharide prebiotics by probiotic lactobacilli and bifidobacteria as accessed by transcriptomics, functional genomics, and recombinant protein characterization

    DEFF Research Database (Denmark)

    Andersen, Joakim Mark

    and lifestyle diseases are currently well documented. Selective utilization, of primarily non-digestible carbohydrates, termed prebiotics, by probiotics has been identified as an attribute of probiotic action, however the molecular mechanisms of prebiotics utilization and in particular the specificities...... of carbohydrate transporters and glycoside hydrolases that confer this remain largely unknown, limiting a robust understanding for the basis of selective utilization of known prebiotics and the discovery and documentation of novel prebiotics. The aim of this Ph.D. thesis was to identify the genes involved...... with uptake and catabolism of potential prebiotics by the probiotics Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bl-04 as model organisms, using DNA whole genome microarrays and by in silico pathway re-construction to identify key genes for further functional analysis by gene...

  2. Characterization of Mauritius parakeet (Psittacula eques)\\ud microsatellite loci and their cross-utility in other parrots\\ud (Psittacidae, Aves).

    OpenAIRE

    Raisin, Claire; Dawson, Deborah A.; Greenwood, Andrew G.; Jones, Carl G.; Groombridge, Jim J.

    2009-01-01

    We characterized 21 polymorphic microsatellite loci in the endangered Mauritius parakeet (Psittacula eques). Loci were isolated from a Mauritius parakeet genomic library that had been enriched separately for eight different repeat motifs. Loci were characterized in up to 43 putatively unrelated Mauritius parakeets from a single population inhabiting the Black River Gorges National Park, Mauritius. Each locus displayed between three and nine alleles, with the observed heterozygosity ranging be...

  3. Impact of radiation dose on achieving nadir PSA levels after 3-dimensional conformal radiotherapy for patients with localized prostate cancer

    International Nuclear Information System (INIS)

    Zelefsky, Michael J.; Leibel, Steven A.; Kelson, Suzanne; Fuks, Zvi

    1996-01-01

    Purpose: Several reports have documented the prognostic value of a post-irradiation nadir PSA of ≤1 ng/ml in prostatic cancer patients. The purpose of this study was to determine which pre-treatment and treatment-related variables impact upon achieving such nadir levels. Materials and Methods: Between January 1987 and June 1995, 740 patients with clinically localized prostate cancer were treated with 3-dimensional conformal radiotherapy (3D-CRT). 214 (29%) patients were treated with neo-adjuvant androgen ablation prior to therapy and were excluded from this analysis. Among the 526 evaluable patients, the clinical stage were as follows: T 1 C=128 (24%); T 2 A=76 (14%); T 2 B=116 (22%); T 2 C=99 (19%) and T 3 =107 (21%). The prescription dose to the planning target volume (PTV) was 64.8-68.4 Gy in 87 patients (17%); 70.2 Gy in 191 (36%); 75.6 Gy in 209 (40%) and 81 Gy in 39 (7%). The median pre-treatment PSA value was 11.2 ng/ml (range 0.3-114). The median follow-up was 20 months (range: 6-76 months). Results: 242 patients (46%) had PSA levels which declined to ≤1.0 ng/ml. The median time to a nadir level of ≤1.0 was 15.6 months (range: 1-43 months) from completion of 3D-CRT. 154 (29%) patients continued to show declining PSA levels within the first 2 years after therapy, and 130 patients (25%) failed to nadir at PSA levels of ≤1.0 ng/ml. Among patients with nadir PSA levels ≤1, the 3 year PSA relapse-free survival was 91% compared to 29% for patients with nadir PSA levels >1 ng/ml (p<0.0001). A Cox-regression analysis demonstrated that nadir PSA ≤1 was the strongest predictor of PSA relapse-free survival (p<0.001) followed by Gleason score ≤ 6 (p<0.001) and stage< T3 (p=0.004). Among patients who received doses of ≥75.6 Gy, the likelihood of achieving PSA nadir levels ≤1.0 at 24 and 36 months was 86% and 93%, respectively, compared to 74 and 80%, respectively, among those who received lower doses (p<0.001). Doses of ≥75.6 Gy was the strongest

  4. Proof of confinement of static quarks in 3-dimensional U(1) lattice gauge theory for all values of the coupling constant

    International Nuclear Information System (INIS)

    Goepfert, M.; Mack, G.

    1981-07-01

    We study the 3-dimensional pure U(1) lattice gauge theory with Villain action which is related to the 3-dimensional Z-ferro-magnet by an exact duality transformation (and also to a Coulomb system). We show that its string tension α is nonzero for all values of the coupling constant g 2 , and obeys and bound α >= const x msub(D)β -1 for small ag 2 , with β = 4π 2 /g 2 and m 2 sub(D) = (2β/a 3 )esup(-βupsiloncb(0)/2) (a = lattice spacing). A continuum limit a → 0, msub(D) fixed, exists and represents a scalar free field theory of mass msub(D). The string tension αmsub(D) -2 in physical units tends to infinite in this limit. Characteristic differences in the behavior of the model for large and small coupling constant ag 2 are found. Renormalization group aspects are discussed. (orig.)

  5. Prediction of optimal deployment projection for transcatheter aortic valve replacement: angiographic 3-dimensional reconstruction of the aortic root versus multidetector computed tomography.

    OpenAIRE

    Binder Ronald K; Leipsic Jonathon; Wood David; Moore Teri; Toggweiler Stefan; Willson Alex; Gurvitch Ronen; Freeman Melanie; Webb John G

    2012-01-01

    BACKGROUND Identifying the optimal fluoroscopic projection of the aortic valve is important for successful transcatheter aortic valve replacement (TAVR). Various imaging modalities including multidetector computed tomography (MDCT) have been proposed for prediction of the optimal deployment projection. We evaluated a method that provides 3 dimensional angiographic reconstructions (3DA) of the aortic root for prediction of the optimal deployment angle and compared it with MDCT. METHODS AND RES...

  6. The Effect of Pulsatile Flow on bMSC-Derived Endothelial-Like Cells in a Small-Sized Artificial Vessel Made by 3-Dimensional Bioprinting

    Directory of Open Access Journals (Sweden)

    Kang Woog Lee

    2018-01-01

    Full Text Available Replacement of small-sized vessels is still challenging. This study is aimed at investigating the possibility of small-sized artificial vessels made by 3-dimensional bioprinting and the effect of pulsatile flow on bMSC-derived endothelial-like cells. Cells were harvested from rabbit bone marrow and primary cultured with or without growth factors. Endothelial differentiation was confirmed by the Matrigel tube formation assay, Western blot, and qRT-PCR. In addition, embedment of endothelial-like cells in an artificial vessel was made by 3-dimensional bioprinting, and the pulsatile flow was performed. For pumped and nonpumped groups, qRT-PCR was performed on CD31 and VE-cadherin gene expression. Endothelial-like cells showed increased gene expression of CD31 and VE-cadherin, and tube formation is observed at each week. Endothelial-like cells grow well in a small-sized artificial vessel made by 3-dimensional bioprinting and even express higher endothelial cell markers when they undergo pulsatile flow condition. Moreover, the pulsatile flow condition gives a positive effect for cell observation not only on the sodium alginate hydrogel layer but also on the luminal surface of the artificial vessel wall. We have developed an artificial vessel, which is a mixture of cells and carriers using a 3-dimensional bioprinting method, and applied pulsatile flow using a peristaltic pump, and we also demonstrated cell growth and differentiation into endothelial cells. This study suggests guidelines regarding a small-sized artificial vessel in the field of tissue engineering.

  7. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    Energy Technology Data Exchange (ETDEWEB)

    Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  8. Estimating Utility

    DEFF Research Database (Denmark)

    Arndt, Channing; Simler, Kenneth R.

    2010-01-01

    A fundamental premise of absolute poverty lines is that they represent the same level of utility through time and space. Disturbingly, a series of recent studies in middle- and low-income economies show that even carefully derived poverty lines rarely satisfy this premise. This article proposes a......, with the current approach tending to systematically overestimate (underestimate) poverty in urban (rural) zones.......A fundamental premise of absolute poverty lines is that they represent the same level of utility through time and space. Disturbingly, a series of recent studies in middle- and low-income economies show that even carefully derived poverty lines rarely satisfy this premise. This article proposes...... an information-theoretic approach to estimating cost-of-basic-needs (CBN) poverty lines that are utility consistent. Applications to date illustrate that utility-consistent poverty measurements derived from the proposed approach and those derived from current CBN best practices often differ substantially...

  9. The effect of a combined glenoid and Hill-Sachs defect on glenohumeral stability: a biomechanical cadaveric study using 3-dimensional modeling of 142 patients.

    Science.gov (United States)

    Arciero, Robert A; Parrino, Anthony; Bernhardson, Andrew S; Diaz-Doran, Vilmaris; Obopilwe, Elifho; Cote, Mark P; Golijanin, Petr; Mazzocca, Augustus D; Provencher, Matthew T

    2015-06-01

    Bone loss in anterior glenohumeral instability occurs on both the glenoid and the humerus; however, existing biomechanical studies have evaluated glenoid and humeral head defects in isolation. Thus, little is known about the combined effect of these bony lesions in a clinically relevant model on glenohumeral stability. The purpose of this study was to determine the biomechanical efficacy of a Bankart repair in the setting of bipolar (glenoid and humeral head) bone defects determined via computer-generated 3-dimensional (3D) modeling of 142 patients with recurrent anterior shoulder instability. The null hypothesis was that adding a bipolar bone defect will have no effect on glenohumeral stability after soft tissue Bankart repair. Controlled laboratory study. A total of 142 consecutive patients with recurrent anterior instability were analyzed with 3D computed tomography scans. Two Hill-Sachs lesions were selected on the basis of volumetric size representing the 25th percentile (0.87 cm(3); small) and 50th percentile (1.47 cm(3); medium) and printed in plastic resin with a 3D printer. A total of 21 cadaveric shoulders were evaluated on a custom shoulder-testing device permitting 6 degrees of freedom, and the force required to translate the humeral head anteriorly 10 mm at a rate of 2.0 mm/s with a compressive load of 50 N was determined at 60° of glenohumeral abduction and 60° of external rotation. All Bankart lesions were made sharply from the 2- to 6-o'clock positions for a right shoulder. Subsequent Bankart repair with transosseous tunnels using high-strength suture was performed. Hill-Sachs lesions were made in the cadaver utilizing a plastic mold from the exact replica off the 3D printer. Testing was conducted in the following sequence for each specimen: (1) intact, (2) posterior capsulotomy, (3) Bankart lesion, (4) Bankart repair, (5) Bankart lesion with 2-mm glenoid defect, (6) Bankart repair, (7) Bankart lesion with 2-mm glenoid defect and Hill-Sachs lesion

  10. Pyridine nucleotide cycle of Salmonella typhimurium: isolation and characterization of pncA, pncB, and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide.

