WorldWideScience

Sample records for characterization system rcs

  1. On-Orbit Propulsion OMS/RCS

    Science.gov (United States)

    Hurlbert, Eric A.

    2001-01-01

    This slide presentation reviews the Space Shuttle's On-Orbit Propulsion systems: the Orbital Maneuvering System (OMS) and the Reaction Control System (RCS). The functions of each of the systems is described, and the diagrams of the systems are presented. The OMS/RCS thruster is detailed and a trade study comparison of non-toxic propellants is presented.

  2. A Disulfide Bond in the Membrane Protein IgaA Is Essential for Repression of the RcsCDB System

    Directory of Open Access Journals (Sweden)

    M. Graciela Pucciarelli

    2017-12-01

    Full Text Available IgaA is an integral inner membrane protein that was discovered as repressor of the RcsCDB phosphorelay system in the intracellular pathogen Salmonella enterica serovar Typhimurium. The RcsCDB system, conserved in many members of the family Enterobacteriaceae, regulates expression of varied processes including motility, biofilm formation, virulence and response to envelope stress. IgaA is an essential protein to which, in response to envelope perturbation, the outer membrane lipoprotein RcsF has been proposed to bind in order to activate the RcsCDB phosphorelay. Envelope stress has also been reported to be sensed by a surface exposed domain of RcsF. These observations support a tight control of the RcsCDB system by RcsF and IgaA via mechanisms that, however, remain unknown. Interestingly, RcsF and IgaA have four conserved cysteine residues in loops exposed to the periplasmic space. Two non-consecutive disulfide bonds were shown to be required for RcsF function. Here, we report mutagenesis studies supporting the presence of one disulfide bond (C404-C425 in the major periplasmic loop of IgaA that is essential for repression of the RcsCDB phosphorelay. Our data therefore suggest that the redox state of the periplasm may be critical for the control of the RcsCDB system by its two upstream regulators, RcsF and IgaA.

  3. Dam methylation participates in the regulation of PmrA/PmrB and RcsC/RcsD/RcsB two component regulatory systems in Salmonella enterica serovar Enteritidis.

    Directory of Open Access Journals (Sweden)

    Sebastián Hernán Sarnacki

    Full Text Available The absence of Dam in Salmonella enterica serovar Enteritidis causes a defect in lipopolysaccharide (LPS pattern associated to a reduced expression of wzz gene. Wzz is the chain length regulator of the LPS O-antigen. Here we investigated whether Dam regulates wzz gene expression through its two known regulators, PmrA and RcsB. Thus, the expression of rcsB and pmrA was monitored by quantitative real-time RT-PCR and Western blotting using fusions with 3×FLAG tag in wild type (wt and dam strains of S. Enteritidis. Dam regulated the expression of both rcsB and pmrA genes; nevertheless, the defect in LPS pattern was only related to a diminished expression of RcsB. Interestingly, regulation of wzz in serovar Enteritidis differed from that reported earlier for serovar Typhimurium; RcsB induces wzz expression in both serovars, whereas PmrA induces wzz in S. Typhimurium but represses it in serovar Enteritidis. Moreover, we found that in S. Enteritidis there is an interaction between both wzz regulators: RcsB stimulates the expression of pmrA and PmrA represses the expression of rcsB. Our results would be an example of differential regulation of orthologous genes expression, providing differences in phenotypic traits between closely related bacterial serovars.

  4. Systemic administration of erythropoietin inhibits retinopathy in RCS rats.

    Directory of Open Access Journals (Sweden)

    Weiyong Shen

    Full Text Available OBJECTIVE: Royal College of Surgeons (RCS rats develop vasculopathy as photoreceptors degenerate. The aim of this study was to examine the effect of erythropoietin (EPO on retinopathy in RCS rats. METHODS: Fluorescein angiography was used to monitor retinal vascular changes over time. Changes in retinal glia and vasculature were studied by immunostaining. To study the effects of EPO on retinal pathology, EPO (5000 IU/kg was injected intraperitoneally in 14 week old normal and RCS rats twice a week for 4 weeks. Changes in the retinal vasculature, glia and microglia, photoreceptor apoptosis, differential expression of p75 neurotrophin receptor (p75NTR, pro-neurotrophin 3 (pro-NT3, tumour necrosis factor-α (TNFα, pigment epithelium derived factor (PEDF and vascular endothelial growth factor-A (VEGF-A, the production of CD34(+ cells and mobilization of CD34(+/VEGF-R2(+ cells as well as recruitment of CD34(+ cells into the retina were examined after EPO treatment. RESULTS: RCS rats developed progressive capillary dropout and subretinal neovascularization which were accompanied by retinal gliosis. Systemic administration of EPO stabilized the retinal vasculature and inhibited the development of focal vascular lesions. Further studies showed that EPO modulated retinal gliosis, attenuated photoreceptor apoptosis and p75NTR and pro-NT3 upregulation, promoted the infiltration of ramified microglia and stimulated VEGF-A expression but had little effect on TNFα and PEDF expression. EPO stimulated the production of red and white blood cells and CD34(+ cells along with effective mobilization of CD34(+/VEGF-R2(+ cells. Immunofluorescence study demonstrated that EPO enhanced the recruitment of CD34+ cells into the retina. CONCLUSIONS: Our results suggest that EPO has therapeutic potentials in treatment of neuronal and vascular pathology in retinal disease. The protective effects of EPO on photoreceptors and the retinal vasculature may involve multiple

  5. THYDE-P2 code: RCS (reactor-coolant system) analysis code

    International Nuclear Information System (INIS)

    Asahi, Yoshiro; Hirano, Masashi; Sato, Kazuo

    1986-12-01

    THYDE-P2, being characterized by the new thermal-hydraulic network model, is applicable to analysis of RCS behaviors in response to various disturbances including LB (large break)-LOCA(loss-of-coolant accident). In LB-LOCA analysis, THYDE-P2 is capable of through calculation from its initiation to complete reflooding of the core without an artificial change in the methods and models. The first half of the report is the description of the methods and models for use in the THYDE-P2 code, i.e., (1) the thermal-hydraulic network model, (2) the various RCS components models, (3) the heat sources in fuel, (4) the heat transfer correlations, (5) the mechanical behavior of clad and fuel, and (6) the steady state adjustment. The second half of the report is the user's mannual for the THYDE-P2 code (version SV04L08A) containing items; (1) the program control (2) the input requirements, (3) the execution of THYDE-P2 job, (4) the output specifications and (5) the sample problem to demonstrate capability of the thermal-hydraulic network model, among other things. (author)

  6. Structural Basis for DNA Recognition by the Two-Component Response Regulator RcsB.

    Science.gov (United States)

    Filippova, Ekaterina V; Zemaitaitis, Bozena; Aung, Theint; Wolfe, Alan J; Anderson, Wayne F

    2018-02-27

    RcsB is a highly conserved transcription regulator of the Rcs phosphorelay system, a complex two-component signal transduction system (N. Majdalani and S. Gottesman, Annu Rev Microbiol 59:379-405, 2005; A. J. Wolfe, Curr Opin Microbiol 13:204-209, 2010, https://doi.org/10.1016/j.mib.2010.01.002; D. J. Clarke, Future Microbiol 5:1173-1184, 2010, https://doi.org/10.2217/fmb.10.83). RcsB plays an important role in virulence and pathogenicity in human hosts by regulating biofilm formation. RcsB can regulate transcription alone or together with its auxiliary transcription regulators by forming heterodimers. This complexity allows RcsB to regulate transcription of more than 600 bacterial genes in response to different stresses (D. Wang et al., Mol Plant Microbe Interact 25:6-17, 2012, https://doi.org/10.1094/MPMI-08-11-0207). Despite increasing knowledge of RcsB importance, molecular mechanisms that drive the ability of RcsB to control transcription of a large number of genes remain unclear. Here, we present crystal structures of unphosphorylated RcsB in complex with the consensus DNA-binding sequence of 22-mer (DNA22) and 18-mer (DNA18) of the flhDC operon from Escherichia coli determined at 3.15- and 3.37-Å resolution, respectively. The results of our structural analysis combined with the results of in vitro binding assays provide valuable insights to the protein regulatory mechanism, demonstrate how RcsB recognizes target DNA sequences, and reveal a unique oligomeric state that allows RcsB to form homo- and heterodimers. This information will help us understand the complex mechanisms of transcriptional regulation by RcsB in bacteria. IMPORTANCE RcsB is a well-studied two-component response regulator of the Rcs phosphorelay system, conserved within the family Enterobacteriaceae , which includes many pathogens. It is a global regulator, controlling more than 5% of bacterial genes associated with capsule biosynthesis, flagellar biogenesis, cell wall biosynthesis

  7. Conformational dynamism for DNA interaction in the Salmonella RcsB response regulator.

    Science.gov (United States)

    Casino, Patricia; Miguel-Romero, Laura; Huesa, Juanjo; García, Pablo; García-Del Portillo, Francisco; Marina, Alberto

    2018-01-09

    The RcsCDB phosphorelay system controls an extremely large regulon in Enterobacteriaceae that involves processes such as biofilm formation, flagella production, synthesis of extracellular capsules and cell division. Therefore, fine-tuning of this system is essential for virulence in pathogenic microorganisms of this group. The final master effector of the RcsCDB system is the response regulator (RR) RcsB, which activates or represses multiple genes by binding to different promoter regions. This regulatory activity of RcsB can be done alone or in combination with additional transcriptional factors in phosphorylated or dephosphorylated states. The capacity of RcsB to interact with multiple promoters and partners, either dephosphorylated or phosphorylated, suggests an extremely conformational dynamism for this RR. To shed light on the activation mechanism of RcsB and its implication on promoter recognition, we solved the crystal structure of full-length RcsB from Salmonella enterica serovar Typhimurium in the presence and absence of a phosphomimetic molecule BeF3-. These two novel structures have guided an extensive site-directed mutagenesis study at the structural and functional level that confirms RcsB conformational plasticity and dynamism. Our data allowed us to propose a β5-T switch mechanism where phosphorylation is coupled to alternative DNA binding ways and which highlights the conformational dynamism of RcsB to be so pleiotropic. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. RCS estimation of linear and planar dipole phased arrays approximate model

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    In this book, the RCS of a parallel-fed linear and planar dipole array is derived using an approximate method. The signal propagation within the phased array system determines the radar cross section (RCS) of phased array. The reflection and transmission coefficients for a signal at different levels of the phased-in scattering array system depend on the impedance mismatch and the design parameters. Moreover the mutual coupling effect in between the antenna elements is an important factor. A phased array system comprises of radiating elements followed by phase shifters, couplers, and terminating load impedance. These components lead to respective impedances towards the incoming signal that travels through them before reaching receive port of the array system. In this book, the RCS is approximated in terms of array factor, neglecting the phase terms. The mutual coupling effect is taken into account. The dependence of the RCS pattern on the design parameters is analyzed. The approximate model is established as a...

  9. A teleoperated system for remote site characterization

    International Nuclear Information System (INIS)

    Sandness, G.A.; Richardson, B.S.; Pence, J.

    1993-08-01

    The detection and characterization of buried objects and materials is an important first step in the restoration of burial sites containing chemical and radioactive waste materials at Department of Energy (DOE) and Department of Defense (DOD) facilities. To address the need to minimize the exposure of on-site personnel to the hazards associated with such sites, the DOE Office of Technology Development and the US Army Environmental Center have jointly supported the development of the Remote Characterization System (RCS). One of the main components of the RCS is a small remotely driven survey vehicle that can transport various combinations of geophysical and radiological sensors. Currently implemented sensors include ground-penetrating radar, magnetometers, an electromagnetic induction sensor, and a sodium iodide radiation detector. The survey vehicle was constructed predominantly of non-metallic materials to minimize its effect on the operation of its geophysical sensors. The system operator controls the vehicle from a remote, truck-mounted, base station. Video images are transmitted to the base station by an radio link to give the operator necessary visual information. Vehicle control commands, tracking information, and sensor data are transmitted between the survey vehicle and the base station by means of a radio ethernet link. Precise vehicle tracking coordinates are provided by a differential Global Positioning System (GPS). The sensors are environmentally protected, internally cooled, and interchangeable based on mission requirements. To date, the RCS has been successfully tested at the Oak Ridge National Laboratory and the Idaho National Engineering Laboratory

  10. The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence.

    Science.gov (United States)

    Howery, Kristen E; Clemmer, Katy M; Rather, Philip N

    2016-11-01

    The overall role of the Rcs phosphorelay in Proteus mirabilis is largely unknown. Previous work had demonstrated that the Rcs phosphorelay represses the flhDC operon and activates the minCDE cell division inhibition system. To identify additional cellular functions regulated by the Rcs phosphorelay, an analysis of RNA-seq data was undertaken. In this report, the results of the RNA-sequencing are discussed with an emphasis on the predicted roles of the Rcs phosphorelay in swarmer cell differentiation, motility, biofilm formation, and virulence. RcsB is shown to activate genes important for differentiation and fimbriae formation, while repressing the expression of genes important for motility and virulence. Additionally, to follow up on the RNA-Seq data, we demonstrate that an rcsB mutant is deficient in its ability to form biofilm and exhibits enhanced virulence in a Galleria mellonella waxworm model. Overall, these results indicate the Rcs regulon in P. mirabilis extends beyond flagellar genes to include those involved in biofilm formation and virulence. Furthermore, the information presented in this study may provide clues to additional roles of the Rcs phosphorelay in other members of the Enterobacteriaceae.

  11. A Remote Characterization System for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.; Martinson, L.

    1992-06-01

    This paper describes a development project that will provide new technology for characterizing hazardous waste burial sites. The project is a collaborative effort by five of the national laboratories, involving the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface

  12. An advanced regulator for the helium pressurization systems of the Space Shuttle OMS and RCS

    Science.gov (United States)

    Wichmann, H.

    1973-01-01

    The Space Shuttle Orbit Maneuvering System and Reaction Control System are pressure-fed rocket propulsion systems utilizing earth storable hypergolic propellants and featuring engines of 6000 lbs and 900 lbs thrust, respectively. The helium pressurization system requirements for these propulsion systems are defined and the current baseline pressurization systems are described. An advanced helium pressure regulator capable of meeting both OMS and RCS helium pressurization system requirements is presented and its operating characteristics and predicted performance characteristics are discussed.

  13. The analysis of SCS return momentum effects on the RCS water level during mid-loop operations

    Energy Technology Data Exchange (ETDEWEB)

    swang Seo, J.; Young Yang, J.; Tack Hwang, S. [Seoul National Univ. (Korea, Republic of)

    1995-09-01

    An accurate prediction of Reactor Coolant System (RCS) water levels is of importance in the determination of allowable operating range to ensure the safety during the mid-loop operations. However, complex hydraulic phenomena induced by Shutdown Cooling System (SCS) return momentum cause different water levels from those in the loop where the water level indicators are located. This was apparantly observed at the pre-core cold hydro test of the Younggwang Nuclear Unit 3 (YGN 3) in Korea. In this study, in order to analytically understand the effect of the SCS return momentum on the RCS water level and its general trend, a model using one-dimensional momentum equation, hydraulic jump, Bernoulli equation, flow resistance coefficient, and total water volume conservation has been developed to predict the RCS water levels at various RCS locations during the mid-loop conditions and the simulation results were compared with the test data. The analysis shows that the hydraulic jump in the operating cold legs in conjunction with the momentum loss throughout the RCS is the main cause creating the water level differences at various RCS locations. The prediction results provide good explanations for the test data and show the significant effect of the SCS return momentum on the RCS water levels.

  14. The analysis of SCS return momentum effects on the RCS water level during mid-loop operations

    International Nuclear Information System (INIS)

    swang Seo, J.; Young Yang, J.; Tack Hwang, S.

    1995-01-01

    An accurate prediction of Reactor Coolant System (RCS) water levels is of importance in the determination of allowable operating range to ensure the safety during the mid-loop operations. However, complex hydraulic phenomena induced by Shutdown Cooling System (SCS) return momentum cause different water levels from those in the loop where the water level indicators are located. This was apparantly observed at the pre-core cold hydro test of the Younggwang Nuclear Unit 3 (YGN 3) in Korea. In this study, in order to analytically understand the effect of the SCS return momentum on the RCS water level and its general trend, a model using one-dimensional momentum equation, hydraulic jump, Bernoulli equation, flow resistance coefficient, and total water volume conservation has been developed to predict the RCS water levels at various RCS locations during the mid-loop conditions and the simulation results were compared with the test data. The analysis shows that the hydraulic jump in the operating cold legs in conjunction with the momentum loss throughout the RCS is the main cause creating the water level differences at various RCS locations. The prediction results provide good explanations for the test data and show the significant effect of the SCS return momentum on the RCS water levels

  15. On the radar cross section (RCS) prediction of vehicles moving on the ground

    Energy Technology Data Exchange (ETDEWEB)

    Sabihi, Ahmad [Department of Mathematical Sciences, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2014-12-10

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea.

  16. On the radar cross section (RCS) prediction of vehicles moving on the ground

    International Nuclear Information System (INIS)

    Sabihi, Ahmad

    2014-01-01

    As readers should be aware, Radar Cross Section depends on the factors such as: Wave frequency and polarization, Target dimension, angle of ray incidence, Target’s material and covering, Type of radar system as monostatic or bistatic, space in which contains target and propagating waves, and etc. Having moved or stationed in vehicles can be effective in RCS values. Here, we investigate effective factors in RCS of moving targets on the ground or sea. Image theory in electromagnetic applies to be taken into account RCS of a target over the ground or sea

  17. TMI-2 RCS activity and solids loading from aggressive defueling techniques

    International Nuclear Information System (INIS)

    Baston, V.F.; Hofstetter, K.J.

    1987-01-01

    One of the tasks performed in support of defueling operations has involved mechanical degradation of resolidified material (core crust layer) utilizing the core drilling equipment. Prior to actual drilling operations, an engineering estimate was made for the anticipated increase in radioactivity and particulate loading to the Three Mile Island Unit 2 (TMI-2) reactor coolant system (RCS). Predictions for RCS activity and particulate loading increases were important to evaluate the cleanup requirements for the defueling water cleanup system to minimize both the dose rates for defueling personnel and water turbidity

  18. VXIbus-based signal generator for resonant power supply system of the 3 GeV RCS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fengqing; Watanabe, Yasuhiro; Koseki, Shoichiro; Tani, Norio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Adachi, Toshikazu; Someya, Hirohiko [High Energy Accelerator Reseach Organization, Tsukuba, Ibaraki (Japan)

    2002-03-01

    The 3 GeV Proton RCS of the JAERI-KEK Joint Project is a 25 Hz separate-function rapid cycling synchrotron under design. Bending magnets (BM) and quadrupole magnets (QM) are excited separately. The 3 GeV RCS requests above 10 families of magnets excited independently, far beyond 3 families in practical RCS's. Difficulty of field tracking between BM and QM is significantly increased. Magnet strings are grouped into resonant networks and excited resonantly with power supplies driven by a waveform pattern, typically a DC-biased sinusoidal signal. To achieve a close tracking between many families, the driving signal of each power supply should be adjusted in phase and amplitude flexibly and dynamically. This report proposes a signal generator based on VXIbus. The VXIbus, an extension of VMEbus (VME eXtensions for Instrument), provides an open architecture with shared process bus and timing. The VXIbus-based signal generator facilitates the timing synchronization and is easy to extend to many channels needed by the 3 GeV RCS. Experimental results of the signal generator are reported. (author)

  19. Regulation of the Min Cell Division Inhibition Complex by the Rcs Phosphorelay in Proteus mirabilis.

    Science.gov (United States)

    Howery, Kristen E; Clemmer, Katy M; Şimşek, Emrah; Kim, Minsu; Rather, Philip N

    2015-08-01

    A key regulator of swarming in Proteus mirabilis is the Rcs phosphorelay, which represses flhDC, encoding the master flagellar regulator FlhD4C2. Mutants in rcsB, the response regulator in the Rcs phosphorelay, hyperswarm on solid agar and differentiate into swarmer cells in liquid, demonstrating that this system also influences the expression of genes central to differentiation. To gain a further understanding of RcsB-regulated genes involved in swarmer cell differentiation, transcriptome sequencing (RNA-Seq) was used to examine the RcsB regulon. Among the 133 genes identified, minC and minD, encoding cell division inhibitors, were identified as RcsB-activated genes. A third gene, minE, was shown to be part of an operon with minCD. To examine minCDE regulation, the min promoter was identified by 5' rapid amplification of cDNA ends (5'-RACE), and both transcriptional lacZ fusions and quantitative real-time reverse transcriptase (qRT) PCR were used to confirm that the minCDE operon was RcsB activated. Purified RcsB was capable of directly binding the minC promoter region. To determine the role of RcsB-mediated activation of minCDE in swarmer cell differentiation, a polar minC mutation was constructed. This mutant formed minicells during growth in liquid, produced shortened swarmer cells during differentiation, and exhibited decreased swarming motility. This work describes the regulation and role of the MinCDE cell division system in P. mirabilis swarming and swarmer cell elongation. Prior to this study, the mechanisms that inhibit cell division and allow swarmer cell elongation were unknown. In addition, this work outlines for the first time the RcsB regulon in P. mirabilis. Taken together, the data presented in this study begin to address how P. mirabilis elongates upon contact with a solid surface. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Detailed evaluation of RCS boundary rupture during high-pressure severe accident sequences

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Hong, Seong-Wan

    2011-01-01

    A depressurization possibility of the reactor coolant system (RCS) before a reactor vessel rupture during a high-pressure severe accident sequence has been evaluated for the consideration of direct containment heating (DCH) and containment bypass. A total loss of feed water (TLOFW) and a station blackout (SBO) of the advanced power reactor 1400 (APR 1400) has been evaluated from an initiating event to a creep rupture of the RCS boundary by using the SCDAP/RELAP5 computer code. In addition, intentional depressurization of the RCS using power-operated safety relief valves (POSRVs) has been evaluated. The SCDAPRELAP5 results have shown that the pressurizer surge line broke before the reactor vessel rupture failure, but a containment bypass did not occur because steam generator U tubes did not break. The intentional depressurization of the RCS using POSRV was effective for the DCH prevention at a reactor vessel rupture. (author)

  1. Spectroscopic characterization of galaxy clusters in RCS-1: spectroscopic confirmation, redshift accuracy, and dynamical mass-richness relation

    Science.gov (United States)

    Gilbank, David G.; Barrientos, L. Felipe; Ellingson, Erica; Blindert, Kris; Yee, H. K. C.; Anguita, T.; Gladders, M. D.; Hall, P. B.; Hertling, G.; Infante, L.; Yan, R.; Carrasco, M.; Garcia-Vergara, Cristina; Dawson, K. S.; Lidman, C.; Morokuma, T.

    2018-05-01

    We present follow-up spectroscopic observations of galaxy clusters from the first Red-sequence Cluster Survey (RCS-1). This work focuses on two samples, a lower redshift sample of ˜30 clusters ranging in redshift from z ˜ 0.2-0.6 observed with multiobject spectroscopy (MOS) on 4-6.5-m class telescopes and a z ˜ 1 sample of ˜10 clusters 8-m class telescope observations. We examine the detection efficiency and redshift accuracy of the now widely used red-sequence technique for selecting clusters via overdensities of red-sequence galaxies. Using both these data and extended samples including previously published RCS-1 spectroscopy and spectroscopic redshifts from SDSS, we find that the red-sequence redshift using simple two-filter cluster photometric redshifts is accurate to σz ≈ 0.035(1 + z) in RCS-1. This accuracy can potentially be improved with better survey photometric calibration. For the lower redshift sample, ˜5 per cent of clusters show some (minor) contamination from secondary systems with the same red-sequence intruding into the measurement aperture of the original cluster. At z ˜ 1, the rate rises to ˜20 per cent. Approximately ten per cent of projections are expected to be serious, where the two components contribute significant numbers of their red-sequence galaxies to another cluster. Finally, we present a preliminary study of the mass-richness calibration using velocity dispersions to probe the dynamical masses of the clusters. We find a relation broadly consistent with that seen in the local universe from the WINGS sample at z ˜ 0.05.

  2. Lon protease modulates virulence traits in Erwinia amylovora by direct monitoring of major regulators and indirectly through the Rcs and Gac-Csr regulatory systems.

    Science.gov (United States)

    Lee, Jae Hoon; Ancona, Veronica; Zhao, Youfu

    2018-04-01

    Lon, an ATP-dependent protease in bacteria, influences diverse cellular processes by degrading damaged, misfolded and short-lived regulatory proteins. In this study, we characterized the effects of lon mutation and determined the molecular mechanisms underlying Lon-mediated virulence regulation in Erwinia amylovora, an enterobacterial pathogen of apple. Erwinia amylovora depends on the type III secretion system (T3SS) and the exopolysaccharide (EPS) amylovoran to cause disease. Our results showed that mutation of the lon gene led to the overproduction of amylovoran, increased T3SS gene expression and the non-motile phenotype. Western blot analyses showed that mutation in lon directly affected the accumulation and stability of HrpS/HrpA and RcsA. Mutation in lon also indirectly influenced the expression of flhD, hrpS and csrB through the accumulation of the RcsA/RcsB proteins, which bind to the promoter of these genes. In addition, lon expression is under the control of CsrA, possibly at both the transcriptional and post-transcriptional levels. Although mutation in csrA abolished both T3SS and amylovoran production, deletion of the lon gene in the csrA mutant only rescued amylovoran production, but not T3SS. These results suggest that CsrA might positively control both T3SS and amylovoran production partly by suppressing Lon, whereas CsrA may also play a critical role in T3SS by affecting unknown targets. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  3. Expression of nitric oxide synthase during the development of RCS rat retinas.

    Science.gov (United States)

    Sharma, R K; Warfvinge, K; Ehinger, B

    2001-01-01

    Nitric oxide (NO) has been reported to be both neurodestructive and neuroprotective in the central nervous system and could possibly play an important role in neurodegenerative disorders. On the assumption that NO synthesis may influence degenerative processes in the retina, we have examined the development and distribution of nitric-oxide-synthase(NOS)-immunoreactive cells in developing Royal College of Surgeons (RCS) rat retinas, which is an animal model for retinal degeneration. An antibody against constitutive neuronal NOS was used for immunocytochemistry on RCS rat retinas from postnatal (PN) days 3, 7, 10, 14, 35, 70 and 281 and compared with that in the normal rats of PN days 3, 7, 10, 14, 54 and adults. Immunoreactive cells were not seen in PN 3 retinas but were distinctly seen in the PN 7 retina along with a plexus in the inner plexiform layer. In both groups (normal and RCS rats) a distinct sublayering of the plexus in the inner plexiform layer could be seen at PN 10, which became more distinct at PN 14. The immunoreactive cells were detected also in the oldest retina examined, which was PN 281 in the case of RCS rats. In both groups, certain amacrine cells, certain bipolar cells and certain horizontal cells were found to be immunoreactive. In conclusion, the developmental timetable of the NOS immunoreactivity was identical in the normal and the RCS rat retinas. The NOS-immunoreactive cells persisted in the RCS retinas even when the retina had degenerated extensively. Abnormalities with the inducible isoforms of NOS cannot be ruled out from this study. We conclude that the chronological and qualitative development of the constitutive neuronal NOS immunoreactivity is normal in RCS rat retinas. Copyright 2001 S. Karger AG, Basel

  4. Analysis of effect of late water injection on RCS repressurization

    International Nuclear Information System (INIS)

    Tao Jun; Cao Xuewu

    2011-01-01

    Effect of late water injection on RCS repressurization during high pressure severe accident sequence in a typical PWR was analyzed. As the results shown, late water injection could increase RCS pressure when RPV failed without RCS passive depressurization. Especially in the condition of opening one PORV, RCS pressure could reach high pressure limit when RPV failed and the risk of HPME and DCH was dramatically increased. Integrity of containment could be threatened. However, in the condition of RCS passive depressurization induced by pressurizer surge line creep failure, RCS pressure could be decreased to very low level even only one PORV was opened and two trains of emergency core cooling were implemented. The risk of HPME and DCH was eliminated. The more PORVs were opened, the faster accident progression was and the earlier RPV failed. RCS pressure was a little higher when PRV failed if two trains of emergency core cooling was implemented comparing with the condition with only one train of emergency core cooling. However the time of RPV failure was obviously delayed. From the point of delaying RPV failure and preventing containment early failure of view, the optimized late water injection was opening three PORVs and implementing two trains of emergency core cooling. (authors)

  5. Fault-tolerant control with mixed aerodynamic surfaces and RCS jets for hypersonic reentry vehicles

    Directory of Open Access Journals (Sweden)

    Jingjing He

    2017-04-01

    Full Text Available This paper proposes a fault-tolerant strategy for hypersonic reentry vehicles with mixed aerodynamic surfaces and reaction control systems (RCS under external disturbances and subject to actuator faults. Aerodynamic surfaces are treated as the primary actuator in normal situations, and they are driven by a continuous quadratic programming (QP allocator to generate torque commanded by a nonlinear adaptive feedback control law. When aerodynamic surfaces encounter faults, they may not be able to provide sufficient torque as commanded, and RCS jets are activated to augment the aerodynamic surfaces to compensate for insufficient torque. Partial loss of effectiveness and stuck faults are considered in this paper, and observers are designed to detect and identify the faults. Based on the fault identification results, an RCS control allocator using integer linear programming (ILP techniques is designed to determine the optimal combination of activated RCS jets. By treating the RCS control allocator as a quantization element, closed-loop stability with both continuous and quantized inputs is analyzed. Simulation results verify the effectiveness of the proposed method.

  6. Inferior ectopic pupil and typical ocular coloboma in RCS rats.

    Science.gov (United States)

    Tsuji, Naho; Ozaki, Kiyokazu; Narama, Isao; Matsuura, Tetsuro

    2011-08-01

    Ocular coloboma is sometimes accompanied by corectopia in humans and therefore ectopic pupil may indicate ocular coloboma in experimental animals. The RCS strain of rats has a low incidence of microphthalmia. We found that inferior ectopic pupil is associated exclusively with small-sized eyes in this strain. The objective of the current study was to evaluate whether inferior ectopic pupil is associated with iridal coloboma and other types of ocular coloboma in RCS rats. Both eyes of RCS rats were examined clinically, and those with inferior ectopic pupils underwent morphologic and morphometric examinations. In a prenatal study, coronal serial sections of eyeballs from fetuses at gestational day 16.5 were examined by using light microscopy. Ectopic pupils in RCS rats were found exclusively in an inferior position, where the iris was shortened. Fundic examination revealed severe chorioretinal coloboma in all cases of inferior ectopic pupil. The morphologic characteristics closely resembled those of chorioretinal coloboma in humans. Histopathologic examination of primordia showed incomplete closure of the optic fissure in 4 eyeballs of RCS fetuses. Neither F(1) rats nor N(2) (progeny of RCS × BN matings) displayed any ocular anomalies, including ectopic pupils. The RCS strain is a suitable model for human ocular coloboma, and inferior ectopic pupil appears to be a strong indicator of ocular coloboma.

  7. National demonstration of full reactor coolant system (RCS) chemical decontamination at Indian Point 2

    Energy Technology Data Exchange (ETDEWEB)

    Trovato, S.A.; Parry, J.O. [Consolidated Edison Co., New York, NY (United States)

    1995-03-01

    Key to the safe and efficient operation of the nation`s civilian nuclear power plants is the performance of maintenance activities within regulations and guidelines for personnel radiation exposure. However, maintenance activities, often performed in areas of relatively high radiation fields, will increase as the nation`s plant age. With the Nuclear Regulatory Commission (NRC) lowering the allowable radiation exposure to plant workers in 1994 and considering further reductions and regulations in the future, it is imperative that new techniques be developed and applied to reduce personnel exposure. Full primary system chemical decontamination technology offers the potential to be single most effective method of maintaining workers exposure {open_quotes}as low as reasonably achievable{close_quotes} (ALARA) while greatly reducing plant operation and maintenance (O&M) costs. A three-phase program underway since 1987, has as its goal to demonstrate that full RCS decontamination is a visible technology to reduce general plant radiation levels without threatening the long term reliability and operability of a plant. This paper discusses research leading to and plans for a National Demonstration of Full RCS Chemical Decontamination at Indian Point 2 nuclear generating station in 1995.

  8. Thermographic Inspections And The Residential Conservation Service Program (RCS)

    Science.gov (United States)

    Ward, Ronald J.

    1983-03-01

    Rhode Islanders Saving Energy (RISE) is a non-profit corporation founded in 1977 to provide Rhode Island residents with a variety of energy conservation services. Since January of 1981, it has been performing energy audits in compliance with the Department of Energy's (DOE) Residential Conservation Service Program (RCS). One aspect of the RCS program is the performance of inspections on energy conservation activities completed according to RCS installation guidelines. This paper will describe both the use and results of thermographic inspections within the RISE program. The primary objective of these inspections has been to assure the quality of the building envelope after completion of retrofit measures. Thermal anamolies have been detected that vary in size, location and probable cause. Approximately 37% of all jobs performed through RISE in conjunction with the RCS program have required remedial work as a result of problems that were identi-fied during the thermographic inspection. This percentage was much higher when infra-red inspections were conducted on "Non-RCS" retrofits. Statistics will be presented that provide an interesting insight on the quality of retrofit work when performed in associa-tion with a constant inspection process.

  9. RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum.

    Science.gov (United States)

    Zhang, Chao; Chen, Dong; Jiang, Xuefeng

    2017-11-13

    An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.

  10. Characterization of the rcsA Gene from Pantoea sp. Strain PPE7 and Its Influence on Extracellular Polysaccharide Production and Virulence on Pleurotus eryngii

    Directory of Open Access Journals (Sweden)

    Min Keun Kim

    2017-06-01

    Full Text Available RcsA is a positive activator of extracellular polysaccharide (EPS synthesis in the Enterobacteriaceae. The rcsA gene of the soft rot pathogen Pantoea sp. strain PPE7 in Pleurotus eryngii was cloned by PCR amplification, and its role in EPS synthesis and virulence was investigated. The RcsA protein contains 3 highly conserved domains, and the C-terminal end of the open reading frame shared significant amino acid homology to the helix-turn-helix DNA binding motif of bacterial activator proteins. The inactivation of rcsA by insertional mutagenesis created mutants that had decreased production of EPS compared to the wild-type strain and abolished the virulence of Pantoea sp. strain PPE7 in P. eryngii. The Pantoea sp. strain PPE7 rcsA gene was shown to strongly affect the formation of the disease symptoms of a mushroom pathogen and to act as the virulence factor to cause soft rot disease in P. eryngii.

  11. A Novel Low RCS Design Method for X-Band Vivaldi Antenna

    Directory of Open Access Journals (Sweden)

    XiaoXiang He

    2012-01-01

    Full Text Available A novel low radar cross-section (RCS design method is proposed, and its application on Vivaldi antenna that covers the entire X band is investigated. According to the difference of the current distribution on the radiator when the antenna radiates or scatters, the shape of the metal radiator is modified, so that maximally 19.2 dBsm RCS reduction is achieved which satisfied radiation performance. Simulated and measured results about gain, S11, and RCS are presented. As a result, the effectiveness of the presented low RCS design method is validated.

  12. Effect of natural circulation on RCS depressurization strategy in PWR NPP

    International Nuclear Information System (INIS)

    Zhang Kun; Tong Lili; Cao Xuewu

    2009-01-01

    The natural circulation model of Chinese Qinshan Nuclear Power Plant (NPP) Unit 2 is built using SCDAP/RELAP5 code. Selecting TMLB' accident as the base sequence, this paper analyzes the natural circulation phenomena in high-pressure core melt severe accident. In order to study the effect of natural circulation on RCS depressurization strategy, the accident progressions of RCS depressurization with and without natural circulation are simulated, respectively. According to the results, the natural circulation can delay the initiation of RCS depressurization and the whole accident progression, but it does not evidently influence the results of RCS depressurization. (authors)

  13. Radar Cross Section (RCS) Simulation for Wind Turbines

    Science.gov (United States)

    2013-06-01

    wind turbines are unsafe to operate. Also, helical wind turbines generally have less environmental concerns such as killing birds , especially in...SECTION (RCS) SIMULATION FOR WIND TURBINES by Cuong Ton June 2013 Thesis Advisor: David C. Jenn Second Reader: Ric Romero THIS PAGE...TITLE AND SUBTITLE RADAR CROSS SECTION (RCS) SIMULATION FOR WIND TURBINES 5. FUNDING NUMBERS 6. AUTHOR(S) Cuong Ton 7. PERFORMING ORGANIZATION

  14. Ultra-wideband RCS reduction using novel configured chessboard metasurface

    International Nuclear Information System (INIS)

    Zhuang Ya-Qiang; Wang Guang-Ming; Xu He-Xiu

    2017-01-01

    A novel artificial magnetic conductor (AMC) metasurface is proposed with ultra-wideband 180° phase difference for radar cross section (RCS) reduction. It is composed of two dual-resonant AMC cells, which enable a broadband phase difference of 180°±30° from 7.9 GHz to 19.2 GHz to be achieved. A novel strategy is devised by dividing each rectangular grid in a chessboard configuration into four triangular grids, leading to a further reduction of peak bistatic RCS. Both full-wave simulation and measurement results show that the proposed metasurface presents a good RCS reduction property over an ultra-wideband frequency range. (paper)

  15. Location Privacy on DVB-RCS using a “Spatial-Timing” Approach

    Directory of Open Access Journals (Sweden)

    A. Aggelis

    2011-09-01

    Full Text Available DVB-RCS synchronization scheme on the Return Channel requires the RCSTs to be programmed with their location coordinates with an accuracy of no more than a few kilometers. RCSTs use this location information in their ranging calculation to the servicing satellite. For certain users this location information disclosure to the network operator can be seen as a serious security event. Recent work of the authors overcame this requirement by cloaking the location of an RCST in such a way (based on "spatial/geometric" symmetries of the network that the respective ranging calculations are not affected. In this work we argue that timing tolerances in the Return Channel synchronization scheme, accepted by the DVB-RCS standard, can be used in combination to the "spatial" method, further enhancing the location privacy of an RCST. Theoretical findings of the proposed "spatial-timing" approach were used to develop a practical method that can be used by workers in the field. Finally this practical method was successfully tested on a real DVB-RCS system.

  16. Preliminary Research on RCS Using DGTD

    Directory of Open Access Journals (Sweden)

    Yang Qian

    2015-06-01

    Full Text Available Discontinuous Galerkin Time Domain (DGTD method appears to be very promising which combines the advantages of unstructured mesh in Finite Element Time Domain (FETD and explicit scheme in Finite Difference Time Domain (FDTD. This paper first describes principle of DGTD base on vector basis function. Secondly, Specific method for incident plane wave is given for scattering problem. At last, the monostatic Radar Cross Section (RCS of PEC sphere, medium sphere and the PEC bullet are computed by DGTD method. The numerical results illustrate the feasibility and correctness of the presented scheme. The study of this paper is a foundation for analyzing the RCS of complex target.

  17. Summary of LO2/Ethanol OMS/RCS Technology and Advanced Development 99-2744

    Science.gov (United States)

    Curtis, Leslie A.; Hurlbert, Eric A.

    1999-01-01

    NASA is pursuing non-toxic propellant technologies applicable to RLV and Space Shuttle orbital maneuvering system (OMS) and reaction control system (RCS). The primary objectives of making advancements in an OMS/RCS system are improved safety, reliability, and reduced operations and maintenance cost, while meeting basic operational and performance requirements. An OMS/RCS has a high degree of direct interaction with the vehicle and crew and requires subsystem and components that are compatible with integration into the vehicle with regard to external mold-line, power, and thermal control. In July 1997, a Phase I effort for the technology and advanced development of an upgrade of the space shuttle was conducted to define the system architecture, propellant tank, feed system, RCS thrusters, and OMS engine. Phase I of the project ran from July 1997 to October 1998. Phase II is currently being planned for the development and test of full-scale prototype of the system in 1999 and 2000. The choice of pressure-fed liquid oxygen (LO2) and ethanol is the result of numerous trade studies conducted from 1980 to 1996. Liquid oxygen and ethanol are clean burning, high-density propellants that provide a high degree of commonality with other spacecraft subsystems including life support, power, and thermal control, and with future human exploration and development of space missions. The key to this pressure-fed system is the use of subcooled liquid oxygen at 350 psia. In this approach, there is 80 degrees R of subcooling, which means that boil-off will not occur until the temperature has risen 80 R. The sub-cooling results naturally from loading propellants at 163 R, which is the saturation temperature at 14.7 psia, and then pressurizing to 350 psia on the launch pad. Thermal insulation and conditioning techniques are then used to limit the LO2 temperature to 185 R maximum, and maintain the sub-cooling. The other key is the wide temperature range of ethanol, -173 F to +300 F, which

  18. Glow experiment documentation of OMS/RCS pod and vertical stabilizer

    Science.gov (United States)

    1982-01-01

    Glow experiment documentation of one of the orbital maneuvering system (OMS) reaction control system (RCS) pods and a portion of the vertical stabilizer shows chemoluminescent effectresulting from atomic oxygen impacting the spacecraft and building to the point that the atomic oxygen atoms combine to form molecules of oxygen. The Image Intensifier on NIKON 35mm camera was used to record the glow.

  19. Glow experiment documentation of OMS/RCS pods and vertical stabilizer

    Science.gov (United States)

    1982-01-01

    Glow experiment documentation of orbital maneuvering system (OMS) reaction control system (RCS) pods and vertical stabilizer shows chemo-luminescent effect resulting from atomic oxygen impacting the spacecraft and building to the point that the atomic oxygen atoms combine to form molecules of oxygen. Image intensifier on NIKON 35mm camera was used to record glow on vertical tail and OMS pods.

  20. A remote characterization system for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.

    1992-10-01

    Mapping of buried objects and regions of chemical and radiological contamination is required at US Department of Energy (DOE) buried waste sites. The DOE Office of Technology Development Robotics Integrated Program has initiated a project to develop and demonstrate a remotely controlled subsurface sensing system, called the Remote Characterization System (RCS). This project, a collaborative effort by five of the National Laboratories, involves the development of a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for non-invasive inspection of the surface and subsurface. To minimize interference with on-board sensors, the survey vehicle has been constructed predominatantly of non-metallic materials. The vehicle is self-propelled and will be guided by an operator located at a remote base station. The RCS sensors will be environmentally sealed and internally cooled to preclude contamination during use. Ground-penetrating radar, magnetometers, and conductivity devices are planned for geophysical surveys. Chemical and radiological sensors will be provided to locate hot spots and to provide isotopic concentration data

  1. Metasurface base on uneven layered fractal elements for ultra-wideband RCS reduction

    Science.gov (United States)

    Su, Jianxun; Cui, Yueyang; Li, Zengrui; Yang, Yaoqing Lamar; Che, Yongxing; Yin, Hongcheng

    2018-03-01

    A novel metasurface based on uneven layered fractal elements is designed and fabricated for ultra-wideband radar cross section (RCS) reduction in this paper. The proposed metasurface consists of two fractal subwavelength elements with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Ultra-wideband RCS reduction results from the phase cancellation between two local waves produced by these two unit cells. The diffuse scattering of electromagnetic (EM) waves is caused by the randomized phase distribution, leading to a low monostatic and bistatic RCS simultaneously. This metasurface can achieve -10dB RCS reduction in an ultra-wide frequency range from 6.6 to 23.9 GHz with a ratio bandwidth (fH/fL) of 3.62:1 under normal incidences for both x- and y-polarized waves. Both the simulation and the measurement results are consistent to verify this excellent RCS reduction performance of the proposed metasurface.

  2. A Multiple Model SNR/RCS Likelihood Ratio Score for Radar-Based Feature-Aided Tracking

    National Research Council Canada - National Science Library

    Slocumb, Benjamin J; Klusman, III, Michael E

    2005-01-01

    ...) and radar cross section (RCS) for use in narrowband radar tracking. The formulation requires an estimate of the target mean RCS, and a key challenge is the tracking of the mean RCS through significant jumps due to aspect dependencies...

  3. Orbiter OMS and RCS technology

    Science.gov (United States)

    Boudreaux, R. A.

    1982-01-01

    Orbiter Orbital Maneuver Subsystem (OMS) and Reaction Control Subsystem (RCS) tankage has proved to be highly successful in shuttle flights on-orbit propellant transfer tests were done. Tank qualification tests along with flight demonstrations were carried out future uses of storable propellants are cited.

  4. Investigation of 3-D RCS Image formation of ships using ISAR

    CSIR Research Space (South Africa)

    Lord, RT

    2006-05-01

    Full Text Available Conventional Inverse Synthetic Aperture Radar (ISAR) utilises the rotational motion of a target such as a ship or an aircraft to obtain a 2-D image of the target’s radar cross section (RCS) profile from a coherent radar system. This concept can...

  5. Evaluation of High-Pressure RCS Natural Circulations Under Severe Accident Conditions

    International Nuclear Information System (INIS)

    Lee, Byung Chul; Bang, Young Suk; Suh, Nam Duk

    2006-01-01

    Since TMI-2 accident, the occurrence of severe accident natural circulations inside RCS during entire in-vessel core melt progressions before the reactor vessel breach had been emphasized and tried to clarify its thermal-hydraulic characteristics. As one of consolidated outcomes of these efforts, sophisticated models have been presented to explain the effects of a variety of engineering and phenomenological factors involved during severe accident mitigation on the integrity of RCS pressure boundaries, i.e. reactor pressure vessel(RPV), RCS coolant pipe and steam generator tubes. In general, natural circulation occurs due to density differences, which for single phase flow, is typically generated by temperature differences. Three natural circulation flows can be formed during severe accidents: in-vessel, hot leg countercurrent flow and flow through the coolant loops. Each of these flows may be present during high-pressure transients such as station blackout (SBO) and total loss of feedwater (TLOFW). As a part of research works in order to contribute on the completeness of severe accident management guidance (SAMG) in domestic plants by quantitatively assessing the RCS natural circulations on its integrity, this study presents basic approach for this work and some preliminary results of these efforts with development of appropriately detailed RCS model using MELCOR computer code

  6. Overall view of PLB and OMS / RCS engine thrusting

    Science.gov (United States)

    1983-01-01

    Overall payload bay (PLB) view shows Inertial Upper Stage (IUS) Airborne Support Equipment (ASE) forward frame and aft frame tilt actuator (AFTA) table after IUS Tracking and Data Relay Satellite (TDRS) deploy. Vertical tail and Orbital Maneuvering System (OMS) pods with rear reaction control system (RCS) thruster firing (sidefiring) appears in background against blackness of space. Right right jet firing was photographed from more than 18 meters (60 feet) away in the cabin of the Earth-orbiting Challenger, Orbiter Vehicle (OV) 099.

  7. Fuzzy-4D/RCS for Unmanned Aerial Vehicles

    OpenAIRE

    Olivares Mendez, Miguel Angel; Campoy, Pascual; Mondragon, Ivan F.; Martinez, Carol

    2010-01-01

    Abstract This paper presents an improvement of the cognitive architecture, 4D/RCS, developed by the NIST. This improvement consist of the insertion of Fuzzy Logic cells (FLCs), in different parts and hierarchy levels of the architecture, and the adaptation of this architecture for Unmanned Aerial Vehicles (UAVs). This advance provides an improvement in the functionality of the system based on the uses of the Miguel Olivares’ Fuzzy Software for the definition of the FLCs and its...

  8. An efficient hybrid technique in RCS predictions of complex targets at high frequencies

    Science.gov (United States)

    Algar, María-Jesús; Lozano, Lorena; Moreno, Javier; González, Iván; Cátedra, Felipe

    2017-09-01

    Most computer codes in Radar Cross Section (RCS) prediction use Physical Optics (PO) and Physical theory of Diffraction (PTD) combined with Geometrical Optics (GO) and Geometrical Theory of Diffraction (GTD). The latter approaches are computationally cheaper and much more accurate for curved surfaces, but not applicable for the computation of the RCS of all surfaces of a complex object due to the presence of caustic problems in the analysis of concave surfaces or flat surfaces in the far field. The main contribution of this paper is the development of a hybrid method based on a new combination of two asymptotic techniques: GTD and PO, considering the advantages and avoiding the disadvantages of each of them. A very efficient and accurate method to analyze the RCS of complex structures at high frequencies is obtained with the new combination. The proposed new method has been validated comparing RCS results obtained for some simple cases using the proposed approach and RCS using the rigorous technique of Method of Moments (MoM). Some complex cases have been examined at high frequencies contrasting the results with PO. This study shows the accuracy and the efficiency of the hybrid method and its suitability for the computation of the RCS at really large and complex targets at high frequencies.

  9. A Remote Characterization System and a fault-tolerant tracking system for subsurface mapping of buried waste sites

    International Nuclear Information System (INIS)

    Sandness, G.A.; Bennett, D.W.; Martinson, L.; Bingham, D.N.; Anderson, A.A.

    1992-08-01

    This paper describes two closely related projects that will provide new technology for characterizing hazardous waste burial sites. The first project, a collaborative effort by five of the national laboratories, involves the development and demonstration of a remotely controlled site characterization system. The Remote Characterization System (RCS) includes a unique low-signature survey vehicle, a base station, radio telemetry data links, satellite-based vehicle tracking, stereo vision, and sensors for noninvasive inspection of the surface and subsurface. The second project, conducted by the Idaho National Engineering Laboratory (INEL), involves the development of a position sensing system that can track a survey vehicle or instrument in the field. This system can coordinate updates at a rate of 200/s with an accuracy better than 0.1% of the distance separating the target and the sensor. It can employ acoustic or electromagnetic signals in a wide range of frequencies and can be operated as a passive or active device

  10. Design and Implementation of Adaptive Turbo Encoder for Quantized Software Defined Low-Power DVB-RCS Radios

    Directory of Open Access Journals (Sweden)

    S. H. Elramly

    2010-11-01

    Full Text Available Turbo codes are employed in every robust wireless digital communications system. Those codes have been adopted for the satellite return channel in DVB-RCS (Return Channel via Satellite standard. In Software Defined Radios (SDRs, Field Programmable Gate Array technology (FPGA is considered a highly configurable option for implementing many sophisticated signal processing tasks. The implementation for such codes is complex and dissipates a large amount of power. This paper studies the efficient implementation of quantized DVB-RCS turbo coding. Also, a low-power, turbo encoder for DVB-RCS is described using a VHDL code. The proposed encoder design is implemented on Xilinx Virtex-II Pro, XC2vpx30 FPGA chip. FPGA Advantage Pro package provided by Mentor Graphics is used for VHDL description and ISE 10.1 by Xilinx is used for synthetization.

  11. Human-factors-based implementation of the remote characterization system high-level control station

    International Nuclear Information System (INIS)

    Noakes, M.W.; Richardson, B.S.; Rowe, J.C.; Draper, J.V.; Sandness, G.R.

    1993-01-01

    The detection and characterization of buried objects and materials is an important first step in the restoration of the numerous US Department of Energy (DOE) and US Department of Defense waste disposal sites. DOE, through its Environmental Restoration and Waste Management Robotics and Technology Development Program, has developed the Remote Characterization System (RCS) to address the needs of remote subsurfacecharacterization. The RCS consists of a low-metal-content (low-metallic-signature) remotely piloted vehicle, a high-level control station (HLCS) where operators can remotely control the vehicle and analyze real-time data from sensors, and an array of sensors that can be chosen to meet the survey task at hand. Communication between the vehicle and the base station is handled by a radio link. Site mapping is made possible through the use of geopositioning satellite data. The primary mode of vehicle operation is teleoperation, but provision has been made for semiautonomous or supervisory control that allows for automated sitesurvey on simple sites. Data analysis and display is supported for both real-time observation and postprocessing of data. The particular emphasis of this paper documents the human-factors-based design influences on the HLCS and describes the design in detail

  12. Integrable RCS as a Proposed Replacement for Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander [Fermilab

    2017-03-07

    Integrable optics is an innovation in particle accelerator design that potentially enables a greater betatron tune spread and damps collective instabilities. An integrable rapid-cycling synchrotron (RCS) would be an effective replacement for the Fermilab Booster, as part of a plan to reach multi-MW beam power at 120 GeV for the Fermilab high-energy neutrino program. We provide an example integrable lattice with features of a modern RCS - dispersion-free drifts, low momentum compaction factor, superperiodicity, chromaticity correction, bounded beta functions, and separate-function magnets.

  13. Characterization of Aerodynamic Interactions with the Mars Science Laboratory Reaction Control System Using Computation and Experiment

    Science.gov (United States)

    Schoenenberger, Mark; VanNorman, John; Rhode, Matthew; Paulson, John

    2013-01-01

    On August 5 , 2012, the Mars Science Laboratory (MSL) entry capsule successfully entered Mars' atmosphere and landed the Curiosity rover in Gale Crater. The capsule used a reaction control system (RCS) consisting of four pairs of hydrazine thrusters to fly a guided entry. The RCS provided bank control to fly along a flight path commanded by an onboard computer and also damped unwanted rates due to atmospheric disturbances and any dynamic instabilities of the capsule. A preliminary assessment of the MSL's flight data from entry showed that the capsule flew much as predicted. This paper will describe how the MSL aerodynamics team used engineering analyses, computational codes and wind tunnel testing in concert to develop the RCS system and certify it for flight. Over the course of MSL's development, the RCS configuration underwent a number of design iterations to accommodate mechanical constraints, aeroheating concerns and excessive aero/RCS interactions. A brief overview of the MSL RCS configuration design evolution is provided. Then, a brief description is presented of how the computational predictions of RCS jet interactions were validated. The primary work to certify that the RCS interactions were acceptable for flight was centered on validating computational predictions at hypersonic speeds. A comparison of computational fluid dynamics (CFD) predictions to wind tunnel force and moment data gathered in the NASA Langley 31-Inch Mach 10 Tunnel was the lynch pin to validating the CFD codes used to predict aero/RCS interactions. Using the CFD predictions and experimental data, an interaction model was developed for Monte Carlo analyses using 6-degree-of-freedom trajectory simulation. The interaction model used in the flight simulation is presented.

  14. Space Shuttle RCS Oxidizer Leak Repair for STS-26

    Science.gov (United States)

    Delventhal, R. A.; Faget, N. M.

    1989-01-01

    Following propellant loading of the Space Shuttle's reaction control system (RCS) for mission STS 26, an oxidizer leak was detected in the left orbital maneuvering system (OMS) pod, where the RCS is located. Subsequent investigation determined that the leak was isolated at a mechanical Dynatube fitting near the RCS nitrogen tetroxide tank. An intense effort was initiated to design, fabricate, and qualify a sealing device to stop the oxidizer leak externally so that the Space Shuttle launch could proceed. It was discovered that sealing devices called clamshells were widely used throughout the petrochemical and power generation industries to stop leaks developed in large diameter pipes which carry steam or other hazardous fluids. These clamshells are available in different diameters and strengths and are placed around the pipe at the location of the leak. A sealing compound is then injected under high pressure into the clamshell to stop the leak. This technology was scaled down and applied to the problem of stopping the leak on the Orbiter, which was on a half-inch diameter line in a nearly inaccessible location. Many obstacles had to be overcome such as determining that the sealing material would be compatible with the nitrogen tetroxide and ensuring that the clamshell would actually fit around the Dynatube fitting without interfering with other lines which were in close proximity. The effort at the NASA Johnson Space Center included materials compatibility testing of several sealants, design of a clamshell to fit in the confined compartment, and manufacture and qualification of the flight hardware. A clamshell was successfully placed around the Dynatube fitting on the Orbiter and the oxidizer leak was terminated. Then it was decided to apply this technology further and design clamshells for other mechanical fittings onboard the Orbiter and develop sealing compounds which will be compatible with fuels such as monomethyl hydrazine (MMH). The potential exists for

  15. Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats☆

    Science.gov (United States)

    Li, Guang; Garza, Bryan De La; Shih, Yen-Yu I.; Muir, Eric R.; Duong, Timothy Q.

    2013-01-01

    The Royal College of Surgeons (RCS) rat is an established animal model of retinitis pigmentosa, a family of inherited retinal diseases which starts with loss of peripheral vision and progresses to eventual blindness. Blood flow (BF), an important physiological parameter, is intricately coupled to metabolic function under normal physiological conditions and is perturbed in many neurological and retinal diseases. This study reports non-invasive high-resolution MRI (44 × 44 × 600 μm) to image quantitative retinal and choroidal BF and layer-specific retinal thicknesses in RCS rat retinas at different stages of retinal degeneration compared with age-matched controls. The unique ability to separate retinal and choroidal BF was made possible by the depth-resolved MRI technique. RBF decreased with progressive retinal degeneration, but ChBF did not change in RCS rats up to post-natal day 90. We concluded that choroidal and retinal circulations have different susceptibility to progressive retinal degeneration in RCS rats. Layer-specific retinal thickness became progressively thinner and was corroborated by histological analysis in the same animals. MRI can detect progressive anatomical and BF changes during retinal degeneration with laminar resolution. PMID:22721720

  16. Layer-specific blood-flow MRI of retinitis pigmentosa in RCS rats.

    Science.gov (United States)

    Li, Guang; De La Garza, Bryan; Shih, Yen-Yu I; Muir, Eric R; Duong, Timothy Q

    2012-08-01

    The Royal College of Surgeons (RCS) rat is an established animal model of retinitis pigmentosa, a family of inherited retinal diseases which starts with loss of peripheral vision and progresses to eventual blindness. Blood flow (BF), an important physiological parameter, is intricately coupled to metabolic function under normal physiological conditions and is perturbed in many neurological and retinal diseases. This study reports non-invasive high-resolution MRI (44 × 44 × 600 μm) to image quantitative retinal and choroidal BF and layer-specific retinal thicknesses in RCS rat retinas at different stages of retinal degeneration compared with age-matched controls. The unique ability to separate retinal and choroidal BF was made possible by the depth-resolved MRI technique. RBF decreased with progressive retinal degeneration, but ChBF did not change in RCS rats up to post-natal day 90. We concluded that choroidal and retinal circulations have different susceptibility to progressive retinal degeneration in RCS rats. Layer-specific retinal thickness became progressively thinner and was corroborated by histological analysis in the same animals. MRI can detect progressive anatomical and BF changes during retinal degeneration with laminar resolution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. An Ultra-wideband and Polarization-independent Metasurface for RCS Reduction.

    Science.gov (United States)

    Su, Pei; Zhao, Yongjiu; Jia, Shengli; Shi, Wenwen; Wang, Hongli

    2016-02-11

    In this paper, an ultra-wideband and polarization-independent metasurface for radar cross section (RCS) reduction is proposed. The unit cell of the metasurface operates in a linear cross-polarization scheme in a broad band. The phase and amplitude of cross-polarized reflection can be separately controlled by its geometry and rotation angle. Based on the diffuse reflection theory, a 3-bit coding metasurface is designed to reduce the RCS in an ultra-wide band. The wideband property of the metasurface benefits from the wideband cross polarization conversion and flexible phase modulation. In addition, the polarization-independent feature of the metasurface is achieved by tailoring the rotation angle of each element. Both the simulated and measured results demonstrate that the proposed metasurface can reduce the RCS significantly in an ultra-wide frequency band for both normal and oblique incidences, which makes it promising in the applications such as electromagnetic cloaking.

  18. Transient protective effect of caspase inhibitors in RCS rat.

    Science.gov (United States)

    Perche, O; Doly, M; Ranchon-Cole, I

    2008-03-01

    In most retinal degenerations in humans and in animal models, photoreceptor cells die by apoptosis. Although the biochemical features are similar in all apoptotic cells, different molecular events lead the cell to death. In the present study we used a rat model of inherited retinal degeneration, the RCS rats, to investigate the involvement of the proteases, caspases and/or calpains, in photoreceptor apoptosis. In the first experiments, rats were untreated or injected intravitreally at post natal day 27 (P27) with the large broad spectrum caspase inhibitor, ZVAD, the calpain inhibitor, MuhPhe, or with the vehicle, DMSO. Retinal status was evaluated at P35 and P42 by electroretinography, morphometry and apoptotic nuclei detection. DMSO and MuhPhe had no effect on RCS retinas as evidenced by equivalent loss of function and equivalent number of apoptotic cells than in untreated group. ZVAD transiently reduced apoptotic cells and preserved photoreceptor function at P35 but not at P42. These results suggest that caspases but not calpains are involved in retinal degeneration in the RCS. In the second experiments, RCS rats were injected twice at P27 and P35 with ZVAD or DMSO. Although ZVAD-treated retinas were preserved at P35 compared to the DMSO controls, the second injection of ZVAD did not extend the preserving effect to P42. Moreover, a single injection of ZVAD at P35 had no preserving effect at P42. All these data taken together suggest that caspases do not play a pivotal role after P35. In a fourth set of experiments, we used specific caspase inhibitors to elucidate which caspase was activated. The caspase-1/4 inhibitor (YVAD) or the caspase-3/7 inhibitor (DEVD) were injected intravitreally at P27 and retinal status was evaluated at P35 and P42. Electroretinograms and apoptotic nuclei detection demonstrated that YVAD and DEVD preserved photoreceptors at P35 but not at P42. These results suggest that both caspase-1/4 and caspase-3/7 play a major role in the apoptotic

  19. Research on the Scattering Characteristics and the RCS Reduction of Circularly Polarized Microstrip Antenna

    Directory of Open Access Journals (Sweden)

    W. Jiang

    2013-01-01

    Full Text Available Based on the study of the radiation and scattering of the circularly polarized (CP antenna, a novel radar cross-section (RCS reduction technique is proposed for CP antenna in this paper. Quasi-fractal slots are applied in the design of the antenna ground plane to reduce the RCS of the CP antenna. Both prototype antenna and array are designed, and their time-, frequency-, and space-domain characteristics are studied to authenticate the proposed technique. The simulated and measured results show that the RCS of the prototype antenna and array is reduced up to 7.85 dB and 6.95 dB in the band of 1 GHz–10 GHz. The proposed technique serves a candidate in the design of low RCS CP antennas and arrays.

  20. The Quantitative Reasoning for College Science (QuaRCS) Assessment in non-Astro 101 Courses II

    Science.gov (United States)

    Kirkman, Thomas W.; Jensen, Ellen

    2017-06-01

    The Quantitative Reasoning for College Science (QuaRCS) Assessment[1] aims to measure the pre-algebra mathematical skills that are often part of "general education" science courses like Astro 101. In four majors STEM classes, we report comparisons between QuaRCS metrics, ACT math, GPAO, and the course grade. In three of four classes QuaRCS QR score and ACT math were statistically significantly correlated (with r˜.6), however in the fourth course —a senior-level microbiology course— there was no statistically significantly correlation (in fact, rPhysics courses showed fractional sigma gains in QR, self-estimated math fluency and math importance, but not all of those increases were statistically significant. Using a QuaRCS map relating the questions to skill areas, we found graph reading, percentages, and proportional reasoning to be the most misunderstood skills in all four courses.[1] QuaRCS, Follette, et al.,2015, DOI: http://dx.doi.org/10.5038/1936-4660.8.2.2

  1. RCS Leak Rate Calculation with High Order Least Squares Method

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Kang, Young Kyu; Kim, Yang Ki

    2010-01-01

    As a part of action items for Application of Leak before Break(LBB), RCS Leak Rate Calculation Program is upgraded in Kori unit 3 and 4. For real time monitoring of operators, periodic calculation is needed and corresponding noise reduction scheme is used. This kind of study was issued in Korea, so there have upgraded and used real time RCS Leak Rate Calculation Program in UCN unit 3 and 4 and YGN unit 1 and 2. For reduction of the noise in signals, Linear Regression Method was used in those programs. Linear Regression Method is powerful method for noise reduction. But the system is not static with some alternative flow paths and this makes mixed trend patterns of input signal values. In this condition, the trend of signal and average of Linear Regression are not entirely same pattern. In this study, high order Least squares Method is used to follow the trend of signal and the order of calculation is rearranged. The result of calculation makes reasonable trend and the procedure is physically consistence

  2. Dynamic radar cross section measurements of a full-scale aircraft for RCS modelling validation

    CSIR Research Space (South Africa)

    Van Schalkwyk, Richard F

    2017-10-01

    Full Text Available In this paper the process followed in generating a high fidelity reference data set for radar cross section (RCS) modelling validation for a full-scale aircraft, is presented. An overview of two dynamic RCS measurement campaigns, involving both...