    Science.gov (United States)

    Foster, J W; Kinney, D M; Moat, A G

    1979-03-01

    Mutants of Salmonella typhimurium LT-2 deficient in nicotinamidase activity (pncA) or nicotinic acid phosphoribosyltransferase activity (pncB) were isolated as resistant to analogs of nicotinic acid and nicotinamide. Information obtained from interrupted mating experiments placed the pncA gene at 27 units and the pncB gene at 25 units on the S. typhimurium LT-2 linkage map. A major difference in the location of the pncA gene was found between the S. typhimurium and Escherichia coli linkage maps. The pncA gene is located in a region in which there is a major inversion of the gene order in S. typhimurium as compared to that in E. coli. Growth experiments using double mutants blocked in the de novo pathway to nicotinamide adenine dinucleotide (NAD) (nad) and in the pyridine nucleotide cycle (pnc) at either the pncA or pncB locus, or both, have provided evidence for the existence of an alternate recycling pathway in this organism. Mutants lacking this alternate cycle, pncC, have been isolated and mapped via cotransduction at 0 units. Utilization of exogenous NAD was examined through the use of [14C]carbonyl-labeled NAD and [14C]adenine-labeled NAD. The results of these experiments suggest that NAD is degraded to nicotinamide mononucleotide at the cell surface. A portion of this extracellular nicotinamide mononucleotide is then transported across the cell membrane by nicotinamide mononucleotide glycohydrolase and degraded to nicotinamide in the process. The remaining nicotinamide mononucleotide accumulates extracellularly and will support the growth of nadA pncB mutants which cannot utilize the nicotinamide resulting from the major pathway of NAD degradation. A model is presented for the utilization of exogenous NAD by S. typhimurium LT-2.

  11. Characterization and Utilization of Calcium Oxide (CaO) Thermally Decomposed from Fish Bones as a Catalyst in the Production of Biodiesel from Waste Cooking Oil

    OpenAIRE

    Aldes Lesbani; Sabat Okta Ceria Sitompul; Risfidian Mohadi; Nurlisa Hidayati

    2016-01-01

    Thermal decomposition of fish bones to obtain calcium oxide (CaO) was conducted at various temperatures of 400, 500, 800, 900, 1000, and 1100 °C. The calcium oxide was then characterized using X-ray diffractometer, FTIR spectrophotometer, and SEM analysis. The calcium oxide obtained from the decomposition at 1000 °C was then used as a catalyst in the production of biodiesel from waste cooking oil. Diffraction pattern of the calcium oxide produced from decomposition at 1000...

  12. NON-EXPECTED UTILITY THEORIES: WEIGHTED EXPECTED, RANK DEPENDENT, AND CUMULATIVE PROSPECT THEORY UTILITY

    OpenAIRE

    Tuthill, Jonathan W.; Frechette, Darren L.

    2002-01-01

    This paper discusses some of the failings of expected utility including the Allais paradox and expected utility's inadequate one dimensional characterization of risk. Three alternatives to expected utility are discussed at length; weighted expected utility, rank dependent utility, and cumulative prospect theory. Each alternative is capable of explaining Allais paradox type problems and permits more sophisticated multi dimensional risk preferences.

  13. UTILIZATION OF FUNDUS AUTOFLUORESCENCE, SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY, AND ENHANCED DEPTH IMAGING IN THE CHARACTERIZATION OF BIETTI CRYSTALLINE DYSTROPHY IN DIFFERENT STAGES.

    Science.gov (United States)

    Li, Qian; Li, Yang; Zhang, Xiaohui; Xu, Zhangxing; Zhu, Xiaoqing; Ma, Kai; She, Haicheng; Peng, Xiaoyan

    2015-10-01

    To characterize Bietti crystalline dystrophy (BCD) in different stages using multiple imaging modalities. Sixteen participants clinically diagnosed as BCD were included in the retrospective study and were categorized into 3 stages according to fundus photography. Eleven patients were genetically confirmed. Fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging features of BCD were analyzed. On fundus autofluorescence, the abnormal autofluorescence was shown to enlarge in area and decrease in intensity with stages. Using spectral domain optical coherence tomography, the abnormalities in Stage 1 were observed to localize in outer retinal layers, whereas in Stage 2 and Stage 3, more extensive retinal atrophy was seen. In enhanced depth imaging, the subfoveal choroidal layers were delineated clearly in Stage 1; in Stage 2, destructions were primarily found in the choriocapillaris with associated alterations in the outer vessels; Stage 3 BCD displayed severe choroidal thinning. Choroidal neovascularization and macular edema were exhibited with high incidence. IVS6-8del17bp/inGC of the CYP4V2 gene was the most common mutant allele. Noninvasive fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging may help to characterize the chorioretinal pathology of BCD at different degrees, and therefore, we propose staging of BCD depending on those methods. Physicians should be cautious of the vision-threatening complications of the disease.

  14. A New Model for Birth Weight Prediction Using 2- and 3-Dimensional Ultrasonography by Principal Component Analysis: A Chinese Population Study.

    Science.gov (United States)

    Liao, Shuxin; Wang, Yunfang; Xiao, Shufang; Deng, Xujie; Fang, Bimei; Yang, Fang

    2018-03-30

    To establish a new model for birth weight prediction using 2- and 3-dimensional ultrasonography (US) by principal component analysis (PCA). Two- and 3-dimensional US was prospectively performed in women with normal singleton pregnancies within 7 days before delivery (37-41 weeks' gestation). The participants were divided into a development group (n = 600) and a validation group (n = 597). Principal component analysis and stepwise linear regression analysis were used to develop a new prediction model. The new model's accuracy in predicting fetal birth weight was confirmed by the validation group through comparisons with previously published formulas. A total of 1197 cases were recruited in this study. All interclass and intraclass correlation coefficients of US measurements were greater than 0.75. Two principal components (PCs) were considered primary in determining estimated fetal birth weight, which were derived from 9 US measurements. Stepwise linear regression analysis showed a positive association between birth weight and PC1 and PC2. In the development group, our model had a small mean percentage error (mean ± SD, 3.661% ± 3.161%). At least a 47.558% decrease in the mean percentage error and a 57.421% decrease in the standard deviation of the new model compared with previously published formulas were noted. The results were similar to those in the validation group, and the new model covered 100% of birth weights within 10% of actual birth weights. The birth weight prediction model based on 2- and 3-dimensional US by PCA could help improve the precision of estimated fetal birth weight. © 2018 by the American Institute of Ultrasound in Medicine.

  15. A finite element evaluation of mechanical function for 3 distal extension partial dental prosthesis designs with a 3-dimensional nonlinear method for modeling soft tissue.

    Science.gov (United States)

    Nakamura, Yoshinori; Kanbara, Ryo; Ochiai, Kent T; Tanaka, Yoshinobu

    2014-10-01

    The mechanical evaluation of the function of partial removable dental prostheses with 3-dimensional finite element modeling requires the accurate assessment and incorporation of soft tissue behavior. The differential behaviors of the residual ridge mucosa and periodontal ligament tissues have been shown to exhibit nonlinear displacement. The mathematic incorporation of known values simulating nonlinear soft tissue behavior has not been investigated previously via 3-dimensional finite element modeling evaluation to demonstrate the effect of prosthesis design on the supporting tissues. The purpose of this comparative study was to evaluate the functional differences of 3 different partial removable dental prosthesis designs with 3-dimensional finite element analysis modeling and a simulated patient model incorporating known viscoelastic, nonlinear soft tissue properties. Three different designs of distal extension removable partial dental prostheses were analyzed. The stress distributions to the supporting abutments and soft tissue displacements of the designs tested were calculated and mechanically compared. Among the 3 dental designs evaluated, the RPI prosthesis demonstrated the lowest stress concentrations on the tissue supporting the tooth abutment and also provided wide mucosa-borne areas of support, thereby demonstrating a mechanical advantage and efficacy over the other designs evaluated. The data and results obtained from this study confirmed that the functional behavior of partial dental prostheses with supporting abutments and soft tissues are consistent with the conventional theories of design and clinical experience. The validity and usefulness of this testing method for future applications and testing protocols are shown. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  16. 3-Dimensional computed tomography imaging of the ring-sling complex with non-operative survival case in a 10-year-old female

    OpenAIRE

    Fukuda, Hironobu; Imataka, George; Drago, Fabrizio; Maeda, Kosaku; Yoshihara, Shigemi

    2017-01-01

    We report a case of a 10-year-old female patient who survived ring-sling complex without surgery. The patient had congenital wheezing from the neonatal period and was treated after a tentative diagnosis of infantile asthma. The patient suffered from allergy and was hospitalized several times due to severe wheezing, and when she was 22 months old, she was diagnosed with ring-sling complex. We used a segmental 4 mm internal diameter of the trachea for 3-dimensional computed tomography (3D-CT). ...

  17. Prosthesis-guided implant restoration of an auricular defect using computed tomography and 3-dimensional photographic imaging technologies: a clinical report.

    Science.gov (United States)

    Wang, Shuming; Leng, Xu; Zheng, Yaqi; Zhang, Dapeng; Wu, Guofeng

    2015-02-01

    The concept of prosthesis-guided implantation has been widely accepted for intraoral implant placement, although clinicians do not fully appreciate its use for facial defect restoration. In this clinical report, multiple digital technologies were used to restore a facial defect with prosthesis-guided implantation. A simulation surgery was performed to remove the residual auricular tissue and to ensure the correct position of the mirrored contralateral ear model. The combined application of computed tomography and 3-dimensional photography preserved the position of the mirrored model and facilitated the definitive implant-retained auricular prosthesis. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Creutzfeldt-Jakob Disease Mimicking Alzheimer Disease and Dementia With Lewy Bodies-Findings of FDG PET With 3-Dimensional Stereotactic Surface Projection.

    Science.gov (United States)

    Miyazawa, Nobuhiko

    2017-05-01

    A 78-year-old man received a diagnosis of sporadic Creutzfeldt-Jakob disease based on symptoms and findings of MRI, FDG PET, and cerebrospinal fluid markers. PET with 3-dimensional stereotactic surface projection (3D-SSP) showed that the distribution of hypometabolism mimicked that of Alzheimer disease. A 68-year-old woman was treated under a diagnosis of convulsion. Findings of MRI, PET, familial history, and cerebrospinal fluid markers revealed familial Creutzfeldt-Jakob disease. FDG PET with 3D-SSP disclosed that the hypometabolic pattern mimicked that of dementia with Lewy bodies. FDG PET with 3D-SSP can demonstrate similar patterns in various neurodegenerative disorders.

  19. The potential for machine learning algorithms to improve and reduce the cost of 3-dimensional printing for surgical planning.

    Science.gov (United States)

    Huff, Trevor J; Ludwig, Parker E; Zuniga, Jorge M

    2018-05-01

    3D-printed anatomical models play an important role in medical and research settings. The recent successes of 3D anatomical models in healthcare have led many institutions to adopt the technology. However, there remain several issues that must be addressed before it can become more wide-spread. Of importance are the problems of cost and time of manufacturing. Machine learning (ML) could be utilized to solve these issues by streamlining the 3D modeling process through rapid medical image segmentation and improved patient selection and image acquisition. The current challenges, potential solutions, and future directions for ML and 3D anatomical modeling in healthcare are discussed. Areas covered: This review covers research articles in the field of machine learning as related to 3D anatomical modeling. Topics discussed include automated image segmentation, cost reduction, and related time constraints. Expert commentary: ML-based segmentation of medical images could potentially improve the process of 3D anatomical modeling. However, until more research is done to validate these technologies in clinical practice, their impact on patient outcomes will remain unknown. We have the necessary computational tools to tackle the problems discussed. The difficulty now lies in our ability to collect sufficient data.

  20. Arsenic, barium, strontium and uranium geochemistry and their utility as tracers to characterize groundwaters from the Espadán–Calderona Triassic Domain, Spain

    Energy Technology Data Exchange (ETDEWEB)

    Giménez-Forcada, Elena, E-mail: e.gimenez@igme.es [Instituto Geológico y Minero de España — IGME, Unidad de Salamanca, Azafranal 48, 37001 Salamanca (Spain); Vega-Alegre, Marisol [University of Valladolid — UVA, Department of Analytical Chemistry, Campus Miguel Delibes, Paseo Belén 7, 47011 Valladolid (Spain)

    2015-04-15

    A set of analytical data from the Espadán–Calderona Triassic Domain aquifers was processed using hierarchical agglomerative cluster analysis (HCA) and principal component analysis (PCA), to achieve a quantitative and independent approach to investigate the characteristics of groundwater composition and possible differences between groundwater flows from Triassic aquifers from the Espadán–Calderona Triassic Domain (Spain). Mineralization in the Triassic series has led to the presence of several metals and metalloids in groundwater, including As, Mn, Fe and U. These are associated with fresher bicarbonate groundwaters, characterized by lower Sr/Ba ratios. Levels containing sulfate evaporitic salt, which are interbedded through the Triassic series, seem to exert a strong influence on the chemistry of several groundwaters, characterized by calcium sulfate facies with high Sr concentration and high Sr/Ba ratios. The application of multivariate statistical techniques to the interpretation of analytical results allows the differentiation of groundwater types occurring in the Triassic aquifers and identification of the role of a number of minor or trace elements and their ratios that can be treated as hydrogeochemical tracers. With them it was possible to correlate the different recharge waters with the tectonic morphology of the Espadán–Calderona Triassic Domain. - Highlights: • Groundwater hydrochemistry of Espadán–Calderona Triassic Domain was investigated. • Multivariate statistical analysis and metal tracers differentiated groundwater types. • The Sr/Ba ratio and As and U concentrations are good indicators of groundwater flows. • The chemistry of groundwater flows correlates with structural morphology of recharge areas.

  1. New Frontiers in Characterization of Sub-Catalog Microseismicity: Utilizing Inter-Event Waveform Cross Correlation for Estimating Precise Locations, Magnitudes, and Focal Mechanisms of Tiny Earthquakes

    Science.gov (United States)

    Ellsworth, W. L.; Shelly, D. R.; Hardebeck, J.; Hill, D. P.

    2017-12-01

    Microseismicity often conveys the most direct information about active processes in the earth's subsurface. However, routine network processing typically leaves most earthquakes uncharacterized. These "sub-catalog" events can provide critical clues to ongoing processes in the source region. To address this issue, we have developed waveform-based processing that leverages the existing routine catalog of earthquakes to detect and characterize "sub-catalog" events (those absent in routine catalogs). By correlating waveforms of cataloged events with the continuous data stream, we 1) identify events with similar waveform signatures in the continuous data across multiple stations, 2) precisely measure relative time lags across these stations for both P- and S-wave time windows, and 3) estimate the relative polarity between events by the sign of the peak absolute value correlations and its height above the secondary peak. When combined, these inter-event comparisons yield robust measurements, which enable sensitive event detection, relative relocation, and relative magnitude estimation. The most recent addition, focal mechanisms derived from correlation-based relative polarities, addresses a significant shortcoming in microseismicity analyses (see Shelly et al., JGR, 2016). Depending on the application, we can characterize 2-10 times as many events as included in the initial catalog. This technique is particularly well suited for compact zones of active seismicity such as seismic swarms. Application to a 2014 swarm in Long Valley Caldera, California, illuminates complex patterns of faulting that would have otherwise remained obscured. The prevalence of such features in other environments remains an important, as yet unresolved, question.

  2. Arsenic, barium, strontium and uranium geochemistry and their utility as tracers to characterize groundwaters from the Espadán–Calderona Triassic Domain, Spain

    International Nuclear Information System (INIS)

    Giménez-Forcada, Elena; Vega-Alegre, Marisol

    2015-01-01

    A set of analytical data from the Espadán–Calderona Triassic Domain aquifers was processed using hierarchical agglomerative cluster analysis (HCA) and principal component analysis (PCA), to achieve a quantitative and independent approach to investigate the characteristics of groundwater composition and possible differences between groundwater flows from Triassic aquifers from the Espadán–Calderona Triassic Domain (Spain). Mineralization in the Triassic series has led to the presence of several metals and metalloids in groundwater, including As, Mn, Fe and U. These are associated with fresher bicarbonate groundwaters, characterized by lower Sr/Ba ratios. Levels containing sulfate evaporitic salt, which are interbedded through the Triassic series, seem to exert a strong influence on the chemistry of several groundwaters, characterized by calcium sulfate facies with high Sr concentration and high Sr/Ba ratios. The application of multivariate statistical techniques to the interpretation of analytical results allows the differentiation of groundwater types occurring in the Triassic aquifers and identification of the role of a number of minor or trace elements and their ratios that can be treated as hydrogeochemical tracers. With them it was possible to correlate the different recharge waters with the tectonic morphology of the Espadán–Calderona Triassic Domain. - Highlights: • Groundwater hydrochemistry of Espadán–Calderona Triassic Domain was investigated. • Multivariate statistical analysis and metal tracers differentiated groundwater types. • The Sr/Ba ratio and As and U concentrations are good indicators of groundwater flows. • The chemistry of groundwater flows correlates with structural morphology of recharge areas

  3. Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey.

    KAUST Repository

    Balk, Melike

    2009-08-23

    A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4-0.6 microm in diameter and 3.5-10 microm in length. Spores were terminal and round. The temperature range for growth was 40-80 degrees C, with an optimum at 70 degrees C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H(2), and CO(2). Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H(2) and CO(2) formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA-DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans.

  4. Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey.

    KAUST Repository

    Balk, Melike; Heilig, Hans G H J; van Eekert, Miriam H A; Stams, Alfons J M; Rijpstra, Irene C; Sinninghe-Damsté , Jaap S; de Vos, Willem M; Kengen, Servé W M

    2009-01-01

    A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4-0.6 microm in diameter and 3.5-10 microm in length. Spores were terminal and round. The temperature range for growth was 40-80 degrees C, with an optimum at 70 degrees C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H(2), and CO(2). Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H(2) and CO(2) formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA-DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans.

  5. Development of an Autonomous, Dual Chamber Bioreactor for the Growth of 3-Dimensional Epithelial-Stromal Tissues in Microgravity

    Science.gov (United States)

    Patel, Zarana S.; Wettergreen, Matthew A.; Huff, Janice L.

    2014-01-01

    We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3-D organotypic epithelial-stromal cultures that require an air-liquid interface. These complex 3-D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an air-liquid interface, these 3-D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissue-like human epithelial-stromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for air-liquid, liquid-liquid, and liquid-air exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of add-on capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program.