  3. Bcl-2 expression during the development and degeneration of RCS rat retinae.

    Science.gov (United States)

    Sharma, R K

    2001-12-14

    In various hereditary retinal degenerations, including that in Royal College of Surgeons (RCS) rats, the photoreceptors ultimately die by apoptosis. Bcl-2 is one of the genes, which regulates apoptosis and is thought to promote survival of cells. This study has investigated the developmental expression of Bcl-2 in RCS rat, which is a well-studied animal model for hereditary retinal degeneration. An antibody against Bcl-2 was used for its immunohistochemical localization in dystrophic RCS rat retinae from postnatal (PN) days 4, 7, 13, 35, 45, 70, 202 and 14 months. Results were compared with Bcl-2 localization in congenic non-dystrophic rats from PN 4, 7, 13, 44, 202 and 14 months. Bcl-2 immunoreactivity in non-dystrophic retinae was already present in PN 4 retinae in the nerve fiber layer (presumably in the endfeet of immature Müller cells) and in the proximal parts of certain radially aligned neuroepithelial cells/immature Müller cell radial processes. With increasing age the immunoreactivity in relatively more mature Müller cell radial processes spread distally towards the outer retina and between PN 13 and 44 it reached the adult distribution. No cell bodies in the ganglion cell layer were found to be immunoreactive. Expression of Bcl-2 immunoreactivity in dystrophic RCS rat retinae closely resembled that of non-dystrophic retinae. No immunoreactivity was seen in photoreceptors or retinal pigment epithelium in dystrophic or non-dystrophic retinae. In conclusion, Bcl-2 expression is not altered, either in terms of its chronology or the cell type expressing it, during retinal degeneration in RCS rats.

  4. Development of robotics technology for remote characterization and remediationof buried waste

    International Nuclear Information System (INIS)

    Noakes, M.W.; Richardson, B.S.; Burks, B.L.; Sandness, G.R.

    1992-01-01

    Detection, characterization, and excavation of buried objects and materials are important steps in the restoration of subsurface disposal sites. The US Department of Energy (DOE), through its Buried Waste Robotics Program, is developing a Remote Characterization System (RCS) to address the needs of remote subsurface characterization and, in a joint program with the US Army, is developing a teleoperated excavator. Development of the RCS is based on recent DOE remote characterization testing and demonstrations performed at Oak Ridge National Laboratory and Idaho National Engineering Laboratory. The RCS, which will be developed and refined over a two- to three-year period, is designed to (1) increase safety by removing on-site personnel from hazardous areas, (2) remotely acquire real-time data from multiple sensors, (3) increase cost-effectiveness and productivity by partial automation of the data collection process and by gathering and evaluating data from multiple sensors in real time, and (4) reduce costs for other waste-related development programs through joint development efforts and reusable standardized subsystems. For retrieval of characterized waste, the Small Emplacement Excavator, an existing US Army backhoe that is being converted to teleoperated control, will be used to demonstrate the feasibility of retrofitting commercial equipment for high-performance remote operations

  5. Design Considerations for Proposed Fermilab Integrable RCS

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Valishev, Alexander

    2017-03-02

    Integrable optics is an innovation in particle accelerator design that provides strong nonlinear focusing while avoiding parametric resonances. One promising application of integrable optics is to overcome the traditional limits on accelerator intensity imposed by betatron tune-spread and collective instabilities. The efficacy of high-intensity integrable accelerators will be undergo comprehensive testing over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER). We propose an integrable Rapid-Cycling Synchrotron (iRCS) as a replacement for the Fermilab Booster to achieve multi-MW beam power for the Fermilab high-energy neutrino program. We provide a overview of the machine parameters and discuss an approach to lattice optimization. Integrable optics requires arcs with integer-pi phase advance followed by drifts with matched beta functions. We provide an example integrable lattice with features of a modern RCS - long dispersion-free drifts, low momentum compaction, superperiodicity, chromaticity correction, separate-function magnets, and bounded beta functions.

  6. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats.

    Science.gov (United States)

    Schraermeyer, U; Thumann, G; Luther, T; Kociok, N; Armhold, S; Kruttwig, K; Andressen, C; Addicks, K; Bartz-Schmidt, K U

    2001-01-01

    The Royal College of Surgeons (RCS) rat is an animal model for retinal degeneration such as the age-related macular degeneration. The RCS rat undergoes a progressive retinal degeneration during the early postnatal period. A potential treatment to prevent this retinal degeneration is the transplantation into the subretinal space of cells that would replace functions of the degenerating retinal pigment epithelium (RPE) cells or may form neurotrophic factors. In this study we have investigated the potential of subretinally transplanted embryonic stem cells to prevent the genetically determined photoreceptor cell degeneration in the RCS rat. Embryonic stem cells from the inner cell mass of the mouse blastocyst were allowed to differentiate to neural precursor cells in vitro and were then transplanted into the subretinal space of 20-day-old RCS rats. Transplanted and sham-operated rats were sacrificed 2 months following cell transplantation. The eyes were enucleated and photoreceptor degeneration was quantified by analyzing and determining the thickness of the outer nuclear layer by light and electron microscopy. In the eyes transplanted with embryonic cells up to 8 rows of photoreceptor cell nuclei were observed, whereas in nontreated control eyes the outer nuclear layer had degenerated completely. Transplantation of embryonic stem cells appears to delay photoreceptor cell degeneration in RCS rats.

  7. Mutual Coupling Effects for Radar Cross Section (RCS of a Series-Fed Dipole Antenna Array

    Directory of Open Access Journals (Sweden)

    H. L. Sneha

    2012-01-01

    Full Text Available The estimation of RCS of a phased array depends on various parameters, namely, array geometry, operational frequency, feed network, mutual coupling between the antenna elements and so fourth. This paper presents the estimation of RCS of linear dipole array with series-feed network by tracing the signal path from the antenna aperture into the feed network. The effect of mutual coupling exhibited by the dipole antenna is considered for three configurations namely, side by side, collinear, and parallel in echelon. It is shown that the mutual coupling affects the antenna pattern (and hence RCS significantly for larger scan angles. Further it is inferred that the RCS of phased array can be optimized by (i reducing the length of the dipole, (ii termination of the isolation port of the coupler with a suitable load, and (iii using suitable amplitude distribution.

  8. Evaluation of a coolant injection into the in-vessel with a RCS depressurization by using SCDAP/RELAP5

    International Nuclear Information System (INIS)

    Rae-Joon, Park; Sang-Baik, Kim; Hee-Dong, Kim

    2007-01-01

    As part of the evaluations of a severe accident management strategy, a coolant injection in the vessel with a reactor coolant system (RCS) depressurization has been evaluated by using the SCDAP/RELAP5 computer code. Two high pressure sequences of a small break loss of coolant accident (LOCA) without safety injection (SI) and a total loss of feed water (LOFW) accident have been analyzed in optimized power reactor OPR-1000. The SCDAP/RELAP5 results have shown that only one train operation of a high pressure safety injection at 30,000 seconds with a RCS depressurization by using one condenser dump valve at 6 minutes after an entrance of the severe accident management guidance prevents a reactor vessel failure for the small break LOCA without SI. In this case, only train operation of the low pressure safety injection (LPSI) without the high pressure safety injection (HPSI) does not prevent a reactor vessel failure. Only one train operation of the HPSI at 20,208 seconds with a RCS depressurization by using two safety depressurization system valves at 40 minutes after an initial opening of the safety relief valve prevents a reactor vessel failure for the total LOFW. (authors)

  9. Radar cross-section (RCS) analysis of high frequency surface wave radar targets

    OpenAIRE

    ÇAKIR, Gonca; SEVGİ, Levent

    2010-01-01

    Realistic high frequency surface wave radar (HFSWR) targets are investigated numerically in terms of electromagnetic wave -- target interactions. Radar cross sections (RCS) of these targets are simulated via both the finite-difference time-domain (FDTD) method and the Method of Moments (MoM). The virtual RCS prediction tool that was introduced in previous work is used for these investigations. The virtual tool automatically creates the discrete FDTD model of the target under investi...

  10. Resolution of issues related to alternative RCS injection in the absence of containment sump recirculation

    International Nuclear Information System (INIS)

    Charles L Kling; Stephen S Barshay; Mathew C Jacob; Michael J Friedman

    2005-01-01

    Full text of publication follows: On June 9, 2003 the US NRC issued Bulletin No. 2003-01 that deals with the potential impact of debris blockage on containment sump recirculation at PWRs during a Loss-of-Coolant Accident (LOCA). In response to the bulletin, the Omaha Public Power District (OPPD) is in the process of developing procedural and operational strategies for their Fort Calhoun Station (FCS) to address the issues raised. Westinghouse provided engineering support to OPPD in identifying and resolving issues related to alternative means of supplying safety injection water to the reactor coolant system (RCS) in the absence of containment sump recirculation. Nuclear power plants are designed to protect the core following a LOCA by providing a continuous supply of cooling water to the core. In the long term, the Refueling Water Storage Tank (RWST) inventory will be depleted and core heat removal accomplished via recirculation of water previously injected into the Reactor Coolant System (RCS) and collected in the containment sump. Debris generated within the containment as a result of the impingement of fluid jets in the Zone of Influence (ZOI) of the RCS break and containment wash down may find its way into the containment sump. As the safety injection pumps take suction from the sump, in the recirculation mode of operation, the debris suspended in the sump water could begin to accumulate in the sump screen that is located in the recirculation path. Should sufficient debris accumulate on the sump screen, a flow blockage could potentially develop. This would result in insufficient safety injection pump NPSH, thereby impairing the recirculation mode of injection into RCS. Potential debris blockage and prevention of sump recirculation may be addressed by refilling the RWST with water and injecting this water directly into the core. This paper identifies and attempts to resolve several issues related to this alternative mode of RCS injection. In particular, the

  11. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats

    Directory of Open Access Journals (Sweden)

    Yi-Ming Ren

    2018-05-01

    Full Text Available AIM: To evaluate the intrinsic excitability of retinal ganglion cells (RGCs in degenerated retinas. METHODS: The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS rats, a common retinitis pigmentosa (RP model, in a relatively late stage of retinal degeneration (P90 were investigated. Several parameters of RGC morphologies and action potentials (APs were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. RESULTS: Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells, and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. CONCLUSION: RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies.

  12. Ultra-Wideband RCS Reduction and Gain Enhancement of Aperture-Coupled Antenna Based on Hybrid-FSS

    Directory of Open Access Journals (Sweden)

    L. L. Cong

    2017-12-01

    Full Text Available A novel design of aperture-coupled microstrip antenna with ultra-wideband low radar cross section (RCS is proposed. Hybrid frequency selective surface (FSS structures consisting of two kinds of polarization-dependent folded split ring resonators (PDFSRRs and square patches are utilized to replace the conventional metallic ground. By orthogonally arranging the PDFSRRs in a chessboard-like configuration, the band-stop characteristic contributes to the gain enhancement, while the zero degree points of reflection phase and wave-transmission characteristic are utilized to achieve RCS reduction both in-band and out-of-band. Furthermore, with square patches periodically etched on the bottom of FSS structure, a new zero degree reflection phase is introduced to enhance the effect of RCS reduction. Full wave simulations and measurements demonstrate that the proposed antenna achieves RCS reduction from 1 GHz to 18 GHz and gain enhancement compared with traditional microstrip antenna.

  13. Dynamic RCS Simulation of a Missile Target Group Based on the High-frequency Asymptotic Method

    Directory of Open Access Journals (Sweden)

    Zhao Tao

    2014-04-01

    Full Text Available To simulate dynamic Radar Cross Section (RCS of missile target group, an efficient RCS prediction approach is proposed based on the high-frequency asymptotic theory. The minimal energy trajectory and coordinate transformation is used to get trajectories of the missile, decoys and roll booster, and establish the dynamic scene for the separate procedure of the target group, and the dynamic RCS including specular reflection, edge diffraction and multi-reflection from the target group are obtained by Physical Optics (PO, Equivalent Edge Currents (EEC and Shooting-and-Bouncing Ray (SBR methods. Compared with the dynamic RCS result with the common interpolation method, the proposed method is consistent with the common method when the targets in the scene are far away from each other and each target is not sheltered by others in the incident direction. When the target group is densely distributed and the shelter effect can not be neglected, the interpolation method is extremely difficult to realize, whereas the proposed method is successful.

  14. STS-46 Atlantis', OV-104's, vertical tail and OMS pods lit up by RCS jet firing

    Science.gov (United States)

    1992-01-01

    STS-46 Atlantis', Orbiter Vehicle (OV) 104's, vertical tail and orbital maneuvering system (OMS) pods are highlighted by the glow of the reaction control system (RCS) jet firings. OV-104 was at an altitude of 128 nautical miles. The remote manipulator system (RMS) arm is partially visible stowed along the port side sill longeron.

  15. Wideband RCS Reduction of Microstrip Array Antenna Based on Absorptive Frequency Selective Surface and Microstrip Resonators

    Directory of Open Access Journals (Sweden)

    Jingjing Xue

    2017-01-01

    Full Text Available An approach for wideband radar cross section (RCS reduction of a microstrip array antenna is presented and discussed. The scheme is based on the microstrip resonators and absorptive frequency selective surface (AFSS with a wideband absorptive property over the low band 1.9–7.5 GHz and a transmission characteristic at high frequency 11.05 GHz. The AFSS is designed to realize the out-of-band RCS reduction and preserve the radiation performance simultaneously, and it is placed above the antenna with the operating frequency of 11.05 GHz. Moreover, the microstrip resonators are loaded to obtain the in-band RCS reduction. As a result, a significant RCS reduction from 1.5 GHz to 13 GHz for both types of polarization has been accomplished. Compared with the reference antenna, the simulated results exhibit that the monostatic RCS of the proposed array antenna in x- and y-polarization can be reduced as much as 17.6 dB and 21.5 dB, respectively. And the measured results agree well with the simulated ones.

  16. Transparent Gap Filler Solution over a DVB-RCS2 Satellite Platform in a Railway Scenario: Performance Evaluation Study

    Directory of Open Access Journals (Sweden)

    Peppino Fazio

    2015-01-01

    Full Text Available In this work, a performance study of a system equipped with a transparent Gap Filler solution in a DVB-RCS2 satellite platform has been provided. In particular, a simulation model based on a 3-state Markov chain, overcoming the blockage status through the introduction of a transparent Gap Filler (using devices on both tunnel sides has been implemented. The handover time, due to switching mechanism between satellite and Gap Filler, has been taken into account. As reference scenario, the railway market has been considered, which is characterized by a N-LOS condition, due to service disruptions caused by tunnels, vegetation and buildings. The system performance, in terms of end-to-end delay, queue size and packet loss percentage, have been evaluated, in order to prove the goodness of communications in a real railroad path.

  17. [Blue-light induced expression of S-adenosy-L-homocysteine hydrolase-like gene in Mucor amphibiorum RCS1].

    Science.gov (United States)

    Gao, Ya; Wang, Shu; Fu, Mingjia; Zhong, Guolin

    2013-09-04

    To determine blue-light induced expression of S-adenosyl-L-homocysteine hydrolase-like (sahhl) gene in fungus Mucor amphibiorum RCS1. In the random process of PCR, a sequence of 555 bp was obtained from M. amphibiorum RCS1. The 555 bp sequence was labeled with digoxin to prepare the probe for northern hybridization. By northern hybridization, the transcription of sahhl gene was analyzed in M. amphibiorum RCS1 mycelia culture process from darkness to blue light to darkness. Simultaneously real-time PCR method was used to the sahhl gene expression analysis. Compared with the sequence of sahh gene from Homo sapiens, Mus musculus and some fungi species, a high homology of the 555 bp sequence was confirmed. Therefore, the preliminary confirmation has supported that the 555 bp sequence should be sahhl gene from M. amphibiorum RCS1. Under the dark pre-culture in 24 h, a large amounts of transcript of sahhl gene in the mycelia can be detected by northern hybridization and real-time PCR in the condition of 24 h blue light. But a large amounts of transcript of sahhl gene were not found in other detection for the dark pre-culture of 48 h, even though M. amphibiorum RCS1 mycelia were induced by blue light. Blue light can induce the expression of sahhl gene in the vigorous growth of M. amphibiorum RCS1 mycelia.

  18. World Register of marine Cave Species (WoRCS: a new Thematic Species Database for marine and anchialine cave biodiversity

    Directory of Open Access Journals (Sweden)

    Vasilis Gerovasileiou

    2016-09-01

    Full Text Available Scientific exploration of marine cave environments and anchialine ecosystems over recent decades has led to outstanding discoveries of novel taxa, increasing our knowledge of biodiversity. However, biological research on underwater caves has taken place only in a few areas of the world and relevant information remains fragmented in isolated publications and databases. This fragmentation makes assessing the conservation status of marine cave species especially problematic, and this issue should be addressed urgently given the stresses resulting from planned and rampant development in the coastal zone worldwide. The goal of the World Register of marine Cave Species (WoRCS initiative is to create a comprehensive taxonomic and ecological database of known species from marine caves and anchialine systems worldwide and to present this as a Thematic Species Database (TSD of the World Register of marine Species (WoRMS. WoRCS will incorporate ecological data (e.g., type of environment, salinity regimes, and cave zone as well as geographical information on the distribution of species in cave and anchialine environments. Biodiversity data will be progressively assembled from individual database sources at regional, national or local levels, as well as from literature sources (estimate: >20,000 existing records of cave-dwelling species scattered in several databases. Information will be organized in the WoRCS database following a standard glossary based on existing terminology. Cave-related information will be managed by the WoRCS thematic editors with all data dynamically linked to WoRMS and its team of taxonomic editors. In order to mobilize data into global biogeographic databases, a Gazetteer of the Marine and Anchialine Caves of the World will be established. The presence records of species could be eventually georeferenced for submission to the Ocean Biogeographic Information System (OBIS and constitute an important dataset for biogeographical and

  19. Correction of the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk.

    Science.gov (United States)

    Vollrath, D; Feng, W; Duncan, J L; Yasumura, D; D'Cruz, P M; Chappelow, A; Matthes, M T; Kay, M A; LaVail, M M

    2001-10-23

    The Royal College of Surgeons (RCS) rat is a widely studied animal model of retinal degeneration in which the inability of the retinal pigment epithelium (RPE) to phagocytize shed photoreceptor outer segments leads to a progressive loss of rod and cone photoreceptors. We recently used positional cloning to demonstrate that the gene Mertk likely corresponds to the retinal dystrophy (rdy) locus of the RCS rat. In the present study, we sought to determine whether gene transfer of Mertk to a RCS rat retina would result in correction of the RPE phagocytosis defect and preservation of photoreceptors. We used subretinal injection of a recombinant replication-deficient adenovirus encoding rat Mertk to deliver the gene to the eyes of young RCS rats. Electrophysiological assessment of animals 30 days after injection revealed an increased sensitivity of treated eyes to low-intensity light. Histologic and ultrastructural assessment demonstrated substantial sparing of photoreceptors, preservation of outer segment structure, and correction of the RPE phagocytosis defect in areas surrounding the injection site. Our results provide definitive evidence that mutation of Mertk underlies the RCS retinal dystrophy phenotype, and that the phenotype can be corrected by treatment of juvenile animals. To our knowledge, this is the first demonstration of complementation of both a functional cellular defect (phagocytosis) and a photoreceptor degeneration by gene transfer to the RPE. These results, together with the recent discovery of MERTK mutations in individuals with retinitis pigmentosa, emphasize the importance of the RCS rat as a model for gene therapy of diseases that arise from RPE dysfunction.

  20. Parallel Computation of RCS of Electrically Large Platform with Coatings Modeled with NURBS Surfaces

    Directory of Open Access Journals (Sweden)

    Ying Yan

    2012-01-01

    Full Text Available The significance of Radar Cross Section (RCS in the military applications makes its prediction an important problem. This paper uses large-scale parallel Physical Optics (PO to realize the fast computation of RCS to electrically large targets, which are modeled by Non-Uniform Rational B-Spline (NURBS surfaces and coated with dielectric materials. Some numerical examples are presented to validate this paper’s method. In addition, 1024 CPUs are used in Shanghai Supercomputer Center (SSC to perform the simulation of a model with the maximum electrical size 1966.7 λ for the first time in China. From which, it can be found that this paper’s method can greatly speed the calculation and is capable of solving the real-life problem of RCS prediction.

  1. Subretinal electrical stimulation preserves inner retinal function in RCS rat retina.

    Science.gov (United States)

    Ciavatta, Vincent T; Mocko, Julie A; Kim, Moon K; Pardue, Machelle T

    2013-01-01

    Previously, studies showed that subretinal electrical stimulation (SES) from a microphotodiode array (MPA) preserves electroretinography (ERG) b-wave amplitude and regional retinal structure in the Royal College of Surgeons (RCS) rat and simultaneously upregulates Fgf2 expression. This preservation appears to be associated with the increased current produced when the MPA is exposed to ERG test flashes, as weekly ERG testing produces greater neuroprotection than biweekly or no testing. Using an infrared source to stimulate the MPA while avoiding potential confounding effects from exposing the RCS retina to high luminance white light, this study examined whether neuroprotective effects from SES increased with subretinal current in a dose-dependent manner. RCS rats (n=49) underwent subretinal implantation surgery at P21 with MPA devices in one randomly selected eye, and the other eye served as the control. Naïve RCS rats (n=25) were also studied. To increase SES current levels, implanted eyes were exposed to 15 min per session of flashing infrared light (IR) of defined intensity, frequency, and duty cycle. Rats were divided into four SES groups that received ERG testing only (MPA only), about 450 µA/cm2 once per week (Low 1X), about 450 µA/cm2 three times per week (Low 3X), and about 1350 µA/cm2 once per week (High 1X). One eye of the control animals was randomly chosen for IR exposure. All animals were followed for 4 weeks with weekly binocular ERGs. A subset of the eyes was used to measure retina Fgf2 expression with real-time reverse-transcription PCR. Eyes receiving SES showed significant preservation of b-wave amplitude, a- and b-wave implicit times, oscillatory potential amplitudes, and post-receptoral parameters (Vmax and log σ) compared to untreated eyes. All SES-treated eyes had similar preservation, regardless of increased SES from IR light exposure. SES-treated eyes tended to have greater retinal Fgf2 expression than untreated eyes, but Fgf2 expression

  2. Proteomic profiling of early degenerative retina of RCS rats.

    Science.gov (United States)

    Zhu, Zhi-Hong; Fu, Yan; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin

    2017-01-01

    To identify the underlying cellular and molecular changes in retinitis pigmentosa (RP). Label-free quantification-based proteomics analysis, with its advantages of being more economic and consisting of simpler procedures, has been used with increasing frequency in modern biological research. Dystrophic RCS rats, the first laboratory animal model for the study of RP, possess a similar pathological course as human beings with the diseases. Thus, we employed a comparative proteomics analysis approach for in-depth proteome profiling of retinas from dystrophic RCS rats and non-dystrophic congenic controls through Linear Trap Quadrupole - orbitrap MS/MS, to identify the significant differentially expressed proteins (DEPs). Bioinformatics analyses, including Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation and upstream regulatory analysis, were then performed on these retina proteins. Finally, a Western blotting experiment was carried out to verify the difference in the abundance of transcript factor E2F1. In this study, we identified a total of 2375 protein groups from the retinal protein samples of RCS rats and non-dystrophic congenic controls. Four hundred thirty-four significantly DEPs were selected by Student's t -test. Based on the results of the bioinformatics analysis, we identified mitochondrial dysfunction and transcription factor E2F1 as the key initiation factors in early retinal degenerative process. We showed that the mitochondrial dysfunction and the transcription factor E2F1 substantially contribute to the disease etiology of RP. The results provide a new potential therapeutic approach for this retinal degenerative disease.

  3. Proteomic profiling of early degenerative retina of RCS rats

    Directory of Open Access Journals (Sweden)

    Zhi-Hong Zhu

    2017-06-01

    Full Text Available AIM: To identify the underlying cellular and molecular changes in retinitis pigmentosa (RP. METHODS: Label-free quantification-based proteomics analysis, with its advantages of being more economic and consisting of simpler procedures, has been used with increasing frequency in modern biological research. Dystrophic RCS rats, the first laboratory animal model for the study of RP, possess a similar pathological course as human beings with the diseases. Thus, we employed a comparative proteomics analysis approach for in-depth proteome profiling of retinas from dystrophic RCS rats and non-dystrophic congenic controls through Linear Trap Quadrupole - orbitrap MS/MS, to identify the significant differentially expressed proteins (DEPs. Bioinformatics analyses, including Gene ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway annotation and upstream regulatory analysis, were then performed on these retina proteins. Finally, a Western blotting experiment was carried out to verify the difference in the abundance of transcript factor E2F1. RESULTS: In this study, we identified a total of 2375 protein groups from the retinal protein samples of RCS rats and non-dystrophic congenic controls. Four hundred thirty-four significantly DEPs were selected by Student’s t-test. Based on the results of the bioinformatics analysis, we identified mitochondrial dysfunction and transcription factor E2F1 as the key initiation factors in early retinal degenerative process. CONCLUSION: We showed that the mitochondrial dysfunction and the transcription factor E2F1 substantially contribute to the disease etiology of RP. The results provide a new potential therapeutic approach for this retinal degenerative disease.

  4. Experimental Results and Numerical Simulation of the Target RCS using Gaussian Beam Summation Method

    Directory of Open Access Journals (Sweden)

    Ghanmi Helmi

    2018-05-01

    Full Text Available This paper presents a numerical and experimental study of Radar Cross Section (RCS of radar targets using Gaussian Beam Summation (GBS method. The purpose GBS method has several advantages over ray method, mainly on the caustic problem. To evaluate the performance of the chosen method, we started the analysis of the RCS using Gaussian Beam Summation (GBS and Gaussian Beam Launching (GBL, the asymptotic models Physical Optic (PO, Geometrical Theory of Diffraction (GTD and the rigorous Method of Moment (MoM. Then, we showed the experimental validation of the numerical results using experimental measurements which have been executed in the anechoic chamber of Lab-STICC at ENSTA Bretagne. The numerical and experimental results of the RCS are studied and given as a function of various parameters: polarization type, target size, Gaussian beams number and Gaussian beams width.

  5. Cone function studied with flicker electroretinogram during progressive retinal degeneration in RCS rats.

    Science.gov (United States)

    Pinilla, I; Lund, R D; Sauvé, Y

    2005-01-01

    The Royal College of Surgeons (RCS) rat has a primary defect in retinal pigment epithelial cells that leads to the progressive loss of photoreceptors and central visual responsiveness. While most rods are lost by 90 days of age (P90), cones degenerate more slowly, and can be detected anatomically up to 2 years of age, despite massive neuronal death and retinal remodelling. To examine how this progressive degenerative process impacts on cone function, we recorded the electroretingram to white light flashes (1.37 log cd s m(-2)) presented at frequencies ranging from 3 to 50 Hz, under light adapted conditions (29.8 cd m(-2)). Pigmented dystrophic and congenic non-dystrophic RCS rats aged from 18 to 300 days were studied. In all responsive animals at all ages, maximal amplitudes were obtained at 3 Hz. In both non-dystrophic and dystrophic rats, there was an increase from P18 to P21 in response amplitude and critical fusion frequency. After P21, these two parameters declined progressively with age in dystrophic rats. Other changes included prolongation in latency, which was first detected prior to the initiation of amplitude reduction. While phase shifts were also detected in dystrophic RCS rats, they appeared at later degenerative stages. The latest age at which responses could be elicited in dystrophic rats was at P200, with positive waves being replaced by negative deflections. The effect of increments in the intensity of background illumination was tested at P50 in both groups. This caused a diminution in flicker response amplitude and critical fusion frequencies in non-dystrophics, while in dystrophic animals, response amplitudes were reduced only at low frequencies and critical fusion frequencies were unaltered. In conclusion, although dystrophic RCS rats undergo a progressive decline in cone function with age, the flicker responsiveness at P21 is comparable to that of non-dystrophic congenic rats, suggesting normal developmental maturation of the cone system in

  6. ESTIMATION OF WIDE BAND RADAR CROSS SECTION (RCS OF REGULAR SHAPED OBJECTS USING METHOD OF MOMENTS (MOM

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2012-06-01

    Full Text Available Modern fighter aircrafts, ships, missiles etc need to be very low Radar Cross Section (RCS designs, to avoid detection by hostile radars. Hence accurate prediction of RCS of complex objects like aircrafts is essential to meet this requirement. A simple and efficient numerical procedure for treating problems of wide band RCS prediction Perfect Electric Conductor (PEC objects is developed using Method of Moment (MoM. Implementation of MoM for prediction of RCS involves solving Electric Field Integral Equation (EFIE for electric current using the vector and scalar potential solutions, which satisfy the boundary condition that the tangential electric field at the boundary of the PEC body is zero. For numerical purposes, the objects are modeled using planar triangular surfaces patches. Set of special sub-domain type basis functions are defined on pairs of adjacent triangular patches. These basis functions yield a current representation free of line or point charges at sub-domain boundaries. Once the current distribution is obtained, dipole model is used to find Scattering field in free space. RCS can be calculated from the scattered and incident fields. Numerical results for a square plate, a cube, and a sphere are presented over a bandwidth.

  7. Seabrook simulator model upgrade: Implementation and validation of two-phase, nonequilibrium RCS and steam generator models

    International Nuclear Information System (INIS)

    Kao, S.

    1990-01-01

    A number of deficiencies in the original RCS and steam generator models on the Seabrook simulator were found to give unrealistic results under some off-normal and accident conditions. These deficiencies are attributed to the simplistic assumptions used in the original models, such as the homogeneous, equilibrium equations used in the pressurizer and steam generator models, and the single-phase flow model used in the RCS thermal-hydraulic model. To improve the fidelity of the simulator, efforts have been made to upgrade the RCS and steam generator models to include two-phase, nonequilibrium features. In the new RCS model, the following major assumptions are used to derive the finite difference form of the conservation equations: a donor-cell differencing scheme is adopted to allow flow reversal; a single pressure is used to evaluate properties; a single mass flow rate is assumed in each loop; enthalpy is assumed to vary linearly within each control volume; a homogeneous flow is assumed under two-phase conditions. The pressurizer is divided into a vapor region and a liquid region, each of which is represented by a set of mass and energy conservation equations. Interfacial mass and energy exchange mechanisms (condensation and flashing), thermal interactions between the vessel and fluids, and thermal nonequilibrium between the phases are included in the pressurizer model. The steam generator is divided into the vapor dome, riser, and downcomer regions. The assumptions applied are similar to those of the RCS and pressurizer models. A momentum model is incorporated to calculate the recirculation flow and simulate the downcomer level shrink/swell phenomenon. The new RCS and steam generator models are validated by comparing the simulator calculations against sister plant data and FSAR vendor analysis. The results show the new models give realistic and reliable calculations under off-normal and accident conditions

  8. Verification of the CADRCS RCS tool for NCTR work

    CSIR Research Space (South Africa)

    Botha, L

    2007-03-01

    Full Text Available This paper looks at the suitability of using the CADRCS RCS prediction tool for research into a class of NCTR work where the radar will give a high resolution output of the target, either a High Range Resolution (HRR) plot or Inverse Synthetic...

  9. Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy.

    Science.gov (United States)

    Tschernutter, M; Schlichtenbrede, F C; Howe, S; Balaggan, K S; Munro, P M; Bainbridge, J W B; Thrasher, A J; Smith, A J; Ali, R R

    2005-04-01

    The Royal College of Surgeons (RCS) rat is a well-characterized model of autosomal recessive retinitis pigmentosa (RP) due to a defect in the retinal pigment epithelium (RPE). It is homozygous for a null mutation in the gene encoding , a receptor tyrosine kinase found in RPE cells, that is required for phagocytosis of shed photoreceptor outer segments. The absence of Mertk results in accumulation of outer segment debris. This subsequently leads to progressive loss of photoreceptor cells. In order to evaluate the efficacy of lentiviral-mediated gene replacement therapy in the RCS rat, we produced recombinant VSV-G pseudotyped HIV-1-based lentiviruses containing a murine Mertk cDNA driven by a spleen focus forming virus (SFFV) promoter. The vector was subretinally injected into the right eye of 10-day-old RCS rats; the left eye was left untreated as an internal control. Here, we present a detailed assessment of the duration and extent of the morphological rescue and the resulting functional benefits. We examined animals at various time points over a period of 7 months by light and electron microscopy, and electroretinography. We observed correction of the phagocytic defect, slowing of photoreceptor cell loss and preservation of retinal function for up to 7 months. This study demonstrates the potential of gene therapy approaches for the treatment of retinal degenerations caused by defects specific to the RPE and supports the use of lentiviral vectors for the treatment of such disorders.

  10. An investigation of the RCS (radar cross section) computation of grid cavities

    International Nuclear Information System (INIS)

    Sabihi, Ahmad

    2014-01-01

    In this paper, the aperture of a cavity is covered by a metallic grid net. This metallic grid is to reduce RCS deduced by impinging radar ray on the aperture. A radar ray incident on a grid net installed on a cavity may create six types of propagation. 1-Incident rays entering inside the cavity and backscattered from it.2-Incidebnt rays on the grid net and created reection rays as an array of scatterers. These rays may create a wave with phase difference of 180 degree with respect to the exiting rays from the cavity.3-Incident rays on the grid net create surface currents owing on the net and make travelling waves, which regenerate the magnetic and electric fields. These fields make again propagated waves against incident ones.4-Creeping waves.5-Diffracted rays due to leading edges of net’s elements.6-Mutual impedance among elements of the net could be effective on the resultant RCS. Therefore, the author compares the effects of three out of six properties to a cavity without grid net. This comparison shows that RCS prediction of cavity having a grid net is much more reduced than that of without one

  11. An investigation of the RCS (radar cross section) computation of grid cavities

    Energy Technology Data Exchange (ETDEWEB)

    Sabihi, Ahmad [Department of Mathematical Sciences, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2014-12-10

    In this paper, the aperture of a cavity is covered by a metallic grid net. This metallic grid is to reduce RCS deduced by impinging radar ray on the aperture. A radar ray incident on a grid net installed on a cavity may create six types of propagation. 1-Incident rays entering inside the cavity and backscattered from it.2-Incidebnt rays on the grid net and created reection rays as an array of scatterers. These rays may create a wave with phase difference of 180 degree with respect to the exiting rays from the cavity.3-Incident rays on the grid net create surface currents owing on the net and make travelling waves, which regenerate the magnetic and electric fields. These fields make again propagated waves against incident ones.4-Creeping waves.5-Diffracted rays due to leading edges of net’s elements.6-Mutual impedance among elements of the net could be effective on the resultant RCS. Therefore, the author compares the effects of three out of six properties to a cavity without grid net. This comparison shows that RCS prediction of cavity having a grid net is much more reduced than that of without one.

  12. Engineering description of the OMS/RCS/DAP modes used in the HP-9825A High Fidelity Relative Motion Program (HFRMP)

    Science.gov (United States)

    Wilson, S. W.

    1978-01-01

    Simplified mathematical models are reported for the space shuttle's Orbital Maneuvering System (OMS), Reaction Control System (RCS), and on-orbit Digital Autopilot (DAP) that have been incorporated in the High-Fidelity Relative Motion Program (HFRMP) for the HP-9825A desk-top calculator. Comparisons were made between data generated by the HFRMP and by the Space Shuttle Functional Simulator (SSFS), which models the cited shuttle systems in much greater detail. These data include propellant requirements for representative translational maneuvers, rotational maneuvers, and attitude maintenance options. Also included are data relating to on-orbit trajectory deviations induced by RCS translational cross coupling. Potential close-range stationkeeping problems that are suggested by HFRMP simulations of 80 millisecond (as opposed to 40 millisecond) DAP cycle effects are described. The principal function of the HFRMP is to serve as a flight design tool in the area of proximity operations.

  13. Alterations in NMDA receptor expression during retinal degeneration in the RCS rat.

    Science.gov (United States)

    Gründer, T; Kohler, K; Guenther, E

    2001-01-01

    To determine how a progressive loss of photoreceptor cells and the concomitant loss of glutamatergic input to second-order neurons can affect inner-retinal signaling, glutamate receptor expression was analyzed in the Royal College of Surgeons (RCS) rat, an animal model of retinitis pigmentosa. Immunohistochemistry was performed on retinal sections of RCS rats and congenic controls between postnatal (P) day 3 and the aged adult (up to P350) using specific antibodies against N-methyl-D-aspartate (NMDA) subunits. All NMDA subunits (NR1, NR2A-2D) were expressed in control and dystrophic retinas at all ages, and distinct patterns of labeling were found in horizontal cells, subpopulations of amacrine cells and ganglion cells, as well as in the outer and inner plexiform layer (IPL). NRI immunoreactivity in the inner plexiform layer of adult control retinas was concentrated in two distinct bands, indicating a synaptic localization of NMDA receptors in the OFF and ON signal pathways. In the RCS retina, these bands of NRI immunoreactivity in the IPL were much weaker in animals older than P40. In parallel, NR2B immunoreactivity in the outer plexiform layer (OPL) of RCS rats was always reduced compared to controls and vanished between P40 and P120. The most striking alteration observed in the degenerating retina, however, was a strong expression of NRI immunoreactivity in Müller cell processes in the inner retina which was not observed in control animals and which was present prior to any visible sign of photoreceptor degeneration. The results suggest functional changes in glutamatergic receptor signaling in the dystrophic retina and a possible involvement of Müller cells in early processes of this disease.

  14. Classical and modern power spectrum estimation for tune measurement in CSNS RCS

    International Nuclear Information System (INIS)

    Yang Xiaoyu; Xu Taoguang; Fu Shinian; Zeng Lei; Bian Xiaojuan

    2013-01-01

    Precise measurement of betatron tune is required for good operating condition of CSNS RCS. The fractional part of betatron tune is important and it can be measured by analyzing the signals of beam position from the appointed BPM. Usually these signals are contaminated during the acquisition process, therefore several power spectrum methods are used to improve the frequency resolution. In this article classical and modern power spectrum methods are used. In order to compare their performance, the results of simulation data and IQT data from J-PARC RCS are discussed. It is shown that modern power spectrum estimation has better performance than the classical ones, though the calculation is more complex. (authors)

  15. Uneven-Layered Coding Metamaterial Tile for Ultra-wideband RCS Reduction and Diffuse Scattering.

    Science.gov (United States)

    Su, Jianxun; He, Huan; Li, Zengrui; Yang, Yaoqing Lamar; Yin, Hongcheng; Wang, Junhong

    2018-05-25

    In this paper, a novel uneven-layered coding metamaterial tile is proposed for ultra-wideband radar cross section (RCS) reduction and diffuse scattering. The metamaterial tile is composed of two kinds of square ring unit cells with different layer thickness. The reflection phase difference of 180° (±37°) between two unit cells covers an ultra-wide frequency range. Due to the phase cancellation between two unit cells, the metamaterial tile has the scattering pattern of four strong lobes deviating from normal direction. The metamaterial tile and its 90-degree rotation can be encoded as the '0' and '1' elements to cover an object, and diffuse scattering pattern can be realized by optimizing phase distribution, leading to reductions of the monostatic and bi-static RCSs simultaneously. The metamaterial tile can achieve -10 dB RCS reduction from 6.2 GHz to 25.7 GHz with the ratio bandwidth of 4.15:1 at normal incidence. The measured and simulated results are in good agreement and validate the proposed uneven-layered coding metamaterial tile can greatly expanding the bandwidth for RCS reduction and diffuse scattering.

  16. Intraocular gene transfer of ciliary neurotrophic factor rescues photoreceptor degeneration in RCS rats.

    Science.gov (United States)

    Huang, Shun-Ping; Lin, Po-Kang; Liu, Jorn-Hon; Khor, Chin-Ni; Lee, Yih-Jing

    2004-01-01

    Ciliary neurotrophic factor (CNTF) is known as an important factor in the regulation of retinal cell growth. We used both recombinant CNTF and an adenovirus carrying the CNTF gene to regulate retinal photoreceptor expression in a retinal degenerative animal, Royal College of Surgeons (RCS) rats. Cells in the outer nuclear layer of the retinae from recombinant-CNTF-treated, adenoviral-CNTF-treated, saline-operated, and contralateral untreated preparations were examined for those exhibiting CNTF photoreceptor protective effects. Cell apoptosis in the outer nuclear layer of the retinae was also detected. It was found that CNTF had a potent effect on delaying the photoreceptor degeneration process in RCS rats. Furthermore, adenovirus CNTF gene transfer was proven to be better at rescuing photoreceptors than that when using recombinant CNTF, since adenoviral CNTF prolonged the photoreceptor protection effect. The function of the photoreceptors was also examined by taking electroretinograms of different animals. Adenoviral-CNTF-treated eyes showed better retinal function than did the contralateral control eyes. This study indicates that adenoviral CNTF effectively rescues degenerating photoreceptors in RCS rats. Copyright 2004 National Science Council, ROC and S. Karger AG, Basel

  17. The study of gravity makeup to RCS for the loss of RHR event during mid-loop operation

    International Nuclear Information System (INIS)

    Oh, H. S.; Yoon, D. J.; Ha, S. J.; Lee, C. S.

    2004-01-01

    In case of the loss of residual heat removal system (RHR) event during mid-loop operation, one of the mitigation actions to prevent core uncovery is gravity makeup to the RCS. This study includes the mitigation actions for gravity makeup to the RCS for 3-loop nuclear power plant, minimum gravity makeup flow for prevention of core boiling and core uncovery and possible pass of gravity make up. Also, the evaluation of minimum gravity makeup to prevent core boiling and core uncovery was performed using the RELAP/MOD3.2.2beta code. The results of this study show that the minimum flow to prevent core uncovery in case of cold leg injection (about 20m 3 /hr) is too small to recover the core water level. So, our conclusion is that the minimum flow to prevent core boiling (about 170m 3 /hr) is enough to recover core water level

  18. Activation of retinal stem cells in the proliferating marginal region of RCS rats during development of retinitis pigmentosa.

    Science.gov (United States)

    Jian, Qian; Xu, Haiwei; Xie, Hanping; Tian, Chunyu; Zhao, Tongtao; Yin, ZhengQin

    2009-11-06

    Retinal stem cells (RSCs) have been demonstrated at the proliferating marginal regions from the pars plana of ciliary body to the ciliary marginal zone (CMZ) in adult lower vertebrates and mammals. Investigations in the lower vertebrates have provided some evidence that RSCs can proliferate following retinal damage; however, the evidence that this occurs in mammals is not clear. In this study, we explored RSCs proliferation potential of adult mammalian in proliferating marginal regions of Royal College of Surgeons (RCS) rats, an animal model for retinitis pigmentosa (RP). The proliferation was evaluated using BrdU labeling, and Chx-10 as markers to discern progenitor cell of CMZ in Long-Evan's and RCS rats at different postnatal day (PND) after eye opening. We found that few Chx-10 and BrdU labeled cells in the proliferating marginal regions of Long-Evan's rats, which significantly increased in RCS rats at PND30 and PND60. Consistent with this, Chx-10/Vimentin double staining cells in the center retina of RCS rats increased significantly at PND30 after eye opening. In addition, mRNA expression of Shh, Ptch1 and Smo was up-regulated in RCS rats at PND60 compared to age-matched Long-Evan's rats, which revealed Shh/ptc pathway involving in the activation of RSCs. These results suggest that RSCs in the mammalian retinal proliferating marginal regions has the potential to regenerate following degeneration.

  19. Numerical simulation of RCS for carrier electronic warfare airplanes

    Directory of Open Access Journals (Sweden)

    Yue Kuizhi

    2015-04-01

    Full Text Available This paper studies the radar cross section (RCS of carrier electronic warfare airplanes. Under the typical naval operations section, the mathematical model of the radar wave’s pitch angle incidence range analysis is established. Based on the CATIA software, considering dynamic deflections of duck wing leading edge flaps, flaperons, horizontal tail, and rudder, as well as aircraft with air-to-air missile, anti-radiation missile, electronic jamming pod, and other weapons, the 3D models of carrier electronic warfare airplanes Model A and Model B with weapons were established. Based on the physical optics method and the equivalent electromagnetic flow method, by the use of the RCSAnsys software, the characteristics of carrier electronic warfare airplanes’ RCS under steady and dynamic flights were simulated under the UHF, X, and S radar bands. This paper researches the detection probability of aircraft by radars under the condition of electronic warfare, and completes the mathematical statistical analysis of the simulation results. The results show that: The Model A of carrier electronic warfare airplane is better than Model B on stealth performance and on discover probability by radar detection effectively.

  20. Observations of electrons in the Intense Pulse Neutron Source (IPNS) Rapid Cycling Synchrotron (RCS)

    International Nuclear Information System (INIS)

    Dooling, J.C.; Brumwell, F.R.; Czyz, W.S.; Harkay, K.C.; Lien, M.K.; McMichael, G.E.

    2004-01-01

    In the process of accelerating protons from 50 to 450 MeV at 30 Hz, low-energy electrons are generated within the IPNS RCS vacuum chamber. Electrons from background gas stripping are detected using an Ionization Profile Monitor (IPM) to generate integrated, horizontal charge distributions of the single-harmonic bunch during acceleration. Recently, a Retarding Field Analyzer (RFA) was installed in the RCS to look for evidence of beam-induced multipacting by measuring the electrons ejected by the space charge of the beam. A wide-band, high-gain transimpedance amplifier has been built to observe time structure in the electron signal detected with the RFA. Though a noisy power supply prevented full I-V characteristics from being obtained, interesting features are observed; especially, after the period of phase modulation between the rf cavities that is deliberately introduced during the cycle. The phase modulation generates a longitudinal quadrupole oscillation in the bunch, which is believed to enhance beam stability. Preliminary results indicate that electron multipacting is not significant in the RCS. The effects of background gas neutralization are considered and details of the RFA measurements are presented.

  1. Polarized e-bunch acceleration at Cornell RCS: Tentative tracking simulations

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rubin, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-10-19

    An option as an injector into eRHIC electron storage ring is a rapid-cyclic synchrotron (RCS). Rapid acceleration of polarized electron bunches has never been done, Cornell synchrotron might lend itself to dedicated tests, which is to be first explored based on numerical investigations. This paper is a very preliminary introduction to the topic.

  2. A Study on Temperature Distribution in the Hot Leg Pipes considering the Variation of Flow Rate in RCS

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyuksu; Yi, Kunwoo; Choe, Yoonjae; Jang, Hocheol; Yune, Seokjeong; Park, Seongchan [KEPCO Engineering and Construction, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, a computational analysis is performed to predict the deviation in the temperature distribution in the hot leg pipe according to the flow rate variation in RCS. In the hot leg pipes of Reactor Coolant System (RCS) of APR1400, four Resistance Temperature Detectors (RTDs), to obtain the average hot leg temperature, are installed at each hot leg pipe (two in the upper region and the other two in the lower region around the wall of the hot leg pipe). There is a deviation in temperature distribution in the hot leg pipe due to the sudden changes in the flow direction and area from the reactor core exit to the hot leg pipe. The non-uniform temperature distribution in the hot leg pipe can affect the measurement of the plant parameters such as the reactor power and the reactor coolant flow rate. The following conclusions are reached 1) The non-uniform temperature distribution in the core exit is sustained to some extent through the entire region of hot leg pipe. 2) The temperature ranges having a uniform pattern are 45 - 120° and 240 - 315°. The sensor positions of RTDs are located in this interval (45 - 120° and 240 - 315°) and this sensor positions of RTDs show the appropriate temperature measurement. Also, the temperature distribution shows the similar pattern without reference to the flow rate variation in RCS.

  3. Preservation of photoreceptors in dystrophic RCS rats following allo- and xenotransplantation of IPE cells.

    Science.gov (United States)

    Thumann, Gabriele; Salz, Anna Katharina; Walter, Peter; Johnen, Sandra

    2009-03-01

    To examine whether iris pigment epithelial (IPE) cells transplanted into the subretinal space of Royal College of Surgeons (RCS) rats have the ability to rescue photoreceptors. Rat IPE (rIPE) or human IPE (hIPE) cells were transplanted subretinally in 23-day-old RCS rats. Sham injection and transplantation of ARPE-19 cells served as controls. After 12 weeks, eyes were evaluated for photoreceptor survival by morphometric analysis and electron microscopy. Morphometric analysis showed photoreceptor rescue in all transplanted and sham-injected animals (number of photoreceptors/300 microm retina+/-sd: rIPE 41.67 +/- 28; hIPE 29.50 +/- 16; ARPE-19 36.12 +/- 21; sham 16.56 +/- 6) compared to age-matched, control rats (number of photoreceptors/300 microm retina+/-sd: 9.71 +/- 4). Photoreceptor rescue was prominent in IPE cell-transplanted rats and was significantly greater than sham-injected eyes (p = 0.02 for rIPE and p = 0.04 for hIPE). Since IPE cells transplanted into the subretinal space have the ability to rescue photoreceptors from degeneration in the RCS rat without any harmful effects, IPE cells may represent an ideal cell to genetically modify and thus carry essential genetic information for the repair of defects in the subretinal space.

  4. Phenomena occurring in the reactor coolant system during severe core damage accidents

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1989-01-01

    The reactor coolant system (RCS) of a nuclear power plant consists of the reactor pressure vessel and the piping and associated components that are required for the continuous circulation of the coolant which is used to maintain thermal equilibrium throughout the system. In the event of an accident, the RCS also serves as one of several barriers to the escape of radiotoxic material into the biosphere. In contrast to normal operating conditions, severe core damage accidents are characterized by significant temporal and spatial variations in heat and mass fluxes, and by eventual geometrical changes within the RCS. Furthermore, the difficulties in describing the system in the severe accident mode are compounded by the occurrence of chemical reactions. These reactions can influence both the thermal and the mass transport behavior of the system. In addition, behavior of the reactor vessel internals and of materials released from the core region (especially the radioactive fission products) in the course of the accident likewise become of concern to the analyst. This report addresses these concerns. 9 refs., 1 tab

  5. Non-Toxic Orbiter Maneuvering System (OMS) and Reaction Control System

    Science.gov (United States)

    Hurlbert, Eric A.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    NASA is pursuing the technology and advanced development of a non-toxic (NT) orbital maneuvering system (OMS) and reaction control system (RCS) for shuttle upgrades, RLV, and reusable first stages. The primary objectives of the shuttle upgrades program are improved safety, improved reliability, reduced operations time and cost, improved performance or capabilities, and commonality with future space exploration needs. Non-Toxic OMS/RCS offers advantages in each of these categories. A non-toxic OMS/RCS eliminates the ground hazards and the flight safety hazards of the toxic and corrosive propellants. The cost savings for ground operations are over $24M per year for 7 flights, and the savings increase with increasing flight rate up to $44M per year. The OMS/RCS serial processing time is reduced from 65 days to 13 days. The payload capability can be increased up to 5100 Ibms. The non-toxic OMS/RCS also provides improved space station reboost capability up to 20 nautical miles over the current toxic system of 14 nautical miles. A NT OMS/RCS represents a clear advancement in the SOA over MMH/NTO. Liquid oxygen and ethanol are clean burning, high-density propellants that provide a high degree of commonality with other spacecraft subsystems including life support, power, and thermal control, and with future human exploration and development of space missions. The simple and reliable pressure-fed design uses sub-cooled liquid oxygen at 250 to 350 psia, which allows a propellant to remain cryogenic for longer periods of time. The key technologies are thermal insulation and conditioning techniques are used to maintain the sub-cooling. Phase I successfully defined the system architecture, designed an integrated OMS/RCS propellant tank, analyzed the feed system, built and tested the 870 lbf RCS thrusters, and tested the 6000 lbf OMS engine. Phase 11 is currently being planned for the development and test of full-scale prototype of the system in 1999 and 2000

  6. Numerical simulation of RCS for carrier electronic warfare airplanes

    OpenAIRE

    Yue Kuizhi; Liu Wenlin; Li Guanxiong; Ji Jinzu; Yu Dazhao

    2015-01-01

    This paper studies the radar cross section (RCS) of carrier electronic warfare airplanes. Under the typical naval operations section, the mathematical model of the radar wave’s pitch angle incidence range analysis is established. Based on the CATIA software, considering dynamic deflections of duck wing leading edge flaps, flaperons, horizontal tail, and rudder, as well as aircraft with air-to-air missile, anti-radiation missile, electronic jamming pod, and other weapons, the 3D models of carr...

  7. Accumulation of neurocan, a brain chondroitin sulfate proteoglycan, in association with the retinal vasculature in RCS rats.

    Science.gov (United States)

    Zhang, Yiqin; Rauch, Uwe; Perez, Maria-Thereza R

    2003-03-01

    To examine whether and how the retinal distribution of the chondroitin sulfate proteoglycan neurocan is affected after photoreceptor cell loss and whether it correlates with the multiple secondary cellular changes that accompany the photoreceptor degeneration. Retinas from normal rats (Sprague-Dawley; postnatal days [P]0-P70), RCS rats with dystrophic retinas (P0-P300), RCS-rdy(+) congenic rats with nondystrophic retinas (P0-202), and rhodopsin mutant rats, P23H (P0-P257) and S334ter (P0-P220), were processed for immunohistochemistry using a polyclonal antibody to rat neurocan. The overall distribution of neurocan was similar in all retinas examined. Neurocan immunostaining was detected over the nerve fiber layer, the plexiform layers, the photoreceptor outer segments region, and the ciliary epithelium. With age, labeling throughout the plexiform layers decreased continuously. In RCS rats however, conspicuous labeling was also seen in association with retinal vessels, from P15 onward. Accumulation of neurocan in association with the retinal vasculature does not correlate with photoreceptor cell loss, because it was not observed in the rhodopsin mutant rats. During the earliest stages of the disease, accumulation of debris in the subretinal space in RCS rats may be sufficient per se to initiate a cascade of metabolic changes that result in accumulation of neurocan. With time, the neurocan accumulated perivascularly may, by interaction with other matrix molecules, modulate at least some of the vascular alterations observed in this animal model.

  8. Changes of the vasculature and innervation in the anterior segment of the RCS rat eye.

    Science.gov (United States)

    May, Christian Albrecht

    2011-12-01

    Investigating the anterior eye segment vasculature and innervation of dystrophic RCS rats, two major unique findings were observed: in the iris, young adult animals with retinal dystrophy showed an increase in substance P nerve fibres and a dilation of arterioles and capillaries. This finding continued during ageing. In the pars plana region, the surface covered by venules decreased continuously with age. In older animals, this decrease was parallelled by a local decrease of sympathetic TH-positive nerve fibres supplying these venules. For both conditions, no comparable data exists so far in the literature. They might point to a unique situation in the anterior eye segment of the dystrophic RCS rat. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Metal radomes for reduced RCS performance

    Science.gov (United States)

    Wahid, M.; Morris, S. B.

    A frequency selective surface (FSS) comprising a square grid and a hexagonal array of disks is proposed as a means of reducing the Radar Cross Section (RCS) of a radar bay over a wide (2 GHz to 14.6 GHz) frequency bandwidth. Results are presented in terms of transmission loss for an 'A'-type sandwich radome consisting of two FSS layers for normal and non-normal incidence. A single FSS layer on a GRP flat panel is also considered. Good agreement is found between the predicted and measured results. The proposed FSS shows good performance and is relatively insensitive to angle of incidence between 3.8 GHz and 10.1 GHz. Predicted Insertion Phase Delay (IPD) and cross-polar performances are also given. Parametric studies have indicated the versatility of the proposed structure.

  10. Simulation experiment on low-level RF control for dual-harmonic acceleration at CSNS RCS

    International Nuclear Information System (INIS)

    Shen Sirong; Li Xiao; Zhang Chunlin; Sun Hong; Tang Jingyu

    2013-01-01

    The design and test of the low-level RF (LLRF) control system for the dual-harmonic acceleration at the rapid cycling synchrotron (RCS) of China Spallation Neutron Source (CSNS) at phase Ⅰ is introduced. In order to implement the mode switch from the second harmonic to the fundamental during the acceleration cycle for one of the eight RF cavities, the LLRF system for the cavity has been designed differently from the others. Several technical measures such as the opening of the control loops during the mode switch and the reclosing of two tuning circuits of the RF amplifier at different moments, have been taken. The experimental results on the testing platform based on an RF prototype show good dynamic performance of the LLRF system and prove the feasibility of dual-harmonic operation. (authors)

  11. Seismic analysis of APR1400 RCS for site envelope using big mass method

    International Nuclear Information System (INIS)

    Kim, J. Y.; Jeon, J. H.; Lee, D. H.; Park, S. H.

    2002-01-01

    One of design concepts of APR1400 is the site envelope considering various soil sites as well as rock site. The KSNP's are constructed on the rock site where only the translational excitations are directly transferred to the plant. On the other hand, the rotational motions affect the responses of the structures in the soil cases. In this study, a Big Mass Method is used to consider rotational motions as excitations at the foundation in addition to translational ones to obtain seismic responses of the APR1400 RCS main components. The seismic analyses for the APR1400 excited simultaneously by translation and rotational motions were performed. The results show that the effect of soil sites is not significant for the design of main components and supports of the RCS, but it may be considerable for the design of reactor vessel internals, piping, and nozzles which have lower natural frequencies

  12. Electrophysiological studies of the feasibility of suprachoroidal-transretinal stimulation for artificial vision in normal and RCS rats.

    Science.gov (United States)

    Kanda, Hiroyuki; Morimoto, Takeshi; Fujikado, Takashi; Tano, Yasuo; Fukuda, Yutaka; Sawai, Hajime

    2004-02-01

    Assessment of a novel method of retinal stimulation, known as suprachoroidal-transretinal stimulation (STS), which was designed to minimize insult to the retina by implantation of stimulating electrodes for artificial vision. In 17 normal hooded rats and 12 Royal College of Surgeons (RCS) rats, a small area of the retina was focally stimulated with electric currents through an anode placed on the fenestrated sclera and a cathode inserted into the vitreous chamber. Evoked potentials (EPs) in response to STS were recorded from the surface of the superior colliculus (SC) with a silver-ball electrode, and their physiological properties and localization were studied. In both normal and RCS rats, STS elicited triphasic EPs that were vastly diminished by changing polarity of stimulating electrodes and abolished by transecting the optic nerve. The threshold intensity (C) of the EP response to STS was approximately 7.2 +/- 2.8 nC in normal and 12.9 +/- 7.7 nC in RCS rats. The responses to minimal STS were localized in an area on the SC surface measuring 0.12 +/- 0.07 mm(2) in normal rats and 0.24 +/- 0.12 mm(2) in RCS rats. The responsive area corresponded retinotopically to the retinal region immediately beneath the anodic stimulating electrode. STS is less invasive in the retina than stimulation through epiretinal or subretinal implants. STS can generate focal excitation in retinal ganglion cells in normal animals and in those with degenerated photoreceptors, which suggests that this method of retinal stimulation is suitable for artificial vision.

  13. Calculation of beam neutralization in the IPNS-Upgrade RCS

    International Nuclear Information System (INIS)

    Chae, Yong-Chul.

    1995-01-01

    The author calculated the neutralization of circulating beam in this report. In the calculation it is assumed that all electrons liberated from the background molecules due to the collisional processes are trapped in the potential well of the proton beam. Including the dependence of ionization cross sections on the kinetic energy of the incident particle, the author derived the empirical formula for beam neutralization as a function of time and baseline vacuum pressure, which is applicable to the one acceleration cycle of the IPNS-Upgrade RCS

  14. A comparison on radar range profiles between in-flight measurements and RCS-predictions

    NARCIS (Netherlands)

    Heiden, R. van der; Ewijk, L.J. van; Groen, F.C.A.

    1998-01-01

    The validation of Radar Cross Section (RCS) prediction techniques against real measurements is crucial to acquire confidence in predictions when measurements are nut available. In this paper we present the results of a comparison on one-dimensional signatures, i.e. radar range profiles. The profiles

  15. A Perspective on Reagent Diversity and Non-covalent Binding of Reactive Carbonyl Species (RCS and Effector Reagents in Non-enzymatic Glycation (NEG: Mechanistic Considerations and Implications for Future Research

    Directory of Open Access Journals (Sweden)

    Kenneth J. Rodnick

    2017-06-01

    Full Text Available This perspective focuses on illustrating the underappreciated connections between reactive carbonyl species (RCS, initial binding in the nonenzymatic glycation (NEG process, and nonenzymatic covalent protein modification (here termed NECPM. While glucose is the central species involved in NEG, recent studies indicate that the initially-bound glucose species in the NEG of human hemoglobin (HbA and human serum albumin (HSA are non-RCS ring-closed isomers. The ring-opened glucose, an RCS structure that reacts in the NEG process, is most likely generated from previously-bound ring-closed isomers undergoing concerted acid/base reactions while bound to protein. The generation of the glucose RCS can involve concomitantly-bound physiological species (e.g., inorganic phosphate, water, etc.; here termed effector reagents. Extant NEG schemes do not account for these recent findings. In addition, effector reagent reactions with glucose in the serum and erythrocyte cytosol can generate RCS (e.g., glyoxal, glyceraldehyde, etc.. Recent research has shown that these RCS covalently modify proteins in vivo via NECPM mechanisms. A general scheme that reflects both the reagent and mechanistic diversity that can lead to NEG and NECPM is presented here. A perspective that accounts for the relationships between RCS, NEG, and NECPM can facilitate the understanding of site selectivity, may help explain overall glycation rates, and may have implications for the clinical assessment/control of diabetes mellitus. In view of this perspective, concentrations of ribose, fructose, Pi, bicarbonate, counter ions, and the resulting RCS generated within intracellular and extracellular compartments may be of importance and of clinical relevance. Future research is also proposed.

  16. Loss of calretinin immunoreactive fibers in subcortical visual recipient structures of the RCS dystrophic rat.

    Science.gov (United States)

    Vugler, Anthony A; Coffey, Peter J

    2003-11-01

    The retinae of dystrophic Royal College of Surgeons (RCS) rats exhibit progressive photoreceptor degeneration accompanied by pathology of ganglion cells. To date, little work has examined the consequences of retinal degeneration for central visual structures in dystrophic rats. Here, we use immunohistochemistry for calretinin (CR) to label retinal afferents in the superior colliculus (SC), lateral geniculate nucleus, and olivary pretectal nucleus of RCS rats aged between 2 and 26 months of age. Early indications of fiber loss in the medial dystrophic SC were apparent between 9 and 13 months. Quantitative methods reveal a significant reduction in the level of CR immunoreactivity in visual layers of the medial dystrophic SC at 13 months (P animals aged 19-26 months the loss of CR fibers in SC was dramatic, with well-defined patches of fiber degeneration predominating in medial aspects of the structure. This fiber degeneration in SC was accompanied by increased detection of cells immunoreactive for CR. In several animals, regions of fiber loss were also found to contain strongly parvalbumin-immunoreactive cells. Loss of CR fibers was also observed in the lateral geniculate nucleus and olivary pretectal nucleus. Patterns of fiber loss in the dystrophic SC compliment reports of ganglion cell degeneration in these animals and the response of collicular neurons to degeneration is discussed in terms of plasticity of the dystrophic visual system and properties of calcium binding proteins.

  17. Regulations, Codes, and Standards (RCS) Template for California Hydrogen Dispensing Stations

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C.; Blake, C.; Burgess, R.; Buttner, W.; Post, M.

    2012-11-01

    This report explains the Regulations, Codes, and Standards (RCS) requirements for hydrogen dispensing stations in the State of California. The reports shows the basic components of a hydrogen dispensing station in a simple schematic drawing; the permits and approvals that would typically be required for the construction and operation of a hydrogen dispensing station; and a basic permit that might be employed by an Authority Having Jurisdiction (AHJ).

  18. Using the digital reactor control systems at NPP

    International Nuclear Information System (INIS)

    Schirl, G.; Hertel, J.