  6. Utility of chromatographic and spectroscopic techniques for a detailed characterization of poly(styrene-b-isoprene) miktoarm star copolymers with complex architecture

    KAUST Repository

    Šmigovec Ljubič, Tina; Rebolj, Katja; Pahovnik, David; Hadjichristidis, Nikolaos; Žigon, Majda; Žagar, Ema

    2012-01-01

    We analyzed various miktoarm star copolymers of the PS(PI) x type (x = 2, 3, 5, 7), which consist of one long polystyrene (PS) arm (82 or 105 kDa) and various numbers of short polyisoprene (PI) arms (from 11.3 to 39.7 kDa), prepared by anionic polymerization and selective chlorosilane chemistry. The length of the PI arm in stars decreases with the number of arms, so that the chemical compositions of all PS(PI) x samples were comparable. Our aim was to determine the purity of samples and to identify exactly the constituents of individual samples. For this purpose we used a variety of separation techniques (size-exclusion chromatography (SEC), reversed-phase liquid-adsorption chromatography (RP-LAC), and two-dimensional liquid chromatography (2D-LC)) and characterization techniques (UV-MALS-RI multidetection SEC system, NMR, and MALDI-TOF MS). The best separation and identification of the samples' constituents were achieved by RP-LAC, which separates macromolecules according to their chemical composition, and a subsequent analysis of the off-line collected fractions from the RP-C18 column by SEC/UV-MALS-RI multidetection system. The results showed that all PS(PI) x samples contained the homo-PS and homo-PI in minor amounts and the high-molar-mass (PS) y(PI) z (y > 1) species, the content of which is higher in the samples PS(PI) 5 and PS(PI) 7 than in the samples PS(PI) 2 and PS(PI) 3. The major constituent of the PS(PI) 2 sample was the one with the predicted structure. On the other hand, the major components of the PS(PI) x (x = 3, 5, and 7) samples were the stars consisting of a smaller number of PI arms than predicted from the functionalities of chlorosilane coupling agents. These results are in agreement with the average chemical composition of samples determined by proton NMR spectroscopy and characterization of the constituents by MALDI-TOF MS. © 2012 American Chemical Society.

  7. Utility of chromatographic and spectroscopic techniques for a detailed characterization of poly(styrene-b-isoprene) miktoarm star copolymers with complex architecture

    KAUST Repository

    Šmigovec Ljubič, Tina

    2012-09-25

    We analyzed various miktoarm star copolymers of the PS(PI) x type (x = 2, 3, 5, 7), which consist of one long polystyrene (PS) arm (82 or 105 kDa) and various numbers of short polyisoprene (PI) arms (from 11.3 to 39.7 kDa), prepared by anionic polymerization and selective chlorosilane chemistry. The length of the PI arm in stars decreases with the number of arms, so that the chemical compositions of all PS(PI) x samples were comparable. Our aim was to determine the purity of samples and to identify exactly the constituents of individual samples. For this purpose we used a variety of separation techniques (size-exclusion chromatography (SEC), reversed-phase liquid-adsorption chromatography (RP-LAC), and two-dimensional liquid chromatography (2D-LC)) and characterization techniques (UV-MALS-RI multidetection SEC system, NMR, and MALDI-TOF MS). The best separation and identification of the samples\\' constituents were achieved by RP-LAC, which separates macromolecules according to their chemical composition, and a subsequent analysis of the off-line collected fractions from the RP-C18 column by SEC/UV-MALS-RI multidetection system. The results showed that all PS(PI) x samples contained the homo-PS and homo-PI in minor amounts and the high-molar-mass (PS) y(PI) z (y > 1) species, the content of which is higher in the samples PS(PI) 5 and PS(PI) 7 than in the samples PS(PI) 2 and PS(PI) 3. The major constituent of the PS(PI) 2 sample was the one with the predicted structure. On the other hand, the major components of the PS(PI) x (x = 3, 5, and 7) samples were the stars consisting of a smaller number of PI arms than predicted from the functionalities of chlorosilane coupling agents. These results are in agreement with the average chemical composition of samples determined by proton NMR spectroscopy and characterization of the constituents by MALDI-TOF MS. © 2012 American Chemical Society.

  8. Fabrication 3 dimensional Pt catalysts via Na2Ti3O7 nanowires for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    He, X.; Hu, C. [Chongqing Univ., Chongqing (China). Dept. of Applied Physics

    2010-07-01

    This paper reported on a study in which platinum (Pt) nanoparticles deposited on Na{sub 2}Ti{sub 3}O{sub 7} nanowires were used for the electrooxidation of methanol and ethanol in acidic and alkaline media. The Na{sub 2}Ti{sub 3}O{sub 7} nanowires were used as 3D frames for loading Pt nanoparticles. The synthesized samples were characterized by X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The analysis revealed that Pt nanoparticles are uniformly deposited on the Na{sub 2}Ti{sub 3}O{sub 7} nanowires. The electrochemical properties of the electrocatalysts were determined by cyclic voltammetry, linear sweep voltammetry and chronoamperometry. Compared to the Pt electrocatalyst, the Pt/Na{sub 2}Ti{sub 3}O{sub 7} electrocatalyst had better catalytic activity and stability, suggesting that it has potential to be an excellent catalytic anode in fuel cells.

  9. Isolation and characterization of two new homoacetogenic hydrogen-utilizing bacteria from the human intestinal tract that are closely related to Clostridium coccoides.

    Science.gov (United States)

    Kamlage, B; Gruhl, B; Blaut, M

    1997-05-01

    Two gram-positive, strictly anoxic, coccoid- to rod-shaped strains of bacteria, Clostridium coccoides 1410 and C. coccoides 3110, were isolated from human feces on the typical homoacetogenic substrates formate plus H2 plus CO2 (strain 1410) and vanillate plus H2 plus CO2 (strain 3110) in the presence of 2-bromoethanesulfonate to inhibit methanogenesis. On the basis of 16S rRNA sequencing, DNA-DNA hybridization, and physiological and morphological parameters, both isolates are closely related to C. coccoides DSM 935T. The G+C contents of the DNA were 46.1 and 46.2 mol% for C. coccoides 1410 and C. coccoides 3110, respectively. Cytochromes could not be detected. Formate was degraded exclusively to acetate, whereas vanillate was O-demethylated, resulting in acetate and 3,4-dihydroxybenzoate, the latter being further decarboxylated to catechol. In the presence of organic substrates, H2 was cometabolized to acetate, but both strains failed to grow autotrophically. Lactose, lactulose, sorbitol, glucose, and various other carbohydrates supported growth as well. Untypical of homoacetogens, glucose and sorbitol were fermented not exclusively to acetate; instead, considerable amounts of succinate and D-lactate were produced. H2 was evolved from carbohydrates only in negligible traces. Acetogenesis from formate plus H2 plus CO2 or vanillate plus H2 plus CO2 was constitutive, whereas utilization of carbohydrates was inducible. Hydrogenase, CO dehydrogenase, formate dehydrogenase, and all of the tetrahydrofolic acid-dependent, C1 compound-converting enzymes of the acetyl-coenzyme A pathway of homoacetogenesis were present in cell extracts.

  10. The utility of ultrasound and magnetic resonance imaging versus surgery for the characterization of müllerian anomalies in the pediatric and adolescent population.

    Science.gov (United States)

    Santos, X M; Krishnamurthy, R; Bercaw-Pratt, J L; Dietrich, J E

    2012-06-01

    To evaluate the utility of transabdominal ultrasound and magnetic resonance imaging in the evaluation of American Society for Reproductive Medicine (†)(ASRM)-classified müllerian anomalies compared to surgical findings in the pediatric and adolescent population. Retrospective chart review. Tertiary academic center. Thirty-eight patients with müllerian anomalies seen in our pediatric and adolescent gynecology clinic were identified both on the basis of ICD-9 codes and having magnetic resonance imaging at Texas Children's Hospital between 2004 and 2009. None. Correlation among transabdominal ultrasound and magnetic resonance imaging findings with surgical findings. Mean age was 12.2 (± 4.1) years. Twenty-eight patients underwent magnetic resonance imaging and required surgical intervention, and 88.5% demonstrated correlative consistency with surgical findings. Twenty-two patients underwent ultrasound, magnetic resonance imaging, and surgery, which revealed consistency among ultrasound and surgical findings (59.1%) and consistency among magnetic resonance imaging and surgical findings (90.9%). In ASRM diagnoses evaluated by magnetic resonance imaging, surgical findings correlated in 92% (Pearson 0.89). Overall, 55.2% of patients had a renal malformation. Magnetic resonance imaging is the gold standard imaging modality for müllerian anomalies and is an effective technique for noninvasive evaluation and accurate classification of the type of anomaly in the pediatric and adolescent population. Magnetic resonance imaging should be considered as an adjunct to transabdominal ultrasound to evaluate müllerian anomalies. Copyright © 2012 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  11. Structural and functional characterization of an orphan ATP-binding cassette ATPase involved in manganese utilization and tolerance in Leptospira spp.

    Science.gov (United States)

    Benaroudj, Nadia; Saul, Frederick; Bellalou, Jacques; Miras, Isabelle; Weber, Patrick; Bondet, Vincent; Murray, Gerald L; Adler, Ben; Ristow, Paula; Louvel, Hélène; Haouz, Ahmed; Picardeau, Mathieu

    2013-12-01

    Pathogenic Leptospira species are the etiological agents of the widespread zoonotic disease leptospirosis. Most organisms, including Leptospira, require divalent cations for proper growth, but because of their high reactivity, these metals are toxic at high concentrations. Therefore, bacteria have acquired strategies to maintain metal homeostasis, such as metal import and efflux. By screening Leptospira biflexa transposon mutants for their ability to use Mn(2+), we have identified a gene encoding a putative orphan ATP-binding cassette (ABC) ATPase of unknown function. Inactivation of this gene in both L. biflexa and L. interrogans strains led to mutants unable to grow in medium in which iron was replaced by Mn(2+), suggesting an involvement of this ABC ATPase in divalent cation uptake. A mutation in this ATPase-coding gene increased susceptibility to Mn(2+) toxicity. Recombinant ABC ATPase of the pathogen L. interrogans exhibited Mg(2+)-dependent ATPase activity involving a P-loop motif. The structure of this ATPase was solved from a crystal containing two monomers in the asymmetric unit. Each monomer adopted a canonical two-subdomain organization of the ABC ATPase fold with an α/β subdomain containing the Walker motifs and an α subdomain containing the ABC signature motif (LSSGE). The two monomers were arranged in a head-to-tail orientation, forming a V-shaped particle with all the conserved ABC motifs at the dimer interface, similar to functional ABC ATPases. These results provide the first structural and functional characterization of a leptospiral ABC ATPase.

  12. In-Field, In Situ, and In Vivo 3-Dimensional Elemental Mapping for Plant Tissue and Soil Analysis Using Laser-Induced Breakdown Spectroscopy

    Directory of Open Access Journals (Sweden)

    Chunjiang Zhao

    2016-10-01

    Full Text Available Sensing and mapping element distributions in plant tissues and its growth environment has great significance for understanding the uptake, transport, and accumulation of nutrients and harmful elements in plants, as well as for understanding interactions between plants and the environment. In this study, we developed a 3-dimensional elemental mapping system based on laser-induced breakdown spectroscopy that can be deployed in- field to directly measure the distribution of multiple elements in living plants as well as in the soil. Mapping is performed by a fast scanning laser, which ablates a micro volume of a sample to form a plasma. The presence and concentration of specific elements are calculated using the atomic, ionic, and molecular spectral characteristics of the plasma emission spectra. Furthermore, we mapped the pesticide residues in maize leaves after spraying to demonstrate the capacity of this method for trace elemental mapping. We also used the system to quantitatively detect the element concentrations in soil, which can be used to further understand the element transport between plants and soil. We demonstrate that this method has great potential for elemental mapping in plant tissues and soil with the advantages of 3-dimensional and multi-elemental mapping, in situ and in vivo measurement, flexible use, and low cost.

  13. Leading survey and research report for fiscal 1999. Survey and research on 3-dimensional ion beam processing technology; 1999 nendo sanjigen ion kokan gijutsu no chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Application of ion beam processing to 2-dimensional shapes in the past has been limited to flat shapes or small areas. There is a 3-dimensional plasma-based ion implantation (PBII) technology for which high-density plasma is generated using plural metal ion sources and gas ion sources for the application of pulse voltages. Using this technology, ions are implanted into intricate shapes, large areas, and surfaces of 3-dimensional shapes, and surface reforming is accomplished through thin film formation. It is low in cost and high in productivity, and finds a great demand for use in the fabrication of members of large and complicated engines for automobiles, spacecraft, and aircraft, members of precision machines, and members of electric power facilities and chemical plants where high resistance to abrasion, corrosion, and heat are mandatory. Research and development for its practical application, however, has just started and, before its commercialization, technologies have to be completed involving surface treatment using gas plasma for ion implantation, thin film formation using metal ion plasma, and their hybrid. Similarly important is the technology of generating homogenous plasma. This new technology is expected to enhance economic efficiency, provide means to deal with environmental matters, and improve on energy efficiency. An outline of the proposition for the project is compiled in this report. (NEDO)

  14. Role of preoperative 3-dimensional computed tomography reconstruction in depressed skull fractures treated with craniectomy: a case report of forensic interest.

    Science.gov (United States)

    Viel, Guido; Cecchetto, Giovanni; Manara, Renzo; Cecchetto, Attilio; Montisci, Massimo

    2011-06-01

    Patients affected by cranial trauma with depressed skull fractures and increased intracranial pressure generally undergo neurosurgical intervention. Because craniotomy and craniectomy remove skull fragments and generate new fracture lines, they complicate forensic examination and sometimes prevent a clear identification of skull fracture etiology. A 3-dimensional reconstruction based on preoperative computed tomography (CT) scans, giving a picture of the injuries before surgical intervention, can help the forensic examiner in identifying skull fracture origin and the means of production.We report the case of a 41-year-old-man presenting at the emergency department with a depressed skull fracture at the vertex and bilateral subdural hemorrhage. The patient underwent 2 neurosurgical interventions (craniotomy and craniectomy) but died after 40 days of hospitalization in an intensive care unit. At autopsy, the absence of various bone fragments did not allow us to establish if the skull had been stricken by a blunt object or had hit the ground with high kinetic energy. To analyze bone injuries before craniectomy, a 3-dimensional CT reconstruction based on preoperative scans was performed. A comparative analysis between autoptic and radiological data allowed us to differentiate surgical from traumatic injuries. Moreover, based on the shape and size of the depressed skull fracture (measured from the CT reformations), we inferred that the man had been stricken by a cylindric blunt object with a diameter of about 3 cm.

  15. The use of TOUGH2 for the LBL/USGS 3-dimensional site-scale model of Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Bodvarsson, G.; Chen, G.; Haukwa, C.; Kwicklis, E.

    1995-01-01

    The three-dimensional site-scale numerical model o the unsaturated zone at Yucca Mountain is under continuous development and calibration through a collaborative effort between Lawrence Berkeley Laboratory (LBL) and the United States Geological Survey (USGS). The site-scale model covers an area of about 30 km 2 and is bounded by major fault zones to the west (Solitario Canyon Fault), east (Bow Ridge Fault) and perhaps to the north by an unconfirmed fault (Yucca Wash Fault). The model consists of about 5,000 grid blocks (elements) with nearly 20,000 connections between them; the grid was designed to represent the most prevalent geological and hydro-geological features of the site including major faults, and layering and bedding of the hydro-geological units. Submodels are used to investigate specific hypotheses and their importance before incorporation into the three-dimensional site-scale model. The primary objectives of the three-dimensional site-scale model are to: (1) quantify moisture, gas and heat flows in the ambient conditions at Yucca Mountain, (2) help in guiding the site-characterization effort (primarily by USGS) in terms of additional data needs and to identify regions of the mountain where sufficient data have been collected, and (3) provide a reliable model of Yucca Mountain that is validated by repeated predictions of conditions in new boreboles and the ESF and has therefore the confidence of the public and scientific community. The computer code TOUGH2 developed by K. Pruess at LBL was used along with the three-dimensional site-scale model to generate these results. In this paper, we also describe the three-dimensional site-scale model emphasizing the numerical grid development, and then show some results in terms of moisture, gas and heat flow

  16. 177Lu-labeled HPMA copolymers utilizing cathepsin B and S cleavable linkers: Synthesis, characterization and preliminary in vivo investigation in a pancreatic cancer model

    International Nuclear Information System (INIS)

    Ogbomo, Sunny M.; Shi, Wen; Wagh, Nilesh K.; Zhou, Zhengyuan; Brusnahan, Susan K.; Garrison, Jered C.

    2013-01-01

    Introduction: A major barrier to the advancement of therapeutic nanomedicines has been the non-target toxicity caused by the accumulation of the drug delivery systems in organs associated with the reticuloendothelial system, particularly the liver and spleen. Herein, we report the development of peptide based metabolically active linkers (MALs) that are enzymatically cleaved by cysteine cathepsin B and S, two proteases highly expressed in the liver and spleen. The overall goal of this approach is to utilize the MALs to lower the non-target retention and toxicity of radiolabeled drug delivery systems, thus resulting in higher diagnostic and radiotherapeutic efficacy. Methods: In this study three MALs (MAL0, MAL1 and MAL2) were investigated. MAL1 and MAL2 are composed of known substrates of cathepsin B and S, respectively, while MAL0 is a non-cleavable control. Both MAL1 and MAL2 were shown to undergo enzymatic cleavage with the appropriate cathepsin protease. Subsequent to conjugation to the HPMA copolymer and radiolabeling with 177 Lu, the peptide–polymer conjugates were renamed 177 Lu-metabolically active copolymers ( 177 Lu-MACs) with the corresponding designations: 177 Lu-MAC0, 177 Lu-MAC1 and 177 Lu-MAC2. Results: In vivo evaluation of the 177 Lu-MACs was performed in an HPAC human pancreatic cancer xenograft mouse model. 177 Lu-MAC1 and 177 Lu-MAC2 demonstrated 3.1 and 2.1 fold lower liver retention, respectively, compared to control ( 177 Lu-MAC0) at 72 h post-injection. With regard to spleen retention, 177 Lu-MAC1 and 177 Lu-MAC2 each exhibited a nearly fourfold lower retention, relative to control, at the 72 h time point. However, the tumor accumulation of the 177 Lu-MAC0 was two to three times greater than 177 Lu-MAC1 and 177 Lu-MAC2 at the same time point. The MAL approach demonstrated the capability of substantially reducing the non-target retention of the 177 Lu-labeled HPMA copolymers. Conclusions: While further studies are needed to optimize the

  17. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA

    Science.gov (United States)

    Gkatzelis, Georgios I.; Tillmann, Ralf; Hohaus, Thorsten; Müller, Markus; Eichler, Philipp; Xu, Kang-Ming; Schlag, Patrick; Schmitt, Sebastian H.; Wegener, Robert; Kaminski, Martin; Holzinger, Rupert; Wisthaler, Armin; Kiendler-Scharr, Astrid

    2018-03-01

    An intercomparison of different aerosol chemical characterization techniques has been performed as part of a chamber study of biogenic secondary organic aerosol (BSOA) formation and aging at the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). Three different aerosol sampling techniques - the aerosol collection module (ACM), the chemical analysis of aerosol online (CHARON) and the collection thermal-desorption unit (TD) were connected to proton transfer reaction time-of-flight mass spectrometers (PTR-ToF-MSs) to provide chemical characterization of the SOA. The techniques were compared among each other and to results from an aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS). The experiments investigated SOA formation from the ozonolysis of β-pinene, limonene, a β-pinene-limonene mix and real plant emissions from Pinus sylvestris L. (Scots pine). The SOA was subsequently aged by photo-oxidation, except for limonene SOA, which was aged by NO3 oxidation. Despite significant differences in the aerosol collection and desorption methods of the PTR-based techniques, the determined chemical composition, i.e. the same major contributing signals, was found by all instruments for the different chemical systems studied. These signals could be attributed to known products expected from the oxidation of the examined monoterpenes. The sampling and desorption method of ACM and TD provided additional information on the volatility of individual compounds and showed relatively good agreement. Averaged over all experiments, the total aerosol mass recovery compared to an SMPS varied within 80 ± 10, 51 ± 5 and 27 ± 3 % for CHARON, ACM and TD, respectively. Comparison to the oxygen-to-carbon ratios (O : C) obtained by AMS showed that all PTR-based techniques observed lower O : C ratios, indicating a loss of molecular oxygen either during aerosol sampling or detection. The differences in total

  18. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA

    Directory of Open Access Journals (Sweden)

    G. I. Gkatzelis

    2018-03-01

    Full Text Available An intercomparison of different aerosol chemical characterization techniques has been performed as part of a chamber study of biogenic secondary organic aerosol (BSOA formation and aging at the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber. Three different aerosol sampling techniques – the aerosol collection module (ACM, the chemical analysis of aerosol online (CHARON and the collection thermal-desorption unit (TD were connected to proton transfer reaction time-of-flight mass spectrometers (PTR-ToF-MSs to provide chemical characterization of the SOA. The techniques were compared among each other and to results from an aerosol mass spectrometer (AMS and a scanning mobility particle sizer (SMPS. The experiments investigated SOA formation from the ozonolysis of β-pinene, limonene, a β-pinene–limonene mix and real plant emissions from Pinus sylvestris L. (Scots pine. The SOA was subsequently aged by photo-oxidation, except for limonene SOA, which was aged by NO3 oxidation. Despite significant differences in the aerosol collection and desorption methods of the PTR-based techniques, the determined chemical composition, i.e. the same major contributing signals, was found by all instruments for the different chemical systems studied. These signals could be attributed to known products expected from the oxidation of the examined monoterpenes. The sampling and desorption method of ACM and TD provided additional information on the volatility of individual compounds and showed relatively good agreement. Averaged over all experiments, the total aerosol mass recovery compared to an SMPS varied within 80 ± 10, 51 ± 5 and 27 ± 3 % for CHARON, ACM and TD, respectively. Comparison to the oxygen-to-carbon ratios (O : C obtained by AMS showed that all PTR-based techniques observed lower O : C ratios, indicating a loss of molecular oxygen either during aerosol sampling or

  19. Utilities objectives

    International Nuclear Information System (INIS)

    Cousin, Y.; Fabian, H.U.