    2006-01-01

    A conception of application of the digital reactor control systems (RCS) at NPP is presented. The digital RCS architecture and safety ensuring are considered. The strategy and algorithm of the operating NPP equipping with the new digital RCS are given too [ru

  19. In situ degassing of the kicker magnet in J-PARC RCS

    International Nuclear Information System (INIS)

    Kamiya, Junichiro; Ogiwara, Norio; Hikichi, Yusuke; Yanagibashi, Toru; Kinsho, Michikazu

    2015-01-01

    The usual way to reduce outgassing from a device in vacuum is to heat up a whole vacuum chamber containing the device. However, the situation, where this method can be applied, is limited due to the heat expansion of the chamber. Especially in accelerators, where the vacuum chambers are connected with nearby beam pipes, this normal bake-out method may not be applied. If a heat source and heat shields are appropriately installed inside the chamber, heat flux is directed to the device. Therefore the device can be baked out without raising the temperature of the vacuum chamber. One candidate for such bake-out method to be applied is kicker magnets in J-PARC RCS, which are installed in large vacuum chambers. We performed the heating tests with some types of heaters in order to examine the effectiveness of this method and to decide the material and configuration of the heater. As a result, the graphite heater was selected for in-situ bake-out of the kickers in the RCS beam line. Using the method, the each material of kicker magnet was heated up above 100degC with keeping the temperature rise of the vacuum chamber below 30degC. (author)

  20. Homeostatic Plasticity Mediated by Rod-Cone Gap Junction Coupling in Retinal Degenerative Dystrophic RCS Rats

    Science.gov (United States)

    Hou, Baoke; Fu, Yan; Weng, Chuanhuang; Liu, Weiping; Zhao, Congjian; Yin, Zheng Qin

    2017-01-01

    Rod-cone gap junctions open at night to allow rod signals to pass to cones and activate the cone-bipolar pathway. This enhances the ability to detect large, dim objects at night. This electrical synaptic switch is governed by the circadian clock and represents a novel form of homeostatic plasticity that regulates retinal excitability according to network activity. We used tracer labeling and ERG recording in the retinae of control and retinal degenerative dystrophic RCS rats. We found that in the control animals, rod-cone gap junction coupling was regulated by the circadian clock via the modulation of the phosphorylation of the melatonin synthetic enzyme arylalkylamine N-acetyltransferase (AANAT). However, in dystrophic RCS rats, AANAT was constitutively phosphorylated, causing rod-cone gap junctions to remain open. A further b/a-wave ratio analysis revealed that dystrophic RCS rats had stronger synaptic strength between photoreceptors and bipolar cells, possibly because rod-cone gap junctions remained open. This was despite the fact that a decrease was observed in the amplitude of both a- and b-waves as a result of the progressive loss of rods during early degenerative stages. These results suggest that electric synaptic strength is increased during the day to allow cone signals to pass to the remaining rods and to be propagated to rod bipolar cells, thereby partially compensating for the weak visual input caused by the loss of rods. PMID:28473754

  1. Error Analysis of Relative Calibration for RCS Measurement on Ground Plane Range

    Directory of Open Access Journals (Sweden)

    Wu Peng-fei

    2012-03-01

    Full Text Available Ground plane range is a kind of outdoor Radar Cross Section (RCS test range used for static measurement of full-size or scaled targets. Starting from the characteristics of ground plane range, the impact of environments on targets and calibrators is analyzed during calibration in the RCS measurements. The error of relative calibration produced by the different illumination of target and calibrator is studied. The relative calibration technique used in ground plane range is to place the calibrator on a fixed and auxiliary pylon somewhere between the radar and the target under test. By considering the effect of ground reflection and antenna pattern, the relationship between the magnitude of echoes and the position of calibrator is discussed. According to the different distances between the calibrator and target, the difference between free space and ground plane range is studied and the error of relative calibration is calculated. Numerical simulation results are presented with useful conclusions. The relative calibration error varies with the position of calibrator, frequency and antenna beam width. In most case, set calibrator close to the target may keep the error under control.

  2. Studies on the role of molybdenum on iodine transport in the RCS in nuclear severe accident conditions

    International Nuclear Information System (INIS)

    Grégoire, A.-C.; Kalilainen, J.; Cousin, F.; Mutelle, H.; Cantrel, L.; Auvinen, A.; Haste, T.; Sobanska, S.

    2015-01-01

    Highlights: • In oxidising conditions, Mo reacts with Cs and thus promotes gaseous iodine release. • In reducing conditions, CsI remains the dominant form for released iodine. • The nature of released iodine is well reproduced by the ASTEC code. - Abstract: The effect of molybdenum on iodine transport in the reactor coolant system (RCS) under PWR severe accident conditions was investigated in the framework of the EU SARNET project. Experiments were conducted at the VTT-Institute and at IRSN and simulations of the experimental results were performed with the ASTEC severe accident simulation code. As molybdenum affects caesium chemistry by formation of molybdates, it may have a significant impact on iodine transport in the RCS. Experimentally it has been shown that the formation of gaseous iodine is promoted in oxidising conditions, as caesium can be completely consumed to form caesium polymolybdates and is thus not available for reacting with gaseous iodine and leading to CsI aerosols. In reducing conditions, CsI remains the dominant form of iodine, as the amount of oxygen is not sufficient to allow formation of quantitative caesium polymolybdates. An I–Mo–Cs model has been developed and it reproduces well the experimental trends on iodine transport

  3. Observations of a cold front with strong vertical undulations during the ARM RCS-IOP

    Energy Technology Data Exchange (ETDEWEB)

    Starr, D.O`C.; Whiteman, D.N. [Goddard Space Flight Center, Greenbelt, MD (United States); Melfi, S.H. [Univ. of Maryland, Baltimore, MD (United States)] [and others

    1996-04-01

    Passage of a cold front was observed on the night of April 14-15, 1994, during the Atmospheric Radiation Measurement (ARM) Remote Cloud Sensing (RCS) Intensive Observatios Period (IOP) at the Southern Great Plains Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. The observations are described.

  4. System decontamination as a tool to control radiation fields

    Energy Technology Data Exchange (ETDEWEB)

    Riess, R.; Bertholdt, H.O. [Siemens Power Generation Group, Erlangen (Germany)

    1995-03-01

    Since chemical decontamination of the Reactor Coolant Systems (RCS) and subsystems has the highest potential to reduce radiation fields in a short term this technology has gained an increasing importance. The available decontamination process at Siemens, i.e., the CORD processes, will be described. It is characterized by using permanganic acid for preoxidation and diluted organic acid for the decontamination step. It is a regenerative process resulting in very low waste volumes. This technology has been used frequently in Europe and Japan in both RCS and subsystems. An overview will be given i.e. on the 1993 applications. This overview will include plant, scope, date of performance, system volume specal features of the process removed activities, decon factor time, waste volumes, and personnel dose during decontamination. This overview will be followed by an outlook on future developments in this area.

  5. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats.

    Science.gov (United States)

    Lund, Raymond D; Wang, Shaomei; Klimanskaya, Irina; Holmes, Toby; Ramos-Kelsey, Rebeca; Lu, Bin; Girman, Sergej; Bischoff, N; Sauvé, Yves; Lanza, Robert

    2006-01-01

    Embryonic stem cells promise to provide a well-characterized and reproducible source of replacement tissue for human clinical studies. An early potential application of this technology is the use of retinal pigment epithelium (RPE) for the treatment of retinal degenerative diseases such as macular degeneration. Here we show the reproducible generation of RPE (67 passageable cultures established from 18 different hES cell lines); batches of RPE derived from NIH-approved hES cells (H9) were tested and shown capable of extensive photoreceptor rescue in an animal model of retinal disease, the Royal College of Surgeons (RCS) rat, in which photoreceptor loss is caused by a defect in the adjacent retinal pigment epithelium. Improvement in visual performance was 100% over untreated controls (spatial acuity was approximately 70% that of normal nondystrophic rats) without evidence of untoward pathology. The use of somatic cell nuclear transfer (SCNT) and/or the creation of banks of reduced complexity human leucocyte antigen (HLA) hES-RPE lines could minimize or eliminate the need for immunosuppressive drugs and/or immunomodulatory protocols.

  6. Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats.

    Science.gov (United States)

    Wang, Shaomei; Lu, Bin; Wood, Patrick; Lund, Raymond D

    2005-07-01

    To study the distribution of the human retinal pigment epithelium (hRPE) cell line ARPE-19 and human Schwann (hSC) cells grafted to the subretinal space of the Royal College of Surgeon (RCS) rat and the relation of graft cell distribution to photoreceptor rescue. Cell suspensions of both donor types were injected into the subretinal space of 3-week-old dystrophic RCS rats through a transscleral approach, human fibroblast and medium were used as control grafts. All animals were maintained on oral cyclosporine. At 1, 2, 4, 6, 15, 28, and 36 weeks after grafting, animals were killed. Human cell-specific markers were used to localize donor cells. Both donor cell types, as revealed by antibodies survived for a substantial time. Their distribution was very different: hRPE cells formed a large clump early on and, with time, spread along the host RPE in a layer one to two cells deep, whereas hSCs formed many smaller clumps, mainly in the subretinal space. Both cells rescued photoreceptors beyond the area of donor cell distribution. The number of surviving cells declined with time. Both hRPE and hSC grafts can survive and rescue photoreceptors for a substantial time after grafting. The number of both donor cell types declined with time, which could be an immune-related problem and/or due to other factors intrinsic to the host RCS retina. The fact that rescue occurred beyond the area of donor cell distribution suggests that diffusible factors are involved, raising the possibility that the two cell types function in a similar manner to rescue photoreceptors.

  7. Constitutively reduced sensory capacity promotes better recovery after spinal cord-injury (SCI) in blind rats of the dystrophic RCS strain.

    Science.gov (United States)

    Rink, Svenja; Bendella, Habib; Alsolivany, Kurdin; Meyer, Carolin; Woehler, Aliona; Jansen, Ramona; Isik, Zeynep; Stein, Gregor; Wennmachers, Sina; Nakamura, Makoto; Angelov, Doychin N

    2018-01-01

    We compared functional, electrophysiological and morphological parameters after SCI in two groups of rats Sprague Dawley (SD) rats with normal vision and blind rats from a SD-substrain "Royal College of Surgeons" (SD/RCS) who lose their photoreceptor cells after birth due to a genetic defect in the retinal pigment epithelium. For these animals skin-, intramuscular-, and tendon receptors are major available means to resolve spatial information. The purpose of this study was to check whether increased sensitivity in SD/RCS rats would promote an improved recovery after SCI. All rats were subjected to severe compression of the spinal cord at vertebra Th8, spinal cord segment Th10. Recovery of locomotion was analyzed at 1, 3, 6, 9, and 12 weeks after SCI using video recordings of beam walking and inclined ladder climbing. Five functional parameters were studied: foot-stepping angle (FSA), rump-height index (RHI) estimating paw placement and body weight support, respectively, number of correct ladder steps (CLS) assessing skilled hindlimb movements, the BBB-locomotor score and an established urinary bladder score (BS). Sensitivity tests were followed by electrophysiological measurement of M- and H-wave amplitudes from contractions of the plantar musculature after stimulation of the tibial nerve. The closing morphological measurements included lesion volume and expression of astro- and microglia below the lesion. Numerical assessments of BBB, FSA, BS, lesion volume and GFAP-expression revealed no significant differences between both strains. However, compared to SD-rats, the blind SD/RCS animals significantly improved RHI and CLS by 6 - 12 weeks after SCI. To our surprise the withdrawal latencies in the blind SD/RCS rats were longer and the amplitudes of M- and H-waves lower. The expression of IBA1-immunoreactivity in the lumbar enlargement was lower than in the SD-animals. The longer withdrawal latencies suggest a decreased sensitivity in the blind SD/RCS rats, which

  8. Development of Probability Evaluation Methodology for High Pressure/Temperature Gas Induced RCS Boundary Failure and SG Creep Rupture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Chul; Hong, Soon Joon; Lee, Jin Yong; Lee, Kyung Jin; Lee, Kuh Hyung [FNC Tech. Co., Seoul (Korea, Republic of)

    2008-04-15

    Existing MELCOR 1.8.5 model was improved in view of severe accident natural circulation and MELCOR 1.8.6 input model was developed and calculation sheets for detailed MELCOR 1.8.6 model were produced. Effects of natural circulation modeling were found by simulating SBO accident by comparing existing model with detailed model. Major phenomenon and system operations which affect on natural circulation by high temperature and high pressure gas were investigated and representative accident sequences for creep rupture model of RCS pipeline and SG tube were selected.

  9. Bioinformatics, interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma.

    Science.gov (United States)

    Poswar, Fabiano de Oliveira; Farias, Lucyana Conceição; Fraga, Carlos Alberto de Carvalho; Bambirra, Wilson; Brito-Júnior, Manoel; Sousa-Neto, Manoel Damião; Santos, Sérgio Henrique Souza; de Paula, Alfredo Maurício Batista; D'Angelo, Marcos Flávio Silveira Vasconcelos; Guimarães, André Luiz Sena

    2015-06-01

    Bioinformatics has emerged as an important tool to analyze the large amount of data generated by research in different diseases. In this study, gene expression for radicular cysts (RCs) and periapical granulomas (PGs) was characterized based on a leader gene approach. A validated bioinformatics algorithm was applied to identify leader genes for RCs and PGs. Genes related to RCs and PGs were first identified in PubMed, GenBank, GeneAtlas, and GeneCards databases. The Web-available STRING software (The European Molecular Biology Laboratory [EMBL], Heidelberg, Baden-Württemberg, Germany) was used in order to build the interaction map among the identified genes by a significance score named weighted number of links. Based on the weighted number of links, genes were clustered using k-means. The genes in the highest cluster were considered leader genes. Multilayer perceptron neural network analysis was used as a complementary supplement for gene classification. For RCs, the suggested leader genes were TP53 and EP300, whereas PGs were associated with IL2RG, CCL2, CCL4, CCL5, CCR1, CCR3, and CCR5 genes. Our data revealed different gene expression for RCs and PGs, suggesting that not only the inflammatory nature but also other biological processes might differentiate RCs and PGs. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Localization and Developmental Expression Patterns of CSPG in the RCS Rat Retina

    Directory of Open Access Journals (Sweden)

    Li-Feng Chen

    2011-05-01

    Full Text Available Purpose: Investigate changes in chondroitin sulfate proteoglycan (CSPG distribution in Royal College of Surgeons (RCS rat retinae. Could CSPGs distribution act as a physical barrier to transplanted cell migration in degenerating retinae? Methods: CSPG expression was examined in RCS and Long-Evans rat retinae from birth to postnatal day 150 (PND150 using immunofluorescence and western-blots. Results: Both groups showed a rapid rise in CSPG expression on PND14, which peaked on PND21 before declining to lower levels by PND35. CSPG expression had risen again by PND90 and remained elevated for the duration of the study (PND150. However, from PND21, CSPG expression was significantly higher (p ≤ 0.05, n = 5 in Long-Evans rat retinae. CSPG-positive cells were localized in the ganglion cell layer (GCL and the photoreceptor outer segment debris zone (DZ; CSPG expression in the DZ was the main contributor to the higher expression in older animals for both groups. Conclusions: Increased expression of CSPGs in the DZ may act as a physical barrier following retinal cellular transplantation. CSPGs in the GCL is probably related to dendritic changes. CSPG accumulation in the older retinae suggests that aging influences the microenvironment in the retina, which may affect the efficacy of cell transplantation.

  11. Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats

    Science.gov (United States)

    Pardue, Machelle T.; Phillips, Michael J.; Yin, Hang; Fernandes, Alcides; Cheng, Yian; Chow, Alan Y.; Ball, Sherry L.

    2005-03-01

    Current retinal prosthetics are designed to stimulate existing neural circuits in diseased retinas to create a visual signal. However, implantation of retinal prosthetics may create a neurotrophic environment that also leads to improvements in visual function. Possible sources of increased neuroprotective effects on the retina may arise from electrical activity generated by the prosthetic, mechanical injury due to surgical implantation, and/or presence of a chronic foreign body. This study evaluates these three neuroprotective sources by implanting Royal College of Surgeons (RCS) rats, a model of retinitis pigmentosa, with a subretinal implant at an early stage of photoreceptor degeneration. Treatment groups included rats implanted with active and inactive devices, as well as sham-operated. These groups were compared to unoperated controls. Evaluation of retinal function throughout an 18 week post-implantation period demonstrated transient functional improvements in eyes implanted with an inactive device at 6, 12 and 14 weeks post-implantation. However, the number of photoreceptors located directly over or around the implant or sham incision was significantly increased in eyes implanted with an active or inactive device or sham-operated. These results indicate that in the RCS rat localized neuroprotection of photoreceptors from mechanical injury or a chronic foreign body may provide similar results to subretinal electrical stimulation at the current output evaluated here.

  12. Pressure-Fed LOX/LCH4 Reaction Control System for Spacecraft: Transient Modeling and Thermal Vacuum Hotfire Test Results

    Science.gov (United States)

    Atwell, Matthew J.; Hurlbert, Eric A.; Melcher, J. C.; Morehead, Robert L.

    2017-01-01

    some tests to demonstrate the capability to quickly condition the engines for higher pulsing demand scenarios. A thermocouple at the TVS outlet allows for the calculation of energy absorbed by the vented propellant. Lastly, tests with longer pulses and multiple engines firing either in sequence or simultaneously were run in order to gather transient system response data on waterhammer. Six total high-speed pressure transducers are installed on the RCS system, one sensor at the end of each propellant manifold line on the pods, and one at the tap-off location for each commodity. This will allow for the accurate characterization of waterhammer in the system under various propellant conditions and firing sequences. Other instrumentation for this test series includes nozzle throat thermocouples, chamber pressure measurement, heat soakback measurement, and tank wall plume impingement temperature measurement. The next set of tests were performed to demonstrate simultaneous main engine and RCS operation. Data from this test will be used to examine if there is any change to nominal operation of the RCS as a result of feed system interaction or other phenomenon. Some of these tests began under high vacuum conditions (target ambient pressure less than 1x10(exp -3) torr) and others began at altitude conditions. The last set of tests were performed with the B-2 cold wall active. Under these tests, many of the same low duty cycle MIB tests were repeated in order to characterize how propellant conditions changed with the lower heat leak. In this scenario the RCS manifold experiences much less heat leak, resulting in a change to how well the engines self-condition. As a result, an increase in maximum waterhammer pressures and a change in natural frequency of the system was expected due to higher density propellants. The lower heat leak should also result in a change to the MIB pulse profile, and data will be examined to understand how MIB repeatability is affected in the different

  13. Seismic analysis of the reactor coolant system of PWR nuclear power plants

    International Nuclear Information System (INIS)

    Borsoi, L.; Sollogoub, P.

    1986-01-01

    For safety considerations, seismic analyses are performed of the Reactor Coolant System (R.C.S.) of PWR Plants. After a brief description of the R.C.S. and R.C.S. operation, the paper presents the two types of analysis used to determine the effect of earthquake on the R.C.S.: modal spectral analysis and nonlinear time history analysis. The paper finally shows how seismic loadings are combined with other types of loadings and illustrates how the consideration of seismic loads affects R.C.S. design [fr

  14. A Hybrid Optimization Algorithm for Low RCS Antenna Design

    Directory of Open Access Journals (Sweden)

    W. Shao

    2012-12-01

    Full Text Available In this article, a simple and efficient method is presented to design low radar cross section (RCS patch antennas. This method consists of a hybrid optimization algorithm, which combines a genetic algorithm (GA with tabu search algorithm (TSA, and electromagnetic field solver. The TSA, embedded into the GA frame, defines the acceptable neighborhood region of parameters and screens out the poor-scoring individuals. Thus, the repeats of search are avoided and the amount of time-consuming electromagnetic simulations is largely reduced. Moreover, the whole design procedure is auto-controlled by programming the VBScript language. A slot patch antenna example is provided to verify the accuracy and efficiency of the proposed method.

  15. Improvement on RCS reduction using flat lossy focusing reflectors.

    Science.gov (United States)

    Chin, Cheng-Yuan; Jou, Christina F

    2013-12-30

    In this paper, we propose a planar non-periodic subwavelength resistive grating (SWRG). The phase front of the scattered fields can be completely manipulated through non-periodic design of the grating while high absorptivity is preserved. The SWRG has an interesting property similar to a resistive concave reflecting lens. Scattered wave is focused in the near-field region, and spread out in the far-field. This feature of non-periodic resistive grating can improve the original radar cross section (RCS) reduction up to 22.86 dB in the boresight direction comparing to the periodic counterpart. Non-periodic design of SWRG could have a substantial impact on stealth technology, aerospace engineering, and microwave anechoic chamber.

  16. Alterations of sodium and potassium channels of RGCs in RCS rat with the development of retinal degeneration.

    Science.gov (United States)

    Chen, Zhongshan; Song, Yanping; Yao, Junping; Weng, Chuanhuang; Yin, Zheng Qin

    2013-11-01

    All know that retinitis pigmentosa (RP) is a group of hereditary retinal degenerative diseases characterized by progressive dysfunction of photoreceptors and associated with progressive cells loss; nevertheless, little is known about how rods and cones loss affects the surviving inner retinal neurons and networks. Retinal ganglion cells (RGCs) process and convey visual information from retina to visual centers in the brain. The healthy various ion channels determine the normal reception and projection of visual signals from RGCs. Previous work on the Royal College of Surgeons (RCS) rat, as a kind of classical RP animal model, indicated that, at late stages of retinal degeneration in RCS rat, RGCs were also morphologically and functionally affected. Here, retrograde labeling for RGCs with Fluorogold was performed to investigate the distribution, density, and morphological changes of RGCs during retinal degeneration. Then, patch clamp recording, western blot, and immunofluorescence staining were performed to study the channels of sodium and potassium properties of RGCs, so as to explore the molecular and proteinic basis for understanding the alterations of RGCs membrane properties and firing functions. We found that the resting membrane potential, input resistance, and capacitance of RGCs changed significantly at the late stage of retinal degeneration. Action potential could not be evoked in a part of RGCs. Inward sodium current and outward potassium current recording showed that sodium current was impaired severely but only slightly in potassium current. Expressions of sodium channel protein were impaired dramatically at the late stage of retinal degeneration. The results suggested that the density of RGCs decreased, process ramification impaired, and sodium ion channel proteins destructed, which led to the impairment of electrophysiological functions of RGCs and eventually resulted in the loss of visual function.

  17. The internalization of posterior subcapsular cataracts (PSCs) in Royal College of Surgeons (RCS) rats. II. The inter-relationship of optical quality and structure as a function of age.

    Science.gov (United States)

    Kuszak, J R; Al-Ghoul, K J; Novak, L A; Peterson, K L; Herbert, K L; Sivak, J G

    1999-05-06

    The Royal College of Surgeons (RCS) rat is an animal model for human retinal degenerative disease and posterior subcapsular cataracts (PSCs). The purpose of this study was to correlate the structure and optical quality of RCS lenses with PSCs as a function of their internalization, with normal, non-cataractous, age-matched control lenses. Correlative light (LM), scanning electron microscopic (SEM), three-dimensional computer assisted drawings (3D-CADs) and low power helium-neon laser scan analysis were used to examine the structure and function of lenses. The optical properties (average focal length variability; sharpness of focus) of RCS rat lenses are quantitatively compromised by PSCs. Correlative LM and SEM analysis of RCS lenses at various stages of PSC internalization (1.5, 3, 6, 9, 12 and 15 months of age), revealed that the sutures formed by additional fiber growth were progressively more abnormal. During PSC internalization, two to nine small suture branches were formed and arranged in modified line to multiple y configurations rather than the normal three branch y sutures. These temporal changes were also chronicled in animated 3D-CAD videos derived from lens reconstructions based on LM and SEM micrographs from the selected time points stated above. However, laser scan analysis also revealed that as the PSCs of RCS rat lenses were progressively internalized, there was a steady improvement in total sharpness of focus that reached normal levels by 12 months of age. The correlation of laser scan and structural data from specific regions of lenses revealed the following: 1. The abnormal posterior sutures of RCS rats with internalized PSCs effect a greater reduction in optical quality than normal posterior sutures of age-matched controls; 2. However, the resulting abnormal suture plane area was cumulatively similar to that of age-matched controls; 3. Thus, total optical quality was similar between RCS lenses with internalized PSCs and age-matched controls by

  18. Serratia marcescens ShlA pore-forming toxin is responsible for early induction of autophagy in host cells and is transcriptionally regulated by RcsB.

    Science.gov (United States)

    Di Venanzio, Gisela; Stepanenko, Tatiana M; García Véscovi, Eleonora

    2014-09-01

    Serratia marcescens is a Gram-negative bacterium that thrives in a wide variety of ambient niches and interacts with an ample range of hosts. As an opportunistic human pathogen, it has increased its clinical incidence in recent years, being responsible for life-threatening nosocomial infections. S. marcescens produces numerous exoproteins with toxic effects, including the ShlA pore-forming toxin, which has been catalogued as its most potent cytotoxin. However, the regulatory mechanisms that govern ShlA expression, as well as its action toward the host, have remained unclear. We have shown that S. marcescens elicits an autophagic response in host nonphagocytic cells. In this work, we determine that the expression of ShlA is responsible for the autophagic response that is promoted prior to bacterial internalization in epithelial cells. We show that a strain unable to express ShlA is no longer able to induce this autophagic mechanism, while heterologous expression of ShlA/ShlB suffices to confer on noninvasive Escherichia coli the capacity to trigger autophagy. We also demonstrate that shlBA harbors a binding motif for the RcsB regulator in its promoter region. RcsB-dependent control of shlBA constitutes a feed-forward regulatory mechanism that allows interplay with flagellar-biogenesis regulation. At the top of the circuit, activated RcsB downregulates expression of flagella by binding to the flhDC promoter region, preventing FliA-activated transcription of shlBA. Simultaneously, RcsB interaction within the shlBA promoter represses ShlA expression. This circuit offers multiple access points to fine-tune ShlA production. These findings also strengthen the case for an RcsB role in orchestrating the expression of Serratia virulence factors. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Reduction of the In-Band RCS of Microstrip Patch Antenna by Using Offset Feeding Technique

    Directory of Open Access Journals (Sweden)

    Weiwei Xu

    2014-01-01

    Full Text Available This paper presents a method for implementing a low in-band scattering design for microstrip patch antennas based on the analysis of structural mode scattering and radiation characteristics. The antenna structure is first designed to have the lowest structural mode scattering in a desired frequency band. The operating frequency band of the antenna is then changed to coincide with that of the lowest structural mode scattering by adjusting the feed position on the antenna (offset feeding to achieve an antenna with low in-band radar cross section (RCS. In order to reduce the level of cross polarization of the antenna caused by offset feeding, symmetry feeding structures for both single patch antennas and two-patch arrays are proposed. Examples that show the efficiency of the method are given, and the results illustrate that the in-band RCS of the proposed antennas can be reduced by as much as 17 dBsm for plane waves impinging from the normal direction compared to patch antennas fed by conventional methods.

  20. Applications of β-gal-III isozyme from Bacillus coagulans RCS3, in lactose hydrolysis.

    Science.gov (United States)

    Batra, Navneet; Singh, Jagtar; Joshi, Amit; Bhatia, Sonu

    2011-12-01

    Bacillus coagulans RCS3 isolated from hot water springs secreted five isozymes i.e. β-gal I-V of β-galactosidase. β-gal III isozyme was purified using DEAE cellulose and Sephadex G 100 column chromatography. Its molecular weight characterization showed a single band at 315kD in Native PAGE, while two subunits of 50.1 and 53.7 kD in SDS PAGE. β-Gal III had pH optima in the range of 6-7 and temperature optima at 65°C. It preferred nitro-aryl-β-d-galactoside as substrate having K(m) of 4.16 mM with ONPG. More than 85% and 80% hydrolysis of lactose (1-5%, w/v) was recorded within 48 h of incubation at 55°C and 50°C respectively and pH range of 6-7. About 78-86% hydrolysis of lactose in various brands of standardized milk was recorded at incubation temperature of 50°C. These results marked the applications of β-gal III in processing of milk/whey industry. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Dynamic J-R Characteristics of RCS Pipe Materials for Ulchin Unit 3/4. (Evaluation of Dynamic Strain Aging Effects)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Lee, Bong Sang; Yoon, Ji Hyun; Oh, Jong Myung; Kim, Jin Won [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-09-01

    5 materials (45 1T-CT specimens) were tested to evaluate dynamic J-R characteristics of RCS Pipe Materials for Ulchin Unit 3/4 (Evaluation of Dynamic Strain Aging Effects). The tests were performed by DCPD method at 316 deg C and 25 deg C. The loading rates were 1000mm/min and 2000mm/min. The objectives of this project were to obtain the dynamic J-R curves data of ferritic steels for application of LBB to the RCS pipes of Ulchin Unit 3/4. The test results showed that all of the tested dynamic J-R curves of 5 materials were above the lower bound curve of static J-R curve of pipe materials for Ulchin Unit 3/4. 10 refs., 4 tabs., 16 figs. (author)

  2. Analysis of specific factors causing RCS pressure boundary cracking

    International Nuclear Information System (INIS)

    Song, Taek-Ho; Jeong, Il-Seok

    2007-01-01

    As nuclear power plants become aged, pressure boundary integrity has become so important issue in domestic and foreign nuclear industry that many related research projects are on-going. KEPRI is going to embark a new research project for managing and preventing these kinds of cracks in nuclear power plants (NPPs). Many nuclear power plants experienced pressure boundary stress corrosion cracking (SCC) and shut downed because of it. In USA, V.C. Summer plant experienced reactor coolant pipe SCC near reactor outlet nozzle and Davis Vesse plant experienced reactor head crack around penetration pipe which is used to control rod drive mechanism. In this paper, RCS pressure boundary cracking cases and corrosion potential have been studied to find out what are the specific factors that have affected crack initiations in the reactor coolant pressure boundaries

  3. Reaction Control System Thruster Cracking Consultation: NASA Engineering and Safety Center (NESC) Materials Super Problem Resolution Team (SPRT) Findings

    Science.gov (United States)

    MacKay, Rebecca A.; Smith, Stephen W.; Shah, Sandeep R.; Piascik, Robert S.

    2005-01-01

    The shuttle orbiter s reaction control system (RCS) primary thruster serial number 120 was found to contain cracks in the counter bores and relief radius after a chamber repair and rejuvenation was performed in April 2004. Relief radius cracking had been observed in the 1970s and 1980s in seven thrusters prior to flight; however, counter bore cracking had never been seen previously in RCS thrusters. Members of the Materials Super Problem Resolution Team (SPRT) of the NASA Engineering and Safety Center (NESC) conducted a detailed review of the relevant literature and of the documentation from the previous RCS thruster failure analyses. It was concluded that the previous failure analyses lacked sufficient documentation to support the conclusions that stress corrosion cracking or hot-salt cracking was the root cause of the thruster cracking and lacked reliable inspection controls to prevent cracked thrusters from entering the fleet. The NESC team identified and performed new materials characterization and mechanical tests. It was determined that the thruster intergranular cracking was due to hydrogen embrittlement and that the cracking was produced during manufacturing as a result of processing the thrusters with fluoride-containing acids. Testing and characterization demonstrated that appreciable environmental crack propagation does not occur after manufacturing.

  4. Experimental studies of water hammer in propellant feed system of reaction control system

    Directory of Open Access Journals (Sweden)

    Avanish Kumar

    2018-03-01

    Full Text Available Water hammer pressure transient produces large dynamic forces which can damage the pipes and other assemblies in the feed line of a reaction control system (RCS. It has led to the failure of pressure transducers monitoring the manifold pressure in the feed line of RCS. Therefore, water hammer studies have been carried out to understand its effect in feed line. Feedline system has been simplified to develop a mathematical model and experiments have been carried out at extensive levels. The mathematical model was developed considering pipe of uniform c/s and moving liquid-gas interface. The experimental studies have been done using water as working medium instead of actual propellant. The studies showed that rate of pressurization have a very critical role on the water hammer amplitude. Sensitivity studies have been also carried out to study the effect of density, friction and initial liquid column length on water hammer amplitude. Keywords: Water hammer, Reaction control system (RCS, Propellant feed system, Experimental study, Testing

  5. The Quantitative Reasoning for College Science (QuaRCS) Assessment: Emerging Themes from 5 Years of Data

    Science.gov (United States)

    Follette, Katherine; Dokter, Erin; Buxner, Sanlyn

    2018-01-01

    The Quantitative Reasoning for College Science (QuaRCS) Assessment is a validated assessment instrument that was designed to measure changes in students' quantitative reasoning skills, attitudes toward mathematics, and ability to accurately assess their own quantitative abilities. It has been administered to more than 5,000 students at a variety of institutions at the start and end of a semester of general education college science instruction. I will begin by briefly summarizing our published work surrounding validation of the instrument and identification of underlying attitudinal factors (composite variables identified via factor analysis) that predict 50% of the variation in students' scores on the assessment. I will then discuss more recent unpublished work, including: (1) Development and validation of an abbreviated version of the assessment (The QuaRCS Light), which results in marked improvements in students' ability to maintain a high effort level throughout the assessment and has broad implications for quantitative reasoning assessments in general, and (2) Our efforts to revise the attitudinal portion of the assessment to better assess math anxiety level, another key factor in student performance on numerical assessments.

  6. In-flight measurements and RCS-predictions: A comparison on broad-side radar range profiles of a Boeing 737

    NARCIS (Netherlands)

    Heiden, R. van der; Ewijk, L.J. van; Groen, F.C.A.

    1997-01-01

    The validation of Radar Cross Section (RCS) prediction techniques against real measurements is crucial to acquire confidence in predictions when measurements are not available. In this paper we present the first results of a comparison on one dimensional images, i.e., radar range profiles. The

  7. Improvements of primary coolant shutdown chemistry and reactor coolant system cleanup

    International Nuclear Information System (INIS)

    Gaudard, G.; Gilles, B.; Mesnage, F.; Cattant, F.

    2002-01-01

    In the framework of a radiation exposure management program entitled >, EDF aims at decreasing the mass dosimetry of nuclear power plants workers. So, the annual dose per unit, which has improved from 2.44 m.Sv in 1991 to 1.08 in 2000, should target 0.8 mSv in the year 2005 term in order to meet the results of the best nuclear operators. One of the guidelines for irradiation source term reduction is the optimization of operation parameters, including reactor coolant system (RCS) chemistry in operation, RCS shutdown chemistry and RCS cleanup improvement. This paper presents the EDF strategy for the shutdown and start up RCS chemistry optimization. All the shutdown modes have been reviewed and for each of them, the chemical specifications will be fine tuned. A survey of some US PWRs shutdown practices has been conducted for an acid and reducing shutdown chemistry implementation test at one EDF unit. This survey shows that deviating from the EPRI recommended practice for acid and reducing shutdown chemistry is possible and that critical path impact can be minimized. The paper also presents some investigations about soluble and insoluble species behavior and characterization; the study focuses here on 110m Ag, 122 Sb, 124 Sb and iodine contamination. Concerning RCS cleanup improvement, the paper presents two studies. The first one highlights some limited design modifications that are either underway or planned, for an increased flow rate during the most critical periods of the shutdown. The second one focuses on the strategy EDF envisions for filters and resins selection criteria. Matching the study on contaminants behavior with the study of filters and resins selection criteria should allow improving the cleanup efficiency. (authors)

  8. Natural circulation in reactor coolant system

    International Nuclear Information System (INIS)

    Han, J.T.

    1987-01-01

    Reactor coolant system (RCS) natural circulation in a PWR is the buoyancy-driven coolant circulation between the core and the upper-plenum region (in-vessel circulation) with or without a countercurrent flow in the hot leg piping between the vessel and steam generators (ex-vessel circulation). This kind of multidimensional bouyancy-driven flow circulation serves as a means of transferring the heat from the core to the structures in the upper plenum, hot legs, and possibly steam generators. As a result, the RCS piping and other pressure boundaries may be heated to high temperatures at which the structural integrity is challenged. RCS natural circulation is likely to occur during the core uncovery period of the TMLB' accident in a PWR when the vessel upper plenum and hot leg are already drained and filled with steam and possibly other gaseous species. RCS natural circulation is being studied for the Surry plant during the TMLB' accident in which station blackout coincides with the loss of auxiliary feedwater and no operator actions. The effects of the multidimensional RCS natural circulation during the TMLB' accident are discussed

  9. Construction of the monitoring, processing and logging systems supporting for management, operation and maintenance of the Dalat reactor control system

    International Nuclear Information System (INIS)

    Trinh Dinh Hai; Nguyen Thanh Cuong; Huynh Ton Nghiem; Phan Quoc Minh; Nguyen Duc Tuan; Nguyen Nhi Dien

    2004-01-01

    From 1/2002 to 12/2003, we implemented successfully a project, entitled 'Construction of the monitoring, processing and logging systems supporting for management, operation and maintenance of the Dalat reactor control system' under the assistance of the Ministry of Science and Technology. Its main results such as Testing Apparatus based on microcontroller for all functional boards of the Control Logic System of the Reactor Control System (RCS). Technical support CD - ROM for Process Instrumentation System, software for logging automatically information from important systems of the RCS through LAN, program for failure management of Process Instrumentation System have been playing an important role for observation, operation support, maintenance of the RCS. Through this project, the implementation group has grown up rapidly. The control and instrumentation group has been provided with some modern equipment, electronic components, and materials for maintenance work and research development in the years to come. This paper presents typical results and discussions. (author)

  10. Modelling aerosol behavior in reactor cooling systems

    International Nuclear Information System (INIS)

    McDonald, B.H.

    1990-01-01

    This paper presents an overview of some of the areas of concern in using computer codes to model fission-product aerosol behavior in the reactor cooling system (RCS) of a water-cooled nuclear reactor during a loss-of-coolant accident. The basic physical processes that require modelling include: fission product release and aerosol formation in the reactor core, aerosol transport and deposition in the reactor core and throughout the rest of the RCS, and the interaction between aerosol transport processes and the thermalhydraulics. In addition to these basic physical processes, chemical reactions can have a large influence on the nature of the aerosol and its behavior in the RCS. The focus is on the physics and the implications of numerical methods used in the computer codes to model aerosol behavior in the RCS

  11. AP-102/104 Retrieval control system qualification test procedure

    International Nuclear Information System (INIS)

    RIECK, C.A.

    1999-01-01

    This Qualification Test Procedure documents the results of the qualification testing that was performed on the Project W-211, ''Initial Tank Retrieval Systems,'' retrieval control system (RCS) for tanks 241-AP-102 and 241-AP-104. The results confirm that the RCS has been programmed correctly and that the two related hardware enclosures have been assembled in accordance with the design documents

  12. Morphological and functional rescue in RCS rats after RPE cell line transplantation at a later stage of degeneration.

    Science.gov (United States)

    Wang, Shaomei; Lu, Bin; Girman, Sergej; Holmes, Toby; Bischoff, Nicolas; Lund, Raymond D

    2008-01-01

    It is well documented that grafting of cells in the subretinal space of Royal College of Surgeons (RCS) rats limits deterioration of vision and loss of photoreceptors if performed early in postnatal life. What is unclear is whether cells introduced later, when photoreceptor degeneration is already advanced, can still be effective. This possibility was examined in the present study, using the human retinal pigment epithelial cell line, ARPE-19. Dystrophic RCS rats (postnatal day [P] 60) received subretinal injection of ARPE-19 cells (2 x 10(5)/3 microL/eye). Spatial frequency was measured by recording optomotor responses at P100 and P150, and luminance threshold responses were recorded from the superior colliculus at P150. Retinas were stained with cresyl violet, retinal cell-specific markers, and a human nuclear marker. Control animals were injected with medium alone. Animals comparably treated with grafts at P21 were available for comparison. All animals were treated with immunosuppression. Later grafts preserved both spatial frequency and threshold responses over the control and delayed photoreceptor degeneration. There were two to three layers of rescued photoreceptors even at P150, compared with a scattered single layer in sham and untreated control retinas. Retinal cell marker staining showed an orderly array of the inner retinal lamination. The morphology of the second-order neurons was better preserved around the grafted area than in regions distant from graft. Sham injection had little effect in rescuing the photoreceptors. RPE cell line transplants delivered later in the course of degeneration can preserve not only the photoreceptors and inner retinal lamination but also visual function in RCS rats. However, early intervention can achieve better rescue.

  13. The spectral energy distributions of isolated neutron stars in the resonant cyclotron scattering model

    Science.gov (United States)

    Tong, Hao; Xu, Renxin

    2013-03-01

    The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.

  14. The optical/ultraviolet excess of isolated neutron stars in the resonant cyclotron scattering model

    Science.gov (United States)

    Tong, Hao; Xu, Ren-Xin; Song, Li-Ming

    2011-12-01

    X-ray dim isolated neutron stars are peculiar pulsar-like objects, characterized by their Planck-like spectrum. In studying their spectral energy distributions, optical/ultraviolet (UV) excess is a long standing problem. Recently Kaplan et al. measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may be due to contributions from the bremsstrahlung emission of the electron system in addition to the RCS process.

  15. Calorimetric and reactor coolant system flow uncertainty

    International Nuclear Information System (INIS)

    Bates, L.; McLean, T.

    1991-01-01

    This paper describes a methodology for the quantification of errors associated with the determination of a feedwater flow, secondary power, and Reactor Coolant System (RCS) flow used at the Trojan Nuclear Plant to ensure compliance with regulatory requirements. The sources of error in Plant indications and process measurement are identified and tracked, using examples, through the mathematical processes necessary to calculate the uncertainty in the RCS flow measurement. An error of approximately 1.4 percent is calculated for secondary power. This error results, along with the consideration of other errors, in an uncertainty of approximately 3 percent in the RCS flow determination

  16. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    Science.gov (United States)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    Basic principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters are presented. Both vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has two main aspects: It summarizes key RCS design principles from earlier NASA vehicles, notably the Space Shuttle and Space Station programs, and introduces advances in the linear modelling and analyses of a phase plane control system derived in the initial development of the NASA's next upper stage vehicle, the Exploration Upper Stage (EUS). Topics include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and RCS rotational maneuver logic.

  17. Stealth metamaterial objects characterized in the far field by Radar Cross Section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Fan, K.; Strikwerda, A. C.

    Reflection spectra and radar cross sections (RCS) at terahertz frequencies are measured on structures incorporating absorbing metamaterials. Reduction of the RCS by the factor of 375 at the resonant frequencies is observed.......Reflection spectra and radar cross sections (RCS) at terahertz frequencies are measured on structures incorporating absorbing metamaterials. Reduction of the RCS by the factor of 375 at the resonant frequencies is observed....

  18. Remote Cloud Sensing Intensive Observation Period (RCS-IOP) millimeter-wave radar calibration and data intercomparison

    Energy Technology Data Exchange (ETDEWEB)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E. [Univ. of Massachusetts, Amherst, MA (United States)] [and others

    1996-04-01

    During April 1994, the University of Massachusetts (UMass) and the Pennsylvania State University (Penn State) fielded two millimeter-wave atmospheric radars in the Atmospheric Radiation Measurement Remote Cloud Sensing Intensive Operation Period (RCS-IOP) experiment. The UMass Cloud Profiling Radar System (CPRS) operates simultaneously at 33.12 GHz and 94.92 GHz through a single antenna. The Penn State radar operates at 93.95 GHz and has separate transmitting and receiving antennas. The two systems were separated by approximately 75 meters and simultaneously observed a variety of cloud types at verticle incidence over the course of the experiment. This abstract presents some initial results from our calibration efforts. An absolute calibration of the UMass radar was made from radar measurements of a trihedral corner reflector, which has a known radar cross-section. A relative calibration of between the Penn State and UMass radars is made from the statistical comparison of zenith pointing measurements of low altitude liquid clouds. Attenuation is removed with the aid of radiosonde data, and the difference in the calibration between the UMass and Penn State radars is determined by comparing the ratio of 94-GHz and 95-GHz reflectivity values to a model that accounts for parallax effects of the two antennas used in the Penn State system.

  19. Modernization project of the rod control system and in-core instrumentation system for 34 units of the 900 MW French EDF fleet

    International Nuclear Information System (INIS)

    Tavolara, Ivan; Desgeorge, Romain; Verburgh, Pierre

    2014-01-01

    Rolls-Royce and Cegelec, in partnership, carry out a unique and considerable modernisation project of two Instrumentation and Control (I and C) systems for the entire 900 MWe fleet of Electricite De France (EDF). Both rod control (RCS) and reactor in-core measurement (RIC) systems are to be modernised in the frame of the third ten-year renovation of all 34 reactor units over 9 power plants. The RCS contributes to the control of nuclear power by actuating control rod drive mechanisms that allow insertion or withdrawal of control rods. The RCS has also monitoring functions such as controlling the actual rods' position as well as the functional consistency between commands and actual positions. The RIC system measures in-core neutron flux, providing useful information to the control room as well as to the reactor unit computer for further processing. The renovated systems shall replace the existing ageing analog technology by modern digital technology based on PLC (Programmable Logic Controllers) and FPGA (Field-Programmable Gate Array) in the case of power subassemblies of RCS. Both systems rely for certain functions on a common network linking the RCS and RIC networks, improving operations and maintenance thanks to a powerful Man Machine Interface at the different locations of the systems with an extensive suite of tools and diagnostic menus. The project whose design phase started in July 2006 is now in its deployment phase after the successful site implementation of both systems at the first of kind units of Tricastin and Fessenheim power plants, respectively in August 2009 and February 2010. With 20 units in operation in 2014, the deployment shall continue with the other 14 until 2020. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design, supply chain management, manufacturing, installation and commissioning of the nuclear island systems and equipment, as well as operational

  20. A microRNA, mir133b, suppresses melanopsin expression mediated by failure dopaminergic amacrine cells in RCS rats.

    Science.gov (United States)

    Li, Yaochen; Li, Chunshi; Chen, Zhongshan; He, Jianrong; Tao, Zui; Yin, Zheng Qin

    2012-03-01

    The photopigment melanopsin and melanopsin-containing RGCs (mRGCs or ipRGCs) represent a brand-new and exciting direction in the field of visual field. Although the melanopsin is much less sensitive to light and has far less spatial resolution, mRGCs have the unique ability to project to brain areas by the retinohypothalamic tract (RHT) and communicate directly with the brain. Unfortunately, melanopsin presents lower expression levels in many acute and chronic retinal diseases. The molecular mechanisms underlying melanopsin expression are not yet really understood. MicroRNAs play important roles in the control of development. Most importantly, the link of microRNA biology to a diverse set of cellular processes, ranging from proliferation, apoptosis and malignant transformation to neuronal development and fate specification is emerging. We employed Royal College of Surgeon (RCS) rats as animal model to investigate the underlying molecular mechanism regulating melanopsin expression using a panel of miRNA by quantitative real-time reverse transcription polymerase chain reaction. We identified a microRNA, mir133b, that is specifically expressed in retinal dopaminergic amacrine cells as well as markedly increased expression at early stage during retinal degeneration in RCS rats. The overexpression of mir133b downregulates the important transcription factor Pitx3 expression in dopaminergic amacrine cells in RCS rats retinas and makes amacrine cells stratification deficit in IPL. Furthermore, deficient dopaminergic amacrine cells presented decreased TH expression and dopamine production, which lead to a failure to direct mRGCs dendrite to stratify and enter INL and lead to the reduced correct connections between amacrine cells and mRGCs. Our study suggested that overexpression of mir133b and downregulated Pitx3 suppress maturation and function of dopaminergic amacrine cells, and overexpression of mir133b decreased TH and D2 receptor expression as well as dopamine

  1. Phenomena occuring in the reactor coolant system during severe core damage accidents

    International Nuclear Information System (INIS)

    Malinauskas, A.P.

    1990-01-01

    The reactor coolant system (RCS) of a nuclear power plant consists of the reactor pressure vessel and the piping and associated components that are required for the continuous circulation of the coolant which is used to maintain thermal equilibrium throughout the system. This paper discusses, how in the event of an accident, the RCS also serves as one of several barriers to the escape of radiotoxic material into the biosphere. The physical and chemical processes occurring within the RCS during normal operation of the reactor are relatively uncomplicated and are reasonably well understood. When the flow of coolant is properly adjusted, the thermal energy resulting from nuclear fission (or, in the shutdown mode, from radioactive decay processes) and secondary inputs, such as pumps, are exactly balanced by thermal losses through the RCS boundaries and to the various heat sinks that are employed to effect the conversion of heat to electrical energy. Because all of the heat and mass fluxes remain sensibly constant with time, mathematical descriptions of the thermophysical processes are relatively straightforward, even for boiling water reactor (BWR) systems. Although the coolant in a BWR does undergo phase changes, the phase boundaries remain well-defined and time-invariant

  2. Recommendations to increase customer conversion rates through website optimization and online marketing Case company: RCS Training Center

    OpenAIRE

    Bogdanova, Daria

    2016-01-01

    The goal of this thesis is to establish effective online marketing strategy for a small B2C wellness studio. The commissioning company RCS Training Center wishes to attract more customers through their website and social media sites, such as Facebook and Instagram. This objective is justified by the popularity of the wellness and fitness niche online, which creates big market potential in the homeland and internationally. However, popularity also means high competition. A lack of experience i...

  3. Modernization project of the rod control system and in-core instrumentation system for 34 units of the 900 MW French EDF fleet

    International Nuclear Information System (INIS)

    Tavolara, Ivan; Verburgh, Pierre; Menager, Antoine

    2010-01-01

    Rolls-Royce and Cegelec, in partnership, carry out a unique and considerable modernisation project of two Instrumentation and Control (I and C) systems for the entire 900 MWe fleet of Electricite De France (EDF). Both rod control (RCS) and reactor in-core measurement (RIC) systems are to be modernised in the frame of the third ten-year renovation of all 34 reactor units over 9 power plants. The RCS contributes to the control of nuclear power by actuating control rod drive mechanisms that allow insertion or withdrawal of control rods. The RCS has also monitoring functions such as controlling the actual rods' position as well as the functional consistency between commands and actual positions. The RIC system measures in-core neutron flux, providing useful information to the control room as well as to the reactor unit computer for further processing. The renovated systems shall replace the existing ageing analog technology by modern digital technology based on PLC (Programmable Logic Controllers) and FPGA (Field-Programmable Gate Array) in the case of power subassemblies of RCS. Both systems rely for certain functions on a common network linking the RCS and RIC networks, improving operations and maintenance thanks to a powerful Man Machine Interface at the different locations of the systems with an extensive suite of tools and diagnostic menus. The project whose design phase started in July 2006 is now in its deployment phase after the successful site implementation of both systems at the first units of Tricastin and Fessenheim power plants, respectively in August 2009 and February 2010. The deployment shall continue with the other 32 units until 2020. Rolls-Royce has a broad range of civil nuclear expertise, including work related to licensing and safety reviews, engineering design, supply chain management, manufacturing, installation and commissioning of the nuclear island systems and equipment, as well as operational management through life support. Cegelec, with

  4. Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    Science.gov (United States)

    Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam

    2012-01-01

    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.

  5. Using Additive Manufacturing to Print a CubeSat Propulsion System

    Science.gov (United States)

    Marshall, William M.

    2015-01-01

    CubeSats are increasingly being utilized for missions traditionally ascribed to larger satellites CubeSat unit (1U) defined as 10 cm x 10 cm x 11 cm. Have been built up to 6U sizes. CubeSats are typically built up from commercially available off-the-shelf components, but have limited capabilities. By using additive manufacturing, mission specific capabilities (such as propulsion), can be built into a system. This effort is part of STMD Small Satellite program Printing the Complete CubeSat. Interest in propulsion concepts for CubeSats is rapidly gaining interest-Numerous concepts exist for CubeSat scale propulsion concepts. The focus of this effort is how to incorporate into structure using additive manufacturing. End-use of propulsion system dictates which type of system to develop-Pulse-mode RCS would require different system than a delta-V orbital maneuvering system. Team chose an RCS system based on available propulsion systems and feasibility of printing using a materials extrusion process. Initially investigated a cold-gas propulsion system for RCS applications-Materials extrusion process did not permit adequate sealing of part to make this a functional approach.

  6. Conceptual design of Remote Control System for EAST tokamak

    International Nuclear Information System (INIS)

    Sun, X.Y.; Wang, F.; Wang, Y.; Li, S.

    2014-01-01

    Highlights: • A new design conception for remote control for EAST tokamak is proposed. • Rich Internet application (RIA) was selected to implement the user interface. • Some security mechanism was used to fulfill security requirement. - Abstract: The international collaboration becomes popular in tokamak research like in many other fields of science, because the experiment facilities become larger and more expensive. The traditional On-site collaboration Model that has to spend much money and time on international travel is not fit for the more frequent international collaboration. The Remote Control System (RCS), as an extension of the Central Control System for the EAST tokamak, is designed to provide an efficient and economical way to international collaboration. As a remote user interface, the RCS must integrate with the Central Control System for EAST tokamak to perform discharge control function. This paper presents a design concept delineating a few key technical issues and addressing all significant details in the system architecture design. With the aim of satisfying system requirements, the RCS will select rich Internet application (RIA) as a user interface, Java as a back-end service and Secure Socket Layer Virtual Private Network (SSL VPN) for securable Internet communication

  7. Conceptual design of Remote Control System for EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.Y., E-mail: xysun@ipp.ac.cn; Wang, F.; Wang, Y.; Li, S.

    2014-05-15

    Highlights: • A new design conception for remote control for EAST tokamak is proposed. • Rich Internet application (RIA) was selected to implement the user interface. • Some security mechanism was used to fulfill security requirement. - Abstract: The international collaboration becomes popular in tokamak research like in many other fields of science, because the experiment facilities become larger and more expensive. The traditional On-site collaboration Model that has to spend much money and time on international travel is not fit for the more frequent international collaboration. The Remote Control System (RCS), as an extension of the Central Control System for the EAST tokamak, is designed to provide an efficient and economical way to international collaboration. As a remote user interface, the RCS must integrate with the Central Control System for EAST tokamak to perform discharge control function. This paper presents a design concept delineating a few key technical issues and addressing all significant details in the system architecture design. With the aim of satisfying system requirements, the RCS will select rich Internet application (RIA) as a user interface, Java as a back-end service and Secure Socket Layer Virtual Private Network (SSL VPN) for securable Internet communication.

  8. Fission product transport in the primary system, important phenomena, and code status

    International Nuclear Information System (INIS)

    Gieseke, J.A.; Jordan, H.; Kuhlman, M.R.

    1990-01-01

    The purpose of this paper is to identify important issues concerning the transport and deposition of radionuclides in the reactor coolant system (RCS) under accident conditions and to examine how such issues are being treated or should be treated by the various available computer codes. In general, the RCS is a very important section of the transport pathway along which radionuclides move and by which they are attenuated as they travel after being released from the fuel. The RCS can serve as a sink for radionuclides that may deposit from the gas and react with surfaces, or can serve as a repository for materials deposited from the gas which are then available for later release into the transporting gas stream. The RCS may also have thermal hydraulic conditions that foster aerosol growth by condensation or agglomeration, and may provide an environment in which gas phase or heterogeneous chemical reactions may occur

  9. Magnetic fringe field interference between the quadrupole and corrector magnets in the CSNS/RCS

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mei, E-mail: yangmei@ihep.ac.cn [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803,China (China); Dongguan Neutron Science Center, Dongguan 523808,China (China); Kang, Wen; Deng, Changdong [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803,China (China); Dongguan Neutron Science Center, Dongguan 523808,China (China); Sun, Xianjing [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Li, Li; Wu, Xi [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); China Spallation Neutron Source, Institute of High Energy Physics, Chinese Academy of Sciences, Dongguan 523803,China (China); Dongguan Neutron Science Center, Dongguan 523808,China (China); Gong, Lingling; Cheng, Da [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhu, Yingshun; Chen, Fusan [Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-03-01

    The Rapid Cycling Synchrotron (RCS) of the China Spallation Neutron Source (CSNS) employs large aperture quadrupole and corrector magnets with small aspect ratios and relatively short iron to iron separations; so the fringe field interference becomes serious which results in integral field strength reduction and extra field harmonics. We have performed 3D magnetic field simulations to investigate the magnetic field interference in the magnet assemblies and made some adjustments on the magnet arrangement. The Fourier analysis is used to quantify the integral gradient reduction and field harmonic changes of the quadrupole magnets. Some magnetic field measurements are undertaken to verify the simulation results. The simulation details and the major results are presented in this paper.

  10. Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle

    International Nuclear Information System (INIS)

    Xie, Hui; Yang, Can

    2013-01-01

    Highlights: • Waste heat recovery behavior of the RCS during driving cycle was investigated. • Four operating modes were defined to describe the operating process of the RCS under driving cycle. • The operating mode switching is the crucial reason for on-road inefficiency. • The dry and isentropic fluids are superior to the wet ones on the adaptability to unsteady ExGE. • The effects of the vapor parameters on RCT-E and power mode percentage are opposite. - Abstract: The RCS (Rankine cycle system) used to recover the WHE (waste heat energy) from engines has been regarded as one of the most potential ways of achieving higher efficiency. However, it is of great challenge to keep the RCS still in good performance under driving cycle. This paper tries to reveal and explain its on-road inefficiency. The operating process of the RCS under driving cycle was analyzed in advance. Afterwards, four basic operating modes were defined, including startup mode, turbine turning mode, power mode and protection mode. Then, a RCS model was established and operating performances of the RCS under an actual driving cycle were discussed based on this model. The results indicate that the on-road RCS-E (Rankine cycle system efficiency) is as low as 3.63%, which is less than half of the design RCS-E (7.77%) at the rated operating point. Despite the inevitable vapor state fluctuation, it is the operating mode switching during the driving cycle that leads to the on-road inefficiency. Further investigations indicate that the expander safety temperature and its safety margin affected by the working fluids, designed superheat degree and evaporating pressure are the main factors determining the operating mode switching. Finally, the effects of the working fluids, designed superheat degree and evaporating pressure on the operating mode switching and RC (Rankine cycle) efficiencies were profoundly investigated. The study shows that the dry and isentropic fluids are superior to the wet

  11. Mars Ascent Vehicle Reaction Control System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — During this Phase I NASA program, Valley Tech Systems (VTS) will develop an innovative solid Reaction Control System (RCS) architecture concept design that can...

  12. Metabolic patterns of JWH-210, RCS-4, and THC in pig urine elucidated using LC-HR-MS/MS: Do they reflect patterns in humans?

    Science.gov (United States)

    Schaefer, Nadine; Helfer, Andreas G; Kettner, Mattias; Laschke, Matthias W; Schlote, Julia; Ewald, Andreas H; Meyer, Markus R; Menger, Michael D; Maurer, Hans H; Schmidt, Peter H

    2017-04-01

    The knowledge of pharmacokinetic (PK) properties of synthetic cannabinoids (SCs) is important for interpretation of analytical results found for example in intoxicated individuals. In the absence of human data from controlled studies, animal models elucidating SC PK have to be established. Pigs providing large biofluid sample volumes were tested for prediction of human PK data. In this context, the metabolic fate of two model SCs, namely 4-ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-210) and 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4), was elucidated in addition to Δ 9 -tetrahydrocannabinol (THC). After intravenous administration of the compounds, hourly collected pig urine was analyzed by liquid chromatography-high resolution mass spectrometry. The following pathways were observed: for JWH-210, hydroxylation at the ethyl side chain or pentyl chain and combinations of them followed by glucuronidation; for RCS-4, hydroxylation at the methoxyphenyl moiety or pentyl chain followed by glucuronidation as well as O-demethylation followed by glucuronidation or sulfation; for THC, THC glucuronidation, 11-hydroxylation, followed by carboxylation and glucuronidation. For both SCs, parent compounds could not be detected in urine in contrast to THC. These results were consistent with those obtained from human hepatocyte and/or human case studies. Urinary markers for the consumption of JWH-210 were the glucuronide of the N-hydroxypentyl metabolite (detectable for 3-4 h) and of RCS-4 the glucuronides of the N-hydroxypentyl, hydroxy-methoxyphenyl (detectable for at least 6 h), and the O-demethyl-hydroxy metabolites (detectable for 4 h). Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Development of the High Energy Linac Systems

    International Nuclear Information System (INIS)

    Cho, Yong Sub; Kwon, Hyeok Jung; Kim, Han Sung; Chung, Byung Chul; Jang, Ji Ho; Gao, Changgi; Li, Yingmin; Sun, An; Tang, Yazhe; Zhang, Lipoing; Hwang, Yong Seok

    2008-05-01

    The main purpose of this project is studying the extension plan of the proton engineering frontier project (PEFP) 100-MeV Linac. It includes three categories. One is studying operation plan of the PEFP linac and its extended accelerators, and developing a distribution system of 100-MeV proton beams with a laser striping. Other is designing superconducting RF (SRF) modules and fabricating and testing a copper cavity model. The other is designing a rapid cycling synchrotron (RCS). The operation scheme of the PEFP linac is related to the optimization in the operation of the 100-MeV linac, 200-MeV SRF, and RCS. We studied several operational method to increase the validity of the accelerators. The beam distribution system has two roles. One is supplying proton beams of 100 MeV to the user group. The laser stripping of the negative hydrogen atoms is used in this case. The other beams are directed to the next high energy accelerators. This study contributes to increase the availability of the proton beams. The SRF is one of candidates to extend the PEFP linac system. Since the accelerating gradient of the SRF is much higher than the normal conducting accelerator, a lot of institutes over the world are developing the SRF structure. Main purposes are designing an SRF module, fabricating and testing an copper model which has similar material properties as Nb of the usual SRF cavity material. The RCS is a synchrotron whose injector is the PEFP 100-MeV linac. Main purposes are determining the lattice structure, studying the fast and slow extraction system, simulating beam behavior in the designed synchrotron. The RCS will be used as the spallation neutron source and tools in the basic and applied science including medical application

  14. Analysis of a Natural Circulation in the Reactor Coolant System Following a High Pressure Severe Accident at APR1400

    International Nuclear Information System (INIS)

    Kim, Han Chul; Cho, Yong Jin; Park, Jae Hong; Cho, Song Won

    2011-01-01

    Under a high temperature and pressure condition during a severe accident, hot leg pipes or steam generator tubes could fail due to creep rupture following natural circulation in the Reactor Coolant System (RCS) unless depressurization of the system is performed at a proper time. Natural circulation in the RCS can be a multi-dimensional circulation in the reactor vessel, a partial loop circulation of two-phase flow from the core up to steam generators (SGs), or circulation in the total loop. It can delay the reactor vessel failure time by removing heat from the reactor core. This natural phenomenon can be hardly simulated with a single flow path model for the hot spots of the RCS, since it cannot deal with the counter-current flow. Thus it may estimate accident progression faster than reality, which may cause troubles for optimized implementation of severe accident management strategies. An earlier damage in the RCS other than the reactor pressure vessel may make subsequent behaviors of hydrogen or fission products in the containment quite different from the single reactor vessel failure. Therefore, a RCS model which treats natural circulation is needed to evaluate the RCS response and the safety depressurization strategy in a best-estimate way. The aim of this study is to develop a detailed model which allows natural circulation between the reactor vessel and steam generators through hot legs, based on the existing APR1400 RCS model. The station blackout sequence was selected to be the representative high-pressure scenario. Sensitivity study on the effect of node configuration of the upper plenum and addition of cross flow paths from the upper plenum to the hot legs were carried out. This model is described herein and representative calculation results are presented

  15. Review of nuclear power reactor coolant system leakage events and leak detection requirements

    International Nuclear Information System (INIS)

    Chokshi, N.C.; Srinivasan, M.; Kupperman, D.S.; Krishnaswamy, P.

    2005-01-01

    In response to the vessel head event at the Davis-Besse reactor, the U.S. Nuclear Regulatory Commission (NRC) formed a Lessons Learned Task Force (LLTF). Four action plans were formulated to respond to the recommendations of the LLTF. The action plans involved efforts on barrier integrity, stress corrosion cracking (SCC), operating experience, and inspection and program management. One part of the action plan on barrier integrity was an assessment to identify potential safety benefits from changes in requirements pertaining to leakage in the reactor coolant system (RCS). In this effort, experiments and models were reviewed to identify correlations between crack size, crack-tip-opening displacement (CTOD), and leak rate in the RCS. Sensitivity studies using the Seepage Quantification of Upsets In Reactor Tubes (SQUIRT) code were carried out to correlate crack parameters, such as crack size, with leak rate for various types of crack configurations in RCS components. A database that identifies the leakage source, leakage rate, and resulting actions from RCS leaks discovered in U.S. light water reactors was developed. Humidity monitoring systems for detecting leakage and acoustic emission crack monitoring systems for the detection of crack initiation and growth before a leak occurs were also considered. New approaches to the detection of a leak in the reactor head region by monitoring boric-acid aerosols were also considered. (authors)

  16. Raman lidar measurements of water vapor and aerosols during the atmospheric radiation measurement (ARM) remote clouds sensing (RCS) intensive observation period (IOP)

    Energy Technology Data Exchange (ETDEWEB)

    Melfi, S.H.; Starr, D.O`C.; Whiteman, D. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)] [and others

    1996-04-01

    The first Atmospheric Radiation Measurement (ARM) remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) site. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program.

  17. Aerodynamic Interactions of Propulsive Deceleration and Reaction Control System Jets on Mars-Entry Aeroshells

    Science.gov (United States)

    Alkandry, Hicham

    Future missions to Mars, including sample-return and human-exploration missions, may require alternative entry, descent, and landing technologies in order to perform pinpoint landing of heavy vehicles. Two such alternatives are propulsive deceleration (PD) and reaction control systems (RCS). PD can slow the vehicle during Mars atmospheric descent by directing thrusters into the incoming freestream. RCS can provide vehicle control and steering by inducing moments using thrusters on the hack of the entry capsule. The use of these PD and RCS jets, however, involves complex flow interactions that are still not well understood. The fluid interactions induced by PD and RCS jets for Mars-entry vehicles in hypersonic freestream conditions are investigated using computational fluid dynamics (CFD). The effects of central and peripheral PD configurations using both sonic and supersonic jets at various thrust conditions are examined in this dissertation. The RCS jet is directed either parallel or transverse to the freestream flow at different thrust conditions in order to examine the effects of the thruster orientation with respect to the center of gravity of the aeroshell. The physical accuracy of the computational method is also assessed by comparing the numerical results with available experimental data. The central PD configuration decreases the drag force acting on the entry capsule due to a shielding effect that prevents mass and momentum in the hypersonic freestream from reaching the aeroshell. The peripheral PD configuration also decreases the drag force by obstructing the flow around the aeroshell and creating low surface pressure regions downstream of the PD nozzles. The Mach number of the PD jets, however, does not have a significant effect on the induced fluid interactions. The reaction control system also alters the flowfield, surface, and aerodynamic properties of the aeroshell, while the jet orientation can have a significant effect on the control effectiveness

  18. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    BRIGGS, S.R.

    2000-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS.

  19. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    International Nuclear Information System (INIS)

    BRIGGS, S.R.

    2000-01-01

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS

  20. Non-Toxic Orbital Maneuvering System Engine Development

    Science.gov (United States)

    Green, Christopher; Claflin, Scott; Maeding, Chris; Butas, John

    1999-01-01

    Recent results using the Aestus engine operated with LOx/ethanol propellant are presented. An experimental program at Rocketdyne Propulsion and Power is underway to adapt this engine for the Boeing Reusable Space Systems Division non-toxic Orbital Maneuvering System/Reaction control System (OMS/RCS) system. Daimler-Chrysler Aerospace designed the Aestus as an nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) upper-stage engine for the Ariane 5. The non-toxic OMS/RCS system's preliminary design requires a LOx/ethanol (O2/C2H5OH) engine that operates with a mixture ratio of 1.8, a specific impulse of 323 seconds, and fits within the original OMS design envelope. This paper describes current efforts to meet these requirements including, investigating engine performance using LOx/ethanol, developing the en-ine system sizing package, and meeting the vehicle operation parameters. Data from hot-fire testing are also presented and discussed.

  1. Loss of residual heat removal system: Diablo Canyon, Unit 2, April 10, 1987

    International Nuclear Information System (INIS)

    1987-06-01

    This report presents the findings of an NRC Augmented Inspection Team (AIT) investigation into the circumstances associated with the loss of residual heat removal (RHR) system capability for a period of approximately one and one-half hours at the Diablo Canyon, Unit 2 reactor facility on April 10, 1987. This event occurred while the Diablo Canyon, Unit 2, a pressurized water reactor, was shutdown with the reactor coolant system (RCS) water level drained to approximately mid-level of the hot leg piping. The reactor containment building equipment hatch was removed at the time of the event, and plant personnel were in the process of removing the primary side manways to gain access into the steam generator channel head areas. Thus, two fission product barriers were breached throughout the event. The RCS temperature increased from approximately 87 0 F to bulk boiling conditions without RCS temperature indication available to the plant operators. The RCS was subsequently pressurized to approximately 7 to 10 psig. The NRC AIT members concluded that the Diablo Canyon, Unit 2 plant was, at the time of the event, in a condition not previously analyzed by the NRC staff. The AIT findings from this event appear significant and generic to other pressurized water reactor facilities licensed by the NRC

  2. Failure Modes and Effects Analysis (FMEA) of the Residual Heat Removal System

    International Nuclear Information System (INIS)

    Eggleston, F.T.

    1976-01-01

    The Residual Heat Removal System (RHRS) transfer heat from the Reactor Coolant System (RCS) to the reactor plant Component Cooling System (CCS) to reduce the temperature of the RCS at a controlled rate during the second part of normal plant cooldown and maintains the desired temperature until the plant is restarted. By the use of an analytic tool, the Failure Modes and Effects Analysis, it is shown that the RHRS, because of its redundant two train design, is able to accommodate any credible component single failure with the only effect being an extension in the required cooldown time, thus demonstrating the reliability of the RHRS to perform its intended function

  3. Reactor coolant system and containment aqueous chemistry

    International Nuclear Information System (INIS)

    Torgerson, D.F.

    1986-01-01

    Fission products released from fuel during reactor accidents can be subject to a variety of environments that will affect their ultimate behavior. In the reactor coolant system (RCS), for example, neutral or reducing steam conditions, radiation, and surfaces could all have an effect on fission product retention and chemistry. Furthermore, if water is encountered in the RCS, the high temperature aqueous chemistry of fission products must be assessed to determine the quantity and chemical form of fission products released to the containment building. In the containment building, aqueous chemistry will determine the longer-term release of volatile fission products to the containment atmosphere. Over the past few years, the principles of physical chemistry have been rigorously applied to the various chemical conditions described above. This paper reviews the current state of knowledge and discusses the future directions of chemistry research relating to the behavior of fission products in the RCS and containment

  4. AGING MANAGMENT OF REACTOR COOLANT SYSTEM MECHANICAL COMPONENTS FOR LICENSE RENEWAL

    International Nuclear Information System (INIS)

    SUBUDHI, M.; MORANTE, R.; LEE, A.D.

    2002-01-01

    The reactor coolant system (RCS) mechanical components that require an aging management review for license renewal include the primary loop piping and associated connections to other support systems, reactor vessel, reactor vessel internals, pressurizer. steam generators, reactor coolant pumps, and all other inter-connected piping, pipe fittings, valves, and bolting. All major RCS components are located inside the reactor building. Based on the evaluation findings of recently submitted license renewal applications for pressurized water reactors, this paper presents the plant programs and/or activities proposed by the applicants to manage the effects of aging. These programs and/or activities provide reasonable assurance that the intended function(s) of these mechanical components will be maintained for the period of extended operation. The license renewal application includes identification of RCS subcomponents that are within the scope of license renewal and are vulnerable to age-related degradation when exposed to environmental and operational conditions. determination of the effects of aging on their intended safety functions. and implementation of the aging management programs and/or activities including both current and new programs. Industry-wide operating experience, including generic communication by the NRC, is part of the aging management review for the RCS components. In addition, this paper discusses time-limited aging analyses associated with neutron embrittlement of the reactor vessel beltline region and thermal fatigue

  5. TMI-2 in-vessel hydraulic systems utilize high water and high boron content fluids

    International Nuclear Information System (INIS)

    Baston, V.F.; Hofstetter, K.J.; Hofman, L.A.; Gallagher, R.E.

    1987-01-01

    Choice of a hydraulic fluid for use in the Three Mile Island Unit 2 (TMI-2) reactor vessel defueling equipment required consideration of the following constraints for the hydraulic fluid given an accidental spill into the reactor coolant system (RCS). The TMI-2 RCS hydraulic fluid utilized in the hydraulic operations utilized a solution composition of 95 wt% water and 5 wt% of the above base fluid. The TMI-2 hydraulic system utilizes pressures up to 3500 psi. The selected hydraulic fluid has been in use since December 1986 with minimal operational difficulties

  6. Decommissioning Facility Characterization DB System

    International Nuclear Information System (INIS)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S.

    2010-01-01

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  7. Decommissioning Facility Characterization DB System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  8. Development of a 3D optical scanning-based automatic quality assurance system for proton range compensators

    International Nuclear Information System (INIS)

    Kim, MinKyu; Ju, Sang Gyu; Chung, Kwangzoo; Hong, Chae-Seon; Kim, Jinsung; Ahn, Sung Hwan; Jung, Sang Hoon; Han, Youngyih; Chung, Yoonsun; Cho, Sungkoo; Choi, Doo Ho; Kim, Jungkuk; Shin, Dongho

    2015-01-01

    Purpose: A new automatic quality assurance (AutoRCQA) system using a three-dimensional scanner (3DS) with system automation was developed to improve the accuracy and efficiency of the quality assurance (QA) procedure for proton range compensators (RCs). The system performance was evaluated for clinical implementation. Methods: The AutoRCQA system consists of a three-dimensional measurement system (3DMS) based on 3DS and in-house developed verification software (3DVS). To verify the geometrical accuracy, the planned RC data (PRC), calculated with the treatment planning system (TPS), were reconstructed and coregistered with the measured RC data (MRC) based on the beam isocenter. The PRC and MRC inner surfaces were compared with composite analysis (CA) using 3DVS, using the CA pass rate for quantitative analysis. To evaluate the detection accuracy of the system, the authors designed a fake PRC by artificially adding small cubic islands with side lengths of 1.5, 2.5, and 3.5 mm on the inner surface of the PRC and performed CA with the depth difference and distance-to-agreement tolerances of [1 mm, 1 mm], [2 mm, 2 mm], and [3 mm, 3 mm]. In addition, the authors performed clinical tests using seven RCs [computerized milling machine (CMM)-RCs] manufactured by CMM, which were designed for treating various disease sites. The systematic offsets of the seven CMM-RCs were evaluated through the automatic registration function of AutoRCQA. For comparison with conventional technique, the authors measured the thickness at three points in each of the seven CMM-RCs using a manual depth measurement device and calculated thickness difference based on the TPS data (TPS-manual measurement). These results were compared with data obtained from 3DVS. The geometrical accuracy of each CMM-RC inner surface was investigated using the TPS data by performing CA with the same criteria. The authors also measured the net processing time, including the scan and analysis time. Results: The Auto

  9. Distribution of Synthetic Cannabinoids JWH-210, RCS-4 and Δ 9-Tetrahydrocannabinol After Intravenous Administration to Pigs.

    Science.gov (United States)

    Schaefer, Nadine; Kettner, Mattias; Laschke, Matthias W; Schlote, Julia; Ewald, Andreas H; Menger, Michael D; Maurer, Hans H; Schmidt, Peter H

    2017-01-01

    Synthetic cannabinoids (SCs) have become an increasing issue in forensic toxicology. Controlled human studies evaluating pharmacokinetic data of SCs are lacking and only few animal studies have been published. Thus, an interpretation of analytical results found in intoxicated or poisoned individuals is difficult. Therefore, the distribution of two selected SCs, namely 4-ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-210) and 2-(4-methoxyphenyl)-1-(1- pentyl-indol-3-yl)methanone (RCS-4) as well as Δ9-tetrahydrocannabinol (THC) as reference were examined in pigs. Pigs (n = 6 per drug) received a single intravenous 200 μg/kg BW dose of JWH-210, RCS- 4, or THC. Six hours after administration, the animals were exsanguinated and relevant organs, important body fluids such as bile, and tissues such as muscle and adipose tissue, as well as the bradytrophic specimens dura and vitreous humor were collected. After hydrolysis and solid phase extraction, analysis was performed by LC-MS/MS. To overcome matrix effects of the LC-MS/MS analysis, a standard addition method was applied for quantification. The parent compounds could be detected in every analyzed specimen with the exception of THC that was not present in dura and vitreous humor. Moderate concentrations were present in brain, the site of biological effect. Metabolite concentrations were highest in tissues involved in metabolism and/or elimination Conclusions: Besides kidneys and lungs routinely analyzed in postmortem toxicology, brain, adipose, and muscle tissue could serve as alternative sources, particularly if other specimens are not available. Bile fluid is the most appropriate specimen for SCs and THC metabolites detection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Distribution of Synthetic Cannabinoids JWH-210, RCS-4 and ∆ 9-Tetrahydrocannabinol After Intravenous Administration to Pigs

    Science.gov (United States)

    Schaefer, Nadine; Kettner, Mattias; Laschke, Matthias W.; Schlote, Julia; Ewald, Andreas H.; Menger, Michael D.; Maurer, Hans H.; Schmidt, Peter H.

    2017-01-01

    Background: Synthetic cannabinoids (SCs) have become an increasing issue in forensic toxicology. Controlled human studies evaluating pharmacokinetic data of SCs are lacking and only few animal studies have been published. Thus, an interpretation of analytical results found in intoxicated or poisoned individuals is difficult. Therefore, the distribution of two selected SCs, namely 4-ethylnaphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-210) and 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) as well as ∆9-tetrahydrocannabinol (THC) as reference were examined in pigs. Methods: Pigs (n = 6 per drug) received a single intravenous 200 µg/kg BW dose of JWH-210, RCS-4, or THC. Six hours after administration, the animals were exsanguinated and relevant organs, important body fluids such as bile, and tissues such as muscle and adipose tissue, as well as the bradytrophic specimens dura and vitreous humor were collected. After hydrolysis and solid phase extraction, analysis was performed by LC-MS/MS. To overcome matrix effects of the LC-MS/MS analysis, a standard addition method was applied for quantification. Results: The parent compounds could be detected in every analyzed specimen with the exception of THC that was not present in dura and vitreous humor. Moderate concentrations were present in brain, the site of biological effect. Metabolite concentrations were highest in tissues involved in metabolism and/or elimination. Conclusions: Besides kidneys and lungs routinely analyzed in postmortem toxicology, brain, adipose, and muscle tissue could serve as alternative sources, particularly if other specimens are not available. Bile fluid is the most appropriate specimen for SCs and THC metabolites detection. PMID:27834143

  11. A dynamic model of the reactor coolant system flow for KMRR plant simulation

    International Nuclear Information System (INIS)

    Rhee, B.W.; Noh, T.W.; Park, C.; Sim, B.S.; Oh, S.K.

    1990-01-01

    To support computer simulation studies for reactor control system design and performance evaluation, a dynamic model of the reactor coolant system (RCS) and reflector cooling system has been developed. This model is composed of the reactor coolant loop momentum equation, RCS pump dynamic equation, RCS pump characteristic equation, and the energy equation for the coolant inside the various components and piping. The model is versatile enough to simulate the normal steady-state conditions as well as most of the anticipated flow transients without pipe rupture. This model has been successfully implemented as the plant simulation code KMRRSIM for the Korea Multi-purpose Research Reactor and is now under extensive validation testing. The initial stage of validation has been comparison of its result with that of already validated, more detailed reactor system transient codes such as RELAP5. The results, as compared to the predictions by RELAP5 simulation, have been generally found to be very encouraging and the model is judged to be accurate enough to fulfill its intended purpose. However, this model will continue to be validated against other plant's data and eventually will be assessed by test data from KMRR

  12. Low Level RF Control System of J-PARC Synchrotrons

    CERN Document Server

    Tamura, Fumihiko; Ezura, Eizi; Hara, Keigo; Nomura, Masahiro; Ohmori, Chihiro; Schnase, Alexander; Takagi, Akira; Yamamoto, Masanobu; Yoshii, Masahito

    2005-01-01

    We present the concept and the design of the low level RF (LLRF) control system of the J-PARC synchrotrons. The J-PARC synchrotrons are the rapid cycling 3-GeV synchrotron (RCS) and the 50-GeV main ring (MR) which require very precise and stable LLRF control systems to accelerate the ultra-high proton beam current. The LLRF system of the synchrotron is a full-digital system based on the direct digital synthesis (DDS). The functions of the system are (1) the multi-harmonic RF generation for the acceleration and the longitudinal bunch shaping, (2) the feedbacks for stabilizing the beam, (3) the feedforward for compensating the heavy beam loading, and (4) other miscellaneous functions such as the synchronization and chopper timing. The LLRF system of the RCS is now under construction. We present the details of the system. Also, we show preliminary results of performance tests of the control modules.

  13. Computer systems and software description for gas characterization system

    International Nuclear Information System (INIS)

    Vo, C.V.

    1997-01-01

    The Gas Characterization System Project was commissioned by TWRS management with funding from TWRS Safety, on December 1, 1994. The project objective is to establish an instrumentation system to measure flammable gas concentrations in the vapor space of selected watch list tanks, starting with tank AN-105 and AW-101. Data collected by this system is meant to support first tank characterization, then tank safety. System design is premised upon Characterization rather than mitigation, therefore redundancy is not required

  14. Determination of transverse phase-space and momentum error from size measurements along the 50-MeV H- RCS injection line

    International Nuclear Information System (INIS)

    Cho, Y.; Crosbie, E.A.; Takeda, H.

    1981-01-01

    The 50-MeV H - injection line for the RCS at Argonne National Laboratory has 16 quadrupole and eight bending magnets. Horizontal and vertical profiles can be obtained at 12 wire scanner positions. Size information from these profiles can be used to determine the three ellipses parameters in each plane required to describe the transverse phase space. These locations that have dispersion permit the momentum error to be used as a fourth fitting parameter. The assumed accuracy of the size measurements provides an error matrix that predicts the rms errors of the fitted parameters

  15. A model for calculation of RCS pressure during reflux boiling under reduced inventory conditions and its assessment against PKL data

    International Nuclear Information System (INIS)

    Palmrose, D.E.; Mandl, R.

    1991-01-01

    Based on the occurrence of a number of plant incidents during low power and shutdown operating conditions, the Nuclear Regulatory Commission (NRC) has initiated several programs to better quantify risk during these periods. One specific issue of interest is the loss of residual heat removal (RHR) under reduced coolant inventory conditions. This issue is also of interest in the Federal Republic of Germany and an experiment was performed in the integral PKL-3 experimental facility at Siemens-KWU to supply applicable data. Recently, an effort has been undertaken at the Idaho National Engineering Laboratory (INEL) to identify and analyze the important thermal-hydraulic phenomena in pressurized water reactors following loss of vital AC power and consequent loss of the RHR system during reduced inventory operation. The thermal-hydraulic response of a nuclear steam supply system (NSSS) with a closed reactor coolant system (RCS) to loss of residual heat removal cooling capability is investigated in this report. The specific processes investigated include: boiling of the coolant in the core and reflux condensation in the steam generators, the corresponding pressure increase in the reactor coolant system, the heat transfer mechanisms on the primary and secondary sides of the steam generators, the effects of air or other noncondensible gas on the heat transfer processes, and void fraction distributions on the primary side of the system. Mathematical models of these physical processes were developed and validated against experimental data from the PKL 3B 4.5 Experiment

  16. Chemical Characterization and Reactivity Testing of Fuel-Oxidizer Reaction Product (Test Report)

    Science.gov (United States)

    1996-01-01

    The product of incomplete reaction of monomethylhydrazine (MMH) and nitrogen tetroxide (NTO) propellants, or fuel-oxidizer reaction product (FORP), has been hypothesized as a contributory cause of an anomaly which occurred in the chamber pressure (PC) transducer tube on the Reaction Control Subsystem (RCS) aft thruster 467 on flight STS-51. A small hole was found in the titanium-alloy PC tube at the first bend below the pressure transducer. It was surmised that the hole may have been caused by heat and pressure resulting from ignition of FORP. The NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) was requested to define the chemical characteristics of FORP, characterize its reactivity, and simulate the events in a controlled environment which may have lead to the Pc-tube failure. Samples of FORP were obtained from the gas-phase reaction of MMH with NTO under laboratory conditions, the pulsed firings of RCS thrusters with modified PC tubes using varied oxidizer or fuel lead times, and the nominal RCS thruster firings at WSTF and Kaiser-Marquardt. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), accelerating rate calorimetry (ARC), ion chromatography (IC), inductively coupled plasma (ICP) spectrometry, thermogravimetric analysis (TGA) coupled to FTIR (TGA/FTIR), and mechanical impact testing were used to qualitatively and quantitatively characterize the chemical, thermal, and ignition properties of FORP. These studies showed that the composition of FORP is variable but falls within a limited range of compositions that depends on the fuel loxidizer ratio at the time of formation, composition of the post-formation atmosphere (reducing or oxidizing), and reaction or postreaction temperature. A typical composition contains methylhydrazinium nitrate (MMHN), ammonium nitrate (AN), methylammonium nitrate (MAN), and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. The thermal decomposition

  17. Project W-211, initial tank retrieval systems, description of operations for 241-AP-102 and 241-AP-104

    Energy Technology Data Exchange (ETDEWEB)

    RIECK, C.A.

    1999-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be used during qualification testing and acceptance testing to verify operability.

  18. Project W-211, initial tank retrieval systems, description of operations for 241-AP-102 and 241-AP-104

    International Nuclear Information System (INIS)

    RIECK, C.A.

    1999-01-01

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTS) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operations (DOO) defines the control philosophy for the waste retrieval system for tanks 241-AP-102 (AP-102) and 241-AP-104 (AP-104). This DOO will provide a basis for the detailed design of the Retrieval Control System (RCS) for AP-102 and AP-104 and establishes test criteria for the RCS. The test criteria will be used during qualification testing and acceptance testing to verify operability

  19. An evaluation of debris mobility within a PWR reactor coolant system during the recirculation mode

    International Nuclear Information System (INIS)

    Andreychek, T.S.

    1987-01-01

    To provide for the long-term cooling of the nuclear core of a Pressurized Water Rector (PWR) following a hypothetical Loss-of-Coolant Accidnet (LOCA), water is drawn from the containment sump and pumped into the reactor coolant system (RCS). It has been postulated that debris from the containment, such as dirt, sand, and paint from containment walls and in-containment equipment, could be carried into the containment sump due to the action of the RCS coolant that escapes from the breach in the piping and then flows to the sump. Once in the sump, this debris could be pumped into the Safety Injection System (SIS) and ultimately the RCS itself, causing the performance of the SIS to be degraded. Of particular interest is the potential for core blockage that may occur due to debris transport into the core region by the recirculating flow. This paper presents a method of evaluating the potential for debris from the sump to form core blockages under recirculating flow conditions following a hypothetical LOCA for a PWR

  20. Malignant mast cell tumor of the thymus in an Royal College of Surgeons (RCS) rat.

    Science.gov (United States)

    Terayama, Yui; Matsuura, Tetsuro; Ozaki, Kiyokazu

    2017-01-01

    A 152-week-old male Royal College of Surgeons (RCS) rat kept as a non-treated animal in a long-term animal study presented with a soft mass in the anterior mediastinum, which adhered to the pleura of the lung. Histopathologically, the mass mainly consisted of round to short spindle-shaped tumor cells that had infiltrated through the hyperplastic thymic tissue. The tumor cells were arranged in loose to dense sheets. Nuclei were moderate in size and round to spindle-shaped, with small nucleoli. Almost all tumor cells exhibited abundant eosinophilic cytoplasm, including eosinophilic granules of a range of sizes. The granules of tumor cells exhibited metachromasia with toluidine blue stain and were positive for c-kit and mast cell protease II. These findings indicate that the tumor described here represents a rare case of spontaneous malignant mast cell tumor with thymic epithelial hyperplasia.

  1. Development of radar cross section analysis system of naval ships

    Directory of Open Access Journals (Sweden)

    Kookhyun Kim

    2012-03-01

    Full Text Available A software system for a complex object scattering analysis, named SYSCOS, has been developed for a systematic radar cross section (RCS analysis and reduction design. The system is based on the high frequency analysis methods of physical optics, geometrical optics, and physical theory of diffraction, which are suitable for RCS analysis of electromagnetically large and complex targets as like naval ships. In addition, a direct scattering center analysis function has been included, which gives relatively simple and intuitive way to discriminate problem areas in design stage when comparing with conventional image-based approaches. In this paper, the theoretical background and the organization of the SYSCOS system are presented. To verify its accuracy and to demonstrate its applicability, numerical analyses for a square plate, a sphere and a cylinder, a weapon system and a virtual naval ship have been carried out, of which results have been compared with analytic solutions and those obtained by the other existing software.

  2. CSNS magnet system and prototypes fabrication

    International Nuclear Information System (INIS)

    Deng Changdong; Chen Fusan; Sun Xianjing; Chen Wan; Sun Yaolin; Shi Caitu

    2008-01-01

    The 1.6 GeV synchrotron of China Spallation Neutron Source (CSNS) project is a Rapid Cycling Synchrotron (RCS), which accelerates a high-intensity proton beam from 80 MeV to 1.6 GeV at a repetition rate of 25 Hz. The RCS magnet system consists of 24 dipole magnets (main dipoles), 48 quadrupole magnets (main quadrupoles), 16 sextupole magnets, some tune shift quadrupoles and corrector magnets. All the magnets are of large aperture for a high beam power of 0.1 MW, one design issue is the fringe field at pole end. And the main dipoles and main quadrupoles work at 25 Hz repetition rate, the eddy current is an additional issue. In this paper the magnet design of the two kinds of main magnets will be described. (authors)

  3. Design of the reactor coolant system and associated systems in nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2008-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. The basic requirements for the design of safety systems for nuclear power plants are established in the Safety Requirements publication, Safety Standards Series No. NS-R-1 on Safety of Nuclear Power Plants: Design, which it supplements. This Safety Guide describes how the requirements for the design of the reactor coolant system (RCS) and associated systems in nuclear power plants should be met. 1.2. This publication is a revision and combination of two previous Safety Guides, Safety Series No. 50-SG-D6 on Ultimate Heat Sink and Directly Associated Heat Transport Systems for Nuclear Power Plants (1981), and Safety Series No. 50-SG-D13 on Reactor Coolant and Associated Systems in Nuclear Power Plants (1986), which are superseded by this new Safety Guide. 1.3. The revision takes account of developments in the design of the RCS and associated systems in nuclear power plants since the earlier Safety Guides were published in 1981 and 1986, respectively. The other objectives of the revision are to ensure consistency with Ref., issued in 2000, and to update the technical content. In addition, an appendix on pressurized heavy water reactors (PHWRs) has been included

  4. The System 80+ Standard Plant design control document. Volume 17

    International Nuclear Information System (INIS)

    1997-01-01

    This Design Control Document (DCD) is a repository of information comprising the System 80+trademark Standard Plant Design. The DCD also provides that design-related information to be incorporated by reference in the design certification rule for the System 80+ Standard Plant Design. Applicants for a combined license pursuant to 10 CFR 52 must ensure that the final Design Certification Rule and the associated Statements of Consideration are used when making all licensing decisions relevant to the System 80+ Standard Plant Design. The Design Control Document contains the DCD introduction, The Certified Design Material (CDM) [i.e., ''Tier 1''] and the Approved Design Material (ADM) [i.e., ''Tier 2''] for the System 80+ Standard Plant Design. The CDM includes the following sections: (1) Introductory material; (2) Certified Design Material for System 80+ systems and structures; (3) Certified Design Material for non-system-based aspects of the System 80+ Certified design; (4) Interface requirements; and (5) Site parameters. The ADM, to the extent applicable for the System 80+ Standard Plant Design, includes: (1) the information required for the final safety analysis report under 20 CFR 50.34; (2) other relevant information required by 10 CFR 52.47; and (3) emergency operations guidelines. This volume contains parts 2-7 and appendix 15A for section 15 (Accident Analysis) of the ADM Design and Analysis. Topics covered in these parts are: decrease in heat removal; decrease in RCS flow rate; power distribution anomalies; increase in RCS inventory; decrease in RCS inventory; release of radioactive materials. The appendix covers radiological release models. Also contained here are five technical specifications for section 16 (Technical Specifications) of the ADM Design and Analysis. They are: TS 1.0 Use and Applications; TS 2.0 Safety Limits; TS 3.0 LCO Availability; TS 3.1 Reactivity Control; and TS 3.2 Power Distribution

  5. Determination of transverse phase-space and momentum error from size measurements along the 50-MeV H/sup -/ RCS injection line

    International Nuclear Information System (INIS)

    Cho, Y.; Crosbie, E.A.; Takeda, H.

    1981-01-01

    The 50-Mev H/sup -/ injection line for the RCS at Argonne National Laboratory has 16 quadrupole and eight bending magnets. Horizontal and vertical profiles can be obtained at 12 wire scanner positions. Size information from these profiles can be used to determine the three ellipses parameters in each plane required to describe the transverse phase space. Those locations that have dispersion permit the momentum error to be used as a fourth fitting parameter. The assumed accuracy of the size measurements provides an error matrix that predicts the rms errors of the fitted parameters. 3 refs

  6. Project W-211, initial tank retrieval systems, retrieval control system software configuration management plan

    International Nuclear Information System (INIS)

    RIECK, C.A.

    1999-01-01

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the W-211 Project, Retrieval Control System (RCS) software after initial approval/release but prior to the transfer of custody to the waste tank operations contractor. This plan applies to the W-211 system software developed by the project, consisting of the computer human-machine interface (HMI) and programmable logic controller (PLC) software source and executable code, for production use by the waste tank operations contractor. The plan encompasses that portion of the W-211 RCS software represented on project-specific AUTOCAD drawings that are released as part of the C1 definitive design package (these drawings are identified on the drawing list associated with each C-1 package), and the associated software code. Implementation of the plan is required for formal acceptance testing and production release. The software configuration management plan does not apply to reports and data generated by the software except where specifically identified. Control of information produced by the software once it has been transferred for operation is the responsibility of the receiving organization

  7. LEDA LLRF control system characterization

    International Nuclear Information System (INIS)

    Regan, A.H.; Balleyguier, P.; Ziomek, C.D.

    1998-01-01

    The Low Energy Demonstration Accelerator (LEDA) for the Accelerator for the Production of Tritium (APT) project will be built at Los Alamos National Laboratory. The low-level RF (LLRF) control system portion of this accelerator must perform many functions, of which the primary one is controlling the RF fields in the accelerating cavities. Plans have been made to provide for on-line characterization of the LLRF control system and the complete RF system through use of stimulus and response buffers, and a digital signal processor built into the field control system electronics. The purpose of this circuitry is to characterize the behavior of the entire RF system (klystron, waveguides, high power splitters, accelerator cavity, etc.). This characterization feature can be used to measure the performance of the closed loop system with respect to the open loop system, to provide an automated way to set loop parameters, to determine the cavity Q-curve, and to detect any abnormal behavior in the RF chain. The types of measurements include frequency and time-domain responses to given perturbations, amplitude modulations, etc. This paper will discuss types of algorithms that can be implemented and present a description and block diagram of the electronics to be used

  8. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1996-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate

  9. Simultaneous LC-MS/MS determination of JWH-210, RCS-4, ∆(9)-tetrahydrocannabinol, and their main metabolites in pig and human serum, whole blood, and urine for comparing pharmacokinetic data.

    Science.gov (United States)

    Schaefer, Nadine; Kettner, Mattias; Laschke, Matthias W; Schlote, Julia; Peters, Benjamin; Bregel, Dietmar; Menger, Michael D; Maurer, Hans H; Ewald, Andreas H; Schmidt, Peter H

    2015-05-01

    A series of new synthetic cannabinoids (SC) has been consumed without any toxicological testing. For example, pharmacokinetic data have to be collected from forensic toxicological case work and/or animal studies. To develop a corresponding model for assessing such data, samples of controlled pig studies with two selected SC (JWH-210, RCS-4) and, as reference, ∆(9)-tetrahydrocannabinol (THC) should be analyzed as well as those of human cases. Therefore, a method for determination of JWH-210, RCS-4, THC, and their main metabolites in pig and human serum, whole blood, and urine samples is presented. Specimens were analyzed by liquid-chromatography tandem mass spectrometry and multiple-reaction monitoring with three transitions per compound. Full validation was carried out for the pig specimens and cross-validation for the human specimens concerning precision and bias. For the pig studies, the limits of detection were between 0.05 and 0.50 ng/mL in serum and whole blood and between 0.05 and 1.0 ng/mL in urine, the lower limits of quantification between 0.25 and 1.0 ng/mL in serum and 0.50 and 2.0 ng/mL in whole blood and urine, and the intra- and interday precision values lower than 15% and bias values within ±15%. The applicability was tested with samples taken from a pharmacokinetic pilot study with pigs following intravenous administration of a mixture of 200 μg/kg body mass dose each of JWH-210, RCS-4, and THC. The cross-validation data for human serum, whole blood, and urine showed that this approach should also be suitable for human specimens, e.g., of clinical or forensic cases.

  10. Design of the reactor coolant system and associated systems in nuclear power plants. Safety guide (Spanish Edition)

    International Nuclear Information System (INIS)

    2010-01-01

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. The basic requirements for the design of safety systems for nuclear power plants are established in the Safety Requirements publication, Safety Standards Series No. NS-R-1 on Safety of Nuclear Power Plants: Design, which it supplements. This Safety Guide describes how the requirements for the design of the reactor coolant system (RCS) and associated systems in nuclear power plants should be met. This publication is a revision and combination of two previous Safety Guides, Safety Series No. 50-SG-D6 on Ultimate Heat Sink and Directly Associated Heat Transport Systems for Nuclear Power Plants (1982), and Safety Series No. 50-SG-D13 on Reactor Coolant and Associated Systems in Nuclear Power Plants (1987), which are superseded by this new Safety Guide. The revision takes account of developments in the design of the RCS and associated systems in nuclear power plants since the earlier Safety Guides were published in 1982 and 1987, respectively. The other objectives of the revision are to ensure consistency with Ref., issued in 2004, and to update the technical content. In addition, an appendix on pressurized heavy water reactors (PHWRs) has been included.

  11. Characterization analysis database system (CADS). A system overview

    International Nuclear Information System (INIS)

    1997-12-01

    The CADS database is a standardized, quality-assured, and configuration-controlled data management system developed to assist in the task of characterizing the DOE surplus HEU material. Characterization of the surplus HEU inventory includes identifying the specific material; gathering existing data about the inventory; defining the processing steps that may be necessary to prepare the material for transfer to a blending site; and, ultimately, developing a range of the preliminary cost estimates for those processing steps. Characterization focuses on producing commercial reactor fuel as the final step in material disposition. Based on the project analysis results, the final determination will be made as to the viability of the disposition path for each particular item of HEU. The purpose of this document is to provide an informational overview of the CADS database, its evolution, and its current capabilities. This document describes the purpose of CADS, the system requirements it fulfills, the database structure, and the operational guidelines of the system

  12. Gas characterization system software acceptance test procedure

    International Nuclear Information System (INIS)

    Vo, C.V.

    1996-01-01

    This document details the Software Acceptance Testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases

  13. Characterizing changes in the excitability of corticospinal projections to proximal muscles of the upper limb.

    Science.gov (United States)

    Carson, Richard G; Nelson, Barry D; Buick, Alison R; Carroll, Timothy J; Kennedy, Niamh C; Cann, Rachel Mac

    2013-09-01

    There has been an explosion of interest in methods of exogenous brain stimulation that induce changes in the excitability of human cerebral cortex. The expectation is that these methods may promote recovery of function following brain injury. To assess their effects on motor output, it is typical to assess the state of corticospinal projections from primary motor cortex to muscles of the hand, via electromyographic responses to transcranial magnetic stimulation. If a range of stimulation intensities is employed, the recruitment curves (RCs) obtained can, at least for intrinsic hand muscles, be fitted by a sigmoid function. To establish whether sigmoid fits provide a reliable basis upon which to characterize the input-output properties of the corticospinal pathway for muscles proximal to the hand, and to assess as an alternative the area under the (recruitment) curve (AURC). A comparison of the reliability of these measures, using RCs obtained for muscles that are frequently the targets of rehabilitation. The AURC is an extremely reliable measure of the state of corticospinal projections to hand and forearm muscles, which has both face and concurrent validity. Construct validity is demonstrated by detection of widely distributed (across muscles) changes in corticospinal excitability induced by paired associative stimulation (PAS). The parameters derived from sigmoid fits are unlikely to provide an adequate means to assess the effectiveness of therapeutic regimes. The AURC can be employed to characterize corticospinal projections to a range of muscles, and gauge the efficacy of longitudinal interventions in clinical rehabilitation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Gas characterization system software acceptance test report

    International Nuclear Information System (INIS)

    Vo, C.V.

    1996-01-01

    This document details the results of software acceptance testing of gas characterization systems. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases

  15. Simultaneous optical and meteor head echo measurements using the Middle Atmosphere Alomar Radar System (MAARSY): Data collection and preliminary analysis

    Science.gov (United States)

    Brown, P.; Stober, G.; Schult, C.; Krzeminski, Z.; Cooke, W.; Chau, J. L.

    2017-07-01

    The initial results of a two year simultaneous optical-radar meteor campaign are described. Analysis of 105 double-station optical meteors having plane of sky intersection angles greater than 5° and trail lengths in excess of 2 km also detected by the Middle Atmosphere Alomar Radar System (MAARSY) as head echoes was performed. These events show a median deviation in radiants between radar and optical determinations of 1.5°, with 1/3 of events having radiant agreement to less than one degree. MAARSY tends to record average speeds roughly 0.5 km/s and 1.3 km higher than optical records, in part due to the higher sensitivity of MAARSY as compared to the optical instruments. More than 98% of all head echoes are not detected with the optical system. Using this non-detection ratio and the known limiting sensitivity of the cameras, we estimate that the limiting meteoroid detection mass of MAARSY is in the 10-9-10-10 kg (astronomical limiting meteor magnitudes of +11 to +12) appropriate to speeds from 30 to 60 km/s. There is a clear trend of higher peak RCS for brighter meteors between 35 and -30 dBsm. For meteors with similar magnitudes, the MAARSY head echo radar cross-section is larger at higher speeds. Brighter meteors at fixed heights and similar speeds have consistently, on average, larger RCS values, in accordance with established scattering theory. However, our data show RCS ∝ v/2, much weaker than the normally assumed RCS ∝ v3, a consequence of our requiring head echoes to also be detectable optically. Most events show a smooth variation of RCS with height broadly following the light production behavior. A significant minority of meteors show large variations in RCS relative to the optical light curve over common height intervals, reflecting fragmentation or possibly differential ablation. No optically detected meteor occurring in the main radar beam and at times when the radar was collecting head echo data went unrecorded by MAARSY. Thus there does not

  16. A passive decay heat removal strategy of the integrated passive safety system (IPSS) for SBO combined with LOCA

    International Nuclear Information System (INIS)

    Kim, Sang Ho; Chang, Soon Heung; Choi, Yu Jung; Jeong, Yong Hoon

    2015-01-01

    Highlights: • A new PDHR strategy is proposed to cope with SBO-combined accidents. • The concept of integrated passive safety system (IPSS) is used in this strategy. • This strategy performs the functions of passive safety injection and SG gravity injection. • LOCAs in SBO are classified by the pressures in reactor coolant system for passive functions. • The strategy can be integrated with EOP and SAMG as a complementary strategy for ensuring safety. - Abstract: An integrated passive safety system (IPSS), to be achieved by the use of a large water tank placed at high elevation outside the containment, was proposed to achieve various passive functions. These include decay heat removal, safety injection, containment cooling, in-vessel retention through external reactor vessel cooling, and containment filtered venting. The purpose of the passive decay heat removal (PDHR) strategy using the IPSS is to cope with SBO and SBO-combined accidents under the assumption that existing engineered safety features have failed. In this paper, a PDHR strategy was developed based on the design and accident management strategy of Korean representative PWR, the OPR1000. The functions of a steam generator gravity injection and a passive safety injection system in the IPSS with safety depressurization systems were included in the PDHR strategy. Because the inadvertent opening of pressurizer valves and seal water leakage from RCPs could cause a loss of coolant in an SBO, LOCAs during a SBO were simulated to verify the performance of the strategy. The failure of active safety injection in LOCAs could also be covered by this strategy. Although LOCAs have generally been categorized according to their equivalent break diameters, the RCS pressure is used to classify the LOCAs during SBOs. The criteria values for categorization were determined from the proposed systems, which could maintain a reactor in a safe state by removing the decay heat for the SBO coping time of 8 h. The

  17. A passive decay heat removal strategy of the integrated passive safety system (IPSS) for SBO combined with LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Ho [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Chang, Soon Heung [Handong Global University, 558, Handong-ro, Buk-gu, Pohang Gyeongbuk 37554 (Korea, Republic of); Choi, Yu Jung [Korea Hydro and Nuclear Power Co.—Central Research Institute, 70, 1312-gil, Yuseong-daero, Yuseong-gu, Daejeon 34101 (Korea, Republic of); Jeong, Yong Hoon, E-mail: jeongyh@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of)

    2015-12-15

    Highlights: • A new PDHR strategy is proposed to cope with SBO-combined accidents. • The concept of integrated passive safety system (IPSS) is used in this strategy. • This strategy performs the functions of passive safety injection and SG gravity injection. • LOCAs in SBO are classified by the pressures in reactor coolant system for passive functions. • The strategy can be integrated with EOP and SAMG as a complementary strategy for ensuring safety. - Abstract: An integrated passive safety system (IPSS), to be achieved by the use of a large water tank placed at high elevation outside the containment, was proposed to achieve various passive functions. These include decay heat removal, safety injection, containment cooling, in-vessel retention through external reactor vessel cooling, and containment filtered venting. The purpose of the passive decay heat removal (PDHR) strategy using the IPSS is to cope with SBO and SBO-combined accidents under the assumption that existing engineered safety features have failed. In this paper, a PDHR strategy was developed based on the design and accident management strategy of Korean representative PWR, the OPR1000. The functions of a steam generator gravity injection and a passive safety injection system in the IPSS with safety depressurization systems were included in the PDHR strategy. Because the inadvertent opening of pressurizer valves and seal water leakage from RCPs could cause a loss of coolant in an SBO, LOCAs during a SBO were simulated to verify the performance of the strategy. The failure of active safety injection in LOCAs could also be covered by this strategy. Although LOCAs have generally been categorized according to their equivalent break diameters, the RCS pressure is used to classify the LOCAs during SBOs. The criteria values for categorization were determined from the proposed systems, which could maintain a reactor in a safe state by removing the decay heat for the SBO coping time of 8 h. The

  18. Event notification system with a PLC

    International Nuclear Information System (INIS)

    Kawase, M.; Yoshikawa, Hiroshi; Sakaki, Hironao; Takahashi, Hiroki; Sako, Hiroyuki; Kamiya, Junichiro; Takayanagi, Tomohiro

    2004-01-01

    When an interlock occurs in the equipment, it is required to notify the upper rank control system of the Interlock and receive information for apparatus information in the upper rank control system as at high speed as possible. In the apparatus using FA-M3, it can respond to this by using the notice function of an event. This report shows the event notification system with a PLC based Kicker electromagnet power supply for 3GeV RCS. (author)

  19. Alumina Ceramics Vacuum Duct for the 3GeV-RCS of the J-PARC

    CERN Document Server

    Kinsho, Michikazu; Ogiwara, Norio; Saito, Yoshio

    2005-01-01

    It was success to develop alumina ceramics vacuum ducts for the 3GeV-RCS of J-PARC at JAERI. There are two types of alumina ceramics vacuum ducts needed, one being 1.5m-long duct with a circular cross section for use in the quadrupole magnet, the other being 3.5m-long and bending 15 degrees, with a race-track cross section for use in the dipole magnet. These ducts could be manufactured by joining several duct segments of 0.5-0.8 m in length by brazing. The alumina ceramics ducts have copper stripes on the outside surface of the ducts to reduce the duct impedance. One of the ends of each stripe is connected to a titanium flange by way of a capacitor so to interrupt an eddy current circuit. The copper stripes are produced by an electroforming method in which a stripe pattern formed by Mo-Mn metallization is first sintered on the exterior surface and then overlaid by PR-electroformed copper (Periodic current Reversal electroforming method). In order to reduce emission of secondary electrons when protons or elect...

  20. A Mobile Automated Characterization System (MACS) for indoor floor characterization

    International Nuclear Information System (INIS)

    Richardson, B.S.; Haley, D.C.; Dudar, A.M.; Ward, C.R.

    1995-01-01

    The Savannah River Technology Center (SRTC) and Oak Ridge National Laboratory are developing an advanced Mobile Automated Characterization System (MACS) to characterize indoor contaminated floors. MACS is based upon Semi-Intelligent Mobile Observing Navigator (SIMON), an earlier floor characterization system developed at SRTC. MACS will feature enhanced navigation systems, operator interface, and an interface to simplify integration of additional sensors. The enhanced navigation system will provide the capability to survey large open areas much more accurately than is now possible with SIMON, which is better suited for hallways and corridors that provide the means for recalibrating position and heading. MACS operator interface is designed to facilitate MACS's use as a tool for health physicists, thus eliminating the need for additional training in the robot's control language. Initial implementation of MACS will use radiation detectors. Additional sensors, such as PCB sensors currently being developed, will be integrated on MACS in the future. Initial use of MACS will be focused toward obtaining comparative results with manual methods. Surveys will be conducted both manually and with MACS to compare relative costs and data quality. While clear cost benefits anticipated, data quality benefits should be even more significant

  1. Human Umbilical Cord Mesenchymal Stem Cells: Subpopulations and Their Difference in Cell Biology and Effects on Retinal Degeneration in RCS Rats.

    Science.gov (United States)

    Wang, L; Li, P; Tian, Y; Li, Z; Lian, C; Ou, Q; Jin, C; Gao, F; Xu, J-Y; Wang, J; Wang, F; Zhang, J; Zhang, J; Li, W; Tian, H; Lu, L; Xu, G-T

    2017-01-01

    Human umbilical cord mesenchymal stem cells (hUC-MSCs) are potential candidates for treating retinal degeneration (RD). To further study the biology and therapeutic effects of the hUC-MSCs on retinal degeneration. Two hUC-MSC subpopulations, termed hUC-MSC1 and hUC-MSC2, were isolated by single-cell cloning method and their therapeutic functions were compared in RCS rat, a RD model. Although both subsets satisfied the basic requirements for hUC-MSCs, they were significantly different in morphology, proliferation rate, differentiation capacity, phenotype and gene expression. Furthermore, only the smaller, fibroblast-like, faster growing subset hUC-MSC1 displayed stronger colony forming potential as well as adipogenic and osteogenic differentiation capacities. When the two subsets were respectively transplanted into the subretinal spaces of RCS rats, both subsets survived, but only hUC-MSC1 expressed RPE cell markers Bestrophin and RPE65. More importantly, hUC-MSC1 showed stronger rescue effect on the retinal function as indicated by the higher b-wave amplitude on ERG examination, thicker retinal nuclear layer, and decreased apoptotic photoreceptors. When both subsets were treated with interleukin-6, mimicking the inflammatory environment when the cells were transplanted into the eyes with degenerated retina, hUC-MSC1 expressed much higher levels of trophic factors in comparison with hUC-MSC2. The data here, in addition to prove the heterogeneity of hUC-MSCs, confirmed that the stronger therapeutic effects of hUC-MSC1 were attributed to its stronger anti-apoptotic effect, paracrine of trophic factors and potential RPE cell differentiation capacity. Thus, the subset hUC-MSC1, not the other subset or the ungrouped hUC-MSCs should be used for effective treatment of RD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Advanced Development of a Compact 5-15 lbf Lox/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System

    Science.gov (United States)

    Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.

    2011-01-01

    This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.

  3. 76 FR 40937 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Science.gov (United States)

    2011-07-12

    ... define a new time limit for restoring inoperable reactor coolant system (RCS) leakage detection... [Pressurized-Water Reactor] PWR Operability Requirements and Actions for RCS Leakage Instrumentation''. Basis... proposed change clarifies the operability requirements for the RCS leakage detection instrumentation and...

  4. 76 FR 189 - Notice of Availability of the Models for Plant-Specific Adoption of Technical Specifications Task...

    Science.gov (United States)

    2011-01-03

    ... [pressurized water reactor] Operability Requirements and Actions for RCS [reactor coolant system] Leakage... Specifications (STS) to define a new time limit for restoring inoperable RCS leakage detection instrumentation to... operability of the RCS leakage detection instrumentation. The CLIIP model SE will facilitate expedited...

  5. 75 FR 18907 - Notice of Opportunity for Public Comment on the Proposed Model Safety Evaluation for Plant...

    Science.gov (United States)

    2010-04-13

    ... water reactor] Operability Requirements and Actions for RCS [reactor coolant system] Leakage... Specifications (STS) to define a new time limit for restoring inoperable RCS leakage detection instrumentation to... contents of the facility design bases related to the operability of the RCS leakage detection...

  6. 76 FR 21917 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses Involving No...

    Science.gov (United States)

    2011-04-19

    ... define a new time limit for restoring inoperable reactor coolant system (RCS) leakage detection... PWR [pressurized- water reactor] Operability Requirements and Actions for RCS Leakage Instrumentation... requirements for the RCS leakage detection instrumentation and reduces the time allowed for the plant to...

  7. 75 FR 79048 - Notice of Availability of the Models for Plant-Specific Adoption of Technical Specifications Task...

    Science.gov (United States)

    2010-12-17

    ... [boiling water reactor] Operability Requirements and Actions for RCS [reactor coolant system] Leakage... Specifications (STS) to define a new time limit for restoring inoperable RCS leakage detection instrumentation to... operability of the RCS leakage detection instrumentation. The CLIIP model SE will facilitate expedited...

  8. Airborne and Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS)

    Science.gov (United States)

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-421 Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) As of FY 2017...Information Program Name Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) DoD Component Army Responsible Office References SAR...UNCLASSIFIED 5 Mission and Description Airborne & Maritime/Fixed Station Joint Tactical Radio System (AMF JTRS) products are software programmable

  9. Tank waste remediation system characterization project quality policies. Revision 1

    International Nuclear Information System (INIS)

    Trimble, D.J.

    1995-01-01

    These Quality Policies (QPs) describe the Quality Management System of the Tank Waste Characterization Project (hereafter referred to as the Characterization Project), Tank Waste Remediation System (TWRS), Westinghouse Hanford Company (WHC). The Quality Policies and quality requirements described herein are binding on all Characterization Project organizations. To achieve quality, the Characterization Project management team shall implement this Characterization Project Quality Management System

  10. Closeup of STS-26 Discovery, OV-103, orbital maneuvering system (OMS) leak

    Science.gov (United States)

    1988-01-01

    Closeup of STS-26 Discovery, Orbiter Vehicle (OV) 103, orbital maneuvering system (OMS) reaction control system (RCS) nitrogen tetroxide gas leak was captured by a Cobra borescope and displayed on a video monitor. The borescope has a miniature videocamera at the end of a flexible rubber tube and is able to be maneuvered into other inaccessible locations.

  11. Application case study of AP1000 automatic depressurization system (ADS) for reliability evaluation by GO-FLOW methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Muhammad, E-mail: hashimsajid@yahoo.com; Hidekazu, Yoshikawa, E-mail: yosikawa@kib.biglobe.ne.jp; Takeshi, Matsuoka, E-mail: mats@cc.utsunomiya-u.ac.jp; Ming, Yang, E-mail: myang.heu@gmail.com

    2014-10-15

    Highlights: • Discussion on reasons why AP1000 equipped with ADS system comparatively to PWR. • Clarification of full and partial depressurization of reactor coolant system by ADS system. • Application case study of four stages ADS system for reliability evaluation in LBLOCA. • GO-FLOW tool is capable to evaluate dynamic reliability of passive safety systems. • Calculated ADS reliability result significantly increased dynamic reliability of PXS. - Abstract: AP1000 nuclear power plant (NPP) utilized passive means for the safety systems to ensure its safety in events of transient or severe accidents. One of the unique safety systems of AP1000 to be compared with conventional PWR is the “four stages Automatic Depressurization System (ADS)”, and ADS system originally works as an active safety system. In the present study, authors first discussed the reasons of why four stages ADS system is added in AP1000 plant to be compared with conventional PWR in the aspect of reliability. And then explained the full and partial depressurization of RCS system by four stages ADS in events of transient and loss of coolant accidents (LOCAs). Lastly, the application case study of four stages ADS system of AP1000 has been conducted in the aspect of reliability evaluation of ADS system under postulated conditions of full RCS depressurization during large break loss of a coolant accident (LBLOCA) in one of the RCS cold legs. In this case study, the reliability evaluation is made by GO-FLOW methodology to determinate the influence of ADS system in dynamic reliability of passive core cooling system (PXS) of AP1000, i.e. what will happen if ADS system fails or successfully actuate. The GO-FLOW is success-oriented reliability analysis tool and is capable to evaluating the systems reliability/unavailability alternatively to Fault Tree Analysis (FTA) and Event Tree Analysis (ETA) tools. Under these specific conditions of LBLOCA, the GO-FLOW calculated reliability results indicated

  12. Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission

    Science.gov (United States)

    Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew

    2017-01-01

    An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.

  13. Three dimensional characterization and archiving system

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian, R.L.; Clark, R.; Gallman, P. [Coleman Research Corp., Springfield, VA (United States)] [and others

    1995-10-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.

  14. Survival and Functionality of hESC-Derived Retinal Pigment Epithelium Cells Cultured as a Monolayer on Polymer Substrates Transplanted in RCS Rats.

    Science.gov (United States)

    Thomas, Biju B; Zhu, Danhong; Zhang, Li; Thomas, Padmaja B; Hu, Yuntao; Nazari, Hossein; Stefanini, Francisco; Falabella, Paulo; Clegg, Dennis O; Hinton, David R; Humayun, Mark S

    2016-05-01

    To determine the safety, survival, and functionality of human embryonic stem cell-derived RPE (hESC-RPE) cells seeded on a polymeric substrate (rCPCB-RPE1 implant) and implanted into the subretinal (SR) space of Royal College of Surgeons (RCS) rats. Monolayers of hESC-RPE cells cultured on parylene membrane were transplanted into the SR space of 4-week-old RCS rats. Group 1 (n = 46) received vitronectin-coated parylene membrane without cells (rMSPM+VN), group 2 (n = 59) received rCPCB-RPE1 implants, and group 3 (n = 13) served as the control group. Animals that are selected based on optical coherence tomography screening were subjected to visual function assays using optokinetic (OKN) testing and superior colliculus (SC) electrophysiology. At approximately 25 weeks of age (21 weeks after surgery), the eyes were examined histologically for cell survival, phagocytosis, and local toxicity. Eighty-seven percent of the rCPCB-RPE1-implanted animals showed hESC-RPE survivability. Significant numbers of outer nuclear layer cells were rescued in both group 1 (rMSPM+VN) and group 2 (rCPCB-RPE1) animals. A significantly higher ratio of rod photoreceptor cells to cone photoreceptor cells was found in the rCPCB-RPE1-implanted group. Animals with rCPCB-RPE1 implant showed hESC-RPE cells containing rhodopsin-positive particles in immunohistochemistry, suggesting phagocytic function. Superior colliculus mapping data demonstrated that a significantly higher number of SC sites responded to light stimulus at a lower luminance threshold level in the rCPCB-RPE1-implanted group. Optokinetic data suggested both implantation groups showed improved visual acuity. These results demonstrate the safety, survival, and functionality of the hESC-RPE monolayer transplantation in an RPE dysfunction rat model.

  15. Preliminary characterization of abandoned septic tank systems. Volume 1

    International Nuclear Information System (INIS)

    1995-12-01

    This report documents the activities and findings of the Phase I Preliminary Characterization of Abandoned Septic Tank Systems. The purpose of the preliminary characterization activity was to investigate the Tiger Team abandoned septic systems (tanks and associated leachfields) for the purpose of identifying waste streams for closure at a later date. The work performed was not to fully characterize or remediate the sites. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. A total of 20 sites were investigated for the preliminary characterization of identified abandoned septic systems. Of the 20 sites, 19 were located and characterized through samples collected from each tank(s) and, where applicable, associated leachfields. The abandoned septic tank systems are located in Areas 5, 12, 15, 25, and 26 on the Nevada Test Site

  16. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Sebastian, R.L.; Clark, R.; Gallman, P.

    1995-01-01

    The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D ampersand D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D ampersand D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations

  17. Resolving the problem of compliance with the ever increasing and changing regulations

    International Nuclear Information System (INIS)

    Leigh, H.

    1991-09-01

    The most common problem identified at several US Department of Energy (DOE) sites is regulatory compliance. Simply, the project viability depends on identifying regulatory requirements at the beginning of a specific project to avoid possible delays and cost overruns. The Radioisotope Power Systems Facility (RPSF) is using the Regulatory Compliance System (RCS) to deal with the problem that well over 1000 regulatory documents had to reviewed for possible compliance requirements applicable to the facility. This overwhelming number of possible documents is not atypical of all DOE facilities thus far reviewed using the RCS system. The RCS was developed to provide control and tracking of all the regulatory and institutional requirements on a given project. WASTREN, Inc., developed the RCS through various DOE contracts and continues to enhance and update the system for existing and new contracts. The RCS provides the information to allow the technical expert to assimilate and manage accurate resource information, compile the necessary checklists, and document that the project or facility fulfills all of the appropriate regulatory requirements. The RCS provides on-line information, including status throughout the project life, thereby allowing more intelligent and proactive decision making. Also, consistency and traceability are provided for regulatory compliance documentation. 1 ref., 1 fig

  18. Insights into factors contributing to the observability of a submarine at periscope depth by modern radar, Part 2: EM simulation of mast RCS in a realistic sea surface environment

    CSIR Research Space (South Africa)

    Smit, JC

    2012-09-01

    Full Text Available IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cape Town 2-7 September 2012 Insights into factors contributing to the observability of a submarine at periscope depth by modern radar, Part 2: EM... simulation of mast RCS in a realistic sea surface environment Smit JC; Cilliers JE CSIR, Defence, Peace, Safety and Security. PO Box 395, Pretoria, 0001 Abstract Recently, a set of high resolution radar measurements were undertaken in South...

  19. Radar Cross Section measurements on the stealth metamaterial objects

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Fan, Kim; Strikwerda, Andrew C.

    have been realized in the form of thin, flexible metallized films of polyimide [1]. Here we apply a near-unity absorbing MM as a way to reduce the radar cross section of an object, and consider the real-life situation where the probe beam is significantly larger than the MM film and the object under...... investigation. We use a terahertz radar cross section (RCS) setup [2] for the characterization of the RCS of a real object covered with an absorbing MM film designed for high absorption in the THz frequency range, specifically at 0.8 THz. The results are in a form of 2D maps (sinograms), from which the RCS...

  20. Effects of pathological conditions on ocular pharmacokinetics of antimicrobial drugs.

    Science.gov (United States)

    Ueda, Kayoko; Ohtori, Akira; Tojo, Kakuji

    2010-10-01

    A diffusion model of ocular pharmacokinetics was used to estimate the effects of pathological conditions on ocular pharmacokinetics. In vivo rabbit data after topical instillation of ciprofloxacin and ofloxacin were compared with the simulated concentrations in the aqueous and vitreous humors. The barrier capacity of the surrounding membranes such as the retina/choroid/sclera (RCS) membrane and the cornea was characterized by dimensionless Sherwood number derived by the pseudo-steady state approach (PSSA). We assumed the barrier capacity decreased by inflammation; when the barrier capacity of the RCS membrane and the cornea was assumed to be one-tenth for the RCS membrane and a half for the cornea respectively, the in vivo data agreed with the simulated profile without contradiction. The drug concentration gradient simulated in the vitreous body near the RCS membrane was more significant in the inflamed eyes than in the normal eyes, suggesting that the elimination of the drugs from the RCS membrane was enhanced by inflammation. The present diffusion model can better describe the ocular pharmacokinetics in both normal and diseased conditions.

  1. Status and understanding of groundwater quality in the Bear Valley and Lake Arrowhead Watershed Study Unit, 2010: California GAMA Priority Basin Project

    Science.gov (United States)

    Mathany, Timothy; Burton, Carmen

    2017-06-20

    Groundwater quality in the 112-square-mile Bear Valley and Lake Arrowhead Watershed (BEAR) study unit was investigated as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit comprises two study areas (Bear Valley and Lake Arrowhead Watershed) in southern California in San Bernardino County. The GAMA-PBP is conducted by the California State Water Resources Control Board (SWRCB) in cooperation with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory.The GAMA BEAR study was designed to provide a spatially balanced, robust assessment of the quality of untreated (raw) groundwater from the primary aquifer systems in the two study areas of the BEAR study unit. The assessment is based on water-quality collected by the USGS from 38 sites (27 grid and 11 understanding) during 2010 and on water-quality data from the SWRCB-Division of Drinking Water (DDW) database. The primary aquifer system is defined by springs and the perforation intervals of wells listed in the SWRCB-DDW water-quality database for the BEAR study unit.This study included two types of assessments: (1) a status assessment, which characterized the status of the quality of the groundwater resource as of 2010 by using data from samples analyzed for volatile organic compounds, pesticides, and naturally present inorganic constituents, such as major ions and trace elements, and (2) an understanding assessment, which evaluated the natural and human factors potentially affecting the groundwater quality. The assessments were intended to characterize the quality of groundwater resources in the primary aquifer system of the BEAR study unit, not the treated drinking water delivered to consumers. Bear Valley study area and the Lake Arrowhead Watershed study area were also compared statistically on the basis of water-quality results and factors potentially affecting the groundwater quality.Relative concentrations (RCs

  2. Availability analysis of the AP600 passive core cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Syarip, M [National Atomic Energy Research Agency, Yogyakarta (Indonesia); Subki, I R [BATAN Head Office, Jakarta (Indonesia); Canton, M H [Westinghouse Electric Corp. (United States)

    1996-12-01

    The reliability analysis of the AP600 Passive Core Cooling System (PXS) has been done. The fault tree analysis method was used for the quantitative analysis. The PXS can be grouped to several sub-systems i.e.: Reactor Coolant System (RCS) Injection Subsystem, Emergency Core Decay Heat Removal Subsystem, and Containment Sump pH Control Subsystem. The quantitative analysis results indicates that the system unavailability is highly dependent on the valves configuration of the Automatic Depressurization System (ADS). If the ADS valves is arranged in Option-1, the system unavailability is 2.347E-03, this means that the yearly contribution to plant down time can be estimated to be about 20.56 hours per year. Whereas, by using Option-2 of fourth stage ADS valves, the system unavailability is reduced to be 9.877E-04 or 8.65 hours per year and this value is consistent with the allocated goal value (8.0 hours per year). The ADS contributes 66.89% to the system unavailability if it is arranged in Option-1, and will reduced to be about 21.21% if its fourth stages are arranged in Option-2. If the ADS is not included as a subsystem of the PXS (relocate to RCS as a subsystem of RCS), then the PXS unavailability will be reduced to about 7.784E-04 or 6.82 hours per year; this is less then the allocated goal value. The major contributors to the system unavailability are mostly dominated by Stage-4 ADS valves (air piston operated valves and squib valves), inservice testing valves of ADS (solenoid operated valves), solenoid valves of Nitrogen Supply to Accumulator, and Passive Residual Heat Removal actuation valves (air operated valves). It is recommended that those valves be analyzed more detail to gain the improvement in its reliability. It is also recommended that the fourth stage of ADS valves should be arranged according to Option-2, i.e. one 10-inch normally open motor operated gate valve in series with one 10-inch normally closed squib valve. (author). 13 refs, 3 figs, 3 tabs.