    1996-01-01

    The policy of French and german utilities is to make use of nuclear energy as a long term, competitive and environmentally friendly power supply. The world electricity generation is due to double within the next 30 years. In the next 20 to 30 years the necessity of nuclear energy will be broadly recognized. More than for most industries, to deal properly with nuclear energy requires the combination of a consistent political will, of a proper institutional framework, of strong and legitimate control authorities, of a sophisticated industry and of operators with skilled management and human resources. One of the major risk facing nuclear energy is the loss of competitiveness. This can be achieved only through the combination of an optimized design, a consistent standardization, a proper industrial partnership and a stable long term strategy. Although the existing plants in Western Europe are already very safe, the policy is clearly to enhance the safety of the next generation of nuclear plants which are designing today. The French and German utilities have chosen an evolutionary approach based on experience and proven technologies, with an enhanced defense in depth and an objective of easier operation and maintenance. The cost objective is to maintain and improve what has been achieved in the best existing power plants in both countries. This calls for rational choices and optimized design to meet the safety objectives, a strong standardization policy, short construction times, high availability and enough flexibility to enable optimization of the fuel cycle throughout the lifetime of the plants. The conceptual design phase has proven that the French and German teams from industry and from the utilities are able to pursue both the safety and the cost objectives, basing their decision on a rational approach which could be accepted by the safety authorities. (J.S.)

  20. An integrative approach-using field and laboratory data to characterize shell utilization and selection pattern by the hermit crab Pagurus criniticornis (Paguridae from Anchieta Island, Brazil

    Directory of Open Access Journals (Sweden)

    Fernando L. Mantelatto

    Full Text Available Abstract The aim of this study was to characterize the pattern of gastropod shell occupation in the field and selection of shell size and type under laboratory conditions by the hermit crab Pagurus criniticornis (Dana, 1852, inhabiting the infralittoral area of Anchieta Island, São Paulo, Brazil. Hermit crabs were obtained monthly during 1999 by SCUBA diving. For experiments under laboratory conditions, samplings were performed in 2002. The hermit crabs occupied 16 species of gastropods shells. Cerithium atratum (Born, 1778 was the most occupied shell (89.31%, followed by Morula nodulosa (4.73% (Adams, 1845. No difference was observed in the pattern of occupation between males and females. The equations that best demonstrated the relationship between hermit crabs and their shells were those that involved Shell Wet Weight (SWW and Shell Internal Volume (SIV. The laboratory experiments were in accordance to the pattern of occupation observed in the field; the mean value of SAI (Shell Adequacy Index recorded to the population studied was 1.13 with a trend to increase this value in the last size classes. The results obtained corroborate with the hypothesis of the occupation process of shells governed not only by availability of shells, but also by its architecture. In addition, the shell stock in the area is one another important condition related to the exhibited pattern of shell occupation by P. criniticornis, and allows the stable coexistence among the island assemblage. The pattern of occupation observed promotes a high reproductive profile for the population studied, maximizing the populational growth.

  1. Characterization and Utilization of Calcium Oxide (CaO Thermally Decomposed from Fish Bones as a Catalyst in the Production of Biodiesel from Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    Aldes Lesbani

    2016-12-01

    Full Text Available Thermal decomposition of fish bones to obtain calcium oxide (CaO was conducted at various temperatures of 400, 500, 800, 900, 1000, and 1100 °C. The calcium oxide was then characterized using X-ray diffractometer, FTIR spectrophotometer, and SEM analysis. The calcium oxide obtained from the decomposition at 1000 °C was then used as a catalyst in the production of biodiesel from waste cooking oil. Diffraction pattern of the calcium oxide produced from decomposition at 1000 °C showed a pattern similar to that of the calcium oxide produced by the Joint Committee on Powder Diffraction Standard (JCDPS. The diffractions of 2θvalues at 1000 °C were 32.2, 37.3, 53.8, 64.1, and67.3 deg. The FTIR spectrum of calcium oxide decomposed at 1000 °C has a specific vibration at wave-length 362 cm-1, which is similar to the specific vibration of Ca-O. SEM analysis of the calcium oxide indicated that the calcium oxide’s morphology shows a smaller size and a more homogeneous structure, compared to those of fish bones. Theuse of calcium oxide as a catalyst in the production of biodiesel from waste cooking oil resulted in iod number of 15.23 g/100 g KOH, density of 0.88 g/cm3, viscosity of 6.00 cSt, and fatty acid value of 0.56 mg/KOH. These characteristic values meet the National Standard of Indonesia (SNI for biodiesel.

  2. Characterizing the Utility and Limitations of Repurposing an Open-Field Optical Imaging Device for Fluorescence-Guided Surgery in Head and Neck Cancer Patients.

    Science.gov (United States)

    Moore, Lindsay S; Rosenthal, Eben L; Chung, Thomas K; de Boer, Esther; Patel, Neel; Prince, Andrew C; Korb, Melissa L; Walsh, Erika M; Young, E Scott; Stevens, Todd M; Withrow, Kirk P; Morlandt, Anthony B; Richman, Joshua S; Carroll, William R; Zinn, Kurt R; Warram, Jason M

    2017-02-01

    The purpose of this study was to assess the potential of U.S. Food and Drug Administration-cleared devices designed for indocyanine green-based perfusion imaging to identify cancer-specific bioconjugates with overlapping excitation and emission wavelengths. Recent clinical trials have demonstrated potential for fluorescence-guided surgery, but the time and cost of the approval process may impede clinical translation. To expedite this translation, we explored the feasibility of repurposing existing optical imaging devices for fluorescence-guided surgery. Consenting patients (n = 15) scheduled for curative resection were enrolled in a clinical trial evaluating the safety and specificity of cetuximab-IRDye800 (NCT01987375). Open-field fluorescence imaging was performed preoperatively and during the surgical resection. Fluorescence intensity was quantified using integrated instrument software, and the tumor-to-background ratio characterized fluorescence contrast. In the preoperative clinic, the open-field device demonstrated potential to guide preoperative mapping of tumor borders, optimize the day of surgery, and identify occult lesions. Intraoperatively, the device demonstrated robust potential to guide surgical resections, as all peak tumor-to-background ratios were greater than 2 (range, 2.2-14.1). Postresection wound bed fluorescence was significantly less than preresection tumor fluorescence (P open-field imaging device was successfully repurposed to distinguish cancer from normal tissue in the preoperative clinic and throughout surgical resection. This study illuminated the potential for existing open-field optical imaging devices with overlapping excitation and emission spectra to be used for fluorescence-guided surgery. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  3. Are all deaths the same for physicians and nurses?: stereotype questions physicians and nurses utilize to characterize a person who has died.

    Science.gov (United States)

    Vatanoğlu-Lutz, E Elif; Coban, Mustafa; Izgi, Mustafa Cumhur

    How do healthcare professionals classify or characterize human beings: how do they identify and define a patient or in the case of this study a dead person? Healthcare professionals are fairly regularly exposed to human beings dying. Part of their duty is to postpone death but, death being inevitable, they regularly lose the fight. This study aims to determine how healthcare professionals classify human beings by asking only 1 question, and allowing respondents to provide 5 answers of their own making ("You are exposed to a dead person, victim of a car accident. Apart from name and surname, what are the 5 questions you would ask?"). Thereby, it is hoped to avoid both conflicts with responsibilities of healthcare professionals and predetermining the answers. As described above, one self-administered open question related to a very short story had to be answered anonymously and was asked by e-mail. As a result of the analysis, a number of stereotype question sets were obtained through the answers of the respondents. The stereotype questions and derived thought concepts provide an insight into the awareness and (prioritized) values of healthcare professionals in Turkey. In the replies, questions related to the personal background of the dead (such as age, marital status, and parenthood) had the highest frequency, while questions of professional relevance followed with medium frequency. A question relating to the consent of the deceased to organ donation was almost never asked. It is suggested that any potential educational material for healthcare personnel should be reviewed in order to increase awareness of relevant issues.

  4. Criterious Preparation and Characterization of Earthworm-composts in View of Animal Waste Recycling: Part II. A Synergistic Utilization of EPR and 1H NMR Spectroscopies on the Characterization of Humic Acids from Vermicomposts

    Directory of Open Access Journals (Sweden)

    Guimarães Elisete

    2001-01-01

    Full Text Available Humic acids (HA extracted from sheep (SHHA, cow (COHA, goat (GOHA and rabbit (RAHA vermicomposted manure were analyzed by electron paramagnetic resonance and hydrogen nuclear magnetic resonance spectroscopies. Carboxylic acids, amine, amide, ester, ether and phenol functions bonded to saturated aliphatic, unsaturated aliphatic conjugated double and single bonds, and aromatic chains constitute the backbone structure of these fresh humic substances (HS. Mn2+ outer sphere complexes (SHHA, COHA, Fe3+ axial (COHA, RAHA or rhombic (SHAHA, COHA, GOHA, RAHA complexes and Cu2+ as weak field (COHA, GOHA, RAHA and strong field (SHAHA, COHA, GOHA, RAHA complexes were characterized.