  3. Heparanase expression in periapical granulomas and radicular cysts.

    Science.gov (United States)

    Elad, S; Sherman, Y; Palmon, A; Vlodavsky, I; Or, R

    2013-01-01

    Heparanase is an endo-β-D-glucuronidase enzyme which degrades heparan sulfate glycosaminoglycan side chains of proteoglycans in the extracellular matrix and in basement membranes. The aim of this study was to evaluate the expression of heparanase in periapical granulomas (PGs) and radicular cysts (RCs). Immunohistochemistry was used to assess heparanase expression in PGs and RCs. Parameters including stain intensity, location and cell type were used to characterize heparanase expression in the periapical lesions. Ordered categories (from weak to strong) were used to compare the level of heparanase staining in the PG and RC groups. Both epithelial cells and inflammatory cells were positive for heparanase. The relative staining of the epithelial cells was strong, whereas the relative staining of the inflammatory cells was weak. Significant differences in immunohistochemical staining of epithelial cells were observed between RCs and PGs (p = 0.002). The relative expression of heparanase in epithelial cells in RCs was strong. In PGs, lesions with few or no epithelial cells, heparanase was predominantly expressed weakly by inflammatory cells. PGs and RCs have the same infectious origin. Therefore, the different cellular sources of heparanase in these periapical lesions may imply that this enzyme has specific pathogenetic functions in RCs and PGs.

  4. Effects on RCS of a perfect electromagnetic conductor sphere in the presence of anisotropic plasma layer

    Science.gov (United States)

    Ghaffar, A.; Hussan, M. M.; Illahi, A.; Alkanhal, Majeed A. S.; Ur Rehman, Sajjad; Naz, M. Y.

    2018-01-01

    Effects on RCS of perfect electromagnetic conductor (PEMC) sphere by coating with anisotropic plasma layer are studied in this paper. The incident, scattered and transmitted electromagnetic fields are expanded in term of spherical vector wave functions using extended classical theory of scattering. Co and cross-polarized scattered field coefficients are obtained at the interface of free space-anisotropic plasma and at anisotropic plasma-PEMC sphere core by scattering matrices method. The presented analytical expressions are general for any perfect conducting sphere (PMC, PEC, or PEMC) with general anisotropic/isotropic material coatings that include plasma and metamaterials. The behavior of the forward and backscattered radar cross section of PEMC sphere with the variation of the magnetic field strength, incident frequency, plasma density, and effective collision frequency for the co-polarized and the cross polarized fields are investigated. It is also observed from the obtained results that anisotropic layer on PEMC sphere shows reciprocal behavior as compared to isotopic plasma layer on PEMC sphere. The comparisons of the numerical results of the presented analytical expressions with available results of some special cases show the correctness of the analysis.

  5. Chronic intravitreous infusion of ciliary neurotrophic factor modulates electrical retinal stimulation thresholds in the RCS rat.

    Science.gov (United States)

    Kent, Tiffany L; Glybina, Inna V; Abrams, Gary W; Iezzi, Raymond

    2008-01-01

    To determine whether the sustained intravitreous delivery of CNTF modulates cortical response thresholds to electrical retinal stimulation in the RCS rat model of retinal degeneration. Animals were assigned to four groups: untreated, nonsurgical control and infusion groups of 10 ng/d CNTF, 1 ng/d CNTF, and PBS vehicle control. Thresholds for electrically evoked cortical potentials (EECPs) were recorded in response to transcorneal electrical stimulation of the retina at p30 and again at p60, after a three-week infusion. As the retina degenerated over time, EECP thresholds in response to electrical retinal stimulation increased. Eyes treated with 10 ng/d CNTF demonstrated significantly greater retinal sensitivity to electrical stimulation when compared with all other groups. In addition, eyes treated with 1 ng/d CNTF demonstrated significantly greater retinal sensitivity than both PBS-treated and untreated control groups. Retinal sensitivity to electrical stimulation was preserved in animals treated with chronic intravitreous infusion of CNTF. These data suggest that CNTF-mediated retinal neuroprotection may be a novel therapy that can lower stimulus thresholds in patients about to undergo retinal prosthesis implantation. Furthermore, it may maintain the long-term efficacy of these devices in patients.

  6. Space Based Infrared System High (SBIRS High)

    Science.gov (United States)

    2015-12-01

    elements (five SMGTs) for the S2E2 Mobile Ground System. ​ SBIRS Block Buy (GEO 5-6) The GEO 5-6 Tech Refresh (TR) Engineering Change Proposal was...Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-210 Space Based Infrared System High ( SBIRS High) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 23, 2016 11:24:26 UNCLASSIFIED SBIRS High December 2015 SAR March 23, 2016 11:24:26

  7. Full reactor coolant system chemical decontamination qualification programs

    Energy Technology Data Exchange (ETDEWEB)

    Miller, P.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-03-01

    Corrosion and wear products are found throughout the reactor coolant system (RCS), or primary loop, of a PWR power plant. These products circulate with the primary coolant through the reactor where they may become activated. An oxide layer including these activated products forms on the surfaces of the RCS (including the fuel elements). The amount of radioactivity deposited on the different surface varies and depends primarily on the corrosion rate of the materials concerned, the amount of cobalt in the coolant and the chemistry of the coolant. The oxide layer, commonly called crud, on the surfaces of nuclear plant systems leads to personnel radiation exposure. The level of the radiation fields from the crud increases with time from initial plant startup and typically levels off after 4 to 6 cycles of plant operation. Thereafter, significant personnel radiation exposure may be incurred whenever major maintenance is performed. Personnel exposure is highest during refueling outages when routine maintenance on major plant components, such as steam generators and reactor coolant pumps, is performed. Administrative controls are established at nuclear plants to minimize the exposure incurred by an individual and the plant workers as a whole.

  8. Development of technique for estimating primary cooling system break diameter in predicting nuclear emergency event sequence

    International Nuclear Information System (INIS)

    Tatebe, Yasumasa; Yoshida, Yoshitaka

    2012-01-01

    If an emergency event occurs in a nuclear power plant, appropriate action is selected and taken in accordance with the plant status, which changes from time to time, in order to prevent escalation and mitigate the event consequences. It is thus important to predict the event sequence and identify the plant behavior resulting from the action taken. In predicting the event sequence during a loss-of-coolant accident (LOCA), it is necessary to estimate break diameter. The conventional method for this estimation is time-consuming, since it involves multiple sensitivity analyses to determine the break diameter that is consistent with the plant behavior. To speed up the process of predicting the nuclear emergency event sequence, a new break diameter estimation technique that is applicable to pressurized water reactors was developed in this study. This technique enables the estimation of break diameter using the plant data sent from the safety parameter display system (SPDS), with focus on the depressurization rate in the reactor cooling system (RCS) during LOCA. The results of LOCA analysis, performed by varying the break diameter using the MAAP4 and RELAP5/MOD3.2 codes, confirmed that the RCS depressurization rate could be expressed by the log linear function of break diameter, except in the case of a small leak, in which RCS depressurization is affected by the coolant charging system and the high-pressure injection system. A correlation equation for break diameter estimation was developed from this function and tested for accuracy. Testing verified that the correlation equation could estimate break diameter accurately within an error of approximately 16%, even if the leak increases gradually, changing the plant status. (author)

  9. Small pipe characterization system (SPCS) conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.O.; Ferrante, T.A.; McKay, M.D.

    1995-01-01

    Throughout the Department of Energy (DOE) complex there are many facilities that have been identified for Decontamination and Decommissioning (D&D). As processes are terminated or brought off-line, facilities are placed on the inactive list, and facility managers and site contractors are required to assure a safe and reliable decommissioning and transition of these facilities to a clean final state. Decommissioning of facilities requires extensive reliable characterization, decontamination and in some cases dismantlement. Characterization of piping systems throughout the DOE complex is becoming more and more necessary. In addition to decommissioning activities, characterization activities are performed as part of surveillance and maintenance (S&M). Because of the extent of contamination, all inactive facilities require some type of S&M. These S&M activities include visual assessment, equipment and material accounting, and maintenance. The majority of the inactive facilities have piping systems 3 inches or smaller that are inaccessible because they are contaminated, imbedded in concrete, or run through hot cells. Many of these piping systems have been inactive for a number of years and there exists no current system condition information or the historical records are poor and/or missing altogether. Many of these piping systems are placed on the contaminated list, not because of known contamination, but because of the risk of internal contamination. Many of the piping systems placed on the contamination list may not have internal contamination. Because there is a potential however, they are treated as such. The cost of D&D can be greatly reduced by identifying and removing hot spot contamination, leaving clean piping to be removed using conventional methods. Accurate characterization of these piping systems is essential before, during and after all D&D activities.

  10. Small pipe characterization system (SPCS) conceptual design

    International Nuclear Information System (INIS)

    Anderson, M.O.; Ferrante, T.A.; McKay, M.D.

    1995-01-01

    Throughout the Department of Energy (DOE) complex there are many facilities that have been identified for Decontamination and Decommissioning (D ampersand D). As processes are terminated or brought off-line, facilities are placed on the inactive list, and facility managers and site contractors are required to assure a safe and reliable decommissioning and transition of these facilities to a clean final state. Decommissioning of facilities requires extensive reliable characterization, decontamination and in some cases dismantlement. Characterization of piping systems throughout the DOE complex is becoming more and more necessary. In addition to decommissioning activities, characterization activities are performed as part of surveillance and maintenance (S ampersand M). Because of the extent of contamination, all inactive facilities require some type of S ampersand M. These S ampersand M activities include visual assessment, equipment and material accounting, and maintenance. The majority of the inactive facilities have piping systems 3 inches or smaller that are inaccessible because they are contaminated, imbedded in concrete, or run through hot cells. Many of these piping systems have been inactive for a number of years and there exists no current system condition information or the historical records are poor and/or missing altogether. Many of these piping systems are placed on the contaminated list, not because of known contamination, but because of the risk of internal contamination. Many of the piping systems placed on the contamination list may not have internal contamination. Because there is a potential however, they are treated as such. The cost of D ampersand D can be greatly reduced by identifying and removing hot spot contamination, leaving clean piping to be removed using conventional methods. Accurate characterization of these piping systems is essential before, during and after all D ampersand D activities

  11. Numerical Analysis of Loss of Residual Heal Removal System (RHRS) during Mid-Loop Operation for Hanul NPP Units 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sook Kwan; Park, Seong Gyu; Han, Sang Koo [ACT Co., Daejeon (Korea, Republic of)

    2016-10-15

    As a part of supporting LPSD (Low Power and Shutdown) PSA (Probabilistic Safety Assessment) of Hanul NPP units 1 and 2, numerical analysis for a loss of RHRS (Residual Heat Removal system) during midloop operation was performed using RELAP5/MOD3.3 code. The one of main purpose of thermal hydraulic analysis for PSA work is to estimate times allowable for operation actions in each accident. A loss of RHRS during mid-loop operation may cause more significant results than during RCS full condition due to reduced RCS inventory. In order to perform this kind of analysis, it is particularly important to establish a steady state of mid-loop operational initial condition. Mid-loop operation corresponds to POS(Plant Operational State) 5 and 11 in the category of LPSD PSA at Hanul NPP units 1 and 2. RELAP5/MOD3.3 code was used to predict behaviors of RCS and fuels for the case of loss of RHRS during mid-loop operation at Hanul NPP units 1 and 2. The initial state of mid-loop operational condition was established by proper control of charging and letdown flow. Considering existing similar analysis results for this kind of accident, it can be concluded that RELAP5 code well predicts reasonably the behavior of RCS for loss of RHRS during mid-loop operation in Hanul NPP units 1 and 2. Thus the method developed in the analysis can be applied reasonably to support LPSD PSA.

  12. Resonant cyclotron scattering in pulsar magnetospheres and its application to isolated neutron stars

    International Nuclear Information System (INIS)

    Tong Hao; Peng Qiuhe; Xu, Ren-Xin; Song Liming

    2010-01-01

    Resonant cyclotron scattering (RCS) in pulsar magnetospheres is considered. The photon diffusion equation (Kompaneets equation) for RCS is derived. The photon system is modeled three dimensionally. Numerical calculations show that there exist not only up scattering but also down scattering of RCS, depending on the parameter space. RCS's possible applications to spectral energy distributions of magnetar candidates and radio quiet isolated neutron stars (INSs) are pointed out. The optical/UV excess of INSs may be caused by the down scattering of RCS. The calculations for RX J1856.5-3754 and RX J0720.4-3125 are presented and compared with their observational data. In our model, the INSs are proposed to be normal neutron stars, although the quark star hypothesis is still possible. The low pulsation amplitude of INSs is a natural consequence in the RCS model. (letters)

  13. Safety Research Experiment Facility Project. Conceptual design report. Volume VII. Reactor cooling

    International Nuclear Information System (INIS)

    1975-12-01

    The Reactor Cooling System (RCS) will provide the required cooling during test operations of the Safety Research Experiment Facility (SAREF) reactor. The RCS transfers the reactor energy generated in the core to a closed-loop water storage system located completely inside the reactor containment building. After the reactor core has cooled to a safe level, the stored heat is rejected through intermediate heat exchangers to a common forced-draft evaporative cooling tower. The RCS is comprised of three independent cooling loops of which any two can remove sufficient heat from the core to prevent structural damage to the system components

  14. Return momentum effect on reactor coolant water level distribution during mid-loop conditions

    International Nuclear Information System (INIS)

    Seo, Jae Kwang; Yang, Jae Young; Park, Goon Cherl

    2001-01-01

    An accurate prediction of the Reactor Coolant System( RCS) water level is of importance in the determination of the allowable operating range to ensure safety during mid-loop operations. However, complex hydrualic phenomena induced by the Shutdown Cooling System (SCS) return momentum causes different water levels from those in the loop where the water level indicators are located. This was apparently observed at the pre-core cold hydro test of the Younggwang Nuclear Unit 3 (YGN 3) in Korea. In this study, in order to analytically understand the effect of the SCS return momentum on the RCS water level distribution, a model using a one-dimensional momentum and energy conservation for cylindrical channel, hydraulic jump in operating cold leg, water level build-up at the Reactor Vessel (RV) inlet nozzle, Bernoulli constant in downcomer region, and total water volume conservation has been developed. The model predicts the RCS water levels at various RCS locations during the mid-loop conditions and the calculation results were compared with the test data. The analysis shows that the hydraulic jump in the operating cold legs, in conjuction with the pressure drop throughout the RCS, is the main cause creating the water level differences at various RCS locations. The prediction results provide good explanations for the test data and show the significant effect of the SCS return momentum on the RCS water levels

  15. Gas characterization system operation, maintenance, and calibration plan

    International Nuclear Information System (INIS)

    Tate, D.D.

    1996-01-01

    This document details the responsibilities and requirements for operation, maintenance, and calibration of the Gas Characterization Systems (GCS) analytical instrumentation. It further, defines the division of responsibility between the Characterization Monitoring Development organization and Tank Farms Operations

  16. Minimally invasive three-dimensional site characterization system

    International Nuclear Information System (INIS)

    Steedman, D.; Seusy, F.E.; Gibbons, J.; Bratton, J.L.

    1993-09-01

    This paper presents an improved for hazardous site characterization. The major components of the systems are: (1) an enhanced cone penetrometer test, (2) surface geophysical surveys and (3) a field database and visualization code. The objective of the effort was to develop a method of combining geophysical data with cone penetrometer data in the field to produce a synergistic effect. Various aspects of the method were tested at three sites. The results from each site are discussed and the data compared. This method allows the data to be interpreted more fully with greater certainty, is faster, cheaper and leads to a more accurate site characterization. Utilizing the cone penetrometer test rather than the standard drilling, sampling and laboratory testing reduces the workers exposure to hazardous materials and minimizes the hazardous material disposal problems. The technologies employed in this effort are, for the most part, state-of-the-art procedures. The approach of using data from various measurement systems to develop a synergistic effect was a unique contribution to environmental site characterization. The use of the cone penetrometer for providing ''ground truth'' data and as a platform for subsurface sensors in environmental site characterization represents a significant advancement in environmental site characterization

  17. Design of the reactor coolant system and associated systems in nuclear power plants. Safety guide (Spanish Edition); Diseno del sistema de refrigeracion del reactor y los sistemas asociados en las centrales nucleares. Guia de seguridad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    This Safety Guide was prepared under the IAEA programme for establishing safety standards for nuclear power plants. The basic requirements for the design of safety systems for nuclear power plants are established in the Safety Requirements publication, Safety Standards Series No. NS-R-1 on Safety of Nuclear Power Plants: Design, which it supplements. This Safety Guide describes how the requirements for the design of the reactor coolant system (RCS) and associated systems in nuclear power plants should be met. This publication is a revision and combination of two previous Safety Guides, Safety Series No. 50-SG-D6 on Ultimate Heat Sink and Directly Associated Heat Transport Systems for Nuclear Power Plants (1982), and Safety Series No. 50-SG-D13 on Reactor Coolant and Associated Systems in Nuclear Power Plants (1987), which are superseded by this new Safety Guide. The revision takes account of developments in the design of the RCS and associated systems in nuclear power plants since the earlier Safety Guides were published in 1982 and 1987, respectively. The other objectives of the revision are to ensure consistency with Ref., issued in 2004, and to update the technical content. In addition, an appendix on pressurized heavy water reactors (PHWRs) has been included.

  18. Plant Phenotype Characterization System

    Energy Technology Data Exchange (ETDEWEB)

    Daniel W McDonald; Ronald B Michaels

    2005-09-09

    This report is the final scientific report for the DOE Inventions and Innovations Project: Plant Phenotype Characterization System, DE-FG36-04GO14334. The period of performance was September 30, 2004 through July 15, 2005. The project objective is to demonstrate the viability of a new scientific instrument concept for the study of plant root systems. The root systems of plants are thought to be important in plant yield and thus important to DOE goals in renewable energy sources. The scientific study and understanding of plant root systems is hampered by the difficulty in observing root activity and the inadequacy of existing root study instrumentation options. We have demonstrated a high throughput, non-invasive, high resolution technique for visualizing plant root systems in-situ. Our approach is based upon low-energy x-ray radiography and the use of containers and substrates (artificial soil) which are virtually transparent to x-rays. The system allows us to germinate and grow plant specimens in our containers and substrates and to generate x-ray images of the developing root system over time. The same plant can be imaged at different times in its development. The system can be used for root studies in plant physiology, plant morphology, plant breeding, plant functional genomics and plant genotype screening.

  19. Monostatic Radar Cross Section Estimation of Missile Shaped Object Using Physical Optics Method

    Science.gov (United States)

    Sasi Bhushana Rao, G.; Nambari, Swathi; Kota, Srikanth; Ranga Rao, K. S.

    2017-08-01

    Stealth Technology manages many signatures for a target in which most radar systems use radar cross section (RCS) for discriminating targets and classifying them with regard to Stealth. During a war target’s RCS has to be very small to make target invisible to enemy radar. In this study, Radar Cross Section of perfectly conducting objects like cylinder, truncated cone (frustum) and circular flat plate is estimated with respect to parameters like size, frequency and aspect angle. Due to the difficulties in exactly predicting the RCS, approximate methods become the alternative. Majority of approximate methods are valid in optical region and where optical region has its own strengths and weaknesses. Therefore, the analysis given in this study is purely based on far field monostatic RCS measurements in the optical region. Computation is done using Physical Optics (PO) method for determining RCS of simple models. In this study not only the RCS of simple models but also missile shaped and rocket shaped models obtained from the cascaded objects with backscatter has been computed using Matlab simulation. Rectangular plots are obtained for RCS in dbsm versus aspect angle for simple and missile shaped objects using Matlab simulation. Treatment of RCS, in this study is based on Narrow Band.

  20. Bioinspired sensory systems for local flow characterization

    Science.gov (United States)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  1. Characterizing Water Quenching Systems with a Quench Probe

    Science.gov (United States)

    Ferguson, B. Lynn; Li, Zhichao; Freborg, Andrew M.

    2014-12-01

    Quench probes have been used effectively to characterize the quality of quenchants for many years. For this purpose, a variety of commercial probes, as well as the necessary data acquisition system for determining the time-temperature data for a set of standardized test conditions, are available for purchase. The type of information obtained from such probes provides a good basis for comparing media, characterizing general cooling capabilities, and checking media condition over time. However, these data do not adequately characterize the actual production quenching process in terms of heat transfer behavior in many cases, especially when high temperature gradients are present. Faced with the need to characterize water quenching practices, including conventional and intensive practices, a quench probe was developed. This paper describes that probe, the data collection system, the data gathered for both intensive quenching and conventional water quenching, and the heat transfer coefficients determined for these processes. Process sensitivities are investigated and highlight some intricacies of quenching.

  2. AeroMACS system characterization and demonstrations

    Science.gov (United States)

    Kerczewski, R. J.; Apaza, R. D.; Dimond, R. P.

    This The Aeronautical Mobile Airport Communications System (AeroMACS) is being developed to provide a new broadband wireless communications capability for safety critical communications in the airport surface domain, providing connectivity to aircraft and other ground vehicles as well as connections between other critical airport fixed assets. AeroMACS development has progressed from requirements definition through technology definition, prototype deployment and testing, and now into national and international standards development. The first prototype AeroMACS system has been deployed at the Cleveland Hopkins International Airport (CLE) and the adjacent NASA Glenn Research Center (GRC). During the past three years, extensive technical testing has taken place to characterize the performance of the AeroMACS prototype and provide technical support for the standards development process. The testing has characterized AeroMACS link and network performance over a variety of conditions for both fixed and mobile data transmission and has included basic system performance testing and fixed and mobile applications testing. This paper provides a summary of the AeroMACS performance testing and the status of standardization activities that the testing supports.

  3. Optical Assembly and Characterization System for Nano-Photonics Research

    Science.gov (United States)

    2016-03-01

    freedoms) 3 (3) Carried out initial research work related to semiconductor membrane transfer printing. Based on the customer designed PDMS stamp...for optical characterization and membrane printing/assembly. The system has the following features: Micro-precision alignment with integrated 50 nm...a FL300-12 Automated Alignment System was acquired from Ficontec (USA) Corporation for optical characterization and membrane printing/assembly. The

  4. Community characterization of heterogeneous complex systems

    International Nuclear Information System (INIS)

    Tumminello, Michele; Miccichè, Salvatore; Lillo, Fabrizio; Mantegna, Rosario N; Varho, Jan; Piilo, Jyrki

    2011-01-01

    We introduce an analytical statistical method for characterizing the communities detected in heterogeneous complex systems. By proposing a suitable null hypothesis, our method makes use of the hypergeometric distribution to assess the probability that a given property is over-expressed in the elements of a community with respect to all the elements of the investigated set. We apply our method to two specific complex networks, namely a network of world movies and a network of physics preprints. The characterization of the elements and of the communities is done in terms of languages and countries for the movie network and of journals and subject categories for papers. We find that our method is able to characterize clearly the communities identified. Moreover our method works well both for large and for small communities

  5. Research on fault diagnosis with SDG method for nuclear power plant

    International Nuclear Information System (INIS)

    Liu Yongkuo; Liu Zhen; Wu Xiaotian

    2014-01-01

    Abstract: The diagnosis of the operational state of a nuclear power plant (NPP) plays an important role for the safety and reliability of NPP operation. In this paper, the qualitative method for fault diagnosis based on signed directed graph (SDG) was applied in a complex NPP system because the mathematical model of NPP is difficult to be built. The reactor coolant system (RCS) was taken as the diagnostic object, and the approach of building SDG model was presented and the SDG model of the RCS was built. Based on the SDG model, a fault diagnosis system of RCS was developed, and the steam generator tube rupture (SGTR) and rod ejection accidents were taken as example to analyze the process of diagnosis inference. The simulation results show that the method based on SDG can effectively diagnose the fault in RCS, and it can also provide good explanation for the fault propagation paths. Therefore, this method can help operators to make correct decisions. (authors)

  6. Wind Turbine Radar Cross Section

    Directory of Open Access Journals (Sweden)

    David Jenn

    2012-01-01

    Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.

  7. MICRO AUTO GASIFICATION SYSTEM: EMISSIONS CHARACTERIZATION

    Science.gov (United States)

    A compact, CONEX-housed waste to energy unit, Micro Auto Gasification System (MAGS), was characterized for air emissions from burning of military waste types. The MAGS unit is a dual chamber gasifier with a secondary diesel-fired combustor. Eight tests were conducted with multipl...

  8. Molecular characterization of the thioredoxin system from Methanosarcina acetivorans

    OpenAIRE

    McCarver, Addison C.; Lessner, Daniel J.

    2014-01-01

    The thioredoxin system, composed of thioredoxin reductase (TrxR) and thioredoxin (Trx), is widely distributed in nature, where it serves key roles in electron transfer and in defense against oxidative stress. Although recent evidence reveals Trx homologues are almost universally present among the methane-producing archaea (methanogens), a complete thioredoxin system has not been characterized from any methanogen. We examined the phylogeny of Trx homologues among methanogens and characterized ...

  9. Tests, measurements, and characterization of electro-optic devices and systems

    International Nuclear Information System (INIS)

    Wadekar, S.G.

    1989-01-01

    This book contains the proceedings on tests, measurements and characterization of electro-optic devices and systems. Topics covered include: Measurement of spectral dynamics in single-quantum-well lasers, High power computer controlled laser diode characterization tester, and Laser diode characterization instrumentation

  10. Dual-harmonic auto voltage control for the rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    Fumihiko Tamura

    2008-07-01

    Full Text Available The dual-harmonic operation, in which the accelerating cavities are driven by the superposition of the fundamental and the second harmonic rf voltage, is useful for acceleration of the ultrahigh intensity proton beam in the rapid cycling synchrotron (RCS of Japan Proton Accelerator Research Complex (J-PARC. However, the precise and fast voltage control of the harmonics is necessary to realize the dual-harmonic acceleration. We developed the dual-harmonic auto voltage control system for the J-PARC RCS. We describe details of the design and the implementation. Various tests of the system are performed with the RCS rf system. Also, a preliminary beam test has been done. We report the test results.

  11. Imaging systems and materials characterization

    International Nuclear Information System (INIS)

    Murr, L.E.

    2009-01-01

    This paper provides a broad background for the historical development and modern applications of light optical metallography, scanning and transmission electron microscopy, field-ion microscopy and several forms of scanning probe microscopes. Numerous case examples illustrating especially synergistic applications of these imaging systems are provided to demonstrate materials characterization especially in the context of structure-property-performance issues which define materials science and engineering

  12. Primary circuit iodine model addition to IMPAIR-3

    Energy Technology Data Exchange (ETDEWEB)

    Osetek, D J; Louie, D L.Y. [Los Alamos Technical Associates, Inc., Albuquerque, NM (United States); Guntay, S; Cripps, R [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-12-01

    As part of a continuing effort to provide the U.S. Department of Energy (DOE) Advanced Reactor Severe Accident Program (ARSAP) with complete iodine analysis capability, a task was undertaken to expand the modeling of IMPAIR-3, an iodine chemistry code. The expanded code will enable the DOE to include detailed iodine behavior in the assessment of severe accident source terms used in the licensing of U.S. Advanced Light Water Reactors (ALWRs). IMPAIR-3 was developed at the Paul Scherrer Institute (PSI), Switzerland, and has been used by ARSAP for the past two years to analyze containment iodine chemistry for ALWR source term analyses. IMPAIR-3 is primarily a containment code but the iodine chemistry inside the primary circuit (the Reactor Coolant System or RCS) may influence the iodine species released into the the containment; therefore, a RCS iodine chemistry model must be implemented in IMPAIR-3 to ensure thorough source term analysis. The ARSAP source term team and the PSI IMPAIR-3 developers are working together to accomplish this task. This cooperation is divided into two phases. Phase I, taking place in 1996, involves developing a stand-alone RCS iodine chemistry program called IMPRCS (IMPAIR -Reactor Coolant System). This program models a number of the chemical and physical processes of iodine that are thought to be important at conditions of high temperature and pressure in the RCS. In Phase II, which is tentatively scheduled for 1997, IMPRCS will be implemented as a subroutine in IMPAIR-3. To ensure an efficient calculation, an interface/tracking system will be developed to control the use of the RCS model from the containment model. These two models will be interfaced in such a way that once the iodine is released from the RCS, it will no longer be tracked by the RCS model but will be tracked by the containment model. All RCS thermal-hydraulic parameters will be provided by other codes. (author) figs., tabs., refs.

  13. Release and transport of fission product cesium in the TMI-2 accident

    International Nuclear Information System (INIS)

    Lorenz, R.A.; Collins, J.L.

    1986-01-01

    Approximately 50% of the fission product cesium was released from the overheated UO 2 fuel in the TMI-2 accident. Steam that boiled away from a water pool in the bottom of the reactor vessel transported the released fission products throughout the reactor coolant system (RCS). Some fission products passed directly through a leaking valve with steam and water into the containment structure, but most deposited on dry surfaces inside of the RCS before being dissolved or resuspended when the RCS was refilled with water. A cesium transport model was developed that extended measured cesium in the RCS back to the first day of the accident. The model revealed that ∼62% of the released 137 Cs deposited on dry surfaces inside of the RCS before being slowly leached and transported out of the RCS in leaked or letdown water. The leach rates from the model agreed reasonably well with those measured in the laboratory. The chemical behavior of cesium in the TMI-2 accident agreed with that observed in fission product release tests at Oak Ridge National Laboratory (ORNL)

  14. Neurosurgery certification in member societies of the World Federation of Neurosurgical Societies: Asia.

    Science.gov (United States)

    Gasco, Jaime; Braun, Jonathan D; McCutcheon, Ian E; Black, Peter M

    2011-01-01

    To objectively compare the complexity and diversity of the certification process in neurological surgery in member societies of the World Federation of Neurosurgical Societies. This study centers in continental Asia. We provide here an analysis based on the responses provided to a 13-item survey. The data received were analyzed, and three Regional Complexity Scores (RCS) were designed. To compare national board experience, eligibility requirements for access to the certification process, and the obligatory nature of the examinations, an RCS-Organizational score was created (20 points maximum). To analyze the complexity of the examination, an RCS-Components score was designed (20 points maximum). The sum of both is presented in a Global RCS score. Only those countries that responded to the survey and presented nationwide homogeneity in the conduction of neurosurgery examinations could be included within the scoring system. In addition, a descriptive summary of the certification process per responding society is also provided. On the basis of the data provided by our RCS system, the highest global RCS was achieved by South Korea and Malaysia (21/40 points) followed by the joint examination of Singapore and Hong-Kong (FRCS-Ed) (20/40 points), Japan (17/40 points), the Philippines (15/40 points), and Taiwan (13 points). The experience from these leading countries should be of value to all countries within Asia. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Best estimate analysis of the thermal expansion scenario during shutdown in a PWR

    International Nuclear Information System (INIS)

    Macian, R.; Nechvatal, L.

    2001-01-01

    In this paper we examine the consequences following the hypothetical failure of the Residual Heat Removal (RHR) system during the shutdown operating mode in a Pressurized Water Reactor (PWR). If the RHR system decay heat removal capability cannot be ensured, then the decay heat released in the core will heat up the Reactor Coolant System (RCS) inventory and will cause it to expand. If the thermal expansion is such that the entire RCS becomes ''water-solid'', that is, completely filled with water, then further expansion will result in a rapid increase of the RCS pressure. Such a situation could threaten the integrity of the RCS pressure boundary and lead to a dangerous break in the primary system or in the lines of the systems connected to it, e.g. RHR system. The pressure increase can be arrested by the opening of the pressurizer relief valves (PORVs) or, in those PWRs in which the RHR system is not isolated after it fails, by the opening of the pressure relief valve in the RHR system line. The purpose of the analyses presented in this paper is to determine whether mitigating measures, such as the opening of only one of the PORV and the RHR relief valve, are capable of preventing a fast pressure increase. (author)

  16. Fiber-optic system for dual-modality imaging of glucose probes 18F-FDG and 6-NBDG in atherosclerotic plaques.

    Directory of Open Access Journals (Sweden)

    Raiyan T Zaman

    Full Text Available Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD-the leading cause of death in the United States. Thus, the ultimate goal of this research is to advance our understanding of human CAD by improving the characterization of metabolically active vulnerable plaques within the coronary arteries using a novel catheter-based imaging system. The aims of this study include (1 developing a novel fiber-optic imaging system with a scintillator to detect both 18F and fluorescent glucose probes, and (2 validating the system on ex vivo murine plaques.A novel design implements a flexible fiber-optic catheter consisting of both a radio-luminescence and a fluorescence imaging system to detect radionuclide 18F-fluorodeoxyglucose (18F-FDG and the fluorescent analog 6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-ylamino-6-Deoxyglucose (6-NBDG, respectively. Murine macrophage-rich atherosclerotic carotid plaques were imaged ex vivo after intravenous delivery of 18F-FDG or 6-NBDG. Confirmatory optical imaging by IVIS-200 and autoradiography were also performed.Our fiber-optic imaging system successfully visualized both 18F-FDG and 6-NBDG probes in atherosclerotic plaques. For 18F-FDG, the ligated left carotid arteries (LCs exhibited 4.9-fold higher radioluminescence signal intensity compared to the non-ligated right carotid arteries (RCs (2.6 × 10(4 ± 1.4 × 10(3 vs. 5.4 × 10(3 ± 1.3 × 10(3 A.U., P = 0.008. Similarly, for 6-NBDG, the ligated LCs emitted 4.3-fold brighter fluorescent signals than the control RCs (1.6 × 10(2 ± 2.7 × 10(1 vs. 3.8 × 10(1 ± 5.9 A.U., P = 0.002. The higher uptake of both 18F-FDG and 6-NBDG in ligated LCs were confirmed with the IVIS-200 system. Autoradiography further verified the higher uptake of 18F-FDG by the LCs.This novel fiber-optic imaging system was sensitive to both radionuclide and fluorescent glucose probes taken up by murine atherosclerotic plaques. In addition, 6-NBDG is a

  17. Tank waste remediation system characterization project quality policies

    International Nuclear Information System (INIS)

    Board, D.C.

    1997-01-01

    This quality plan describes the system used by Characterization Project management to achieve quality. This plan is comprised of eleven quality policies which, when taken together, form a management system deployed to achieve quality. This quality management system is based on the customer's quality requirements known as the 'RULE', 10 CFR 830.120, Quality Assurance

  18. Portable system to luminaries characterization

    Science.gov (United States)

    Tecpoyotl-Torres, M.; Vera-Dimas, J. G.; Koshevaya, S.; Escobedo-Alatorre, J.; Cisneros-Villalobos, L.; Sanchez-Mondragon, J.

    2014-09-01

    For illumination sources designers is important to know the illumination distribution of their products. They can use several viewers of IES files (standard file format determined by Illuminating Engineering Society). This files are necessary not only know the distribution of illumination, but also to plain the construction of buildings by means of specialized softwares, such as Autodesk Revit. In this paper, a complete portable system for luminaries' characterization is given. The components of the systems are: Irradiance profile meter, which can generate photometry of luminaries of small sizes which covers indoor illumination requirements and luminaries for general areas. One of the meteŕs attributes is given by the color sensor implemented, which allows knowing the color temperature of luminary under analysis. The Graphic Unit Interface (GUI) has several characteristics: It can control the meter, acquires the data obtained by the sensor and graphs them in 2D under Cartesian and polar formats or 3D, in Cartesian format. The graph can be exported to png, jpg, or bmp formats, if necessary. These remarkable characteristics differentiate this GUI. This proposal can be considered as a viable option for enterprises of illumination design and manufacturing, due to the relatively low investment level and considering the complete illumination characterization provided.

  19. A system for the characterization of the HAWC PMTs sensitivity

    Science.gov (United States)

    Langarica, R.; Lara, G.; Martinez, L. A.; Tinoco, S.; Alfaro, R.; Iriarte, A.; Sandoval, A.; Vanegas, P.

    2012-07-01

    The HAWC Project is a very high-energy gamma-ray observatory under construction at the Sierra Negra volcano (4100 meters above sea level) in the Pico de Orizaba National Park located in central Mexico. HAWC will reuse the 900 Hamamatsu R5912 photomultipliers (PMTs) from Milagro Observatory for the 300 Water Cherenkov Detectors. In order to characterize their present performance it is necessary to scan the active area of the photocathode by measuring its efficiency and gain. A characterization system was designed and manufactured to achieve an automated measurement of over 100 points distributed on the PMT active spherical surface. Preliminary results show the variation of QE of PMTs with respect of the position of incoming photons, as well as the changes in the PMTs response due to the Earth's magnetic field and gain vs. high voltage. The system allows automated PMT characterization improving its performance, reliability, precision and repeatability. In this work we present the characterization system and preliminary results on the PMT efficiency.

  20. Elastic Composite, Reinforced Lightweight Concrete as a Type of Resilient Composite Systems

    OpenAIRE

    Esmaeili, Kamyar

    2015-01-01

    . A kind of "Elastic Composite, Reinforced Lightweight Concrete (ECRLC)" with the mentioned specifics is a type of "Resilient Composite Systems (RCS)" in which, contrary to the basic geometrical assumption of flexure theory in Solid Mechanics, "the strain changes in the beam height during bending" is typically "Non-linear". . Through employing this integrated structure, with significant high strain capability and modulus of resilience in bending, we could constructively achieve high bearing c...

  1. Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques.

    Science.gov (United States)

    Gias, Carlos; Jones, Myles; Keegan, David; Adamson, Peter; Greenwood, John; Lund, Ray; Martindale, John; Johnston, David; Berwick, Jason; Mayhew, John; Coffey, Peter

    2007-04-01

    The aim of this study was to determine the extent of cortical functional preservation following retinal pigment epithelium (RPE) transplantation in the Royal College of Surgeons (RCS) rat using single-wavelength optical imaging and spectroscopy. The cortical responses to visual stimulation in transplanted rats at 6 months post-transplantation were compared with those from age-matched untreated dystrophic and non-dystrophic rats. Our results show that cortical responses were evoked in non-dystrophic rats to both luminance changes and pattern stimulation, whereas no response was found in untreated dystrophic animals to any of the visual stimuli tested. In contrast, a cortical response was elicited in most of the transplanted rats to luminance changes and in many of those a response was also evoked to pattern stimulation. Although the transplanted rats did not respond to high spatial frequency information we found evidence of preservation in the cortical processing of luminance changes and low spatial frequency stimulation. Anatomical sections of transplanted rat retinas confirmed the capacity of RPE transplantation to rescue photoreceptors. Good correlation was found between photoreceptor survival and the extent of cortical function preservation determined with optical imaging techniques. This study determined the efficacy of RPE transplantation to preserve visual cortical processing and established optical imaging as a powerful technique for its assessment.

  2. Performance test and verification of an off-the-shelf automated avian radar tracking system.

    Science.gov (United States)

    May, Roel; Steinheim, Yngve; Kvaløy, Pål; Vang, Roald; Hanssen, Frank

    2017-08-01

    Microwave radar is an important tool for observation of birds in flight and represents a tremendous increase in observation capability in terms of amount of surveillance space that can be covered at relatively low cost. Based on off-the-shelf radar hardware, automated radar tracking systems have been developed for monitoring avian movements. However, radar used as an observation instrument in biological research has its limitations that are important to be aware of when analyzing recorded radar data. This article describes a method for exploring the detection capabilities of a dedicated short-range avian radar system used inside the operational Smøla wind-power plant. The purpose of the testing described was to find the maximum detection range for various sized birds, while controlling for the effects of flight tortuosity, flight orientation relative to the radar and ground clutter. The method was to use a dedicated test target in form of a remotely controlled unmanned aerial vehicle (UAV) with calibrated radar cross section (RCS), which enabled the design of virtually any test flight pattern within the area of interest. The UAV had a detection probability of 0.5 within a range of 2,340 m from the radar. The detection performance obtained by the RCS-calibrated test target (-11 dBm 2 , 0.08 m 2 RCS) was then extrapolated to find the corresponding performance of differently sized birds. Detection range depends on system sensitivity, the environment within which the radar is placed and the spatial distribution of birds. The avian radar under study enables continuous monitoring of bird activity within a maximum range up to 2 km dependent on the size of the birds in question. While small bird species may be detected up to 0.5-1 km, larger species may be detected up to 1.5-2 km distance from the radar.

  3. Remote Underwater Characterization System - Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    Willis, W.D.

    1999-01-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available Scallop vehicle 1 , but has been modified by the Department of Energys Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at the Idaho National Engineering and Environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a ''head-to-head fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations

  4. Microwave Breast Imaging System Prototype with Integrated Numerical Characterization

    Directory of Open Access Journals (Sweden)

    Mark Haynes

    2012-01-01

    Full Text Available The increasing number of experimental microwave breast imaging systems and the need to properly model them have motivated our development of an integrated numerical characterization technique. We use Ansoft HFSS and a formalism we developed previously to numerically characterize an S-parameter- based breast imaging system and link it to an inverse scattering algorithm. We show successful reconstructions of simple test objects using synthetic and experimental data. We demonstrate the sensitivity of image reconstructions to knowledge of the background dielectric properties and show the limits of the current model.

  5. Scattering cross section of unequal length dipole arrays

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents a detailed and systematic analytical treatment of scattering by an arbitrary dipole array configuration with unequal-length dipoles, different inter-element spacing and load impedance. It provides a physical interpretation of the scattering phenomena within the phased array system. The antenna radar cross section (RCS) depends on the field scattered by the antenna towards the receiver. It has two components, viz. structural RCS and antenna mode RCS. The latter component dominates the former, especially if the antenna is mounted on a low observable platform. The reduction in the scattering due to the presence of antennas on the surface is one of the concerns towards stealth technology. In order to achieve this objective, a detailed and accurate analysis of antenna mode scattering is required. In practical phased array, one cannot ignore the finite dimensions of antenna elements, coupling effect and the role of feed network while estimating the antenna RCS. This book presents the RCS estimati...

  6. A study on the sensitivity analysis of safety injection reduction

    International Nuclear Information System (INIS)

    Yoon, D. J.; Chun, H. Y.

    1998-01-01

    With SI in service, RCS pressure will tend toward an equilibrium value where SI flow matches leakage from the RCS. For subcooled conditions, the amount of leakage from the RCS is directly related to the capacity of the operating SI pumps. Hence, in order to minimize the loss of coolant from the primary system, SI flow must be reduced. On the other hand, some SI flow is necessary to maintain coolant inventory and pressurize the RCS sufficiently to promote primary-to-secondary heat transfer. A conflict arises between keeping the SI pumps running to maintain adequate coolant inventory and reducing SI flow to minimize leakage from the RCS. A program SIREPRO has been developed for calculating various pressure/temperature relationships for stopping or realigning SI pumps which ensures that the reduced SI flow will be sufficient to maintain adequate coolant inventory. This Program showed that various parameter is related to the requirement to reduce SI pump

  7. Pressurised water reactor operation

    International Nuclear Information System (INIS)

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  8. A portable system for characterizing wildland fire behavior

    Science.gov (United States)

    Bret Butler; D. Jimenez; J. Forthofer; K. Shannon; Paul Sopko

    2010-01-01

    A field deployable system for quantifying energy and mass transport in wildland fires is described. The system consists of two enclosures: The first is a sensor/data logger combination package that allows characterization of convective/radiant energy transport in fires. This package contains batteries, a programmable data logger, sensors, and other electronics. The...

  9. Primary reaction control system/remote manipulator system interaction with loaded arm. Space shuttle engineering and operations support

    Science.gov (United States)

    Taylor, E. C.; Davis, J. D.

    1978-01-01

    A study of the interaction between the orbiter primary reaction control system (PRCS) and the remote manipulator system (RMS) with a loaded arm is documented. This analysis was performed with the Payload Deployment and Retrieval Systems Simulation (PDRSS) program with the passive arm bending option. The passive-arm model simulates the arm as massless elastic links with locked joints. The study was divided into two parts. The first part was the evaluation of the response of the arm to step inputs (i.e. constant jet torques) about each of the orbiter body axes. The second part of the study was the evaluation of the response of the arm to minimum impulse primary RCS jet firings with both single pulse and pulse train inputs.

  10. Backscattered EM-wave manipulation using low cost 1-bit reflective surface at W-band

    Science.gov (United States)

    Taher Al-Nuaimi, Mustafa K.; Hong, Wei; He, Yejun

    2018-04-01

    The design of low cost 1-bit reflective (non-absorptive) surfaces for manipulation of backscattered EM-waves and radar cross section (RCS) reduction at W-band is presented in this article. The presented surface is designed based on the reflection phase cancellation principle. The unit cell used to compose the proposed surface has an obelus (division symbol of short wire and two disks above and below) like shape printed on a grounded dielectric material. Using this unit cell, surfaces that can efficiently manipulate the backscattered RCS pattern by using the proposed obelus-shaped unit cell (as ‘0’ element) and its mirrored unit cell (as ‘1’ element) in one surface with a 180°  ±  35° reflection phase difference between their reflection phases are designed. The proposed surfaces can generate various kinds of backscattered RCS patterns, such as single, three, or four lobes or even a low-level (reduced RCS) diffused reflection pattern when those two unit cells are distributed randomly across the surface aperture. For experimental characterization purposes, a 50  ×  50 mm2 surface is fabricated and measured.

  11. Safety analysis of increase in heat removal from reactor coolant system with inadvertent operation of passive residual heat removal at no load conditions

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Ge; Cao, Xuewu [School of Mechanical and Engineering, Shanghai Jiao Tong University, Shanghai (China)

    2015-06-15

    The advanced passive pressurized water reactor (PWR) is being constructed in China and the passive residual heat removal (PRHR) system was designed to remove the decay heat. During accident scenarios with increase of heat removal from the primary coolant system, the actuation of the PRHR will enhance the cooldown of the primary coolant system. There is a risk of power excursion during the cooldown of the primary coolant system. Therefore, it is necessary to analyze the thermal hydraulic behavior of the reactor coolant system (RCS) at this condition. The advanced passive PWR model, including major components in the RCS, is built by SCDAP/RELAP5 code. The thermal hydraulic behavior of the core is studied for two typical accident sequences with PRHR actuation to investigate the core cooling capability with conservative assumptions, a main steam line break (MSLB) event and inadvertent opening of a steam generator (SG) safety valve event. The results show that the core is ultimately shut down by the boric acid solution delivered by Core Makeup Tank (CMT) injections. The effects of CMT boric acid concentration and the activation delay time on accident consequences are analyzed for MSLB, which shows that there is no consequential damage to the fuel or reactor coolant system in the selected conditions.

  12. Characterization of the system MoS2 + C, HAADF vs Tem conventional

    International Nuclear Information System (INIS)

    Reza, C.; Cruz, G.; Santiago, P.; Rendon, L.

    2004-01-01

    A study is presented about the synthesis and characterization of unidimensional nano systems composed of MoS 2 and C with potential use as solid lubricant. The synthesis process was developed for the mold method, via thermal decomposition, which uses a film of nano porous aluminium oxide. Such systems were characterized by two analysis methods that involve Transmission Electron Microscopy, HRTEM (Conventional TEM) and HAADF (Z Contrast). The results obtained in the structural and morphological characterization were supplemented to determine the structure type obtained in the unidimensional systems. (Author)

  13. Design and Implementation of Radar Cross-Section Models on a Virtex-6 FPGA

    Directory of Open Access Journals (Sweden)

    B. U. V. Prashanth

    2014-01-01

    Full Text Available The simulation of radar cross-section (RCS models in FPGA is illustrated. The models adopted are the Swerling ones. Radar cross-section (RCS which is also termed as echo area gives the amount of scattered power from a target towards the radar. This paper elucidates the simulation of RCS to represent the specified targets under different conditions, namely, aspect angle and frequency. This model is used for the performance evaluation of radar. RCS models have been developed for various targets like simple objects to complex objects like aircrafts, missiles, tanks, and so forth. First, the model was developed in MATLAB real time simulation environment and after successful verification, the same was implemented in FPGA. Xilinx ISE software was used for VHDL coding. This simulation model was used for the testing of a radar system. The results were compared with MATLAB simulations and FPGA based timing diagrams and RTL synthesis. The paper illustrates the simulation of various target radar cross-section (RCS models. These models are simulated in MATLAB and in FPGA, with the aim of implementing them efficiently on a radar system. This method can be generalized to apply to objects of arbitrary geometry for the two configurations of transmitter and receiver in the same as well as different locations.

  14. Characterization system for research on energy storage capacitors

    Science.gov (United States)

    Noriega, J. R.; Iyore, O. D.; Budime, C.; Gnade, B.; Vasselli, J.

    2013-05-01

    In this work a characterization system for high energy-density capacitors is described and demonstrated. Capacitors are being designed using thin-film technology in an attempt to achieve higher energy-density levels by operating the devices at a high voltage. These devices are fabricated from layers of 100 nm aluminum and a layer of polyvinylidene fluoride-hexafluoropropylene on a polyethylene naphthalate plastic substrate. The devices have been designed to store electrical charge at up to 200 V. Characterizations of these devices focus on the measurement of capacitance vs bias voltage and temperature, equivalent series resistance, and charge/discharge cycles. For the purpose of the characterization of these capacitors, an electronic charge/discharge interface was designed and tested.

  15. Development of radiation resistant PEEK insulation cable

    International Nuclear Information System (INIS)

    Mio, Keigo; Ogiwara, Norio; Hikichi, Yusuke; Furukori, Hisayoshi; Arai, Hideyuki; Nishizawa, Daiji; Nishidono, Toshiro

    2009-04-01

    Material characterization and development has been carried out for cable insulation suitable for use in the J-PARC 3-GeV RCS radiation environment. In spite of its high cost, PEEK (polyether-ether-ketone) has emerged as the leading candidate satisfying requirements of being non-halogen based, highly incombustible and with radiation resistant at least 10 MGy, along with the usual mechanical characteristics such as good elongation at break, which are needed in a cable insulation. Gamma-ray irradiation tests have been done in order to study radiation resistance of PEEK cable. Further, mechanical, electrical and fire retardant characteristics of a complete cable such as would be used at the J-PARC RCS were investigated. As a result, PEEK cables were shown to be not degraded by radiation up to at least 10 MGy, and thus could be expected to operate stably under the 3-GeV RCS radiation environment. (author)

  16. Orion Exploration Flight Test Reaction Control System Jet Interaction Heating Environment from Flight Data

    Science.gov (United States)

    White, Molly E.; Hyatt, Andrew J.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) Reaction Control System (RCS) is critical to guide the vehicle along the desired trajectory during re-­-entry. However, this system has a significant impact on the convective heating environment to the spacecraft. Heating augmentation from the jet interaction (JI) drives thermal protection system (TPS) material selection and thickness requirements for the spacecraft. This paper describes the heating environment from the RCS on the afterbody of the Orion MPCV during Orion's first flight test, Exploration Flight Test 1 (EFT-1). These jet plumes interact with the wake of the crew capsule and cause an increase in the convective heating environment. Not only is there widespread influence from the jet banks, there may also be very localized effects. The firing history during EFT-1 will be summarized to assess which jet bank interaction was measured during flight. Heating augmentation factors derived from the reconstructed flight data will be presented. Furthermore, flight instrumentation across the afterbody provides the highest spatial resolution of the region of influence of the individual jet banks of any spacecraft yet flown. This distribution of heating augmentation across the afterbody will be derived from the flight data. Additionally, trends with possible correlating parameters will be investigated to assist future designs and ground testing programs. Finally, the challenges of measuring JI, applying this data to future flights and lessons learned will be discussed.

  17. Three dimensional characterization and archiving system

    International Nuclear Information System (INIS)

    Clark, R.; Gallman, P.; Gaudreault, J.; Mosehauer, R.; Slotwinski, A.; Jarvis, G.; Griffiths, P.

    1996-01-01

    This system (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. It is in the final phase of a 3-phase program to support Decontamination and Decommissioning (D ampersand D) operations. Accurate physical characterization of surfaces and radioactive and organic contamination is a critical D ampersand D task. Surface characterization includes identification of dangerous inorganic materials such as asbestos and transite. 3D-ICAS robotically conveys a multisensor probe near the surfaces to be inspected, using coherent laser radar tracking, which also provides 3D facility maps. High-speed automated organic analysis is provided by means of gas chromatograph-mass spectrometer sensor which can process a sample without contact in one minute. Volatile organics are extracted directly from contaminated surfaces without sample removal; multiple stage focusing is used for high time resolution. Additional discrimination is obtained through a final stage time-of-flight mass spectrometer. The radionuclide sensors combines α, β, and γ counting with energy discrimination of the α channel; this quantifies isotopes of U, Pu, Th, Tc, Np, and Am in one minute. The Molecular Vibrational Spectrometry sensor is used to characterize substrate material such as concrete, transite, wood, or asbestos; this can be used to provide estimates of the depth of contamination. The 3D-ICAS will be available for real-time monitoring immediately after each 1 to 2 minute sample period. After surface mapping, 3-D displays will be provided showing contours of detected contaminant concentrations. Permanent measurement and contaminant level archiving will be provided, assuring data integrity and allowing regulatory review before and after D ampersand D operations

  18. FE-I4 pixel chip characterization with USBpix3 test system

    Energy Technology Data Exchange (ETDEWEB)

    Filimonov, Viacheslav; Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Janssen, Jens; Krueger, Hans; Pohl, David-Leon; Wermes, Norbert [University of Bonn, Bonn (Germany)

    2015-07-01

    The USBpix readout system is a small and light weighting test system for the ATLAS pixel readout chips. It is widely used to operate and characterize FE-I4 pixel modules in lab and test beam environments. For multi-chip modules the resources on the Multi-IO board, that is the central control unit of the readout system, are coming to their limits, which makes the simultaneous readout of more than one chip at a time challenging. Therefore an upgrade of the current USBpix system has been developed. The upgraded system is called USBpix3 - the main focus of the talk. Characterization of single chip FE-I4 modules was performed with USBpix3 prototype (digital, analog, threshold and source scans; tuning). PyBAR (Bonn ATLAS Readout in Python scripting language) was used as readout software. PyBAR consists of FEI4 DAQ and Data Analysis Libraries in Python. The presentation describes the USBpix3 system, results of FE-I4 modules characterization and preparation for the multi-chip module and multi-module readout with USBpix3.

  19. Terahertz radar cross section measurements.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  20. The deployment of an innovative real-time radiological soil characterization system

    International Nuclear Information System (INIS)

    Allen, David; Danahy, Raymond; Laird, Gregory; Seiller, Dale; White, Joan; Janke, Robert

    2000-01-01

    Fluor Fernald Inc., in conjunction with partners from Argonne National Laboratory, the Department of Energy's Environmental Measurements Laboratory, and Idaho National Engineering and Environmental Laboratory, has developed a program for characterizing radiological contaminants in soil in real time. The soil characterization system in use at the Fernald Environmental Management Project (FEMP) for over three years combines gamma ray spectrometry equipment with other technologies to produce a system that can scan large areas of ground and produce color coded maps which display quantitative information regarding isotopic contamination patterns. Software running on a battery powered lap-top computer, is used to control acquisition of gamma spectral data to link the spectral Information with precise detector position measurements from Global Positioning System (GPS) satellites, and to control transmission of data to a central station or van via a wireless Ethernet link where Surfer6 mapping software is used to produce maps showing the position and amount of each target analyte. Either sodium iodide (NaI) gamma ray detectors mounted on three different vehicles for mobile measurements or stationary tripod-mounted hyper-pure germanium (HPGe) detectors can be used in this system to radiologically characterize soil. The operational and performance characteristics, as well as the strengths and limitations of each of these units, will be described. The isotopic information generated by this system can be made available to remediation project mangers within an hour after the completion of a scan to aid in determination of excavation footprints, segregation of contaminated soil and verification of contamination removal. The immediate availability of radiological characterization data made possible by this real-time scanning system has allowed Fluor Fernald to accelerate remediation schedules and reduce costs by avoiding excavation delays and expensive and time consuming

  1. Data assimilation and PWR primary measurement

    International Nuclear Information System (INIS)

    Mercier, Thibaud

    2015-01-01

    A Pressurized Water Reactor (PWR) Reactor Coolant System (RCS) is a highly complex physical process: heterogeneous power, flow and temperature distributions are difficult to be accurately measured, since instrumentations are limited in number, thus leading to the relevant safety and protection margins. EDF R and D is seeking to assess the potential benefits of applying Data Assimilation to a PWR's RCS (Reactor Coolant System) measurements, in order to improve the estimators for parameters of a reactor's operating setpoint, i.e. improving accuracy and reducing uncertainties and biases of measured RCS parameters. In this thesis, we define a 0D semi-empirical model for RCS, satisfying the description level usually chosen by plant operators, and construct a Monte-Carlo Method (inspired from Ensemble Methods) in order to use this model with Data Assimilation tools. We apply this method on simulated data in order to assess the reduction of uncertainties on key parameters: results are beyond expectations, however strong hypothesis are required, implying a careful preprocessing of input data. (author)

  2. Numerical Simulation of Fluid Mixing in Upper Annular Space of SMART during Early Stage of non-LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Young-In; Kim, Keung Koo [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    KAERI (Korea Atomic Energy Research Institute) is developing a passive safety injection system (PSIS) to supply cold borated water into a reactor coolant system (RCS) without any operator actions or AC power under the occurrence of postulated design basis accidents. The PSIS consists of four independent trains, each of which is furnished with a gravity drained core makeup tank (CMT) and a safety injection tank (SIT). The CMT is designed to provide makeup and boration functions to the RCS during the early stage of a loss of coolant accident (LOCA) and a non-LOCA. In this paper, we investigate numerically the fluid mixing characteristics in the upper annular space of SMART, especially when single-phase natural circulation is formed between the CMT and RCS following a non-LOCA such as a main steam line break. In this paper, the fluid mixing characteristics in the upper annular space of SMART are investigated numerically when single-phase natural circulation is formed between the RCS and CMT during the early stage of a non-LOCA.

  3. Numerical Simulation of Fluid Mixing in Upper Annular Space of SMART during Early Stage of non-LOCA

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Young-In; Kim, Keung Koo

    2015-01-01

    KAERI (Korea Atomic Energy Research Institute) is developing a passive safety injection system (PSIS) to supply cold borated water into a reactor coolant system (RCS) without any operator actions or AC power under the occurrence of postulated design basis accidents. The PSIS consists of four independent trains, each of which is furnished with a gravity drained core makeup tank (CMT) and a safety injection tank (SIT). The CMT is designed to provide makeup and boration functions to the RCS during the early stage of a loss of coolant accident (LOCA) and a non-LOCA. In this paper, we investigate numerically the fluid mixing characteristics in the upper annular space of SMART, especially when single-phase natural circulation is formed between the CMT and RCS following a non-LOCA such as a main steam line break. In this paper, the fluid mixing characteristics in the upper annular space of SMART are investigated numerically when single-phase natural circulation is formed between the RCS and CMT during the early stage of a non-LOCA

  4. Characterization optimization for the National TRU waste system

    International Nuclear Information System (INIS)

    Basabilvazo, George T.; Countiss, S.; Moody, D.C.; Jennings, S.G.; Lott, S.A.

    2002-01-01

    On March 26, 1999, the Waste Isolation Pilot Plant (WIPP) received its first shipment of transuranic (TRU) waste. On November 26, 1999, the Hazardous Waste Facility Permit (HWFP) to receive mixed TRU waste at WIPP became effective. Having achieved these two milestones, facilitating and supporting the characterization, transportation, and disposal of TRU waste became the major challenges for the National TRU Waste Program. Significant challenges still remain in the scientific, engineering, regulatory, and political areas that need to be addressed. The National TRU Waste System Optimization Project has been established to identify, develop, and implement cost-effective system optimization strategies that address those significant challenges. Fundamental to these challenges is the balancing and prioritization of potential regulatory changes with potential technological solutions. This paper describes some of the efforts to optimize (to make as functional as possible) characterization activities for TRU waste.

  5. Pump system characterization and reliability enhancement

    International Nuclear Information System (INIS)

    Staunton, R.H.

    1998-01-01

    Pump characterization studies were performed at the Oak Ridge National Laboratory (ORNL) to review and analyze six years (1990-1995) of data from pump systems at domestic nuclear plants. The studies considered not only pumps and pump motors but also pump-related circuit breakers and turbine drives (i.e., the pump system). One significant finding was that the number of 'significant' failures of the pump circuit breaker exceeds the number of significant failures of the pump itself. The study also shows how regulatory code testing was designed for the pump only and therefore did not lead to the discovery of other significant pump system failures. Potential diagnostic technologies, both experimental and mature, suitable for on-line and off-line pump testing were identified. The study does not select or recommend technologies but proposes diagnostic technologies and monitoring techniques that should be further evaluated/developed for making meaningful and critically-needed improvements in the reliability of the pump system. (author)

  6. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  7. Impact of coronary collaterals on in-hospital and 5-year mortality after ST-elevation myocardial infarction in the contemporary percutaneous coronary intervention era: a prospective observational study

    Science.gov (United States)

    Hara, Masahiko; Sakata, Yasuhiko; Nakatani, Daisaku; Suna, Shinichiro; Nishino, Masami; Sato, Hiroshi; Kitamura, Tetsuhisa; Nanto, Shinsuke; Hori, Masatsugu; Komuro, Issei

    2016-01-01

    Objectives To evaluate the short-term and long-term prognostic impacts of acute phase coronary collaterals to occluded infarct-related arteries (IRA) after ST-elevation myocardial infarction (STEMI) in the percutaneous coronary intervention (PCI) era. Design A prospective observational study. Setting Osaka Acute Coronary Insufficiency Study (OACIS) in Japan. Participants 3340 patients with STEMI from the OACIS database who were admitted to hospitals within 24 hours from the onset and who had a completely occluded IRA. Interventions Patients were divided into 4 groups according to the Rentrop collateral score (RCS) by angiography on admission (RCS-0, no visible collaterals; RCS-1, collaterals without IRA filling; RCS-2, collaterals with partial IRA filling; and RCS-3, collaterals with complete IRA filling). Primary outcome measures In-hospital and 5-year mortality. Results Patients with RCS-0/3 were older than patients with RCS-1/2, and the prevalence of previous myocardial infarction was highest in patients with RCS-3. Median peak creatinine phosphokinase levels decreased as RCS increases (p<0.001), suggesting the acute cardioprotective effects of collaterals. Although RCS-1 and RCS-2 collaterals were associated with better in-hospital mortality (adjusted OR 0.48, p=0.046 and 0.38, p=0.010 for RCS-1 and RCS-2, respectively) and 5-year mortality (adjusted HR 0.53, p=0.004 and 0.46, p<0.001 for RCS-1 and RCS-2, respectively) as compared with R-0, presence of RCS-3 collaterals was not associated with improved in-hospital (adjusted OR 1.35, p=0.331) and 5-year mortality (adjusted HR 0.98, p=0.920), possibly because worse clinical profiles in patients with RCS-3 may mask mortality benefit of coronary collaterals. Conclusions Presence of acute phase coronary collaterals such as RCS-1 and RCS-2 were associated with better in-hospital and 5-year mortality after STEMI in the contemporary PCI era. PMID:27412101

  8. Remote Underwater Characterization System - Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    Willis, Walter David

    1999-01-01

    Characterization and inspection of water-cooled and moderated nuclear reactors and fuel storage pools requires equipment capable of operating underwater. Similarly, the deactivation and decommissioning of older nuclear facilities often requires the facility owner to accurately characterize underwater structures and equipment which may have been sitting idle for years. The underwater characterization equipment is often required to operate at depths exceeding 20 ft (6.1 m) and in relatively confined or congested spaces. The typical baseline approach has been the use of radiation detectors and underwater cameras mounted on long poles, or stationary cameras with pan and tilt features mounted on the sides of the underwater facility. There is a perceived need for an inexpensive, more mobile method of performing close-up inspection and radiation measurements in confined spaces underwater. The Remote Underwater Characterization System (RUCS) is a small, remotely operated submersible vehicle intended to serve multiple purposes in underwater nuclear operations. It is based on the commercially-available ''Scallop'' vehicle, but has been modified by Department of Energy's Robotics Technology Development Program to add auto-depth control, and vehicle orientation and depth monitoring at the operator control panel. The RUCS is designed to provide visual and gamma radiation characterization, even in confined or limited access areas. It was demonstrated in August 1998 at Idaho National Engineering and environmental Laboratory (INEEL) as part of the INEEL Large Scale Demonstration and Deployment Project. During the demonstration it was compared in a ''head-to-head'' fashion with the baseline characterization technology. This paper summarizes the results of the demonstration and lessons learned; comparing and contrasting both technologies in the areas of cost, visual characterization, radiological characterization, and overall operations

  9. Chemical decontamination solutions: Effects on PWR equipment

    International Nuclear Information System (INIS)

    Pezze, C.M.; Colvin, E.R.; Aspden, R.G.

    1992-01-01

    A critical objective for the nuclear industry is the reduction of personnel exposure to radiation. Reductions have been achieved through industry's radiation management programs including training and radiation awareness concepts. Increased plant maintenance and higher radiation fields at many sites continue to raise concerns. To alleviate the radiation exposure problem, the sources of radiation which contribute to personnel exposure must be removed from the plant. A feasible was of significantly reducing these sources from a Pressurized Water Reactor (PWR) is to chemically decontaminate the entire reactor coolant system (RCS). A program was conducted to determine the technical acceptability of using certain dilute chemical solvent processes for full RCS chemical decontamination. The two processes evaluated were CAN-DEREM and LOMI. The purpose of the program was to define and complete a systematic evaluation of the major issues that need to be addressed for the successful decontamination of the entire RCS and affected portions of the auxiliary systems of a four-loop PWR system. A test program was designed to evaluate the corrosion effects of the two decontamination processes under expected plant conditions. Materials and sample configurations dictated by generic PWR components were evaluated. The testing also included many standard corrosion coupons. The test data were then used to assess the impact of chemical decontamination on the physical condition and operability of the components, equipment and mechanical systems that make up the RCS. An overview of the test program, sample configurations, data and engineering evaluations is presented. The data demonstrate that through detailed engineering evaluations of corrosion data and equipment function, the impact of full RCS chemical decontamination on plant equipment is established

  10. Properties of Tricalcium Silicate Sealers.

    Science.gov (United States)

    Khalil, Issam; Naaman, Alfred; Camilleri, Josette

    2016-10-01

    Sealers based on tricalcium silicate cement aim at an interaction of the sealer with the root canal wall, alkalinity with potential antimicrobial activity, and the ability to set in a wet field. The aim of this study was to characterize and investigate the properties of a new tricalcium silicate-based sealer and verify its compliance to ISO 6876 (2012). A new tricalcium silicate-based sealer (Bio MM; St Joseph University, Beirut, Lebanon), BioRoot RCS (Septodont, St Maure de Fosses, France), and AH Plus (Dentsply, DeTrey, Konstanz, Germany) were investigated. Characterization using scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction analysis was performed. Furthermore, sealer setting time, flow, film thickness, and radiopacity were performed following ISO specifications. pH and ion leaching in solution were assessed by pH analysis and inductively coupled plasma. Bio MM and BioRoot RCS were both composed of tricalcium silicate and tantalum oxide in Bio MM and zirconium oxide in BioRoot RCS. In addition, the Bio MM contained calcium carbonate and a phosphate phase. The inorganic components of AH Plus were calcium tungstate and zirconium oxide. AH Plus complied with the ISO norms for both flow and film thickness. BioRoot RCS and Bio MM exhibited a lower flow and a higher film thickness than that specified for sealer cements in ISO 6876. All test sealers exhibited adequate radiopacity. Bio MM interacted with physiologic solution, thus showing potential for bioactivity. Sealer properties were acceptable and comparable with other sealers available clinically. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Cassini Spacecraft In-Flight Swap to Backup Attitude Control Thrusters

    Science.gov (United States)

    Bates, David M.

    2010-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap to the backup RCS system, the details and challenges of which are described in this paper. With some modifications, it is hoped that similar techniques and design strategies could be used to benefit other spacecraft.

  12. Material characterization of a polyester resin system for the pultrusion process

    DEFF Research Database (Denmark)

    Baran, Ismet; Akkerman, Remko; Hattel, Jesper Henri

    2014-01-01

    In the present work, the chemo-rheology of an industrial ‘‘orthophthalic’’ polyester system specifically prepared for a pultrusion process is characterized. The curing behaviour is first characterized using the differential scanning calorimetry (DSC). Isothermal and dynamic scans are performed...

  13. Retinitis pigmentosa: mutations in a receptor tyrosine kinase gene ...

    Indian Academy of Sciences (India)

    patients show early and severe impairment of pure rod responses (Pagon 1993). ... is characterized by total blindness or greatly impaired vision at birth or within ... gene, Mertk, in the Royal College of Surgeons (RCS) rat (D'Cruz et al 2000) ...

  14. Status and understanding of groundwater quality in the Madera, Chowchilla Study Unit, 2008: California GAMA Priority Basin Project

    Science.gov (United States)

    Shelton, Jennifer L.; Fram, Miranda S.; Belitz, Kenneth; Jurgens, Bryant C.

    2013-01-01

    evaluating groundwater quality for those constituents that have Federal or California regulatory or non-regulatory benchmarks for drinking-water quality. A relative-concentration (RC) greater than 1.0 indicates a concentration above a benchmark. RCs for organic constituents (volatile organic compounds and pesticides) and special-interest constituents (perchlorate) were classified as "high" (RC is greater than 1.0), "moderate" (RC is less than or equal to 1.0 and greater than 0.1), or "low" (RC is less than or equal to 0.1). For inorganic constituents (major and minor ions, trace elements, nutrients, and radioactive constituents), the boundary between low and moderate RCs was set at 0.5. The assessments characterize untreated groundwater quality, not the quality of treated drinking water delivered to consumers by water purveyors; drinking-water benchmarks, and thus relative-concentrations, are used to provide context for the concentrations of constituents measured in groundwater. Aquifer-scale proportion was used in the status assessment as the primary metric for evaluating regional-scale groundwater quality. High aquifer-scale proportion is defined as the percentage of the area of the primary aquifer system with RCs greater than 1.0 for a particular constituent or class of constituents; moderate and low aquifer-scale proportions are defined as the percentages of the area of the primary aquifer system with moderate and low RCs, respectively. Percentages are based on an areal, rather than a volumetric basis. Two statistical approaches--grid-based, which used one value per grid cell, and spatially weighted, which used multiple values per grid cell--were used to calculate aquifer-scale proportions for individual constituents and classes of constituents. The spatially weighted estimates of high aquifer-scale proportions were within the 90% confidence intervals of the grid-based estimates for all constituents except iron. The status assessment showed that inorganic constituents

  15. Purple-bacterial photosynthetic reaction centers and quantum-dot hybrid-assemblies in lecithin liposomes and thin films.

    Science.gov (United States)

    Lukashev, Eugeny P; Knox, Petr P; Gorokhov, Vladimir V; Grishanova, Nadezda P; Seifullina, Nuranija Kh; Krikunova, Maria; Lokstein, Heiko; Paschenko, Vladimir Z

    2016-11-01

    Quantum dots (QDs) absorb ultraviolet and long-wavelength visible light energy much more efficiently than natural bacterial light-harvesting proteins and can transfer the excitation energy to photosynthetic reaction centers (RCs). Inclusion of RCs combined with QDs as antennae into liposomes opens new opportunities for using such hybrid systems as a basis for artificial energy-transforming devices that potentially can operate with greater efficiency and stability than devices based only on biological components or inorganic components alone. RCs from Rhodobacter sphaeroides and QDs (CdSe/ZnS with hydrophilic covering) were embedded in lecithin liposomes by extrusion of a solution of multilayer lipid vesicles through a polycarbonate membrane or by dialysis of lipids and proteins dispersed with excess detergent. The efficiency of RC and QD interaction within the liposomes was estimated using fluorescence excitation spectra of the photoactive bacteriochlorophyll of the RCs and by measuring the fluorescence decay kinetics of the QDs. The functional activity of the RCs in hybrid complexes was fully maintained, and their stability was even increased. The efficiency of energy transfer between QDs and RCs and conditions of long-term stability of function of such hybrid complexes in film preparations were investigated as well. It was found that dry films containing RCs and QDs, maintained at atmospheric humidity, are capable of maintaining their functional activity for at least some months as judged by measurements of their spectral characteristics, efficiency of energy transfer from QDs to RCs and RC electron transport activity. Addition of trehalose to the films increases the stability further, especially for films maintained at low humidity. These stable hybrid film structures are promising for further studies towards developing new phototransformation devices for biotechnological applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Measuring acute rehabilitation needs in trauma: preliminary evaluation of the Rehabilitation Complexity Scale.

    Science.gov (United States)

    Hoffman, Karen; West, Anita; Nott, Philippa; Cole, Elaine; Playford, Diane; Liu, Clarence; Brohi, Karim

    2013-01-01

    Injury severity, disability and care dependency are frequently used as surrogate measures for rehabilitation requirements following trauma. The true rehabilitation needs of patients may be different but there are no validated tools for the measurement of rehabilitation complexity in acute trauma care. The aim of the study was to evaluate the potential utility of the Rehabilitation Complexity Scale (RCS) version 2 in measuring acute rehabilitation needs in trauma patients. A prospective observation study of 103 patients with traumatic injuries in a Major Trauma Centre. Rehabilitation complexity was measured using the RCS and disability was measured using the Barthel Index. Demographic information and injury characteristics were obtained from the trauma database. The RCS was closely correlated with injury severity (r=0.69, p<0.001) and the Barthel Index (r=0.91, p<0.001). However the Barthel was poor at discriminating between patients rehabilitation needs, especially for patients with higher injury severities. Of 58 patients classified as 'very dependent' by the Barthel, 21 (36%) had low or moderate rehabilitation complexity. The RCS correlated with acute hospital length of stay (r=0.64, p=<0.001) and patients with a low RCS were more likely to be discharged home. The Barthel which had a flooring effect (56% of patients classified as very dependent were discharged home) and lacked discrimination despite close statistical correlation. The RCS outperformed the ISS and the Barthel in its ability to identify rehabilitation requirements in relation to injury severity, rehabilitation complexity, length of stay and discharge destination. The RCS is potentially a feasible and useful tool for the assessment of rehabilitation complexity in acute trauma care by providing specific measurement of patients' rehabilitation requirements. A larger longitudinal study is needed to evaluate the RCS in the assessment of patient need, service provision and trauma system performance

  17. Intentional back flow effects on ruptured steam generator cooldown during a SGTR event for KSNP

    International Nuclear Information System (INIS)

    Kim, C.W.; Park, S.J.; Choi, C.J.; Seo, J.T.

    2004-01-01

    For an optimum recovery from a steam generator tube rupture (SGTR) event, the operators are directed to isolate the steam generator (SG) with ruptured tube as early as possible to minimize the radioactive material release. However, the reactor coolant system (RCS) cooldown and depressurization to the shutdown cooling system (SCS) operation conditions using the intact SG only are hard to achieve unless the ruptured SG is properly cooled since the ruptured SG, which is isolated by operator, remains at high temperature even though the RCS has been cooled down. The effects of intentional back flow from the SG secondary side to the RCS through the ruptured U-tube on the the ruptured SG cooldown were evaluated for the pressurized light water reactor, especially for the Korean standard nuclear power plant (KSNP). In order to evaluate the back flow effect, a series of analyses was conducted using the RELAP5/MOD3 computer code. For the first stage of the analysis, the cooldown process by natural circulation in the SG secondary side was simulated for the initial conditions of the ruptured SG cooldown. In the next analysis stage, two methods of the ruptured SG cooldown by using back flow after RCS cooldown were evaluated. One utilizes the steam condensation on the uncovered U-tube surface, and the other is a SG drain and fill. In the former method, SG tubes are exposed to the steam space by draining SG secondary water into the RCS in order to condense the steam directly onto the uncovered tubes. This method showed that the steam condensation decreased SG secondary pressure and temperature rapidly, demonstrating its effectiveness for cooling. However, this process has a limited applicability if the rupture is located at the lower region. The latter method, draining by back flow and filling using the feedwater system was also found to be effective in ruptured SG cooldown and depressurization even if the rupture occurred at the top of the U-tube. It is concluded that the

  18. Characterizing chemical systems with on-line computers and graphics

    International Nuclear Information System (INIS)

    Frazer, J.W.; Rigdon, L.P.; Brand, H.R.; Pomernacki, C.L.

    1979-01-01

    Incorporating computers and graphics on-line to chemical experiments and processes opens up new opportunities for the study and control of complex systems. Systems having many variables can be characterized even when the variable interactions are nonlinear, and the system cannot a priori be represented by numerical methods and models. That is, large sets of accurate data can be rapidly acquired, then modeling and graphic techniques can be used to obtain partial interpretation plus design of further experimentation. The experimenter can thus comparatively quickly iterate between experimentation and modeling to obtain a final solution. We have designed and characterized a versatile computer-controlled apparatus for chemical research, which incorporates on-line instrumentation and graphics. It can be used to determine the mechanism of enzyme-induced reactions or to optimize analytical methods. The apparatus can also be operated as a pilot plant to design control strategies. On-line graphics were used to display conventional plots used by biochemists and three-dimensional response-surface plots

  19. Major Tom to Ground Control: How Lipoproteins Communicate Extracytoplasmic Stress to the Decision Center of the Cell.

    Science.gov (United States)

    Laloux, Géraldine; Collet, Jean-François

    2017-11-01

    The envelope of bacteria is a complex multilayered shield that ensures multiple essential functions, including protecting the cell from external assaults. Hence, bacterial cells have evolved intricate mechanisms called envelope stress response systems (ESRS) to monitor all kinds of perturbations affecting the integrity of their envelope and to mount an appropriate response to contain or repair the damage. In the model bacterium Escherichia coli , several ESRS are built around a two-component system, in which envelope stress triggers a phosphotransfer between a sensor protein in the inner membrane of the envelope and a response regulator in the cytoplasm. In this review, we focus on two major ESRS in E. coli , the Rcs and Cpx pathways, in which additional proteins not directly involved in the phosphotransfer modulate signal transduction. Both the Rcs and Cpx systems can be turned on by a lipoprotein anchored in the outer membrane, RcsF and NlpE, respectively, providing a molecular connection between the most exterior layer of the envelope and the ground control center in the cytoplasm. Here, we review how these two lipoproteins, which share a striking set of features while being distinct in several aspects, act as sentinels at the front line of the bacterium by sensing and transducing stress to the downstream components of the Rcs and Cpx systems. Copyright © 2017 American Society for Microbiology.

  20. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber

    Science.gov (United States)

    Meshram, M. R.; Agrawal, Nawal K.; Sinha, Bharoti; Misra, P. S.

    2004-05-01

    This paper present the design, development and characterization of the hexagonal ferrite powder [BaCo 0.5δTi 0.5δMn 0.1Fe (11.87-δ)O 19] and [Ba(MnTi) δFe (12-2δ)O 19] at δ=1.6 as a microwave absorber. The hexagonal ferrite powder has been developed by dry attrition and sintering procedure. The developed ferrite powder 60% by weight has been mixed in epoxy resin to form a microwave-absorbing paint. This paint was coated on a conducting aluminum sheet to study the absorption characteristics of a linearly polarized TE wave at X band. The results for single- and two-layer microwave absorbers for different coating thicknesses have been reported. It has been found that it shows the broadband characteristics with minimum absorption of 8 dB from 8 to 12 GHz for a coating thickness of 2 mm.These paints are very useful in military applications such as RCS reduction, camouflaging of the target and prevention of EMI, etc.

  1. Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber

    International Nuclear Information System (INIS)

    Meshram, M.R.; Agrawal, Nawal K.; Sinha, Bharoti; Misra, P.S.

    2004-01-01

    This paper present the design, development and characterization of the hexagonal ferrite powder [BaCo 0.5δ Ti 0.5δ Mn 0.1 Fe (11.87-δ) O 19 ] and [Ba(MnTi) δ Fe (12-2δ) O 19 ] at δ=1.6 as a microwave absorber. The hexagonal ferrite powder has been developed by dry attrition and sintering procedure. The developed ferrite powder 60% by weight has been mixed in epoxy resin to form a microwave-absorbing paint. This paint was coated on a conducting aluminum sheet to study the absorption characteristics of a linearly polarized TE wave at X band. The results for single- and two-layer microwave absorbers for different coating thicknesses have been reported. It has been found that it shows the broadband characteristics with minimum absorption of 8 dB from 8 to 12 GHz for a coating thickness of 2 mm.These paints are very useful in military applications such as RCS reduction, camouflaging of the target and prevention of EMI, etc

  2. System For Characterizing Three-Phase Brushless dc Motors

    Science.gov (United States)

    Howard, David E.; Smith, Dennis A.

    1996-01-01

    System of electronic hardware and software developed to automate measurements and calculations needed to characterize electromechanical performances of three-phase brushless dc motors, associated shaft-angle sensors needed for commutation, and associated brushless tachometers. System quickly takes measurements on all three phases of motor, tachometer, and shaft-angle sensor simultaneously and processes measurements into performance data. Also useful in development and testing of motors with not only three phases but also two, four, or more phases.

  3. Thermal-hydraulic tests for reactor safety system

    International Nuclear Information System (INIS)

    Chun, Se Young; Chung, Moon Ki; Baek, Won Pil

    2002-05-01

    Tests for the safety depressurization system, Sparger adopted for the Korean next generation reactor, APR1400 are carried out for several geometries with the B and C (Blowdown and Condensation) facility in the condition of high temperature and pressure and with a small test facility in the condition of atmospheric temperature and pressure. Tests for the critical heat flux are performed with the RCS(Reactor Coolant System) facility as well as with the Freon CHF Loop in the condition of high temperature and pressure. The atmospheric temperature and pressure facility is utilized for development of the high standard thermal hydraulic measurement technology. The optical method is developed to measure the local thermal-hydraulic behavior for the single and two-phase boiling phenomena

  4. Characterization methods for ultrasonic test systems

    International Nuclear Information System (INIS)

    Busse, L.J.; Becker, F.L.; Bowey, R.E.; Doctor, S.R.; Gribble, R.P.; Posakony, G.J.

    1982-07-01

    Methods for the characterization of ultrasonic transducers (search units) and instruments are presented. The instrument system is considered as three separate components consisting of a transducer, a receiver-display, and a pulser. The operation of each component is assessed independently. The methods presented were chosen because they provide the greatest amount of information about component operation and were not chosen based upon such conditions as cost, ease of operation, field implementation, etc. The results of evaluating a number of commercially available ultrasonic test instruments are presented

  5. Differences and similarities between behavior of Fukushima-derived and Chernobyl-derived radiocesium in the environment

    Science.gov (United States)

    Konoplev, Alexei; Nanba, Kenji; Onda, Yuichi; Golosov, Valentin; Wakiyama, Yoshifumi; Takase, Tsugiko; Yoschenko, Vasyl; Zheleznyak, Mark

    2016-04-01

    The mobility and bioavailability of radiocesium (r-Cs) of accidental origin is governed by the ratio of its chemical forms in fallout and site-specific environmental characteristics determining the rates of leaching, fixation-remobilization, as well as sorption-desorption of the mobile fraction (its solid-liquid distribution). R-Cs in the environment is strongly bound to soil and sediment particles containing micaceous clay minerals (illite, vermiculite, etc.). This is associated with two basic processes - high selective reversible sorption and fixation. Climate and geographical conditions for Fukushima Prefecture of Japan and Chernobyl zone differ. For example, the catchments of the Chernobyl zone are flat and characterized by low slopes, while Fukushima's watersheds are hilly with steep slopes. Annual precipitation also differs substantially, with annual average for Fukushima about 3 times higher than at Chernobyl. The soils on the north-east coast of the Honshu island that were primarily affected by the radioactive contamination from the Fukushima Daiichi nuclear power plant (FDNPP) accident differ significantly from the Chernobyl zone soils. The proportion of clays such as illite, vermiculite etc. is 20-30% at Fukushima, which is higher than in the sandy loam soils of the Chernobyl zone. In addition to the landscape differences, the speciation of r-Cs in fallout was also different between Fukushima and Chernobyl. It is a challenge to compare r-Cs behavior in FDNPP and Chernobyl zones. Comparative analysis has been carried out for r-Cs wash-off parameters and the distribution coefficient Kd in rivers and surface runoff on Fukushima and Chernobyl contaminated areas for the first years after the accidents. The r-Cs distribution coefficient in Fukushima rivers was 1-2 orders of magnitude higher than correspondent values for rivers and surface runoff of the Chernobyl zone. This suggests higher ability of Fukushima soils and sediments to bind r-Cs. The normalized

  6. Tank Waste Remediation System Characterization Project Programmatic Risk Management Plan

    International Nuclear Information System (INIS)

    Baide, D.G.; Webster, T.L.

    1995-12-01

    The TWRS Characterization Project has developed a process and plan in order to identify, manage and control the risks associated with tank waste characterization activities. The result of implementing this process is a defined list of programmatic risks (i.e. a risk management list) that are used by the Project as management tool. This concept of risk management process is a commonly used systems engineering approach which is being applied to all TWRS program and project elements. The Characterization Project risk management plan and list are subset of the overall TWRS risk management plan and list

  7. Shutdown Chemistry Process Development for PWR Primary System

    Energy Technology Data Exchange (ETDEWEB)

    Sung, K.B. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This study report presents the shutdown chemistry of PWR primary system to reduce and remove the radioactive corrosion products which were deposited on the nuclear fuel rods surface and the outside of core like steam generator channel head, RCS pipings etc. The major research results are the follows ; the deposition radioactive mechanism of corrosion products, the radiochemical composition, the condition of coolant chemistry to promote the dissolution of radioactive cobalt and nickel ferrite, the control method of dissolved hydrogen concentration in the coolant by the mechanical and chemical methods. The another part of study is to investigate the removal characteristics of corrosion product ions and particles by the demineralization system to suggest the method which the system could be operate effectively in shut-down purification period. (author). 19 refs., 25 figs., 48 tabs.

  8. Atlantic Test Range. Dynamic RCS Measurement Capability

    National Research Council Canada - National Science Library

    2000-01-01

    .... These systems include radars (fighter/attack, sea surveillance, and AEW), Navigation (IFF, GPS, and INS), communications (voice and data link), reconnaissance systems, antenna systems, forward looking infrared systems and ASW systems...

  9. System and technique for ultrasonic characterization of settling suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Margaret S [Richland, WA; Panetta, Paul D [Richland, WA; Bamberger, Judith A [Richland, WA; Pappas, Richard A [Richland, WA

    2006-11-28

    A system for determining properties of settling suspensions includes a settling container, a mixer, and devices for ultrasonic interrogation transverse to the settling direction. A computer system controls operation of the mixer and the interrogation devices and records the response to the interrogating as a function of settling time, which is then used to determine suspension properties. Attenuation versus settling time for dilute suspensions, such as dilute wood pulp suspension, exhibits a peak at different settling times for suspensions having different properties, and the location of this peak is used as one mechanism for characterizing suspensions. Alternatively or in addition, a plurality of ultrasound receivers are arranged at different angles to a common transmitter to receive scattering responses at a variety of angles during particle settling. Angular differences in scattering as a function of settling time are also used to characterize the suspension.

  10. Validation of a 15-item care-related regret coping scale for health-care professionals (RCS-HCP).

    Science.gov (United States)

    Courvoisier, Delphine Sophie; Cullati, Stephane; Ouchi, Rieko; Schmidt, Ralph Eric; Haller, Guy; Chopard, Pierre; Agoritsas, Thomas; Perneger, Thomas V

    2014-01-01

    Coping with difficult care-related situations is a common challenge for health-care professionals. How these professionals deal with the regrets they may experience following one of the many decisions and interventions they must make every day can have an impact on their own health and quality of life, and also on their patient care practices. To identify professionals most at need for extra support, development and validation of a tool measuring coping style are needed. We performed a survey of physicians and nurses of a French-speaking University hospital; 469 health-care professionals responded to the survey, and 175 responded to the same survey one-month later. Regret was assessed with the regret coping scale developed for this study, self-report questions on the frequency of regretted situations and the intensity of regret. Construct validity was assessed using measures of health-care professionals' quality of life (including job and life satisfaction, and self-reported health) as well as sleep problems and depression. Based on factor analysis and item response analysis, the initial 31-item scale was shortened to 15 items, which measured three types of strategies: problem-focused strategies (i.e., trying to find solutions, talking to colleagues) and two types of emotion-focused strategies, A (i.e., self-blame, rumination) and B (e.g., acceptance, emotional distance). All subscales showed high internal consistency (α >0.85). Overall, as expected, problem-focused and emotion-focused B strategies correlated with higher quality of life, fewer sleep problems and less depression, and emotion-focused A strategies showed the opposite pattern. The regret coping scale (RCS-HCP) is a valid and reliable measure of coping abilities of hospital-based health-care professionals.

  11. Efficient free energy calculations by combining two complementary tempering sampling methods.

    Science.gov (United States)

    Xie, Liangxu; Shen, Lin; Chen, Zhe-Ning; Yang, Mingjun

    2017-01-14

    Although energy barriers can be efficiently crossed in the reaction coordinate (RC) guided sampling, this type of method suffers from identification of the correct RCs or requirements of high dimensionality of the defined RCs for a given system. If only the approximate RCs with significant barriers are used in the simulations, hidden energy barriers with small to medium height would exist in other degrees of freedom (DOFs) relevant to the target process and consequently cause the problem of insufficient sampling. To address the sampling in this so-called hidden barrier situation, here we propose an effective approach to combine temperature accelerated molecular dynamics (TAMD), an efficient RC-guided sampling method, with the integrated tempering sampling (ITS), a generalized ensemble sampling method. In this combined ITS-TAMD method, the sampling along the major RCs with high energy barriers is guided by TAMD and the sampling of the rest of the DOFs with lower but not negligible barriers is enhanced by ITS. The performance of ITS-TAMD to three systems in the processes with hidden barriers has been examined. In comparison to the standalone TAMD or ITS approach, the present hybrid method shows three main improvements. (1) Sampling efficiency can be improved at least five times even if in the presence of hidden energy barriers. (2) The canonical distribution can be more accurately recovered, from which the thermodynamic properties along other collective variables can be computed correctly. (3) The robustness of the selection of major RCs suggests that the dimensionality of necessary RCs can be reduced. Our work shows more potential applications of the ITS-TAMD method as the efficient and powerful tool for the investigation of a broad range of interesting cases.

  12. Reappraisal of the sequence boundary in time and space: Case and considerations for an SU (subaerial unconformity) that is not a sediment bypass surface, a time barrier, or an unconformity

    Science.gov (United States)

    Holbrook, John M.; Bhattacharya, Janok P.

    2012-07-01

    The sequence-bounding unconformity bears the key defining traits of being "a surface separating younger from older strata, along which there is evidence of subaerial erosional truncation … or subaerial exposure, with a significant hiatus indicated (Van Wagoner et al., 1988)." This subaerial component of sequence boundaries (subaerial unconformity—SU) is also broadly considered to form as a topographic surface of sediment bypass, carved during relative sea level fall and buried by backfilling during relative sea level rise. Accordingly, the SU is commonly presumed to record an approximate time barrier, which separates older from younger strata along its full length. In this paper we show that regional composite scour (RCS) surfaces that are traditionally mapped as an integral component of the SU were never a single subaerial topographic surface characterized by sediment bypass, are not unconformities, do not record an effective time barrier, and form diachronously at the channel-belt scale over the entire fall to rise of a base-level cycle. These RCS surfaces, and by inference the SU surfaces they comprise, thus do not fully fit key defining characteristics embodied in the conceptual sequence boundary. Flume observations and field data show that the RCS is buried by fluvial sediment simultaneously as it is scoured. Accordingly, the RCS is perennially covered with stored sediment during formation, is only exposed as a subaerial topographic surface at the local place and time where it is undergoing active growth, and forms over the duration of local marine drainage during a relative sea-level cycle. This "cut-and-cover" model differs greatly from more established "bypass" models, which assume that the RCS was roughly sediment free and subaerially exposed for long durations of incision during regression and thus preserves a significant depositional hiatus upon later burial. Instead, the RCS may commonly and locally record a hiatus more typical of a facies

  13. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm

    Science.gov (United States)

    Shareef, Hussain; Mohamed, Azah

    2017-01-01

    The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method. PMID:29220396

  14. Radar cross section of dipole phased arrays with parallel feed network

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book presents the detailed analytical formulation for the RCS of parallel-fed linear dipole array in the presence of mutual coupling. The radar cross section (RCS) of an object represents its electromagnetic (EM) scattering properties for a given incident wave. The analysis of scattered field is critical in military and defence arenas, especially while designing low-observable platforms. It is well-known that the presence of an antenna/array on the target influences its echo area significantly. The primary cause for such scattering of the incident signals is reflection that occurs within the antenna aperture and its feed network. In this book, the RCS estimation is done based on the signal path within the antenna system. The scattered field is expressed in terms of array design parameters including the reflection and transmission coefficients. The computed results show the variation in the RCS pattern with and without mutual coupling. The effect of finite dipole-length, inter-element spacing, scan angle,...

  15. Parallel-fed planar dipole antenna arrays for low-observable platforms

    CERN Document Server

    Singh, Hema; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on determination of scattering of parallel-fed planar dipole arrays in terms of reflection and transmission coefficients at different levels of the array system. In aerospace vehicles, the phased arrays are often in planar configuration. The radar cross section (RCS) of the vehicle is mainly due to its structure and the antennas mounted over it. There can be situation when the signatures due to antennas dominate over the structural RCS of the platform. This necessitates the study towards the reduction and control of antenna/ array RCS. The planar dipole array is considered as a stacked linear dipole array. A systematic, step-by-step approach is used to determine the RCS pattern including the finite dimensions of dipole antenna elements. The mutual impedance between the dipole elements for planar configuration is determined. The scattering till second-level of couplers in parallel feed network is taken into account. The phase shifters are modelled as delay line. All the couplers in the feed n...

  16. Evaluation of Coolant Injection Procedure in the Severe Accident Management Strategy of APR1400

    International Nuclear Information System (INIS)

    Cho, Yongjin; Lim, Kukhee; Song, Sungchu; Lee, Sukho; Hwang, Taesuk

    2013-01-01

    A coolant injection strategy in the severe accident management guideline (SAMG) of APR1400 relates to immediate coolant injection into RCS (Reactor Coolant System) or injection following the recovery of secondary coolant inventory. This strategy could play important role in accident mitigation and radiological consequences. In this study, appropriateness of the strategy was evaluated using MELCOR1.8.6 and several sensitivity studies of the key parameters were performed. Analysis for APR1400 using MELCOR 1.8.6 was performed to evaluate the effectiveness of accident management strategies and the following conclusions were identified. Sequential operation of secondary and RCS injection may not be the best strategy and the simultaneous injection of secondary and RCS injection could be more preferable. At least, the RCS injection should start before complete drainage of water in the safety injection tank using mobile pumps. In this study, the effectiveness of timing of operator action has been examined and the amount of injection flowrate needs to be studied in the future

  17. Improved approach for electric vehicle rapid charging station placement and sizing using Google maps and binary lightning search algorithm.

    Directory of Open Access Journals (Sweden)

    Md Mainul Islam

    Full Text Available The electric vehicle (EV is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS planning. A novel optimization technique, called binary lightning search algorithm (BLSA, is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.

  18. Space shuttle auxiliary propulsion system design study. Phase C report: Oxygen-hydrogen RCS/OMS integration study

    Science.gov (United States)

    Bruns, A. E.; Regnier, W. W.

    1972-01-01

    A comparison of the concepts of auxiliary propulsion systems proposed for the space shuttle vehicle is discussed. An evaluation of the potential of integration between the reaction control system and the orbit maneuvering system was conducted. Numerous methods of implementing the various levels of integration were evaluated. Preferred methods were selected and design points were developed for two fully integrated systems, one partially integrated system, and one separate system.

  19. Intentional back flow effects on ruptured steam generator cooldown during a SGTR event for KSNP

    International Nuclear Information System (INIS)

    Seok, Jeong Park; Cheol, Woo Kim; Chul, Jin Choi; Jong, Tae Seo

    2001-01-01

    For an optimum recovery from a Steam Generator Tube Rupture (SGTR) event, the operators are directed to isolate the steam generator (SG) with ruptured tube(s) as early as possible in order to minimize the radioactive material release. However, the Reactor Coolant System (RCS) cooldown and depressurization to the Residual Heat Removal (RHR) System operation conditions using the intact SG only can not be readily achievable unless the affected SG is properly cooled since the isolated SG remains at high temperature even though the RCS has been cooled down. Therefore, a study on the intentional back flow from the ruptured SG secondary side to the RCS was performed to evaluate its effectiveness on the ruptured SG cooldown during a SGTR event for the pressurized light water reactor, especially for the Korean Standard Nuclear Power Plant (KSNP). In order to evaluate the intentional back flow effect, a series of analyses was conducted by using RELAP5/MOD3 computer code. In these analyses, the primary and secondary systems of KSNP are modeled including the major Nuclear Steam Supply System (NSSS) components such as the reactor vessel, steam generators, hot and cold legs, pressurizer, and reactor coolant pumps. Also, the key safety systems and control systems are modeled. Using this model, two possible methods of the ruptured SG cooldown by using back flow after RCS cooldown were evaluated: the first method is a tube uncover method, and the second method is a SG drain (back flow) and fill method. (author)

  20. The comprehension of Italian relative clauses in poor readers and in children with Specific Language Impairment

    Directory of Open Access Journals (Sweden)

    Fabrizio Arosio

    2017-02-01

    Full Text Available Children with Specific Language Impairment (SLI and children with Developmental Dyslexia (DD have problems comprehending relative clauses (RCs and find object RCs more difficult than subject RCs, as do typically developing children. Few studies have compared these groups directly, leaving it unclear whether the problems observed in children with DD are similar to those described in SLI. Work with typically developing children has shown that the comprehension of passive RCs is less challenging than that of object RCs. It is argued that this asymmetry depends on intervention effects as modelized in a Relativized Minimality framework. Since movement is challenging for children with SLI and those with DD, examining and comparing their comprehension of object RCs and passive RCs can broaden our understanding of their language deficits. In fact, both structures involve movement, but the moved element and the movement configuration are different. In our study we investigated the comprehension of subject RCs, object RCs and passive RCs in 12 Italian monolingual children with SLI (mean age: 7;6, 13 Italian monolingual children with DD (mean age: 10;7 and 50 typically developing controls matched for age, grammar and vocabulary. Results from a picture selection task show that: (i subject RCs are unproblematic for all children; (ii object RCs are challenging for children with SLI, children with DD and younger typically developing controls; (iii passive RCs are better understood than object RCs in all groups, but still problematic for children with SLI and younger typically developing controls. Our data show that intervention effects are found in children with SLI and children with DD and that those with SLI have a deficit in transferring thematic roles to moved elements. Our results point out that some of the children with DD have a mild grammatical deficit that was undetected or escaped standardized tests.

  1. Systemic characterization and evaluation of particle packings as initial sets for discrete element simulations

    Science.gov (United States)

    Morfa, Carlos Recarey; Cortés, Lucía Argüelles; Farias, Márcio Muniz de; Morales, Irvin Pablo Pérez; Valera, Roberto Roselló; Oñate, Eugenio

    2018-07-01

    A methodology that comprises several characterization properties for particle packings is proposed in this paper. The methodology takes into account factors such as dimension and shape of particles, space occupation, homogeneity, connectivity and isotropy, among others. This classification and integration of several properties allows to carry out a characterization process to systemically evaluate the particle packings in order to guarantee the quality of the initial meshes in discrete element simulations, in both the micro- and the macroscales. Several new properties were created, and improvements in existing ones are presented. Properties from other disciplines were adapted to be used in the evaluation of particle systems. The methodology allows to easily characterize media at the level of the microscale (continuous geometries—steels, rocks microstructures, etc., and discrete geometries) and the macroscale. A global, systemic and integral system for characterizing and evaluating particle sets, based on fuzzy logic, is presented. Such system allows researchers to have a unique evaluation criterion based on the aim of their research. Examples of applications are shown.

  2. Systemic characterization and evaluation of particle packings as initial sets for discrete element simulations

    Science.gov (United States)

    Morfa, Carlos Recarey; Cortés, Lucía Argüelles; Farias, Márcio Muniz de; Morales, Irvin Pablo Pérez; Valera, Roberto Roselló; Oñate, Eugenio

    2017-10-01

    A methodology that comprises several characterization properties for particle packings is proposed in this paper. The methodology takes into account factors such as dimension and shape of particles, space occupation, homogeneity, connectivity and isotropy, among others. This classification and integration of several properties allows to carry out a characterization process to systemically evaluate the particle packings in order to guarantee the quality of the initial meshes in discrete element simulations, in both the micro- and the macroscales. Several new properties were created, and improvements in existing ones are presented. Properties from other disciplines were adapted to be used in the evaluation of particle systems. The methodology allows to easily characterize media at the level of the microscale (continuous geometries—steels, rocks microstructures, etc., and discrete geometries) and the macroscale. A global, systemic and integral system for characterizing and evaluating particle sets, based on fuzzy logic, is presented. Such system allows researchers to have a unique evaluation criterion based on the aim of their research. Examples of applications are shown.

  3. Loss of integrated control system power and overcooling transient at Rancho Seco on December 26, 1985

    International Nuclear Information System (INIS)

    1986-02-01

    On December 26, 1985, Rancho Seco Nuclear Generating Station, located in Clay, California, about 25 miles southeast of Sacramento, experienced a loss of dc power within the integrated control system (ICS) while the plant was operating at 76% power. The plant is owned by the Sacramento Municipal Utility District (SMUD). Following the loss of ICS dc power, the reactor tripped on high reactor coolant system (RCS) pressure followed by a rapid overcooling transient and automatic initiation of the safety features actuation system on low RCS pressure. The overcooling transient continued until ICS dc power was restored 26 minutes after its loss. The fundamental causes for this transient were design weaknesses and vulnerabilities in the ICS and in the equipment controlled by that system. These weaknesses and vulnerabilities were not adequately compensated by other design features, plant procedures or operator training. These weaknesses and vulnerabilities were largely known to SMUD and the NRC staff by virtue of a number of precursor events and through related analyses and studies. Yet, adequate plant modifications were not made so that this event would be improbable, or so that its course or consequences would be altered significantly. The information was available and known which could have prevented this overcooling transient; but in the absence of adequate plant modifications, the incident should have been expected. The report includes findings and conclusions of the NRC Incident Investigation Team sent to Rancho Seco by the NRC Executive Director for Operations in conformance with NRC's recently established Incident Investigation Program. 33 figs

  4. Reactor Coolant Temperature Measurement using Ultrasonic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, JaeCheon [KEPCO International Nuclear graduate School, Ulsan (Korea, Republic of); Seo, YongSun; Bechue, Nicholas [Krohne Messtechnik GmbH, Duisburg (Germany)

    2016-10-15

    In NPP, the primary piping temperature is detected by four redundant RTDs (Resistance Temperature Detectors) installed 90 degrees apart on the RCS (Reactor Coolant System) piping circumferentially. Such outputs however, if applied to I and C systems would not give balanced results. The discrepancy can be explained by either thermal stratification or improper arrangement of thermo-wells and RTDs. This phenomenon has become more pronounced in the hot-leg piping than in the cold-leg. Normally, the temperature difference among channels is in the range of 1°F in Korean nuclear power Plants. Consequently, a more accurate pipe average temperate measurement technique is required. Ultrasonic methods can be used to measure average temperatures with relatively higher accuracy than RTDs because the sound wave propagation in the RCS pipe is proportional to the average temperature around pipe area. The inaccuracy of RCS temperature measurement worsens the safety margin for both DNBR and LPD. The possibility of this discrepancy has been reported with thermal stratification effect. Proposed RCS temperature measurement system based on ultrasonic technology offers a countermeasure to cope with thermal stratification effect on hot-leg piping that has been an unresolved issue in NPPs. By introducing ultrasonic technology, the average internal piping temperature can be measured with high accuracy. The inaccuracy can be decreased less than ±1℉ by this method.

  5. COOLII code conversion from Cyber to HP

    International Nuclear Information System (INIS)

    Lee, Hae Cho; Kim, Hee Kyung

    1996-06-01

    COOLII computer code determines the time required to cooldown the plant from shutdown cooling system initiation condition to cold shutdown or refueling condition. Required time for cooldown is calculated under the various assumption on shutdown cooling heat exchanger(SDCHX) availability, reactor coolant system (RCS) low pressure safety injection(LPSI) flowrate. RCS cooldown rates and component cooling system flow rates. This report firstly describes detailed work carried out for installation of COOLII on HP 9000/700 series as well as relevant code validation results. Attached is a report on software verification and validation results. 7 refs. (Author) .new

  6. Generic aging management programs for license renewal of BWR reactor coolant systems components

    International Nuclear Information System (INIS)

    Shah, V.N.; Liu, Y.Y.

    2002-01-01

    The paper reviews the existing generic aging management programs (AMPs) for the reactor coolant system (RCS) components in boiling water reactors (BWRs), including the reactor pressure vessel and internals, the reactor recirculation system, and the connected piping. These programs have been evaluated in the U.S. Nuclear Regulatory Commission (NRC) report, Generic Aging Lessons Learned (GALL), NUREG-1801, for their use in the license renewal process to manage several aging effects, including loss of material, crack initiation and growth, loss of fracture toughness, loss of preload, wall thinning, and cumulative fatigue damage. The program evaluation includes a review of ten attributes (scope of program, preventive actions, parameters monitored/inspected, detection of aging effects, monitoring and trending, acceptance criteria, corrective actions, confirmative process, administrative control, and operating experience) for their effectiveness in managing a specific aging effect in a given component(s). The generic programs are based on the ASME Section XI inservice inspection requirements; industry guidelines for inspection and evaluation of aging effects in BWR reactor vessel, internals, and recirculation piping; monitoring and control of BWR water chemistry; and operating experience as reported in the USNRC generic communications and industry reports. The review concludes that all generic AMPs are acceptable for managing aging effects in BWR RCS components during an extended period of operation and do not need further evaluation. However, the plant-specific programs for managing aging in certain RCS components during an extended period of operation do require further evaluation. For some plant-specific AMPs, the GALL report recommends an aging management activity to verify their effectiveness. An example of such an activity is a one-time inspection of Class 1 small-bore piping to ensure that service-induced weld cracking is not occurring in the piping. Several of

  7. Generic Aging Management Programs for License Renewal of BWR Reactor Coolant System Components

    International Nuclear Information System (INIS)

    Shah, V.N.; Liu, Y.Y.

    2002-01-01

    The paper reviews the existing generic aging management programs (AMPs) for the reactor coolant system (RCS) components in boiling water reactors (BWRs), including the reactor pressure vessel and internals, the reactor recirculation system, and the connected piping. These programs have been evaluated in the U.S. Nuclear Regulatory Commission (NRC) report, Generic Aging Lessons Learned (GALL), NUREG-1801, for their use in the license renewal process to manage several aging effects, including loss of material, crack initiation and growth, loss of fracture toughness, loss of preload, wall thinning, and cumulative fatigue damage. The program evaluation includes a review of ten attributes (scope of program, preventive actions, parameters monitored/inspected, detection of aging effects, monitoring and trending, acceptance criteria, corrective actions, confirmative process, administrative control, and operating experience) for their effectiveness in managing a specific aging effect in a given component(s). The generic programs are based on the ASME Section XI inservice inspection requirements; industry guidelines for inspection and evaluation of aging effects in BWR reactor vessel, internals, and recirculation piping; monitoring and control of BWR water chemistry; and operating experience as reported in the USNRC generic communications and industry reports. The review concludes that all generic AMPs are acceptable for managing aging effects in BWR RCS components during an extended period of operation and do not need further evaluation. However, the plant-specific programs for managing aging in certain RCS components during an extended period of operation do require further evaluation. For some plant-specific AMPs, the GALL report recommends an aging management activity to verify their effectiveness. An example of such an activity is a one-time inspection of Class 1 small-bore piping to ensure that service-induced weld cracking is not occurring in the piping. Several of

  8. Multi-Use Non-Intrusive Flow Characterization System (FCS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Multi-Use Non-Intrusive Flow Characterization System (FCS) for densified, normal boiling point, and two-phase cryogenic flows, capable of...

  9. Inexpensive Measuring System for the Characterization of Organic Transistors

    Directory of Open Access Journals (Sweden)

    Clara Pérez-Fuster

    2018-01-01

    Full Text Available A measuring module has been specifically designed for the electrical characterization of organic semiconductor devices such as organic field effect transistors (OFETs and organic electrochemical transistors (OECTs according to the IEEE 1620-2008 standard. This device has been tested with OFETs based on 6,13-bis(triisopropylsilylethinylpentacene (TIPS-pentacene. The measuring system has been constructed using a NI-PXIe-1073 chassis with integrated controller and two NI-PXI-4132 programmable high-precision source measure units (SMUs that offer a four-quadrant ± 100 V output, with resolution down to 10 pA. LabVIEW™ has been used to develop the appropriate program. Most of the main OFET parameters included in the IEEE 1620 standard can be measured by means of this device. Although nowadays expensive devices for the characterization of Si-based transistors are available, devices for the characterization of organic transistors are not yet widespread in the market. Fabrication of a specific and flexible module that can be used to characterize this type of transistors would provide a powerful tool to researchers.

  10. A robotic system to characterize soft tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Lipsett, M.G.; Dwyer, S.C. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2009-07-01

    A robotic system for characterizing soft tailings deposits was discussed in this presentation. The system was developed to reduce variability in feedstocks and process performance as well as to improve the trafficability of composite tailings (CT). The method was designed to reliably sample different locations of a soft deposit. Sensors were used to determine water content, clay content, organic matter, and strength. The system included an autonomous rover with a sensor package and teleoperation capability. The system was also designed to be used without automatic controls. The wheeled mobile robot was used to conduct ground contact and soil measurements. The gas-powered robot included on-board microcontrollers and a host computer. The system also featured traction control and fault recovery sub-systems. Wheel contact was used to estimate soil parameters. It was concluded that further research is needed to improve traction control and soil parameter estimation testing capabilities. Overall system block diagrams were included. tabs., figs.

  11. Characterization and evaluation studies on some JAERI dosimetry systems

    International Nuclear Information System (INIS)

    Kojima, T.; Sunaga, H.; Tachibana, H.; Takizawa, H.; Tanaka, R.

    2000-01-01

    Characterization and evaluation studies were carried out on some JAERI dosimetry systems, mainly alanine-ESR, in terms of the influence on the dose response of parameters such as orientation at ESR analysis, and the temperature during irradiation and analysis. Feasibility study for application of these dosimetry systems to electrons with energies lower than 4 MeV and bremsstrahlung (X rays) was also performed parallel to their reliability check through international dose intercomparison. (author)

  12. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system

    International Nuclear Information System (INIS)

    Kendrick, D.T.; Cremer, C.D.; Lowry, W.; Cramer, E.

    1995-01-01

    The U.S. Department of Energy's nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer trademark system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane. Advantages of this approach include the capability of deploying through constrictions in the pipe, around 90 degrees bends, vertically up and down, and in slippery conditions. Because the detector is transported inside the membrane (which is inexpensive and disposable), it is protected from contamination, which eliminates cross-contamination. Characterization sensors that have been demonstrated with the system thus far include: gamma detectors, beta detectors, video cameras, and pipe locators. Alpha measurement capability is currently under development. A remotely operable Pipe Explorer trademark system has been developed and demonstrated for use in DOE facilities in the decommissioning stage. The system is capable of deployment in pipes as small as 2-inch-diameter and up to 250 feet long. This paper describes the technology and presents measurement results of a field demonstration conducted with the Pipe Explorer trademark system at a DOE site. These measurements identify surface activity levels of U-238 contamination as a function of location in drain lines. Cost savings to the DOE of approximately $1.5 million dollars were realized from this one demonstration

  13. Portable vibro-acoustic testing system for in situ microstructure characterization and metrology

    Science.gov (United States)

    Smith, James A.; Nichol, Corrie I.; Zuck, Larry D.; Fatemi, Mostafa

    2018-04-01

    There is a need in research reactors like the one at INL to inspect irradiated materials and structures. The goal of this work is to develop a portable scanning infrastructure for a material characterization technique called vibro-acoustography (VA) that has been developed by the Idaho National laboratory for nuclear applications to characterize fuel, cladding materials, and structures. The proposed VA technology is based on ultrasound and acoustic waves; however, it provides information beyond what is available from the traditional ultrasound techniques and can expand the knowledge on nuclear material characterization and microstructure evolution. This paper will report on the development of a portable scanning system that will be set up to characterize materials and components in open water reactors and canals in situ. We will show some initial laboratory results of images generated by vibro-acoustics of surrogate fuel plates and graphite structures and discuss the design of the portable system.

  14. Characterization of radioactive contamination inside pipes with the Pipe Explorer{sup trademark} system

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.D.; Lowry, W.; Cramer, E. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [and others

    1995-10-01

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Difficulty, or inability of measuring threshold surface contamination values, worker exposure, and physical access constraints have limited the effectiveness of this approach. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane.

  15. NO PLIF Visualizations of the Orion Capsule in LENS-I

    Science.gov (United States)

    Combs, C.; Clemens, N.; Danehy, P. M.; Bathel, B.; Parker, R.; Wadhams, T.; Holden, M.; Kirk, B.

    2013-01-01

    Planar laser-induced fluorescence (PLIF) of nitric oxide (NO) was used to visualize the interaction of reaction-control-system (RCS) jet flows in the wake of a hypersonic capsule reentry vehicle. The tests were performed at the Calspan University at Buffalo Research Center's (CUBRC) LENS-I reflected shock tunnel facility. This was the first application of PLIF to study RCS jets in a large-scale pulsed hypersonic facility. The LENS-I facility allowed RCS jet flows to be studied while varying the flow enthalpy, Reynolds number, angle of attack and jet configuration. The interaction of pitch and roll jets with the flowfield was investigated. Additionally, thin film sensors were used to monitor heat transfer on the surface of the model to detect any localized heating resulting from the firing of the RCS jets. Tests were conducted with the model held at angles of attack of 18deg and 22deg. The nominal Mach number in all tests was 8, while Reynolds number based on model diameter ranged from 2.2x10(exp 6) - 1.5x10(exp 7). Images were processed using the Virtual Diagnostics Interface (ViDI) system developed at NASA Langley Research Center to provide a three-dimensional display of the experimental data.

  16. Multitechnique characterisation of 304L surface states oxidised at high temperature in steam and air atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Mamede, Anne-Sophie, E-mail: anne-sophie.mamede@ensc-lille.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Nuns, Nicolas, E-mail: nicolas.nuns@univ-lille1.fr [University Lille, CNRS, ENSCL, Centrale Lille, University Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Cristol, Anne-Lise, E-mail: anne-lise.cristol@ec-lille.fr [University Lille, CNRS, Centrale Lille, Arts et Métiers Paris Tech, FRE 3723 – LML – Laboratoire de Mécanique de Lille, F-59000 Lille (France); Cantrel, Laurent, E-mail: laurent.cantrel@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); Souvi, Sidi, E-mail: sidi.souvi@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, PSN-RES, Cadarache, Saint Paul lez Durance, 13115 (France); Laboratoire de Recherche Commun IRSN-CNRS-Lille 1: «Cinétique Chimique, Combustion, Réactivité» (C3R), Cadarache, Saint Paul lez Durance, 13115 (France); and others

    2016-04-30

    Graphical abstract: - Highlights: • Mutitechnique characterisation of oxidised 304L. • Oxidation at high temperature under steam and air conditions of 304L stainless steel. • Chromium and manganese oxides formed in the outer layer. • Oxide profiles differ in air or steam atmosphere. - Abstract: In case of a severe accident occurring in a nuclear reactor, surfaces of the reactor coolant system (RCS), made of stainless steel (304L) rich in Cr (>10%) and Ni (8–12%), are oxidised. Fission products (FPs) are released from melt fuel and flow through the RCS. A part of them is deposited onto surfaces either by vapour condensation or by aerosol deposition mechanisms. To be able to understand the nature of interactions between these FPs and the RCS surfaces, a preliminary step is to characterize the RSC surface states in steam and air atmosphere at high temperatures. Pieces of 304L stainless steel have been treated in a flow reactor at two different temperatures (750 °C and 950 °C) for two different exposition times (24 h and 72 h). After surfaces analysing by a unique combination of surface analysis techniques (XPS, ToF-SIMS and LEIS), for 304L, the results show a deep oxide scale with multi layers and the outer layer is composed of chromium and manganese oxides. Oxide profiles differ in air or steam atmosphere. Fe{sub 2}O{sub 3} oxide is observed but in minor proportion and in all cases no nickel is detected near the surface. Results obtained are discussed and compared with the literature data.

  17. Warship Radar Signatures (Ship Survivability Part III-A)

    NARCIS (Netherlands)

    Galle, L.F.; Heemskerk, H.J.M.; Ewijk, L.J. van

    2000-01-01

    Radar Cross Section (RCS) management is of paramount importance for a warships's survivability. In this first part of the paper (Part III-A), the operational benefits of low RCS will be explained. Basic RCS theory, measurement and simulation techniques will be addressed. The RCS of representative

  18. How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes

    Science.gov (United States)

    Bryant, Donald A.; Canniffe, Daniel P.

    2018-02-01

    Chlorophyll-based phototrophs, or chlorophototrophs, convert light energy into stored chemical potential energy using two types of photochemical reaction center (RC), denoted type-1 and type-2. After excitation with light, a so-called special pair of chlorophylls in the RC is oxidized, and an acceptor is reduced. To ensure that RCs function at maximal rates in diffuse and variable light conditions, chlorophototrophs have independently evolved diverse light-harvesting antenna systems to rapidly and efficiently transfer that energy to the RCs. Energy transfer between weakly coupled chromophores is generally believed to proceed by resonance energy transfer, a dipole-induced-dipole process that was initially described theoretically by Förster. Nature principally optimizes three parameters in antenna systems: the distance separating the donor and acceptor chromophores, the relative orientations of those chromophores, and the spectral overlap between the donor and the acceptor chromophores. However, there are other important biological parameters that nature has optimized, and some common themes emerge from comparisons of different antenna systems. This tutorial considers structural and functional characteristics of three fundamentally different light-harvesting antenna systems of chlorophotrophic bacteria: phycobilisomes of cyanobacteria, the light-harvesting complexes (LH1 and LH2) of purple bacteria, and chlorosomes of green bacteria. Phycobilisomes are generally considered to represent an antenna system in which the chromophores are weakly coupled, while the strongly coupled bacteriochlorophyll molecules in LH1 and LH2 are strongly coupled and are better described by exciton theory. Chlorosomes can contain up to 250 000 bacteriochlorophyll molecules, which are very strongly coupled and form supramolecular, nanotubular arrays. The general and specific principles that have been optimized by natural selection during the evolution of these diverse light

  19. Momentum Management for the NASA Near Earth Asteroid Scout Solar Sail Mission

    Science.gov (United States)

    Heaton, Andrew; Diedrich, Benjamin L.; Orphee, Juan; Stiltner, Brandon; Becker, Christopher

    2017-01-01

    The Momentum Management (MM) system is described for the NASA Near Earth Asteroid Scout (NEA Scout) cubesat solar sail mission. Unlike many solar sail mission proposals that used solar torque as the primary or only attitude control system, NEA Scout uses small reaction wheels (RW) and a reaction control system (RCS) with cold gas thrusters, as described in the abstract "Solar Sail Attitude Control System for Near Earth Asteroid Scout Cubesat Mission." The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The MM system keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS.

  20. Characterization of a system for measurements on soft ferrites

    International Nuclear Information System (INIS)

    Adamo, F; Attivissimo, F; Marracci, M; Tellini, B

    2012-01-01

    This paper deals with the characterization of a system for measurements on soft ferrites through a volt-amperometric method. The accurate control of the driving input field is discussed as a critical aspect for the definition of the correct operating conditions on the magnetic sample. A custom-built transimpedance amplifier is characterized in terms of total harmonic distortion and signal-to-noise and distortion ratio of the primary current and shown as a valid configuration for the required purposes. As a main contribution, the uncertainty analyses of the major loop measurement and of the magnetic accommodation measurement of minor asymmetric loops are provided. (paper)

  1. Design and development of a data acquisition system for photovoltaic modules characterization

    Energy Technology Data Exchange (ETDEWEB)

    Belmili, Hocine [Unite de Developpement des Equipements Solaires (UDES), Route Nationale No11, Bou-Isamil BP 365, Tipaza 42415, Algerie; Ait Cheikh, Salah Med; Haddadi, Mourad; Larbes, Cherif [Ecole Nationale Polytechnique, Laboratoire de Dispositifs de Communication et de Conversion Photovoltaique (LDCCP), 10 Avenue Hassen Badi, El Harrach 16200 Alger (Algeria)

    2010-07-15

    Testing photovoltaic generators performance is complicated. This is due to the influence of a variety of interactive parameters related to the environment such as solar irradiation and temperature in addition to solar cell material (mono-crystalline, poly-crystalline, amorphous and thin films). This paper presents a computer-based instrumentation system for the characterization of the photovoltaic (PV) conversion. It based on a design of a data acquisition system (DAQS) allowing the acquisition and the drawing of the characterization measure of PV modules in real meteorological test conditions. (author)

  2. Environment, safety, and health regulatory implementation plan

    International Nuclear Information System (INIS)

    1993-01-01

    To identify, document, and maintain the Uranium Mill Tailings Remedial Action (UMTRA) Project's environment, safety, and health (ES ampersand H) regulatory requirements, the US Department of Energy (DOE) UMTRA Project Office tasked the Technical Assistance Contractor (TAC) to develop a regulatory operating envelope for the UMTRA Project. The system selected for managing the UMTRA regulatory operating envelope data bass is based on the Integrated Project Control/Regulatory Compliance System (IPC/RCS) developed by WASTREN, Inc. (WASTREN, 1993). The IPC/RCS is a tool used for identifying regulatory and institutional requirements and indexing them to hardware, personnel, and program systems on a project. The IPC/RCS will be customized for the UMTRA Project surface remedial action and groundwater restoration programs. The purpose of this plan is to establish the process for implementing and maintaining the UMTRA Project's regulatory operating envelope, which involves identifying all applicable regulatory and institutional requirements and determining compliance status. The plan describes how the Project will identify ES ampersand H regulatory requirements, analyze applicability to the UMTRA Project, and evaluate UMTRA Project compliance status

  3. Ultrafast characterization of optoelectronic devices and systems

    Science.gov (United States)

    Zheng, Xuemei

    The recent fast growth in high-speed electronics and optoelectronics has placed demanding requirements on testing tools. Electro-optic (EO) sampling is a well-established technique for characterization of high-speed electronic and optoelectronic devices and circuits. However, with the progress in device miniaturization, lower power consumption (smaller signal), and higher throughput (higher clock rate), EO sampling also needs to be updated, accordingly, towards better signal-to-noise ratio (SNR) and sensitivity, without speed sacrifice. In this thesis, a novel EO sampler with a single-crystal organic 4-dimethylamino-N-methy-4-stilbazolium tosylate (DAST) as the EO sensor is developed. The system exhibits sub-picosecond temporal resolution, sub-millivolt sensitivity, and a 10-fold improvement on SNR, compared with its LiTaO3 counterpart. The success is attributed to the very high EO coefficient, the very low dielectric constant, and the fast response, coming from the major contribution of the pi-electrons in DAST. With the advance of ultrafast laser technology, low-noise and compact femtosecond fiber lasers have come to maturation and become light-source options for ultrafast metrology systems. We have successfully integrated a femtosecond erbium-doped-fiber laser into an EO sampler, making the system compact and very reliable. The fact that EO sampling is essentially an impulse-response measurement process, requires integration of ultrashort (sub-picosecond) impulse generation network with the device under test. We have implemented a reliable lift-off and transfer technique in order to obtain epitaxial-quality freestanding low-temperature-grown GaAs (LT-GaAs) thin-film photo-switches, which can be integrated with many substrates. The photoresponse of our freestanding LT-GaAs devices was thoroughly characterized with the help of our EO sampler. As fast as 360 fs full-width-at-half-maximum (FWHM) and >1 V electrical pulses were obtained, with quantum efficiency

  4. Effects of nano-SiO{sub 2} particles on surface tracking characteristics of silicone rubber composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong, E-mail: tjuliuyong@tju.edu.cn; Li, Zhonglei; Du, Boxue [Key Laboratory of Smart Grid of Ministry of Education (Tianjin University), School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2014-09-08

    Compared with neat silicone rubber composites (SiRCs), SiRCs filled with nano-sized SiO{sub 2} particles at weight ratios from 0.1 to 1.0 wt. % exhibit a higher surface flashover voltage and a greater resistance to surface tracking. Scanning electron microscopy images of tracking morphologies indicate that the SiO{sub 2} particles are situated in close proximity to the polymeric chains and act as bridges to stabilize the chains and maintain the structure of the composite. Higher concentrations of nano-sized SiO{sub 2} particles, however, (above 0.3 wt. %) produce defects in the molecular network which lead to reductions in both the surface flashover voltage and the resistance to surface tracking, although these reduced values are still superior to those of neat SiRCs. Therefore, SiRCs filled with nano-sized SiO{sub 2} particles, especially at an optimal weight ratio (0.1 to 0.3 wt. %), may have significant potential applications as outdoor insulators for power systems.

  5. Joint passive radar tracking and target classification using radar cross section

    Science.gov (United States)

    Herman, Shawn M.

    2004-01-01

    We present a recursive Bayesian solution for the problem of joint tracking and classification of airborne targets. In our system, we allow for complications due to multiple targets, false alarms, and missed detections. More importantly, though, we utilize the full benefit of a joint approach by implementing our tracker using an aerodynamically valid flight model that requires aircraft-specific coefficients such as wing area and vehicle mass, which are provided by our classifier. A key feature that bridges the gap between tracking and classification is radar cross section (RCS). By modeling the true deterministic relationship that exists between RCS and target aspect, we are able to gain both valuable class information and an estimate of target orientation. However, the lack of a closed-form relationship between RCS and target aspect prevents us from using the Kalman filter or its variants. Instead, we rely upon a sequential Monte Carlo-based approach known as particle filtering. In addition to allowing us to include RCS as a measurement, the particle filter also simplifies the implementation of our nonlinear non-Gaussian flight model.

  6. OPR1000 RCP Flow Coastdown Analysis using SPACE Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Hyuk; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The Korean nuclear industry developed a thermal-hydraulic analysis code for the safety analysis of PWRs, named SPACE(Safety and Performance Analysis Code for Nuclear Power Plant). Current loss of flow transient analysis of OPR1000 uses COAST code to calculate transient RCS(Reactor Coolant System) flow. The COAST code calculates RCS loop flow using pump performance curves and RCP(Reactor Coolant Pump) inertia. In this paper, SPACE code is used to reproduce RCS flowrates calculated by COAST code. The loss of flow transient is transient initiated by reduction of forced reactor coolant circulation. Typical loss of flow transients are complete loss of flow(CLOF) and locked rotor(LR). OPR1000 RCP flow coastdown analysis was performed using SPACE using simplified nodalization. Complete loss of flow(4 RCP trip) was analyzed. The results show good agreement with those from COAST code, which is CE code for calculating RCS flow during loss of flow transients. Through this study, we confirmed that SPACE code can be used instead of COAST code for RCP flow coastdown analysis.

  7. Sohbrit: Autonomous COTS System for Satellite Characterization

    Science.gov (United States)

    Blazier, N.; Tarin, S.; Wells, M.; Brown, N.; Nandy, P.; Woodbury, D.

    As technology continues to improve, driving down the cost of commercial astronomical products while increasing their capabilities, manpower to run observations has become the limiting factor in acquiring continuous and repeatable space situational awareness data. Sandia National Laboratories set out to automate a testbed comprised entirely of commercial off-the-shelf (COTS) hardware for space object characterization (SOC) focusing on satellites in geosynchronous orbit. Using an entirely autonomous system allows collection parameters such as target illumination and nightly overlap to be accounted for habitually; this enables repeatable development of target light curves to establish patterns of life in a variety of spectral bands. The system, known as Sohbrit, is responsible for autonomously creating an optimized schedule, checking the weather, opening the observatory dome, aligning and focusing the telescope, executing the schedule by slewing to each target and imaging it in a number of spectral bands (e.g., B, V, R, I, wide-open) via a filter wheel, closing the dome at the end of observations, processing the data, and storing/disseminating the data for exploitation via the web. Sohbrit must handle various situations such as weather outages and focus changes due to temperature shifts and optical seeing variations without human interaction. Sohbrit can collect large volumes of data nightly due to its high level of automation. To store and disseminate these large quantities of data, we utilize a cloud-based big data architecture called Firebird, which exposes the data out to the community for use by developers and analysts. Sohbrit is the first COTS system we are aware of to automate the full process of multispectral geosynchronous characterization from scheduling all the way to processed, disseminated data. In this paper we will discuss design decisions, issues encountered and overcome during implementation, and show results produced by Sohbrit.

  8. Visual Servoing-Based Nanorobotic System for Automated Electrical Characterization of Nanotubes inside SEM.

    Science.gov (United States)

    Ding, Huiyang; Shi, Chaoyang; Ma, Li; Yang, Zhan; Wang, Mingyu; Wang, Yaqiong; Chen, Tao; Sun, Lining; Toshio, Fukuda

    2018-04-08

    The maneuvering and electrical characterization of nanotubes inside a scanning electron microscope (SEM) has historically been time-consuming and laborious for operators. Before the development of automated nanomanipulation-enabled techniques for the performance of pick-and-place and characterization of nanoobjects, these functions were still incomplete and largely operated manually. In this paper, a dual-probe nanomanipulation system vision-based feedback was demonstrated to automatically perform 3D nanomanipulation tasks, to investigate the electrical characterization of nanotubes. The XY-position of Atomic Force Microscope (AFM) cantilevers and individual carbon nanotubes (CNTs) were precisely recognized via a series of image processing operations. A coarse-to-fine positioning strategy in the Z-direction was applied through the combination of the sharpness-based depth estimation method and the contact-detection method. The use of nanorobotic magnification-regulated speed aided in improving working efficiency and reliability. Additionally, we proposed automated alignment of manipulator axes by visual tracking the movement trajectory of the end effector. The experimental results indicate the system's capability for automated measurement electrical characterization of CNTs. Furthermore, the automated nanomanipulation system has the potential to be extended to other nanomanipulation tasks.

  9. Modular 3-D solid finite element model for fatigue analyses of a PWR coolant system

    International Nuclear Information System (INIS)

    Garrido, Oriol Costa; Cizelj, Leon; Simonovski, Igor

    2012-01-01

    Highlights: ► A 3-D model of a reactor coolant system for fatigue usage assessment. ► The performed simulations are a heat transfer and stress analyses. ► The main results are the expected ranges of fatigue loadings. - Abstract: The extension of operational licenses of second generation pressurized water reactor (PWR) nuclear power plants depends to a large extent on the analyses of fatigue usage of the reactor coolant pressure boundary. The reliable estimation of the fatigue usage requires detailed thermal and stress analyses of the affected components. Analyses, based upon the in-service transient loads should be compared to the loads analyzed at the design stage. The thermal and stress transients can be efficiently analyzed using the finite element method. This requires that a 3-D solid model of a given system is discretized with finite elements (FE). The FE mesh density is crucial for both the accuracy and the cost of the analysis. The main goal of the paper is to propose a set of computational tools which assist a user in a deployment of modular spatial FE model of main components of a typical reactor coolant system, e.g., pipes, pressure vessels and pumps. The modularity ensures that the components can be analyzed individually or in a system. Also, individual components can be meshed with different mesh densities, as required by the specifics of the particular transient studied. For optimal accuracy, all components are meshed with hexahedral elements with quadratic interpolation. The performance of the model is demonstrated with simulations performed with a complete two-loop PWR coolant system (RCS). Heat transfer analysis and stress analysis for a complete loading and unloading cycle of the RCS are performed. The main results include expected ranges of fatigue loading for the pipe lines and coolant pump components under the given conditions.

  10. Characterization of natural ventilation in wastewater collection systems.

    Science.gov (United States)

    Ward, Matthew; Corsi, Richard; Morton, Robert; Knapp, Tom; Apgar, Dirk; Quigley, Chris; Easter, Chris; Witherspoon, Jay; Pramanik, Amit; Parker, Wayne

    2011-03-01

    The purpose of the study was to characterize natural ventilation in full-scale gravity collection system components while measuring other parameters related to ventilation. Experiments were completed at four different locations in the wastewater collection systems of Los Angeles County Sanitation Districts, Los Angeles, California, and the King County Wastewater Treatment District, Seattle, Washington. The subject components were concrete gravity pipes ranging in diameter from 0.8 to 2.4 m (33 to 96 in.). Air velocity was measured in each pipe using a carbon-monoxide pulse tracer method. Air velocity was measured entering or exiting the components at vents using a standpipe and hotwire anemometer arrangement. Ambient wind speed, temperature, and relative humidity; headspace temperature and relative humidity; and wastewater flow and temperature were measured. The field experiments resulted in a large database of measured ventilation and related parameters characterizing ventilation in full-scale gravity sewers. Measured ventilation rates ranged from 23 to 840 L/s. The experimental data was used to evaluate existing ventilation models. Three models that were based upon empirical extrapolation, computational fluid dynamics, and thermodynamics, respectively, were evaluated based on predictive accuracy compared to the measured data. Strengths and weaknesses in each model were found and these observations were used to propose a concept for an improved ventilation model.

  11. NREL Integrate: RCS-4-42326

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Waight, Jim [OMNETRIC Group, Palo Alto, CA (united States); Grover, Shailendra [OMNETRIC Group, Palo Alto, CA (united States); Laval, Stuart [Duke Energy, Palo Alto, CA (United States); Sheppard, Les [Univ. of Texas, San Antonio, TX (United States); Boston, James [CPS Energy, San Antonio, TX (United States)

    2018-02-28

    OMNETRIC Corp., Duke Energy, CPS Energy, and the University of Texas at San Antonio (UTSA) created a project team to execute the project 'OpenFMB Reference Architecture Demonstration.' The project included development and demonstration of concepts that will enable the electric utility grid to host larger penetrations of renewable resources. The project concept calls for the aggregation of renewable resources and loads into microgrids and the control of these microgrids with an implementation of the OpenFMB Reference Architecture. The production of power from the renewable resources that are appearing on the grid today is very closely linked to the weather. The difficulty of forecasting the weather, which is well understood, leads to difficulty in forecasting the production of renewable resources. The current state of the art in forecasting the power production from renewables (solar PV and wind) are accuracies in the range of 12-25 percent NMAE. In contrast the demand for electricity aggregated to the system level, is easier to predict. The state of the art of demand forecasting done, 24 hours ahead, is about 2-3% MAPE. Forecasting the load to be supplied from conventional resources (demand minus generation from renewable resources) is thus very hard to forecast. This means that even a few hours before the time of consumption, there can be considerable uncertainty over what must be done to balance supply and demand. Adding to the problem of difficulty of forecasting, is the reality of the variability of the actual production of power from renewables. Due to the variability of wind speeds and solar insolation, the actual output of power from renewable resources can vary significantly over a short period of time. Gusts of winds result is variation of power output of wind turbines. The shadows of clouds moving over solar PV arrays result in the variation of power production of the array. This compounds the problem of balancing supply and demand in real time

  12. ASPECT (Automated System-level Performance Evaluation and Characterization Tool), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI has developed a suite of SAA tools and an analysis capability referred to as ASPECT (Automated System-level Performance Evaluation and Characterization Tool)....

  13. Functional requirements for gas characterization system computer software

    International Nuclear Information System (INIS)

    Tate, D.D.

    1996-01-01

    This document provides the Functional Requirements for the Computer Software operating the Gas Characterization System (GCS), which monitors the combustible gasses in the vapor space of selected tanks. Necessary computer functions are defined to support design, testing, operation, and change control. The GCS requires several individual computers to address the control and data acquisition functions of instruments and sensors. These computers are networked for communication, and must multi-task to accommodate operation in parallel

  14. Characterization of plasticized PEO-PAM blend polymer electrolyte system

    Science.gov (United States)

    Dave, Gargi; Kanchan, Dinesh

    2017-05-01

    Present study reports characterization studies of NaCF3SO3 based PEO-PAM Blend Polymer Electrolyte (BPE) system with varying amount of EC+PC as plasticizer prepared by solution cast technique. Structural analysis and surface topography have been performed using FTIR and SEM studies. To understand, thermal properties, DSC studies have been undertaken in the present paper

  15. Design and manufacture of radar absorbing wind turbine blades - final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-15

    This report describes the results of a collaborative project between QinetiQ Ltd and NOI (Scotland) Ltd to design and manufacture radar absorbent wind turbine blades. The main objectives were to: use predictive modelling to understand the contribution made by the blade to radar cross section (RCS) of the complete turbine; confirm that the turbine RCS could feasibility be reduced to appropriate levels through the use of radar absorbent material (RAM); and to demonstrate that introduction of stealth technology within current composite sections would allow RAM variants of the blade materials to be manufactured with minimal impact on the structure. The RCS of a turbine was predicted at frequencies at which representative air traffic control (ATC), weather and marine navigation radar systems operate. The material compositions that exist on the blades produced by NOI were studied and methods by which RAM could be introduced to each region were identified. RCS predictions for a blade having RAM over its surface were then repeated. The study showed that it was possible to modify all material regions of the NOI blades to create RAM with little or no degradation in structural properties, thus reducing detection by non-Doppler radar and ATC radars. A full practical demonstration of a stealthy turbine is recommended to allow the benefits of RCS reduction through the use of RAM to be quantified by all stakeholders.

  16. Optimization of Passive Coherent Receiver System Placement

    Science.gov (United States)

    2013-09-01

    spheroid object with a constant radar cross section (RCS). Additionally, the receiver and transmitters are assumed to be notional isotropic antennae...software- defined radio for equatorial plasma instability studies,” Radio Science, vol. 48, pp. 1–11. Aug. 2013. [2] P. C. Zhang and B. Y. Li, “Passive

  17. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida

    Science.gov (United States)

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  18. Design of a Super High Frequency (SHF) Extremely High Frequency (EHF) Satellite Communications (SATCOM) Terminal (SEST) for New Construction Naval Surface Ships using the systems engineering process

    OpenAIRE

    Harrell, Steven B.

    1996-01-01

    Alternative means of satisfying the high bandwidth and protected communications requirements for New Construction Naval Surface Ships in the midst of conflicting reduced radar cross section (RCS) requirements were investigated using the systems engineering process. Various antenna, ranging from parabolic dish antennas to Luneberg lens antennas to phased array antennas, and feed and amplifier combinations were considered to provide a dual-band Super High Frequency (SHF) and Extr...

  19. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    Energy Technology Data Exchange (ETDEWEB)

    Lombigit, L., E-mail: lojius@nm.gov.my; Yussup, N., E-mail: nolida@nm.gov.my; Ibrahim, Maslina Mohd; Rahman, Nur Aira Abd; Rawi, M. Z. M. [Instrumentation Group, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2015-04-29

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume.

  20. Characterization of liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system

    International Nuclear Information System (INIS)

    Lombigit, L.; Yussup, N.; Ibrahim, Maslina Mohd; Rahman, Nur Aira Abd; Rawi, M. Z. M.

    2015-01-01

    A digital n/γ pulse shape discrimination (PSD) system is currently under development at Instrumentation and Automation Centre, Malaysian Nuclear Agency. This system aims at simultaneous detection of fast neutron and gamma ray in mixed radiations environment. This work reports the system characterization performed on the liquid scintillation detector (BC-501A) and digital pulse shape discrimination (DPSD) system. The characterization involves measurement of electron light output from the BC-501A detector and energy channels calibration of the pulse height spectra acquired with DPSD system using set of photon reference sources. The main goal of this experiment is to calibrate the ADC channel of our DPSD system, characterized the BC-501 detector and find the position of Compton edge which later could be used as threshold for the n/γ PSD experiment. The detector resolution however is worse as compared to other published data but it is expected as our detector has a smaller active volume

  1. Particle and particle systems characterization small-angle scattering (SAS) applications

    CERN Document Server

    Gille, Wilfried

    2016-01-01

    Small-angle scattering (SAS) is the premier technique for the characterization of disordered nanoscale particle ensembles. SAS is produced by the particle as a whole and does not depend in any way on the internal crystal structure of the particle. Since the first applications of X-ray scattering in the 1930s, SAS has developed into a standard method in the field of materials science. SAS is a non-destructive method and can be directly applied for solid and liquid samples. Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications is geared to any scientist who might want to apply SAS to study tightly packed particle ensembles using elements of stochastic geometry. After completing the book, the reader should be able to demonstrate detailed knowledge of the application of SAS for the characterization of physical and chemical materials.

  2. Inflight performance of the Ulysses reaction control system

    Science.gov (United States)

    McGarry, Andrew; Berry, William; Parker, David

    1997-01-01

    The Ulysses spacecraft has been exploring the heliosphere since October 1990 in a six-year polar orbit. Despite varying operational demands, the pressure-fed monopropellant hydrazine reaction control system (RCS) has experienced few problems. The observed anomalies, having minimal operational impact, include plume impingement effects, electrical power overload effects and hydrazine gas generation effects. These anomalies are presented and discussed, with emphasis on the first observation of gas in the hydrazine propellant. The relatively low gas generation rate is attributed to: the use of high purity hydrazine; the configuration of the spin-stabilized spacecraft; the extensive use of titanium alloys; and the efficiency of the thermal control of the propellant tank which maintains a temperature of 21 C.

  3. PV led engine characterization lab for standalone light to light systems

    DEFF Research Database (Denmark)

    Thorsteinsson, Sune; Poulsen, Peter Behrensdorff; Lindén, Johannes

    2014-01-01

    PV-powered lighting systems, light-to-light systems (L2L), offer outdoor lighting where it is else where cumbersome to enable lighting. Application of these systems at high latitudes, where the difference in day length between summer and winter is large and the solar energy is low requires smart...... dimming functions for reliable lighting. In this work we have built a laboratory to characterize these systems up to 200 Wp from “nose to tail” in great details to support improvement of the systems and to make accurate field performance predictions....

  4. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    Science.gov (United States)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  5. Management system information of characterization of the dismantling project of Jose Cabrera

    International Nuclear Information System (INIS)

    Gimeno Blesa, M. E.; Martin Palomo, N.; Gomez Rodriguez, C. A.

    2011-01-01

    In the proposed dismantling and decommissioning of the Jose Cabrera NPP is designed and implemented a database of physical and radiological inventory, which provides a powerful tool to optimize the storage, monitoring and control of the characterization data. The database is a useful and reliable management system characterization information that facilitates access and information processing, and ensures their integrity and traceability along of the dismantling project.

  6. Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-09-30

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE`s need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer{trademark} system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer{trademark} development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer{trademark} system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer{trademark} and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer{trademark} system in Section 6.

  7. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system. Final report

    International Nuclear Information System (INIS)

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-01-01

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE's need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer trademark system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer trademark development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer trademark system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer trademark and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer trademark system in Section 6

  8. Geomechanical characterization of volcanic rocks using empirical systems and data mining techniques

    OpenAIRE

    T. Miranda; L.R. Sousa; A.T. Gomes; J. Tinoco; C. Ferreira

    2018-01-01

    This paper tries to characterize volcanic rocks through the development and application of an empirical geomechanical system. Geotechnical information was collected from the samples from several Atlantic Ocean islands including Madeira, Azores and Canarias archipelagos. An empirical rock classification system termed as the volcanic rock system (VRS) is developed and presented in detail. Results using the VRS are compared with those obtained using the traditional rock mass rating (RMR) system....

  9. An Analysis of the Reflector Cooling System Repair Status after the Initial Operation of HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Chul; Seo, Kyoung Woo; Chi, Dae Young; Yoon, Hyun Gi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jung Geun [Safety Evaluation Department, System D and D Co., Daejeon (Korea, Republic of)

    2011-05-15

    HANARO, an open-tank-in-pool type multi-purpose research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. During the last operation period of HANARO, when a trouble occurred, the trouble was fixed on site. As preventive maintenance can reduce the corrective maintenance, the reasons of the occurred troubles are reviewed to prepare preventive maintenance. About twelve hundred cases of work requests and nonconformance reports (NCRs) have been issued since the initial criticality of HANARO. The cases are analyzed according to the trouble status, the trouble equipment function and the cause of the major trouble for reflector cooling system (RCS, hereinafter) including cover gas system and leakage monitoring and collection system

  10. Naval Survivability and Susceptibility Reduction Study-Surface Ship

    Science.gov (United States)

    2012-09-01

    the load usage. Similarly, redundancy must be catered for the signal and communication lines, and the firefighting system. Having equipment...Target RCS (m2) RCS (dBsm) Relative range Aircraft carrier 100,000 50 1778 Cruiser 10,000 40 1000 Large airliner or automobile 100 20 316 Medium... airliner or bomber 40 16.0 251 Large fighter 6 7.8 157 Small fighter 2 3.0 119 Man 1 0 100 Conventional cruise missile 0.5 -3.0 84 Large bird 0.05

  11. A harmonic coil measurement system based on a dynamic signal acquisition device

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.X., E-mail: zhoujx@ihep.ac.c [Institute of High Energy Physics, P.O. Box 918-9, Beijing 100049 (China); Li, L.; Yin, B.G.; Deng, C.D.; Kang, W.; Chen, Y.; Zhang, Z.; Fu, S.N. [Institute of High Energy Physics, P.O. Box 918-9, Beijing 100049 (China)

    2010-12-21

    A new harmonic coil measurement system based on a dynamic signal acquisition device has been successfully developed to check the field quality of the quadrupole magnet for the CSNS/RCS, which operates at the 25 Hz excitation cycle with a DC bias. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a harmonic coil and an encoder. A dedicated algorithm was developed in LabView code to identify over specified intervals, synchronized to the coil's rotation in the magnetic field. Through full integration of hardware and software, the traditional device (PDI 5025) is replaced successfully. This paper summarizes the characteristics of the system and presents the results of DC measurements.

  12. Cell-Free and In Vivo Characterization of Lux, Las, and Rpa Quorum Activation Systems in E. coli.

    Science.gov (United States)

    Halleran, Andrew D; Murray, Richard M

    2018-02-16

    Synthetic biologists have turned toward quorum systems as a path for building sophisticated microbial consortia that exhibit group decision making. Currently, however, even the most complex consortium circuits rely on only one or two quorum sensing systems, greatly restricting the available design space. High-throughput characterization of available quorum sensing systems is useful for finding compatible sets of systems that are suitable for a defined circuit architecture. Recently, cell-free systems have gained popularity as a test-bed for rapid prototyping of genetic circuitry. We take advantage of the transcription-translation cell-free system to characterize three commonly used Lux-type quorum activators, Lux, Las, and Rpa. We then compare the cell-free characterization to results obtained in vivo. We find significant genetic crosstalk in both the Las and Rpa systems and substantial signal crosstalk in Lux activation. We show that cell-free characterization predicts crosstalk observed in vivo.

  13. Vibration-based Energy Harvesting Systems Characterization Using Automated Electronic Equipment

    Directory of Open Access Journals (Sweden)

    Ioannis KOSMADAKIS

    2015-04-01

    Full Text Available A measurement bench has been developed to fully automate the procedure for the characterization of a vibration-based energy scavenging system. The measurement system is capable of monitoring all important characteristics of a vibration harvesting system (input and output voltage, current, and other parameters, frequency and acceleration values, etc.. It is composed of a PC, typical digital measuring instruments (oscilloscope, waveform generator, etc., certain sensors and actuators, along with a microcontroller based automation module. The automation of the procedure and the manipulation of the acquired data are performed by LabVIEW software. Typical measurements of a system consisting of a vibrating source, a vibration transducer and an active rectifier are presented.

  14. Assessment of the potential for high-pressure melt ejection resulting from a Surry station blackout transient

    International Nuclear Information System (INIS)

    Knudson, D.L.; Dobbe, C.A.

    1993-11-01

    Containment integrity could be challenged by direct heating associated with a high pressure melt ejection (HPME) of core materials following reactor vessel breach during certain severe accidents. Intentional reactor coolant system (RCS) depressurization, where operators latch pressurizer relief valves open, has been proposed as an accident management strategy to reduce risks by mitigating the severity of HPME. However, decay heat levels, valve capacities, and other plant-specific characteristics determine whether the required operator action will be effective. Without operator action, natural circulation flows could heat ex-vessel RCS pressure boundaries (surge line and hot leg piping, steam generator tubes, etc.) to the point of failure before vessel breach, providing an alternate mechanism for RCS depressurization and HPME mitigation. This report contains an assessment of the potential for HPME during a Surry station blackout transient without operator action and without recovery. The assessment included a detailed transient analysis using the SCDAP/RELAP5/MOD3 computer code to calculate the plant response with and without hot leg countercurrent natural circulation, with and without reactor coolant pump seal leakage, and with variations on selected core damage progression parameters. RCS depressurization-related probabilities were also evaluated, primarily based on the code results

  15. Construction and characterization of curcumin nanoparticles system

    Science.gov (United States)

    Sun, Weitong; Zou, Yu; Guo, Yaping; Wang, Lu; Xiao, Xue; Sun, Rui; Zhao, Kun

    2014-03-01

    This study was aimed at developing a nanoparticles system for curcumin, a widely used traditional Chinese medicine, but with the disadvantage of poor aqueous solubility. The objective was intended to improve in vitro release characteristics, enhance blood and gastrointestinal stability, increase bioavailability and pharmacological activities. Curcumin nanoparticles system (Cur-NS) was prepared by ionotropic gelation technique. Cur-NS was characterized by particle size, zeta potential, drug entrapment efficiency, drug loading, and physical stability, respectively. Cur-NS presented controlled release properties, and the release properties of Cur from NS were fit non-Fickian mechanism, controlled by the expected diffusional release and the erosion or solubilization from the crosslink layer of polymer carrier. In addition, the pharmacokinetic study in rats revealed a notable improved oral bioavailability of Cur, and the anti-tumor activity in vivo of Cur-NS on tumor growth was investigated. Cur-NS significantly inhibited tumor effect compared with non-vehicle group, thus making it a potential candidate for cancer therapy.

  16. Geologic characterization of Cuvette Centrale petroleum systems Congo-DRC

    Energy Technology Data Exchange (ETDEWEB)

    Vicentelli, Maria Gabriela C.; Barbosa, Mauro; Rezende, Nelio G.A.M. [HRT Petroleum, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Cuvette Centrale is an almost unexplored basin, which contains some petroleum system elements that indicate the presence of hydrocarbons. In this sense; this paper presents an exploratory alternative for this intracratonic basin. The interpretation of the limited gravimetric, magnetometric, geochemical and seismic available data allowed the identification of many huge structural features and also some areas with hydrocarbon potential for stratigraphic traps. The presence of several oil and gas seeps widespread around the Busira and Lokoro sub-basins indicate that at least one active petroleum system exist in the basin. Despite only four wells have been drilled in the basin, one of them presented oil shows during drilling. Geological correlations between Brazilian Paleozoic basins and Cuvette Centrale sedimentary sequences permitted to conclude that Cambro-Ordovician and Siluro-Devonian source rocks must be present and active in the Cuvette Centrale basin. The tectono-stratigraphic evolution history of the Cuvette Centrale from Neo proterozoic to Recent times shows extensional and compressional/transpressional alternating phases along the geological time. The most confident petroleum system expected in the Cuvette Centrale is characterized by the Cambrian Mamungi shale - source rock - and the Cambro-Ordovician. Upper Arenaceous Sequence - reservoirs, as observed in the MBandaka and Gilson wells and confirmed by surface geology in outcrops. Besides, other potential petroleum systems are expected to occur in the basin. One is characterized by the Neo proterozoic Itury Group source rock and reservoirs in the mature/over mature stage, the others are the Siluro-Devonian and Cretaceous source rocks and reservoirs, expected to occur with better maturity conditions only in the deeper parts of the basin. (author)

  17. Characterization of the sediments overlying the Floridan aquifer system in Alachua County, Florida

    OpenAIRE

    Green, Richard; Duncan, Joel; Seal, Thomas; Weinberg, J. Michael; Rupert, Frank

    1989-01-01

    The primary purpose of this project is to attempt to improve the existing hydrogeologic information through lithologic and hydrogeologic characterizations of the sediments overlying the Floridan aquifer system in Alachua County. These sediments locally comprise both the intermediate aquifer system and associated confining beds and the surficial aquifer system. (PDF has 119 pages.)

  18. The Rapid Cycling Synchrotron of the EURISOL Beta-Beam facility

    CERN Document Server

    Lachaize, A

    During the last two years, several upgrades of the initial baseline scenario were studied with the aim of increasing the average intensity of ion beams in the accelerator chain of the Beta Beam complex. This is the reason why the Rapid Cycling Synchrotron (RCS) specifications were reconsidered many times.General considerations on the optical design were presented at the Beta Beam Task Meetings held at CERN and at Saclay in 2005 (http://beta-beam.web.cern.ch/beta-beam/). More detailed beam optics studies were performed during the next months. Lattices, RF system parameters, multi-turn injection scheme, fast extraction, closed orbit correction and chromaticity correction systems were proposed for different versions of the RCS.Finally, the RCS specifications have stabilized in November 2006 after the fourth Beta Beam Task Meeting when it was decided to fix the maximum magnetic rigidity of ion beams to 14.47 T.m (3.5 GeV equivalent proton energy) and to adopt a ring physical radius of 40 m in order to facilitat...

  19. Design of low energy ring(s)

    CERN Document Server

    Lachaize, Antoine

    During the last two years, several upgrades of the initial baseline scenario were studied with the aim of increasing the average intensity of ion beams in the accelerator chain of the Beta Beam complex. This is the reason why the Rapid Cycling Synchrotron (RCS) specifications were reconsidered many times [1], [2], [3].General considerations on the optical design were presented at the Beta Beam Task Meetings held at CERN and at Saclay in 2005 [4]. More detailed beam optics studies were performed during the next months. Lattices, RF system parameters, multi-turn injection scheme, fast extraction, closed orbit correction and chromaticity correction systems were proposed for different versions of the RCS [5], [6], [7].Finally, the RCS specifications have stabilized in November 2006 after the fourth Beta Beam Task Meeting when it was decided to fix the maximum magnetic rigidity of ion beams to 14.47 T.m (3.5 GeV equivalent proton energy) and to adopt a ring physical radius of 40 m in order to facilitate injectio...

  20. Detection of Singlet Oxygen Formation inside Photoactive Biohybrid Composite Material

    Directory of Open Access Journals (Sweden)

    Kata Hajdu

    2017-12-01

    Full Text Available Photosynthetic reaction center proteins (RCs are the most efficient light energy converter systems in nature. The first steps of the primary charge separation in photosynthesis take place in these proteins. Due to their unique properties, combining RCs with nano-structures promising applications can be predicted in optoelectronic systems. In the present work RCs purified from Rhodobacter sphaeroides purple bacteria were immobilized on multiwalled carbon nanotubes (CNTs. Carboxyl—and amine-functionalised CNTs were used, so different binding procedures, physical sorption and chemical sorption as well, could be applied as immobilization techniques. Light-induced singlet oxygen production was measured in the prepared photoactive biocomposites in water-based suspension by histidine mediated chemical trapping. Carbon nanotubes were applied under different conditions in order to understand their role in the equilibration of singlet oxygen concentration in the suspension. CNTs acted as effective quenchers of 1O2 either by physical (resonance energy transfer or by chemical (oxidation reaction and their efficiency showed dependence on the diffusion distance of 1O2.

  1. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil, E-mail: simina.dreve@itim-cj.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610{sup 0}C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  2. Chitosan-based delivery systems for diclofenac delivery: preparation and characterization

    International Nuclear Information System (INIS)

    Dreve, Simina; Kacso, Irina; Bratu, Ioan; Indrea, Emil

    2009-01-01

    The preparation and characterization of novel materials for drug delivery has rapidly gained importance in development of innovative medicine. The paper concerns the uses of chitosan as an excipient in oral formulations and as a drug delivery vehicle for burnt painful injuries. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare liquid release systems as hydrogels and solid release systems as sponges is presented. In this paper the preparation of CTS hydrogels and sponges carrying diclofenac (DCF), as anti-inflammatory drug is reported. The immobilization of DCF in CTS is done by mixing the CTS hydrogel with the anti-inflammatory drug solutions. The concentration of anti-inflammatory drug in the CTS hydrogel generating the sponges was of 57 mg/l, 72 mg/l and 114 mg/l. The CTS sponges with anti-inflammatory drugs were prepared by freeze-drying at -610 0 C and 0,09 atm. The characterization of the hydrogels and sponges was done by infrared spectra (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The results indicated the formation of CTS-DCF intermediates. The DCF molecules are forming temporary chelates in CTS hydrogels and sponges and they are compatible with skin or some of biological fluids with satisfactory results.

  3. Determination of Unidentified Leakage Using a Kalman Smoother

    International Nuclear Information System (INIS)

    Jang, Soek Bo; Heo, Gyunyoung; Ra, Insik; Han, Jeonghyun; Lee, Seon Woo

    2008-01-01

    Since the safety significance of leaks from the RCS can widely vary depending on the source of the leak as well as the leak rate, the detection of the leakage is an important issue. The leakage is classified into 1) identified leakage which is defined as leakage into closed systems such as pump seal or valve packing leaks that can be captured, and 2) unidentified leakage which is all other leakage. The unidentified leakage is typically determined by the RCS inventory balance method which is based on NUREG-1107. Since the accuracy of leak rate calculation is dependent of the plant operating condition, the change in the RCS temperature, inventory, and the transient operating condition should be avoided during the measurement period. Nevertheless, the operation of the makeup of the borated water into the RCS and the diversion of the inventory to the outside of the RCS boundary makes it difficult to maintain the plant stable over an hour. Due to the large fluctuation of the calculated leak rate, it is sometimes hard to know the trend of the leakage as well as the instantaneous leak rate. Any fluctuation of operating conditions can results in unreliable leak rate. This study proposes a new way of determining the unidentified leak rate using a Kalman filter and smoother technique. The proposed algorithm enhances the accuracy of the leak rate calculation not only for the steady state operations but also for transients in a well timed manner

  4. Regulation of immune responses in SJL and F1 hybrid mice by gamma-irradiated syngeneic lymphoma cells

    International Nuclear Information System (INIS)

    Katz, I.R.; Nagase, F.; Bell, M.K.; Ponzio, N.M.; Thorbecke, G.J.

    1984-01-01

    Syngeneic mixed lymphocyte-stimulating la+ lymphomas of SJL mice [reticulum cell sarcoma(s) (RCS)] were found to modulate immune responses in vivo. Simultaneous injection of 2 X 10(7) gamma-irradiated or glutaraldehyde-fixed RCS cells with the antigen sheep red blood cells (SRBC) or 2,4,6-trinitrophenol (TNP)-Ficoll markedly suppressed the subsequent plaque-forming cell response in the spleen. The suppression of the anti-SRBC response was prevented by pretreatment of the mice with cyclophosphamide, whereas the suppression of the anti-TNP-Ficoll response was not affected. RCS injection induced high interferon serum titers within 24 hours after injection, which were not prevented by pretreatment with cyclophosphamide. Injection of gamma-irradiated RCS cells (gamma-RCS) or RCS cell extract 2 days prior to antigen enhanced the anti-SRBC but markedly suppressed the anti- TNP-Ficoll response. Injection of RCS both on day -2 and day 0 enhanced the anti-SRBC response. SJL mice 8-9 months of age showed much less or no suppression when gamma-RCS cells were injected on day 0. Certain F1 hybrids of SJL also showed the gamma-RCS-induced suppression of the anti-SRBC response. Suppression was seen in SJL X BALB.B but not in SJL X BALB/c mice and in SJL X A.TH but not in SJL X A.TL mice, suggesting an I-region effect. F1 hybrids of SJL by B10 background mice showed no significant suppression. Enhancement of the anti-SRBC response by prior injection of gamma-RCS was seen in all F1 hybrid mice examined

  5. Functional incapacity related to rotator cuff syndrome in workers. Is it influenced by social characteristics and medical management?

    Science.gov (United States)

    Champagne, Romain; Bodin, Julie; Fouquet, Natacha; Roquelaure, Yves; Petit, Audrey

    2017-12-04

    Survey. Rotator cuff syndrome (RCS) is one of the most common musculoskeletal disorders reported in workers. The functional incapacity related to RCS may vary according to the sociodemographic context and to the medical management. The purpose of this is to analyze the RCS-related functional incapacity assessed by the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaires in workers according to their sociodemographic characteristics and the use of care. A cross-sectional study was carried out on a French sample of workers diagnosed with RCS. The DASH and DASH-work scores were studied according to the sociodemographic factors, musculoskeletal symptoms, and RCS medical management during the preceding 12 months. Two hundred seven workers who suffered from RCS filled out the questionnaire of which 80% were still working. The DASH score was significantly higher in women (24.0 vs 17.4; P 0.6). The demographic factors and the RCS medical management influenced the overall incapacity assessed by the DASH questionnaire. Work incapacity was more especially related to the use of care for RCS. The sociodemographic and medical parameters added to other established predictors could help guide clinicians in managing their patients. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  6. Characterization of a mini-channel heat exchanger for a heat pump system

    International Nuclear Information System (INIS)

    Arteconi, A; Giuliani, G; Tartuferi, M; Polonara, F

    2014-01-01

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  7. System for tissue characterization using synchronous detection of diffuse reflectance

    International Nuclear Information System (INIS)

    Morales Lopez, Orestes M.; Stolik Isakina, Suren; La Rosa Vazquez, Jose Manuel de; Valor Reed, Alma

    2016-01-01

    The development of a system for the characterization of tissues optical properties in-vivo by synchronous detection of diffuse reflectance is presented. The system comprises an exploring probe with a linear spatial arrangement of optical fibers coupled to six lasers of 650 nm wavelength and a photodiode. The system also includes a preamplifier circuit for the photodiode, a driver for the amplitude modulation of the light signal of the lasers with optical power monitoring, a digital phase splitter for reference signal generation, an amplifying circuit with digitally switch able gain, a double phase demodulation circuit, an Arduino, and a control interface developed in LabVIEW. (Author)

  8. Characterization of a 300-GHz Transmission System for Digital Communications

    Science.gov (United States)

    Hudlička, Martin; Salhi, Mohammed; Kleine-Ostmann, Thomas; Schrader, Thorsten

    2017-08-01

    The paper presents the characterization of a 300-GHz transmission system for modern digital communications. The quality of the modulated signal at the output of the system (error vector magnitude, EVM) is measured using a vector signal analyzer. A method using a digital real-time oscilloscope and consecutive mathematical processing in a computer is shown for analysis of signals with bandwidths exceeding that of state-of-the-art vector signal analyzers. The uncertainty of EVM measured using the real-time oscilloscope is open to analysis. Behaviour of the 300-GHz transmission system is studied with respect to various modulation schemes and different signal symbol rates.

  9. Complex layered materials and periodic electromagnetic band-gap structures: Concepts, characterizations, and applications

    Science.gov (United States)

    Mosallaei, Hossein

    The main objective of this dissertation is to characterize and create insight into the electromagnetic performances of two classes of composite structures, namely, complex multi-layered media and periodic Electromagnetic Band-Gap (EBG) structures. The advanced and diversified computational techniques are applied to obtain their unique propagation characteristics and integrate the results into some novel applications. In the first part of this dissertation, the vector wave solution of Maxwell's equations is integrated with the Genetic Algorithm (GA) optimization method to provide a powerful technique for characterizing multi-layered materials, and obtaining their optimal designs. The developed method is successfully applied to determine the optimal composite coatings for Radar Cross Section (RCS) reduction of canonical structures. Both monostatic and bistatic scatterings are explored. A GA with hybrid planar/curved surface implementation is also introduced to efficiently obtain the optimal absorbing materials for curved structures. Furthermore, design optimization of the non-uniform Luneburg and 2-shell spherical lens antennas utilizing modal solution/GA-adaptive-cost function is presented. The lens antennas are effectively optimized for both high gain and suppressed grating lobes. The second part demonstrates the development of an advanced computational engine, which accurately computes the broadband characteristics of challenging periodic electromagnetic band-gap structures. This method utilizes the Finite Difference Time Domain (FDTD) technique with Periodic Boundary Condition/Perfectly Matched Layer (PBC/PML), which is efficiently integrated with the Prony scheme. The computational technique is successfully applied to characterize and present the unique propagation performances of different classes of periodic structures such as Frequency Selective Surfaces (FSS), Photonic Band-Gap (PBG) materials, and Left-Handed (LH) composite media. The results are

  10. Assessment of the performance of an emergency boration system for anticipated transients without trip faults

    International Nuclear Information System (INIS)

    Rippon, J.P.; Smedley, C.

    1987-01-01

    Computer modeling of the emergency boration system (EBS) proposed for the Sizewell B PWR is described in relation to the investigation of two design basis Anticipated Transients Without Trip faults. The performance of the EBS is shown to be dependent on the assumptions made with regard to mixing of RCS coolant with boric acid solution in the tank. An experimental investigation of mixing is described, the results of which are used to validate the computer modeling. Beneficial effects of the EBS in the faults considered are demonstrated in terms of limiting primary pressure, voiding and increasing the shut-down margin

  11. Experimental characterization of a concentrating photovoltaic system varying the light concentration

    International Nuclear Information System (INIS)

    Renno, C.; Petito, F.; Landi, G.; Neitzert, H.C.

    2017-01-01

    Highlights: • Experimental characterization of a concentrating photovoltaic system. • Analysis of the point-focus concentrating system performances. • Photovoltaic system parameters as function of the concentration factor. - Abstract: The concentrating photovoltaic system represents one of the most promising solar technologies because it allows a more efficient energy conversion. When a CPV system is designed, the main parameter which has to be considered is the concentration factor that affects both the system energy performances and its configuration. An experimental characterization of a CPV system previously realized at the University of Salerno, is presented in this paper considering several aspects related to the optical configuration, the concentration factor and the solar cell used. In particular, the parameters of an Indium Gallium Phosphide/Gallium Arsenide/Germanium triple-junction solar cell are investigated as function of the concentration factor determined by means of an experimental procedure that uses different optical configurations. The maximum concentration factor reached by the CPV system is 310 suns. The cell parameters dependence on the concentration is reported together with an electroluminescence analysis of the Indium Gallium Phosphide/Gallium Arsenide/Germanium cell. A monitoring of the electrical power provided by the system during its working is also presented corresponding to different direct irradiance values. A mean power of 2.95 W with an average efficiency of 32.8% is obtained referring to a mean irradiance of 930 W/m"2; lower values are obtained when the irradiance is highly fluctuating. The concentrating photovoltaic system electric energy output is estimated considering different concentration levels; the maximal obtained value is 23.5 W h on a sunny day at 310×. Finally, the temperature of the triple-junction solar cell is evaluated for different months in order to evaluate the potential annual thermal energy production

  12. Characterization system for Germanium detectors dedicated to gamma spectroscopy applied to nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Roccaz, J.; Portella, C.; Saurel, N. [CEA, DAM, VALDUC, F-21120 Is-sur-Tille (France)

    2009-07-01

    CEA-Valduc produces some radioactive waste (mainly alpha emitters). Legislation requires producers to sort their waste by activity and type of isotopes, and to package them in order to forward them to the appropriate reprocessing or storage facility. Our lab LMDE (laboratory for measurements on nuclear wastes and valuation) is in charge of the characterization of the majority of waste produced by CEA-Valduc. Among non-destructive methods to characterize a radioactive object, gamma-spectroscopy is one of the most efficient. We present to this conference the method we use to characterize nuclear waste and the system we developed to characterize our germanium detectors. The goal of this system is to obtain reliable numerical models of our detectors and calculate their efficiency curves. Measurements are necessary to checks models and improve them. These measurements are made on a bench using pinpoint sources ({sup 133}Ba, {sup 152}Eu) from 60 keV to 1500 keV, with distances from 'on contact' to a few meters from the diode and variable angles between the source and the detector axis. We have demonstrated that we are able to obtain efficiency curves

  13. Construction and testing of a system for the electrical characterization of ceramic thermistors at low temperatures

    Directory of Open Access Journals (Sweden)

    F. C. S. Luz

    2014-03-01

    Full Text Available A high-precision and low cost system was built for the electrical characterization of ceramic thermistors at low temperatures, using components readily available in materials research laboratories. The system presented excellent reproducibility in the electrical characterization of NTC ceramic sensors from -75 ºC (195 K to 23 ºC (296 K. The behavior of the NTC sensor was comparable to that of commercial thermistors only below room temperature (α = -3.2%/K, demonstrating the importance of fully characterizing these materials at both low and high temperatures.

  14. The Elixir System: Data Characterization and Calibration at the Canada-France-Hawaii Telescope

    Science.gov (United States)

    Magnier, E. A.; Cuillandre, J.-C.

    2004-05-01

    The Elixir System at the Canada-France-Hawaii Telescope performs data characterization and calibration for all data from the wide-field mosaic imagers CFH12K and MegaPrime. The project has several related goals, including monitoring data quality, providing high-quality master detrend images, determining the photometric and astrometric calibrations, and automatic preprocessing of images for queued service observing (QSO). The Elixir system has been used for all data obtained with CFH12K since the QSO project began in 2001 January. In addition, it has been used to process archival data from the CFH12K and all MegaPrime observations beginning in 2002 December. The Elixir system has been extremely successful in providing well-characterized data to the end observers, who may otherwise be overwhelmed by data-processing concerns.

  15. PC-Based systems for experiments in optical characterization of materials

    International Nuclear Information System (INIS)

    Lopez-Mora, C C; Trejo-Duran, M; Alvarado-Mendez, E; Rojas-Laguna, R; Vargas-Rodriguez, E; Estudillo-Ayala, J M; Mata-Chavez, R; Sukhoivanov, I; Garcia-Perez, A; Ibarra-Manzano, O G; Andrade-Lucio, J A

    2011-01-01

    An automatic control for applications of optical characterization of materials using the optical Z-Scan technique is presented in this work. The emphasis is placed in the design of the graphical user interface (GUI) and the automation process. For this purpose, we use a USB data acquisition module with programmable I/O ports for control and signals acquisition for the complete system. The control software was developed using the graphical programming language LabVIEW (registered) and compiled in order to obtain a portable system with the hardware used in this work.

  16. Gene expression changes in the retina following subretinal injection of human neural progenitor cells into a rodent model for retinal degeneration.

    Science.gov (United States)

    Jones, Melissa K; Lu, Bin; Saghizadeh, Mehrnoosh; Wang, Shaomei

    2016-01-01

    Retinal degenerative diseases (RDDs) affect millions of people and are the leading cause of vision loss. Although treatment options for RDDs are limited, stem and progenitor cell-based therapies have great potential to halt or slow the progression of vision loss. Our previous studies have shown that a single subretinal injection of human forebrain derived neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) retinal degenerate rat offers long-term preservation of photoreceptors and visual function. Furthermore, neural progenitor cells are currently in clinical trials for treating age-related macular degeneration; however, the molecular mechanisms of stem cell-based therapies are largely unknown. This is the first study to analyze gene expression changes in the retina of RCS rats following subretinal injection of hNPCs using high-throughput sequencing. RNA-seq data of retinas from RCS rats injected with hNPCs (RCS(hNPCs)) were compared to sham surgery in RCS (RCS(sham)) and wild-type Long Evans (LE(sham)) rats. Differential gene expression patterns were determined with in silico analysis and confirmed with qRT-PCR. Function, biologic, cellular component, and pathway analyses were performed on differentially expressed genes and investigated with immunofluorescent staining experiments. Analysis of the gene expression data sets identified 1,215 genes that were differentially expressed between RCS(sham) and LE(sham) samples. Additionally, 283 genes were differentially expressed between the RCS(hNPCs) and RCS(sham) samples. Comparison of these two gene sets identified 68 genes with inverse expression (termed rescue genes), including Pdc, Rp1, and Cdc42ep5. Functional, biologic, and cellular component analyses indicate that the immune response is enhanced in RCS(sham). Pathway analysis of the differential expression gene sets identified three affected pathways in RCS(hNPCs), which all play roles in phagocytosis signaling. Immunofluorescent staining

  17. Analysis of Total Loss of Feedwater for APR1400 using SPACE

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Min; Park, Seok Jeong; Park, Chan Eok; Choi, Jong Ho; Lee, Gyu Cheon [KEPCO Engineering and Construction, Deajeon (Korea, Republic of)

    2016-10-15

    The Total Loss of FeedWater (TLOFW) event is an accident that main feedwater and auxiliary feedwater of secondary side are not supplied to steam generators. APR1400 uses the Safety Depressurization and Vent System (SDVS) for the F and B operation and SDVS is designed to perform the rapid depressurization function of Reactor Coolant System (RCS) through the remote manual operation when TLOFW is occurred. If RCS pressure falls below a Safety Injection Pump (SIP) working pressure, it can be possible to start the F and B operation which injects SIP flow to RCS and releases the RCS vapor and two-phase flow through Pilot Operated Safety Relief Valves (POSRVs) by opening the POSRVs, and then it can be possible to remove the decay heat. The design requirement of SDVS is that the core water level should be maintained at higher than 2 feet from the top of active core during the F and B operation. The TLOFW analysis was carried out to evaluate the capability of decay heat removal for APR1400 using newly developed SPACE code. The analysis results show that the F and B operation with 2 POSRVs and 2 SIPs and the F and B operation with 4 POSRVs and 4 SIPs meet the SDVS design requirement for the fuel cladding temperature. The comparison with RELAP5 shows good agreement and it validates the applicability of SPACE code for this type of accident analysis.

  18. Performance evaluation and design of flight vehicle control systems

    CERN Document Server

    Falangas, Eric T

    2015-01-01

    This book will help students, control engineers and flight dynamics analysts to model and conduct sophisticated and systemic analyses of early flight vehicle designs controlled with multiple types of effectors and to design and evaluate new vehicle concepts in terms of satisfying mission and performance goals. Performance Evaluation and Design of Flight Vehicle Control Systems begins by creating a dynamic model of a generic flight vehicle that includes a range of elements from airplanes and launch vehicles to re-entry vehicles and spacecraft. The models may include dynamic effects dealing with structural flexibility, as well as dynamic coupling between structures and actuators, propellant sloshing, and aeroelasticity, and they are typically used for control analysis and design. The book shows how to efficiently combine different types of effectors together, such as aero-surfaces, TVC, throttling engines and RCS, to operate as a system by developing a mixing logic atrix. Methods of trimming a vehicle controll...

  19. The Development and Testing of a Prototype Mini-Baghouse to Control the Release of Respirable Crystalline Silica from Sand Movers

    Science.gov (United States)

    Alexander, Barbara M.; Esswein, Eric J.; Gressel, Michael G.; Kratzer, Jerry L.; Feng, H. Amy; King, Bradley; Miller, Arthur L.; Cauda, Emanuele

    2016-01-01

    Inhalation of respirable crystalline silica (RCS) is a significant risk to worker health during well completions operations (which include hydraulic fracturing) at conventional and unconventional oil and gas extraction sites. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. National Institute for Occupational Safety and Health (NIOSH) researchers identified concentrations of RCS at hydraulic fracturing sites that exceed 10 times the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) and up to 50 times the NIOSH Recommended Exposure Limit (REL). NIOSH research identified at least seven point sources of dust release at contemporary oil and gas extraction sites where RCS aerosols were generated. NIOSH researchers recommend the use of engineering controls wherever they can be implemented to limit the RCS released. A control developed to address one of the largest sources of RCS aerosol generation is the NIOSH mini-baghouse assembly, mounted on the thief hatches on top of the sand mover. This manuscript details the results of a trial of the NIOSH mini-baghouse at a sand mine in Arkansas, November 18 – 21, 2013. During the trial, area air samples were collected at 12 locations on and around a sand mover with and without the mini-baghouse control installed. Analytical results for respirable dust and RCS indicate the use of the mini-baghouse effectively reduced both respirable dust and RCS downwind of the thief hatches. Reduction of airborne respirable dust ranged from 85% to 98%; reductions in airborne RCS ranged from 79% to 99%. A bulk sample of dust collected by the baghouse assembly showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Planned future design enhancements will increase the performance and durability of the mini-baghouse, including an improved bag clamp mechanism and upgraded filter fabric with a modified air-to-cloth ratio

  20. Simulation on change of generic satellite radar cross section via artificially created plasma sprays

    International Nuclear Information System (INIS)

    Chung, Shen Shou Max; Chuang, Yu-Chou

    2016-01-01

    Recent advancements in antisatellite missile technologies have proven the effectiveness of such attacks, and the vulnerability of satellites in such exercises inspires a new paradigm in RF Stealth techniques suitable for satellites. In this paper we examine the possibility of using artificially created plasma sprays on the surface of the satellite’s main body to alter its radar cross section (RCS). First, we briefly review past research related to RF Stealth using plasma. Next, we discuss the physics between electromagnetic waves and plasma, and the RCS number game in RF Stealth design. A comparison of RCS in a generic satellite and a more complicated model is made to illustrate the effect of the RCS number game, and its meaning for a simulation model. We also run a comparison between finite-difference-time-domain (FDTD) and multilevel fast multipole method (MLFMM) codes, and find the RCS results are very close. We then compare the RCS of the generic satellite and the plasma-covered satellite. The incident radar wave is a differentiated Gaussian monopulse, with 3 dB bandwidth between 1.2 GHz and 4 GHz, and we simulate three kinds of plasma density, with a characteristic plasma frequency ω P   =  0.1, 1, and 10 GHz. The electron-neutral collision frequency ν en is set at 0.01 GHz. We found the RCS of plasma-covered satellite is not necessarily smaller than the originally satellite. When ω P is 0.1 GHz, the plasma spray behaves like a dielectric, and there is minor reduction in the RCS. When ω P is 1 GHz, the X–Y cut RCS increases. When ω P is 10 GHz, the plasma behaves more like a metal to the radar wave, and stronger RCS dependency to frequency appears. Therefore, to use plasma as an RCS adjustment tool requires careful fine-tuning of plasma density and shape, in order to achieve the so-called plasma stealth effect. (paper)

  1. Fate and transport of radionuclides in soil-water environment. Review.

    Science.gov (United States)

    Konoplev, Aleksei

    2017-04-01

    is up to one order of magnitude higher than in Chernobyl. Long-term dynamics of radionuclide concentrations in rivers is approached from the standpoint of basic mechanisms of radionuclide sorption-desorption, fixation, vertical migration in catchment soils. Corresponding semi-empirical models are presented and discussed. For the Chernobyl case, radiostrontium (r-Sr) was shown to be more mobile and moving faster in dissolved state with surface runoff and river water in comparison with r-Cs. Similar pattern was observed for Mayak area in South Ural (Russia), where r-Sr was traced up to 1500 km away from the release point migrating through Techa-Iset'-Tobol-Irtysh-Ob' river system. On the other hand, r-Cs bound to clay particles settles down in Techa river reservoirs and is transported with river water only insignificantly. For the first 3 years after the accident vertical migration of r-Cs in soils of Fukushima catchments was found to be faster than in Chernobyl due to higher air temperature, higher precipitation and higher biological activity in top soil. However, with time this process slows down because of higher r-Cs retardation in Fukushima soils. In Fukushima case, extreme floods during typhoons lead to substantial reduction in dose rate on floodplain areas due to sedimentation of relatively clean material and burial of contaminated top soil layer. In general, due to higher precipitation, higher temperatures and higher biological activities in soils, self-purification of the environment and natural attenuation in Fukushima is essentially faster than in Chernobyl area.

  2. Characterization of a thermoluminiscence personnel dosimetry system

    International Nuclear Information System (INIS)

    Vazquez Lopez, C.; Saez, J.C.; Labarta, T.

    1989-01-01

    Various tests carried out to characterize a Thermoluminiscence Personnel Dosimetry Automatic System, based on the optical heating of a multielement dosemeter are presented. The dosemeter consists of Lithium Borate (Copper) and Calcium Sulphate (Thallium) phosphors. The Dosimetric System shows some outstanding features, such as its simplicity (no aditional annealing procedures are required), its short reading cycle (160 TLD per hour and its data handling capabilities (RS-232C and Parallel Printer digital ports and four analigic outputs for Glow Curve Adquisition). The tests performed have been designed to conform with the different existing international Standards and Recommendations (ANSI: N13.11-1983; IEC:Draft 45B-1987, ISO:DP 8034-1984) The new radiological quantities (I.C.R.U.-19855) have been used for calibration. The results obtained (linearity, repeatibility, detection threshold, residue, stability of stored information, etc) show the optimum performance of this dosimetric system in its aplication to routine personnel dose monitoring. Based on the dosemeter energy discriminating response, an algorithm for dose assesment has been developed. The method allows personal dose calculations within 10% and gives valuable information on the quality and energy of incident radiation, for photons from 30 to 2000 keV and for Beta penetrating radiation (Sr/Y, U). (Author)

  3. Characterization Test Procedures for Intersection Collision Avoidance Systems Based on Vehicle-to-Vehicle Communications

    Science.gov (United States)

    2015-12-01

    Characterization test procedures have been developed to quantify the performance of intersection collision avoidance (ICA) systems based on vehicle-to-vehicle communications. These systems warn the driver of an imminent crossing-path collision at a r...

  4. Passive neutron interrogation in systems with a poorly characterized detection efficiency

    International Nuclear Information System (INIS)

    Dubi, Chen; Oster, Elad; Ocherashvilli, Aharon; Pedersen, Bent; Hutszy, Janus

    2014-01-01

    Passive neutron interrogation for fissile mass estimation, relying on neutrons coming from spontaneous fission events, is considered a standard NDT procedure in the nuclear safeguard and safety community. Since most structure materials are (relatively) transparent to neutron radiation, passive neutron interrogation is considered highly effective in the analysis of dirty, poorly characterized samples. On the other hand, since a typical passive interrogation assembly is based on 3He detectors, neutrons from additional neutron sources (mainly (α,n) reactions and induced fissions in the tested sample) cannot be separated from the main spontaneous fission source through energetic spectral analysis. There for, applying the passive interrogation methods the implementation of Neutron Multiplicity Counting (NMC) methods for separation between the main fission source and the additional sources. Applying NMC methods requires a well characterized system, in the sense that both system die away time and detection efficiency must be well known (and in particular, independent of the tested sample)

  5. Efficient characterization of phase space mapping in axially symmetric optical systems

    Science.gov (United States)

    Barbero, Sergio; Portilla, Javier

    2018-01-01

    Phase space mapping, typically between an object and image plane, characterizes an optical system within a geometrical optics framework. We propose a novel conceptual frame to characterize the phase mapping in axially symmetric optical systems for arbitrary object locations, not restricted to a specific object plane. The idea is based on decomposing the phase mapping into a set of bivariate equations corresponding to different values of the radial coordinate on a specific object surface (most likely the entrance pupil). These equations are then approximated through bivariate Chebyshev interpolation at Chebyshev nodes, which guarantees uniform convergence. Additionally, we propose the use of a new concept (effective object phase space), defined as the set of points of the phase space at the first optical element (typically the entrance pupil) that are effectively mapped onto the image surface. The effective object phase space provides, by means of an inclusion test, a way to avoid tracing rays that do not reach the image surface.

  6. Terahertz radar cross section measurements

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-01-01

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...

  7. Mobile/portable transuranic waste characterization systems at Los Alamos National Laboratory and a model for their use complex-wide

    International Nuclear Information System (INIS)

    Derr, E.D.; Harper, J.R.; Zygmunt, S.J.; Taggart, D.P.; Betts, S.E.

    1997-01-01

    Los Alamos National Laboratory has implemented mobile and portable characterization and repackaging systems to characterize TRU waste in storage for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. These mobile systems are being used to characterize and repackage waste to meet the full requirements of the WIPP Waste Acceptance Criteria (WAC) and the WIPP Characterization Quality Assurance Program Plan (QAPP). Mobile and portable characterization and repackaging systems are being used to supplement the capabilities and throughputs of existing facilities. Utilization of mobile systems is a key factor that is enabling LANL to: (1) reduce its TRU waste work-off schedule from 36 years to 8.5 years; (2) eliminate the need to construct a $70M+ TRU waste characterization facility; (3) have waste certified for shipment to WIPP when WIPP opens; (4) continue to ship TRU waste to WIPP at the rate of 5000 drums per year; and, (5) reduce overall costs by more than $200M. Aggressive implementation of mobile and portable systems throughout the DOE complex through a centralized-distributed services model will result in similar advantages complex-wide

  8. Mobile/portable transuranic waste characterization systems at Los Alamos National Laboratory and a model for their use complex-wide

    International Nuclear Information System (INIS)

    Derr, E.D.; Harper, J.R.; Zygmunt, S.J.; Taggart, D.P.; Betts, S.E.

    1997-01-01

    Los Alamos National Laboratory (LANL) has implemented mobile and portable characterization and repackaging systems to characterize transuranic (TRU) waste in storage for ultimate shipment and disposal at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. These mobile systems are being used to characterize and repackage waste to meet the full requirements of the WIPP Waste Acceptance Criteria (WAC) and the WIPP Characterization Quality Assurance Program Plan (QAPP). Mobile and portable characterization and repackaging systems are being used to supplement the capabilities and throughputs of existing facilities. Utilization of mobile systems is a key factor that is enabling LANL to (1) reduce its TRU waste work-off schedule from 36 years to 8.5 years; (2) eliminate the need to construct a $70M+ TRU waste characterization facility; (3) have waste certified for shipment to WIPP when WIPP opens; (4) continue to ship TRU waste to WIPP at the rate of 5000 drums per year; and (5) reduce overall costs by more than $200M. Aggressive implementation of mobile and portable systems throughout the Department of Energy complex through a centralized-distributed services model will result in similar advantages complex-wide

  9. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.

    Science.gov (United States)

    Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam

    2015-01-01

    The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.

  10. Using heterologous expression systems to characterize potassium and sodium transport activities.

    Science.gov (United States)

    Rodríguez, Alonso; Benito, Begoña; Cagnac, Olivier

    2012-01-01

    The expression of plant transporters in simple well-characterized cell systems is an irreplaceable technique for gaining insights into the kinetic and energetic features of plant transporters. Among all the available expression systems, yeast cells offer the highest simplicity and have the capacity to mimic the in vivo properties of plant transporters. Here, we describe the use of yeast mutants to express K(+) and Na(+) plant transporters and discuss some experimental problems that can produce misleading results.

  11. Investigation of a steam generator tube rupture sequence using VICTORIA

    International Nuclear Information System (INIS)

    Bixler, N.E.; Erickson, C.M.; Schaperow, J.H.

    1995-01-01

    VICTORIA-92 is a mechanistic computer code for analyzing fission product behavior within the reactor coolant system (RCS) during a severe reactor accident. It provides detailed predictions of the release of radionuclides and nonradioactive materials from the core and transport of these materials within the RCS. The modeling accounts for the chemical and aerosol processes that affect radionuclide behavior. Coupling of detailed chemistry and aerosol packages is a unique feature of VICTORIA; it allows exploration of phenomena involving deposition, revaporization, and re-entrainment that cannot be resolved with other codes. The purpose of this work is to determine the attenuation of fission products in the RCS and on the secondary side of the steam generator in an accident initiated by a steam generator tube rupture (SGTR). As a class, bypass sequences have been identified in NUREG-1150 as being risk dominant for the Surry and Sequoyah pressurized water reactor (PWR) plants

  12. Compact Range Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Measures electrical properties and characteristics of antenna systems and performs radar cross section (RCS) measurements of objects. These data are used...

  13. The development of an expert system for the characterization of waste assay data

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, S.; Hodges, J.; Sparrow, C. [Mississippi State Univ., Mississippi State, MS (United States)] [and others

    1997-11-01

    Containers of transuranic and low-level alpha contaminated waste generated as a byproduct of Department of Energy defense-related programs must be characterized before their proper disposition can be determined. Nondestructive assay methods are the most desirable means for assessing the mass and activity of the entrained transuranic radionuclides. However, there are other sources of information that may be useful in the characterization of the entrained waste (e.g., container manifests, information about the generation process, and destructive assay techniques performed on representative samples). This paper describes initial work on an expert system being developed to analyze and characterize containerized radiological waste. This system is being developed by scientists at the Mississippi State University Diagnostic and Instrumentation Laboratory (DIAL) in collaboration with scientists at the Idaho National Engineering Laboratory. The DIAL scientists are responsible for (1) the development of techniques to represent and reason with evidence from a variety of sources, and (2) the development of appropriate method(s) to represent and reason with confidence levels associated with that evidence. This paper describes exploratory versions of the expert system developed to evaluate four techniques for representing and reasoning with the confidence in the evidence: MYCIN-style certainty factors, Dempster-Shafer Theory, Bayesian networks, and fuzzy logic. 16 refs., 8 figs., 4 tabs.

  14. Preparation, characterization and evaluation of drug-delivery systems: Pectin and mefenamic acid films

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, R.B. [Universidade Federal de Mato Grosso, Rodovia MT-100, Km 3,5, Barra do Garças, MT CEP 78600-000 (Brazil); Teixeira, J.A. [Universidade Federal de Mato Grosso, Cuiabá, MT CEP 78060-900 (Brazil); Furuyama-Lima, A.M. [Universidade Estadual Paulista, IBILCE, São José do Rio Preto, SP CEP 15054-000 (Brazil); Souza, N.C. de [Universidade Federal de Mato Grosso, Rodovia MT-100, Km 3,5, Barra do Garças, MT CEP 78600-000 (Brazil); Siqueira, A.B., E-mail: buzutti@cpd.ufmt.br [Universidade Federal de Mato Grosso, Rodovia MT-100, Km 3,5, Barra do Garças, MT CEP 78600-000 (Brazil)

    2014-08-20

    Highlights: • The films were prepared and characterized by FTIR, TG–DSC/FTIR and AFM microscopy. • The results provided information on the composition, dehydration, thermal stability, thermal decomposition. • DSC results of CaHCl shows two overlapping endothermic peaks. • The AFM image shows great similarity for A5 and A6 films. • A5 and A6 films functioned well as a topical delivery system. - Abstract: Mefenamic acid (H-Mef) is a nonsteroidal anti-inflammatory drug (NSAID). Various adhesive dosage forms of NSAIDs have been developed, which include adhesive tablets, gels, ointments, patches and more recently, polymeric films. The objective of this study was the development of H-Mef adhesive films to be used as a drug-delivery system with different ratios of pectin and calcium chloride dihydrate by the casting technique. The materials were characterized by TG–DSC coupled FTIR, AFM (atomic force microscopy) and spectroscopic techniques. The results provided information about the dehydration, film roughness, surface morphology, thermal decomposition, as well as identification of gaseous products evolved during thermal decomposition. The characterizations indicated the A5 and A6 films functioned well, with 99% H-Mef released within 15 min at pH 5, suggesting these degradable films could be used as a topical delivery system.

  15. The development of an expert system for the characterization of waste assay data

    International Nuclear Information System (INIS)

    Bridges, S.; Hodges, J.; Sparrow, C.

    1997-01-01

    Containers of transuranic and low-level alpha contaminated waste generated as a byproduct of Department of Energy defense-related programs must be characterized before their proper disposition can be determined. Nondestructive assay methods are the most desirable means for assessing the mass and activity of the entrained transuranic radionuclides. However, there are other sources of information that may be useful in the characterization of the entrained waste (e.g., container manifests, information about the generation process, and destructive assay techniques performed on representative samples). This paper describes initial work on an expert system being developed to analyze and characterize containerized radiological waste. This system is being developed by scientists at the Mississippi State University Diagnostic and Instrumentation Laboratory (DIAL) in collaboration with scientists at the Idaho National Engineering Laboratory. The DIAL scientists are responsible for (1) the development of techniques to represent and reason with evidence from a variety of sources, and (2) the development of appropriate method(s) to represent and reason with confidence levels associated with that evidence. This paper describes exploratory versions of the expert system developed to evaluate four techniques for representing and reasoning with the confidence in the evidence: MYCIN-style certainty factors, Dempster-Shafer Theory, Bayesian networks, and fuzzy logic. 16 refs., 8 figs., 4 tabs

  16. Optical design and system characterization of an imaging microscope at 121.6 nm

    Science.gov (United States)

    Gao, Weichuan; Finan, Emily; Kim, Geon-Hee; Kim, Youngsik; Milster, Thomas D.

    2018-03-01

    We present the optical design and system characterization of an imaging microscope prototype at 121.6 nm. System engineering processes are demonstrated through the construction of a Schwarzschild microscope objective, including tolerance analysis, fabrication, alignment, and testing. Further improvements on the as-built system with a correction phase plate are proposed and analyzed. Finally, the microscope assembly and the imaging properties of the prototype are demonstrated.

  17. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development.

    Science.gov (United States)

    Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2015-01-01

    High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers.

  18. Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice

    DEFF Research Database (Denmark)

    Nishimaru, Hiroshi; Restrepo, Carlos E.; Kiehn, Ole

    2006-01-01

    % of the recorded RCs fired in-phase with the ipsilateral L2 flexor-related rhythm, whereas the rest fired in the extensor phase. Each population of RCs fired throughout the corresponding locomotor phase. All RCs received both excitatory and inhibitory synaptic inputs during the locomotor-like rhythmic activity...

  19. Assessment of the potential for HPME during a station blackout in the Surry and Zion PWRS

    International Nuclear Information System (INIS)

    Knudson, D.L.; Bayless, P.D.; Dobbe, C.A.; Odar, F.

    1994-01-01

    The integrity of a PWR (pressurized water reactor) containment structure could be challenged by direct heating associated with a HPME (high pressure melt ejection) of core materials following reactor vessel lower head breach during certain severe accidents. Structural failure resulting from direct containment heating is a contributor to the risk of operating a PWR. Intentional RCS (reactor coolant system) depressurization, where operators latch pressurizer relief valves open, has been proposed as an accident management strategy to reduce those risks by mitigating the severity of the HPME. However, decay heat levels, valve capacities, and other plant-specific characteristics determine whether the required operator action will be effective. Without operator action, natural circulation flows could heat ex-vessel RCS pressure boundaries (surge line and hot leg piping, steam generator tubes, etc.) to the point of failure before failure of the lower head providing an unintentional mechanism for depressurization and HPME mitigation. This paper summarizes an assessment of RCS depressurization with respect to the potential for HPME during a station blackout in the Surry and Zion PWRs. The assessment included a detailed transient analysis using the SCDAP/RELAP5/MOD3 computer code and an evaluation of RCS depressurization-related probabilities primarily based on the code results

  20. Characterization of optical systems for the ALPS II experiment

    International Nuclear Information System (INIS)

    Spector, Aaron D.; Baehre, Robin; Willke, Benno; Hannover Univ.

    2016-09-01

    ALPS II is a light shining through a wall style experiment that will use the principle of resonant enhancement to boost the conversion and reconversion probabilities of photons to relativistic WISPs. This will require the use of long baseline low-loss optical cavities. Very high power build up factors in the cavities must be achieved in order to reach the design sensitivity of ALPS II. This necessitates a number of different sophisticated optical and control systems to maintain the resonance and ensure maximal coupling between the laser and the cavity. In this paper we report on the results of the characterization of these optical systems with a 20m cavity and discuss the results in the context of ALPS II.

  1. Application of Asymptotic and Rigorous Techniques for the Characterization of Interferences Caused by a Wind Turbine in Its Neighborhood

    Directory of Open Access Journals (Sweden)

    Maria Jesús Algar

    2013-01-01

    Full Text Available This paper presents a complete assessment to the interferences caused in the nearby radio systems by wind turbines. Three different parameters have been considered: the scattered field of a wind turbine, its radar cross-section (RCS, and the Doppler shift generated by the rotating movements of the blades. These predictions are very useful for the study of the influence of wind farms in radio systems. To achieve this, both high-frequency techniques, such as Geometrical Theory of Diffraction/Uniform Theory of Diffraction (GTD/UTD and Physical Optics (PO, and rigorous techniques, like Method of Moments (MoM, have been used. In the analysis of the scattered field, conductor and dielectric models of the wind turbine have been analyzed. In this way, realistic results can be obtained. For all cases under analysis, the wind turbine has been modeled with NURBS (Non-Uniform Rational B-Spline surfaces since they allow the real shape of the object to be accurately replicated with very little information.

  2. Applying system engineering methods to site characterization research for nuclear waste repositories

    International Nuclear Information System (INIS)

    Woods, T.W.

    1985-01-01

    Nuclear research and engineering projects can benefit from the use of system engineering methods. This paper is brief overview illustrating how system engineering methods could be applied in structuring a site characterization effort for a candidate nuclear waste repository. System engineering is simply an orderly process that has been widely used to transform a recognized need into a fully defined system. Such a system may be physical or abstract, natural or man-made, hardware or procedural, as is appropriate to the system's need or objective. It is a way of mentally visualizing all the constituent elements and their relationships necessary to fulfill a need, and doing so compliant with all constraining requirements attendant to that need. Such a system approach provides completeness, order, clarity, and direction. Admittedly, system engineering can be burdensome and inappropriate for those project objectives having simple and familiar solutions that are easily held and controlled mentally. However, some type of documented and structured approach is needed for those objectives that dictate extensive, unique, or complex programs, and/or creation of state-of-the-art machines and facilities. System engineering methods have been used extensively and successfully in these cases. The scientific methods has served well in ordering countless technical undertakings that address a specific question. Similarly, conventional construction and engineering job methods will continue to be quite adequate to organize routine building projects. Nuclear waste repository site characterization projects involve multiple complex research questions and regulatory requirements that interface with each other and with advanced engineering and subsurface construction techniques. There is little doubt that system engineering is an appropriate orchestrating process to structure such diverse elements into a cohesive, well defied project

  3. Using Genetic Algorithm and MODFLOW to Characterize Aquifer System of Northwest Florida (Published Proceedings)

    Science.gov (United States)

    By integrating Genetic Algorithm and MODFLOW2005, an optimizing tool is developed to characterize the aquifer system of Region II, Northwest Florida. The history and the newest available observation data of the aquifer system is fitted automatically by using the numerical model c...

  4. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions

    International Nuclear Information System (INIS)

    Heams, T.J.; Williams, D.A.; Johns, N.A.; Mason, A.; Bixler, N.E.; Grimley, A.J.; Wheatley, C.J.; Dickson, L.W.; Osborn-Lee, I.; Domagala, P.; Zawadzki, S.; Rest, J.; Alexander, C.A.; Lee, R.Y.

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided

  5. Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry

    Science.gov (United States)

    Johnson, Breanna J.; Cerimele, Christopher J.; Stachowiak, Susan J.; Sostaric, Ronald R.; Matz, Daniel A.; Lu, Ping

    2018-01-01

    The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior.

  6. Implementation of an Optical Coherence Tomography system for painting characterization

    International Nuclear Information System (INIS)

    Kashyap, Hannah U. K. S.; Mota, Claudia C. B. O.; Kyotoku, Bernardo B. C.; Gomes, Anderson S. L.; Santos-Filho, Plinio B.

    2009-01-01

    Optical Coherence Tomography (OCT) is a new but well established imaging technique for medical diagnosis, which can produce two- or three-dimensional images of bio-tissues with a few μm spatial resolution. Its potential as a non-invasive tool for art conservation of paintings and other objects has been realized recently. In this work, we report the implementation of two OCT systems applied to painting characterization. One system operates in the so-called spectral domain, with a central wavelength of 840 nm and axial resolution of 10 μm. The second system has its central wavelength at 1280 nm, with spatial resolution of 20 μm, and operates in the time domain. Both systems are independently controlled and have imaging software developed in-house using Lab View. Using both systems, a 15 years old acrylic portrait has been analyzed, where the paint layers, light and dark colors, and the cotton treads of the canvas could be identified. (Author)

  7. Multi-Detector Analysis System for Spent Nuclear Fuel Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Reber, Edward Lawrence; Aryaeinejad, Rahmat; Cole, Jerald Donald; Drigert, Mark William; Jewell, James Keith; Egger, Ann Elizabeth; Cordes, Gail Adele

    1999-09-01

    The Spent Nuclear Fuel (SNF) Non-Destructive Analysis (NDA) program at INEEL is developing a system to characterize SNF for fissile mass, radiation source term, and fissile isotopic content. The system is based on the integration of the Fission Assay Tomography System (FATS) and the Gamma-Neutron Analysis Technique (GNAT) developed under programs supported by the DOE Office of Non-proliferation and National Security. Both FATS and GNAT were developed as separate systems to provide information on the location of special nuclear material in weapons configuration (FATS role), and to measure isotopic ratios of fissile material to determine if the material was from a weapon (GNAT role). FATS is capable of not only determining the presence and location of fissile material but also the quantity of fissile material present to within 50%. GNAT determines the ratios of the fissile and fissionable material by coincidence methods that allow the two prompt (immediately) produced fission fragments to be identified. Therefore, from the combination of FATS and GNAT, MDAS is able to measure the fissile material, radiation source term, and fissile isotopics content.

  8. Failure of PWR-RHRS under cold shutdown conditions: Experimental results from the PKL test facility

    International Nuclear Information System (INIS)

    Mandl, R.M.; Umminger, K.J.; Logt, J.V.D.

    1991-01-01

    The Residual Heat Removal System (RHRS) of a PWR is designed to transfer thermal energy from the core after plant shutdown and maintain the plant in cold shutdown or refuelling conditions for extended periods of time. Initial reactor cooling after shutdown is achieved by dissipating heat through the steam generators (SGs) and discharging steam to the condenser by means of the Turbine Bypass System (TBS). When the reactor coolant temperature has dropped to about 160C and pressure has been reduced to 30 bar the RHRS is placed into operation. it reduces the coolant temperature to 50C within 20 hours after shutdown. The time margin for establishing alternate methods of heat removal following a failure of the RHRS depends on the Reactor Coolant System (RCS) temperature, the decay heat rate and the amount of RCS inventory. During some shutdown operations the RCS may be partially drained (e. g. to perform SG inspections). Decreased primary system inventory can significantly reduce the time available to recover the RHRS's function prior to bulk boiling and possible core uncovery. In the PKL test facility, which simulates a 1,300 MWe 4-loop PWR on a scale 1:145, a failure of RHRS under cold shutdown conditions was performed. This presentation gives a brief description of the test facility followed by the test objectives and results of this experiment

  9. The Investigation of NPP Control and Monitoring Functional Analysis Applied to Functional Displays’ Implementation

    International Nuclear Information System (INIS)

    Yan, J.

    2015-01-01

    NPP Control and Monitoring System has been recognised as extreme and safe as well as large scale product, thus it was one of the most major design activities that fully, accurately and operationally functional analysis. The results of functional analysis would be employed as initial instruction through the whole lifecycle of NPP Control and Monitoring System. In this paper, it was discovered that several disadvantages of present functional analysis methods included FAST, The Subtract and Operate Procedure and Functional Procedure Method; owing to the identity methods enveloped here was the combination of Functional Tree and System Structure, as well as its decomposition steps; and RCS Inventory Control function which is defined as one of the most significant control functions in Advanced Light Water Reactor Utility Requirement Document has been employed to demonstrate the feasibility of this method; the analysis results of RCS Inventory function has been applied to direct the design and implementation of related displays, here the functional display of RCS Inventory Control function has been implemented on NuCON which is originated by SNPAS. Owing to the analyzing results, it would be ensured that the accuracy of information displayed to operators, thus the operator would be aware the condition of systems and then make the proper move to ensure the safety and productivity of NPP based on the received data. (author)

  10. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    International Nuclear Information System (INIS)

    1997-01-01

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the MandO is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment

  11. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1997-02-19

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the M&O is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment.

  12. Technical and economic evaluation of selected technologies of the Landfill Characterization System

    Energy Technology Data Exchange (ETDEWEB)

    Floran, R.J.

    1993-12-31

    In 1992 and 1993, numerous innovative and emerging technologies for characterizing metal and mixed waste contaminants and their migration beneath landfills in and environments were field tested at Sandia`s Chemical Waste Landfill. Many of these technologies are being evaluated as part of the Landfill Characterization System (LCS). The LCS emphasizes minimally intrusive technologies and downhole sensors that strive to be cheaper, better, safer and faster than conventional methods. Major aims of the LCS are to demonstrate, test and evaluate these technologies, and determine whether substantial cost saving over traditional baseline methods can be realized. To achieve these goals, the LCS uses an integrated systems approach that stresses the application of complementary and compatible technologies. Successful field demonstrations combined with favorable economics, will greatly assist the commercialization of these technologies to the private sector and to Environmental Restoration groups throughout the DOE Complex. In this paper, a technical and economic evaluation of selected technologies that comprise the LCS is presented. Because sampling and analysis is the most costly part of a characterization effort, the economic evaluation presented here focuses specifically on these activities. LCS technologies discussed include the ``Smart Sampling Methodology`` and two field screening analytical methods, stripping voltammetry and x-ray fluorescence.

  13. FDTD simulation of radar cross section reduction by a collisional inhomogeneous magnetized plasma

    Science.gov (United States)

    Foroutan, V.; Azarmanesh, M. N.; Foroutan, G.

    2018-02-01

    The recursive convolution finite difference time domain method is addressed in the scattered field formulation and employed to investigate the bistatic radar cross-section (RCS) of a square conductive plate covered by a collisional inhomogeneous magnetized plasma. The RCS is calculated for two different configurations of the magnetic field, i.e., parallel and perpendicular to the plate. The results of numerical simulations show that, for a perpendicularly applied magnetic field, the backscattered RCS is significantly reduced when the magnetic field intensity coincides with the value corresponding to the electron cyclotron resonance. By increasing the collision frequency, the resonant absorption is suppressed, but due to enhanced wave penetration and bending, the reduction in the bistatic RCS is improved. At very high collision frequencies, the external magnetic field has no significant impact on the bistatic RCS reduction. Application of a parallel magnetic field has an adverse effect near the electron cyclotron resonance and results in a large and asymmetric RCS profile. But, the problem is resolved by increasing the magnetic field and/or the collision frequency. By choosing proper values of the collision frequency and the magnetic field intensity, a perpendicular magnetic field can be effectively used to reduce the bistatic RCS of a conductive plate.

  14. Innovative technology summary report: Mobile automated characterization system

    International Nuclear Information System (INIS)

    1999-01-01

    The key results of the Mobile Automated Characterization System (MACS) demonstration are that MACS' greatest application would be in large open areas that would need to be surveyed repeatedly. In addition, the color graphic capability of the MACS to illustrate contamination locations is one of the system's greatest assets. It is easier to visually identify contaminated areas by looking at the color maps than by scanning through pages of coordinate survey data. The color map provides all of the data obtained on one page for easy reference. A technician is less likely to miss something by utilizing the color map. MACS is very suitable for repetitive Surveillance and Maintenance applications. MACS does not require a full time operator. It can be pre-programmed to conduct surveys. Based on the demonstration, MACS will have to improve its reliability to take full advantage of its capabilities. Downtime was experienced during the demonstration due to numerous survey and hardware errors

  15. Fabrication and Characterization of Device Pressure Regulation System Orifice of Manufacturing Process Gel Uranium Column Gelation External

    International Nuclear Information System (INIS)

    Triyono; Sutarni; Indra Suryawan

    2009-01-01

    The device pressure regulation orifice system of manufacturing process gel uranium on external column gelation has been made and characterized. The device consists : compressor 5.75-6.75 kg / cm 2 , air container tank, power supply 24 volts dc, solenoid valve 24 volts dc, pressure indicator 0-100 mbar, pressure indicator 0-250 mbar, mechanical valve and power electric 380 volts 50 Hz. The activity includes: installation device system and characterization with pressure variation orifice 5-75 mbar on the compressor 5.75-6.5 kg/cm 2 continuously for 1 minute. The method of installation i.e: wiring and piping to first component and support component (compressor and pressure air indicator, air container tank and pressure air indicator, solenoid valve, power supply 220 volts / 24 volts dc and orifice). After apparatus installed has been tested by the characterization without feed under air pressure varied to orifice of 5-75 mbar and device characterization with variation diameter orifice of 0.5-1 mm and orifice pressure of 5-75 mbar. The result in the characterization an every component good function, can be operation by input pressure range of 15-185 mbar orifice pressure range of 5-75 mbar. The characterization result device pressure regulation orifice system showed that: the system can be good operation of air pressure regulation orifice between 5-75 mbar with diameter orifice 0.5 mm to result gelation range of 10-25 piece / minute with variation air pressure input between 15-185 mbar of air pressure compressor 5.75-6.5 kg cm 2 . (author)

  16. Novel procedure for characterizing nonlinear systems with memory: 2017 update

    Science.gov (United States)

    Nuttall, Albert H.; Katz, Richard A.; Hughes, Derke R.; Koch, Robert M.

    2017-05-01

    The present article discusses novel improvements in nonlinear signal processing made by the prime algorithm developer, Dr. Albert H. Nuttall and co-authors, a consortium of research scientists from the Naval Undersea Warfare Center Division, Newport, RI. The algorithm, called the Nuttall-Wiener-Volterra or 'NWV' algorithm is named for its principal contributors [1], [2],[ 3] . The NWV algorithm significantly reduces the computational workload for characterizing nonlinear systems with memory. Following this formulation, two measurement waveforms are required in order to characterize a specified nonlinear system under consideration: (1) an excitation input waveform, x(t) (the transmitted signal); and, (2) a response output waveform, z(t) (the received signal). Given these two measurement waveforms for a given propagation channel, a 'kernel' or 'channel response', h= [h0,h1,h2,h3] between the two measurement points, is computed via a least squares approach that optimizes modeled kernel values by performing a best fit between measured response z(t) and a modeled response y(t). New techniques significantly diminish the exponential growth of the number of computed kernel coefficients at second and third order and alleviate the Curse of Dimensionality (COD) in order to realize practical nonlinear solutions of scientific and engineering interest.

  17. Identification and Preliminary Analysis of Several Centromere-associated Bacterial Artificial Chromosome Clones from a Diploid Wheat Library

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Although the centromeres of some plants have been investigated previously, our knowledge of the wheat centromere is still very limited. To understand the structure and function of the wheat centromere, we used two centromeric repeats (RCS1 and CCS1-5ab) to obtain some centromere-associated bacterial artificial chromosome (BAC) clones in 32 RCS1-related BAC clones that had been screened out from a diploid wheat (Triticum boeoticum Boiss.; 2n=2x=14) BAC library. Southern hybridization results indicated that, of the 32 candidates,there were 28 RCS1-positive clones. Based on gel blot patterns, the frequency of RCS1 was approximately one copy every 69.4 kb in these 28 RCS1-positive BAC clones. More bands were detected when the same filter was probed with CCS1-5ab. Furthermore, the CCS1 bands covered all the bands detected by RCS1, which suggests that some CCS1 repeats were distributed together with RCS1. The frequency of CCS1 families was once every 35.8 kb, nearly twice that of RCS1. Fluorescence in situ hybridization (FISH) analysis indicated that the five BAC clones containing RCS1 and CCS1 sequences all detected signals at the centromeric regions in hexaploid wheat, but the signal intensities on the A-genome chromosomes were stronger than those on the B- and/or D-genome chromosomes. The FISH analysis among nine Triticeae cereals indicated that there were A-genomespecific (or rich) sequences dispersing on chromosome arms in the BAC clone TbBAC5. In addition, at the interphase cells, the centromeres of diploid species usually clustered at one pole and formed a ring-like allocation in the period before metaphase.

  18. The hard start phenomena in hypergolic engines. Volume 4: The chemistry of hydrazine fuels and nitrogen tetroxide propellant systems

    Science.gov (United States)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    The various chemical reactions that occur and that could possibly occur in the RCS engines utilizing hydrazine-type fuel/nitrogen tetroxide propellant systems, prior to ignition (preignition), during combustion, and after combustion (postcombustion), and endeavors to relate the hard-start phenomenon to some of these reactions are discussed. The discussion is based on studies utilizing a variety of experimental techniques and apparatus as well as current theories of chemical reactions and reaction kinetics. The chemical reactions were studied in low pressure gas flow reactors, low temperature homogeneous- and heterogeneous-phase reactors, simulated two-dimensional (2-D) engines, and scaled and full size engines.

  19. RELAP5/MOD 3.2 Analysis of the Loss of RHR System Experiment Scaled to NPP Krsko

    International Nuclear Information System (INIS)

    Bencik, V.; Bajs, T.; Prah, M.

    1998-01-01

    In the paper the RELAP5/MOD 3.2 analysis of the loss of Residual Heat Removal (RHR) system during midloop operation experiment performed at the Rig of Safety Assessment (ROSA)-IV/Large Scale Test Facility (LSTF) together with the analysis of the same test scenario scaled to NPP Krsko are presented. The experiment consisted in a loss of the RHR system at cold shutdown conditions along with a 5% cold leg break in the loop without pressurizer. The Safety Injection (SI) system was disable in the calculation. The aims of the work were to study the physical phenomena encountered under low power and low system pressure conditions while the upper part of the Reactor Coolant System (RCS) is filled with noncondensable. The impact of the bypass flow between upper plenum and downcomer inlet on transient responses was investigated. The transient was simulated for 6000 s. (author)

  20. A Study on the Operator Decision Support for Feed-and-Bleed Operation

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kim, Sang Ho; Kang, Hyun Gook; Yoon, Ho Joon

    2014-01-01

    In the case of a combined accident that includes a failure of the secondary cooling system, it is difficult for operators to recognize the necessity of an feed and bleed (F and B) operation because a lot of parameters and alarms should be checked before a decision, and operators may spend a considerable amount of time arriving at the entry for a proper emergency operating procedure that contains the procedure for an F and B operation. Therefore, a clear identification of the success boundary of an F and B operation would help operators in their decision-making when a combined accident that includes a secondary cooling system failure occurs. This study will provide a useful guideline for the initiation of an F and B operation for operators. Cooling the RCS after a scram is one of the most important safety functions for preventing core damage. To support the operator in decision making whether to initiate the F and B operation, plant conditions requiring the initiation of an F and B operation were identified. Plant conditions are affected by the steam generator inventory, RCS inventory, core inventory, and safety injection availability. The combination of accident types, component availabilities, and the initiation time of an F and B operation affect the success of the F and B operation. Operators need clear information about the RCS condition when the steam generators, the RCS's main residual heat removal mechanism, become unavailable. When this happens, the initiation of an F and B operation becomes necessary. As the number of the state increases, the necessity of an F and B operation increases. Especially, the operator should initiate an F and B operation when the RCS condition enters State 3 for Type 1 incidents or State 3-2 for Type 2 incidents. The results of this study may be useful in providing information regarding the necessity and effects of an F and B operation in a quantitative manner. In particular, in the case of a combined accident including a

  1. An Analysis of Effect of Break-up Timing on the Necessity of a Feed-and-Bleed Operation in the case of TLOFW with Local

    International Nuclear Information System (INIS)

    Kim, Bo Gyung; Kim, Sang Ho; Kang, Hyun Gook; Yoon, Ho Joon

    2014-01-01

    A Feed-and-bleed (F and B) operation is a process to cool the reactor by the primary side directly. If adequate residual heat removal through the secondary side is not available, the heat can be removed from the RCS by F and B operation. A total loss of feedwater (TLOFW) accident is used to represent an accident involving the failure of cooling by the secondary cooling system. Even if the secondary cooling system fails, the RCS can be cooled by F and B transients when a loss of coolant accident (LOCA) with a TLOFW accident occurs. During an F and B transient, the RCS has a residual heat removal mechanism. If the break size is large, an F and B transient continuously occurs if the SIS is available. If the break size is small to sufficiently decrease the RCS pressure, the SIS cannot inject the coolant, causing the F and B transient to terminate. After the termination of the F and B transient, the residual heat cannot be removed, and the necessity of an F and B operation increases. The operators may hesitate to initiate F and B operation if a clear cue is not provided, since its initiation implies the radioactive coolant releases into the containment. Therefore, the necessity of F and B operation is needed to be identified. The factors affected the necessity of F and B operation are the availability of the safety injection system and safety depressurization system, water inventory in the primary and secondary cooling systems, break size in a loss-of-coolant accident, and time of accident occurrence. The necessity of F and B operation can be changed according to different timing of break-up despite same break size. Moreover, different timing of break-up makes the operators more complicated. To identify effect of timing of break-up, a thermohydraulic analysis was performed using the MARS code. This study is expected to provide a useful guideline to identify the necessity of an F and B operation under combined accident

  2. Robotic-assisted versus laparoscopic colorectal surgery: a meta-analysis of four randomized controlled trials

    Science.gov (United States)

    2014-01-01

    Background Robotic-assisted laparoscopy is popularly performed for colorectal disease. The objective of this meta-analysis was to compare the safety and efficacy of robotic-assisted colorectal surgery (RCS) and laparoscopic colorectal surgery (LCS) for colorectal disease based on randomized controlled trial studies. Methods Literature searches of electronic databases (Pubmed, Web of Science, and Cochrane Library) were performed to identify randomized controlled trial studies that compared the clinical or oncologic outcomes of RCS and LCS. This meta-analysis was performed using the Review Manager (RevMan) software (version 5.2) that is provided by the Cochrane Collaboration. The data used were mean differences and odds ratios for continuous and dichotomous variables, respectively. Fixed-effects or random-effects models were adopted according to heterogeneity. Results Four randomized controlled trial studies were identified for this meta-analysis. In total, 110 patients underwent RCS, and 116 patients underwent LCS. The results revealed that estimated blood losses (EBLs), conversion rates and times to the recovery of bowel function were significantly reduced following RCS compared with LCS. There were no significant differences in complication rates, lengths of hospital stays, proximal margins, distal margins or harvested lymph nodes between the two techniques. Conclusions RCS is a promising technique and is a safe and effective alternative to LCS for colorectal surgery. The advantages of RCS include reduced EBLs, lower conversion rates and shorter times to the recovery of bowel function. Further studies are required to define the financial effects of RCS and the effects of RCS on long-term oncologic outcomes. PMID:24767102

  3. Immunohistochemical analysis of FoxP3+ cells in periapical granulomas and radicular cysts.

    Science.gov (United States)

    Peixoto, Raniel Fernandes; Pereira, Joabe dos Santos; Nonaka, Cassiano Francisco Weege; Silveira, Ericka Janine Dantas da; Miguel, Márcia Cristina da Costa

    2012-09-01

    To compare the number of FoxP3(+) cells between periapical granulomas (PGs) and radicular cysts (RCs), and to correlate this number with the intensity of the inflammatory infiltrate in these lesions and with epithelial thickness of RCs. Thirty PGs and 30 RCs were submitted to immunohistochemical analysis using an anti-FoxP3 polyclonal antibody. FoxP3(+) cells were counted under a light microscope (×400 magnification) in five fields and the mean value was calculated for each specimen. Statistical tests were used to evaluate differences in the number of FoxP3(+) cells according to type of lesion (PG vs. RC), intensity of the inflammatory infiltrate (grade I/II vs. grade III), and epithelial thickness of RCs (atrophic vs. hyperplastic). FoxP3(+) cells were detected in most PGs (93.3%) and RCs (93.3%). The median number of FoxP3(+) cells was 2.40 in PGs and 1.00 in RCs, with this difference being statistically significant (P=0.005). No significant differences in the number of FoxP3(+) cells were observed in terms of the intensity of the inflammatory infiltrate (P=0.465) or epithelial thickness of RCs (P=0.737). The present results suggest a greater participation of regulatory T cells in the modulation of the inflammatory response in PGs. In addition, the presence of a less effective regulatory environment in RCs, together with the high levels of inflammatory mediators as reported in the literature, may contribute to the greater growth potential of these lesions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Regeneration of cervical reserve cell-like cells from human induced pluripotent stem cells (iPSCs): A new approach to finding targets for cervical cancer stem cell treatment.

    Science.gov (United States)

    Sato, Masakazu; Kawana, Kei; Adachi, Katsuyuki; Fujimoto, Asaha; Yoshida, Mitsuyo; Nakamura, Hiroe; Nishida, Haruka; Inoue, Tomoko; Taguchi, Ayumi; Ogishima, Juri; Eguchi, Satoko; Yamashita, Aki; Tomio, Kensuke; Wada-Hiraike, Osamu; Oda, Katsutoshi; Nagamatsu, Takeshi; Osuga, Yutaka; Fujii, Tomoyuki

    2017-06-20

    Cervical reserve cells are epithelial progenitor cells that are pathologically evident as the origin of cervical cancer. Thus, investigating the characteristics of cervical reserve cells could yield insight into the features of cervical cancer stem cells (CSCs). In this study, we established a method for the regeneration of cervical reserve cell-like properties from human induced pluripotent stem cells (iPSCs) and named these cells induced reserve cell-like cells (iRCs). Approximately 70% of iRCs were positive for the reserve cell markers p63, CK5 and CK8. iRCs also expressed the SC junction markers CK7, AGR2, CD63, MMP7 and GDA. While iRCs expressed neither ERα nor ERβ, they expressed CA125. These data indicated that iRCs possessed characteristics of cervical epithelial progenitor cells. iRCs secreted higher levels of several inflammatory cytokines such as macrophage migration inhibitory factor (MIF), soluble intercellular adhesion molecule 1 (sICAM-1) and C-X-C motif ligand 10 (CXCL-10) compared with normal cervical epithelial cells. iRCs also expressed human leukocyte antigen-G (HLA-G), which is an important cell-surface antigen for immune tolerance and carcinogenesis. Together with the fact that cervical CSCs can originate from reserve cells, our data suggested that iRCs were potent immune modulators that might favor cervical cancer cell survival. In conclusion, by generating reserve cell-like properties from iPSCs, we provide a new approach that may yield new insight into cervical cancer stem cells and help find new oncogenic targets.

  5. Characterization of Type Three Secretion System Translocator Interactions with Phospholipid Membranes.

    Science.gov (United States)

    Adam, Philip R; Barta, Michael L; Dickenson, Nicholas E

    2017-01-01

    In vitro characterization of type III secretion system (T3SS) translocator proteins has proven challenging due to complex purification schemes and their hydrophobic nature that often requires detergents to provide protein solubility and stability. Here, we provide experimental details for several techniques that overcome these hurdles, allowing for the direct characterization of the Shigella translocator protein IpaB with respect to phospholipid membrane interaction. The techniques specifically discussed in this chapter include membrane interaction/liposome flotation, liposome sensitive fluorescence quenching, and protein-mediated liposome disruption assays. These assays have provided valuable insight into the role of IpaB in T3SS-mediated phospholipid membrane interactions by Shigella and should readily extend to other members of this important class of proteins.

  6. New Ultrasonic Controller and Characterization System for Low Temperature Drying Process Intensification

    Science.gov (United States)

    Andrés, R. R.; Blanco, A.; Acosta, V. M.; Riera, E.; Martínez, I.; Pinto, A.

    Process intensification constitutes a high interesting and promising industrial area. It aims to modify conventional processes or develop new technologies in order to reduce energy needs, increase yields and improve product quality. It has been demonstrated by this research group (CSIC) that power ultrasound have a great potential in food drying processes. The effects associated with the application of power ultrasound can enhance heat and mass transfer and may constitute a way for process intensification. The objective of this work has been the design and development of a new ultrasonic system for the power characterization of piezoelectric plate-transducers, as excitation, monitoring, analysis, control and characterization of their nonlinear response. For this purpose, the system proposes a new, efficient and economic approach that separates the effect of different parameters of the process like excitation, medium and transducer parameters and variables (voltage, current, frequency, impedance, vibration velocity, acoustic pressure and temperature) by observing the electrical, mechanical, acoustical and thermal behavior, and controlling the vibrational state.

  7. Audit Calculations of ATWS for Ulchin Unit 1 and 2 Power Uprate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Soo; Huh, Byung Gil; Choi, Yong Seog; Seul, Kwang Won [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this study, the regulatory audit calculation for ATWS of Ulchin Unit 1 and 2 with 4.5% power uprate was performed to support the licensing review and to confirm the validity of licensee's calculation. In order to simulate the transient behavior of ATWS initiated by a loss of feed water, the systems of Ulchin Unit 1 and 2 was modeled with MARS-KS 1.3. In this study, the regulatory audit calculation of ATWS for Ulchin 1 and 2 with 4.5% power uprating and 99% MTC in the specific cycle designs was performed. It is conformed that the analysis results of ATWS for Ulchin 1 and 2 power uprate meets the RCS pressure acceptance criteria. An anticipated transient accompanied by a failure in the Reactor Trip System (RTS) to shut down the reactor is defined as an Anticipated Transient Without Scram (ATWS). Under certain postulated conditions, the ATWS could lead to Reactor Coolant system (RCS) pressure boundary fracture and/or core damage. For a conventional pressurized water reactor (PWR), the temperature corresponding to the NSSC notice No.2013.09(Performance Criteria for ECCS of the Pressurized Water Reactor Nuclear Power Plants), 1204 .deg. C and the pressure corresponding to the ASME Boiler and Pressure Vessel Code service level C stress, 221.5 bar is assumed to be an unacceptable plant condition against ATWS, above which the RCS pressure boundary could deform to the point of inoperability and the safe shutdown by injection of borated water could be challenged. Such potentially excessive RCS overpressure may occur in the ATWS initiated from a loss of heat sink. Currently, the modification of Ulchin 1 and 2 operating license for 4.5% power uprate is under review.

  8. Suppression of Specular Reflections by Metasurface with Engineered Nonuniform Distribution of Reflection Phase

    Directory of Open Access Journals (Sweden)

    Xin Mi Yang

    2015-01-01

    Full Text Available We make preliminary investigations on a new approach to reducing radar cross section (RCS of conducting objects. This approach employs novel planar metasurfaces characterizing nonuniform distribution of reflection phase. The operation principle of this approach and the design rule of the associated metasurfaces are explained using a simplified theoretical model. We then present a design example of such metasurfaces, in which three-layer stacked square patches with variable sizes are utilized as the reflecting elements. The proposed RCS-reduction approach is verified by both numerical simulations and measurements on the example, under the assumption of normal plane wave incidence. It is observed that, in a fairly wide frequency band (from 3.6 to 5.5 GHz, the presented example is capable of suppressing the specular reflections of conducting plates significantly (by more than 7 dB for two orthogonal incident polarizations.

  9. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system

    International Nuclear Information System (INIS)

    Lowry, W.

    1994-01-01

    The objective for the development of the Pipe Explorer trademark radiological characterization system is to achieve a cost effective, low risk means of characterizing gamma radioactivity on the inside surface of pipes. The unique feature of this inspection system is the use of a pneumatically inflated impermeable membrane which transports the detector into the pipe as it inverts. The membrane's internal air pressure tows the detector and tether through the pipe. This mechanism isolates the detector and its cabling from the contaminated surface, yet allows measurement of radioactive emissions which can readily penetrate the thin plastic membrane material (such as gamma and high energy beta emissions). In Phase 1, an initial survey of DOE facilities was conducted to determine the physical and radiological characteristics of piping systems. The inverting membrane deployment system was designed and extensively tested in the laboratory. A range of membrane materials was tested to evaluate their ruggedness and deployment characteristics. Two different sizes of gamma scintillation detectors were procured and tested with calibrated sources. Radiation transport modeling evaluated the measurement system's sensitivity to detector position relative to the contaminated surface, the distribution of the contamination, background gamma levels, and gamma source energy levels. In the culmination of Phase 1, a field demonstration was conducted at the Idaho National Engineering Laboratory's Idaho Chemical Processing Plant. The project is currently in transition from Phase 1 to Phase 2, where more extensive demonstrations will occur at several sites. Results to date are discussed

  10. Radar cross section of human cardiopulmonary activity for recumbent subject.

    Science.gov (United States)

    Kiriazi, John E; Boric-Lubecke, Olga; Lubecke, Victor M

    2009-01-01

    The radar cross section (RCS) corresponding to human cardio-respiratory motion is measured for a subject in two different recumbent positions. Lying face-up (supine), the subject showed an RCS of 0.326 m(2). But when lying face-down (prone), the RCS increased to 2.9 m(2). This is the first reported RCS measurement corresponding to human cardio-respiratory motion. The results obtained in this experiment suggest modeling the upper part of the human body as a half-cylinder where the front body corresponds to the cylindrical surface and the back corresponds to the rectangular one.

  11. VICTORIA: A mechanistic model of radionuclide behavior in the reactor coolant system under severe accident conditions. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Heams, T J [Science Applications International Corp., Albuquerque, NM (United States); Williams, D A; Johns, N A; Mason, A [UKAEA, Winfrith, (England); Bixler, N E; Grimley, A J [Sandia National Labs., Albuquerque, NM (United States); Wheatley, C J [UKAEA, Culcheth (England); Dickson, L W [Atomic Energy of Canada Ltd., Chalk River, ON (Canada); Osborn-Lee, I [Oak Ridge National Lab., TN (United States); Domagala, P; Zawadzki, S; Rest, J [Argonne National Lab., IL (United States); Alexander, C A [Battelle, Columbus, OH (United States); Lee, R Y [Nuclear Regulatory Commission, Washington, DC (United States)

    1992-12-01

    The VICTORIA model of radionuclide behavior in the reactor coolant system (RCS) of a light water reactor during a severe accident is described. It has been developed by the USNRC to define the radionuclide phenomena and processes that must be considered in systems-level models used for integrated analyses of severe accident source terms. The VICTORIA code, based upon this model, predicts fission product release from the fuel, chemical reactions involving fission products, vapor and aerosol behavior, and fission product decay heating. Also included is a detailed description of how the model is implemented in VICTORIA, the numerical algorithms used, and the correlations and thermochemical data necessary for determining a solution. A description of the code structure, input and output, and a sample problem are provided.

  12. The characterization of the antibacterial efficacy of an electrically activated silver ion-based surface system

    Science.gov (United States)

    Shirwaiker, Rohan A.

    There have been growing concerns in the global healthcare system about the eradication of pathogens in hospitals and other health-critical environments. The problem has been aggravated by the overuse of antibiotics and antimicrobial agents leading to the emergence of antibiotic-resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) which are difficult to kill. Lower immunity of sick patients coupled with the escalating concurrent problem of antibiotic-resistant pathogens has resulted in increasing incidences of hospital acquired (nosocomial) infections. There is an immediate need to control the transmission of such infections, primarily in healthcare environments, by creating touch-contact and work surfaces (e.g., door knobs, push plates, countertops) that utilize alternative antibacterial materials like the heavy metal, silver. Recent research has shown that it is silver in its ionic (Ag+ ) and not elemental form that is antibacterial. Thus, silver-based antibacterial surfaces have to release silver ions directly into the pathogenic environment (generally, an aqueous media) in order to be effective. This dissertation presents the study and analysis of a new silver-based surface system that utilizes low intensity direct electric current (LIDC) for generation of silver ions to primarily inhibit indirect contact transmission of infections. The broader objective of this research is to understand the design, and characterization of the electrically activated silver ion-based antibacterial surface system. The specific objectives of this dissertation include: (1) Developing a comprehensive system design, and identifying and studying its critical design parameters and functional mechanisms. (2) Evaluating effects of the critical design parameters on the antibacterial efficacy of the proposed surface system. (3) Developing a response surface model for the surface system performance. These objectives are

  13. Morpho-functional characterization of the systemic venous pole of the reptile heart

    NARCIS (Netherlands)

    Jensen, Bjarke; Vesterskov, Signe; Boukens, Bastiaan J.; Nielsen, Jan M.; Moorman, Antoon F. M.; Christoffels, Vincent M.; Wang, Tobias

    2017-01-01

    Mammals evolved from reptile-like ancestors, and while the mammalian heart is driven by a distinct sinus node, a sinus node is not apparent in reptiles. We characterized the myocardial systemic venous pole, the sinus venosus, in reptiles to identify the dominant pacemaker and to assess whether the

  14. Space shuttle auxiliary propulsion system design study. Phase C and E report: Storable propellants, RCS/OMS/APU integration study

    Science.gov (United States)

    Anglim, D. D.; Bruns, A. E.; Perryman, D. C.; Wieland, D. L.

    1972-01-01

    Auxiliary propulsion concepts for application to the space shuttle are compared. Both monopropellant and bipropellant earth storable reaction control systems were evaluated. The fundamental concepts evaluated were: (1) monopropellant and bipropellant systems installed integrally within the vehicle, (2) fuel systems installed modularly in nose and wing tip pods, and (3) fuel systems installed modularly in nose and fuselage pods. Numerous design variations within these three concepts were evaluated. The system design analysis and methods for implementing each of the concepts are reported.

  15. Design, Microfabrication and Characterization of a Power Delivery System for new Biomedical Applications

    Directory of Open Access Journals (Sweden)

    CARUSO Massimo

    2017-05-01

    Full Text Available This paper presents the design, microfabrication and characterization of a wireless power delivery system capable of driving a surface acoustic wave sensor (SAW for biomedical applications. The system consists of two planar, spiral-square microcoils, which have been geometrically optimized in order to maximize the quality factor Q. The integration of the SAW - microcoil system into artificial implant sites will allow a real-time biofilm growth monitoring and treatment, providing countless advantages to the related medical applications.

  16. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  17. Open control/display system for a telerobotics work station

    Science.gov (United States)

    Keslowitz, Saul

    1987-01-01

    A working Advanced Space Cockpit was developed that integrated advanced control and display devices into a state-of-the-art multimicroprocessor hardware configuration, using window graphics and running under an object-oriented, multitasking real-time operating system environment. This Open Control/Display System supports the idea that the operator should be able to interactively monitor, select, control, and display information about many payloads aboard the Space Station using sets of I/O devices with a single, software-reconfigurable workstation. This is done while maintaining system consistency, yet the system is completely open to accept new additions and advances in hardware and software. The Advanced Space Cockpit, linked to Grumman's Hybrid Computing Facility and Large Amplitude Space Simulator (LASS), was used to test the Open Control/Display System via full-scale simulation of the following tasks: telerobotic truss assembly, RCS and thermal bus servicing, CMG changeout, RMS constrained motion and space constructible radiator assembly, HPA coordinated control, and OMV docking and tumbling satellite retrieval. The proposed man-machine interface standard discussed has evolved through many iterations of the tasks, and is based on feedback from NASA and Air Force personnel who performed those tasks in the LASS.

  18. Control System of 3 GeV Rapid Cycling Synchrotron at J-PARC

    CERN Document Server

    Takahashi, Hiroki; Kato, Yuko; Kawase, Masato; Sakaki, Hironao; Sako, Hiroyuki; Sugimoto, Makoto; Yoshikawa, Hiroshi

    2005-01-01

    Since the 3GeV RCS produces huge beam power of 1 MW, extreme cares must be taken to design the control system in order to minimize radiation due to beam loss. Another complexity appears in the control system, because each beam bunch of 25 Hz is required to be injected either into the MLF* or into the 50GeV MR.** Therefore, each bunch of 25 Hz must be operated separately, and the data acquisition system must collect synchronized data within each pulse. To achieve these goals, a control system via reflective memory and wave endless recorders has been developed. EPICS is adopted in the control system. Since the number of devices is huge, the management of EPICS records and their configurations require huge amount of time and man power. To reduce this work significantly, a RDB*** for static machine information has been developed. This RDB stores (1) EPICS related information of devices, interfaces, and IOC's**** with a capability to generate EPICS records automatically, and (2) machine geometrical information wit...

  19. EFECTO DEL RECUENTO DE CÉLULAS SOMÁTICAS SOBRE LA APTITUD QUESERA DE LA LECHE Y LA CALIDAD FISICOQUÍMICA Y SENSORIAL DEL QUESO CAMPESINO

    Directory of Open Access Journals (Sweden)

    J. A. Vásquez

    2014-01-01

    Full Text Available Antecedentes: en Colombia, el alto recuento de células somáticas (RCS en la leche es un problema para la industria lechera. Altos recuentos pueden afectar de manera consi - derable los rendimientos y calidad final del queso. Varios países han establecido límites máximos estandarizados para el RCS. Colombia no lo ha hecho de manera oficial y tan solo unas pocas industrias manejan sus propios límites. Objetivos: Determinar el efecto del RCS sobre parámetros de aptitud quesera de la leche y la calidad sensorial del queso campesino. Métodos: Se tomaron muestras de leche de seis tanques con altos y bajos RCS y se realizaron mezclas para obtener 30 baches con diferentes RCS (desde 150.000 hasta 1.200.000 cel/ml. Con estas mezclas se elaboraron 30 quesos tipo campesino a los cuales se les determinaron variables de aptitud quesera (tiempo de coagulación, rendimientos y pérdidas en suero y la calidad organoléptica a través de una prueba sensorial descrip - tiva de puntajes con panel de seis jueces con experiencia previa y entrenados en queso campesino. Las variables de aptitud quesera fueron analizadas por regresión múltiple y los resultados de la evaluación sensorial con la prueba no paramétrica de Friedman. Resultados: La aptitud quesera disminuyó con RCS superiores a 200.000 cel/ml. El tiempo de coagulación (R 2 = 0.74; P < 0.001 y las pérdidas de proteína en el lactosuero (R 2 = 0.55; P <0,001 aumentaron, mientras que los rendimientos (R 2 =0.31; P <0.01 disminuyeron a medida que aumentó el RCS. La calificación de los panelistas respecto de la textura y la apariencia disminuyó con RCS mayores a 600.000 cel/ml ( P <0.01 y el sabor y el aroma, a partir de 800.000 cel/ml ( P <0,01. Conclusiones: Aumentos en el RCS en leche afectan negativamente parámetros de aptitud quesera y la calidad sensorial del queso campesino. Se sugiere que los impactos serán menores sobre el rendimiento cuanto menor sea el RCS, mientras que la calidad

  20. Characterization of the Wolf 1061 Planetary System

    Energy Technology Data Exchange (ETDEWEB)

    Kane, Stephen R.; Waters, Miranda A. [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Von Braun, Kaspar [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Henry, Gregory W. [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States); Boyajian, Tabetha S. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Mann, Andrew W., E-mail: skane@sfsu.edu [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2017-02-01

    A critical component of exoplanetary studies is an exhaustive characterization of the host star, from which the planetary properties are frequently derived. Of particular value are the radius, temperature, and luminosity, which are key stellar parameters for studies of transit and habitability science. Here we present the results of new observations of Wolf 1061, known to host three super-Earths. Our observations from the Center for High Angular Resolution Astronomy interferometric array provide a direct stellar radius measurement of 0.3207±0.0088 R{sub ⊙}, from which we calculate the effective temperature and luminosity using spectral energy distribution models. We obtained 7 yr of precise, automated photometry that reveals the correct stellar rotation period of 89.3±1.8 days, finds no evidence of photometric transits, and confirms that the radial velocity signals are not due to stellar activity. Finally, our stellar properties are used to calculate the extent of the Habitable Zone (HZ) for the Wolf 1061 system, for which the optimistic boundaries are 0.09–0.23 au. Our simulations of the planetary orbital dynamics show that the eccentricity of the HZ planet oscillates to values as high as ∼0.15 as it exchanges angular momentum with the other planets in the system.

  1. Containment response and radiological release for a TMLB' accident sequence in a large dry containment

    International Nuclear Information System (INIS)

    Gasser, R.D.; Bieniarz, P.P.; Tills, J.L.

    1987-01-01

    An analysis has been performed for the Bellefonte Pressurized Water Reactor (PWR) Unit 1 to determine the containment loading and the radiological releases into the environment from a station blackout accident. A number of issues have been addressed in this analysis, which include the effects of direct heating on containment loading and the effects of fission product heating and natural convection on releases from the primary system. The results indicate that direct heating, which involves more than about 50% of the core, may fail the Bellefonte containment, but natural convection in the Reactor Coolant System (RCS) may lead to overheating and failure of the primary system piping before core slump, thus, eliminating or mitigating direct heating. Releases from the primary system are significantly increased before vessel breach, due to natural circulation, and after vessel breach, due to reevolution of retained fission products by fission product heating of RCS structures. (orig.)

  2. Transient analysis on the SMART-P anticipated transients without scram

    International Nuclear Information System (INIS)

    Yang, S. H.; Bae, K. H.; Kim, H. C.; Zee, S. Q.

    2005-01-01

    Anticipated transients without scram (ATWS) are anticipated operational occurrences accompanied by a failure of an automatic reactor trip when required. Although the occurrence probability of the ATWS events is considerably low, these events can result in unacceptable consequences, i.e. the pressurization of the reactor coolant system (RCS) up to an unacceptable range and a core-melting situation. Therefore, the regulatory body requests the installation of a protection system against the ATWS events. According to the request, a diverse protection system (DPS) is installed in the SMART-P (System-integrated Modular Advanced ReacTor-Pilot). This paper presents the results of the transient analysis performed to identify the performance of the SMART-P against the ATWS. In the analysis, the TASS/SMR (Transients And Setpoint Simulation/Small and Medium Reactor) code is applied to identify the thermal hydraulic response of the RCS during the transients

  3. Detailed analysis of the TMI-2 accident scenario by using MARS/SCDAP

    International Nuclear Information System (INIS)

    Park, Rae Joon; Lee, Young Jin; Chung, Bub Dong

    2009-01-01

    As part of a benchmark analysis, the Three Mile Island Unit 2 (TMI-2) accident has been analyzed by using the MARS/SCDAP computer code. This analysis has been performed to estimate the efficiency of the MARS/SCDAP computer code and the predictive qualities of its models from an initiating event to a severe accident. The MARS/SCDAP results have shown that a reduction feed water to the steam generator caused the coolant to expand and initially increased the reactor coolant system (RCS) pressure. The pilot-operated relief valve (PORV) opened when the pressure reached 15.7 MPa, with a reactor scram occurring when the pressure reached 16.3 MPa. The PORV failed to close as the RCS pressure decreased, initiating a small break loss of coolant accident. The emergency core cooling was reduced by operators who thought that the pressurizer liquid level indicated a nearly full RCS, while coolant continued to be lost from the PORV. After an initial decrease in the RCS pressure, the pressurizer pressure remained at approximately 7 MPa. After a pump termination at 6,000 seconds, the liquid level in the reactor vessel decreased, which resulted in a core uncovery. Continued core degradation with a coolant boiling caused the pressurizer pressure to increase. The MARS/SCDAP results are very similar to the TMI-2 data

  4. Pattern of leukemia induction in BC3F1 mice transplanted with irradiated lymphohemopoietic tissues

    International Nuclear Information System (INIS)

    Covelli, V.; Di Majo, V.; Bassani, B.; Metalli, P.; Silini, G.

    1982-01-01

    (C57BL/Cne X C3H/Cne)F 1 male mice spontaneously develop reticulum cell sarcoma (RCS) with an average final incidence of 56%; neither myeloid leukemia (ML) nor thymic lymphoma (TL) has been observed in intact animals. X rays (4Gy, 250 kV) induce a few cases of ML but no TL. In increasing the dose to 6 Gy, we observed a few cases of TL, no ML, and a drastic reduction (8%) of RCS. The same dose of 6 Gy fractionated into four weekly doses of 1.5 Gy induced 24% of TL. By transplanting cells into appropriately preirradiated (4 Gy) syngeneic recipients we found evidence that four weekly doses of 1.5 Gy to donor animals caused an excess of ML and drastic changes of both TL and RCS incidences and rates in recipients as a function of time postirradiation at which the lymphohemopoietic tissues are transplanted. Furthermore, the same transplanted animals showed an evident acceleration of time of appearance of RCS and an enhanced incidence of NL; the latter effect is significant 10 days after the last X-ray fraction, but not thereafter. These data are in line with the hypothesis that committed cells for these two types of systemic tumors may be present among the irradiated transplanted tissues

  5. Analysis of station blackout accidents for the Bellefonte pressurized water reactor

    International Nuclear Information System (INIS)

    Gasser, R.D.; Bieniarz, P.P.; Tills, J.L.

    1986-09-01

    An analysis has been performed for the Bellefonte PWR Unit 1 to determine the containment loading and the radiological releases into the environment from a station blackout accident. A number of issues have been addressed in this analysis which include the effects of direct heating on containment loading, and the effects of fission product heating and natural convection on releases from the primary system. The results indicate that direct heating which involves more than about 50% of the core can fail the Bellefonte containment, but natural convection in the RCS may lead to overheating and failure of the primary system piping before core slump, thus, eliminating or mitigating direct heating. Releases from the primary system are significantly increased before vessel breach due to natural circulation and after vessel breach due to reevolution of retained fission products by fission product heating of RCS structures

  6. A Review of Analytical Methods for the Identification and Characterization of Nano Delivery Systems in Food

    NARCIS (Netherlands)

    Luykx, D.M.A.M.; Peters, R.J.B.; Ruth, van S.M.; Bouwmeester, H.

    2008-01-01

    Detection and characterization of nano delivery systems is an essential part of understanding the benefits as well as the potential toxicity of these systems in food. This review gives a detailed description of food nano delivery systems based on lipids, proteins, and/or polysaccharides and

  7. Noncontact inspection laser system for characterization of piezoelectric samples

    International Nuclear Information System (INIS)

    Jimenez, F.J.; Frutos, J. de

    2004-01-01

    In this work measurements on a piezoelectric sample in dynamic behavior were taken, in particular, around the frequencies of resonance for the sample where the nonlineal effects are accentuated. Dimension changes in the sample need to be studied as that will allow a more reliable characterization of the piezoelectric samples. The goal of this research is to develop an inspection system able to obtain measurements, using a noncontact laser displacement transducer, also able to visualize, in three-dimensional graphic environment, the displacement that takes place in a piezoelectric sample surface. In resonant mode, the vibration mode of the sample is visualized

  8. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    OpenAIRE

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research oppor...

  9. Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Peter [Energy & Geoscience Institute at the University of Utah, Salt Lake City, UT (United States); Harris, Joel [Univ. of Utah, Salt Lake City, UT (United States)

    2014-05-08

    The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one method of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.

  10. Conceptual design of a remote system for characterizing oilsands tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Lipsett, M.G.; Rivard, B. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Alberta Univ., Edmonton, AB (Canada). Dept. of Earth and Atmospheric Sciences

    2010-07-01

    This PowerPoint presentation described the design of a remote system for characterizing oil sands tailings deposits. The wheeled mobile robot technology was developed in order to improve the trafficability of composite tailings (CT) and other engineering tailings deposits, as well as to identify differences in feedstocks and process performance, and to determine shear strength losses from dynamic loading. The technology was comprised of a spectroscopy component, and a mobile robot equipped with surface measurement sensors. The control system included navigation and traction control devices. A communication component was also included. Tools used in the system included a penetrometer, a viscosimeter, and an automatic sample collection device. Tests have been conducted to determine the system's driving ability. Further tests are being conducted to evaluate the performance of the robot sensors and controllers. tabs., figs.

  11. Dosimetric study for characterization of a postal system of quality control in brachytherapy

    International Nuclear Information System (INIS)

    Alves, Victor Gabriel Leandro; Queiroz Filho, Pedro Pacheco de; Santos, Denison de Souza; Begalli, Marcia

    2009-01-01

    This work presents a dosimetric study of a postal system, to be developed for measurements of brachytherapy. It was projected a PMMA phantom with orifices for insertion of the high dose 192 Ir source and the T L dosemeters. The system was characterized with using of Monte Carlo simulations, using the dosimetric magnitudes defined at the T G-43 of AAPM, as function of radial dose g(f)

  12. Recent plant studies using Victoria 2.0

    International Nuclear Information System (INIS)

    Bixler, Nathan E.; Gasser, Ronald D.

    2000-01-01

    VICTORIA 2.0 is a mechanistic computer code designed to analyze fission product behavior within the reactor coolant system (RCS) during a severe nuclear reactor accident. It provides detailed predictions of the release of radioactive and nonradioactive materials from the reactor core and transport and deposition of these materials within the RCS and secondary circuits. These predictions account for the chemical and aerosol processes that affect radionuclide behavior. VICTORIA 2.0 was released in early 1999; a new version VICTORIA 2.1, is now under development. The largest improvements in VICTORIA 2.1 are connected with the thermochemical database, which is being revised and expanded following the recommendations of a peer review. Three risk-significant severe accident sequences have recently been investigated using the VICTORIA 2.0 code. The focus here is on how various chemistry options affect the predictions. Additionally, the VICTORIA predictions are compared with ones made using the MELCOR code. The three sequences are a station blackout in a GE BWR and steam generator tube rupture (SGTR) and pump-seal LOCA sequences in a 3-loop Westinghouse PWR. These sequences cover a range of system pressures, from fully depressurized to full system pressure. The chief results of this study are the fission product fractions that are retained in the core, RCS, secondary, and containment and the fractions that are released into the environment

  13. Characterization of pipes, drain lines, and ducts using the pipe explorer system

    International Nuclear Information System (INIS)

    Cremer, C.D.; Kendrick, D.T.; Cramer, E.

    1997-01-01

    As DOE dismantles its nuclear processing facilities, site managers must employ the best means of disposing or remediating hundreds of miles of potentially contaminated piping and duct work. Their interiors are difficult to access, and in many cases even the exteriors are inaccessible. Without adequate characterization, it must be assumed that the piping is contaminated, and the disposal cost of buried drain lines can be on the order of $1,200/ft and is often unnecessary as residual contamination levels often are below free release criteria. This paper describes the program to develop a solution to the problem of characterizing radioactive contamination in pipes. The technical approach and results of using the Pipe Explorer trademark system are presented. The heart of the system is SEA's pressurized inverting membrane adapted to transport radiation detectors and other tools into pipes. It offers many benefits over other pipe inspection approaches. It has video and beta/gamma detection capabilities, and the need for alpha detection has been addressed through the development of the Alpha Explorer trademark. These systems have been used during various stages of decontamination and decommissioning of DOE sites, including the ANL CP-5 reactor D ampersand D. Future improvements and extensions of their capabilities are discussed

  14. Finite-difference time-domain analysis on radar cross section of conducting cube scatterer covered with plasmas

    International Nuclear Information System (INIS)

    Liu Shaobin; Zhang Guangfu; Yuan Naichang

    2004-01-01

    A PLJERC-FDTD algorithm is applied to the study of the scattering of perfectly conducting cube covered with homogeneous isotropic plasmas. The effects of plasma thickness, density and collision frequency on the radar cross section (RCS) of the conducting cube scatterer have been obtained. The results illustrate that the plasma cloaking can greatly reduce the RCS of radar targets, and the RCS of the perfectly conducting cube scatterer decreases with increasing plasma thickness when the plasma frequency is greatly less than the electromagnetic (EM) wave frequency; the RCS of the perfectly conducting cube scatterer decreases with increasing plasma thickness and plasma collision frequency when the plasma frequency is almost half as much as the EM wave frequency; the effects of plasma thickness and collision frequency on the RCS of the perfectly conducting cube scatterer is small when the plasma frequency is close to the EM wave frequency

  15. Growth of SJL/J-derived transplantable reticulum cell sarcoma as related to its ability to induce T-cell proliferation in the host- III. Studies on thymectomized and congenitally athymic SJL mice

    International Nuclear Information System (INIS)

    Katz, I.R.; Chapman-Alexander, J.; Jacobson, E.B.; Lerman, S.P.; Thorbecke, G.J.

    1981-01-01

    When SJL mice are irradiated and reconstituted with syngeneic bone marrow (XBM) they support growth of transplantable reticulum cell sarcoma to approximately 60% of that in normal mice. The ability to support RCS growth gradually improves with time after irradiation and reaches 90% of normal by 8-12 weeks. However, if the mice are thymectomized 4 weeks prior to treatment (Tx-XBM) they initially show 50% which increases to only 65% of growth in normal mice after 12 weeks. The ability of lymphoid cells from these mice to proliferate in vitro in response to irradiated RCS cells is normal 4 weeks after treatment in XBM, but remains <10% of normal in Tx-XBM mice. Nude mice of SJL background also show greatly diminished RCS growth. It is concluded that T cells promote RCS growth in vivo possibly via their tendency to proliferate upon exposure to RCS

  16. Segregation of genes from donor strain during the production of recombinant congenic strains.

    Science.gov (United States)

    van Zutphen, L F; Den Bieman, M; Lankhorst, A; Demant, P

    1991-07-01

    Recombinant congenic strains (RCS) constitute a set of inbred strains which are designed to dissect the genetic control of multigenic traits, such as tumour susceptibility or disease resistance. Each RCS contains a small fraction of the genome of a common donor strain, while the majority of genes stem from a common background strain. We tested at two stages of the inbreeding process in 20 RCS, derived from BALB/cHeA and STS/A, to see whether alleles from the STS/A donor strain are distributed over the RCS in a ratio as would theoretically be expected. Four marker genes (Pep-3; Pgm-1; Gpi-1 and Es-3) located at 4 different chromosomes were selected and the allelic distribution was tested after 3-4 and after 12 generations of inbreeding. The data obtained do not significantly deviate from the expected pattern, thus supporting the validity of the concept of RCS.

  17. PV LED ENGINE characterization lab for stand alone light-to-light systems

    DEFF Research Database (Denmark)

    Poulsen, Peter Behrensdorff; Thorsteinsson, Sune; Lindén, Johannes

    2015-01-01

    dimming functions for reliable lighting. A barrier for exploiting use of standalone solar lighting for the urban environment seem to be lack of knowledge and lack of available tools for proper dimensioning. In this work the development of powerful dimensioning tool is described and initial measurements...... are presented. Furthermore, a laboratory has been build to characterize these systems up to 200 Wp from “nose to tail” in great details to support improvement of the systems and to make accurate field performance predictions by the dimensioning tool....

  18. Characterization of the ELIMED prototype permanent magnet quadrupole system

    Science.gov (United States)

    Russo, A. D.; Schillaci, F.; Pommarel, L.; Romano, F.; Amato, A.; Amico, A. G.; Calanna, A.; Cirrone, G. A. P.; Costa, M.; Cuttone, G.; Amato, C.; De Luca, G.; Flacco, F. A.; Gallo, G.; Giove, D.; Grmek, A.; La Rosa, G.; Leanza, R.; Maggiore, M.; Malka, V.; Milluzzo, G.; Petringa, G.; Pipek, J.; Scuderi, V.; Vauzour, B.; Zappalà, E.

    2017-01-01

    The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.

  19. Characterization of the ELIMED prototype permanent magnet quadrupole system

    International Nuclear Information System (INIS)

    Russo, A.D.; Schillaci, F.; Romano, F.; Amato, A.; Amico, A.G.; Calanna, A.; Cirrone, G.A.P.; Costa, M.; Cuttone, G.; Amato, C.; Luca, G. De; Gallo, G.; Grmek, A.; Rosa, G. La; Leanza, R.; Pommarel, L.; Flacco, F.A.; Malka, V.; Giove, D.; Maggiore, M.

    2017-01-01

    The system described in this work is meant to be a prototype of a more performing one that will be installed at ELI-Beamlines in Prague for the collection of ions produced after the interaction Laser-target, [1]. It has been realized by the researchers of INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) and SIGMAPHI, a French company, using a system of Permanent Magnet Quadrupoles (PMQs), [2]. The final system that will be installed in Prague is designed for protons and carbons up to 60 MeV/u, around 10 times more than the energies involved in the present work. The prototype, shown in this work, has been tested in collaboration with the SAPHIR experimental facility group at LOA (Laboratoire d'Optique Appliqueé) in Paris using a 200 TW Ti:Sapphire laser system. The purpose of this work is to validate the design and the performances of this large and compact bore system and to characterize the beam produced after the interaction laser-target and its features. Moreover, the optics simulations have been compared with a real beam shape on a GAFChromic film. The procedure used during the experimental campaign and the most relevant results are reported here demonstrating a good agreement with the simulations and a good control on the beam optics.

  20. FIR signature verification system characterizing dynamics of handwriting features

    Science.gov (United States)

    Thumwarin, Pitak; Pernwong, Jitawat; Matsuura, Takenobu

    2013-12-01

    This paper proposes an online signature verification method based on the finite impulse response (FIR) system characterizing time-frequency characteristics of dynamic handwriting features. First, the barycenter determined from both the center point of signature and two adjacent pen-point positions in the signing process, instead of one pen-point position, is used to reduce the fluctuation of handwriting motion. In this paper, among the available dynamic handwriting features, motion pressure and area pressure are employed to investigate handwriting behavior. Thus, the stable dynamic handwriting features can be described by the relation of the time-frequency characteristics of the dynamic handwriting features. In this study, the aforesaid relation can be represented by the FIR system with the wavelet coefficients of the dynamic handwriting features as both input and output of the system. The impulse response of the FIR system is used as the individual feature for a particular signature. In short, the signature can be verified by evaluating the difference between the impulse responses of the FIR systems for a reference signature and the signature to be verified. The signature verification experiments in this paper were conducted using the SUBCORPUS MCYT-100 signature database consisting of 5,000 signatures from 100 signers. The proposed method yielded equal error rate (EER) of 3.21% on skilled forgeries.