  5. Thorium utilization

    Energy Technology Data Exchange (ETDEWEB)

    Trauger, D B [Oak Ridge National Lab., TN (USA)

    1978-01-01

    Some of the factors that provide incentive for the utilization of thorium in specific reactor types are explored and the constraints that stand in the way are pointed out. The properties of thorium and derived fuels are discussed, and test and reactor operating experience is reviewed. In addition, symbiotic systems of breeder and converter reactor are suggested as being particularly attractive systems for energy production. Throughout the discussion, the High-Temperature Gas-Cooled Reactor and Molten Salt Reactor are treated in some detail because they have been developed primarily for use with thorium fuel cycles.

  6. Japanese utilities' plutonium utilization program

    International Nuclear Information System (INIS)

    Matsuo, Yuichiro.

    1996-01-01

    Japan's 10 utility companies are working and will continue to work towards establishing a fully closed nuclear fuel cycle. The key goals of which are: (1) reprocessing spent fuel; (2) recycling recovered uranium and plutonium; and (3) commercializing fast breeder technology by around the year 2030. This course of action by the Japanese electric power industry is in full accordance with Japan's national policy outlined in the government's report ''The Long-Term Program for Research, Development, and Nuclear Energy,'' which was published in June 1994. The Japanese civilian nuclear program is a long-term program that looks into the 21st century and beyond. It is quite true that sustaining the recycling option for energy security and the global environment demands a large investment. For it to be accepted by the public, safety must be the highest priority and will be pursued at a great cost if necessary. In its history, Japan has learned that as technology advances, costs will come down. The Japanese utility industry will continue investment in technology without compromising safety until the recycling option becomes more competitive with other options. This effort will be equally applied to the development of the commercial FBRs. The Japanese utility industry is confident that Japan's stable policy and strong objective to develop competitive and peaceful technology will contribute to the global economy and the environment without increasing the threat of plutonium proliferation

  7. Characterization of the Long-term Subsurface Warming Observed at the Apollo 15 and 17 Sites Utilizing the Newly Restored Heat Flow Experiment Data from 1975 to 1977

    Science.gov (United States)

    Nagihara, S.; Kiefer, W. S.; Taylor, P. T.; Williams, D. R.; Nakamura, Y.; Krell, J. W.

    2017-12-01

    The Apollo Heat Flow Experiment (HFE) was conducted at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiment Package (ALSEP) program. At each site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The probes monitored surface and subsurface temperatures. The Apollo 15 probes operated from July 1971 to January 1977. The Apollo 17 probes operated from December 1972 to September 1977. For both sites, only data from the beginning to December 1974 were archived previously. We have restored major portions of the 1975-1977 HFE data for both sites from two sets of sources recently recovered. One was the original ALSEP archival data tapes, from which raw HFE data were extracted and processed according to the procedure and the calibration data specified by the original investigators. The other was the ALSEP Performance Summary Reports, which included weekly logs of temperature readings from the deepest sensor of each of the probes. The original HFE investigators noted that temperature of the regolith well below the thermal skin depth ( 1 m) rose gradually through December 1974 at both sites. Possible causes of the warming have been debated since. The restored 1975-1977 HFE data allow more detailed characterization of this phenomenon, especially for the Apollo 17 site, for which the duration of data availability has more than doubled. For both sites, the subsurface warming continued till the end of observations. Simultaneously, thermal gradient decreased. Such behavior is consistent with one of the hypotheses proposed by the original investigators; temperature of the lunar surface around the probe increased by 2 to 4 K at the time of deployment. Consequently, the subsurface thermal regime gradually adjusted to the new boundary condition. The Lunar Reconnaissance Orbiter Camera images taken over the Apollo landing sites suggest that astronaut-induced surface disturbance resulted in lower albedo, and that should have raised average

  8. Characterization of a subtropical hawksbill sea turtle (Eretmocheyles imbricata assemblage utilizing shallow water natural and artificial habitats in the Florida Keys.

    Directory of Open Access Journals (Sweden)

    Jonathan C Gorham

    Full Text Available In order to provide information to better inform management decisions and direct further research, vessel-based visual transects, snorkel transects, and in-water capture techniques were used to characterize hawksbill sea turtles in the shallow marine habitats of a Marine Protected Area (MPA, the Key West National Wildlife Refuge in the Florida Keys. Hawksbills were found in hardbottom and seagrass dominated habitats throughout the Refuge, and on man-made rubble structures in the Northwest Channel near Cottrell Key. Hawksbills captured (N = 82 were exclusively juveniles and subadults with a straight standard carapace length (SSCL ranging from 21.4 to 69.0cm with a mean of 44.1 cm (SD = 10.8. Somatic growth rates were calculated from 15 recaptured turtles with periods at large ranging from 51 to 1188 days. Mean SSCL growth rate was 7.7 cm/year (SD = 4.6. Juvenile hawksbills (<50 cm SSCL showed a significantly higher growth rate (9.2 cm/year, SD = 4.5, N = 11 than subadult hawksbills (50-70 cm SSCL, 3.6 cm/year, SD = 0.9, N = 4. Analysis of 740 base pair mitochondrial control region sequences from 50 sampled turtles yielded 12 haplotypes. Haplotype frequencies were significantly different compared to four other Caribbean juvenile foraging aggregations, including one off the Atlantic coast of Florida. Many-to-one mixed stock analysis indicated Mexico as the primary source of juveniles in the region and also suggested that the Refuge may serve as important developmental habitat for the Cuban nesting aggregation. Serum testosterone radioimmunoassay results from 33 individuals indicated a female biased sex ratio of 3.3 females: 1 male for hawksbills in the Refuge. This assemblage of hawksbills is near the northern limit of the species range, and is one of only two such assemblages described in the waters of the continental United States. Since this assemblage resides in an MPA with intensive human use, basic information on

  9. Characterization of the malignity of tumors in the central nervous system utilizing the correlation dimension analysis; Caracterizacion de la malignidad de tumores del sistema nervioso central utilizando analisis de dimension de correlacion

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, D.; Zambrano, C.; Martin L, M. [Departamento de Fisica y Centro de Resonancia Magnetica. Facultad de Ciencias, Universidad Central de Venezuela, A.P. 47586, Caracas 1041-A (Venezuela)

    1998-12-31

    In the present work it is proposed a method for the characterization of the irregularities present in the edges of malignant leisure of central nervous system over axial images generated through Nuclear magnetic Resonance by images. Through the use of techniques of digital images processing was possible to locate, extract and generate temporal series. These temporal series were utilized using the correlation dimension concept for producing a parameter which takes different values depending of the leisure type. It is demonstrated that this type of analysis suffers in a very acceptable form independently of the errors which can be generate by the fact that in the practice of temporal series obtained they are composed by a reduced number of points. (Author)

  10. Characterization of the malignity of tumors in the central nervous system utilizing the correlation dimension analysis; Caracterizacion de la malignidad de tumores del sistema nervioso central utilizando analisis de dimension de correlacion

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, D; Zambrano, C; Martin L, M [Departamento de Fisica y Centro de Resonancia Magnetica. Facultad de Ciencias, Universidad Central de Venezuela, A.P. 47586, Caracas 1041-A (Venezuela)

    1999-12-31

    In the present work it is proposed a method for the characterization of the irregularities present in the edges of malignant leisure of central nervous system over axial images generated through Nuclear magnetic Resonance by images. Through the use of techniques of digital images processing was possible to locate, extract and generate temporal series. These temporal series were utilized using the correlation dimension concept for producing a parameter which takes different values depending of the leisure type. It is demonstrated that this type of analysis suffers in a very acceptable form independently of the errors which can be generate by the fact that in the practice of temporal series obtained they are composed by a reduced number of points. (Author)

  11. Caracterização do óleo das sementes de Pachira aquatica Aublet para aproveitamento alimentar Characterization of seed oil Pachira aquatica Aublet for food utilization

    Directory of Open Access Journals (Sweden)

    Neuza Jorge

    2012-03-01

    Full Text Available Os frutos de Pachira aquatica Aublet apresentam sementes comestíveis com características organolépticas muito apreciadas pelas populações amazônicas, sendo pouco utilizados em outras regiões. Este trabalho teve como objetivo caracterizar as sementes quanto à composição centesimal e determinar as características físico-químicas e perfil de ácidos graxos. A determinação da composição centesimal das sementes (teores de umidade, lipídios, proteínas, cinzas e carboidratos e análises do óleo extraído das mesmas (ácidos graxos livres, índices de peróxido, iodo, refração, saponificação, ponto de fusão e perfil de ácidos graxos foram realizadas seguindo metodologia oficial. O teor de óleo nas sementes 38,39% demonstrou que estas têm potencial para aproveitamento industrial. Das características físico-químicas analisadas, o óleo extraído das sementes apresentou 39,2% de ácidos graxos livres (expresso em % ácido oleico, índice de iodo de 27,4 g I2.100 g-1, índice de saponificação de 208,0 mg.KOH g-1, índice de refração (40 °C de 1,4569 e ponto de fusão de 41,9 °C. Quanto à composição de ácidos graxos do óleo predominaram os ácidos palmítico (44,93%, oleico (39,27% e linoleico (11,35%. Tal fato favorece o uso deste óleo como matéria-prima para as indústrias alimentícia, farmacêutica e de cosméticos.The fruits of Pachira aquatica Aublet present edible seeds with organoleptic characteristics much appreciated by peoples in the Amazon, with little being used in other regions. This study aimed to characterize the seeds and to determine the composition and physicochemical characteristics and fatty acid profile. Determining the composition of the seeds (moisture, lipids, proteins, carbohydrates and ash and analysis of oil extracted from them (free fatty acids, peroxide, iodine, refractive index, saponification value, melting point and fatty acid profile was performed following the official methodology

  12. Correlation Between Arthroscopy Simulator and Video Game Performance: A Cross-Sectional Study of 30 Volunteers Comparing 2- and 3-Dimensional Video Games.

    Science.gov (United States)

    Jentzsch, Thorsten; Rahm, Stefan; Seifert, Burkhardt; Farei-Campagna, Jan; Werner, Clément M L; Bouaicha, Samy

    2016-07-01

    To investigate the association between arthroscopy simulator performance and video game skills. This study compared the performances of 30 volunteers without experience performing arthroscopies in 3 different tasks of a validated virtual reality knee arthroscopy simulator with the video game experience using a questionnaire and actual performances in 5 different 2- and 3-dimensional (D) video games of varying genres on 2 different platforms. Positive correlations between knee arthroscopy simulator and video game performances (ρ = 0.63, P video game skills, they show a correlation with 2-D tile-matching puzzle games only for easier tasks with a rather limited focus, and highly correlate with 3-D sports and first-person shooter video games. These findings show that experienced and good 3-D gamers are better arthroscopists than nonexperienced and poor 3-D gamers. Level II, observational cross-sectional study. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  13. Massive facial teratoma managed with the ex utero intrapartum treatment (EXIT procedure and use of a 3-dimensional printed model for planning of staged debulking

    Directory of Open Access Journals (Sweden)

    Maggie M. Hodges

    2017-02-01

    Full Text Available Teratomas are the most frequent solid tumor found in neonates. However, only 1.5% of neonatal teratomas originate from facial structures. Neonatal facial teratomas are associated with polyhydramnios, preterm birth, pulmonary hypoplasia, cleft palate, cleft lip, and life-threatening airway compromise. The overall survival reported with these lesions has been between 17 and 87.5%; however survival in the setting of antenatally diagnosed facial teratomas has only been described anecdotally. We present a case of an antenatally diagnosed massive facial teratoma originating from the pterygomaxillary fossa, which was associated with polyhydramnios and pre-term birth. We managed this complex tumor with an ex utero intrapartum treatment (EXIT procedure, multidisciplinary medical and surgical team, and staged excision and reconstruction aided by use of a 3-dimensional printed model. Here we review the surgical management of this rare and complex tumor.

  14. Preparation and properties of PMMA nanoparticles as 3 dimensional photonic crystals and its thin film via surfactant-free emulsion polymerization

    Science.gov (United States)

    Tahrin, Rabiatul Addawiyah Azwa; Azma, Nur Syafiqa; Kassim, Syara; Harun, Noor Aniza

    2017-09-01

    3-dimensional (3D) photonic crystals have been extended use in wide research and application from material to sensor. Nanoparticles of poly (methyl methacrylate) (PMMA) latex beads have been successfully prepared by green-chemistry approach where no surfactant, linking agent and solvent were involved. Regardless of the effect of initiator in polymerization reaction, this study presents the effect of temperature, monomer concentration, stirring speed and reaction period in order to tune the particle size. Its morphology of uniformity sized-tuned was confirming by using particle size analyzer (PSA) and scanning electron microscopy (SEM). The fabrication of 3D photonic crystals film by using self-assembly method to pattern the desired PMMA layers which is the most feasible, low cost method are also presented. The detailed properties of PMMA nanoparticles from this experimental study will be discussed and its potential used in photonic application will be explained.

  15. Initial results of 3-dimensional 1H-magnetic resonance spectroscopic imaging in the localization of prostate cancer at 3 Tesla: should we use an endorectal coil?

    Science.gov (United States)

    Yakar, Derya; Heijmink, Stijn W T P J; Hulsbergen-van de Kaa, Christina A; Huisman, Henkjan; Barentsz, Jelle O; Fütterer, Jurgen J; Scheenen, Tom W J

    2011-05-01

    The purpose of this study was to compare the diagnostic performance of 3 Tesla, 3-dimensional (3D) magnetic resonance spectroscopic imaging (MRSI) in the localization of prostate cancer (PCa) with and without the use of an endorectal coil (ERC). Our prospective study was approved by the institutional review board, and written informed consent was obtained from all patients. Between October 2004 and January 2006, 18 patients with histologically proven PCa on biopsy and scheduled for radical prostatectomy were included and underwent 3D-MRSI with and without an ERC. The prostate was divided into 14 regions of interest (ROIs). Four readers independently rated (on a 5-point scale) their confidence that cancer was present in each of these ROIs. These findings were correlated with whole-mount prostatectomy specimens. Areas under the receiver-operating characteristic curve were determined. A difference with a P Tesla slightly but significantly increased the localization performance compared with not using an ERC.

  16. A 3-Dimensional Approach for Analysis in Orthognathic Surgery-Using Free Software for Voxel-Based Alignment and Semiautomatic Measurement

    DEFF Research Database (Denmark)

    Stokbro, Kasper; Thygesen, Torben

    2018-01-01

    PURPOSE: In orthognathic surgery, the repeatability of 3-dimensional (3D) measurements is limited by the need for manual reidentification of reference points, which can incorporate errors greater than 1 mm for every 4 repeated measurements. This report describes a semiautomatic approach to decrease...... the manual reidentification error. This study evaluated the repeatability of surgical outcome measurements using the semiautomatic approach. Furthermore, a step-by-step guide is provided to enable researchers and clinicians to perform the 3D analysis by themselves. MATERIALS AND METHODS: Evaluating surgical......, the reference points should be identical if the pre- and postoperative scans are aligned at the maxilla. Therefore, the authors propose the insertion of reference points on the preoperative scan and then repositioning a copy of the preoperative reference points relative to the postoperative scan. To align...

  17. Comparison of the Osteogenic Potential of Mineral Trioxide Aggregate and Endosequence Root Repair Material in a 3-dimensional Culture System.

    Science.gov (United States)

    Rifaey, Hisham S; Villa, Max; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran; Chen, I-Ping

    2016-05-01

    The ability to promote osteoblast differentiation is a desirable property of root-end filling materials. Several in vitro studies compare the cytotoxicity and physical properties between mineral trioxide aggregate (MTA) and Endosequence root repair material (ERRM), but not their osteogenic potential. Three-dimensional cultures allow cells to better maintain their physiological morphology and better resemble in vivo cellular response than 2-dimensional cultures. Here we examined the osteogenic potential of MTA and ERRM by using a commercially available 3-dimensional Alvetex scaffold. Mandibular osteoblasts were derived from 3-week-old male transgenic reporter mice where mature osteoblasts express green fluorescent protein (GFP) driven by a 2.3-kilobase type I collagen promoter (Col(I)-2.3). Mandibular osteoblasts were grown on Alvetex in direct contact with MTA, ERRM, or no material (negative control) for 14 days. Osteoblast differentiation was evaluated by expression levels of osteogenic genes by using quantitative polymerase chain reaction and by the spatial dynamics of Col(I)-2.3 GFP-positive mature osteoblasts within the Alvetex scaffolds by using 2-photon microscopy. ERRM significantly increased alkaline phosphatase (Alp) and bone sialoprotein (Bsp) expression compared with MTA and negative control groups. Both MTA and ERRM increased osterix (Osx) mRNA significantly compared with the negative control group. The percentage of Col(I)-2.3 GFP-positive cells over total cells within Alvetex was the highest in the ERRM group, followed by MTA and by negative controls. ERRM promotes osteoblast differentiation better than MTA and controls with no material in a 3-dimensional culture system. Alvetex scaffolds can be used to test endodontic materials. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Complications after liver transplantation: evaluation with magnetic resonance imaging, magnetic resonance cholangiography, and 3-dimensional contrast-enhanced magnetic resonance angiography in a single session

    International Nuclear Information System (INIS)

    Boraschi, P.; Donati, F.; Gigoni, R.; Salemi, S.; Urbani, L.; Filipponi, F.; Falaschi, F.; Bartolozzi, C.

    2008-01-01

    To evaluate a comprehensive magnetic resonance imaging (MRI) protocol as noninvasive diagnostic modality for simultaneous detection of parenchymal, biliary, and vascular complications after liver transplantation. Fifty-two liver transplant recipients suspected to have parenchymal, biliary, and (or) vascular complications underwent our MRI protocol at 1.5T unit using a phased array coil. After preliminary acquisition of axial T 1 w and T 2 w sequences, magnetic resonance cholangiography (MRC) was performed through a breath-hold, thin- and thick-slab, single-shot T 2 w sequence in the coronal plane. Contrast-enhanced magnetic resonance angiography (CEMRA) was obtained using a 3-dimensional coronal spoiled gradient-echo sequence, which enabled acquisition of 32 partitions 2.0 mm thick. A fixed dose of 20 ml gadobenate dimeglumine was administered at 2 mL/s. A post-contrast T 1 w sequence was also performed. Two observers in conference reviewed source images and 3-dimensional reconstructions to determine the presence of parenchymal, biliary, and vascular complications. MRI findings were correlated with surgery, endoscopic retrograde cholangiography (ERC), biopsy, digital subtraction angiography (DSA), and imaging follow-up. MRI revealed abnormal findings in 32 out of 52 patients (61%), including biliary complications (anastomotic and nonanastomotic strictures, and lithiasis) in 31, vascular disease (hepatic artery stenosis and thrombosis) in 9, and evidence of hepatic abscess and hematoma in 2. ERC confirmed findings of MRC in 30 cases, but suggested disease underestimation in 2. DSA confirmed 7 magnetic resonance angiogram (MRA) findings, but suggested disease overestimation in 2. MRI combined with MRC and CEMRA can provide a comprehensive assessment of parenchymal, biliary, and vascular complications in most recipients of liver transplantation. (author)

  19. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared With Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial

    International Nuclear Information System (INIS)

    Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M.; Ancukiewicz, Marek; Hirsch, Ariel E.; Kachnic, Lisa A.; Specht, Michelle; Gadd, Michele; Smith, Barbara L.; Powell, Simon N.; Recht, Abram; Taghian, Alphonse G.

    2014-01-01

    Purpose: To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. Methods and Materials: From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. Results: At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Conclusions: Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity

  20. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared With Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M.; Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Hirsch, Ariel E.; Kachnic, Lisa A. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts (United States); Specht, Michelle; Gadd, Michele; Smith, Barbara L. [Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Powell, Simon N. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-11-01

    Purpose: To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. Methods and Materials: From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. Results: At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Conclusions: Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity.