WorldWideScience

Sample records for characterization mitochondrial localization

  1. Molecular characterization of Saudi local chicken strains using mitochondrial DNA markers.

    Science.gov (United States)

    Yacoub, H A; Ramadan, H A I; Baeshen, Nabih A; Sadek, Mahmoud Abdel; Abou Alsoud, M E

    2015-08-01

    The current study was carried out to investigate and estimate the genetic diversity of native breeds based on cytochrome b (cyt-b) gene of mitochondrial DNA information. The obtained sequences of cyt-b gene segment have TAA as a stop codon at 488 position with no insertions or deletion in all individuals of both native chicken strains. The blast results showed that no variation was found among individuals within both native chicken strains, but when a comparison was established among them and other species of genus Gallus the variation is exploring, additionally many mutant sites were detected as single nucleotide polymorphisms (SNPs) in different sites. The phylogenetic trees exhibited three different groups. The results revealed that the native chicken strains were closely related to the cluster of Gallus gallus and subspecies of Gallus, suggesting that they may be separated from the same origin. According to this result and previously studies, the native chicken strains are genetically closer to Gallus gallus and it could be successfully distinguished from the other wild types of Gallus chicken based on cyt-b gene information. We recommended that the governmental concerns for native chicken strain should be enhanced to screen its genetic structure for large scale in the Kingdom of Saudi Arabia.

  2. Evidence for a mitochondrial localization of the retinoblastoma protein

    Directory of Open Access Journals (Sweden)

    Oliver Lisa

    2009-06-01

    Full Text Available Abstract Background The retinoblastoma protein (Rb plays a central role in the regulation of cell cycle, differentiation and apoptosis. In cancer cells, ablation of Rb function or its pathway is a consequence of genetic inactivation, viral oncoprotein binding or deregulated hyperphosphorylation. Some recent data suggest that Rb relocation could also account for the regulation of its tumor suppressor activity, as is the case for other tumor suppressor proteins, such as p53. Results In this reported study, we present evidence that a fraction of the total amount of Rb protein can localize to the mitochondria in proliferative cells taken from both rodent and human cells. This result is also supported by the use of Rb siRNAs, which substantially reduced the amount of mitochondrial Rb, and by acellular assays, in which [35S]-Methionine-labeled Rb proteins bind strongly to mitochondria isolated from rat liver. Moreover, endogenous Rb is found in an internal compartment of the mitochondria, within the inner-membrane. This is consistent with the protection of Rb from alkaline treatment, which destroys any interaction of proteins that are weakly bound to mitochondria. Conclusion Although a few data regarding an unspecific cytosolic localization of Rb protein have been reported for some tumor cells, our results are the first evidence of a mitochondrial localization of Rb. The mitochondrial localization of Rb is observed in parallel with its classic nuclear location and paves the way for the study of potential as-yet-unknown roles of Rb at this site.

  3. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity

    DEFF Research Database (Denmark)

    Croteau, Deborah L; Rossi, Marie L; Canugovi, Chandrika;

    2012-01-01

    in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial...... reserve capacity after lentiviral knockdown of RECQL4 in two different primary cell lines. Additionally, biochemical assays with RECQL4, mitochondrial transcription factor A, and mitochondrial DNA polymerase ¿ showed that the polymerase inhibited RECQL4's helicase activity. RECQL4 is the first 3'-5' Rec...

  4. Sepsis-induced cardiac mitochondrial dysfunction involves altered mitochondrial-localization of tyrosine kinase Src and tyrosine phosphatase SHP2.

    Directory of Open Access Journals (Sweden)

    Qun S Zang

    Full Text Available Our previous research demonstrated that sepsis produces mitochondrial dysfunction with increased mitochondrial oxidative stress in the heart. The present study investigated the role of mitochondria-localized signaling molecules, tyrosine kinase Src and tyrosine phosphatase SHP2, in sepsis-induced cardiac mitochondrial dysfunction using a rat pneumonia-related sepsis model. SD rats were given an intratracheal injection of Streptococcus pneumoniae, 4×10(6 CFU per rat, (or vehicle for shams; heart tissues were then harvested and subcellular fractions were prepared. By Western blot, we detected a gradual and significant decrease in Src and an increase in SHP2 in cardiac mitochondria within 24 hours post-inoculation. Furthermore, at 24 hours post-inoculation, sepsis caused a near 70% reduction in tyrosine phosphorylation of all cardiac mitochondrial proteins. Decreased tyrosine phosphorylation of certain mitochondrial structural proteins (porin, cyclophilin D and cytochrome C and functional proteins (complex II subunit 30kD and complex I subunit NDUFB8 were evident in the hearts of septic rats. In vitro, pre-treatment of mitochondrial fractions with recombinant active Src kinase elevated OXPHOS complex I and II-III activity, whereas the effect of SHP2 phosphatase was opposite. Neither Src nor SHP2 affected complex IV and V activity under the same conditions. By immunoprecipitation, we showed that Src and SHP2 consistently interacted with complex I and III in the heart, suggesting that complex I and III contain putative substrates of Src and SHP2. In addition, in vitro treatment of mitochondrial fractions with active Src suppressed sepsis-associated mtROS production and protected aconitase activity, an indirect marker of mitochondrial oxidative stress. On the contrary, active SHP2 phosphatase overproduced mtROS and deactivated aconitase under the same in vitro conditions. In conclusion, our data suggest that changes in mitochondria-localized

  5. Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Andersen, Kasper Røjkjær; Kjær, Karina Hansen;

    2011-01-01

    . Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference...... for oligo-adenosine RNA like canonical cytoplasmic deadenylases. Furthermore, we document a marked negative association between 2′-PDE and mitochondrial mRNA levels following siRNA-directed knockdown and plasmid-mediated overexpression, respectively. The results indicate that 2′-PDE, apart from playing...... a role in the cellular immune system, may also function in mitochondrial RNA turnover....

  6. Aprataxin localizes to mitochondria and preserves mitochondrial function

    DEFF Research Database (Denmark)

    Sykora, Peter; Croteau, Deborah L; Bohr, Vilhelm A;

    2011-01-01

    are expressed in the human brain, with highest production in the cerebellum. Depletion of aprataxin in human SH-SY5Y neuroblastoma cells and primary skeletal muscle myoblasts results in mitochondrial dysfunction, which is revealed by reduced citrate synthase activity and mtDNA copy number. Moreover, mt...

  7. Drosophila clueless is highly expressed in larval neuroblasts, affects mitochondrial localization and suppresses mitochondrial oxidative damage.

    Directory of Open Access Journals (Sweden)

    Aditya Sen

    Full Text Available Mitochondria are critical for neuronal function due to the high demand of ATP in these cell types. During Drosophila development, neuroblasts in the larval brain divide asymmetrically to populate the adult central nervous system. While many of the proteins responsible for maintaining neuroblast cell fate and asymmetric cell divisions are known, little is know about the role of metabolism and mitochondria in neuroblast division and maintenance. The gene clueless (clu has been previously shown to be important for mitochondrial function. clu mutant adults have severely shortened lifespans and are highly uncoordinated. Part of their lack of coordination is due to defects in muscle, however, in this study we have identified high levels of Clu expression in larval neuroblasts and other regions of the dividing larval brain. We show while mitochondria in clu mutant neuroblasts are mislocalized during the cell cycle, surprisingly, overall brain morphology appears to be normal. This is explained by our observation that clu mutant larvae have normal levels of ATP and do not suffer oxidative damage, in sharp contrast to clu mutant adults. Mutations in two other genes encoding mitochondrial proteins, technical knockout and stress sensitive B, do not cause neuroblast mitochondrial mislocalization, even though technical knockout mutant larvae suffer oxidative damage. These results suggest Clu functions upstream of electron transport and oxidative phosphorylation, has a role in suppressing oxidative damage in the cell, and that lack of Clu's specific function causes mitochondria to mislocalize. These results also support the previous observation that larval development relies on aerobic glycolysis, rather than oxidative phosphorylation. Thus Clu's role in mitochondrial function is not critical during larval development, but is important for pupae and adults.

  8. An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function.

    Science.gov (United States)

    Zabezhinsky, Dmitry; Slobodin, Boris; Rapaport, Doron; Gerst, Jeffrey E

    2016-04-19

    Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs) can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1), we observed that COPI inactivation (or mutation of the potential COPI-interaction site) led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins.

  9. Mitochondrial localization of the low level p53 protein in proliferative cells

    International Nuclear Information System (INIS)

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  10. Mitochondrial localization of the low level p53 protein in proliferative cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferecatu, Ioana; Bergeaud, Marie; Rodriguez-Enfedaque, Aida; Le Floch, Nathalie [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Oliver, Lisa [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Rincheval, Vincent; Renaud, Flore [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vallette, Francois M. [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Mignotte, Bernard [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vayssiere, Jean-Luc, E-mail: jean-luc.vayssiere@uvsq.fr [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France)

    2009-10-02

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  11. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults.

    Science.gov (United States)

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson's and Alzheimer's, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  12. Superresolution Imaging of Human Cytomegalovirus vMIA Localization in Sub-Mitochondrial Compartments

    Directory of Open Access Journals (Sweden)

    Shivaprasad Bhuvanendran

    2014-04-01

    Full Text Available The human cytomegalovirus (HCMV viral mitochondria-localized inhibitor of apoptosis (vMIA protein, traffics to mitochondria-associated membranes (MAM, where the endoplasmic reticulum (ER contacts the outer mitochondrial membrane (OMM. vMIA association with the MAM has not been visualized by imaging. Here, we have visualized this by using a combination of confocal and superresolution imaging. Deconvolution of confocal microscopy images shows vMIA localizes away from mitochondrial matrix at the Mitochondria-ER interface. By gated stimulated emission depletion (GSTED imaging, we show that along this interface vMIA is distributed in clusters. Through multicolor, multifocal structured illumination microscopy (MSIM, we find vMIA clusters localize away from MitoTracker Red, indicating its OMM localization. GSTED and MSIM imaging show vMIA exists in clusters of ~100–150 nm, which is consistent with the cluster size determined by Photoactivated Localization Microscopy (PALM. With these diverse superresolution approaches, we have imaged the clustered distribution of vMIA at the OMM adjacent to the ER. Our findings directly compare the relative advantages of each of these superresolution imaging modalities for imaging components of the MAM and sub-mitochondrial compartments. These studies establish the ability of superresolution imaging to provide valuable insight into viral protein location, particularly in the sub-mitochondrial compartments, and into their clustered organization.

  13. Localization of HPV-18 E2 at Mitochondrial Membranes Induces ROS Release and Modulates Host Cell Metabolism

    OpenAIRE

    Deborah Lai; Chye Ling Tan; Jayantha Gunaratne; Ling Shih Quek; Wenlong Nei; Françoise Thierry; Sophie Bellanger

    2013-01-01

    Papillomavirus E2 proteins are predominantly retained in the nuclei of infected cells, but oncogenic (high-risk) HPV-18 and 16 E2 can shuttle between the host nucleus and cytoplasm. We show here that cytoplasmic HPV-18 E2 localizes to mitochondrial membranes, and independent mass spectrometry analyses of the E2 interactome revealed association to the inner mitochondrial membrane including components of the respiratory chain. Mitochondrial E2 association modifies the cristae morphology when an...

  14. Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release

    Directory of Open Access Journals (Sweden)

    Seong‑Woon Yu

    2009-11-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  15. Probing of protein localization and shuttling in mitochondrial microcompartments by FLIM with sub-diffraction resolution.

    Science.gov (United States)

    Söhnel, Anna-Carina; Kohl, Wladislaw; Gregor, Ingo; Enderlein, Jörg; Rieger, Bettina; Busch, Karin B

    2016-08-01

    The cell is metabolically highly compartmentalized. Especially, mitochondria host many vital reactions in their different microcompartments. However, due to their small size, these microcompartments are not accessible by conventional microscopy. Here, we demonstrate that time-correlated single-photon counting (TCSPC) fluorescence lifetime-imaging microscopy (FLIM) classifies not only mitochondria, but different microcompartments inside mitochondria. Sensor proteins in the matrix had a different lifetime than probes at membrane proteins. Localization in the outer and inner mitochondrial membrane could be distinguished by significant differences in the lifetime. The method was sensitive enough to monitor shifts in protein location within mitochondrial microcompartments. Macromolecular crowding induced by changes in the protein content significantly affected the lifetime, while oxidizing conditions or physiological pH changes had only marginal effects. We suggest that FLIM is a versatile and completive method to monitor spatiotemporal events in mitochondria. The sensitivity in the time domain allows for gaining substantial information about sub-mitochondrial localization overcoming diffraction limitation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27016377

  16. Induction and Characterization of Mitochondrial DNA Mutants in Chlamydomonas Reinhardtii

    OpenAIRE

    Matagne, René-Fernand; Michel-Wolwertz, M.R.; Munaut, Carine; Duyckaerts, Claire; Sluse, Francis

    1989-01-01

    In addition to lethal minute colony mutations which correspond to loss of mitochondrial DNA, acriflavin induces in Chlamydomonas reinhardtii a low percentage of cells that grow in the light but do not divide under heterotrophic conditions. Two such obligate photoautotrophic mutants were shown to lack the cyanide-sensitive cytochrome pathway of the respiration and to have a reduced cytochrome c oxidase activity. In crosses to wild type, the mutations are transmitted almost exclusively from the...

  17. Localization of HPV-18 E2 at mitochondrial membranes induces ROS release and modulates host cell metabolism.

    Directory of Open Access Journals (Sweden)

    Deborah Lai

    Full Text Available Papillomavirus E2 proteins are predominantly retained in the nuclei of infected cells, but oncogenic (high-risk HPV-18 and 16 E2 can shuttle between the host nucleus and cytoplasm. We show here that cytoplasmic HPV-18 E2 localizes to mitochondrial membranes, and independent mass spectrometry analyses of the E2 interactome revealed association to the inner mitochondrial membrane including components of the respiratory chain. Mitochondrial E2 association modifies the cristae morphology when analyzed by electron microscopy and increases production of mitochondrial ROS. This ROS release does not induce apoptosis, but instead correlates with stabilization of HIF-1α and increased glycolysis. These mitochondrial functions are not shared by the non-oncogenic (low-risk HPV-6 E2 protein, suggesting that modification of cellular metabolism by high-risk HPV E2 proteins could play a role in carcinogenesis by inducing the Warburg effect.

  18. Genetic characterization of Phytophthora nicotianae by the analysis of polymorphic regions of the mitochondrial DNA.

    Science.gov (United States)

    A new method based on the analysis of mitochondrial intergenic regions characterized by intraspecific variation in DNA sequences was developed and applied to the study of the plant pathogen Phytophthora nicotianae. Two regions flanked by genes trny and rns and trnw and cox2 were identified by compa...

  19. Characterization of the mitochondrial genome of Amolops tuberodepressus (Anura: Ranidae).

    Science.gov (United States)

    Zhang, Chaohua; Xia, Yun; Zeng, Xiaomao

    2016-07-01

    Amolops tuberodepressus is a vulnerable torrent frog, and only know distributed in the Wuliang Mountain in southwestern China. In the present study, the mitochondrial DNA (mtDNA) sequence of A. tuberodepressus was determined. The genome was 18 348 bp in length, and it contained 37 genes (13 protein-coding genes, two ribosomal RNAs, and 22 transfer RNAs), one partial control region and one light strand replication origin. The gene rearrangement was observed within the WANCY tRNA gene cluster region, which similar to other Amolops species. In this paper, we utilized 13 protein-coding genes of A. tuberodepressus and other 10 closely ranid species to construct the species phylogenetic tree to verify the A. tuberodepressus was accuracy. PMID:26153745

  20. Mitochondrial localized STAT3 is involved in NGF induced neurite outgrowth.

    Directory of Open Access Journals (Sweden)

    Lihan Zhou

    Full Text Available BACKGROUND: Signal transducer and activator of transcription 3 (STAT3 plays critical roles in neural development and is increasingly recognized as a major mediator of injury response in the nervous system. Cytokines and growth factors are known to phosphorylate STAT3 at tyrosine(705 with or without the concomitant phosphorylation at serine(727, resulting in the nuclear localization of STAT3 and subsequent transcriptional activation of genes. Recent evidence suggests that STAT3 may control cell function via alternative mechanisms independent of its transcriptional activity. Currently, the involvement of STAT3 mono-phosphorylated at residue serine(727 (P-Ser-STAT3 in neurite outgrowth and the underlying mechanism is largely unknown. PRINCIPAL FINDINGS: In this study, we investigated the role of nerve growth factor (NGF induced P-Ser-STAT3 in mediating neurite outgrowth. NGF induced the phosphorylation of residue serine(727 but not tyrosine(705 of STAT3 in PC12 and primary cortical neuronal cells. In PC12 cells, serine but not tyrosine dominant negative mutant of STAT3 was found to impair NGF induced neurite outgrowth. Unexpectedly, NGF induced P-Ser-STAT3 was localized to the mitochondria but not in the nucleus. Mitochondrial STAT3 was further found to be intimately involved in NGF induced neurite outgrowth and the production of reactive oxygen species (ROS. CONCLUSION: Taken together, the findings herein demonstrated a hitherto unrecognized novel transcription independent mechanism whereby the mitochondria localized P-Ser-STAT3 is involved in NGF induced neurite outgrowth.

  1. clueless, a conserved Drosophila gene required for mitochondrial subcellular localization, interacts genetically with parkin

    OpenAIRE

    Cox, Rachel T.; Spradling, Allan C.

    2009-01-01

    Parkinson’s disease has been linked to altered mitochondrial function. Mutations in parkin (park), the Drosophila ortholog of a human gene that is responsible for many familial cases of Parkinson’s disease, shorten life span, abolish fertility and disrupt mitochondrial structure. However, the role played by Park in mitochondrial function remains unclear. Here, we describe a novel Drosophila gene, clueless (clu), which encodes a highly conserved tetratricopeptide repeat protein that is related...

  2. Mitochondrial Localized Stat3 Promotes Breast Cancer Growth via Phosphorylation of Serine 727*

    Science.gov (United States)

    Zhang, Qifang; Raje, Vidisha; Yakovlev, Vasily A.; Yacoub, Adly; Szczepanek, Karol; Meier, Jeremy; Derecka, Marta; Chen, Qun; Hu, Ying; Sisler, Jennifer; Hamed, Hossein; Lesnefsky, Edward J.; Valerie, Kristoffer; Dent, Paul; Larner, Andrew C.

    2013-01-01

    Signal transducer and activator of transcription 3 (Stat3) is a key mediator in the development of many cancers. For 20 years, it has been assumed that Stat3 mediates its biological activities as a nuclear localized transcription factor activated by many cytokines. However, recent studies from this laboratory and others indicate that Stat3 has an independent function in the mitochondria (mitoStat3) where it controls the activity of the electron transport chain (ETC) and mediates Ras-induced transformation of mouse embryo fibroblasts. The actions of mitoStat3 in controlling respiration and Ras transformation are mediated by the phosphorylation state of serine 727. To address the role of mitoStat3 in the pathogenesis of cells that are transformed, we used 4T1 breast cancer cells, which form tumors that metastasize in immunocompetent mice. Substitution of Ser-727 for an alanine or aspartate in Stat3 that has a mitochondrial localization sequence, MLS-Stat3, has profound effects on tumor growth, complex I activity of the ETC, and accumulation of reactive oxygen species (ROS). Cells expressing MLS-Stat3(S727A) display slower tumor growth, decreased complex I activity of the ETC, and increased ROS accumulation under hypoxia compared with cells expressing MLS-Stat3. In contrast, cells expressing MLS-Stat3(S727D) show enhanced tumor growth and complex I activity and decreased production of ROS. These results highlight the importance of serine 727 of mitoStat3 in breast cancer and suggest a novel role for mitoStat3 in regulation of ROS concentrations through its action on the ETC. PMID:24019511

  3. Mitochondrial genome variations and functional characterization in Han Chinese families with schizophrenia.

    Science.gov (United States)

    Bi, Rui; Tang, Jinsong; Zhang, Wen; Li, Xiao; Chen, Shi-Yi; Yu, Dandan; Chen, Xiaogang; Yao, Yong-Gang

    2016-03-01

    The relationship between mitochondrial DNA (mtDNA) variants and schizophrenia has been strongly debated. To test whether mtDNA variants are involved in schizophrenia in Han Chinese patients, we sequenced the entire mitochondrial genomes of probands from 11 families with a family history and maternal inheritance pattern of schizophrenia. Besides the haplogroup-specific variants, we found 11 nonsynonymous private variants, one rRNA variant, and one tRNA variant in 5 of 11 probands. Among the nonsynonymous private variants, mutations m.15395 A>G and m.8536 A>G were predicted to be deleterious after web-based searches and in silico program affiliated analysis. Functional characterization further supported the potential pathogenicity of the two variants m.15395 A>G and m.8536 A>G to cause mitochondrial dysfunction at the cellular level. Our results showed that mtDNA variants were actively involved in schizophrenia in some families with maternal inheritance of this disease. PMID:26822593

  4. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+.

    Directory of Open Access Journals (Sweden)

    Paola eVenco

    2015-05-01

    Full Text Available Mutations in C19orf12 have been identified in patients affected by Neurodegeneration with Brain Iron Accumulation (NBIA, a clinical entity characterized by iron accumulation in the basal ganglia. By using western blot analysis with specific antibody and confocal studies, we showed that wild-type C19orf12 protein was not exclusively present in mitochondria, but also in the Endoplasmic Reticulum (ER and MAM (Mitochondria Associated Membrane, while mutant C19orf12 variants presented a different localization. Moreover, after induction of oxidative stress, a GFP-tagged C19orf12 wild-type protein was able to relocate to the cytosol. On the contrary, mutant isoforms were not able to respond to oxidative stress. High mitochondrial calcium concentration and increased H2O2 induced apoptosis were found in fibroblasts derived from one patient as compared to controls.C19orf12 protein is a 17kDa mitochondrial membrane-associated protein whose function is still unknown. Our in silico investigation suggests that, the glycine zipper motifs of C19orf12 form helical regions spanning the membrane. The N- and C-terminal regions with respect to the transmembrane portion, on the contrary, are predicted to rearrange in a structural domain, which is homologues to the N-terminal regulatory domain of the magnesium transporter MgtE, suggesting that C19orf12 may act as a regulatory protein for human MgtE transporters. The mutations here described affect respectively one glycine residue of the glycine zipper motifs, which are involved in dimerization of transmembrane helices and predicted to impair the correct localization of the protein into the membranes, and one residue present in the regulatory domain, which is important for protein-protein interaction.

  5. Characterization of the complete mitochondrial genome of flower-breeding Drosophila incompta (Diptera, Drosophilidae).

    Science.gov (United States)

    De Ré, F C; Wallau, G L; Robe, L J; Loreto, E L S

    2014-12-01

    Drosophila incompta belongs to the flavopilosa group of Drosophila, and has a restricted ecology, being adapted to flowers of Cestrum as feeding and oviposition sites. We sequenced, assembled, and characterized the complete mitochondrial genome (mtDNA) of D. incompta. In addition, we performed phylogenomic and polymorphism analyses to assess evolutionary diversification of this species. Our results suggest that this genome is syntenic with the other published mtDNA of Drosophila. This molecule contains 15,641 bp and encompasses two rRNA, 22 tRNA and 13 protein-coding genes. Regarding nucleotide composition, we found a high A-T bias (76.6 %). The recovered phylogenies indicate D. incompta in the virilis-repleta radiation, as sister to the virilis or repleta groups. The most interesting result is the high degree of polymorphism found throughout the D. incompta mitogenome, revealing pronounced intrapopulational variation. Furthermore, intraspecific nucleotide diversity levels varied between different regions of the genome, thus allowing the use of different mitochondrial molecular markers for analysis of population structure of this species.

  6. Characterization of Thin Films Using Local Magneometer

    CERN Document Server

    Katzan N.

    2016-01-01

    SIS nanocomposite (Superconductor/Insulator/Superconductor) could improve the efficiency of bulk Nb accelerating cavities as proposed in 2006 by A. Gurevich [1]. The SRF multilayers concept takes advantage of the enhancement of HC1 of thin layers with thickness d~. The use of thin layers makes it easier to prevent avalanche penetration of vortices in case of local defects that could promote early penetration. The external field is not fully attenuated in such configuration, so several layers are necessary in order to screen the external field down to values below Nb HC1, decoupled from each other with a dielectric layer. Many deposition techniques exist that can allow the deposition of such multilayers but a few of them are adapted for accelerating cavities shapes. Moreover we do not know yet how the predicted properties evolve in realistic deposition conditions. It seems reasonable to start the optimization of such structure on samples. Two parameters need to be measured to predict their behavior in condi...

  7. Mitochondrial DNA COI characterization of Helicoverpa armigera (Lepidoptera: Noctuidae) from Paraguay and Uruguay.

    Science.gov (United States)

    Arnemann, J A; James, W J; Walsh, T K; Guedes, J V C; Smagghe, G; Castiglioni, E; Tay, W T

    2016-04-07

    Since its detection in Brazil in 2013, the Old World cotton bollworm Helicoverpa armigera has been reported in Argentina, Paraguay, and Bolivia. Here we present evidence extending the South American range of H. armigera to Uruguay, using polymerase chain reaction and sequencing of the partial mitochondrial DNA (mtDNA) cytochrome oxidase I region. Molecular characterization of this gene region from individuals from Paraguay also supports previous morphological identification of H. armigera in Paraguay. Shared mtDNA haplotypes in H. armigera from Brazil, Uruguay, and Paraguay were identified. Additional surveying of populations in this region will be imperative to better monitor and understand factors that are underpinning its presence and successful adaptation in these South American regions. We discuss our findings with respect to the development of resistance pest management strategies of this invasive insect pest in a predominantly monoculture soybean crop landscape in the Southern Cone region.

  8. Characterization of local observables in integrable quantum field theories

    CERN Document Server

    Bostelmann, Henning

    2014-01-01

    Integrable quantum field theories in 1+1 dimensions have recently become amenable to a rigorous construction, but many questions about the structure of their local observables remain open. Our goal is to characterize these local observables in terms of their expansion coefficients in a series expansion by interacting annihilators and creators, similar to form factors. We establish a rigorous one-to-one characterization, where locality of an observable is reflected in analyticity properties of its expansion coefficients; this includes detailed information about the high-energy behaviour of the observable and the growth properties of the analytic functions. Our results hold for generic observables, not only smeared pointlike fields, and the characterizing conditions depend only on the localization region - we consider wedges and double cones - and on the permissible high energy behaviour.

  9. Cloning, characterization, and expression of Cytochrome b (Cytb)-a key mitochondrial gene from Prorocentrum donghaiense

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liyuan; MI Tiezhu; ZHEN Yu; YU Zhigang

    2012-01-01

    Mitochondrial cytochrome b (Cytb),one of the few proteins encoded by the mitochondrial DNA,plays an important role in transferring electrons.As a mitochondrial gene,it has been widely used for phylogenetic analysis.Previously,a 949-bp fragment of the coding gene and mRNA editing were characterized from Prorocentrum donghaiense,which might prove useful for resolving P.donghaiense from closely related species.However,the full-length coding region has not been characterized.In this study,we used rapid amplification of cDNA ends (RACE) to obtain full-length,1124 bp cDNA.Cytb transcript contained a standard initiation codon ATG,but did not have a recognizable stop codon.Homology comparison showed that the P.donghaiense Cytb had a high sequence identity to Cytb sequences from other dinoflagellate species.Phylogenetic analysis placed Cytb from P.donghaiense in the clade of dinofiagellates and it clustered together strongly with that from P.minimum.Based on the full-length sequence,we inferred 32 editing events at different positions,accounting for 2.93% of the Cytb gent.34.4% (11) of the changes were A to G,25% (8) were T to C,and 25% (8) were C to U,with smaller proportions of G to C and G to A edits (9.4% (3) and 6.2% (2),respectively).The expression level of the Cytb transcript was quantified by real-time PCR with a TaqMan probe at different times during the whole growth phase.The average Cytb transcript was present at 39.27±7.46 copies of cDNA per cell during the whole growth cycle,and the expression of Cytb was relatively stable over the different phases.These results deepen our understanding of the structure and characteristics of Cytb in P.donghaiense,and confirmed that Cytb in P.donghaiense is a candidate reference gene for studying the expression of other genes.

  10. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome.

    Science.gov (United States)

    Cuenca, Argelia; Ross, T Gregory; Graham, Sean W; Barrett, Craig F; Davis, Jerrold I; Seberg, Ole; Petersen, Gitte

    2016-08-03

    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome.

  11. The human MSH5 (MutSHomolog 5) protein localizes to mitochondria and protects the mitochondrial genome from oxidative damage.

    Science.gov (United States)

    Bannwarth, Sylvie; Figueroa, Alexia; Fragaki, Konstantina; Destroismaisons, Laurie; Lacas-Gervais, Sandra; Lespinasse, Françoise; Vandenbos, Fanny; Pradelli, Ludivine A; Ricci, Jean-Ehrland; Rötig, Agnès; Michiels, Jean-François; Vande Velde, Christine; Paquis-Flucklinger, Véronique

    2012-11-01

    MutS homologs play a central role in maintaining genetic stability. We show that MSH5 (MutSHomolog 5) is localized into the mitochondria of germ and somatic cells. This protein binds to mtDNA and interacts with the Twinkle helicase and the DNA polymerase gamma. hMSH5 stimulates mtDNA repair in response to DNA damage induced by oxidative stress. Furthermore, we observed a subsarcolemmal accumulation of hMSH5 in COX negative muscle fibers of patients presenting a mitochondrial myopathy. We report a novel localization for hMSH5 suggesting that this protein may have functions other than those known in meiotic recombination. PMID:22917773

  12. Characterization of local operators in factorizing scattering models

    Energy Technology Data Exchange (ETDEWEB)

    Cadamuro, Daniela [Institute for Theoretical Physics, Goettingen (Germany); Bostelmann, Henning [Department of Mathematics, York (United Kingdom)

    2012-07-01

    Lechner has given in 2006 an abstract existence proof for interacting quantum field theories, using a novel approach for a large class of models in two dimensions. We supplement this result by an explicit characterization of the local observables in these theories. We have established how local observables can be described in terms of an infinite hierarchy of holomorphic functions, and analysed the recursive system of relations among these functions. We have formulated a theorem that gives the complete characterization, and outline the general strategy for its proof, preparing all its ingredients.

  13. Characterization of the complete mitochondrial genome of the Rhinolophus sinicus sinicus (Chiroptera: Rhinolophidae) from Central China.

    Science.gov (United States)

    Xie, Lifen; Sun, Keping; Feng, Jiang

    2016-07-01

    We present a complete mitochondrial genome sequence of Rhinolophus sinicus sinicus from Central China and provide its annotation, as well as showed the phylogenetic relationship and mitogenomic variation with other published mitochondrial genomes of congeneric bat species. Our results revealed a relatively high mitogenomic variation between two R. s. sinucus from Central and East China, which is similar to interspecific divergence level. PMID:26057010

  14. Characterization of the Complete Mitochondrial Genome Sequence of Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidae from China

    Directory of Open Access Journals (Sweden)

    Guo-Hua Liu, Chun Li, Jia-Yuan Li, Dong-Hui Zhou, Rong-Chuan Xiong, Rui-Qing Lin, Feng-Cai Zou, Xing-Quan Zhu

    2012-01-01

    Full Text Available Sparganosis, caused by the plerocercoid larvae of members of the genus Spirometra, can cause significant public health problem and considerable economic losses. In the present study, the complete mitochondrial DNA (mtDNA sequence of Spirometra erinaceieuropaei from China was determined, characterized and compared with that of S. erinaceieuropaei from Japan. The gene arrangement in the mt genome sequences of S. erinaceieuropaei from China and Japan is identical. The identity of the mt genomes was 99.1% between S. erinaceieuropaei from China and Japan, and the complete mtDNA sequence of S. erinaceieuropaei from China is slightly shorter (2 bp than that from Japan. Phylogenetic analysis of S. erinaceieuropaei with other representative cestodes using two different computational algorithms [Bayesian inference (BI and maximum likelihood (ML] based on concatenated amino acid sequences of 12 protein-coding genes, revealed that S. erinaceieuropaei is closely related to Diphyllobothrium spp., supporting classification based on morphological features. The present study determined the complete mtDNA sequences of S. erinaceieuropaei from China that provides novel genetic markers for studying the population genetics and molecular epidemiology of S. erinaceieuropaei in humans and animals.

  15. Y chromosome and mitochondrial DNA characterization of Pasiegos, a human isolate from Cantabria (Spain).

    Science.gov (United States)

    Maca-Meyer, N; Sánchez-Velasco, P; Flores, C; Larruga, J-M; González, A-M; Oterino, A; Leyva-Cobián, F

    2003-07-01

    Mitochondrial DNA sequences and Y chromosome haplotypes were characterized in Pasiegos, a human isolate from Cantabria, and compared with those of other Cantabrian and neighbouring Northern Spain populations. Cantabria appears to be a genetically heterogeneous community. Whereas Lebaniegos do not differ from their eastern Basque and western Asturian and Galician neighbours, Pasiegos and other non-Lebaniego Cantabrians show significant differences with all of them. Pasiegos are peculiar for their high frequencies of Y chromosomal markers (E-M81) with North African assignation, and Y chromosomal (R-SRY2627) and mtDNA (V, I, U5) markers related to northern European populations. This dual geographic contribution is more in agreement with the complex demographic history of this isolate, as opposed to recent drift effects. The high incidence in Cantabrians with pre-V and V mtDNA haplotypes, considered as a signal of Postglacial recolonization in Europe from south-western refugees, points to such refugees as a better candidate population than Basques for this expansion. However, this does not discount a conjoint recolonization. PMID:12914567

  16. Image Characterization from Statistical Reduction of Local Patterns

    OpenAIRE

    Guermeur, Philippe; Manzanera, Antoine

    2009-01-01

    International audience This paper tackles the image characterization problem from a statistical analysis of local patterns in one or several images. The induced image characteristics are not defined a priori, but depends on the content of the images to process. These characteristics are also simple image descriptors and thus considering an histogram of these elementary descriptors enables to apply "bags of words" techniques. Relevance of the approach is assessed when dealing with the image...

  17. Robotic palpation and mechanical property characterization for abnormal tissue localization.

    Science.gov (United States)

    Ahn, Bummo; Kim, Yeongjin; Oh, Cheol Kyu; Kim, Jung

    2012-09-01

    Palpation is an intuitive examination procedure in which the kinesthetic and tactile sensations of the physician are used. Although it has been widely used to detect and localize diseased tissues in many clinical fields, the procedure is subjective and dependent on the experience of the individual physician. Palpation results and biomechanics-based mechanical property characterization are possible solutions that can enable the acquisition of objective and quantitative information on abnormal tissue localization during diagnosis and surgery. This paper presents an integrated approach for robotic palpation combined with biomechanical soft tissue characterization. In particular, we propose a new palpation method that is inspired by the actual finger motions that occur during palpation procedures. To validate the proposed method, robotic palpation experiments on silicone soft tissue phantoms with embedded hard inclusions were performed and the force responses of the phantoms were measured using a robotic palpation system. Furthermore, we carried out a numerical analysis, simulating the experiments and estimating the objective and quantitative properties of the tissues. The results indicate that the proposed approach can differentiate diseased tissue from normal tissue and can characterize the mechanical information of diseased tissue, which means that this method can be applied as a means of abnormality localization to diagnose prostate cancers. PMID:22772733

  18. Functional Characterization of Three Concomitant MtDNA LHON Mutations Shows No Synergistic Effect on Mitochondrial Activity.

    Science.gov (United States)

    Cruz-Bermúdez, Alberto; Vicente-Blanco, Ramiro J; Hernández-Sierra, Rosana; Montero, Mayte; Alvarez, Javier; González Manrique, Mar; Blázquez, Alberto; Martín, Miguel Angel; Ayuso, Carmen; Garesse, Rafael; Fernández-Moreno, Miguel A

    2016-01-01

    The presence of more than one non-severe pathogenic mutation in the same mitochondrial DNA (mtDNA) molecule is very rare. Moreover, it is unclear whether their co-occurrence results in an additive impact on mitochondrial function relative to single mutation effects. Here we describe the first example of a mtDNA molecule harboring three Leber's hereditary optic neuropathy (LHON)-associated mutations (m.11778G>A, m.14484T>C, m.11253T>C) and the analysis of its genetic, biochemical and molecular characterization in transmitochondrial cells (cybrids). Extensive characterization of cybrid cell lines harboring either the 3 mutations or the single classic m.11778G>A and m.14484T>C mutations revealed no differences in mitochondrial function, demonstrating the absence of a synergistic effect in this model system. These molecular results are in agreement with the ophthalmological characteristics found in the triple mutant patient, which were similar to those carrying single mtDNA LHON mutations.

  19. Functional Characterization of Three Concomitant MtDNA LHON Mutations Shows No Synergistic Effect on Mitochondrial Activity.

    Directory of Open Access Journals (Sweden)

    Alberto Cruz-Bermúdez

    Full Text Available The presence of more than one non-severe pathogenic mutation in the same mitochondrial DNA (mtDNA molecule is very rare. Moreover, it is unclear whether their co-occurrence results in an additive impact on mitochondrial function relative to single mutation effects. Here we describe the first example of a mtDNA molecule harboring three Leber's hereditary optic neuropathy (LHON-associated mutations (m.11778G>A, m.14484T>C, m.11253T>C and the analysis of its genetic, biochemical and molecular characterization in transmitochondrial cells (cybrids. Extensive characterization of cybrid cell lines harboring either the 3 mutations or the single classic m.11778G>A and m.14484T>C mutations revealed no differences in mitochondrial function, demonstrating the absence of a synergistic effect in this model system. These molecular results are in agreement with the ophthalmological characteristics found in the triple mutant patient, which were similar to those carrying single mtDNA LHON mutations.

  20. Functional Characterization of Three Concomitant MtDNA LHON Mutations Shows No Synergistic Effect on Mitochondrial Activity

    Science.gov (United States)

    Cruz-Bermúdez, Alberto; Vicente-Blanco, Ramiro J.; Hernández-Sierra, Rosana; Montero, Mayte; Alvarez, Javier; González Manrique, Mar; Blázquez, Alberto; Martín, Miguel Angel; Ayuso, Carmen; Garesse, Rafael; Fernández-Moreno, Miguel A.

    2016-01-01

    The presence of more than one non-severe pathogenic mutation in the same mitochondrial DNA (mtDNA) molecule is very rare. Moreover, it is unclear whether their co-occurrence results in an additive impact on mitochondrial function relative to single mutation effects. Here we describe the first example of a mtDNA molecule harboring three Leber's hereditary optic neuropathy (LHON)-associated mutations (m.11778G>A, m.14484T>C, m.11253T>C) and the analysis of its genetic, biochemical and molecular characterization in transmitochondrial cells (cybrids). Extensive characterization of cybrid cell lines harboring either the 3 mutations or the single classic m.11778G>A and m.14484T>C mutations revealed no differences in mitochondrial function, demonstrating the absence of a synergistic effect in this model system. These molecular results are in agreement with the ophthalmological characteristics found in the triple mutant patient, which were similar to those carrying single mtDNA LHON mutations. PMID:26784702

  1. Palmitoylation of the immunity related GTPase, Irgm1: impact on membrane localization and ability to promote mitochondrial fission.

    Directory of Open Access Journals (Sweden)

    Stanley C Henry

    Full Text Available The Immunity-Related GTPases (IRG are a family of large GTPases that mediate innate immune responses. Irgm1 is particularly critical for immunity to bacteria and protozoa, and for inflammatory homeostasis in the intestine. Although precise functions for Irgm1 have not been identified, prior studies have suggested roles in autophagy/mitophagy, phagosome remodeling, cell motility, and regulating the activity of other IRG proteins. These functions ostensibly hinge on the ability of Irgm1 to localize to intracellular membranes, such as those of the Golgi apparatus and mitochondria. Previously, it has been shown that an amphipathic helix, the αK helix, in the C-terminal portion of the protein partially mediates membrane binding. However, in absence of αK, there is still substantial binding of Irgm1 to cellular membranes, suggesting the presence of other membrane binding motifs. In the current work, an additional membrane localization motif was found in the form of palmitoylation at a cluster of cysteines near the αK. An Irgm1 mutant possessing alanine to cysteine substitutions at these amino acids demonstrated little residual palmitoylation, yet it displayed only a small decrease in localization to the Golgi and mitochondria. In contrast, a mutant containing the palmitoylation mutations in combination with mutations disrupting the amphipathic character of the αK displayed a complete loss of apparent localization to the Golgi and mitochondria, as well as an overall loss of association with cellular membranes in general. Additionally, Irgm1 was found to promote mitochondrial fission, and this function was undermined in Irgm1 mutants lacking the palmitoylation domain, and to a greater extent in those lacking the αK, or the αK and palmitoylation domains combined. Our data suggest that palmitoylation together with the αK helix firmly anchor Irgm1 in the Golgi and mitochondria, thus facilitating function of the protein.

  2. Isolation and characterization of glutaminyl cyclases from Drosophila: evidence for enzyme forms with different subcellular localization.

    Science.gov (United States)

    Schilling, Stephan; Lindner, Christiane; Koch, Birgit; Wermann, Michael; Rahfeld, Jens-Ulrich; von Bohlen, Alex; Rudolph, Thomas; Reuter, Gunter; Demuth, Hans-Ulrich

    2007-09-25

    Glutaminyl cyclases (QCs) present in plants and vertebrates catalyze the formation of pyroglutamic acid (pGlu) from N-terminal glutamine. Pyroglutamyl hormones also identified in invertebrates imply the involvement of QC activity during their posttranslational maturation. Database mining led to the identification of two genes in Drosophila, which putatively encode QCs, CG32412 (DromeQC) and CG5976 (isoDromeQC). Analysis of their primary structure suggests different subcellular localizations. While DromeQC appeared to be secreted due to an N-terminal signal peptide, isoDromeQC contains either an N-terminal mitochondrial targeting or a secretion signal due to generation of different transcripts from gene CG5976. According to the prediction, homologous expression of the corresponding cDNAs in S2 cells revealed either secreted protein in the medium or intracellular QC activity. Subcellular fractionation and immunochemistry support export of isoDromeQC into the mitochondrion. For enzymatic characterization, DromeQC and isoDromeQC were expressed heterologously in Pichia pastoris and Escherichia coli, respectively. Compared to mammalian QCs, the specificity constants were about 1 order of magnitude lower for most of the analyzed substrates. The pH dependence of the specificity constant was similar for both enzymes, indicating the necessity of an unprotonated substrate amino group and two protonated groups of the enzyme, resulting in an asymmetric bell-shaped characteristic. The determination of the metal content of DromeQC revealed equimolar protein-bound zinc. These results prove conserved enzymatic mechanisms between QCs from invertebrates and mammals. Drosophila is the first organism for which isoenzymes of glutaminyl cyclase have been isolated. The identification of a mitochondrial QC points toward yet undiscovered physiological functions of these enzymes. PMID:17722885

  3. Characterization of the complete mitochondrial genome of the king pigeon (Columba livia breed king).

    Science.gov (United States)

    Zhang, Rui-Hua; He, Wen-Xiao; Xu, Tong

    2015-06-01

    The king pigeon is a breed of pigeon developed over many years of selective breeding primarily as a utility breed. In the present work, we report the complete mitochondrial genome sequence of king pigeon for the first time. The total length of the mitogenome was 17,221 bp with the base composition of 30.14% for A, 24.05% for T, 31.82% for C, and 13.99% for G and an A-T (54.22 %)-rich feature was detected. It harbored 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and one non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of king pigeon would serve as an important data set of the germplasm resources for further study.

  4. Characterization of the complete mitochondrial genome of the firefly, Luciola substriata (Coleoptera: Lampyridae).

    Science.gov (United States)

    Mu, Feng-Juan; Ao, Liang; Zhao, Hua-Bin; Wang, Kai

    2016-09-01

    The firefly, Luciola substriata (Coleoptera: Lampyridae), is an aquatic firefly species, whose larvae inhabit ponds or lakes. Here we present the complete mitochondrial (mt) genome of the firefly (GenBank accession number KP313820) and provide its annotation. This circular genome is 16,248 bp in length and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a non-coding AT-rich region. Similar to other firefly species, the base composition of this mitochondrial genome is also biased toward A and T (44.09% A, 34.00% T, 12.89% C, and 9.01% G). All 13 protein-coding genes start with a typical mitochondrial start codon, and terminate with a usual stop codon TAA, or TAG or a single T. The non-coding AT-rich region (1636 bp in length) include one (A)20, and two (T)15 tandem repeats, and one (AAT)5 element. This mitochondrial genome sequence will promote a better understanding for firefly evolution in the future. PMID:25714154

  5. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    Science.gov (United States)

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  6. Over-expressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide

    Directory of Open Access Journals (Sweden)

    Shumin Li

    2014-01-01

    Full Text Available Angiotensin II (AngII is the main effector peptide of the renin–angiotensin system (RAS, and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2·−. Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2·−. We have previously reported that over-expression of manganese superoxide dismutase (MnSOD, a mitochondrial matrix-localized O2·− scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD, which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension. Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2·−. Using a neuronal cell culture model (CATH.a neurons, we demonstrate that both endogenous and adenovirus-mediated over-expressed CuZnSOD (AdCuZnSOD are present in mitochondria. Furthermore, we show that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2·− levels and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochondrial O2·−, and inhibits AngII intra-neuronal signaling.

  7. Characterization of a Dairy Gyr herd with respect to its mitochondrial DNA (mt DNA origin

    Directory of Open Access Journals (Sweden)

    Anibal Eugênio Vercesi Filho

    2010-01-01

    Full Text Available The Zebu breeds were introduced in Brazil mainly in the last century by imports from the Indian subcontinent. When the Zebu cattle arrived, the national herd suffered a significative change by backcrossing the national cows of taurine origin with Zebu sires. These processes created a polymorphism in the mitochondrial DNA (mtDNA in the Zebu animals with are in a major part derived from backcrossing and sharing mtDNA of taurine origin. To verify the maternal origin of cows belonging to the Dairy Gyr herd of APTA, Mococa 60 females were analyzed and 33 presented mtDNA from Bos taurus origin and 27 presented mtDNA from Bos indicus origin. None of these animals presented patterns of both mtDNA origins, indicating absence of heteroplasmy for these mitochondrial genotypes.

  8. Complete sequence of the mitochondrial genome of Odontamblyopus rubicundus (Perciformes: Gobiidae): genome characterization and phylogenetic analysis

    Indian Academy of Sciences (India)

    Tianxing Liu; Xiaoxiao Jin; Rixin Wang; Tianjun Xu

    2013-12-01

    Odontamblyopus rubicundus is a species of gobiid fishes, inhabits muddy-bottomed coastal waters. In this paper, the first complete mitochondrial genome sequence of O. rubicundus is reported. The complete mitochondrial genome sequence is 17119 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a control region and an L-strand origin as in other teleosts. Most mitochondrial genes are encoded on H-strand except for ND6 and seven tRNA genes. Some overlaps occur in protein-coding genes and tRNAs ranging from 1 to 7 bp. The possibly nonfunctional L-strand origin folded into a typical stem-loop secondary structure and a conserved motif (5′-GCCGG-3′) was found at the base of the stem within the $tRNA^{Cys}$ gene. The TAS, CSB-2 and CSB-3 could be detected in the control region. However, in contrast to most of other fishes, the central conserved sequence block domain and the CSB-1 could not be recognized in O. rubicundus, which is consistent with Acanthogobius hasta (Gobiidae). In addition, phylogenetic analyses based on different sequences of species of Gobiidae and different methods showed that the classification of O. rubicundus into Odontamblyopus due to morphology is debatable.

  9. Defect localization, characterization and reliability assessment in emerging photovoltaic devices.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Benjamin Bing-Yeh; Cruz-Campa, Jose Luis; Haase, Gad S.; Tangyunyong, Paiboon; Cole, Edward Isaac,; Okandan, Murat; Nielson, Gregory N.

    2014-04-01

    Microsystems-enabled photovoltaics (MEPV) can potentially meet increasing demands for light-weight, portable, photovoltaic solutions with high power density and efficiency. The study in this report examines failure analysis techniques to perform defect localization and evaluate MEPV modules. CMOS failure analysis techniques, including electroluminescence, light-induced voltage alteration, thermally-induced voltage alteration, optical beam induced current, and Seabeck effect imaging were successfully adapted to characterize MEPV modules. The relative advantages of each approach are reported. In addition, the effects of exposure to reverse bias and light stress are explored. MEPV was found to have good resistance to both kinds of stressors. The results form a basis for further development of failure analysis techniques for MEPVs of different materials systems or multijunction MEPVs. The incorporation of additional stress factors could be used to develop a reliability model to generate lifetime predictions for MEPVs as well as uncover opportunities for future design improvements.

  10. A local characterization for static charged black holes

    Science.gov (United States)

    González, Guillermo A.; Vera, Raül

    2011-01-01

    We obtain a purely local characterization that singles out the Majumdar-Papapetrou class, the near-horizon Bertotti-Robinson geometry and the Reissner-Nordström exterior solution, together with its plane and hyperbolic counterparts, among the static electrovacuum spacetimes. These five classes are found to form the whole set of static Einstein-Maxwell fields without sources and conformally flat space of orbits, that is, the conformastat electrovacuum spacetimes. The main part of the proof consists in showing that a functional relationship between the gravitational and electromagnetic potentials must always exist. The classification procedure also provides an improved characterization of Majumdar-Papapetrou, by only requiring a conformally flat space of orbits with a vanishing Ricci scalar of the usual conveniently rescaled 3-metric. A simple global consideration allows us to state that the asymptotically flat subset of the Majumdar-Papapetrou class and the Reissner-Nordström exterior solution are the only asymptotically flat conformastat electrovacuum spacetimes.

  11. Scoliosis in Mitochondrial Myopathy

    OpenAIRE

    Li, Zheng; Shen, Jianxiong; Liang, Jinqian

    2015-01-01

    Abstract The mitochondrial myopathies include a diverse group of disorders characterized by morphological abnormalities of muscle mitochondria. Little is reported about spinal deformity associated with this syndrome. This study presents a case of scoliosis occurring in the setting of mitochondrial myopathies and explores the possible mechanisms between the 2 diseases. A previously unreported scoliosis in mitochondrial myopathies is described. The patient was a 16-year-old Chinese adolescent b...

  12. Interleukin-1 receptors in mouse brain: Characterization and neuronal localization

    International Nuclear Information System (INIS)

    The cytokine interleukin-1 (IL-1) has a variety of effects in brain, including induction of fever, alteration of slow wave sleep, and alteration of neuroendocrine activity. To examine the potential sites of action of IL-1 in brain, we used iodine-125-labeled recombinant human interleukin-1 [( 125I]IL-1) to identify and characterize IL-1 receptors in crude membrane preparations of mouse (C57BL/6) hippocampus and to study the distribution of IL-1-binding sites in brain using autoradiography. In preliminary homogenate binding and autoradiographic studies, [125I]IL-1 alpha showed significantly higher specific binding than [125I]IL-1 beta. Thus, [125I]IL-1 alpha was used in all subsequent assays. The binding of [125I]IL-1 alpha was linear over a broad range of membrane protein concentrations, saturable, reversible, and of high affinity, with an equilibrium dissociation constant value of 114 +/- 35 pM and a maximum number of binding sites of 2.5 +/- 0.4 fmol/mg protein. In competition studies, recombinant human IL-1 alpha, recombinant human IL-1 beta, and a weak IL-1 beta analog. IL-1 beta +, inhibited [125I]IL-1 alpha binding to mouse hippocampus in parallel with their relative bioactivities in the T-cell comitogenesis assay, with inhibitory binding affinity constants of 55 +/- 18, 76 +/- 20, and 2940 +/- 742 pM, respectively; rat/human CRF and human tumor necrosis factor showed no effect on [125I]IL-1 alpha binding. Autoradiographic localization studies revealed very low densities of [125I]IL-1 alpha-binding sites throughout the brain, with highest densities present in the molecular and granular layers of the dentate gyrus of the hippocampus and in the choroid plexus. Quinolinic acid lesion studies demonstrated that the [125I]IL-1 alpha-binding sites in the hippocampus were localized to intrinsic neurons

  13. Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae

    Directory of Open Access Journals (Sweden)

    Shao-Tong Jiang, Gui-Yun Hong, Miao Yu, Na Li, Ying Yang, Yan-Qun Liu, Zhao-Jun Wei

    2009-01-01

    Full Text Available The complete mitochondrial genome (mitogenome of Eriogyna pyretorum (Lepidoptera: Saturniidae was determined as being composed of 15,327 base pairs (bp, including 13 protein-coding genes (PCGs, 2 rRNA genes, 22 tRNA genes, and a control region. The arrangement of the PCGs is the same as that found in the other sequenced lepidopteran. The AT skewness for the E. pyretorum mitogenome is slightly negative (-0.031, indicating the occurrence of more Ts than As. The nucleotide composition of the E. pyretorum mitogenome is also biased toward A + T nucleotides (80.82%. All PCGs are initiated by ATN codons, except for cytochrome c oxidase subunit 1 and 2 (cox1 and cox2. Two of the 13 PCGs harbor the incomplete termination codon by T. All tRNA genes have a typical clover-leaf structure of mitochondrial tRNA, with the exception of trnS1(AGN and trnS2(UCN. Phylogenetic analysis among the available lepidopteran species supports the current morphology-based hypothesis that Bombycoidea, Geometroidea, Notodontidea, Papilionoidea and Pyraloidea are monophyletic. As has been previously suggested, Bombycidae (Bombyx mori and Bombyx mandarina, Sphingoidae (Manduca sexta and Saturniidae (Antheraea pernyi, Antheraea yamamai, E. pyretorum and Caligula boisduvalii formed a group.

  14. Characterization of Black and Green Tea from Local Market

    Directory of Open Access Journals (Sweden)

    Sonia Ancuta Socaci

    2013-11-01

    Full Text Available The leaves from Camellia sinensis are used from ancient times for preparation of tea but also as raw material for different extracts which are used in food industry as well as in pharmaceutical or cosmetic products. Due to the increasing interest in tea health benefits, the aim of the present study was to characterize several brands of green and black tea found on local market, regarding their content in total phenolic compounds, flavonoids and antioxidant capacity. Total phenolics and flavonoids were determined spectrophotometrically using a modified Folin-Ciocalteu method, respectively a chromogenic system of NaNO2–Al(NO33–NaOH based method. The antioxidant capacity of each tea sample was assessed through the evaluation of free radical scavenging effect on 2,2-diphenyl-1-picrylhydrazyl. The results obtained for the green and black tea samples varied widely, depending on the tea variety. The antioxidant capacity of the analyzed teas ranged between 12.10 and 40.03%RSA, while the total phenolic content was within 2090 and 6080 mg GA/ 100g. The concentrantion in flavonoids was between 9.04 and 15.34 g/100g of tea.

  15. Local Guided Wavefield Analysis for Characterization of Delaminations in Composites

    Science.gov (United States)

    Rogge, Matthew D.; Campbell Leckey, Cara A.

    2012-01-01

    Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspection techniques are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure. Alternatively, a noncontact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially-dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Finally, experimental wavefield data obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage is analyzed and wavenumber is measured to an accuracy of 8.5% in the region of shallow delaminations. Keywords: Ultrasonic wavefield imaging, Windowed Fourier transforms, Guided waves, Structural health monitoring, Nondestructive evaluation

  16. Isolation and characterization of a Ca/sup 2 +/ carrier candidate from calf heart inner mitochondrial membrane

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, A.Y.

    1979-01-01

    A protein was isolated from calf heart inner mitochondrial membrane with the aid of an electron paramagnetic resonance assay based on the relative binding properties of Ca/sup 2 +/, Mn/sup 2 +/, and Mg/sup 2 +/ to the protein. Partial delipidation of the protein was performed by using either the organic solvent extraction procedure or the silicic acid column chromatography. Control experiments indicated that the Ca/sup 2 +/ transport properties of the isolated protein were not due to the contaminating phospholipids. A complete delipidation procedure was developd by using Sephadex LH-20 column chromatography. Further characterization of the physical and chemical properties of the delipidated protein showed that delipidated protein becomes more hydrophobic in the presence of Ca/sup 2 +/ and alkaline pH in the organic solvent extraction experiments. Two possible models of calciphorin-mediated Ca/sup 2 +/ transport in mitochondria are proposed. (PCS)

  17. Accuracy characterization and measurement point planning for workpiece localization

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    [1]Ding, H., Zhu, L. M., Xiong, Z. H., A survey on coordinate measurement, geometric modeling and PR or NC code generation from measured data points, Chinese Journal of Mechanical Engineering, 2003, 39(11): 28-37.[2]Zhu, L. M., Xiong, Z. H., Ding, H. et al., A distance function based approach for localization and profile error evaluation of complex surface, Transactions of ASME, Journal of Manufacturing Science & Engineering, 2004, 126(3): 542-554.[3]Zhu, L. M., Ding, H., Application of kinematic geometry to computational metrology: distance function based heirarchical algorithms for cylindricity evaluation, International Journal of Machine Tools & Manufacture, 2003, 43(2): 203-215.[4]Li, Z., Gou, J., Chu, Y., Geometric algorithms for workpiece localization, IEEE Transactions on Robotics and Automation, 1998, 14: 864-878.[5]Sourlier, D., Bucher, A., Surface-independent, theoretically exact bestfit for arbitrary sculptured, complex, or standard geometries, Precision Engineering, 1995, 17: 101-113.[6]Forbes, A. B., Least-squares best-fit geometric elements, in Algorithms for Approximation II (ed. Mason, J. C., Cox, M. G.), London: Chapman and Hall, 1990, 311-319.[7]Hong, J. W., Tan, X. L., Method and apparatus for determining position and orientation of mechanical objects, U.S. Patent 5208763, 1990.[8]Yan, Z. C., Meng, C. H., Uncertainty analysis and variation reduction of three-dimensional coordinate metrology, International Journal of Machine Tools & Manufacture, 1999, 39: 1199-1261.[9]Yau, H. T., Uncertainty analysis in geometric best fit, International Journal of Machine Tools and Manufacture, 1998, 38: 1323-1342.[10]Murray, R. M., Li, Z., Sastry, S. S., A Mathematical Introduction to Robotic Manipulation, Boca Raton: CRC Press, 1994.[11]Wang, M. Y., Characterizations of localization accuracy of fixtures, IEEE Transactions on Robotics and Automation, 2002, 18(6): 976-981.[12]Chu, Y. X., Gou, J. B., Li, Z. X

  18. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy.

    Science.gov (United States)

    Vincent, Amy E; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M; McFarland, Robert; Gorman, Grainne S; Taylor, Robert W; Turnbull, Doug M; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  19. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae

    DEFF Research Database (Denmark)

    Hansson Petersen, Camilla A; Alikhani, Nyosha; Behbahani, Homira;

    2008-01-01

    by immunoelectron microscopy in human cortical brain biopsies obtained from living subjects with normal pressure hydrocephalus. Thus, we present a unique import mechanism for Abeta in mitochondria and demonstrate both in vitro and in vivo that Abeta is located to the mitochondrial cristae. Importantly, we also show...

  20. Characterization of the Complete Mitochondrial Genomes of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae

    Directory of Open Access Journals (Sweden)

    Huan-Na Chai, Yu-Zhou Du, Bao-Ping Zhai

    2012-01-01

    Full Text Available The complete mitochondrial genomes (mitogenomes of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae were determined and analyzed. The circular genomes were 15,388 bp long for C. medinalis and 15,395 bp long for C. suppressalis. Both mitogenomes contained 37 genes, with gene order similar to that of other lepidopterans. Notably, 12 protein-coding genes (PCGs utilized the standard ATN, but the cox1 gene used CGA as the initiation codon; the cox1, cox2, and nad4 genes in the two mitogenomes had the truncated termination codons T, T, and TA, respectively, but the nad5 gene was found to use T as the termination codon only in the C. medinalis mitogenome. Additionally, the codon distribution and Relative Synonymous Codon Usage of the 13 PCGs in the C. medinalis mitogenome were very different from those in other pyralid moth mitogenomes. Most of the tRNA genes had typical cloverleaf secondary structures. However, the dihydrouridine (DHU arm of the trnS1(AGN gene did not form a stable stem-loop structure. Forty-nine helices in six domains, and 33 helices in three domains were present in the secondary structures of the rrnL and rrnS genes of the two mitogenomes, respectively. There were four major intergenic spacers, except for the A+T-rich region, spanning at least 12 bp in the two mitogenomes. The A+T-rich region contained an 'ATAGT(A'-like motif followed by a poly-T stretch in the two mitogenomes. In addition, there were a potential stem-loop structure, a duplicated 25-bp repeat element, and a microsatellite '(TA13' observed in the A+T-rich region of the C. medinalis mitogenome. A poly-T motif, a duplicated 31-bp repeat element, and a 19-bp triplication were found in the C. suppressalis mitogenome. However, there are many differences in the A+T-rich regions between the C. suppressalis mitogenome sequence in the present study and previous reports. Finally, the phylogenetic relationships of these insects were reconstructed based on

  1. Sequence Characterization of Mitochondrial 12S rRNA Gene in Mouse Deer (Moschiola indica for PCR-RFLP Based Species Identification

    Directory of Open Access Journals (Sweden)

    Chandra Mohan Siddappa

    2013-01-01

    Full Text Available Mitochondrial 12S rRNA has proven to be a useful molecular marker for better conservation and management of the endangered species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP of the mitochondrial 12S rRNA gene has proven to be a reliable and efficient tool for the identification of different Indian deer species of family cervidae. In the present study, mitochondrial 12S rRNA gene sequence of mouse deer (Moschiola indica belonging to the family Tragulidae was characterized and analysed in silico for its use in species identification. Genomic DNA was isolated from the hair follicles and mitochondrial 12S rRNA gene was amplified using universal primers. PCR product was cloned and sequenced for the first time. The sequence of mouse deer showed 90.04, 90.08, 90.04, 91.2, 90.04, and 90.08% identities with sika deer, sambar, hog deer, musk deer, chital, and barking deer, respectively. Restriction mapping in Lasergene (DNAstar Inc., Madison, WI, USA revealed that mouse deer mitochondrial 12S rRNA gene sequence can be differentiated from the other deer species in PCR-RFLP using RsaI, DdeI, BsrI, and BstSFI. With the help of predicted pattern, mouse deer can be identified using genomic DNA from a variety of biomaterials, thereby providing molecular aid in wildlife forensics and conservation of the species.

  2. Genetic characterization of Golden mahseer (Tor putitora) populations using mitochondrial DNA markers.

    Science.gov (United States)

    Sati, Jyoti; Kumar, Rohit; Sahoo, Prabhati Kumari; Patiyal, Rabindar S; Ali, Shahnawaz; Barat, Ashoktaru

    2015-02-01

    Golden Mahseer (Tor putitora) is an economically important fish of India and Southeast Asia. The present study examined the genetic variations between seven geographically isolated populations of T. putitora using Cyt b (Cytochrome b) and ATPase6/8 gene sequences of mitochondrial DNA. Analysis of 133 sequences of Cyt b (1141 bp) and 130 sequences of ATPase6/8 gene (842 bp) revealed 47 and 44 haplotypes, respectively. The estimated haplotype and nucleotide diversity was high in River Jia Bhoreli (Bhalukpong) population (h = 1.00000, π = 0.007121 for Cyt b and h = 0.90441 π = 0.004867 for ATPase6/8). Results of AMOVA indicated that majority of the genetic variations in both genes were due to variation among populations (60.79% for Cyt b and 51.41% for ATPase6/8 gene). The pairwise F(ST) comparison and neighbor-joining tree revealed high genetic divergence of River Jia Bhoreli population from other populations. The understanding of genetic variations of T. putitora populations will play a key role in conservation and management of this endangered fish species.

  3. Characterization of the complete mitochondrial genome of the red crayfish, Procambarus clarkii (Decapoda: Cambaridae).

    Science.gov (United States)

    Liu, Qiu-Ning; Chai, Xin-Yue; Jiang, Sen-Hao; Zhou, Chun-Lin; Xuan, Fu-Jun; Tang, Bo-Ping

    2016-09-01

    Here we present the complete mitochondrial (mt) genome of Procambarus clarkii (Decapoda: Cambaridae) and provide its annotation. The complete mt genome was determined to be 15 929 bp and contains 22 tRNA genes, 13 protein-coding genes (PCGs), two rRNA genes, and a D-loop region. The nucleotide composition was biased toward A + T nucleotides (72.91%) and the AT skew of this mt genome was slightly negative. All the 22 tRNA genes displayed a typical clover-leaf structure, with the exception of trnS1 (AGN). About 13 PCGs were initiated by ATN codons, except for cox1 and nad2 genes which were initiated by ACG and GTG, respectively. Six of the 13 PCGs harbor the incomplete termination codon by T or TA. The D-loop region of the mt genome was 1188 bp in length and the A + T content was 81.08%. Phylogenetic analysis showed that the placement of P. clarkii was within the Cambaridae. This mt genome sequence will provide a better understanding for crayfish evolution in the future. PMID:26258501

  4. Purification and characterization of pyrroline-5-carboxylate dehydrogenase from rat liver mitochondrial matrix

    International Nuclear Information System (INIS)

    Pyrroline-5-carboxylate (P5C) dehydrogenase catalyzes the second step of the irreversible two-step oxidation of proline to glutamate or the oxidative second step of the two-step conversion of ornithine to glutamate in mitochondria. Activity was assayed by monitoring directly the conversion of (3H) L-P5C to (3H) L-glutamate. Using this assay, the authors find P5C dehydrogenase most prevalent in liver in rat, with kidney having 71%, heart 51%, and and spleen 15% of the specific activity of liver. Starting with a subcellular fraction enriched for mitochondria, they have isolated a protein fraction enriched in this activity. The soluble protein fraction of the mitochondrial isolate was subjected to (NH4)2SO4 precipitation and successive chromatography on DE 52 anion exchange and Brown 10 dye ligand affinity resins. This procedure yielded a fraction purified more than 500-fold over whole liver homogenate. HPLC and 5'-AMP agarose fractionation experiments now in progress to achieve further purification show promise. Physical studies show a M/sub r/ of 105,000 upon sucrose density gradient centrifugation and 94,000 on molecular sieve HPLC for the activity. Flat bed gel isoelectric focusing of the protein indicates a pI of 5.7. The purified protein exhibits an apparent K/sub m/ of 0.1 mM for L-P5C

  5. Characterization of the complete mitochondrial genome of the Scarlet Tiger moth Callimorpha dominula (Insecta: Lepidoptera: Arctiidae).

    Science.gov (United States)

    Peng, Xiao-Yi; Duan, Xiao-Yu; Qiang, Yi

    2016-09-01

    The complete mitochondrial genome of the Scarlet Tiger moth Callimorpha dominula (Insecta: Lepidoptera: Arctiidae) has been reconstructed from the whole-genome Illumina sequencing data. This circular genome is 15 496 bp in size, and contains 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one A + T-rich D-loop or control region. Most PCGs are initiated with the ATN codons, except for COX1 with the unusual CGA as its initiation codon. Four PCGs (COX1, COX2, ND3, and ND4) are terminated with incomplete codon T, ND4L uses TAG as its termination codon, while all the other eight PCGs employ the usual ATN codons. The nucleotide composition is highly asymmetric (40.1% A, 40.9% T, 7.6% G, and 11.4% C) with an overall A + T content of 81.0%. The phylogenetic analysis based on the neighbor-joining (NJ) method suggests that C. dominula is more phylogenetically related to its confamilial counterparts than to those from other families. PMID:26329289

  6. Complete sequence and characterization of the Silurus lanzhouensis (Siluriformes: Siluridae) mitochondrial genome.

    Science.gov (United States)

    Lian, Zong-Qiang; Wu, Xu-Dong; Xiao, Wei; Sai, Qing-Yun; Gun, Shuang-Bao

    2016-07-01

    The complete mitochondrial DNA (mtDNA) sequence of Silurus lanzhouensis was constructed from whole-genome Illumina sequencing data. The 16 523 bp circular genome comprises typical mtDNA components. All 13 protein-coding genes (PCGs) are initiated by an ATG except for COX1, which uses GTG. Some PCGs harbor TAG (ND2 and ND3) or an incomplete stop codon T (COX2, ND4, and CYTB), while others use TAA as their stop codon. 12S rRNA and 16S rRNA secondary structures are composed of four domains with 45 helices and six domains with 54 helices, respectively. All tRNAs are predicted to fold into the expected typical cloverleaf secondary structure except tRNA-Ser((AGN)). The largest intergenic spacer sequence was predicted to be the origin of light-strand replication. Eight conserved sequences were identified in the control region (CR). This complete S. lanzhouensis mitogenome provides useful data for further studies on molecular systematics, taxonomic status, stock evaluation, and conservation genetics. PMID:26171872

  7. Characterization of the complete mitochondrial genomes of two whipworms Trichuris ovis and Trichuris discolor (Nematoda: Trichuridae).

    Science.gov (United States)

    Liu, Guo-Hua; Wang, Yan; Xu, Min-Jun; Zhou, Dong-Hui; Ye, Yong-Gang; Li, Jia-Yuan; Song, Hui-Qun; Lin, Rui-Qing; Zhu, Xing-Quan

    2012-12-01

    For many years, whipworms (Trichuris spp.) have been described with a relatively narrow range of both morphological and biometrical features. Moreover, there has been insufficient discrimination between congeners (or closely related species). In the present study, we determined the complete mitochondrial (mt) genomes of two whipworms Trichuris ovis and Trichuris discolor, compared them and then tested the hypothesis that T. ovis and T. discolor are distinct species by phylogenetic analyses using Bayesian inference, maximum likelihood and maximum parsimony) based on the deduced amino acid sequences of the mt protein-coding genes. The complete mt genomes of T. ovis and T. discolor were 13,946 bp and 13,904 bp in size, respectively. Both mt genomes are circular, and consist of 37 genes, including 13 genes coding for proteins, 2 genes for rRNA, and 22 genes for tRNA. The gene content and arrangement are identical to that of human and pig whipworms Trichuris trichiura and Trichuris suis. Taken together, these analyses showed genetic distinctiveness and strongly supported the recent proposal that T. ovis and T. discolor are distinct species using nuclear ribosomal DNA and a portion of the mtDNA sequence dataset. The availability of the complete mtDNA sequences of T. ovis and T. discolor provides novel genetic markers for studying the population genetics, diagnostics and molecular epidemiology of T. ovis and T. discolor.

  8. Characterization and evaluation of metformin-loaded solid lipid nanoparticles for celluar and mitochondrial uptake.

    Science.gov (United States)

    Xu, Qiang; Zhu, Tao; Yi, Chaoli; Shen, Qi

    2016-01-01

    Considered a popular drug for diabetes in recent years, metformin was determined to have a moderate anti-tumor effect, particularly in breast cancer. In this study, the anticancer mechanism of metformin was verified by preparing solid lipid nanoparticles (SLNs) and chitosan-modified solid lipid nanoparticles (CSLNs) containing metformin and then estimating the potential of these SLNs for uptake in cells and mitochondria. Metformin-SLNs were prepared using an emulsification and low-temperature solidification method. The mean particle size, zeta potential, entrapment efficiency, and loading efficiency of metformin-SLNs and metformin chitosan-modified SLNs were 102.3 ± 4.16 and 200.1 ± 17.69 nm, -21.25 ± 4.89 and 50.6 ± 4.09 mv, 26.25 ± 2.59% and 33.6 ± 2.21%, and 1.74 ± 0.16% and 1.46 ± 0.10%, respectively. TEM images showed that both the nanoparticles had spherical morphologies with no aggregation. Results of cellular and mitochondrial uptake showed that the metformin-SLNs were easier to uptake in cells and mitochondria than the pure drug group (that was the control group without SLN structure modification). The findings of this research provide a basis for conducting further studies on the anticancer mechanism of metformin. PMID:26288997

  9. Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure

    International Nuclear Information System (INIS)

    Background and purpose: Radiotherapy of thoracic and chest-wall tumours increases the long-term risk of radiation-induced heart disease. The aim of this study was to investigate the long-term effect of local heart irradiation on cardiac mitochondria. Methods: C57BL/6 and atherosclerosis-prone ApoE−/− mice received local heart irradiation with a single X-ray dose of 2 Gy. To investigate the low-dose effect, C57BL/6 mice also received a single heart dose of 0.2 Gy. Functional and proteomic alterations of cardiac mitochondria were evaluated after 40 weeks, compared to age-matched controls. Results: The respiratory capacity of irradiated C57BL/6 cardiac mitochondria was significantly reduced at 40 weeks. In parallel, protein carbonylation was increased, suggesting enhanced oxidative stress. Considerable alterations were found in the levels of proteins of mitochondria-associated cytoskeleton, respiratory chain, ion transport and lipid metabolism. Radiation induced similar but less pronounced effects in the mitochondrial proteome of ApoE−/− mice. In ApoE−/−, no significant change was observed in mitochondrial respiration or protein carbonylation. The dose of 0.2 Gy had no significant effects on cardiac mitochondria. Conclusion: This study suggests that ionising radiation causes non-transient alterations in cardiac mitochondria, resulting in oxidative stress that may ultimately lead to malfunctioning of the heart muscle

  10. Molecular characterization of Fasciola hepatica from Sardinia based on sequence analysis of genomic and mitochondrial gene markers.

    Science.gov (United States)

    Farjallah, Sarra; Ben Slimane, Badreddine; Piras, Cristina Maria; Amor, Nabil; Garippa, Giovanni; Merella, Paolo

    2013-11-01

    The aim of the present study is to investigate for the first time the genetic diversity of samples identified morphologically as Fasciola hepatica (Platyhelminthes: Trematoda: Digenea) (n=66) from sheep and cattle from two localities of Sardinia and to compare them with available data from other localities by partial sequences of the first (ITS-1), the 5.8S, and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA) genes, the mitochondrial cytochrome c oxidase subunit I (COI), and nicotinamide adenine dinucleotide dehydrogenase subunit I (ND1) genes. Comparison of the sequences from Sardinia with sequences of Fasciola spp. from GenBank confirmed that all samples belong to the species F. hepatica. The nucleotide sequencing of ITS rDNA showed no nucleotide variation in the ITS-1, 5.8S and ITS-2 rDNA sequences among all Sardinian samples, comparing with two ITS-2 haplotypes in standard F. hepatica, showing a substitution C/T in 20 position 859, reported previously from Tunisia, Algeria, Australia, Uruguay and Spain. The present study shows that in Sardinian sheep and cattle there is the most frequent haplotype (FhITS-H1) of F. hepatica species from South Europe. Considering NDI sequences, the phylogenetic trees showed reliable grouping among the haplotypes of F. hepatica from Sardinia and the mitochondrial lineage I, including the main N1 haplotype, observed previously from Europe (Russia, Belarus, Ukraine and Bulgaria), Armenia, West Africa (Nigeria), America (Uruguay and USA), Asia (Turkey, Japan, and China), Georgia, Turkmenistan, Azerbaijan and Australia. Furthermore, common haplotypes FhCOI-H1 and FhCOI-H2 of F. hepatica from Sardinia also corresponded mostly to the first lineage including the main C1 haplotype reported previously from Eastern European and Western Asian populations, they belonged just to a phylogenically distinguishable clade, as F. hepatica from Australia, France, Turkey, Uruguay, Russia, Armenia, Ukraine, Belarus

  11. Molecular characterization and mutational analysis of the human B17 subunit of the mitochondrial respiratory chain complex I.

    Science.gov (United States)

    Smeitink, J; Loeffen, J; Smeets, R; Triepels, R; Ruitenbeek, W; Trijbels, F; van den Heuvel, L

    1998-08-01

    Bovine NADH:ubiquinone oxidoreductase (complex 1) of the mitochondrial respiratory chain consists of about 36 nuclear-encoded subunits. We review the current knowledge of the 15 human complex I subunits cloned so far, and report the 598-bp cDNA sequence, the chromosomal localization and the tissue expression of an additional subunit, the B17 subunit. The cDNA open reading frame of B17 comprises 387 bp and encodes a protein of 128 amino acids (calculated Mr 15.5 kDa). There is 82.7% and 78.1% homology, respectively, at the cDNA and amino acid level with the bovine counterpart. The gene of the B17 subunit has been mapped to chromosome 2. Multiple-tissue dot-blots showed ubiquitous expression of the mRNA with relatively higher expression in tissues known for their high energy demand. Of these, kidney showed the highest expression. Mutational analysis of the subunit revealed no mutations or polymorphisms in 20 patients with isolated enzymatic complex I deficiency in cultured skin fibroblasts.

  12. Characterization of Fasciola spp. in Myanmar on the basis of spermatogenesis status and nuclear and mitochondrial DNA markers.

    Science.gov (United States)

    Ichikawa, Madoka; Bawn, Saw; Maw, Ni Ni; Htun, Lat Lat; Thein, Myint; Gyi, Aung; Sunn, Kyaw; Katakura, Ken; Itagaki, Tadashi

    2011-12-01

    Fasciola spp. in Myanmar were characterized on the basis of spermatogenesis status and DNA markers of nuclear internal transcribed spacer 1 (ITS1) and mitochondrial NADH dehydrogenase subunit 1 (nad1). We collected 88 adult flukes from Yangon, Lashio, and Myitkyina. Spermatogenesis status was analyzed by the presence of sperm in the seminal vesicles, and 8 aspermic and 80 spermic flukes were detected. The flukes were identified on the basis of spermatogenesis status and ITS1 types which were analyzed by a PCR-RFLP method, and 80 spermic flukes were identified as F. gigantica. A very low detection rate of aspermic Fasciola sp. indicated that they are not established in Myanmar. In phylogenetic analyses, the 7 aspermic Fasciola sp. from Myitkyina displayed a haplotype in nad1 sequence, which was identical to that of aspermic Fasciola sp. from other Asian countries including China. Therefore, they were probably introduced from China through an infected domestic ruminant. On the other hand, 17 nad1 haplotypes detected in F. gigantica belonged to 2 clades unique to Myanmar, each with a distinct founder haplotype in a network analysis. This indicated a unique history of F. gigantica introduction into Myanmar involving ancient artificial movements of domestic ruminants.

  13. Molecular characterization of Opisthorchis noverca (Digenea: Opisthorchiidae) based on nuclear ribosomal ITS2 and mitochondrial COI genes.

    Science.gov (United States)

    Sahu, R; Biswal, D K; Roy, B; Tandon, V

    2016-09-01

    Opisthorchiasis is a public health problem in South-East Asian countries and Eastern Europe. The infection implicates mainly two species of Opisthorchis, namely O. viverrini and O. felineus, that occur mostly in fish-eating mammals and humans, although there are rare reports of human cases involving two other species, O. noverca and O. guayaquilensis. Opisthorchis noverca has been reported frequently in dogs and pigs from the Indian subcontinent, with rare reports from cattle and human subjects. With a view to supplementing morphology-based identification of this species, the present study aimed to provide molecular characterization of O. noverca, using rDNA internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome oxidase I (mt COI) markers so as to determine its genetic correlation with other species of Opisthorchiidae, and also to generate a taxon-specific molecular marker based on the ITS2 region. The phylogenetic relationship between O. noverca and other species of the genus was determined using molecular sequence data. To strengthen the result, secondary structure sequence analyses of ITS2 with hemi-compensatory base changes (hCBCs), and amino acid sequence analyses, were also evaluated. Our results confirm that O. noverca is a distinct and valid species. PMID:26467395

  14. Characterizing dynamic local functional connectivity in the human brain.

    Science.gov (United States)

    Deng, Lifu; Sun, Junfeng; Cheng, Lin; Tong, Shanbao

    2016-01-01

    Functional connectivity (FC), obtained from functional magnetic resonance imaging (fMRI), brings insights into the functional organization of the brain. Recently, rich and complex behaviour of brain has been revealed by the dynamic fluctuation of FC, which had previously been regarded as confounding 'noise'. While the dynamics of long-distance, inter-regional FC has been extensively studied, the dynamics of local FC within a few millimetres in space remains largely unexplored. In this study, the local FC was depicted by regional homogeneity (ReHo), and the dynamics of local FC was obtained using sliding windows method. We observed a robust positive correlation between ReHo and its temporal variability, which was shown to be an intrinsic feature of the brain rather than a pure stochastic effect. Furthermore, fluctuation of ReHo was associated with global functional organization: (i) brain regions with higher centrality of inter-regional FC tended to possess higher ReHo variability; (ii) coherence of ReHo fluctuation was higher within brain's functional modules. Finally, we observed alteration of ReHo variability during a motor task compared with resting-state. Our findings associated the temporal fluctuation of ReHo with brain function, opening up the possibility of dynamic local FC study in the future. PMID:27231194

  15. Characterization of Edge Localized Modes in Tokamak Plasmas

    NARCIS (Netherlands)

    Boom, J. E.

    2012-01-01

    To mimic the fusion of hydrogen nuclei in the sun as an energy source on Earth, fusion scientists have to deal with miniature solar flares in their nuclear fusion reactor. These 'Edge Localized Modes' (ELMs) can damage the wall of the reactor. Physicist Jurrian Boom from the FOM Institute

  16. Characterization and localization of side population cells in the lens

    OpenAIRE

    Oka, Mikako; Toyoda, Chizuko; Kaneko, Yuka; Nakazawa, Yosuke; Aizu-Yokota, Eriko; Takehana, Makoto

    2010-01-01

    Purpose Side population (SP) cells were isolated and the possibility whether lens epithelial cells contain stem cells was investigated. Methods Mouse lens epithelial cells were stained by Hoechst 33342 and then sorted by fluorescence-activated cell sorting (FACS). The expression of stem cell markers in sorted SP cells and the main population of epithelial cells were analyzed by quantitative real-time PCR. Localization of SP cells in the mouse lens was studied by fluorescence microscopy. Resul...

  17. Lentils biodiversity: the characterization of two local landraces

    OpenAIRE

    Viscosi, Vincenzo; Ialiciccio, Manuela; Rocco, Mariapina; Trupiano, Dalila; Arena, Simona; CHIATANTE, DONATO; Scaloni, Andrea; SCIPPA, GABRIELLA STEFANIA

    2010-01-01

    A multi-disciplinary approach was used to characterize two autochthonous lentil landraces from Molise region (Central Italy). Different mature seed populations for each landrace were provided by the Molise Germoplasm Bank at the University of Molise (Pesche, Italy), and analyzed at the morphological and molecular (DNA and protein) levels. Nuclear ISSR markers were used to assess genetic differences, whereas phenotypic variability was detected by biochemical (proteomics) and ...

  18. Biochemical characterization of a mitochondrial-like organelle from Blastocystis sp. subtype 7.

    Science.gov (United States)

    Lantsman, Yelena; Tan, Kevin S W; Morada, Mary; Yarlett, Nigel

    2008-09-01

    A mitochondrion-like organelle (MLO) was isolated from isotonic homogenates of Blastocystis. The organelle sedimented at 5000 g for 10 min, and had an isopycnic density in sucrose of 1.2 g ml(-1). Biochemical characterization enabled the demonstration of several key enzymes that allowed the construction of a metabolic pathway consisting of an incomplete Krebs cycle linked to the oxygen-sensitive enzymes pyruvate : NADP(+) oxidoreductase (PNO), acetate : succinate CoA transferase (ASCT) and succinate thiokinase (STK), which cumulatively are responsible for recycling CoA and generating ATP. The organelle differs from typical aerobic mitochondria in possessing an oxygen-sensitive PNO that can use FAD(+) or FMN(+) as electron acceptor but is inactive with NAD(+), Spinacia oleracea ferredoxin or Clostridium pasteurianum ferredoxin. A gene with 77 % sequence similarity to the PNO mitochondrion precursor cluster from Euglena gracilis sp[Q941N5] was identified in the Blastocystis genome database. A second cluster with 56 % sequence similarity to the pyruvate : ferredoxin oxidoreductase (PFOR) from Trichomonas vaginalis was also identified, which is in agreement with the concept that the PNO gene arose through the fusion of a eubacterial gene for PFOR with the gene for NADPH : cytochrome p450 reductase. Hydrogenase activity was not detected under the conditions used in this study. The Blastocystis oranelle therefore demonstrates significant biochemical differences from traditional mitochondria and hydrogenosomes, but possesses features of both. Based upon the results of this study, the Blastocystis organelle falls into the category of a MLO. PMID:18757809

  19. A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, D. (Royal Children' s Hospital, Melbourne (Australia)); Howell, N. (Univ. of Texas, Galveston (United States))

    1992-12-01

    The Tas2 and Vic2 Australian families are affected with a variant of Leber hereditary optic neuropathy (LHON). The risk of developing the optic neuropathy shows strict maternal inheritance, and the opthalmological changes in affected family members are characteristic of LHON. However, in contrast to the common form of the disease, members of these two families show a high frequency of vision recovery. To ascertain the mitochondrial genetic etiology of the LHON in these families, both (a) the nucleotide sequences of the seven mitochondrial genes encoding subunits of respiratory-chain complex I and (b) the mitochondrial cytochrome b gene were determined for representatives of both families. Neither family carries any of the previously identified primary mitochondrial LHON mutations: ND4/11778, ND1/3460, or ND1/4160. Instead, both LHON families carry multiple nucleotide changes in the mitochondrial complex I genes, which produce conservative amino acid changes. From the available sequence data, it is inferred that the Vic2 and Tas2 LHON families are phylogenetically related to each other and to a cluster of LHON families in which mutations in the mitochondrial cytochrome b gene have been hypothesized to play a primary etiological role. However, sequencing analysis establishes that the Vic2 and Tas2 LHON families do not carry these cytochrome b mutations. There are two hypotheses to account for the unusual mitochondrial genetic etiology of the LHON in the Tas2 and Vic2 LHON families. One possibility is that there is a primary LHON mutation within the mitochondrial genome but that it is at a site that was not included in the sequencing analyses. Alternatively, the disease in these families may result from the cumulative effects of multiple secondary LHON mutations that have less severe phenotypic consequences. 29 refs., 3 figs., 3 tabs.

  20. Mitochondrial haplogroups

    DEFF Research Database (Denmark)

    Benn, Marianne; Schwartz, Marianne; Nordestgaard, Børge G;

    2008-01-01

    Rare mutations in the mitochondrial genome may cause disease. Mitochondrial haplogroups defined by common polymorphisms have been associated with risk of disease and longevity. We tested the hypothesis that common haplogroups predict risk of ischemic cardiovascular disease, morbidity from other...

  1. Mitochondrial Diseases

    Science.gov (United States)

    ... disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are ... cells and cause damage. The symptoms of mitochondrial disease can vary. It depends on how many mitochondria ...

  2. Mitochondrial localization of CNP2 is regulated by phosphorylation of the N-terminal targeting signal by PKC: implications of a mitochondrial function for CNP2 in glial and non-glial cells.

    Science.gov (United States)

    Lee, John; O'Neill, Ryan C; Park, Min Woo; Gravel, Michel; Braun, Peter E

    2006-03-01

    Both 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP) isoforms are abundantly expressed in myelinating cells. CNP2 differs from CNP1 by a 20 amino acid N-terminal extension and is also expressed at much lower levels in non-myelinating tissues. The functional role of CNP2, apart from CNP1, and the significance for CNP2 expression in non-myelinating tissues are unknown. Here, we demonstrate that CNP2 is translocated to mitochondria by virtue of a mitochondrial targeting signal at the N-terminus. PKC-mediated phosphorylation of the targeting signal inhibits CNP2 translocation to mitochondria, thus retaining it in the cytoplasm. CNP2 is imported into mitochondria and the targeting signal cleaved, yielding a mature, truncated form similar in size to CNP1. CNP2 is entirely processed in adult liver and embryonic brain, indicating that it is localized specifically to mitochondria in non-myelinating cells. Our results point to a broader biological role for CNP2 in mitochondria that is likely to be different from its specific role in the cytoplasm, along with CNP1, during myelination. PMID:16343930

  3. cDNA cloning, functional expression and cellular localization of rat liver mitochondrial electron-transfer flavoprotein-ubiquinone oxidoreductase protein

    Institute of Scientific and Technical Information of China (English)

    HUANG; Shengbing; SONG; Wei; LIN; Qishui

    2005-01-01

    A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5'-terminal and 3'-terminal were obtained by RACE technique. The full-length cDNA that encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-Qop. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.

  4. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen;

    2010-01-01

    mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies......Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether.......02), and complex V (ATP5B; p=0.005). Our data demonstrate that genetically determined insulin resistance is associated with a co-ordinated down-regulation of OxPhos components both at the transcriptional and translational level. These findings suggest that an impaired biological response to insulin in skeletal...

  5. Landscape characterization integrating expert and local spatial knowledge of land and forest resources.

    Science.gov (United States)

    Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle

    2013-09-01

    In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues. PMID:23934059

  6. Genomic organization of the human gene (CA5) and pseudogene for mitochondrial carbonic anhydrase V and their localization to chromosomes 16q and 16p

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiro; Sly, W.S.; Batanian, J.R. [St. Louis Univ. School of Medicine, MO (United States)] [and others

    1995-08-10

    Carbonic anhydrase V (CA V) is expressed in mitochondrial matrix in liver and several other tissues. It is of interest for its putative roles in providing bicarbonate to carbamoyl phosphate synthetase for ureagenesis and to pyruvate carboxylase for gluconeogenesis and its possible importance in explaining certain inherited metabolic disorders with hyperammonemia and hypoglycemia. Following the recent characterization of the cDNA for human CA V, we report the isolation of the human gene from two {lambda} genomic libraries and its characterization. The CA V gene (CA5) is approximately 50 kb long and contains 7 exons and 6 introns. The exon-intron boundaries are found in positions identical to those determined for the previously described CA II, CA III, and CA VII genes. Like the CA VII gene, CA5 does not contain typical TATA and CAAT promoter elements in the 5{prime} flanking region but does contain a TTTAA sequence 147 nucleotides upstream of the initiation codon. CA5 also contains a 12-bp GT-rich segment beginning 13 bp downstream of the polyadenylation signal in the 3{prime} untranslated region of exon 7. FISH analysis allowed CA5 to be assigned to chromosome 16q24.3. An unprocessed pseudogene containing sequence homologous to exons 3-7 and introns 3-6 was also isolated and was assigned by FISH analysis to chromosome 16p11.2-p12. 22 refs., 4 figs., 1 tab.

  7. Computationally driven, quantitative experiments discover genes required for mitochondrial biogenesis.

    Directory of Open Access Journals (Sweden)

    David C Hess

    2009-03-01

    Full Text Available Mitochondria are central to many cellular processes including respiration, ion homeostasis, and apoptosis. Using computational predictions combined with traditional quantitative experiments, we have identified 100 proteins whose deficiency alters mitochondrial biogenesis and inheritance in Saccharomyces cerevisiae. In addition, we used computational predictions to perform targeted double-mutant analysis detecting another nine genes with synthetic defects in mitochondrial biogenesis. This represents an increase of about 25% over previously known participants. Nearly half of these newly characterized proteins are conserved in mammals, including several orthologs known to be involved in human disease. Mutations in many of these genes demonstrate statistically significant mitochondrial transmission phenotypes more subtle than could be detected by traditional genetic screens or high-throughput techniques, and 47 have not been previously localized to mitochondria. We further characterized a subset of these genes using growth profiling and dual immunofluorescence, which identified genes specifically required for aerobic respiration and an uncharacterized cytoplasmic protein required for normal mitochondrial motility. Our results demonstrate that by leveraging computational analysis to direct quantitative experimental assays, we have characterized mutants with subtle mitochondrial defects whose phenotypes were undetected by high-throughput methods.

  8. Morphological characterization of local landraces of rapeseed (Brassica campestris L. var toria of Nepal

    Directory of Open Access Journals (Sweden)

    Salik Ram Gupta

    2015-12-01

    Full Text Available Rapeseed (Brassica campestris L. var toria is the main source of edible oil for Nepalese people. 54 rapeseed lines were collected from different hilly district of Nepal ranging from 987 m to 2550 m altitude. These lines were planted in augmented design for its traits characterization in Khumaltar 2013. Different traits of local rapeseed were characterized, and evaluated. NGRC 02778 performed better followed by SR-02 than local checks Morang-2, Chitwan Local and Unnati in terms of yield, days to maturity and pest infestation. Similarly, genotype SR-18 was late and SR-16 was earlier in terms of days to maturity. In conclusion, SR-02 was found better genotype based on different characteristics measured among all local rapeseeds planted in Khumaltar 2013. Thus SR-2 can be used as parents in crossing material for further breeding purposes and it can also be tested in further trial.

  9. Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide.

    Science.gov (United States)

    Oyewole, Anne O; Wilmot, Marie-Claire; Fowler, Mark; Birch-Machin, Mark A

    2014-01-01

    Skin cancer and aging are linked to increased cellular reactive oxygen species (ROS), particularly following exposure to ultraviolet A (UVA) in sunlight. As mitochondria are the main source of cellular ROS, this study compared the protective effects of mitochondria-targeted and -localized antioxidants (MitoQ and tiron, respectively) with cellular antioxidants against oxidative stress-induced [UVA and hydrogen peroxide (H2O2)] mitochondrial DNA (mtDNA) damage in human dermal fibroblasts. With the use of a long quantitative PCR assay, tiron (EC50 10 mM) was found to confer complete (100%) protection (Pantioxidants investigated. The nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway provides cellular protection against oxidative stress. An ELISA assay for the Nrf2 target gene heme oxygenase-1 (HO-1) and studies using Nrf2 small interfering RNA both indicated that tiron's mode of action was Nrf2 independent. The comet assay showed that tiron's protective effect against H2O2-induced nuclear DNA damage was greater than the cellular antioxidants and MitoQ (Pantioxidants.

  10. Characterization of the Cardiac Overexpression of HSPB2 Reveals Mitochondrial and Myogenic Roles Supported by a Cardiac HspB2 Interactome.

    Directory of Open Access Journals (Sweden)

    Julianne H Grose

    Full Text Available Small Heat Shock Proteins (sHSPs are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2, which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait and a human cardiac library (prey coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 "cardiac interactome" to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID. A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH, has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is

  11. Characterization of the Cardiac Overexpression of HSPB2 Reveals Mitochondrial and Myogenic Roles Supported by a Cardiac HspB2 Interactome.

    Science.gov (United States)

    Grose, Julianne H; Langston, Kelsey; Wang, Xiaohui; Squires, Shayne; Mustafi, Soumyajit Banerjee; Hayes, Whitney; Neubert, Jonathan; Fischer, Susan K; Fasano, Matthew; Saunders, Gina Moore; Dai, Qiang; Christians, Elisabeth; Lewandowski, E Douglas; Ping, Peipei; Benjamin, Ivor J

    2015-01-01

    Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 "cardiac interactome" to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to

  12. Characterization of the complete mitochondrial genome and a set of polymorphic microsatellite markers through next-generation sequencing for the brown brocket deer Mazama gouazoubira

    Science.gov (United States)

    Caparroz, Renato; Mantellatto, Aline M.B.; Bertioli, David J.; Figueiredo, Marina G.; Duarte, José Maurício B.

    2015-01-01

    The complete mitochondrial genome of the brown brocket deer Mazama gouazoubira and a set of polymorphic microsatellite markers were identified by 454-pyrosequencing. De novo genome assembly recovered 98% of the mitochondrial genome with a mean coverage of 9-fold. The mitogenome consisted of 16,356 base pairs that included 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs and the control region, as found in other deer. The genetic divergence between the mitogenome described here and a previously published report was ∼0.5%, with the control region and ND5 gene showing the highest intraspecific variation. Seven polymorphic loci were characterized using 15 unrelated individuals; there was moderate genetic variation across most loci (mean of 5.6 alleles/locus, mean expected heterozygosity = 0.70), with only one locus deviating significantly from Hardy-Weinberg equilibrium, probably because of null alleles. Marker independence was confirmed with tests for linkage disequilibrium. The genetic variation of the mitogenome and characterization of microsatellite markers will provide useful tools for assessing the phylogeography and population genetic patterns in M. gouazoubira, particularly in the context of habitat fragmentation in South America. PMID:26500438

  13. Hepatitis C Virus-Induced Mitochondrial Dysfunctions

    Directory of Open Access Journals (Sweden)

    Birke Bartosch

    2013-03-01

    Full Text Available Chronic hepatitis C is characterized by metabolic disorders and a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that lead in the long term to hepatocellular carcinoma. Many lines of evidence suggest that mitochondrial dysfunctions, including modification of metabolic fluxes, generation and elimination of oxidative stress, Ca2+ signaling and apoptosis, play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV proteins localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory, probably due to the use of artificial expression and replication systems. In vivo studies are hampered by the fact that innate and adaptive immune responses will overlay mitochondrial dysfunctions induced directly in the hepatocyte by HCV. Thus, the molecular aspects underlying HCV-induced mitochondrial dysfunctions and their roles in viral replication and the associated pathology need yet to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems.

  14. Characterization of the complete mitochondrial genome of Cynoglossus gracilis and a comparative analysis with other Cynoglossinae fishes.

    Science.gov (United States)

    Wei, Min; Liu, Yang; Guo, Hua; Zhao, Fazhen; Chen, Songlin

    2016-10-15

    Mitochondrial genomes can provide basic information for phylogenetic analysis and evolutionary studies. We present here the mitochondrial genome of Cynoglossus gracilis, which is 16,565bp in length. Numerous distinct regions were identified, including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, a light-strand replication origin, and a control region. Interestingly, we detected rearrangement of genes in C. gracilis, including a control region translocation, tRNA(Gln) gene inversion, and tRNA(Ile) gene shuffling. Additionally, a phylogenetic analysis based on the nucleotide sequences of the 13 PCGs using maximum likelihood and Bayesian inference methods reveals that C. gracilis is closely related to Cynoglossus semilaevis. This study provides important mitogenomic data for analyzing phylogenetic relationships in the Cynoglossinae. PMID:27312953

  15. Synthesis and biological characterization of new amino-phosphonates for mitochondrial pH determination by 31P NMR spectroscopy

    International Nuclear Information System (INIS)

    A series of mitochondria targeted α-amino-phosphonates combining a diethoxy-phosphoryl group and an alkyl chain-connected triphenylphosphonium bromide tail were designed and synthesized, and their pH-sensitive 31P NMR properties and biological activities in vitro and in vivo were evaluated. The results showed a number of these mitoaminophosphonates exhibiting pKa values fitting the mitochondrial pH range, short relaxation, and chemical shift parameters compatible with sensitive 31P NMR detection, and low cytotoxicity on green algae and murine fibroblasts cell cultures. Of these, two selected compounds demonstrated to distribute at NMR detectable levels within the cytosolic and mitochondrial sites following their perfusion to isolated rat livers, with no detrimental effects on cell energetics and aerobic respiration. This study provided a new molecular scaffold for further development of in situ spectroscopic real-time monitoring of mitochondrion/cytosol pH gradients. (authors)

  16. Mitochondrial Myopathy

    Science.gov (United States)

    ... NINDS supports research focused on effective treatments and cures for mitochondrial myopathies and other mitochondrial diseases. Scientists are investigating the possible benefits of exercise programs and nutritional supplements, primarily natural and synthetic versions of CoQ10. While CoQ10 has ...

  17. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  18. Genetic characterization of the honeybee (Apis mellifera) population of Rodrigues Island, based on microsatellite and mitochondrial DNA

    OpenAIRE

    Techer, Maéva Angélique; Clémencet, Johanna; Turpin, Patrick; Volbert, Nicolas; Reynaud, Bernard; Delatte, Hélène

    2015-01-01

    International audience AbstractApis mellifera is present in Rodrigues, an island in the South-West Indian Ocean. The history of the established honeybee population is poorly known, and its biodiversity has never been studied. In this study, maternal origins of A. mellifera in Rodrigues have been assessed with the DraI test and sequencing of the mitochondrial COI-COII region. Nuclear genetic diversity was investigated with 18 microsatellite markers. A total of 524 colonies were sampled from...

  19. Molecular characterization of Aedes aegypti (L.) (Diptera: Culicidae) of Easter Island based on analysis of the mitochondrial ND4 gene

    OpenAIRE

    Claudia Andrea Núñez; Christian Raúl González; Víctor Obreque; Brenda Riquelme; Carolina Reyes; Mabel Rojas

    2016-01-01

    ABSTRACT Aedes aegypti mosquitoes are the main vector of viruses Dengue, Zika and Chikungunya. Shortly after the first report of the dengue vector Ae. aegypti in Easter Island (Rapa Nui) in late 2000, the first disease outbreak dengue occurred. Viral serotyping during the 2002 outbreak revealed a close relationship with Pacific DENV-1 genotype IV viruses, supporting the idea that the virus most likely originated in Tahiti. Mitochondrial NADH dehydrogenase subunit 4 (ND4) DNA sequences generat...

  20. Mitochondrial cytopathies.

    Science.gov (United States)

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-09-01

    Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Most of mitochondrial proteins are encoded by the nuclear DNA (nDNA) whereas a very small fraction is encoded by the mitochondrial DNA (mtDNA). Mutations in mtDNA or mitochondria-related nDNA genes can result in mitochondrial dysfunction which leads to a wide range of cellular perturbations including aberrant calcium homeostasis, excessive reactive oxygen species production, dysregulated apoptosis, and insufficient energy generation to meet the needs of various organs, particularly those with high energy demand. Impaired mitochondrial function in various tissues and organs results in the multi-organ manifestations of mitochondrial diseases including epilepsy, intellectual disability, skeletal and cardiac myopathies, hepatopathies, endocrinopathies, and nephropathies. Defects in nDNA genes can be inherited in an autosomal or X-linked manners, whereas, mtDNA is maternally inherited. Mitochondrial diseases can result from mutations of nDNA genes encoding subunits of the electron transport chain complexes or their assembly factors, proteins associated with the mitochondrial import or networking, mitochondrial translation factors, or proteins involved in mtDNA maintenance. MtDNA defects can be either point mutations or rearrangements. The diagnosis of mitochondrial disorders can be challenging in many cases and is based on clinical recognition, biochemical screening, histopathological studies, functional studies, and molecular genetic testing. Currently, there are no satisfactory therapies available for mitochondrial disorders that significantly alter the course of the disease. Therapeutic options include symptomatic treatment, cofactor supplementation, and exercise. PMID:26996063

  1. Characterization of Fus3 localization: active Fus3 localizes in complexes of varying size and specific activity.

    Science.gov (United States)

    Choi, K Y; Kranz, J E; Mahanty, S K; Park, K S; Elion, E A

    1999-05-01

    The MAP kinase Fus3 regulates many different signal transduction outputs that govern the ability of Saccharomyces cerevisiae haploid cells to mate. Here we characterize Fus3 localization and association with other proteins. By indirect immunofluorescence, Fus3 localizes in punctate spots throughout the cytoplasm and nucleus, with slightly enhanced nuclear localization after pheromone stimulation. This broad distribution is consistent with the critical role Fus3 plays in mating and contrasts that of Kss1, which concentrates in the nucleus and is not required for mating. The majority of Fus3 is soluble and not bound to any one protein; however, a fraction is stably bound to two proteins of approximately 60 and approximately 70 kDa. Based on fractionation and gradient density centrifugation properties, Fus3 exists in a number of complexes, with its activity critically dependent upon association with other proteins. In the presence of alpha factor, nearly all of the active Fus3 localizes in complexes of varying size and specific activity, whereas monomeric Fus3 has little activity. Fus3 has highest specific activity within a 350- to 500-kDa complex previously shown to contain Ste5, Ste11, and Ste7. Ste5 is required for Fus3 to exist in this complex. Upon alpha factor withdrawal, a pool of Fus3 retains activity for more than one cell cycle. Collectively, these results support Ste5's role as a tether and suggest that association of Fus3 in complexes in the presence of pheromone may prevent inactivation in addition to enhancing activation. PMID:10233162

  2. Characterizing Curvilinear Features Using the Localized Normal-Score Ensemble Kalman Filter

    Directory of Open Access Journals (Sweden)

    Haiyan Zhou

    2012-01-01

    Full Text Available The localized normal-score ensemble Kalman filter is shown to work for the characterization of non-multi-Gaussian distributed hydraulic conductivities by assimilating state observation data. The influence of type of flow regime, number of observation piezometers, and the prior model structure are evaluated in a synthetic aquifer. Steady-state observation data are not sufficient to identify the conductivity channels. Transient-state data are necessary for a good characterization of the hydraulic conductivity curvilinear patterns. Such characterization is very good with a dense network of observation data, and it deteriorates as the number of observation piezometers decreases. It is also remarkable that, even when the prior model structure is wrong, the localized normal-score ensemble Kalman filter can produce acceptable results for a sufficiently dense observation network.

  3. Generation and characterization of transgenic mice expressing mitochondrial targeted red fluorescent protein selectively in neurons: modeling mitochondriopathy in excitotoxicity and amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2011-11-01

    Full Text Available Abstract Background Mitochondria have roles or appear to have roles in the pathogenesis of several chronic age-related and acute neurological disorders, including Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis, Parkinson's disease, and cerebral ischemia, and could be critical targets for development of rational mechanism-based, disease-modifying therapeutics for treating these disorders effectively. A deeper understanding of neural tissue mitochondria pathobiologies as definitive mediators of neural injury, disease, and cell death merits further study, and the development of additional tools to study neural mitochondria will help achieve this unmet need. Results We created transgenic mice that express the coral (Discosoma sp. red fluorescent protein DsRed2 specifically in mitochondria of neurons using a construct engineered with a Thy1 promoter, specific for neuron expression, to drive expression of a fusion protein of DsRed2 with a mitochondrial targeting sequence. The biochemical and histological characterization of these mice shows the expression of mitochondrial-targeted DsRed2 to be specific for mitochondria and concentrated in distinct CNS regions, including cerebral cortex, hippocampus, thalamus, brainstem, and spinal cord. Red fluorescent mitochondria were visualized in cerebral cortical and hippocampal pyramidal neurons, ventrobasal thalamic neurons, subthalamic neurons, and spinal motor neurons. For the purpose of proof of principle application, these mice were used in excitotoxicity paradigms and double transgenic mice were generated by crossing Thy1-mitoDsRed2 mice with transgenic mice expressing enhanced-GFP (eGFP under the control of the Hlxb9 promoter that drives eGFP expression specifically in motor neurons and by crossing Thy1-mitoDsRed2 mice to amyotrophic lateral sclerosis (ALS mice expressing human mutant superoxide dismutase-1. Conclusions These novel transgenic mice will be a useful tool for better understanding

  4. Mitochondrial biogenesis: pharmacological approaches.

    Science.gov (United States)

    Valero, Teresa

    2014-01-01

    diseases do not have exclusively a mitochondrial origin but they might have an important mitochondrial component both on their onset and on their development. This is the case of type 2 diabetes or neurodegenerative diseases. Type 2 diabetes is characterized by a peripheral insulin resistance accompanied by an increased secretion of insulin as a compensatory system. Among the explanations about the origin of insulin resistance Mónica Zamora and Josep A. Villena (Department of Experimental and Health Sciences, Universitat Pompeu Fabra / Laboratory of Metabolism and Obesity, Universitat Autònoma de Barcelona, Spain) [5] consider the hypothesis that mitochondrial dysfunction, e.g. impaired (mitochondrial) oxidative capacity of the cell or tissue, is one of the main underlying causes of insulin resistance and type 2 diabetes. Although this hypothesis is not free of controversy due to the uncertainty on the sequence of events during type 2 diabetes onset, e.g. whether mitochondrial dysfunction is the cause or the consequence of insulin resistance, it has been widely observed that improving mitochondrial function also improves insulin sensitivity and prevents type 2 diabetes. Thus restoring oxidative capacity by increasing mitochondrial mass appears as a suitable strategy to treat insulin resistance. The effort made by researchers trying to understand the signaling pathways mediating mitochondrial biogenesis has uncovered new potential pharmacological targets and opens the perspectives for the design of suitable treatments for insulin resistance. In addition some of the current used strategies could be used to treat insulin resistance such as lifestyle interventions (caloric restriction and endurance exercise) and pharmacological interventions (thiazolidinediones and other PPAR agonists, resveratrol and other calorie restriction mimetics, AMPK activators, ERR activators). Mitochondrial biogenesis is of special importance in modern neurochemistry because of the broad spectrum

  5. Synthetic Bichalcone TSWU-BR23 Induces Apoptosis of Human Colon Cancer HT-29 Cells by p53-Mediated Mitochondrial Oligomerization of BAX/BAK and Lipid Raft Localization of CD95/FADD.

    Science.gov (United States)

    Lin, Meng-Liang; Chen, Shih-Shun; Wu, Tian-Shung

    2015-10-01

    A synthetic bichalcone analog, (E)-1-(3-((4-(4-acetylphenyl)piperazin-1-yl)methyl)-4-hydroxy-5-methoxyphenyl)-3-(pyridin-3-yl)prop-2-en-1-one (TSWU-BR23), has been shown to induce apoptosis in human colon cancer HT-29 cells involving the induction of CD95 and FAS-associated protein death domain (FADD), but its precise mechanism of action has not been fully elucidated. Using cell-surface biotinylation and sucrose density-gradient-based membrane flotation techniques, we showed that the disruption of TSWU-BR23-induced lipid raft localization of CD95/FADD by cholesterol-depleting agent (methyl-β-cyclodextrin) was reversed by cholesterol replenishment. Blockade of p53 expression by short-hairpin RNA (shRNA) suppressed oligomeric Bcl-2-associated x protein (BAX)/Bcl-2 antagonist killer 1 (BAK)-mediated mitochondrial apoptosis but did not inhibit lipid raft localization of CD95/FADD and pro-caspase-8 cleavage induced by TSWU-BR23. Co-expression of p53 shRNA and dominant-negative mutant of FADD completely inhibited TSWU-BR32-induced mitochondrial apoptotic cell death. Collectively, these data demonstrate that TSWU-BR23 leads to HT-29 cell apoptosis by inducing p53-mediated mitochondrial oligomerization of BAX/BAK and the localization of CD95/FADD with lipid rafts at the cell surface.

  6. hNOA1 interacts with complex I and DAP3 and regulates mitochondrial respiration and apoptosis.

    OpenAIRE

    Tang, Tingdong; Zheng, Bin; Chen, Sheng-Hong; Murphy, Anne N.; Kudlicka, Krystyna; Zhou, Huilin; Farquhar, Marilyn G.

    2009-01-01

    Mitochondria are dynamic organelles that play key roles in metabolism, energy production, and apoptosis. Coordination of these processes is essential to maintain normal cellular functions. Here we characterized hNOA1, the human homologue of AtNOA1 (Arabidopsis thaliana nitric oxide-associated protein 1), a large mitochondrial GTPase. By immunofluorescence, immunoelectron microscopy, and mitochondrial subfractionation, endogenous hNOA1 is localized within mitochondria where it is peripherally ...

  7. hNOA1 Interacts with Complex I and DAP3 and Regulates Mitochondrial Respiration and Apoptosis*S⃞

    OpenAIRE

    Tang, Tingdong; Zheng, Bin; Chen, Sheng-Hong; Murphy, Anne N.; Kudlicka, Krystyna; Zhou, Huilin; Farquhar, Marilyn G.

    2009-01-01

    Mitochondria are dynamic organelles that play key roles in metabolism, energy production, and apoptosis. Coordination of these processes is essential to maintain normal cellular functions. Here we characterized hNOA1, the human homologue of AtNOA1 (Arabidopsis thaliana nitric oxide-associated protein 1), a large mitochondrial GTPase. By immunofluorescence, immunoelectron microscopy, and mitochondrial subfractionation, endogenous hNOA1 is localized within mitochondria w...

  8. Oestrogens ameliorate mitochondrial dysfunction in Leber's hereditary optic neuropathy.

    Science.gov (United States)

    Giordano, Carla; Montopoli, Monica; Perli, Elena; Orlandi, Maurizia; Fantin, Marianna; Ross-Cisneros, Fred N; Caparrotta, Laura; Martinuzzi, Andrea; Ragazzi, Eugenio; Ghelli, Anna; Sadun, Alfredo A; d'Amati, Giulia; Carelli, Valerio

    2011-01-01

    Leber's hereditary optic neuropathy, the most frequent mitochondrial disease due to mitochondrial DNA point mutations in complex I, is characterized by the selective degeneration of retinal ganglion cells, leading to optic atrophy and loss of central vision prevalently in young males. The current study investigated the reasons for the higher prevalence of Leber's hereditary optic neuropathy in males, exploring the potential compensatory effects of oestrogens on mutant cell metabolism. Control and Leber's hereditary optic neuropathy osteosarcoma-derived cybrids (11778/ND4, 3460/ND1 and 14484/ND6) were grown in glucose or glucose-free, galactose-supplemented medium. After having shown the nuclear and mitochondrial localization of oestrogen receptors in cybrids, experiments were carried out by adding 100 nM of 17β-oestradiol. In a set of experiments, cells were pre-incubated with the oestrogen receptor antagonist ICI 182780. Leber's hereditary optic neuropathy cybrids in galactose medium presented overproduction of reactive oxygen species, which led to decrease in mitochondrial membrane potential, increased apoptotic rate, loss of cell viability and hyper-fragmented mitochondrial morphology compared with control cybrids. Treatment with 17β-oestradiol significantly rescued these pathological features and led to the activation of the antioxidant enzyme superoxide dismutase 2. In addition, 17β-oestradiol induced a general activation of mitochondrial biogenesis and a small although significant improvement in energetic competence. All these effects were oestrogen receptor mediated. Finally, we showed that the oestrogen receptor β localizes to the mitochondrial network of human retinal ganglion cells. Our results strongly support a metabolic basis for the unexplained male prevalence in Leber's hereditary optic neuropathy and hold promises for a therapeutic use for oestrogen-like molecules.

  9. Molecular characterization of Aedes aegypti (L. (Diptera: Culicidae of Easter Island based on analysis of the mitochondrial ND4 gene

    Directory of Open Access Journals (Sweden)

    Claudia Andrea Núñez

    2016-06-01

    Full Text Available ABSTRACT Aedes aegypti mosquitoes are the main vector of viruses Dengue, Zika and Chikungunya. Shortly after the first report of the dengue vector Ae. aegypti in Easter Island (Rapa Nui in late 2000, the first disease outbreak dengue occurred. Viral serotyping during the 2002 outbreak revealed a close relationship with Pacific DENV-1 genotype IV viruses, supporting the idea that the virus most likely originated in Tahiti. Mitochondrial NADH dehydrogenase subunit 4 (ND4 DNA sequences generated from 68 specimens of Ae. aegypti from Easter Island reporting a unique finding of a single maternal lineage of Ae. aegypti on Easter Island.

  10. Development and characterization of biodegradable chitosan films for local delivery of paclitaxel

    OpenAIRE

    Dhanikula, Anand Babu; Panchagnula, Ramesh

    2004-01-01

    Intratumoral and local drug delivery strategies have gained momentum recently as a promising modality in cancer therapy. In order to deliver paclitaxel at the tumor site in therapeutically relevant concentrations, chitosan films were fabricated. Paclitaxel could be loaded at 31% wt/wt in films, which were translucent and flexible. Physicochemical characterization of paclitaxel via thermal, spectroscopic, x-ray diffraction, and electron microscopy techniques revealed information on solid-state...

  11. Complete sequence and characterization of mitochondrial genome in the swimming crab Portunus sanguinolentus (Herbst, 1783) (Decapoda, Brachyura, Portunidae).

    Science.gov (United States)

    Meng, Xianliang; Jia, Fulong; Zhang, Xiaohui; Liu, Ping; Li, Jian

    2016-07-01

    The three-spot swimming crab Portunus sanguinolentus (Herbst, 1783) is a commercially important fishery species, widely distributed in the Indo-Pacific region. In this study, we present the complete mitochondrial genome of P. sanguinolentus. The genome is 16 027 bp in length with circular organization, encoding the standard set of 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. The overall A + T content is 65.60%, which is lower than that of its congeneric species Portunus pelagicus and Portunus trituberculatus. The mitogenome carries 1254 bp of intergenic region constituting 7.82% of the genome, and six pairs of overlapping genes with the overlap size from 1 to 7 bp. The complete mitogenome sequence information of P. sanguinolentus would provide useful data for further studies on population genetics and molecular systematics. PMID:26153754

  12. The mitochondrial DNA makeup of Romanians: A forensic mtDNA control region database and phylogenetic characterization.

    Science.gov (United States)

    Turchi, Chiara; Stanciu, Florin; Paselli, Giorgia; Buscemi, Loredana; Parson, Walther; Tagliabracci, Adriano

    2016-09-01

    To evaluate the pattern of Romanian population from a mitochondrial perspective and to establish an appropriate mtDNA forensic database, we generated a high-quality mtDNA control region dataset from 407 Romanian subjects belonging to four major historical regions: Moldavia, Transylvania, Wallachia and Dobruja. The entire control region (CR) was analyzed by Sanger-type sequencing assays and the resulting 306 different haplotypes were classified into haplogroups according to the most updated mtDNA phylogeny. The Romanian gene pool is mainly composed of West Eurasian lineages H (31.7%), U (12.8%), J (10.8%), R (10.1%), T (9.1%), N (8.1%), HV (5.4%),K (3.7%), HV0 (4.2%), with exceptions of East Asian haplogroup M (3.4%) and African haplogroup L (0.7%). The pattern of mtDNA variation observed in this study indicates that the mitochondrial DNA pool is geographically homogeneous across Romania and that the haplogroup composition reveals signals of admixture of populations of different origin. The PCA scatterplot supported this scenario, with Romania located in southeastern Europe area, close to Bulgaria and Hungary, and as a borderland with respect to east Mediterranean and other eastern European countries. High haplotype diversity (0.993) and nucleotide diversity indices (0.00838±0.00426), together with low random match probability (0.0087) suggest the usefulness of this control region dataset as a forensic database in routine forensic mtDNA analysis and in the investigation of maternal genetic lineages in the Romanian population.

  13. The mitochondrial DNA makeup of Romanians: A forensic mtDNA control region database and phylogenetic characterization.

    Science.gov (United States)

    Turchi, Chiara; Stanciu, Florin; Paselli, Giorgia; Buscemi, Loredana; Parson, Walther; Tagliabracci, Adriano

    2016-09-01

    To evaluate the pattern of Romanian population from a mitochondrial perspective and to establish an appropriate mtDNA forensic database, we generated a high-quality mtDNA control region dataset from 407 Romanian subjects belonging to four major historical regions: Moldavia, Transylvania, Wallachia and Dobruja. The entire control region (CR) was analyzed by Sanger-type sequencing assays and the resulting 306 different haplotypes were classified into haplogroups according to the most updated mtDNA phylogeny. The Romanian gene pool is mainly composed of West Eurasian lineages H (31.7%), U (12.8%), J (10.8%), R (10.1%), T (9.1%), N (8.1%), HV (5.4%),K (3.7%), HV0 (4.2%), with exceptions of East Asian haplogroup M (3.4%) and African haplogroup L (0.7%). The pattern of mtDNA variation observed in this study indicates that the mitochondrial DNA pool is geographically homogeneous across Romania and that the haplogroup composition reveals signals of admixture of populations of different origin. The PCA scatterplot supported this scenario, with Romania located in southeastern Europe area, close to Bulgaria and Hungary, and as a borderland with respect to east Mediterranean and other eastern European countries. High haplotype diversity (0.993) and nucleotide diversity indices (0.00838±0.00426), together with low random match probability (0.0087) suggest the usefulness of this control region dataset as a forensic database in routine forensic mtDNA analysis and in the investigation of maternal genetic lineages in the Romanian population. PMID:27414754

  14. Characterization of uranium effects on the zebra fish Danio rerio. Stress mechanisms, neuro-toxicity and mitochondrial metabolism

    International Nuclear Information System (INIS)

    This research explored several biological effects of uranium (U) in zebra fish exposed to low waterborne uranium concentrations (20 and 100 microgram/L). In tissue specific study (brain, liver, skeletal muscles and gills) of transcriptional responses in 20 genes identified the nature of the potential U effects during 28 days of exposure followed by an 8-day depuration phase in connection with U bioaccumulation. Liver and gills accumulate high concentrations of U and the depuration is efficient contrary to the brain and muscles. U exposure induced a later response in liver (inflammatory process, apoptosis and detoxification) and gills (oxidative balance) and an early one in brain (neuronal response) and muscles (mitochondrial metabolism). Brain and muscles appear sensitive since defence mechanisms are inefficient above low concentrations. A further study on these two organs examined the function and protein content of the respiratory mitochondrial chain following U exposure. An inhibition of the respiratory control ratio for the lowest concentration, variation in the protein synthesis of the complex IV (induction of cytochrome c oxidase sub-unit I and IV) and histological damage (dilatation in brain and vacuolisation in muscles) were observed. Another study focused on the early effects on the brain and was accomplished through a large transcriptional analysis coupled with examinations of the olfactory bulb ultrastructure. A depression of genes encoding olfactory receptor or111-7 and or102-5 was observed as rapidly as 3 days post-exposure to the lowest concentration of U. These responses and histological injuries suggest that the olfactory system could be sensitive to U exposure. (author)

  15. Characterizing wave propagation to improve indoor step-level person localization using floor vibration

    Science.gov (United States)

    Mirshekari, Mostafa; Pan, Shijia; Zhang, Pei; Noh, Hae Young

    2016-04-01

    The objective of this paper is to characterize frequency-dependent wave propagation of footstep induced floor vibration to improve robustness of vibration-based occupant localization. Occupant localization is an essential part of many smart structure applications (e.g., energy management, patient/customer tracking, etc.). Exist- ing techniques include visual (e.g. cameras and IR sensors), acoustic, RF, and load-based approaches. These approaches have many deployment and operational requirements that limits their adaptation. To overcome these limitations, prior work has utilized footstep-induced vibrations to allow sparse sensor configuration and non-intrusive detection. However, frequency dependent propagation characteristics and low signal-to-noise ratio (SNR) of footstep-induced vibrations change the shape of the signal. Furthermore, estimating the wave propagation velocity for forming the multilateration equations and localizing the footsteps is a challenging task. They, in turn, lead to large errors of localization. In this paper, we present a structural vibration based indoor occupant localization technique using improved time-difference-of-arrival between multiple vibration sensors. In particular we overcome signal distortion by decomposing the signal into frequency components and focusing on high energy components for accurate indoor localization. Such decomposition leverages the frequency-specific propagation characteristics and reduces the effect of low SNR (by choosing the components of highest energy). Furthermore, we develop a velocity calibration method that finds the optimal velocity which minimizes the localization error. We validate our approach through field experiments in a building with human participants. We are able to achieve an average localization error of less than 0.21 meters, which corresponds to a 13X reduction in error when compared to the baseline method using raw data.

  16. Mitochondrial Dysfunction in Neurodegenerative Diseases

    OpenAIRE

    Johri, Ashu; Beal, M. Flint

    2012-01-01

    Neurodegenerative diseases are a large group of disabling disorders of the nervous system, characterized by the relative selective death of neuronal subtypes. In most cases, there is overwhelming evidence of impaired mitochondrial function as a causative factor in these diseases. More recently, evidence has emerged for impaired mitochondrial dynamics (shape, size, fission-fusion, distribution, movement etc.) in neurodegenerative diseases such as Parkinson's disease, Huntington's disease, amyo...

  17. Genetic characterization of the Pacific sheath-tailed bat (Emballonura semicaudata rotensis) using mitochondrial DNA sequence data

    Science.gov (United States)

    Oyler-McCance, Sara J.; Valdez, Ernest W.; O'Shea, Thomas; Fike, Jennifer A.

    2013-01-01

    Emballonura semicaudata occurs in the southwestern Pacific and populations on many islands have declined or disappeared. One subspecies (E. semicaudata rotensis) occurs in the Northern Mariana Islands, where it has been extirpated from all but 1 island (Aguiguan). We assessed genetic similarity between the last population of E. s. rotensis and 2 other subspecies, and examined genetic diversity on Aguiguan. We sampled 12 E. s. rotensis, sequenced them at 3 mitochondrial loci, and compared them with published sequences from 2 other subspecies. All 12 E. s. rotensis had identical sequences in each of the 3 regions. Using cytochrome-b (Cytb) data E. s. rotensis was sister to E. s. palauensis in a clade separate from E. s. semicaudata. 12S ribosomal RNA (12S) sequences grouped all E. s. semicaudata in 1 clade with E. s. rotensis in a clade by itself. Genetic distances among the 3 subspecies at Cytb were smallest between E. s. palauensis and E. s. rotensis. Distance between E. s. semicaudata and the other 2 subspecies was not different from the distance between E. s. semicaudata and the full species E. raffrayana. A similar relationship was found using the 12S data. These distances are larger than those typically reported for mammalian subspecies using Cytb sequence and within the range of sister species.

  18. Characterization of a mitochondrial manganese superoxide dismutase gene from Apis cerana cerana and its role in oxidative stress.

    Science.gov (United States)

    Jia, Haihong; Sun, Rujiang; Shi, Weina; Yan, Yan; Li, Han; Guo, Xingqi; Xu, Baohua

    2014-01-01

    Mitochondrial manganese superoxide dismutase (mMnSOD) plays a vital role in the defense against reactive oxygen species (ROS) in eukaryotic mitochondria. In this study, we isolated and identified a mMnSOD gene from Apis cerana cerana, which we named AccSOD2. Several putative transcription factor-binding sites were identified within the 5'-flanking region of AccSOD2, which suggests that AccSOD2 may be involved in organismal development and/or environmental stress responses. Quantitative real-time PCR analysis showed that AccSOD2 is highly expressed in larva and pupae during different developmental stages. In addition, the expression of AccSOD2 could be induced by cold (4 °C), heat (42 °C), H2O2, ultraviolet light (UV), HgCl2, and pesticide treatment. Using a disc diffusion assay, we provide evidence that recombinant AccSOD2 protein can play a functional role in protecting cells from oxidative stress. Finally, the in vivo activities of AccSOD2 were measured under a variety of stressful conditions. Taken together, our results indicate that AccSOD2 plays an important role in cellular stress responses and anti-oxidative processes and that it may be of critical importance to honeybee survival. PMID:24269344

  19. Characterization of mitochondrial control region, two intergenic spacers and tRNAs of Zaprionus indianus (Diptera: Drosophilidae).

    Science.gov (United States)

    da Silva, Norma Machado; de Souza Dias, Aline; da Silva Valente, Vera Lúcia; Valiati, Victor Hugo

    2009-12-01

    The control region in insects is the major noncoding region in animal mitochondrial DNA (mtDNA), and is responsible for a large part of the variation in the DNA sequence and size of the genome of this organelle. In this study, the mtDNA control region, two intergenic spacers and tRNA genes of a Zaprionus indianus strain were cloned, sequenced and compared with other Drosophila species. The overall A+T content in the Z. indianus control region is 94.3%, and a comparison with other Drosophila species demonstrated that the most conserved region appears to be the 420 base pairs nearest to the tRNA(ile), similar to the findings of other authors. We also describe conserved sequence blocks, including a poly-T involved in the replication process of Drosophila mtDNA; a putative secondary structure also involved in the replication process and repeated sequences. tRNA(ile) sequence demonstrated the greatest variability when the tRNA sequences of species were compared.

  20. The effect of neoadjuvant chemoradiotherapy on whole-body physical fitness and skeletal muscle mitochondrial oxidative phosphorylation in vivo in locally advanced rectal cancer patients--an observational pilot study.

    Directory of Open Access Journals (Sweden)

    Malcolm A West

    Full Text Available BACKGROUND: In the United Kingdom, patients with locally advanced rectal cancer routinely receive neoadjuvant chemoradiotherapy. However, the effects of this on physical fitness are unclear. This pilot study is aimed to investigate the effect of neoadjuvant chemoradiotherapy on objectively measured in vivo muscle mitochondrial function and whole-body physical fitness. METHODS: We prospectively studied 12 patients with rectal cancer who completed standardized neoadjuvant chemoradiotherapy, recruited from a large tertiary cancer centre, between October 2012 and July 2013. All patients underwent a cardiopulmonary exercise test and a phosphorus magnetic resonance spectroscopy quadriceps muscle exercise-recovery study before and after neoadjuvant chemoradiotherapy. Data were analysed and reported blind to patient identity and clinical course. Primary variables of interest were the two physical fitness measures; oxygen uptake at estimated anaerobic threshold and oxygen uptake at Peak exercise (ml.kg-1.min-1, and the post-exercise phosphocreatine recovery rate constant (min-1, a measure of muscle mitochondrial capacity in vivo. RESULTS: Median age was 67 years (IQR 64-75. Differences (95%CI in all three primary variables were significantly negative post-NACRT: Oxygen uptake at estimated anaerobic threshold -2.4 ml.kg-1.min-1 (-3.8, -0.9, p = 0.004; Oxygen uptake at Peak -4.0 ml.kg-1.min-1 (-6.8, -1.1, p = 0.011; and post-exercise phosphocreatine recovery rate constant -0.34 min-1 (-0.51, -0.17, p<0.001. CONCLUSION: The significant decrease in both whole-body physical fitness and in vivo muscle mitochondrial function raises the possibility that muscle mitochondrial mechanisms, no doubt multifactorial, may be important in deterioration of physical fitness following neoadjuvant chemoradiotherapy. This may have implications for targeted interventions to improve physical fitness pre-surgery. TRIAL REGISTRATION: Clinicaltrials.gov registration NCT01859442.

  1. Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Tangyunyong, Paiboon; Miller, Mary A.; Cole, Edward Isaac, Jr.

    2012-03-01

    We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

  2. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    International Nuclear Information System (INIS)

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation

  3. Isolation and characterization of chitosan from different local insects in Egypt.

    Science.gov (United States)

    Marei, Narguess H; El-Samie, Emtithal Abd; Salah, Taher; Saad, Gamal R; Elwahy, Ahmed H M

    2016-01-01

    Chitin was extracted from four different local sources: the shrimp (Penaeus monodon), the desert locust (Schistocerca gregaria), the honey bee (Apis mellifera) and the beetles (Calosoma rugosa). Chitosan was then obtained by deacetylation of chitin and physicochemically characterized using the Fourier transform infrared (FTIR) and X-ray diffraction. The moisture content, water binding capacity, fats binding capacity, ash content were determined and chitosans morphology was visualized using the scanning electron microscope (SEM). The difference between the obtained chitosans from three insect sources and α-chitosan from shrimp in terms of crystallinity, fibrous structure was discussed. PMID:26459168

  4. Isolation and characterization of chitosan from different local insects in Egypt.

    Science.gov (United States)

    Marei, Narguess H; El-Samie, Emtithal Abd; Salah, Taher; Saad, Gamal R; Elwahy, Ahmed H M

    2016-01-01

    Chitin was extracted from four different local sources: the shrimp (Penaeus monodon), the desert locust (Schistocerca gregaria), the honey bee (Apis mellifera) and the beetles (Calosoma rugosa). Chitosan was then obtained by deacetylation of chitin and physicochemically characterized using the Fourier transform infrared (FTIR) and X-ray diffraction. The moisture content, water binding capacity, fats binding capacity, ash content were determined and chitosans morphology was visualized using the scanning electron microscope (SEM). The difference between the obtained chitosans from three insect sources and α-chitosan from shrimp in terms of crystallinity, fibrous structure was discussed.

  5. Genetic counseling in mitochondrial disease.

    Science.gov (United States)

    Vento, Jodie M; Pappa, Belen

    2013-04-01

    Mitochondrial diseases are a genetically and clinically diverse group of disorders that arise as a result of dysfunction of the mitochondria. Mitochondrial disorders can be caused by alterations in nuclear DNA and/or mitochondrial DNA. Although some mitochondrial syndromes have been described clearly in the literature many others present as challenging clinical cases with multisystemic involvement at variable ages of onset. Given the clinical variability and genetic heterogeneity of these conditions, patients and their families often experience a lengthy and complicated diagnostic process. The diagnostic journey may be characterized by heightened levels of uncertainty due to the delayed diagnosis and the absence of a clear prognosis, among other factors. Uncertainty surrounding issues of family planning and genetic testing may also affect the patient. The role of the genetic counselor is particularly important to help explain these complexities and support the patient and family's ability to achieve effective coping strategies in dealing with increased levels of uncertainty.

  6. Adipose-Derived Mesenchymal Stromal/Stem Cells: Tissue Localization, Characterization, and Heterogeneity

    Directory of Open Access Journals (Sweden)

    Patrick C. Baer

    2012-01-01

    Full Text Available Adipose tissue as a stem cell source is ubiquitously available and has several advantages compared to other sources. It is easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose-derived mesenchymal stromal/stem cells (ASCs yields a high amount of stem cells, which is essential for stem-cell-based therapies and tissue engineering. Several studies have provided evidence that ASCs in situ reside in a perivascular niche, whereas the exact localization of ASCs in native adipose tissue is still under debate. ASCs are isolated by their capacity to adhere to plastic. Nevertheless, recent isolation and culture techniques lack standardization. Cultured cells are characterized by their expression of characteristic markers and their capacity to differentiate into cells from meso-, ecto-, and entodermal lineages. ASCs possess a high plasticity and differentiate into various cell types, including adipocytes, osteoblasts, chondrocytes, myocytes, hepatocytes, neural cells, and endothelial and epithelial cells. Nevertheless, recent studies suggest that ASCs are a heterogeneous mixture of cells containing subpopulations of stem and more committed progenitor cells. This paper summarizes and discusses the current knowledge of the tissue localization of ASCs in situ, their characterization and heterogeneity in vitro, and the lack of standardization in isolation and culture methods.

  7. Role of Multislice Computed Tomography and Local Contrast in the Diagnosis and Characterization of Choanal Atresia

    Directory of Open Access Journals (Sweden)

    Khaled Al-Noury

    2011-01-01

    Full Text Available Objective. To illustrate the role of multislice computed tomography and local contrast instillation in the diagnosis and characterization of choanal atresia. To review the common associated radiological findings. Methods. We analyzed 9 pediatric patients (5 males and 4 females with suspected choanal atresia by multislice computed tomography. We recorded the type of atresia plate and other congenital malformations of the skull. Results. Multislice computed tomography with local contrast installed delineated the posterior choanae. Three patients had unilateral mixed membranous and bony atresia. Three patients had unilateral pure bony atresia. Only 1 of 7 patients have bilateral bony atresia. It also showed other congenital anomalies in the head region. One patient is with an ear abnormality. One patient had congenital nasal pyriform aperture stenosis. One of these patients had several congenital abnormalities, including cardiac and renal deformities and a hypoplastic lateral semicircular canal. Of the 6 patients diagnosed to have choanal atresia, 1 patient had esophageal atresia and a tracheoesophageal fistula. The remaining patients had no other CHARGE syndrome lesions. Conclusions. Local Contrast medium with the application of the low-dose technique helps to delineate the cause of the nasal obstruction avoiding a high radiation dose to the child.

  8. Subcellullar localization, developmental expression and characterization of a liver triacylglycerol hydrolase.

    Science.gov (United States)

    Lehner, R; Cui, Z; Vance, D E

    1999-03-15

    The mechanism and enzymic activities responsible for the lipolysis of stored cytosolic triacylglycerol in liver and its re-esterification remain obscure. A candidate enzyme for lipolysis, a microsomal triacylglycerol hydrolase (TGH), was recently purified to homogeneity from pig liver and its kinetic properties were determined [Lehner and Verger (1997) Biochemistry 36, 1861-1868]. We have characterized the enzyme with regard to its species distribution, subcellular localization, developmental expression and reaction with lipase inhibitors. The hydrolase co-sediments with endoplasmic reticulum elements and is associated with isolated liver fat droplets. Immunocytochemical studies localize TGH exclusively to liver cells surrounding capillaries. Both TGH mRNA and protein are expressed in rats during weaning. The enzyme covalently binds tetrahydrolipstatin, an inhibitor of lipases and of triacylglycerol hydrolysis. The enzyme is absent from liver-derived cell lines (HepG2 and McArdle RH7777) known to be impaired in very-low-density lipoprotein (VLDL) assembly and secretion. The localization and developmental expression of TGH are consistent with a proposed role in triacylglycerol hydrolysis and with the proposal that some of the resynthesized triacylglycerol is utilized for VLDL secretion.

  9. Characterization of Local Mechanical Properties of Polymer Thin Films and Polymer Nanocomposites via AFM indentations

    Science.gov (United States)

    Cheng, Xu

    AFM indentation has become a tool with great potential in the characterization of nano-mechanical properties of materials. Thanks to the nanometer sized probes, AFM indentation is capable of capturing the changes of multiple properties within the range of tens of nanometers, such task would otherwise be difficult by using other experiment instruments. Despite the great potentials of AFM indentation, it operates based on a simple mechanism: driving the delicate AFM probe to indent the sample surface, and recording the force-displacement response. With limited information provided by AFM indentation, efforts are still required for any practice to successfully extract the desired nano-scale properties from specific materials. In this thesis, we focus on the mechanical properties of interphase between polymer and inorganic materials. It is known that in nanocomposites, a region of polymer exist around nanoparticles with altered molecular structures and improved properties, which is named as interphase polymer. The system with polymer thin films and inorganic material substrates is widely used to simulate the interphase effect in nanocomposites. In this thesis, we developed an efficient and reliable method to process film/substrate samples and characterize the changes of local mechanical properties inside the interphase region with ultra-high resolution AFM mechanical mapping technique. Applying this newly developed method, the interphase of several film/substrate pairs were examined and compared. The local mechanical properties on the other side of the polymer thin film, the free surface side, was also investigated using AFM indentation equipped with surface modified probes. In order to extract the full spectrum of local elastic modulus inside the surface region in the range of only tens of nanometers, the different contact mechanics models were studied and compared, and a Finite Element model was also established. Though the film/substrate system has been wide used as

  10. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  11. Oxidative stress, mitochondrial damage and neurodegenerative diseases****

    Institute of Scientific and Technical Information of China (English)

    Chunyan Guo; Li Sun; Xueping Chen; Danshen Zhang

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. Al these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive thera-peutic interventions for the treatment of various neurodegenerative diseases.

  12. Novel super-resolution capable mitochondrial probe, MitoRed AIE, enables assessment of real-time molecular mitochondrial dynamics

    Science.gov (United States)

    Lo, Camden Yeung-Wah; Chen, Sijie; Creed, Sarah Jayne; Kang, Miaomiao; Zhao, Na; Tang, Ben Zhong; Elgass, Kirstin Diana

    2016-01-01

    Mitochondria and mitochondrial dynamics play vital roles in health and disease. With the intricate nanometer-scale structure and rapid dynamics of mitochondria, super-resolution microscopy techniques possess great un-tapped potential to significantly contribute to understanding mitochondrial biology and kinetics. Here we present a novel mitochondrial probe (MitoRed AIE) suitable for live mitochondrial dynamics imaging and single particle tracking (SPT), together with a multi-dimensional data analysis approach to assess local mitochondrial (membrane) fluidity. The MitoRed AIE probe localizes primarily to mitochondrial membranes, with 95 ms fluorophore on-time delivering 106 photons/ms, characteristics which we exploit to demonstrate live cell 100 fps 3D time-lapse tracking of mitochondria. Combining our experimental and analytical approaches, we uncover mitochondrial dynamics at unprecedented time scales. This approach opens up a new regime into high spatio-temporal resolution dynamics in many areas of mitochondrial biology. PMID:27492961

  13. Characterization of atmospheric aerosols in Ile-de-France: Local contribution and Long range transport

    International Nuclear Information System (INIS)

    Atmospheric aerosols interact directly in a great number of processes related to climate change and public health, modifying the energy budget and partly determining the quality of the air we breathe. In my PhD, I chose to study the perturbation, if not the aggravation, of the living conditions in Ile-de-France associated to aerosol transport episodes in the free troposphere. This situation is rather frequent and still badly known. To achieve my study, I developed the observation platform 'TReSS' Transportable Remote Sensing Station, whose instruments were developed at the Laboratoire de Meteorology Dynamique by the LiMAG team. 'TReSS' consists of a new high-performance 'Mini-Lidar' and of two standard radiometers: a sun photometer and a thermal infrared radiometer. The principle of my experimental approach is the synergy of the vertical Lidar profiles and the particle size distributions over the column, obtained by the 'Almucantar' inversion of sun photometer data. The new 'Lidar and Almucantar' method characterizes the vertical distribution by layer and the optical micro-physical properties of the local and transported aerosols. Firstly, I undertook the characterization of the Paris aerosol, mainly of anthropogenic origin. Their radiative properties were analyzed in the daily and yearly scales. Then, I conducted a statistical multi-year study of transport episodes and a two-week study case, representative of a succession of desert dust intrusion in Ile-de-France. My PhD work concludes by a study on the impact of biomass burning aerosols during the heat wave on August 2003. I study the impact of the transported aerosols into the local radiative budget and the possible consequences on the diurnal cycle of the atmospheric boundary layer. (author)

  14. Mitochondrial dysfunction in Parkinson's disease.

    Science.gov (United States)

    Hu, Qingsong; Wang, Guanghui

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by loss of dopaminergic (DA) neurons in the substantia nigra pars compacta and the formation of Lewy bodies and Lewy neurites in surviving DA neurons in most cases. Although the cause of PD is still unclear, the remarkable advances have been made in understanding the possible causative mechanisms of PD pathogenesis. Numerous studies showed that dysfunction of mitochondria may play key roles in DA neuronal loss. Both genetic and environmental factors that are associated with PD contribute to mitochondrial dysfunction and PD pathogenesis. The induction of PD by neurotoxins that inhibit mitochondrial complex I provides direct evidence linking mitochondrial dysfunction to PD. Decrease of mitochondrial complex I activity is present in PD brain and in neurotoxin- or genetic factor-induced PD cellular and animal models. Moreover, PINK1 and parkin, two autosomal recessive PD gene products, have important roles in mitophagy, a cellular process to clear damaged mitochondria. PINK1 activates parkin to ubiquitinate outer mitochondrial membrane proteins to induce a selective degradation of damaged mitochondria by autophagy. In this review, we summarize the factors associated with PD and recent advances in understanding mitochondrial dysfunction in PD. PMID:27453777

  15. A new inverse approach for the localization and characterization of defects based on compressive experiments

    Science.gov (United States)

    Barbarella, E.; Allix, O.; Daghia, F.; Lamon, J.; Jollivet, T.

    2016-06-01

    Compressive tests involving buckling are known to be defect sensitive, nevertheless, to our knowledge, no inverse approach has been proposed yet to use this property for the localization and characterization of material defects. This is due to geometric imperfections, which greatly influence and even dominate the response of defective parts under compression. In comparison with a system lacking geometric imperfections, the modified system does not present any bifurcation, showing that the non-linear progressive response is mainly governed by such imperfections. Before implementing any inverse procedures it is necessary to know whether extracting meaningful material defect information from compressive tests on specimen which also have geometric imperfections is possible. To tackle this issue, an equivalent eigenvalue problem will be extracted from the non-linear response, a problem corrected from geometric imperfections. A dedicated inverse formulation based on the modified constitutive relation error will then be constructed which will involve only well-posed linear problems. Examples illustrate the potential of the methodology to localize and identify single and multiple defects.

  16. Mitochondrial DNA suggests a single maternal origin for the widespread triploid parthenogenetic pest species, Paratanytarsus grimmii, but microsatellite variation shows local endemism

    Institute of Scientific and Technical Information of China (English)

    Melissa Carew; Bryant Gagliardi; Ary A.Hoffmann

    2013-01-01

    Parthenogenesis is common among invasive pest species,with many parthenogenetic species also showing polyploidy.Parthenogenetic polyploid species often have multiple hybrid origins and the potential to rapidly spread over vast geographical areas.In this study,we examine patterns of mitochondrial and microsatellite variation in a widespread triploid parthenogenetic chironomid pest species,Paratanytarsus grimmii.Based on samples from five countries,including Australia,England,Germany,Japan,and Canada,we found extremely low mitochondrial diversity (< 0.14%),with most individuals sharing a common and widespread haplotype.In contrast,microsatellite diversity revealed 41 clonal variants,which were regionally endemic.These findings suggest a single invasive maternal lineage of P.grimmii is likely to have recently spread over a broad geographical range.High levels of genotypic endemism suggest P.grimmii populations have remained relatively isolated after an initial spread,with little ongoing migration.This,in part,can be attributed to rapid genetic differentiation via mutations of common clonal genotypes after P.grimmii spread,but multiple polyploidization and subsequent founder events are also likely to be contributing factors.

  17. Purification and characterization of the plastid-localized NAD-dependent malate dehydrogenase from Arabidopsis thaliana.

    Science.gov (United States)

    An, Yan; Cao, Youzhi; Xu, Yingwu

    2016-07-01

    Malate dehydrogenase (MDH) ubiquitously exists in living organisms and has many isoforms in a single species. MDHs from some classes have been characterized for their catalytic properties, which show significant variations despite that they share high sequence identity for the active sites. One class MDH, the plastid-localized NAD-dependent MDH (plNAD-MDH) is known to be important for plant survival in a dark environment, but its biochemical and enzymatic properties have not been well characterized. This study attempts to fill the gap. plNAD-MDH was expressed in an Escherichia coli system and purified using nickel-affinity chromatography followed by size exclusion chromatography. The N-terminal fusion his-tag was removed by protease cleavage. The gel filtration assay and glutaraldehyde cross-linking results showed that the active enzyme was a homodimer in solution. Further assay indicated that plNAD-MDH is most active at a neutral pH value. The Km values for oxaloacetate and NADH are found in the submillimolar order, a median range for most MDHs. The maximum reaction rate values, however, are dramatically different from other plant MDHs, indicating that plNAD-MDH has different substrate specificity. Moreover, we obtained crystals for this enzyme, which laid the groundwork for further analysis of the enzymatic mechanism from structural stand point. PMID:26095832

  18. Two Examples of Integrated Aquifer Characterization at Local and Regional Scales

    Science.gov (United States)

    Lefebvre, R.; Gloaguen, E.; Rivard, C.; Parent, M.; Morin, R. H.; Pugin, A.; Pullan, S.; Crow, H.; Paradis, D.; Tremblay, L.; Blouin, M.; Laurencelle, M.

    2012-12-01

    An integrated aquifer characterization approach was developed with the aim of efficiently providing detailed data that could be used to develop conceptual hydrogeological models and quantitatively describe the spatial continuity and heterogeneity of unconsolidated sediments. The approach involves the integration of geological, hydraulic, geophysical and geochemical data. The emphasis of the approach is placed on the acquisition of detailed and continuous indirect data and selective soil sampling and direct measurements of hydraulic properties covering the full range of materials present in the system. Direct data are used to establish relations between indirect hydrogeophysical measurements and hydrofacies (HF), which are material types with distinct hydraulic conductivity (K). Surface geophysical surveys are used to provide 1D or 2D definitions of sediment structures and material types. Hydraulic tests are used to define HF and estimate their ranges of K. Groundwater (GW) geochemistry (major, minor, isotopes, GW age) is used to support the definition of conceptual models and to provide constraints on numerical models of GW flow and transport (mass and GW age). The approach relies on the geostatistical integration of multi-source data to define aquifer boundaries, on the recognition of HF and estimation of K from CPT/SMR data using fuzzy clustering and relevant vector machines for HF classification and K regression, on the geostatistical simulation of HF and K to provide the spatial distribution of hydraulic parameters in GW flow and transport models, and on the validation of these models using geochemical data. The integrated characterization approach was first developed and tested at local scale for the study of a shallow granular aquifer within a 12 km2 sub-watershed where a former unlined landfill is located. Results are being applied to the assessment of the efficiency of natural attenuation as a site management approach. The integrated characterization

  19. Effects of mitochondrial dysfunction on the immunological properties of microglia

    OpenAIRE

    Ferger Annette I; Campanelli Loretta; Reimer Valentina; Muth Katharina N; Merdian Irma; Ludolph Albert C; Witting Anke

    2010-01-01

    Abstract Background Neurodegenerative diseases are characterized by both mitochondrial dysfunction and activation of microglia, the macrophages of the brain. Here, we investigate the effects of mitochondrial dysfunction on the activation profile of microglial cells. Methods We incubated primary mouse microglia with the mitochondrial toxins 3-nitropropionic acid (3-NP) or rotenone. These mitochondrial toxins are known to induce neurodegeneration in humans and in experimental animals. We charac...

  20. Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties

    Energy Technology Data Exchange (ETDEWEB)

    Tadayyon, Hadi [Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Sadeghi-Naini, Ali; Czarnota, Gregory, E-mail: Gregory.Czarnota@sunnybrook.ca [Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5T 1P5 (Canada); Wirtzfeld, Lauren [Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Wright, Frances C. [Division of Surgical Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada)

    2014-01-15

    Purpose: Tumor grading is an important part of breast cancer diagnosis and currently requires biopsy as its standard. Here, the authors investigate quantitative ultrasound parameters in locally advanced breast cancers that can potentially separate tumors from normal breast tissue and differentiate tumor grades. Methods: Ultrasound images and radiofrequency data from 42 locally advanced breast cancer patients were acquired and analyzed. Parameters related to the linear regression of the power spectrum—midband fit, slope, and 0-MHz-intercept—were determined from breast tumors and normal breast tissues. Mean scatterer spacing was estimated from the spectral autocorrelation, and the effective scatterer diameter and effective acoustic concentration were estimated from the Gaussian form factor. Parametric maps of each quantitative ultrasound parameter were constructed from the gated radiofrequency segments in tumor and normal tissue regions of interest. In addition to the mean values of the parametric maps, higher order statistical features, computed from gray-level co-occurrence matrices were also determined and used for characterization. Finally, linear and quadratic discriminant analyses were performed using combinations of quantitative ultrasound parameters to classify breast tissues. Results: Quantitative ultrasound parameters were found to be statistically different between tumor and normal tissue (p < 0.05). The combination of effective acoustic concentration and mean scatterer spacing could separate tumor from normal tissue with 82% accuracy, while the addition of effective scatterer diameter to the combination did not provide significant improvement (83% accuracy). Furthermore, the two advanced parameters, including effective scatterer diameter and mean scatterer spacing, were found to be statistically differentiating among grade I, II, and III tumors (p = 0.014 for scatterer spacing, p = 0.035 for effective scatterer diameter). The separation of the tumor

  1. Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties

    International Nuclear Information System (INIS)

    Purpose: Tumor grading is an important part of breast cancer diagnosis and currently requires biopsy as its standard. Here, the authors investigate quantitative ultrasound parameters in locally advanced breast cancers that can potentially separate tumors from normal breast tissue and differentiate tumor grades. Methods: Ultrasound images and radiofrequency data from 42 locally advanced breast cancer patients were acquired and analyzed. Parameters related to the linear regression of the power spectrum—midband fit, slope, and 0-MHz-intercept—were determined from breast tumors and normal breast tissues. Mean scatterer spacing was estimated from the spectral autocorrelation, and the effective scatterer diameter and effective acoustic concentration were estimated from the Gaussian form factor. Parametric maps of each quantitative ultrasound parameter were constructed from the gated radiofrequency segments in tumor and normal tissue regions of interest. In addition to the mean values of the parametric maps, higher order statistical features, computed from gray-level co-occurrence matrices were also determined and used for characterization. Finally, linear and quadratic discriminant analyses were performed using combinations of quantitative ultrasound parameters to classify breast tissues. Results: Quantitative ultrasound parameters were found to be statistically different between tumor and normal tissue (p < 0.05). The combination of effective acoustic concentration and mean scatterer spacing could separate tumor from normal tissue with 82% accuracy, while the addition of effective scatterer diameter to the combination did not provide significant improvement (83% accuracy). Furthermore, the two advanced parameters, including effective scatterer diameter and mean scatterer spacing, were found to be statistically differentiating among grade I, II, and III tumors (p = 0.014 for scatterer spacing, p = 0.035 for effective scatterer diameter). The separation of the tumor

  2. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+

    DEFF Research Database (Denmark)

    Venco, Paola; Bonora, Massimo; Giorgi, Carlotta;

    2015-01-01

    Mutations in C19orf12 have been identified in patients affected by Neurodegeneration with Brain Iron Accumulation (NBIA), a clinical entity characterized by iron accumulation in the basal ganglia. By using western blot analysis with specific antibody and confocal studies, we showed that wild-type C...

  3. Drosophila Porin/VDAC affects mitochondrial morphology.

    Directory of Open Access Journals (Sweden)

    Jeehye Park

    Full Text Available Voltage-dependent anion channel (VDAC has been suggested to be a mediator of mitochondrial-dependent cell death induced by Ca(2+ overload, oxidative stress and Bax-Bid activation. To confirm this hypothesis in vivo, we generated and characterized Drosophila VDAC (porin mutants and found that Porin is not required for mitochondrial apoptosis, which is consistent with the previous mouse studies. We also reported a novel physiological role of Porin. Loss of porin resulted in locomotive defects and male sterility. Intriguingly, porin mutants exhibited elongated mitochondria in indirect flight muscle, whereas Porin overexpression produced fragmented mitochondria. Through genetic analysis with the components of mitochondrial fission and fusion, we found that the elongated mitochondria phenotype in porin mutants were suppressed by increased mitochondrial fission, but enhanced by increased mitochondrial fusion. Furthermore, increased mitochondrial fission by Drp1 expression suppressed the flight defects in the porin mutants. Collectively, our study showed that loss of Drosophila Porin results in mitochondrial morphological defects and suggested that the defective mitochondrial function by Porin deficiency affects the mitochondrial remodeling process.

  4. Granular vortices: Identification, characterization and conditions for the localization of deformation

    Science.gov (United States)

    Tordesillas, Antoinette; Pucilowski, Sebastian; Lin, Qun; Peters, John F.; Behringer, Robert P.

    2016-05-01

    We relate the micromechanics of vortex evolution to that of force chain buckling and, on this basis, formulate the conditions for strain localization in a continuum model of dense granular media. Using the traditional bifurcation analysis of shear bands, we show that kinematic vortex fields are in fact solutions to the boundary value problem satisfying null boundary conditions. To establish an empirical basis for our study, we first develop a method to identify the location of the core and boundary of each vortex from a given displacement field in two dimensions. We then employ this method to characterize the residual deformation field (i.e., the deviation of particle motions from the continuum deformation) in a physical experiment and a discrete element simulation of dense granular samples submitted to biaxial compression. Vortices in the failure regime are essentially confined to the shear band. Primary vortices, the clear majority, rotate in the same direction as the shear band; secondary vortices, the so-called wakes, rotate in the opposite direction. Primary vortices align in spatial succession along the central axis of the band; wakes form next to the band boundaries, in between and beside two adjacent primary vortices. Force chain buckling, the governing mechanism for shear bands, is responsible for vortex formation in the failure regime. Vortex dynamics are consistent with stick-slip dynamics. From quiescent conditions of jamming or stick, vortical motions arise from force chain buckling and associated relative particle rotations and sliding; these in turn precipitate intermittent periods of unjamming or slip, evident in the attendant drops in stress ratio and bursts in both kinetic energy and local nonaffine deformation. A kinematic vortex field inside shear bands is proposed that is consistent with the equations of continuum mechanics and the underlying instability of force chain buckling: such a field is periodic with a repeating unit cell comprising a

  5. Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes.

    Science.gov (United States)

    Wada, Jun; Nakatsuka, Atsuko

    2016-06-01

    The mitochondria are involved in active and dynamic processes, such as mitochondrial biogenesis, fission, fusion and mitophagy to maintain mitochondrial and cellular functions. In obesity and type 2 diabetes, impaired oxidation, reduced mitochondrial contents, lowered rates of oxidative phosphorylation and excessive reactive oxygen species (ROS) production have been reported. Mitochondrial biogenesis is regulated by various transcription factors such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and nuclear respiratory factors (NRFs). Mitochondrial fusion is promoted by mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1), while fission is governed by the recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and fission 1 (FIS1). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and PARKIN-dependent mitophagy. This review describes the molecular mechanism of mitochondrial dynamics, its abnormality in diabetes and obesity, and pharmaceuticals targeting mitochondrial biogenesis, fission, fusion and mitophagy. PMID:27339203

  6. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus;

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  7. A Tool for Local Thickness Determination and Grain Boundary Characterization by CTEM and HRTEM Techniques.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Pécz, Béla; Szívós, János; Lábár, János L

    2015-04-01

    A new approach for measurement of local thickness and characterization of grain boundaries is presented. The method is embodied in a software tool that helps to find and set sample orientations useful for high-resolution transmission electron microscopic (HRTEM) examination of grain boundaries in polycrystalline thin films. The novelty is the simultaneous treatment of the two neighboring grains and orienting both grains and the boundary plane simultaneously. The same metric matrix-based formalism is used for all crystal systems. Input into the software tool includes orientation data for the grains in question, which is determined automatically for a large number of grains by the commercial ASTAR program. Grain boundaries suitable for HRTEM examination are automatically identified by our software tool. Individual boundaries are selected manually for detailed HRTEM examination from the automatically identified set. Goniometer settings needed to observe the selected boundary in HRTEM are advised by the software. Operation is demonstrated on examples from cubic and hexagonal crystal systems. PMID:25801740

  8. Characterization of the tight junction protein ZO-2 localized at the nucleus of epithelial cells.

    Science.gov (United States)

    Jaramillo, Blanca Estela; Ponce, Arturo; Moreno, Jacqueline; Betanzos, Abigail; Huerta, Miriam; Lopez-Bayghen, Esther; Gonzalez-Mariscal, Lorenza

    2004-07-01

    ZO-2 is a MAGUK protein that in confluent epithelial sheets localizes at tight junctions (TJ) whereas in sparse cultures accumulates in clusters at the nucleus. Here, we have characterized several nuclear properties of ZO-2. We observe that ZO-2 is present in the nuclear matrix and co-immunoprecipitates with lamin B(1) and actin from the nuclei of sparse cultures. We show that ZO-2 presents several NLS at its amino region, that when deleted, diminish the nuclear import of the ZO-2 amino segment and impair the ability of the region to regulate the transcriptional activity of promoters controlled by AP-1. Several RS repeats are detected in the ZO-2 amino segment, however, their deletion does not preclude the display of a speckled nuclear pattern. ZO-2 displays two putative NES. However, only the second one appears to be functional, as when conjugated to ovalbumin (OV), it is able to translocate this protein from the nucleus to the cytoplasm in a leptomycin B-sensitive way.

  9. Characterization and localization of arginine vasotocin receptors in the brain and kidney of an amphibian

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, S.K.

    1987-01-01

    Because arginine vasotocin (AVT) activates male sexual behaviors in the rough-skinned newt (Taricha granulosa), quantitative autoradiography with radiolabeled arginine vasopressin (/sup 3/H-AVP) was used to localize and characterize putative AVT receptors in the brain of this amphibian. Binding of /sup 3/H-AVP to sites within the medial pallium was saturable, specific, reversible, of high affinity and low capacity. These binding sites appear to represent authentic central nervous system receptors for AVT. Furthermore, ligand specificity for the binding sites in this amphibian differs from that reported for AVP binding sites in rat brains. Dense concentrations of specific binding sites were located in the olfactory nerve as it entered the olfactory bulb within the medial pallium, dorsal pallium, and amygdala pars lateralis of the telencephalon, and in the tegmental region of the medulla. Concentrations of binding sites differed significantly among various brain regions. A comparison of male and female newts collected during the breeding season revealed no sexual dimorphism. These areas may represent site(s) of action where AVT elicits sexual behaviors in male T. granulosa.

  10. Characterization and localization of c-kit and epidermal growth factor receptor in different patterns of adenoid cystic carcinoma

    Directory of Open Access Journals (Sweden)

    Anshi Jain

    2016-01-01

    Conclusions: C-kit and EGFR biomarkers can be used to enhance the characterization of ACC and to determine the localization of dual cell population which could suggest the dual origin of ACC and provides evidence for the new therapeutic strategy in ACC.

  11. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank, E-mail: fkempken@bot.uni-kiel.de

    2013-08-30

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  12. Seismic local site effects characterization in the Andarax River Valley (SE Spain) from ambient seismic noise

    Science.gov (United States)

    Carmona, Enrique; García-Jerez, Antonio; Luzón, Francisco; Sánchez-Martos, Francisco; Sánchez-Sesma, Francisco J.; Piña, José

    2014-05-01

    This work is focused on the characterization of seismic local effects in the Low Andarax River Valley (SE Spain). The Low Andarax River valley is located in an active seismic region, with the higher seismic hazard values in Spain. The landform is composed mainly by sedimentary materials which increase its seismic hazard due to the amplification of the seismic inputs and spectral resonances. We study seismic local effects in the Low Andarax River by analyzing the Horizontal-to-Vertical Spectral Ratio (HVSR) of ambient noise records. The noise data were recorded during two field campaigns in 2012 and 2013. There have been a total of 374 noise measurements with 15 and 30 minutes duration. The acquisition was performed with a Digital Broadband Seismometer Guralp CMG-6TD. The distance between measurements was about 200 meters, covering an area around 40 km2. There have been 6 significant peak frequencies between 0.3 Hz and 5 Hz. It was possible to find interesting areas with similar spectral peaks that coincide with zones with similar microgravimetric anomalies at the alluvial valley. It is also observed a decrease in the frequency peaks from West to East suggesting increased sediment layer. We also compute the soil models at those sites where geotechnical information is available, assuming that the seismic noise is diffuse. We invert the HVSR for these places using horizontally layered models and in the imaginary part the Green functions at the source. It is observed that the S wave velocity inverted models are consistent with the known geotechnical information obtained from drilled boreholes. We identify the elastodynamic properties of the limestone-dolomite materials with a formation of phyllites and quartzite that form the basement of the depression, and those properties of the Miocene and Pliocene detrital deposits (marls, sandy silts, sands and conglomerates) that fill the valley. These results together with the observed resonant frequencies along the Andarax

  13. Remote Sensing-Based Characterization of Settlement Structures for Assessing Local Potential of District Heat

    Directory of Open Access Journals (Sweden)

    Michael Nast

    2011-07-01

    Full Text Available In Europe, heating of houses and commercial areas is one of the major contributors to greenhouse gas emissions. When considering the drastic impact of an increasing emission of greenhouse gases as well as the finiteness of fossil resources, the usage of efficient and renewable energy generation technologies has to be increased. In this context, small-scale heating networks are an important technical component, which enable the efficient and sustainable usage of various heat generation technologies. This paper investigates how the potential of district heating for different settlement structures can be assessed. In particular, we analyze in which way remote sensing and GIS data can assist the planning of optimized heat allocation systems. In order to identify the best suited locations, a spatial model is defined to assess the potential for small district heating networks. Within the spatial model, the local heat demand and the economic costs of the necessary heat allocation infrastructure are compared. Therefore, a first and major step is the detailed characterization of the settlement structure by means of remote sensing data. The method is developed on the basis of a test area in the town of Oberhaching in the South of Germany. The results are validated through detailed in situ data sets and demonstrate that the model facilitates both the calculation of the required input parameters and an accurate assessment of the district heating potential. The described method can be transferred to other investigation areas with a larger spatial extent. The study underlines the range of applications for remote sensing-based analyses with respect to energy-related planning issues.

  14. THE STRUCTURAL CHARACTERIZATION AND LOCALLY SUPPORTED BASES FOR BIVARIATE SUPER SPLINES

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang Xu; Ren-hong Wang

    2004-01-01

    Super splines are bivariate splines defined on triangulations, where the smoothness enforced at the vertices is larger than the smoothness enforced across the edges. In this paper, the smoothness conditions and conformality conditions for super splines are presented.Three locally supported super splines on type-1 triangulation are presented. Moreover, the criteria to select local bases is also given. By using local supported super spline function, avariation-diminishing operator is built. The approximation properties of the operator are also presented.

  15. Mitochondrial targeted β-lapachone induces mitochondrial dysfunction and catastrophic vacuolization in cancer cells.

    Science.gov (United States)

    Ma, Jing; Lim, Chaemin; Sacher, Joshua R; Van Houten, Bennett; Qian, Wei; Wipf, Peter

    2015-11-01

    Mitochondria play important roles in tumor cell physiology and survival by providing energy and metabolites for proliferation and metastasis. As part of their oncogenic status, cancer cells frequently produce increased levels of mitochondrial-generated reactive oxygen species (ROS). However, extensive stimulation of ROS generation in mitochondria has been shown to be able to induce cancer cell death, and is one of the major mechanisms of action of many anticancer agents. We hypothesized that enhancing mitochondrial ROS generation through direct targeting of a ROS generator into mitochondria will exhibit tumor cell selectivity, as well as high efficacy in inducing cancer cell death. We thus synthesized a mitochondrial targeted version of β-lapachone (XJB-Lapachone) based on our XJB mitochondrial targeting platform. We found that the mitochondrial targeted β-lapachone is more efficient in inducing apoptosis compared to unconjugated β-lapachone, and the tumor cell selectivity is maintained. XJB-Lapachone also induced extensive cellular vacuolization and autophagy at a concentration not observed with unconjugated β-lapachone. Through characterization of mitochondrial function we revealed that XJB-Lapachone is indeed more capable of stimulating ROS generation in mitochondria, which led to a dramatic mitochondrial uncoupling and autophagic degradation of mitochondria. Taken together, we have demonstrated that targeting β-lapachone accomplishes higher efficacy through inducing ROS generation directly in mitochondria, resulting in extensive mitochondrial and cellular damage. XJB-Lapachone will thus help to establish a novel platform for the design of next generation mitochondrial targeted ROS generators for cancer therapy.

  16. Data on the characterization of follicle-stimulating hormone monoclonal antibodies and localization in Japanese eel pituitary

    Directory of Open Access Journals (Sweden)

    Dae-Jung Kim

    2016-09-01

    In support of our recent publication, "Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica" [1], it was important to characterize the specificity of eel follicle-stimulating hormone antibodies. Here, the production and ELISA system of these monoclonal antibodies are presented. The affinity-purified monoclonal antibodies specifically detected eel rec-FSH in ELISA and on western blots of rec-FSH produced from CHO cells. Immunohistochemical analysis revealed that FSH staining was specifically localized in the eel pituitary.

  17. On characterizing non-locality and anisotropy for the magnetorotational instability

    DEFF Research Database (Denmark)

    Nauman, Farrukh; Blackman, Eric G.

    2014-01-01

    The extent to which angular momentum transport in accretion discs is primarily local or non-local and what determines this is an important avenue of study for understanding accretion engines. Taking a step along this path, we analyse simulations of the magnetorotational instability (MRI...

  18. Mitochondrial DNA Variants of Respiratory Complex I that Uniquely Characterize Haplogroup T2 Are Associated with Increased Risk of Age-Related Macular Degeneration

    OpenAIRE

    SanGiovanni, John Paul; Arking, Dan E.; Sudha K. Iyengar; Elashoff, Michael; Clemons, Traci E.; Reed, George F.; Henning, Alice K.; Sivakumaran, Theru A; Xu, Xuming; DeWan, Andrew; Agrón, Elvira; Rochtchina, Elena; Carolyn M Sue; Wang, Jie Jin; Mitchell, Paul

    2009-01-01

    Background Age-related macular degeneration (AMD), a chronic neurodegenerative and neovascular retinal disease, is the leading cause of blindness in elderly people of western European origin. While structural and functional alterations in mitochondria (mt) and their metabolites have been implicated in the pathogenesis of chronic neurodegenerative and vascular diseases, the relationship of inherited variants in the mitochondrial genome and mt haplogroup subtypes with advanced AMD has not been ...

  19. Functional characterization of UCP1 in mammalian HEK293 cells excludes mitochondrial uncoupling artefacts and reveals no contribution to basal proton leak.

    Science.gov (United States)

    Jastroch, Martin; Hirschberg, Verena; Klingenspor, Martin

    2012-09-01

    Mechanistic studies on uncoupling proteins (UCPs) not only are important to identify their cellular function but also are pivotal to identify potential drug targets to manipulate mitochondrial energy transduction. So far, functional and comparative studies of uncoupling proteins in their native environment are hampered by different mitochondrial, cellular and genetic backgrounds. Artificial systems such as yeast ectopically expressing UCPs or liposomes with reconstituted UCPs were employed to address crucial mechanistic questions but these systems also produced inconsistencies with results from native mitochondria. We here introduce a novel mammalian cell culture system (Human Embryonic Kidney 293 - HEK293) to study UCP1 function. Stably transfected HEK293 cell lines were derived that contain mouse UCP1 at concentrations comparable to tissue mitochondria. In this cell-based test system UCP1 displays native functional behaviour as it can be activated with fatty acids (palmitate) and inhibited with purine nucleotides guanosine-diphosphate (GDP). The catalytic centre activity of the UCP1 homodimer in HEK293 is comparable to activities in brown adipose tissue supporting functionality of UCP1. Importantly, at higher protein levels than in yeast mitochondria, UCP1 in HEK293 cell mitochondria is fully inhibitable and does not contribute to basal proton conductance, thereby emphasizing the requirement of UCP1 activation for therapeutic purposes. These findings and resulting analysis on UCP1 characteristics demonstrate that the mammalian HEK293 cell system is suitable for mechanistic and comparative functional studies on UCPs and provides a non-confounding mitochondrial, cellular and genetic background.

  20. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India); Godbole, Madan M., E-mail: madangodbole@yahoo.co.in [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India)

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  1. Histopathological characterization of corrosion product associated adverse local tissue reaction in hip implants: a study of 285 cases

    OpenAIRE

    Ricciardi, Benjamin F.; Nocon, Allina A.; Jerabek, Seth A.; Wilner, Gabrielle; Kaplowitz, Elianna; Goldring, Steven R.; Purdue, P Edward; Perino, Giorgio

    2016-01-01

    Background Adverse local tissue reaction (ALTR), characterized by a heterogeneous cellular inflammatory infiltrate and the presence of corrosion products in the periprosthetic soft tissues, has been recognized as a mechanism of failure in total hip replacement (THA). Different histological subtypes may have unique needs for longitudinal clinical follow-up and complication rates after revision arthroplasty. The purpose of this study was to describe the histological patterns observed in the per...

  2. Isoenzyme characterization of Leishmania isolated from human cases with localized cutaneous leishmaniasis from the State of Campeche, Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Canto-Lara, S B; Cardenas-Maruffo, M F; Vargas-Gonzalez, A; Andrade-Narvaez, F

    1998-04-01

    Seventy-five isolates from the State of Campeche, Mexico, an area endemic for localized cutaneous leishmaniasis (LCL), were characterized by isoenzyme markers (glucose phosphate isomerase, mannose phospate isomerase, nucleoside hydrolase, phosphoglucomutase, 6-phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase). Seventy (93.3%) were identified as Leishmania (Leishmania) mexicana and 5 (6.7%) as L. (Viannia) braziliensis. This is the first report of authochthonus human LCL caused by L. (V.) braziliensis in the State of Campeche, Yucatan Peninsula, Mexico. PMID:9574789

  3. Localization and characterization of hydrothermal alteration zones in a geothermal reservoir and their significance for rock mechanics

    OpenAIRE

    Meller, Carola

    2014-01-01

    The present thesis introduces a method to localize hydrothermally altered zones in a crystalline geothermal reservoir. On the basis of synthetic clay content logs, the geomechanical significance of clay zones is demonstrated. It is shown that clay zones reduce the rock strength, thus creating aseismic slips on fractures and affecting the evolution of induced seismicity. The results of the thesis highlight the importance of hydrothermal alteration for hydro-mechanical reservoir characterization.

  4. Miro, MCU, and calcium: bridging our understanding of mitochondrial movement in axons

    Directory of Open Access Journals (Sweden)

    Robert eNiescier

    2013-09-01

    Full Text Available Neurons are extremely polarized structures with long axons and dendrites, which require proper distribution of mitochondria and maintenance of mitochondrial dynamics for neuronal functions and survival. Indeed, recent studies show that various neurological disorders are linked to mitochondrial transport in neurons. Mitochondrial anterograde transport is believed to deliver metabolic energy to synaptic terminals where energy demands are high, while mitochondrial retrograde transport is required to repair or remove damaged mitochondria in axons. It has been suggested that Ca2+ plays a key role in regulating mitochondrial transport by altering the configuration of mitochondrial protein, miro. However, molecular mechanisms that regulate mitochondrial transport in neurons still are not well characterized. In this review, we will discuss the roles of miro in mitochondrial transport and how the recently identified components of the mitochondrial calcium uniporter add to our current model of mitochondrial mobility regulation.

  5. Miro, MCU, and calcium: bridging our understanding of mitochondrial movement in axons.

    Science.gov (United States)

    Niescier, Robert F; Chang, Karen T; Min, Kyung-Tai

    2013-09-10

    Neurons are extremely polarized structures with long axons and dendrites, which require proper distribution of mitochondria and maintenance of mitochondrial dynamics for neuronal functions and survival. Indeed, recent studies show that various neurological disorders are linked to mitochondrial transport in neurons. Mitochondrial anterograde transport is believed to deliver metabolic energy to synaptic terminals where energy demands are high, while mitochondrial retrograde transport is required to repair or remove damaged mitochondria in axons. It has been suggested that Ca(2) (+) plays a key role in regulating mitochondrial transport by altering the configuration of mitochondrial protein, miro. However, molecular mechanisms that regulate mitochondrial transport in neurons still are not well characterized. In this review, we will discuss the roles of miro in mitochondrial transport and how the recently identified components of the mitochondrial calcium uniporter add to our current model of mitochondrial mobility regulation.

  6. Strokes in mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    N V Pizova

    2012-01-01

    Full Text Available It is suggested that mitochondrial diseases might be identified in 22—33% of cryptogenic stroke cases in young subjects. The incidence of mitochondrial disorders in patients with stroke is unknown; it is 0.8 to 7.2% according to the data of some authors. The paper gives data on the prevalence, pathogenesis, and clinical manifestations of mitochondrial diseases, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome (MELAS and insulin-like episodes; myoclonic epilepsy and ragged-red fibers (MERRF syndrome, and Kearns-Sayre syndrome (sporadic multisystem mitochondrial pathology.

  7. Characterization of a nuclear localization signal in the foot-and-mouth disease virus polymerase

    International Nuclear Information System (INIS)

    We have experimentally tested whether the MRKTKLAPT sequence in FMDV 3D protein (residues 16 to 24) can act as a nuclear localization signal (NLS). Mutants with substitutions in two basic residues within this sequence, K18E and K20E, were generated. A decreased nuclear localization was observed in transiently expressed 3D and its precursor 3CD, suggesting a role of K18 and K20 in nuclear targeting. Fusion of MRKTKLAPT to the green fluorescence protein (GFP) increased the nuclear localization of GFP, which was not observed when GFP was fused to the 3D mutated sequences. These results indicate that the sequence MRKTKLAPT can be functionally considered as a NLS. When introduced in a FMDV full length RNA replacements K18E and K20E led to production of revertant viruses that replaced the acidic residues introduced (E) by K, suggesting that the presence of lysins at positions 18 and 20 of 3D is essential for virus multiplication. - Highlights: • The FMDV 3D polymerase contains a nuclear localization signal. • Replacements K18E and K20E decrease nuclear localization of 3D and its precursor 3CD. • Fusion of the MRKTKLAPT 3D motif to GFP increases the nuclear localization of GFP. • Replacements K18E and K20E abolish the ability of MRKTKLAPT to relocate GFP. • RNAs harboring replacements K18E and K20E lead to recovery of revertant FMDVs

  8. Characterization of a nuclear localization signal in the foot-and-mouth disease virus polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Aparicio, Maria Teresa; Rosas, Maria Flora [Centro de Biología Molecular, “Severo Ochoa” (CSIC-UAM), Cantoblanco 28049, Madrid (Spain); Sobrino, Francisco, E-mail: fsobrino@cbm.uam.es [Centro de Biología Molecular, “Severo Ochoa” (CSIC-UAM), Cantoblanco 28049, Madrid (Spain); Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid (Spain)

    2013-09-15

    We have experimentally tested whether the MRKTKLAPT sequence in FMDV 3D protein (residues 16 to 24) can act as a nuclear localization signal (NLS). Mutants with substitutions in two basic residues within this sequence, K18E and K20E, were generated. A decreased nuclear localization was observed in transiently expressed 3D and its precursor 3CD, suggesting a role of K18 and K20 in nuclear targeting. Fusion of MRKTKLAPT to the green fluorescence protein (GFP) increased the nuclear localization of GFP, which was not observed when GFP was fused to the 3D mutated sequences. These results indicate that the sequence MRKTKLAPT can be functionally considered as a NLS. When introduced in a FMDV full length RNA replacements K18E and K20E led to production of revertant viruses that replaced the acidic residues introduced (E) by K, suggesting that the presence of lysins at positions 18 and 20 of 3D is essential for virus multiplication. - Highlights: • The FMDV 3D polymerase contains a nuclear localization signal. • Replacements K18E and K20E decrease nuclear localization of 3D and its precursor 3CD. • Fusion of the MRKTKLAPT 3D motif to GFP increases the nuclear localization of GFP. • Replacements K18E and K20E abolish the ability of MRKTKLAPT to relocate GFP. • RNAs harboring replacements K18E and K20E lead to recovery of revertant FMDVs.

  9. Microstructural characterization of deformation localization at small strains in a neutron-irradiated 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G., E-mail: fieldkg@ornl.gov; Gussev, Maxim N., E-mail: gussevmn@ornl.gov; Busby, Jeremy T., E-mail: busbyjt@ornl.gov

    2014-09-15

    A specific phenomenon – highly localized regions of deformation – was found and investigated at the free surface and near-surface layer of a neutron irradiated AISI 304 stainless steel bend specimen deformed to a maximum surface strain of 0.8%. It was shown that local plastic deformation near the surface might reach significant levels being localized at specific spots even when the maximum free surface strain remains below 1%. The effect was not observed in non-irradiated steel of the same composition at similar strain levels. Cross-sectional EBSD analysis demonstrated that the local misorientation level was highest near the free surface and diminished with increasing depth in these regions. (S)TEM indicated that the local density of dislocation channels might vary up to an order of magnitude. These channels may contain twins or may be twin free depending on grain orientation and local strain levels. BCC-phase (α-martensite) formation associated with channel-grain boundary intersection points was observed using EBSD and STEM in the near-surface layer.

  10. The pseudo-mitochondrial genome influences mistakes in heteroplasmy interpretation

    Directory of Open Access Journals (Sweden)

    Wittock Roy

    2006-07-01

    Full Text Available Abstract Background Nuclear mitochondrial pseudogenes (numts are a potential source of contamination during mitochondrial DNA PCR amplification. This possibility warrants careful experimental design and cautious interpretation of heteroplasmic results. Results Here we report the cloning and sequencing of numts loci, amplified from human tissue and rho-zero (ρ0 cells (control with primers known to amplify the mitochondrial genome. This paper is the first to fully sequence 46 paralogous nuclear DNA fragments that represent the entire mitochondrial genome. This is a surprisingly small number due primarily to the primer sets used in this study, because prior to this, BLAST searches have suggested that nuclear DNA harbors between 400 to 1,500 paralogous mitochondrial DNA fragments. Our results indicate that multiple numts were amplified simultaneously with the mitochondrial genome and increased the load of pseudogene signal in PCR reactions. Further, the entire mitochondrial genome was represented by multiple copies of paralogous nuclear sequences. Conclusion These findings suggest that mitochondrial genome disease-associated biomarkers must be rigorously authenticated to preclude any affiliation with paralogous nuclear pseudogenes. Importantly, the common perception that mitochondrial template "swamps" numts loci precluding detectable amplification, depends on the region of the mitochondrial genome targeted by the PCR reaction and the number of pseudogene loci that may co-amplify. Cloning and relevant sequencing data will facilitate the correct interpretation. This is the first complete, wet-lab characterization of numts that represent the entire mitochondrial genome.

  11. In situ characterization of localized corrosion of stainless steel by scanning electrochemical microscope

    Science.gov (United States)

    Yin, Yuehua; Niu, Lin; Lu, Min; Guo, Weikuan; Chen, Shenhao

    2009-08-01

    Scanning electrochemical microscopy (SECM) area scan measurements have been performed to investigate the localized corrosion of type 304 stainless steel in neutral chloride solution. Variations in the Faradaic current measured at selected tip potential values can be related to changes in the local concentration and electrochemical activities of electroactive species involved in corrosion reactions occurring at the substrate as a function of immersion times of the substrate and polarized currents or potentials applied on the substrate. To further verify the results acquired from cyclic voltammetric experiments, SECM measurements were employed to in situ study the compositions and electrochemical activity distribution profile of the pitting corrosion products of stainless steel. It has been demonstrated that the combination of feedback current mode with generation-collection (G-C) mode of SECM is suitable to elucidate the possible reaction mechanisms and paths involved in the localize corrosion of stainless steel in neutral chloride solution.

  12. Characterization of the Nuclear Localization Signal of High Risk HPV16 E2 Protein

    OpenAIRE

    Klucevsek, Kristin; Wertz, Mary; Lucchi, John; Leszczynski, Anna; Moroianu, Junona

    2006-01-01

    The E2 protein of high risk human papillomavirus type 16 (HPV16) contains an amino-terminal (N) domain, a hinge (H) region and a carboxyl-terminal (C) DNA binding domain. Using enhanced green fluorescent protein (EGFP) fusions with full length E2 and E2 domains in transfection assays in HeLa cells we found that the C domain is responsible for the nuclear localization of E2 in vivo, whereas the N and H domains do not contain additional nuclear localization signals (NLSs). Deletion analysis of ...

  13. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  14. Dynamics of Mitochondrial Transport in Axons.

    Science.gov (United States)

    Niescier, Robert F; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  15. Identification and characterization of a highly variable region in mitochondrial genomes of fusarium species and analysis of power generation from microbial fuel cells

    Science.gov (United States)

    Hamzah, Haider Mousa

    In the microbial fuel cell (MFC) project, power generation from Shewanella oneidensis MR-1 was analyzed looking for a novel system for both energy generation and sustainability. The results suggest the possibility of generating electricity from different organic substances, which include agricultural and industrial by-products. Shewanella oneidensis MR-1 generates usable electrons at 30°C using both submerged and solid state cultures. In the MFC biocathode experiment, most of the CO2 generated at the anodic chamber was converted into bicarbonate due the activity of carbonic anhydrase (CA) of the Gluconobacter sp.33 strain. These findings demonstrate the possibility of generation of electricity while at the same time allowing the biomimetic sequestration of CO2 using bacterial CA. In the mitochondrial genomes project, the filamentous fungal species Fusarium oxysporum was used as a model. This species causes wilt of several important agricultural crops. A previous study revealed that a highly variable region (HVR) in the mitochondrial DNA (mtDNA) of three species of Fusarium contained a large, variable unidentified open reading frame (LV-uORF). Using specific primers for two regions of the LV-uORF, six strains were found to contain the ORF by PCR and database searches identified 18 other strains outside of the Fusarium oxysporum species complex. The LV-uORF was also identified in three isolates of the F. oxysporum species complex. Interestingly, several F. oxysporum isolates lack the LV-uORF and instead contain 13 ORFs in the HVR, nine of which are unidentified. The high GC content and codon usage of the LV-uORF indicate that it did not co-evolve with other mt genes and was horizontally acquired and was introduced to the Fusarium lineage prior to speciation. The nonsynonymous/synonymous (dN/dS) ratio of the LV-uORFs (0.43) suggests it is under purifying selection and the putative polypeptide is predicted to be located in the mitochondrial membrane. Growth assays

  16. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium

    NARCIS (Netherlands)

    Ahmed, M.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated strai

  17. Characterization, subcellular localization and nuclear targeting of casein kinase 2 from Zea mays

    DEFF Research Database (Denmark)

    Peracchia, G; Jensen, A B; Culiáñez-Macià, F A;

    1999-01-01

    by using in-frame fusions of the maize CK2alpha subunit to the reporter gene encoding beta-glucuronidase (GUS) which were assayed in transiently transformed onion epidermal cells. Analysis of chimeric constructs identified one region containing a nuclear localization signal (NLS) that is highly conserved...

  18. Prevalence and clinical characterization of Japanese diabetes mellitus with an A-to-G mutation at nucleotide 3243 of the mitochondrial tRNA{sup Leu (UUR)} gene

    Energy Technology Data Exchange (ETDEWEB)

    Odawara, Masato; Sasaki, Kayoko; Yamashita, Kamejiro [Univ. of Tsukuba (Japan)

    1995-04-01

    An A-to-G mutation at nucleotide position 3243 of the mitochondrial genome has been associated with insulin-dependent diabetes mellitus (IDDM) and with noninsulin-dependent diabetes mellitus (NIDDM) with deafness. We investigated the prevalence of this mutation in Japanese patients with IDDM, NIDDM, and impaired glucose tolerance (IGT) and in nondiabetic control individuals, and we identified it in 3 of 300 patients with NIDDM or IGT (1.0%). None of these individuals had significant sensorineural hearing loss. None of the 94 IDDM or the 115 nondiabetic control subjects was positive for this mutation. Oral glucose tolerance test revealed that a 57-yr-old male with this mutation was rather hyperinsulinemic in the fasting state. The insulin secretion in this patient decreased with age; he did not complain of any hearing disorder, although audiometry revealed a slight elevation of hearing threshold at high frequencies. In conclusion, we found that a mitochondrial gene mutation at nucleotide position 3243 was present in about 1% of NIDDM patients including those patients with IGT. The subtype of diabetes mellitus with this mutation may have a clinical profile similar to that found in patients with NIDDM commonly seen in outpatient clinics. 25 refs., 2 figs., 1 tab.

  19. Characterization and expression of a cDNA, AmphiSDHD,encoding the amphioxus cytochrome b small subunit in mitochondrial succinate-ubiquinone oxidoreductase

    Institute of Scientific and Technical Information of China (English)

    MA Lifang; ZHANG Shicui; ZHUANG Zhimeng; LIU Zhenhui; LI Hongyan; XIA Jianjun

    2005-01-01

    In this study, an amphioxus cDNA, AmphiSDHD, encoding the cytochrome b small subunit in mitochondrial succinate-ubiquinone oxidoreductase, was isolated from the gut cDNA library of amphioxus Branchiostoma belcheri tsingtauense. It is 1429 bp in length, with an open reading frame of 465 bp coding for a protein of 154 amino acids. The deduced protein contains a mitochondrial targeting presequence of 65 amino acids rich in basic residues like arginine and hydroxy residues such as serine and threonine. Alignment of the amino acid sequences of AmphiSDHD and other eukaryotic SDHD proteins showed that AmphiSDHD has three transmembrane segments, and includes two histidine residues in the second transmembrane segment that are the putative binding sites for the heme b molecule. The phylogenetic tree constructed suggests that AmphiSDHD appears more closely related to vertebrate SDHD proteins than invertebrate ones. Northern blotting demonstrated that AmphiSDHD is ubiquitously expressed in amphioxus, being in line with the fact that SDHD is a house-keeping protein.

  20. Characterization of immune cells and cytokine localization in the rat utero-placental unit mid- to late gestation.

    Science.gov (United States)

    Tessier, Daniel R; Raha, Sandeep; Holloway, Alison C; Yockell-Lelièvre, Julien; Tayade, Chandrakant; Gruslin, Andrée

    2015-08-01

    The success of pregnancy is dependent on the precise regulation of the immune response within the utero-placental environment. Rats are beginning to be widely used as a model for human immune-related pregnancy complications. However, our knowledge of immune cells and cytokine localization in the rat utero-placental tissue is limited. The current study aimed to localize the immune cell populations, including uterine natural killer (uNK) cells, neutrophils, and macrophages within the rat utero-placental unit at two crucial gestational ages, gestational days 15.5 and 18.5. In addition, we characterized the distribution of the cytokines TNFα, IFNγ, and IL-10 in the utero-placental regions at both the above-mentioned gestational ages. Our study has demonstrated co-localization TNFα and IFNγ with uNK cells in perivascular regions of the rat mesometrial triangle at both gestational ages. Neutrophils and IL-10-positive cells were localized at the maternal-fetal interface and in the spiral artery lumen of the rat mesometrial triangle at both gestational ages. TNFα and IL-10 demonstrated a temporal change in the localization from GD15.5 to GD18.5, which coincides with the leading edge of trophoblast invasion into the mesometrial triangle. The current study furthers our knowledge of the localization of uterine immune cells and relevant cytokines, and provides a base from which to research the function of these immune cells and cytokines during rat pregnancy as a model to study human immune-related pregnancy complications. PMID:25725501

  1. CHARACTERIZATION OF MUNICIPAL SOLID WASTE, IN KAZAURE LOCAL GOVERNMENT AREA, JIGAWA STATE, NIGERIA

    OpenAIRE

    Abubakar Abdullahi Musa*, Armaya’u Suleiman Labo, Surayya M. Lamido, Sarki Aliyu Salisu, Muhammad Bello Ibrahim, Nura Bello

    2016-01-01

    Municipal solid waste is been one of the greatest challenge facing environmental Protection agencies in most cities of the world. This Paper presents a generation and compositions of municipal solid waste in Kazaure local government Jigawa state, the compositions of municipal solid waste were determined using samples obtained from Central collection situated at Kanti area. However, Kanti landfill received a volume of municipal solid waste from eleven wards of 175.07 m3 in dry season and 182.2...

  2. Characterizing Oxygen Local Environments in Paramagnetic Battery Materials via (17)O NMR and DFT Calculations.

    Science.gov (United States)

    Seymour, Ieuan D; Middlemiss, Derek S; Halat, David M; Trease, Nicole M; Pell, Andrew J; Grey, Clare P

    2016-08-01

    Experimental techniques that probe the local environment around O in paramagnetic Li-ion cathode materials are essential in order to understand the complex phase transformations and O redox processes that can occur during electrochemical delithiation. While Li NMR is a well-established technique for studying the local environment of Li ions in paramagnetic battery materials, the use of (17)O NMR in the same materials has not yet been reported. In this work, we present a combined (17)O NMR and hybrid density functional theory study of the local O environments in Li2MnO3, a model compound for layered Li-ion batteries. After a simple (17)O enrichment procedure, we observed five resonances with large (17)O shifts ascribed to the Fermi contact interaction with directly bonded Mn(4+) ions. The five peaks were separated into two groups with shifts at 1600 to 1950 ppm and 2100 to 2450 ppm, which, with the aid of first-principles calculations, were assigned to the (17)O shifts of environments similar to the 4i and 8j sites in pristine Li2MnO3, respectively. The multiple O environments in each region were ascribed to the presence of stacking faults within the Li2MnO3 structure. From the ratio of the intensities of the different (17)O environments, the percentage of stacking faults was found to be ca. 10%. The methodology for studying (17)O shifts in paramagnetic solids described in this work will be useful for studying the local environments of O in a range of technologically interesting transition metal oxides. PMID:27404908

  3. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    International Nuclear Information System (INIS)

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces

  4. Localization and characterization of brain somatostatin receptors as studied with somatostatin-14 and somatostatin-28 receptor radioautography

    International Nuclear Information System (INIS)

    The localization and characterization of receptors for somatostatin-14 (S-14) and somatostatin-28 (S-28) were studied in the rat brain using the iodinated agonists [Tyr0,D-Trp8]S-14 and [Leu8,D-Trp22,Tyr25]S-28 as tracers. By radioautography, the distribution of receptors for both S-14 and S-28 appeared very similar with high levels of binding in the deep layers of the cortex, the cingulate cortex, the claustrum, the locus coeruleus and most structures of the limbic system. Generally, there was a correlation between the localization of somatostatin receptors and that of immunoreactive somatostatin, as evaluated by immunocytochemistry. However, in some areas, an inverse correlation between receptor and peptide concentrations was observed. (Auth.)

  5. Characterization of subcellular localization and stability of a splice variant of G alphai2

    Directory of Open Access Journals (Sweden)

    Wedegaertner Philip B

    2002-05-01

    Full Text Available Abstract Background Alternative mRNA splicing of αi2, a heterotrimeric G protein α subunit, has been shown to produce an additional protein, termed sαi2. In the sαi2 splice variant, 35 novel amino acids replace the normal C-terminal 24 amino acids of αi2. Whereas αi2 is found predominantly at cellular plasma membranes, sαi2 has been localized to intracellular Golgi membranes, and the unique 35 amino acids of sαi2 have been suggested to constitute a specific targeting signal. Results This paper proposes and examines an alternative hypothesis: disruption of the normal C-terminus of αi2 produces an unstable protein that fails to localize to plasma membranes. sαi2 is poorly expressed upon transfection of cultured cells; however, radiolabeling indicated that αi2 and sαi2 undergo myristoylation, a co-translational modification, equally well suggesting that protein stability rather than translation is affected. Indeed, pulse-chase analysis indicates that sαi2 is more rapidly degraded compared to αi2. Co-expression of βγ rescues PM localization and increases expression of sαi2. In addition, αi2A327S, a mutant previously shown to be unstable and defective in guanine-nucleotide binding, and αi2(1–331, in which the C-terminal 24 amino acids of αi2 are deleted, show a similar pattern of subcellular localization as sαi2 (i.e., intracellular membranes rather than plasma membranes. Finally, sαi2 displays a propensity to localize to potential aggresome-like structures. Conclusions Thus, instead of the novel C-terminus of sαi2 functioning as a specific Golgi targeting signal, the results presented here indicate that the disruption of the normal C-terminus of αi2 causes mislocalization and rapid degradation of sαi2.

  6. Data on the characterization of follicle-stimulating hormone monoclonal antibodies and localization in Japanese eel pituitary.

    Science.gov (United States)

    Kim, Dae-Jung; Park, Chae-Won; Byambaragchaa, Munkhzaya; Kim, Shin-Kwon; Lee, Bae-Ik; Hwang, Hyung-Kyu; Myeong, Jeong-In; Hong, Sun-Mee; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-09-01

    Monoclonal antibodies were generated against recombinant follicle-stimulating hormone (rec-FSH) from Japanese eel Anguilla japonica; rec-FSH was produced in Escherichia coli and purified using Ni-NTA Sepharose column chromatography. In support of our recent publication, "Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica" [1], it was important to characterize the specificity of eel follicle-stimulating hormone antibodies. Here, the production and ELISA system of these monoclonal antibodies are presented. The affinity-purified monoclonal antibodies specifically detected eel rec-FSH in ELISA and on western blots of rec-FSH produced from CHO cells. Immunohistochemical analysis revealed that FSH staining was specifically localized in the eel pituitary. PMID:27331121

  7. A highly conserved Poc1 protein characterized in embryos of the hydrozoan Clytia hemisphaerica: localization and functional studies.

    Directory of Open Access Journals (Sweden)

    Cécile Fourrage

    Full Text Available Poc1 (Protein of Centriole 1 proteins are highly conserved WD40 domain-containing centriole components, well characterized in the alga Chlamydomonas, the ciliated protazoan Tetrahymena, the insect Drosophila and in vertebrate cells including Xenopus and zebrafish embryos. Functions and localizations related to the centriole and ciliary axoneme have been demonstrated for Poc1 in a range of species. The vertebrate Poc1 protein has also been reported to show an additional association with mitochondria, including enrichment in the specialized "germ plasm" region of Xenopus oocytes. We have identified and characterized a highly conserved Poc1 protein in the cnidarian Clytia hemisphaerica. Clytia Poc1 mRNA was found to be strongly expressed in eggs and early embryos, showing a punctate perinuclear localization in young oocytes. Fluorescence-tagged Poc1 proteins expressed in developing embryos showed strong localization to centrioles, including basal bodies. Anti-human Poc1 antibodies decorated mitochondria in Clytia, as reported in human cells, but failed to recognise endogenous or fluorescent-tagged Clytia Poc1. Injection of specific morpholino oligonucleotides into Clytia eggs prior to fertilization to repress Poc1 mRNA translation interfered with cell division from the blastula stage, likely corresponding to when neosynthesis normally takes over from maternally supplied protein. Cell cycle lengthening and arrest were observed, phenotypes consistent with an impaired centriolar biogenesis or function. The specificity of the defects could be demonstrated by injection of synthetic Poc1 mRNA, which restored normal development. We conclude that in Clytia embryos, Poc1 has an essentially centriolar localization and function.

  8. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    OpenAIRE

    Hyun Woo Nho; Yogesh Kalegowda; Hyun-Joon Shin; Tae Hyun Yoon

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC ...

  9. Oxygen Glucose Deprivation in Rat Hippocampal Slice Cultures Results in Alterations in Carnitine Homeostasis and Mitochondrial Dysfunction

    OpenAIRE

    Thomas F. Rau; Qing Lu; Shruti Sharma; Xutong Sun; Gregory Leary; Beckman, Matthew L.; Yali Hou; Wainwright, Mark S; Michael Kavanaugh; Poulsen, David J.; Black, Stephen M.

    2012-01-01

    Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neurop...

  10. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior. This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.

  11. Differential localization and characterization of functional calcitonin gene-related peptide receptors in human subcutaneous arteries

    DEFF Research Database (Denmark)

    Edvinsson, L; Ahnstedt, H; Larsen, R;

    2014-01-01

    Calcitonin gene-related peptide (CGRP) and its receptor are widely distributed within the circulation and the mechanism behind its vasodilation not only differs from one animal species to another but is also dependent on the type and size of vessel. The present study examines the nature of CGRP......-induced vasodilation, characteristics of the CGRP receptor antagonist telcagepant and localization of the key components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) of the CGRP receptor in human subcutaneous arteries....

  12. “PRODUCTION & CHARACTERIZATION OF ALKALINE PROTEASE FROM LOCALLY ISOLATED ALKALIPHILIC BACILLUS SPECIES”

    OpenAIRE

    Afshan Jameel,; Mazharuddin Khan Mohd

    2011-01-01

    In present study 50 bacterial alkaliphilic Bacillus species were isolated from local habitat. Out of fifty, 5 promising isolates were selected for production of protease enzyme. Horikoshi I media was used in production. Production was carried out at different temperatures, different pH and at different substrate concentrations.Maximum production recorded at 400C and at pH- 10 by isolates 3, 4 and 5 and isolates 1 and 2 produce maximum protease at 400C and at pH – 9. Low substrate concentratio...

  13. Functional characterization and localization of a gill-specific claudin isoform in Atlantic salmon

    DEFF Research Database (Denmark)

    Engelund, Morten Buch; Yu, Alan S L; Li, Jiahua;

    2012-01-01

    is associated with remodeling of the epithelium during salinity change. This study investigated localization, protein expression, and function of claudin 30. Confocal microscopy showed that claudin 30 protein was located at cell-cell interfaces in the gill filament in SW- and fresh water (FW)-acclimated salmon...... monolayer to monovalent cations, whereas permeability to chloride was unaffected. Confocal microscopy revealed that claudin 30 was expressed in the lateral membrane, as well as in tight junctions of Madin-Darby canine kidney cells, thereby paralleling the findings in the native gill. This study suggests...

  14. A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging

    DEFF Research Database (Denmark)

    Scheibye-Knudsen, Morten; Scheibye-Alsing, Karsten; Canugovi, Chandrika;

    2013-01-01

    mitochondrial diseases. Based on this we developed a number of qualitative and quantitative measures, enabling us to determine whether a disorder can be characterized as mitochondrial. These included a clustering algorithm, a disease network, a mitochondrial barcode and two scoring algorithms. Using these tools...

  15. Genetic characterization of Kenai brown bears (Ursus arctos): Microsatellite and mitochondrial DNA control region variation in brown bears of the Kenai Peninsula, south central Alaska

    Science.gov (United States)

    Jackson, J.V.; Talbot, S.L.; Farley, S.

    2008-01-01

    We collected data from 20 biparentally inherited microsatellite loci, and nucleotide sequence from the maternally inherited mitochondrial DNA (mtDNA) control region, to determine levels of genetic variation of the brown bears (Ursus arctos L., 1758) of the Kenai Peninsula, south central Alaska. Nuclear genetic variation was similar to that observed in other Alaskan peninsular populations. We detected no significant inbreeding and found no evidence of population substructuring on the Kenai Peninsula. We observed a genetic signature of a bottleneck under the infinite alleles model (IAM), but not under the stepwise mutation model (SMM) or the two-phase model (TPM) of microsatellite mutation. Kenai brown bears have lower levels of mtDNA haplotypic diversity relative to most other brown bear populations in Alaska. ?? 2008 NRC.

  16. Factors affecting characterization and localization of interindividual differences in functional connectivity using MRI.

    Science.gov (United States)

    Airan, Raag D; Vogelstein, Joshua T; Pillai, Jay J; Caffo, Brian; Pekar, James J; Sair, Haris I

    2016-05-01

    Much recent attention has been paid to quantifying anatomic and functional neuroimaging on the individual subject level. For optimal individual subject characterization, specific acquisition and analysis features need to be identified that maximize interindividual variability while concomitantly minimizing intra-subject variability. We delineate the effect of various acquisition parameters (length of acquisition, sampling frequency) and analysis methods (time course extraction, region of interest parcellation, and thresholding of connectivity-derived network graphs) on characterizing individual subject differentiation. We utilize a non-parametric statistical metric that quantifies the degree to which a parameter set allows this individual subject differentiation by both maximizing interindividual variance and minimizing intra-individual variance. We apply this metric to analysis of four publicly available test-retest resting-state fMRI (rs-fMRI) data sets. We find that for the question of maximizing individual differentiation, (i) for increasing sampling, there is a relative tradeoff between increased sampling frequency and increased acquisition time; (ii) for the sizes of the interrogated data sets, only 3-4 min of acquisition time was sufficient to maximally differentiate each subject with an algorithm that utilized no a priori information regarding subject identification; and (iii) brain regions that most contribute to this individual subject characterization lie in the default mode, attention, and executive control networks. These findings may guide optimal rs-fMRI experiment design and may elucidate the neural bases for subject-to-subject differences. Hum Brain Mapp 37:1986-1997, 2016. © 2016 Wiley Periodicals, Inc. PMID:27012314

  17. Characterization and histologic localization of human growth hormone-variant gene expression in the placenta.

    OpenAIRE

    Liebhaber, S A; Urbanek, M; Ray, J.; Tuan, R.S.; Cooke, N E

    1989-01-01

    The human growth hormone-variant (hGH-V) gene is one of five highly similar growth hormone-related genes clustered on the short arm of chromosome 17. Although the pattern of expression of the adjacent normal growth hormone (hGH-N) and chorionic somatomammotropin (hCS) genes in this cluster are well characterized, the expression of the hGH-V gene remains to be defined. In previous studies, we have demonstrated that the hGH-V gene is transcribed in the term placenta and expressed as two alterna...

  18. Characterization of Adenomatous Polyposis Coli Protein Dynamics and Localization at the Centrosome.

    Science.gov (United States)

    Lui, Christina; Mok, Myth T S; Henderson, Beric R

    2016-01-01

    The adenomatous polyposis coli (APC) tumor suppressor is a multifunctional regulator of Wnt signaling and acts as a mobile scaffold at different cellular sites. APC was recently found to stimulate microtubule (MT) growth at the interphase centrosome; however, little is known about its dynamics and localization at this site. To address this, we analysed APC dynamics in fixed and live cells by fluorescence microscopy. In detergent-extracted cells, we discovered that APC was only weakly retained at the centrosome during interphase suggesting a rapid rate of exchange. This was confirmed in living cells by fluorescence recovery after photobleaching (FRAP), which identified two pools of green fluorescent protein (GFP)-APC: a major rapidly exchanging pool (~86%) and minor retained pool (~14%). The dynamic exchange rate of APC was unaffected by C-terminal truncations implicating a targeting role for the N-terminus. Indeed, we mapped centrosome localization to N-terminal armadillo repeat (ARM) domain amino acids 334-625. Interestingly, the rate of APC movement to the centrosome was stimulated by intact MTs, and APC dynamics slowed when MTs were disrupted by nocodazole treatment or knockdown of γ-tubulin. Thus, the rate of APC recycling at the centrosome is enhanced by MT growth, suggesting a positive feedback to stimulate its role in MT growth. PMID:27144584

  19. Identification and characterization of multiple conserved nuclear localization signals within adenovirus E1A

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Kris S.; Cohen, Michael J.; Fonseca, Greg J.; Todorovic, Biljana; King, Cason R. [Department of Microbiology and Immunology, Western University, London Regional Cancer Program, London, ON, Canada N6A 4L6 (Canada); Yousef, Ahmed F. [Department of Chemical and Environmental Engineering, Masdar Institute, Abu Dhabi (United Arab Emirates); Zhang, Zhiying [College of Animal Science and Technologies, Northwest A and F University, Yangling, Shaanxi 712100 (China); Mymryk, Joe S., E-mail: jmymryk@uwo.ca [Department of Microbiology and Immunology, Western University, London Regional Cancer Program, London, ON, Canada N6A 4L6 (Canada); Department of Oncology, Western University, London Regional Cancer Program, London, ON, Canada N6A 4L6 (Canada)

    2014-04-15

    The human adenovirus 5 (HAdV-5) E1A protein has a well defined canonical nuclear localization signal (NLS) located at its C-terminus. We used a genetic assay in the yeast Saccharomyces cerevisiae to demonstrate that the canonical NLS is present and functional in the E1A proteins of each of the six HAdV species. This assay also detects a previously described non-canonical NLS within conserved region 3 and a novel active NLS within the N-terminal/conserved region 1 portion of HAdV-5 E1A. These activities were also present in the E1A proteins of each of the other five HAdV species. These results demonstrate that, despite substantial differences in primary sequence, HAdV E1A proteins are remarkably consistent in that they contain one canonical and two non-canonical NLSs. By utilizing independent mechanisms, these multiple NLSs ensure nuclear localization of E1A in the infected cell. - Highlights: • HAdV E1A uses multiple mechanisms for nuclear import. • We identified an additional non-canonical NLS in the N-terminal/CR1 portion of E1A. • The new NLS does not contact importin-alpha directly. • All NLSs are functionally conserved in the E1A proteins of all 6 HAdV species.

  20. Molecular characterization and physical localization of highly repetitive DNA sequences from Brazilian Alstroemeria species.

    Science.gov (United States)

    Kuipers, A G J; Kamstra, S A; de Jeu, M J; Visser, R G F

    2002-01-01

    Highly repetitive DNA sequences were isolated from genomic DNA libraries of Alstroemeria psittacina and A. inodora. Among the repetitive sequences that were isolated, tandem repeats as well as dispersed repeats could be discerned. The tandem repeats belonged to a family of interlinked Sau3A subfragments with sizes varying from 68-127 bp, and constituted a larger HinfI repeat of approximately 400 bp. Southern hybridization showed a similar molecular organization of the tandem repeats in each of the Brazilian Alstroemeria species tested. None of the repeats hybridized with DNA from Chilean Alstroemeria species, which indicates that they are specific for the Brazilian species. In-situ localization studies revealed the tandem repeats to be localized in clusters on the chromosomes of A. inodora and A. psittacina: distal hybridization sites were found on chromosome arms 2PS, 6PL, 7PS, 7PL and 8PL, interstitial sites on chromosome arms 2PL, 3PL, 4PL and 5PL. The applicability of the tandem repeats for cytogenetic analysis of interspecific hybrids and their role in heterochromatin organization are discussed. PMID:12296521

  1. Improved characterization of local seismicity using the Dubai Seismic Network, United Arab Emirates

    Science.gov (United States)

    Al Khatibi, Eman; Abou Elenean, K. M.; Megahed, A. S.; El-Hussain, I.

    2014-08-01

    In April 2006, Dubai Municipality established a broadband seismological network in Dubai Emirate, United Arab Emirates (UAE). This network was the first seismic network in UAE and consists of four remote seismic stations to observe local and regional seismic activity that may have an effect on Dubai Emirate and the surrounding areas. The network exchanges real-time data with the National Center of Meteorology and Seismology in Abu Dhabi, the Earthquake Monitoring Center in Oman and imports in real-time data from few Global Seismic Network stations, which increases the aperture of the network. In April 2012, Dubai Municipality installed an additional five free-field strong motion stations inside the urban area to estimate and publish real-time ShakeMaps for public and decision makers. Although the local seismic activity from April 2006 to June 2013 reflects low seismic activity with the Emirate, it indicates active tectonics in the relatively aseismic northern Oman Mountains region. A few inland clusters of micro-to-small earthquakes have been identified with the new network. A clear cluster of small-to-moderate earthquakes took place in the eastern part of UAE to the east of Masafi, while two clusters of micro-to-small earthquakes took place at Wadi Nazwa and northern Huwaylat. Focal mechanisms of few well recorded earthquakes in this region indicate normal faulting, generally trending NE in parallel to the transition shear zone between the collision at Zagros and the subduction at the Makran zone.

  2. Characterization of local complex structures in a recurrence plot to improve nonlinear dynamic discriminant analysis

    Science.gov (United States)

    Ding, Hang

    2014-01-01

    Structures in recurrence plots (RPs), preserving the rich information of nonlinear invariants and trajectory characteristics, have been increasingly analyzed in dynamic discrimination studies. The conventional analysis of RPs is mainly focused on quantifying the overall diagonal and vertical line structures through a method, called recurrence quantification analysis (RQA). This study extensively explores the information in RPs by quantifying local complex RP structures. To do this, an approach was developed to analyze the combination of three major RQA variables: determinism, laminarity, and recurrence rate (DLR) in a metawindow moving over a RP. It was then evaluated in two experiments discriminating (1) ideal nonlinear dynamic series emulated from the Lorenz system with different control parameters and (2) data sets of human heart rate regulations with normal sinus rhythms (n = 18) and congestive heart failure (n = 29). Finally, the DLR was compared with seven major RQA variables in terms of discriminatory power, measured by standardized mean difference (DSMD). In the two experiments, DLR resulted in the highest discriminatory power with DSMD = 2.53 and 0.98, respectively, which were 7.41 and 2.09 times the best performance from RQA. The study also revealed that the optimal RP structures for the discriminations were neither typical diagonal structures nor vertical structures. These findings indicate that local complex RP structures contain some rich information unexploited by RQA. Therefore, future research to extensively analyze complex RP structures would potentially improve the effectiveness of the RP analysis in dynamic discrimination studies.

  3. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  4. Mitochondrial oxidative stress causes hyperphosphorylation of tau.

    Directory of Open Access Journals (Sweden)

    Simon Melov

    Full Text Available Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD: tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2 die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576 with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

  5. Local versus field scale soil heterogeneity characterization - a challenge for representative sampling in pollution studies

    Science.gov (United States)

    Kardanpour, Z.; Jacobsen, O. S.; Esbensen, K. H.

    2015-12-01

    This study is a contribution to development of a heterogeneity characterization facility for "next-generation" soil sampling aimed, for example, at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity in quantification of a set of exemplar parameters is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The theory of sampling (TOS) and variographic analysis has been applied to develop a more general fit-for-purpose soil heterogeneity characterization approach. All parameters were assessed in large-scale transect (1-100 m) vs. small-scale (0.1-0.5 m) replication sampling point variability. Variographic profiles of experimental analytical results from a specific well-mixed soil type show that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among other soils types. This study has a significant carrying-over potential for related research areas, e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.

  6. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, T M; Belhage, B;

    2001-01-01

    in cytosolic calcium concentration. The results of this investigation demonstrate that pharmacologically distinct types of voltage dependent calcium channels are differentially localized in cell bodies, neurites and nerve terminals of mouse cortical neurons but that the Q-type calcium channel appears......The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... using the fluorescent calcium chelator fura-2. The types of calcium channels present at the synaptic terminal were determined by the inhibitory action of calcium channel blockers on potassium-induced [3H]GABA release in the same cell preparation. L-, N-, P-, Q- and R-/T-type voltage dependent calcium...

  7. Characterization of nucleocytoplasmic shuttling and intracellular localization signals in Duck Enteritis Virus UL54.

    Science.gov (United States)

    Liu, Chaoyue; Cheng, Anchun; Wang, Mingshu; Chen, Shun; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Sun, Kunfeng; Yang, Qiao; Chen, Xiaoyue

    2016-08-01

    Duck Enteritis virus (DEV) UL54 is a homolog of herpes simplex virus-1 (HSV-1) trafficking protein ICP27, which plays an essential role in infection. In this study, DEV UL54 shuttling between the nucleus and cytoplasm was verified with a heterokaryon assay. One predicted nuclear export sequence (NES) (339-348 aa) was shown to be functional and chromosomal region maintenance 1 (CRM1)-dependent; however, the insensitivity of UL54 to Leptomycin B (LMB) and NES mutation suggests that other mechanisms are responsible for the observed nuclear export. Next, three non-classical nuclear localization sequences (NLSs), referred to as NLS1 (105-122 aa), NLS2 (169-192 aa) and NLS3 (257-274 aa), were identified. Furthermore, a recombinant DEV with the UL54 NLSs deleted (DEV- UL54 mNLSs) was constructed and showed that UL54 NLSs moderately affected DEV growth.

  8. “PRODUCTION & CHARACTERIZATION OF ALKALINE PROTEASE FROM LOCALLY ISOLATED ALKALIPHILIC BACILLUS SPECIES”

    Directory of Open Access Journals (Sweden)

    Afshan Jameel,

    2011-06-01

    Full Text Available In present study 50 bacterial alkaliphilic Bacillus species were isolated from local habitat. Out of fifty, 5 promising isolates were selected for production of protease enzyme. Horikoshi I media was used in production. Production was carried out at different temperatures, different pH and at different substrate concentrations.Maximum production recorded at 400C and at pH- 10 by isolates 3, 4 and 5 and isolates 1 and 2 produce maximum protease at 400C and at pH – 9. Low substrate concentration were favourable for isolates 1, 2 and 3 while high substrate concentration ( higher than 1,2 and 3 were suitable for 4 and 5 isolates in production of protease.

  9. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    International Nuclear Information System (INIS)

    Highlights: ► We report first time that ionizing radiation induces mitochondrial dynamic changes. ► Radiation-induced mitochondrial fission was caused by Drp1 localization. ► We found that radiation causes delayed ROS from mitochondria. ► Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O2·- production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O2·-. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.

  10. Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation

    International Nuclear Information System (INIS)

    Two statistical approaches for linking large-scale atmospheric circulation patterns and daily local rainfall are described and applied to several GCM (general circulation model) climate simulations. The ultimate objective is to simulate local precipitation associated with alternative climates. The index stations are located near the West and East North American coasts. The first method is based on CART analysis (Classification and Regression trees). It finds the classification of observed daily SLR (sea level pressure) fields in weather types that are most strongly associated with the presence/absence of rainfall in a set of index stations. The best results were obtained for winter rainfall for the West Coast, where a set of physically reasonable weather types could be identified, whereas for the East Coast the rainfall process seemed to be spatially less coherent. The GCM simulations were validated against observations in terms of probability of occurrence and survival time of these weather states. Some discrepancies werefound but there was no systematic bias, indicating that this behavior depends on the particular dynamics of each model. This classification method was then used for the generation of daily rainfall time series from the daily SLP fields from historical observation and from the GCM simulations. Whereas the mean rainfall and probability distributions were rather well replicated, the simulated dry periods were in all cases shorter than in the rainfall observations. The second rainfall generator is based on the analog method and uses information on the evolution of the SLP field in several previous days. It was found to perform reasonably well, although some downward bias in the simulated rainfall persistence was still present. Rainfall changes in a 2xCO2 climate were investigated by applying both methods to the output of a greenhouse-gas experiment. The simulated precipitation changes were small. (orig.)

  11. Drosophila melanogaster Hsp22: a mitochondrial small heat shock protein influencing the aging process

    Directory of Open Access Journals (Sweden)

    Genevieve eMorrow

    2015-03-01

    Full Text Available Mitochondria are involved in many key cellular processes and therefore need to rely on good protein quality control (PQC. Three types of mechanisms are in place to insure mitochondrial protein integrity: reactive oxygen species (ROS scavenging by anti-oxidant enzymes, protein folding/degradation by molecular chaperones and proteases and clearance of defective mitochondria by mitophagy. Drosophila melanogaster Hsp22 is part of the molecular chaperone axis of the PQC and is characterized by its intra-mitochondrial localization and preferential expression during aging. As a stress biomarker, the level of its expression during aging has been shown to partially predict the remaining lifespan of flies. Since over-expression of this small heat shock protein (sHSP increases lifespan and resistance to stress, Hsp22 most likely has a positive effect on mitochondrial integrity. Accordingly, Hsp22 has recently been implicated in the mitochondrial unfolding protein response (mtUPR of flies. This review will summarize the key findings on D. melanogaster Hsp22 and emphasis on its links with the aging process.

  12. A Human Mitochondrial Transcription Factor Is Related to RNA Adenine Methyltransferases and Binds S-Adenosylmethionine

    OpenAIRE

    McCulloch, Vicki; Seidel-Rogol, Bonnie L.; Shadel, Gerald S.

    2002-01-01

    A critical step toward understanding mitochondrial genetics and its impact on human disease is to identify and characterize the full complement of nucleus-encoded factors required for mitochondrial gene expression and mitochondrial DNA (mtDNA) replication. Two factors required for transcription initiation from a human mitochondrial promoter are h-mtRNA polymerase and the DNA binding transcription factor, h-mtTFA. However, based on studies in model systems, the existence of a second human mito...

  13. Autism in the Son of a Woman with Mitochondrial Myopathy and Dysautonomia: A Case Report

    OpenAIRE

    Brown, Bradley D; Rais, Theodore

    2015-01-01

    The relationship between autism spectrum disorders and mitochondrial dysfunction, including mitochondrial myopathies and other mitochondrial diseases, is an area of ongoing research. All autism spectrum disorders are known to be heritable, via genetic and/or epigenetic mechanisms, but specific modes of inheritance are not well characterized. Nevertheless, autism spectrum disorders have been linked to many specific genes associated with mitochondrial function, especially to genes involved in m...

  14. Characterizing the local population of star-forming and passive galaxies with analytical models of chemical evolution

    CERN Document Server

    Spitoni, E; Matteucci, F

    2016-01-01

    Analytical models of chemical evolution, including inflow and outflow of gas, are important tools to study how the metal content in galaxies evolves as a function of time. In this work, we present new analytical solutions for the evolution of the gas mass, total mass and metallicity of a galactic system, when a decaying exponential infall rate of gas and galactic winds are assumed. We apply our model to characterize a sample of local star-forming and passive galaxies from the Sloan Digital Sky Survey data, with the aim of reproducing their observed mass-metallicity relation; in this way, we can derive how the two populations of star-forming and passive galaxies differ in their particular distribution of ages, formation time scales, infall masses and mass loading factors. We find that the local passive galaxies are on average older and assembled on shorter typical time-scales than the local star-forming ones; on the other hand, the larger mass star-forming galaxies show generally older ages and longer typical ...

  15. Generation and Characterization of Novel Local and Metastatic Human Neuroblastoma Variants

    Directory of Open Access Journals (Sweden)

    Ido Nevo

    2008-08-01

    Full Text Available Neuroblastoma (NB is the most commonly occurring solid tumor in children. The disease usually arises in the adrenal medulla, and it is characterized by a remarkable heterogeneity in its progression. Most NB patients with an advanced disease have massive bone marrow infiltration at diagnosis. Lung metastasis represents a widely disseminated stage and is typically considered to be a terminal event. Much like other malignancies, NB progression is a complex, multistep process. The expression, function, and significance of the various factors involved in NB progression must be studied in relevant in vivo and in vitro models. Currently, models consisting of metastatic and nonmetastatic cell variants of the same genetic background exist for several types of cancer; however, none exists for NB. In the present study, we describe the generation of a NB metastasis model. SH-SY5Y and MHH-NB-11 NB cells were inoculated orthotopically into the adrenal glands of athymic nude mice. Neuroblastoma cells metastasizing to the lungs were isolated from mice bearing adrenal tumors. Lung metastatic variants were generated by repeated cycles of in vivo passage. Characterization of these variants included cellular morphology and immunophenotyping in vitro, aggressiveness in vivo, and various biologic parameters in vitro. The NB metastatic variant in each model displayed unique properties, and both metastatic variants demonstrated a metastatic phenotype in vivo. These reproducible models of human NB metastasis will serve as an unlimited source of transcriptomic and proteomic material. Such models can facilitate future studies on NB metastasis and the identification of novel NB biomarkers and targets for therapy.

  16. Mitochondrial Dynamics in Diabetes

    OpenAIRE

    Yoon, Yisang; Galloway, Chad A.; Jhun, Bong Sook; Yu, Tianzheng

    2011-01-01

    Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emergin...

  17. The defective expression of gtpbp3 related to tRNA modification alters the mitochondrial function and development of zebrafish.

    Science.gov (United States)

    Chen, Danni; Li, Feng; Yang, Qingxian; Tian, Miao; Zhang, Zengming; Zhang, Qinghai; Chen, Ye; Guan, Min-Xin

    2016-08-01

    Human mitochondrial DNA (mtDNA) mutations have been associated with a wide spectrum of clinical abnormalities. However, nuclear modifier gene(s) modulate the phenotypic expression of pathogenic mtDNA mutations. In our previous investigation, we identified the human GTPBP3 related to mitochondrial tRNA modification, acting as a modifier to influence of deafness-associated mtDNA mutation. Mutations in GTPBP3 have been found to be associated with other human diseases. However, the pathophysiology of GTPBP3-associated disorders is still not fully understood. Here, we reported the generation and characterization of Gtpbp3 depletion zebrafish model using antisense morpholinos. Zebrafish gtpbp3 has three isoforms localized at mitochondria. Zebrafish gtpbp3 is expressed at various embryonic stages and in multiple tissues. In particular, the gtpbp3 was expressed more abundantly in adult zebrafish ovary and testis. The expression of zebrafish gtpbp3 can functionally restore the growth defects caused by the mss1/gtpbp3 mutation in yeast. A marked decrease of mitochondrial ATP generation accompanied by increased levels of apoptosis and reactive oxygen species were observed in gtpbp3 knockdown zebrafish embryos. The Gtpbp3 morphants exhibited defective in embryonic development including bleeding, melenin, oedema and curved tails within 5days post fertilization, as compared with uninjected controls. The co-injection of wild type gtpbp3 mRNA partially rescued these defects in Gtpbp3 morphants. These data suggest that zebrafish Gtpbp3 is a structural and functional homolog of human and yeast GTPBP3. The mitochondrial dysfunction caused by defective Gtpbp3 may alter the embryonic development in the zebrafish. In addition, this zebrafish model of mitochondrial disease may provide unique opportunities for studying defective tRNA modification, mitochondrial biogenesis, and pathophysiology of mitochondrial disorders. PMID:27184967

  18. A local bottom-gate structure with low parasitic capacitance for dielectrophoresis assembly and electrical characterization of suspended nanomaterials

    International Nuclear Information System (INIS)

    A device including a pair of top electrodes and a local gate in the bottom of an SU-8 trench was fabricated on a glass substrate for dielectrophoresis assembly and electrical characterization of suspended nanomaterials. The three terminals were made of gold electrodes and electrically isolated from each other by an air gap. Compared to the widely used global back-gate silicon device, the parasitic capacitance between the three terminals was significantly reduced and an individual gate was assigned to each device. In addition, the spacing from the bottom-gate to either the source or drain was larger than twice the source-drain gap, which guaranteed that the electric field between the source and drain in the dielectrophoresis assembly was not distinguished by the bottom-gate. To prove the feasibility and versatility of the device, a suspended carbon nanotube and graphene film were assembled by dielectrophoresis and characterized successfully. Accordingly, the proposed device holds promise for the electrical characterization of suspended nanomaterials, especially in a high frequency resonator or transistor configuration. (paper)

  19. Characterization and Localization of Citrullinated Proteoglycan Aggrecan in Human Articular Cartilage.

    Directory of Open Access Journals (Sweden)

    Tibor T Glant

    Full Text Available Rheumatoid arthritis (RA is an autoimmune disease of the synovial joints. The autoimmune character of RA is underscored by prominent production of autoantibodies such as those against IgG (rheumatoid factor, and a broad array of joint tissue-specific and other endogenous citrullinated proteins. Anti-citrullinated protein antibodies (ACPA can be detected in the sera and synovial fluids of RA patients and ACPA seropositivity is one of the diagnostic criteria of RA. Studies have demonstrated that RA T cells respond to citrullinated peptides (epitopes of proteoglycan (PG aggrecan, which is one of the most abundant macromolecules of articular cartilage. However, it is not known if the PG molecule is citrullinated in vivo in human cartilage, and if so, whether citrulline-containing neoepitopes of PG (CitPG can contribute to autoimmunity in RA.CitPG was detected in human cartilage extracts using ACPA+ RA sera in dot blot and Western blot. Citrullination status of in vitro citrullinated recombinant G1 domain of human PG (rhG1 was confirmed by antibody-based and chemical methods, and potential sites of citrullination in rhG1 were explored by molecular modeling. CitPG-specific serum autoantibodies were quantified by enzyme-linked immunosorbent assays, and CitPG was localized in osteoarthritic (OA and RA cartilage using immunohistochemistry.Sera from ACPA+ RA patients reacted with PG purified from normal human cartilage specimens. PG fragments (mainly those containing the G1 domain from OA or RA cartilage extracts were recognized by ACPA+ sera but not by serum from ACPA- individuals. ACPA+ sera also reacted with in vitro citrullinated rhG1 and G3 domain-containing fragment(s of PG. Molecular modeling suggested multiple sites of potential citrullination within the G1 domain. The immunohistochemical localization of CitPG was different in OA and RA cartilage.CitPG is a new member of citrullinated proteins identified in human joints. CitPG could be found in

  20. Defects of mitochondrial DNA replication.

    Science.gov (United States)

    Copeland, William C

    2014-09-01

    Mitochondrial DNA is replicated by DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single-stranded DNA binding protein, topoisomerase, and initiating factors. Defects in mitochondrial DNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mitochondrial DNA deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mitochondrial DNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mitochondrial DNA deletion disorders, such as progressive external ophthalmoplegia, ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy. This review focuses on our current knowledge of genetic defects of mitochondrial DNA replication (POLG, POLG2, C10orf2, and MGME1) that cause instability of mitochondrial DNA and mitochondrial disease.

  1. Characterization of local thermodynamic equilibrium in a laser-induced aluminum alloy plasma.

    Science.gov (United States)

    Zhang, Yong; Zhao, Zhenyang; Xu, Tao; Niu, GuangHui; Liu, Ying; Duan, Yixiang

    2016-04-01

    The electron temperature was evaluated using the line-to-continuum ratio method, and whether the plasma was close to the local thermodynamic equilibrium (LTE) state was investigated in detail. The results showed that approximately 5 μs after the plasma formed, the changes in the electron and excitation temperatures, which were determined using a Boltzmann plot, overlapped in the 15% error range, which indicated that the LTE state was reached. The recombination of electrons and ions and the free electron expansion process led to the deviation from the LTE state. The plasma's expansion rate slowed over time, and when the expansion time was close to the ionization equilibrium time, the LTE state was almost reached. The McWhirter criterion was adopted to calculate the threshold electron density for different species, and the results showed that experimental electron density was greater than the threshold electron density, which meant that the LTE state may have existed. However, for the nonmetal element N, the threshold electron density was greater than the value experimental value approximately 0.8 μs after the plasma formed, which meant that LTE state did not exist for N.

  2. Characterization of Bacillus cereus isolates from local dairy farms in China.

    Science.gov (United States)

    Cui, Yifang; Liu, Xiaoye; Dietrich, Richard; Märtlbauer, Erwin; Cao, Jie; Ding, Shuangyang; Zhu, Kui

    2016-06-01

    Bacillus cereus is an important opportunistic foodborne pathogen. In the present work, a total of 306 milk and environmental samples were collected from 10 local dairy farms in Beijing, China. Of the 92 B. cereus-like isolates, 88 and 4 belonged to B. cereus and B. thuringiensis, respectively. The prevalence of B. cereus isolates in bedding, feces, feed, liquid manure and raw milk was 93.3%, 78.9%, 41.2%, 100.0% and 9.8%, respectively. Three main toxin genes nhe, hbl and ces were detected with rates of 100.0%, 78.3% and 1.1%, but no strain harbored cytK1 The production of Nhe, Hbl and cereulide could be confirmed by specific monoclonal antibodies-based enzyme immunoassays in 94.6%, 70.7% and 1.1% of all isolates, respectively. Cytotoxicity tests were used to further corroborate the results of genetic and protein-based assays; 91.3% of the isolates showed cytotoxicity to Vero cells. All isolates were tested for antimicrobial resistance against 17 antibiotics. All isolates were resistant to lincomycin, retapamulin, tiamulin and valnemulin, while two strains were susceptible to ampicillin and ceftiofur. A total of 16 isolated strains were resistant to tetracycline. Since spores of B. cereus are not inactivated during manufacturing of most milk products, contamination of milk with B. cereus on the farm level may represent a potential hazard, particularly with respect to emetic toxin-producing strains.

  3. Single spore isolation and morphological characterization of local Malaysian isolates of rice blast fungus Magnoporthe grisea

    Science.gov (United States)

    Mishra, Ankitta; Ratnam, Wickneswari; Bhuiyan, Md Atiqur Rahman; Ponaya, Ariane; Jena, Khisord K.

    2015-09-01

    Rice blast is a destructive disease, caused by the fungal pathogen Magnaporthe grisea. It causes considerable damage to rice and leads to crop loss in rice growing regions worldwide. Although fungicides can be used to control rice blast, they generate additional cost in rice production and contamination of environment and food. Therefore, the use of resistant varieties is thought to be one of the most economically and environmentally efficient ways of crop protection from the disease. Six new local Malaysian isolates of M. grisea were isolated using single spore isolation method. Five isolates were from infected leaf samples collected from Kompleks Latihan MADA, Kedah and one was from Kelantan. These isolates were identified using morphological characteristics and microscopic studies and later confirmed by ITSequences. These isolates were induced to sporulate and used for greenhouse screening on two differential rice varieties: Mahsuri (susceptible) and Pongsu Seribu 2 (resistant). Among the 6 isolates, isolate number 3 was found to be the most virulent showing high sporulation while isolate number 4 was very slow growing, and the least virulent.

  4. Molecular characterization of Wolbachia infection in bed bugs (Cimex lectularius collected from several localities in France

    Directory of Open Access Journals (Sweden)

    Akhoundi Mohammad

    2016-01-01

    Full Text Available Wolbachia symbionts are maternally inherited intracellular bacteria that have been detected in numerous insects including bed bugs. The objective of this study, the first epidemiological study in Europe, was to screen Wolbachia infection among Cimex lectularius collected in the field, using PCR targeting the surface protein gene (wsp, and to compare obtained Wolbachia strains with those reported from laboratory colonies of C. lectularius as well as other Wolbachia groups. For this purpose, 284 bed bug specimens were caught and studied from eight different regions of France including the suburbs of Paris, Bouches-du-Rhône, Lot-et-Garonne, and five localities in Alpes-Maritimes. Among the samples, 166 were adults and the remaining 118 were considered nymphs. In all, 47 out of 118 nymphs (40% and 61 out of 166 adults (37% were found positive on wsp screening. Among the positive cases, 10 samples were selected randomly for sequencing. The sequences had 100% homology with wsp sequences belonging to the F-supergroup strains of Wolbachia. Therefore, we confirm the similarity of Wolbachia strains detected in this epidemiological study to Wolbachia spp. reported from laboratory colonies of C. lectularius.

  5. Production and characterization of violacein by locally isolated Chromobacterium violaceum grown in agricultural wastes.

    Science.gov (United States)

    Ahmad, Wan Azlina; Yusof, Nur Zulaikha; Nordin, Nordiana; Zakaria, Zainul Akmar; Rezali, Mohd Fazlin

    2012-07-01

    The present work highlighted the production of violacein by the locally isolated Chromobacterium violaceum (GenBank accession no. HM132057) in various agricultural waste materials (sugarcane bagasse, solid pineapple waste, molasses, brown sugar), as an alternative to the conventional rich medium. The highest yield for pigment production (0.82 g L⁻¹) was obtained using free cells when grown in 3 g of sugarcane bagasse supplemented with 10% (v/v) of L-tryptophan. A much lower yield (0.15 g L⁻¹) was obtained when the cells were grown either in rich medium (nutrient broth) or immobilized onto sugarcane bagasse. Violacein showed similar chemical properties as other natural pigments based on the UV-Vis, Fourier transform infrared spectroscopy, thin-layer chromatography, nuclear magnetic resonance, and mass spectrometry analysis. The pigment is highly soluble in acetone and methanol, insoluble in water or non-polar organic solvents, and showed good stability between pH 5-9, 25-100 °C, in the presence of light metal ions and oxidant such as H₂O₂. However, violacein would be slowly degraded upon exposure to light. This is the first report on the use of cheap and easily available agricultural wastes as growth medium for violacein-producing C. violaceum.

  6. Molecular characterization of Wolbachia infection in bed bugs (Cimex lectularius) collected from several localities in France.

    Science.gov (United States)

    Akhoundi, Mohammad; Cannet, Arnaud; Loubatier, Céline; Berenger, Jean-Michel; Izri, Arezki; Marty, Pierre; Delaunay, Pascal

    2016-01-01

    Wolbachia symbionts are maternally inherited intracellular bacteria that have been detected in numerous insects including bed bugs. The objective of this study, the first epidemiological study in Europe, was to screen Wolbachia infection among Cimex lectularius collected in the field, using PCR targeting the surface protein gene (wsp), and to compare obtained Wolbachia strains with those reported from laboratory colonies of C. lectularius as well as other Wolbachia groups. For this purpose, 284 bed bug specimens were caught and studied from eight different regions of France including the suburbs of Paris, Bouches-du-Rhône, Lot-et-Garonne, and five localities in Alpes-Maritimes. Among the samples, 166 were adults and the remaining 118 were considered nymphs. In all, 47 out of 118 nymphs (40%) and 61 out of 166 adults (37%) were found positive on wsp screening. Among the positive cases, 10 samples were selected randomly for sequencing. The sequences had 100% homology with wsp sequences belonging to the F-supergroup strains of Wolbachia. Therefore, we confirm the similarity of Wolbachia strains detected in this epidemiological study to Wolbachia spp. reported from laboratory colonies of C. lectularius. PMID:27492563

  7. Small scale production and characterization of xanthan gum synthesized by local isolates of Xanthomonas campestris.

    Science.gov (United States)

    Barua, Rajesh; Alam, Md Jahangir; Salim, Mohammad; Ashrafee, Tamzida Shamim

    2016-02-01

    Xanthan gum is a commercially important microbial exopolysaccharide (EPS) produced by Xanthomonas campestris. X. campestris is a plant pathogen causing various plant diseases such as black rot of crucifers, bacterial leaf blight and citrus canker disease resulting in crop damage. In this study, we isolated efficient local bacterial isolates which are capable to produce xanthan gum utilizing different sources of carbon (maltose, sucrose and glucose). Bacterial isolates from different plant leaves and fruits were identified as Xanthomonas campestris based on their morphological and biochemical characteristics. Among the 23 isolates, 70% were capable of producing gum. Taro plant, considered as new bacterial host, also have the capability to produce xanthan gum. Production conditions of xanthan gum and their relative viscosity by these bacterial isolates were optimized using basal medium containing commercial carbon and nitrogen sources and various temperature and rotation. Highest level of xanthan gum (18.286 g/l) with relative viscosity (7.2) was produced (Host, Citrus macroptera) at 28 degrees C, pH 7.0, 150 rpm using sucrose as a carbon source at orbital shaker. Whereas, in lab fermenter, same conditions gave best result (19.587 g/l gum) with 7.8 relative viscosity. Chilled alcohol (96%) was used to recover the xanthan gum. FTIR studies also carried out for further confirmation of compatibility by detecting the chemical groups. PMID:26934783

  8. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes

    Directory of Open Access Journals (Sweden)

    Ya-Wen eLu

    2015-02-01

    Full Text Available The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step towards delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: 1 oxidative phosphorylation (subunits and assembly factors; 2 mitochondrial DNA maintenance and expression; 3 mitochondrial protein import and assembly; 4 mitochondrial quality control (chaperones and proteases; 5 iron-sulfur cluster homeostasis; and 6 mitochondrial dynamics (fission and fusion. Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.

  9. Characterization and autoradiographic localization of multiple tachykinin binding sites in gastrointestinal tract and bladder

    Energy Technology Data Exchange (ETDEWEB)

    Burcher, E.; Buck, S.H.; Lovenberg, W.; O' Donohue, T.L.

    1986-03-01

    Binding sites for the (125I)Bolton-Hunter-labeled tachykinins substance K (BHSK), eledoisin (BHE) and substance P (BHSP) were investigated using crude membrane suspensions and autoradiography. In smooth muscle membranes from guinea-pig small intestine and rat duodenum, specific binding of BHSK was saturable and reversible, showing a single class of sites with a KD of 1 to 3 nM and maximum number of specific binding sites of 1 to 2 fmol/mg of wet weight tissue. Pharmacological characterization of this binding revealed a novel receptor site (K) with affinity for substance K greater than kassinin greater than or equal to eledoisin greater than neuromedin K greater than substance P greater than physalaemin. Inhibition of the binding of BHSK in membranes from mouse urinary bladder exhibited a similar K-type pattern. In rat duodenum and mouse bladder membranes, the binding of BHE was inhibited by substance K greater than kassinin greater than eledoisin greater than neuromedin K greater than substance P greater than physalaemin indicating the same receptor site as for BHSK. In rat cerebral cortex membranes BHE binding was inhibited by neuromedin K = kassinin = eledoisin greater than physalaemin greater than substance K greater than substance P indicating a definitive tachykinin E receptor site. The same displacement pattern of BHE binding was also detected in longitudinal muscle membranes from the guinea-pig small intestine. In mouse bladder membranes and in rat and guinea-pig intestine, the binding of BHSP was inhibited by substance P greater than physalaemin greater than substance K greater than or equal to eledoisin = kassinin greater than neuromedin K indicating a definitive tachykinin P receptor site. Autoradiographic binding sites for both BHSK and BHSP were seen in circular muscle of the rat stomach, small intestine and colon and in circular and longitudinal muscle of the guinea-pig small intestine and colon.

  10. Molecular characterization of a mitochondrial DNA segment from the Japanese scallop (Patinopecten yessoensis): demonstration of a region showing sequence polymorphism in the population.

    Science.gov (United States)

    Sato, M; Nagashima, K

    2001-07-01

    A 1.3-kb mitochondrial DNA segment from the Japanese scallop Patinopecten yessoensis was cloned and sequenced. This segment contained the transfer RNA(Met) gene and partial sequences of 2 ribosomal RNA genes, together with 2 separate noncoding regions (designated NcR1 and NcR2). The NcR regions derived from 78 individuals cultured in Lake Saroma or Matsu Bay, were sequenced, and we found 15 loci with sequence alterations including 13 substitutions, 1 deletion, and 1 insertion (1 locus in NcR1, 14 loci in NcR2), and 17 haplotypes. Of the 17 haplotypes, 10 were found in the Saroma population only, 3 in the Mutsu population only, and 4 in both populations. The gene diversity and nucleotide diversity values were, respectively, 0.87 and 0.0069 for the Saroma population, 0.63 and 0.0040 for the Mutsu population, and 0.83 and 0.0203 overall. Thus the NcR segment was considered to have sufficient sequence variation for population genetic studies. The 16 variants of the NcR2 sequence were separated successfully by denaturing gradient gel electrophoresis, confirming the sequence variation in NcR2. PMID:14961353

  11. Iterative de-convolution of the local waveforms: Characterization of the seismic sources in Kachchh, India

    Science.gov (United States)

    Mandal, Prantik; Satyamurty, C.; Raju, I. P.

    2009-12-01

    The deviatoric and double couple (DC) constrained moment tensor inversions of multiple point sources (10-20 s) for regional (or local) earthquakes, developed by Zahradnik et al. (2005), has been applied on the data of nine significant Bhuj aftershocks of Mw4.4- Mw5.6 recorded at three-component 5-15 accelerograph and 5-11 seismograph stations (epicentral distances < 130 km). The deviatoric moment tensor solutions of events on the north Wagad fault (NWF) in the 15-29 km depth range reveal a systematic depth-wise variation in the faulting patterns. At shallow depth (~ 15 km), they suggest a left lateral strike-slip movement with a minor reverse component along a south dipping plane (~ 61°), whereas, at 18-22 km depth range they change to pure reverse movement on a preferred south dipping plane (10-54°) and finally they change to the normal movement with minor strike-slip (S-S) component at deeper (25-29 km) depth range. The deviatoric MT solution of one event on the south Wagad fault (SWF) suggests a reverse movement with a minor S-S component on a 35° southeast dipping plane at 24 km depth. The deviatoric MT solutions for two events on the Gedi fault reveal a reverse movement with a minor left-lateral strike-slip component on an E-W trending and south dipping (40-61°) plane at 3-4 km depth. Whereas, one event on the Island belt fault (IBF) suggests a right lateral strike slip movement with a normal component on an almost vertical (~ 79°) plane at 29 km depth. The deviatoric moment tensor solutions of all the nine events show a larger (94-99%) double-couple (DC) component at shallow (3-15 km) depth range suggesting domination of brittle failure in the upper crust beneath the Kachchh region. However, the deeper events show larger non-DC (i.e. compensated linear vector dipole, CLVD) component suggesting increase in deviation from the double-couple (DC) solution in the lower crust (15-30 km depth range). This increase in non-DC component could be attributed to the

  12. Involvement of the mitochondrial compartment in human NCL fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Pezzini, Francesco; Gismondi, Floriana [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy); Tessa, Alessandra [IRCCS Fondazione Stella Maris-Molecular Medicine Unit, Pisa (Italy); Tonin, Paola [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy); Carrozzo, Rosalba [IRCCS Bambino Gesu Hospital-Molecular Medicine Unit, Roma (Italy); Mole, Sara E. [MRC Laboratory for Molecular Cell Biology, Molecular Medicines Unit, UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London (United Kingdom); Santorelli, Filippo M. [IRCCS Fondazione Stella Maris-Molecular Medicine Unit, Pisa (Italy); Simonati, Alessandro, E-mail: alessandro.simonati@univr.it [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. Black-Right-Pointing-Pointer Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. Black-Right-Pointing-Pointer Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  13. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite.

    Directory of Open Access Journals (Sweden)

    Rajesh Prasad

    Full Text Available Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4. Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5, suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3 to moderate (KP4 preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease

  14. Effects of mitochondrial dysfunction on the immunological properties of microglia

    Directory of Open Access Journals (Sweden)

    Ferger Annette I

    2010-08-01

    Full Text Available Abstract Background Neurodegenerative diseases are characterized by both mitochondrial dysfunction and activation of microglia, the macrophages of the brain. Here, we investigate the effects of mitochondrial dysfunction on the activation profile of microglial cells. Methods We incubated primary mouse microglia with the mitochondrial toxins 3-nitropropionic acid (3-NP or rotenone. These mitochondrial toxins are known to induce neurodegeneration in humans and in experimental animals. We characterized lipopolysaccharide- (LPS- induced microglial activation and the alternative, interleukin-4- (IL-4- induced microglial activation in these mitochondrial toxin-treated microglial cells. Results We found that, while mitochondrial toxins did not affect LPS-induced activation, as measured by release of tumor necrosis factor α (TNF-α, interleukin-6 (IL-6 and interleukin-1β (IL-1β, they did inhibit part of the IL-4-induced alternative activation, as measured by arginase activity and expression, induction of insulin-like growth factor 1 (IGF-1 and the counteraction of the LPS induced cytokine release. Conclusions Mitochondrial dysfunction in microglial cells inhibits part of the IL-4-induced alternative response. Because this alternative activation is considered to be associated with wound healing and an attenuation of inflammation, mitochondrial dysfunction in microglial cells might contribute to the detrimental effects of neuroinflammation seen in neurodegenerative diseases.

  15. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU.

    Science.gov (United States)

    Shanmughapriya, Santhanam; Rajan, Sudarsan; Hoffman, Nicholas E; Zhang, Xueqian; Guo, Shuchi; Kolesar, Jill E; Hines, Kevin J; Ragheb, Jonathan; Jog, Neelakshi R; Caricchio, Roberto; Baba, Yoshihiro; Zhou, Yandong; Kaufman, Brett A; Cheung, Joseph Y; Kurosaki, Tomohiro; Gill, Donald L; Madesh, Muniswamy

    2015-03-03

    Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+ -permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+ -regulated transcription factor CREB (cyclic adenosine monophosphate response element-binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+ -dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism.

  16. Characterization of plasma jet ejected from a parallel-plate rail gun for simulating edge localized mode

    International Nuclear Information System (INIS)

    Highlights: • A small plasma gun is constructed to study edge localized mode. • A plasma jet ejected from the gun is characterized with a quadruple Langmuir probe. • The device and diagnostics are suitable for research about the control of plasma jet. -- Abstract: A small plasma gun with parallel-plate configuration is fabricated to generate a bunch of plasma which is similar to ELM (edge localized mode) plasma, by taking advantages of its simplicity and cost-effectiveness. Prior to explore how to control the ELM-like plasma so as to relieve heat load on the divertor target, characteristics of a plasma jet ejected from the plasma gun are investigated using a quadruple Langmuir probe which is appropriate for measuring rapidly varying plasma parameters such as electron density, temperature, and ion velocity at the same time. The plasma density and ion velocity measured at 112 mm away from the exit are 3 × 1019 m−3 and 11 km/s, respectively, which seem to be suitable for investigating next step research on the control of ELM-like plasma using various methods such as electromagnetic waves and high-voltage pulses. Also, the quadruple Langmuir probe is proven to be adequate for use in such experiments

  17. Characterization of plasma jet ejected from a parallel-plate rail gun for simulating edge localized mode

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K.S., E-mail: alsk3@snu.ac.kr; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr; Jung, B.K.; Hwang, Y.S., E-mail: yhwang@snu.ac.kr

    2013-10-15

    Highlights: • A small plasma gun is constructed to study edge localized mode. • A plasma jet ejected from the gun is characterized with a quadruple Langmuir probe. • The device and diagnostics are suitable for research about the control of plasma jet. -- Abstract: A small plasma gun with parallel-plate configuration is fabricated to generate a bunch of plasma which is similar to ELM (edge localized mode) plasma, by taking advantages of its simplicity and cost-effectiveness. Prior to explore how to control the ELM-like plasma so as to relieve heat load on the divertor target, characteristics of a plasma jet ejected from the plasma gun are investigated using a quadruple Langmuir probe which is appropriate for measuring rapidly varying plasma parameters such as electron density, temperature, and ion velocity at the same time. The plasma density and ion velocity measured at 112 mm away from the exit are 3 × 10{sup 19} m{sup −3} and 11 km/s, respectively, which seem to be suitable for investigating next step research on the control of ELM-like plasma using various methods such as electromagnetic waves and high-voltage pulses. Also, the quadruple Langmuir probe is proven to be adequate for use in such experiments.

  18. Functional characterization, localization, and inhibitor sensitivity of the TPR-FGFR1 fusion in 8p11 myeloproliferative syndrome.

    Science.gov (United States)

    Malli, Theodora; Buxhofer-Ausch, Veronika; Rammer, Melanie; Erdel, Martin; Kranewitter, Wolfgang; Rumpold, Holger; Marschon, Renate; Deutschbauer, Sabine; Simonitsch-Klupp, Ingrid; Valent, Peter; Muellner-Ammer, Kirsten; Sebesta, Christian; Birkner, Thomas; Webersinke, Gerald

    2016-01-01

    Myeloid and lymphoid neoplasms with fibroblast growth factor receptor 1 (FGFR1) abnormalities, also known as 8p11 myeloproliferative syndrome (EMS), represent rare and aggressive disorders, associated with chromosomal aberrations that lead to the fusion of FGFR1 to different partner genes. We report on a third patient with a fusion of the translocated promoter region (TPR) gene, a component of the nuclear pore complex, to FGFR1 due to a novel ins(1;8)(q25;p11p23). The fact that this fusion is a rare but recurrent event in EMS prompted us to examine the localization and transforming potential of the chimeric protein. TPR-FGFR1 localizes in the cytoplasm, although the nuclear pore localization signal of TPR is retained in the fusion protein. Furthermore, TPR-FGFR1 enables cytokine-independent survival, proliferation, and granulocytic differentiation of the interleukin-3 dependent myeloid progenitor cell line 32Dcl3, reflecting the chronic phase of EMS characterized by myeloid hyperplasia. 32Dcl3 cells transformed with the TPR-FGFR1 fusion and treated with increasing concentrations of the tyrosine kinase inhibitors ponatinib (AP24534) and infigratinib (NVP-BGJ398) displayed reduced survival and proliferation with IC50 values of 49.8 and 7.7 nM, respectively. Ponatinib, a multitargeted tyrosine kinase inhibitor, is already shown to be effective against several FGFR1-fusion kinases. Infigratinib, tested only against FGFR1OP2-FGFR1 to date, is also efficient against TPR-FGFR1. Taking its high specificity for FGFRs into account, infigratinib could be beneficial for EMS patients and should be further investigated for the treatment of myeloproliferative neoplasms with FGFR1 abnormalities.

  19. Generalized non-local surface susceptibility model and Fresnel coefficients for the characterization of periodic metafilms with bianisotropic scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriadis, Alexandros I., E-mail: aldimitr@ee.auth.gr [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kantartzis, Nikolaos V., E-mail: kant@auth.gr [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Tsiboukis, Theodoros D., E-mail: tsibukis@auth.gr [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hafner, Christian, E-mail: hafner@ethz.ch [Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich (Switzerland)

    2015-01-15

    Highlights: •Formulas for E/M fields radiated by continuous surface polarization distributions. •Non-local effective surface susceptibility model for periodic metafilms. •Generalized reflection and transmission coefficients for an arbitrary metafilm. •Successful treatment of non-planar scatterer arrays and spatial dispersion effects. -- Abstract: A non-local surface susceptibility model for the consistent description of periodic metafilms formed by arbitrarily-shaped, electrically-small, bianisotropic scatterers is developed in this paper. The rigorous scheme is based on the point-dipole approximation technique and is valid for any polarization and propagation direction of an electromagnetic wave impinging upon the metafilm, unlike existing approaches whose applicability is practically confined to very specific cases of incidence. Next, the universal form of the resulting surface susceptibility matrix is employed for the derivation of the generalized Fresnel coefficients for such surfaces, which enable the comprehensive interpretation of several significant, yet relatively unexamined, physical interactions. Essentially, these coefficients include eight distinct terms, corresponding to the co-polarized and cross-polarized reflection and transmission coefficients for the two orthogonal eigenpolarizations of a linearly-polarized incident plane wave. The above formulas are, then, utilized for the prediction of the scattering properties of metafilms with different planar and non-planar resonators, which are characterized via the featured model and two previously reported local ones. Their comparison with numerical simulation outcomes substantiates the merits of the proposed method, reveals important aspects of the underlying physics, and highlights the differences between the various modeling procedures.

  20. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy.

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  1. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-04-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties.

  2. Molecular characterization and genetic diversity in an avocado collection of cultivars and local Spanish genotypes using SSRs.

    Science.gov (United States)

    Alcaraz, M L; Hormaza, J I

    2007-12-01

    In this work, 75 avocado accessions maintained in an ex situ germplasm collection at the E.E. la Mayora in Málaga (Spain) were characterized with 16 microsatellites previously developed in this species. This avocado collection includes both local Spanish genotypes obtained through prospection and genotypes obtained by exchange with different countries. A total of 156 different amplification fragments were detected ranging from 4 to 16 per locus with an average of 9.75 alleles per locus. All the microsatellites were highly informative with an expected heterozygosity higher than 0.5 and a probability of identity below 0.36. The total probability of identity was 2.85x10(-14). Fifteen of the 16 loci studied showed a positive Wright's fixation index (F) indicating a deficit of heterozygotes with an average over all the SSRs of 0.18. A dendrogram was generated using UPGMA (unweighted pair group method with arithmetic averages) based on the Nei and Li similarity index. This dendrogram classified most of the genotypes analyzed into three major groups which mainly differed in racial origin although with low bootstrap support probably due to the presence of many interracial hybrids in the collection. All the genotypes studied could be unequivocally distinguished with the combination of SSRs used except some putative mutations of 'Hass' and an additional group of two cultivars. The results obtained indicate that the set of SSRs used is highly informative and are discussed in terms of their implications for avocado germplasm characterization and management.

  3. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  4. Highly selective luminescent nanostructures for mitochondrial imaging and targeting

    Science.gov (United States)

    Fanizza, E.; Iacobazzi, R. M.; Laquintana, V.; Valente, G.; Caliandro, G.; Striccoli, M.; Agostiano, A.; Cutrignelli, A.; Lopedota, A.; Curri, M. L.; Franco, M.; Depalo, N.; Denora, N.

    2016-02-01

    Here a luminescent hybrid nanostructure based on functionalized quantum dots (QDs) is used as a fluorescent imaging agent able to target selectively mitochondria thanks to the molecular recognition of the translocator protein (TSPO). The selective targeting of such an 18 kDa protein mainly located in the outer mitochondrial membrane and overexpressed in several pathological states including neurodegenerative diseases and cancers may provide valuable information for the early diagnosis and therapy of human disorders. In particular, the rational design of amino functionalized luminescent silica coated QD nanoparticles (QD@SiO2 NPs) provides a versatile nanoplatform to anchor a potent and selective TSPO ligand, characterized by a 2-phenyl-imidazo[1,2-a]pyridine acetamide structure along with a derivatizable carboxylic end group, useful to conjugate the TSPO ligand and achieve TSPO-QD@SiO2 NPs by means of a covalent amide bond. The colloidal stability and optical properties of the proposed nanomaterials are comprehensively investigated and their potential as mitochondrial imaging agents is fully assessed. Sub-cellular fractionation, together with confocal laser scanning fluorescence microscopy and co-localization analysis of targeted TSPO-QD@SiO2 NPs in C6 glioma cells overexpressing the TSPO, proves the great potential of these multifunctional nanosystems as in vitro selective mitochondrial imaging agents.Here a luminescent hybrid nanostructure based on functionalized quantum dots (QDs) is used as a fluorescent imaging agent able to target selectively mitochondria thanks to the molecular recognition of the translocator protein (TSPO). The selective targeting of such an 18 kDa protein mainly located in the outer mitochondrial membrane and overexpressed in several pathological states including neurodegenerative diseases and cancers may provide valuable information for the early diagnosis and therapy of human disorders. In particular, the rational design of amino

  5. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar,; Kumari, Neeti [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India); Goyal, Neena, E-mail: neenacdri@yahoo.com [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer The study presents cloning and characterization of TCP1{gamma} gene from L. donovani. Black-Right-Pointing-Pointer TCP1{gamma} is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. Black-Right-Pointing-Pointer LdTCP{gamma} exhibited differential expression in different stages of promastigotes. Black-Right-Pointing-Pointer LdTCP{gamma} co-localized with actin, a cytoskeleton protein. Black-Right-Pointing-Pointer The data suggests that this gene may have a role in differentiation/biogenesis. Black-Right-Pointing-Pointer First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1{gamma}), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1{gamma} of Leishmania donovani (LdTCP1{gamma}), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1{gamma} revealed the presence of all the characteristic features of TCP1{gamma}. However, leishmanial TCP1{gamma} represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1{gamma} exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1{gamma} as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1{gamma} was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1{gamma} with actin suggests

  6. Ubiquitination of specific mitochondrial matrix proteins.

    Science.gov (United States)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G; Ciechanover, Aaron

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems - at least partially - in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. PMID:27157140

  7. Characteristics of Mitochondrial Transformation into Human Cells

    Science.gov (United States)

    Kesner, E. E.; Saada-Reich, A.; Lorberboum-Galski, H.

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process. PMID:27184109

  8. Characteristics of Mitochondrial Transformation into Human Cells.

    Science.gov (United States)

    Kesner, E E; Saada-Reich, A; Lorberboum-Galski, H

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process.

  9. Ubiquitination of specific mitochondrial matrix proteins.

    Science.gov (United States)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G; Ciechanover, Aaron

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems - at least partially - in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins.

  10. Rice-Specific Mitochondrial Iron-Regulated Gene (MIR) Plays an Important Role in Iron Homeostasis

    Institute of Scientific and Technical Information of China (English)

    Yasuhiro Ishimaru; Khurram Bashir; Masaru Fujimoto; Gynheung An; Reiko Nakanishi Itai; Nobuhiro Tsutsumi; Hiromi Nakanishi; Naoko K Nishizawa

    2009-01-01

    Mitochondria utilize iron (Fe), but the proteins involved in mitochondrial Fe regulation are not characterized in plants. We cloned and characterized a mitochondrial iron-regulated (MIR) gene in rice involved in Fe homeostasis. MIP. when expressed in tobacco BY-2 cells, was localized to the mitochondria. MIR transcripts were greatly increased in re-sponse to Fe deficiency in roots and shoot tissue. MIR is not homologous to any known protein, as homologs were not found in the rice or Arabidopsis genome databases, or in the EST database for other organisms. Growth in the MIR T-DNA knockout rice mutant (mir) was significantly impaired compared to wild-type (WT) plants when grown under Fe-deficient or-sufficient conditions. Furthermore, mir plants accumulated more than twice the amount of Fe in shoot and root tissue compared to WT plants when grown under either Fe-sufficient or-deficient conditions. Despite the high accumulation of Fe in roots and shoots, mir plants triggered the expression of Fe-deficiency-inducible genes, indicating that mir may not be able to utilize Fe for physiological functions. These results clearly suggest that MIR is a rice-specific mitochondrial protein, recently evolved, and plays a significant role in Fe homeostasis.

  11. United Mitochondrial Disease Foundation

    Science.gov (United States)

    ... to Mitochondrial Disease FAQ's MitoFirst Handbook More Information Mito 101 Symposium Archives Get Connected Find an Event Adult Advisory Council Team Ask The Mito Doc Grand Rounds Kids & Teens Medical Child Abuse ...

  12. Mitochondrial functions on oocytes and preimplantation embryos

    Institute of Scientific and Technical Information of China (English)

    Li-ya WANG; Da-hui WANG; Xiang-yang ZOU; Chen-ming XU

    2009-01-01

    Oocyte quality has long been considered as a main limiting factor for in vitro fertilization (IVF). In the past decade,extensive observations demonstrated that the mitochondrion plays a vital role in the oocyte cytoplasm, for it can provide adenosine triphosphate (ATP) for fertilization and preimplantation embryo development and also act as stores of intracellular calcium and proapoptotic factors. During the oocyte maturation, mitochondria are characterized by distinct changes of their distribution pattern from being homogeneous to heterogeneous, which is correlated with the cumulus apoptosis. Oocyte quality decreases with the increasing maternal age. Recent studies have shown that low quality oocytes have some age-related dysfunctions, which include the decrease in mitochondrial membrane potential, increase of mitochondrial DNA (mtDNA) damages, chromosomal aneuploidies,the incidence of apoptosis, and changes in mitochondrial gene expression. All these dysfunctions may cause a high level of developmental retardation and arrest of preimplantation embryos. It has been suggested that these mitochondrial changes may arise from excessive reactive oxygen species (ROS) that is closely associated with the oxidative energy production or calcium overload,which may trigger permeability transition pore opening and subsequent apoptosis. Therefore, mitochondria can be seen as signs for oocyte quality evaluation, and it is possible that the oocyte quality can be improved by enhancing the physical function of mitochondria. Here we reviewed recent advances in mitochondrial functions on oocytes.

  13. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.;

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  14. Mitochondrial metabolism and diabetes

    OpenAIRE

    Kwak, Soo Heon; Park, Kyong Soo; Lee, Ki‐Up; Lee, Hong Kyu

    2010-01-01

    Abstract The oversupply of calories and sedentary lifestyle has resulted in a rapid increase of diabetes prevalence worldwide. During the past two decades, lines of evidence suggest that mitochondrial dysfunction plays a key role in the pathophysiology of diabetes. Mitochondria are vital to most of the eukaryotic cells as they provide energy in the form of adenosine triphosphate by oxidative phosphorylation. In addition, mitochondrial function is an integral part of glucose‐stimulated insulin...

  15. Mitochondrial dynamics and apoptosis

    OpenAIRE

    Suen, Der-Fen; Norris, Kristi L.; Youle, Richard J.

    2008-01-01

    In healthy cells, mitochondria continually divide and fuse to form a dynamic interconnecting network. The molecular machinery that mediates this organelle fission and fusion is necessary to maintain mitochondrial integrity, perhaps by facilitating DNA or protein quality control. This network disintegrates during apoptosis at the time of cytochrome c release and prior to caspase activation, yielding more numerous and smaller mitochondria. Recent work shows that proteins involved in mitochondri...

  16. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNAVal mutation

    International Nuclear Information System (INIS)

    Highlights: → We report a young Tunisian patient with clinical features of MELAS syndrome. → Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. → We described a novel m.1640A>G mutation in the tRNAVal gene which was absent in 150 controls. → Mitochondrial deletions and POLG1 gene mutations were absent. → The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNAVal. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  17. Molecular cloning and characterization of a cytoplasmic manganese superoxide dismutase and a mitochondrial manganese superoxide dismutase from Chinese mitten crab Eriocheir sinensis.

    Science.gov (United States)

    Wang, Mengqiang; Wang, Lingling; Yi, Qilin; Gai, Yunchao; Song, Linsheng

    2015-11-01

    Superoxide dismutase (SOD) functions as the first and essential enzyme in the antioxidant system and is ubiquitously existed in both prokaryotes and eukaryotes. In the present study, both cytoplasmic and mitochondrial manganese SOD were identified from Chinese mitten crab Eriocheir sinensis (designed as EscytMnSOD and EsmtMnSOD). The complete nucleotide sequence of EscytMnSOD comprised 1349 bp and consisted of a 5' untranslated regions (UTR) of 43 bp, a 3' UTR of 445 bp and an open reading frame (ORF) of 861 bp encoding a polypeptide of 286 amino acid residues. The full-length cDNA sequence of EsmtMnSOD comprised 990 bp, containing a 5' UTR of 55 bp, a 3' UTR of 278 bp and an ORF of 657 bp encoding a polypeptide of 218 amino acid residues. The deduced amino acid sequences of EscytMnSOD and EsmtMnSOD contained highly conserved MnSOD signature and typical functional domain, and exhibited high similarity with their reported homologues. In the phylogenetic tree, EscytMnSOD and EsmtMnSOD were clustered with their homologues from the land crab Cardisoma armatum. The EscytMnSOD and EsmtMnSOD transcripts were constitutively expressed in haemocytes, muscle, heart, gill, haepatopancreas and gonad, with the highest expression level in gills and haepatopancreas, respectively. The mRNA expression levels of them were all up-regulated in haemocytes with similar profiles after the stimulation of Vibrio anguillarum, Micrococcus luteus and Pichia pastoris. The EsmtMnSOD with low basal expression level responded to invading microbes intensely, while the EscytMnSOD with high basal expression level exhibited mild responses against stimulating microbes. The purified rEscytMnSOD and rEsmtMnSOD proteins exhibited specific Mn(2+)-dependent enzymatic activities, while rEscytMnSOD with lower basic activity displayed higher stability than rEsmtMnSOD. All these results indicated that EscytMnSOD and EsmtMnSOD were efficiently antioxidant enzymes and potentially involved in the innate immune

  18. Mitochondrial transit peptide exhibits cell penetration ability and efficiently delivers macromolecules to mitochondria.

    Science.gov (United States)

    Jain, Aastha; Chugh, Archana

    2016-09-01

    Mitochondrial malfunction under various circumstances can lead to a variety of disorders. Effective targeting of macromolecules (drugs) is important for restoration of mitochondrial function and treatment of related disorders. We have designed a novel cell-penetrating mitochondrial transit peptide (CpMTP) for delivery of macromolecules to mitochondria. Comparison between properties of cell-penetrating peptides (CPPs) and mitochondrial signal sequences enabled prediction of peptides with dual ability for cellular translocation and mitochondrial localization. Among the predicted peptides, CpMTP translocates across HeLa cells and shows successful delivery of noncovalently conjugated cargo molecules to mitochondria. CpMTP may have applications in transduction and transfection of mitochondria for therapeutics.

  19. Neurodegenerative and Fatiguing Illnesses, Infections and Mitochondrial Dysfunction: Use of Natural Supplements to Improve Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Garth L. Nicolson

    2014-01-01

    Full Text Available Background: Many chronic diseases and illnesses are associated with one or more chronic infections, dysfunction of mitochondria and reduced production of ATP. This results in fatigue and other symptoms that occur in most if not all chronic conditions and diseases. Methods: This is a review of the published literature on chronic infections in neurodegenerative diseases and fatiguing illnesses that are also typified by mitochondrial dysfunction. This contribution also reviews the use of natural supplements to enhance mitochondrial function and reduce the effects of chronic infections to improve overall function in various chronic illnesses. Results: Mitochondrial function can be enhanced by the use of various natural supplements, notably Lipid Replacement Therapy (LRT using glyerolphospholipids and other mitochondrial supplements. In various chronic illnesses that are characterized by the presence of chronic infections, such as intracellular bacteria (Mycoplasma, Borrelia, Chlamydia and other infections and viruses, LRT has proven useful in multiple clinical trials. For example, in clinical studies on chronic fatigue syndrome, fibromyalgia syndrome and other chronic fatiguing illnesses where a large majority of patients have chronic infections, LRT significantly reduced fatigue by 35-43% in different clinical trials and increased mitochondrial function. In clinical trials on patients with multiple intracellular bacterial infections and intractable fatigue LRT plus other mitochondrial supplements significantly decreased fatigue and improved mood and cognition. Conclusions: LRT formulations designed to improve mitochondrial function appear to be useful as non-toxic dietary supplements for reducing fatigue and restoring mitochondrial and other cellular membrane functions in patients with chronic illnesses and multiple chronic infections.

  20. Biochemical and structural characterization of an endoplasmic reticulum-localized late embryogenesis abundant (LEA) protein from the liverwort Marchantia polymorpha.

    Science.gov (United States)

    Hatanaka, Rie; Furuki, Takao; Shimizu, Tempei; Takezawa, Daisuke; Kikawada, Takahiro; Sakurai, Minoru; Sugawara, Yasutake

    2014-11-28

    Late embryogenesis abundant (LEA) proteins, which accumulate to high levels in seeds during late maturation, are associated with desiccation tolerance. A member of the LEA protein family was found in cultured cells of the liverwort Marchantia polymorpha; preculture treatment of these cells with 0.5M sucrose medium led to their acquisition of desiccation tolerance. We characterized this preculture-induced LEA protein, designated as MpLEA1. MpLEA1 is predominantly hydrophilic with a few hydrophobic residues that may represent its putative signal peptide. The protein also contains a putative endoplasmic reticulum (ER) retention sequence, HEEL, at the C-terminus. Microscopic observations indicated that GFP-fused MpLEA1 was mainly localized in the ER. The recombinant protein MpLEA1 is intrinsically disordered in solution. On drying, MpLEA1 shifted predominantly toward α-helices from random coils. Such changes in conformation are a typical feature of the group 3 LEA proteins. Recombinant MpLEA1 prevented the aggregation of α-casein during desiccation-rehydration events, suggesting that MpLEA1 exerts anti-aggregation activity against desiccation-sensitive proteins by functioning as a "molecular shield". Moreover, the anti-aggregation activity of MpLEA1 was ten times greater than that of BSA or insect LEA proteins, which are known to prevent aggregation on drying. Here, we show that an ER-localized LEA protein, MpLEA1, possesses biochemical and structural features specific to group 3 LEA proteins. PMID:25450698

  1. MICU1 motifs define mitochondrial calcium uniporter binding and activity.

    Science.gov (United States)

    Hoffman, Nicholas E; Chandramoorthy, Harish C; Shamugapriya, Santhanam; Zhang, Xueqian; Rajan, Sudarsan; Mallilankaraman, Karthik; Gandhirajan, Rajesh Kumar; Vagnozzi, Ronald J; Ferrer, Lucas M; Sreekrishnanilayam, Krishnalatha; Natarajaseenivasan, Kalimuthusamy; Vallem, Sandhya; Force, Thomas; Choi, Eric T; Cheung, Joseph Y; Madesh, Muniswamy

    2013-12-26

    Resting mitochondrial matrix Ca(2+) is maintained through a mitochondrial calcium uptake 1 (MICU1)-established threshold inhibition of mitochondrial calcium uniporter (MCU) activity. It is not known how MICU1 interacts with MCU to establish this Ca(2+) threshold for mitochondrial Ca(2+) uptake and MCU activity. Here, we show that MICU1 localizes to the mitochondrial matrix side of the inner mitochondrial membrane and MICU1/MCU binding is determined by a MICU1 N-terminal polybasic domain and two interacting coiled-coil domains of MCU. Further investigation reveals that MICU1 forms homo-oligomers, and this oligomerization is independent of the polybasic region. However, the polybasic region confers MICU1 oligomeric binding to MCU and controls mitochondrial Ca(2+) current (IMCU). Moreover, MICU1 EF hands regulate MCU channel activity, but do not determine MCU binding. Loss of MICU1 promotes MCU activation leading to oxidative burden and a halt to cell migration. These studies establish a molecular mechanism for MICU1 control of MCU-mediated mitochondrial Ca(2+) accumulation, and dysregulation of this mechanism probably enhances vascular dysfunction.

  2. Cathodoluminescence characterization of quartz grains from the Upper Cretaceous of dinosaur fossil localities in the Gobi desert, Mongolia

    Science.gov (United States)

    Saneyoshi, M.; Nishido, H.; Masuda, R.; Tsogtbaatar, K.; Chinzorig, T.

    2013-12-01

    The Upper Cretaceous eolian sediments in Mongolia's Gobi desert are one of the most important occurrences of the dinosaurs in the world. Large numbers of confiscated dinosaur fossils illegally worked out by poachers has been stored in the Mongolian Paleontological Center at Ulaanbaatar. In most cases, their localities are unknown. The purpose of this study is to identify their localities by cathodoluminescence (CL) features of quartz grains attached to the dinosaur specimens by comparing to the quartz samples collected from the sediments of circumjacent resources in this area. This study focuses on the confiscated specimen which makes up the nest with the babies' Protoceratops. Most of all Protoceratops in every growth process, have been discovered from the Djadokhta Formation in the Gobi desert. This formation crops out at Tugrikin Shireh and Bayn Dzak in the central part of the Gobi desert, and is derived from medium- to fine-grained sand mainly composed of quartz grains, of which sedimentary environments should be obvious to be eolian. The formation age of the sand beds at Tugrikin Shireh and Bayn Dzak has been estimated to be Middle Campanian. CL spectra of quartz have been demonstrated to show different features between the quartz from hydrothermal, plutonic, volcanic and metamorphic origins, suggesting the spectra reflect the condition of the quartz formation and the local environment. Therefore, we have applied the CL characterization of quartz grains to the evaluation of the provenance of the desert sediments. The quartz grains after sieving (#60-80 mesh size) were embedded in the brass holders with non-luminescent epoxy resin, and their surfaces were polished with 1 μm diamond abrasive. Color CL images obtained by the Luminoscope exhibit blue, violet and red emissions in the grains, suggesting various types of emission centers in the quartz. SEM-CL analysis was conducted using an SEM (JSM-5410) combined with a grating monochromator (Mono CL2) to measure

  3. Lattice Wind Description and Characterization of Mexico City Local Wind Events in the 2001–2006 Period

    Directory of Open Access Journals (Sweden)

    Alejandro Salcido

    2015-07-01

    Full Text Available Urban transformation and expansion in Mexico City continuously affect its urban morphology, and therefore the modes of wind circulation inside it and their occurrence probabilities. Knowledge on these topics is an important issue for urban planning and for other urban studies, such as air quality assessment. In this paper, using a lattice wind model at a meso-β scale, we develop a simple description and characterization of Mexico City local wind events that occurred during the period 2001–2006, including an estimation of the occurrence probabilities. This region was modeled as a 2D lattice domain of identical cells, and wind conditions in each cell were described by four wind attributes: the horizontal velocity components, divergence, and vorticity. Models of one and four cells were applied to wind data furnished by the meteorological network of the city. Results include the following: Early morning: low intensity winds (75% from N, NW, W and SW (75%, convergent (93%, with a slight predominance of cyclonic vorticity (54%. Morning and early afternoon: winds from N, NE and E (72% with speeds from 0.5 to 3.5 m/s, slight prevailing of convergent winds (51%, and slight predominance of cyclonic vorticity (57%. Late afternoon and night: winds blowing from N, NW, and S (63% with speeds from 1.5 to 3.5 m/s (66%, convergent (90%, and cyclonic (72%.

  4. Complex patterns of mitochondrial dynamics in human pancreatic cells revealed by fluorescent confocal imaging.

    Science.gov (United States)

    Kuznetsov, Andrey V; Hermann, Martin; Troppmair, Jakob; Margreiter, Raimund; Hengster, Paul

    2010-01-01

    Mitochondrial morphology and intracellular organization are tightly controlled by the processes of mitochondrial fission-fusion. Moreover, mitochondrial movement and redistribution provide a local ATP supply at cellular sites of particular demands. Here we analysed mitochondrial dynamics in isolated primary human pancreatic cells. Using real time confocal microscopy and mitochondria-specific fluorescent probes tetramethylrhodamine methyl ester and MitoTracker Green we documented complex and novel patterns of spatial and temporal organization of mitochondria, mitochondrial morphology and motility. The most commonly observed types of mitochondrial dynamics were (i) fast fission and fusion; (ii) small oscillating movements of the mitochondrial network; (iii) larger movements, including filament extension, retraction, fast (0.1-0.3 mum/sec.) and frequent oscillating (back and forth) branching in the mitochondrial network; (iv) as well as combinations of these actions and (v) long-distance intracellular translocation of single spherical mitochondria or separated mitochondrial filaments with velocity up to 0.5 mum/sec. Moreover, we show here for the first time, a formation of unusual mitochondrial shapes like rings, loops, and astonishingly even knots created from one or more mitochondrial filaments. These data demonstrate the presence of extensive heterogeneity in mitochondrial morphology and dynamics in living cells under primary culture conditions. In summary, this study reports new patterns of morphological changes and dynamic motion of mitochondria in human pancreatic cells, suggesting an important role of integrations of mitochondria with other intracellular structures and systems. PMID:19382913

  5. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function

    Directory of Open Access Journals (Sweden)

    Abou-Rached Charbel

    2008-04-01

    Full Text Available Abstract Background StWhy1, a member of the plant-specific Whirly single-stranded DNA-binding protein family, was first characterized as a transcription factor involved in the activation of the nuclear PR-10a gene following defense-related stress in potato. In Arabidopsis thaliana, Whirlies have recently been shown to be primarily localized in organelles. Two representatives of the family, AtWhy1 and AtWhy3 are imported into plastids while AtWhy2 localizes to mitochondria. Their function in organelles is currently unknown. Results To understand the role of mitochondrial Whirlies in higher plants, we produced A. thaliana lines with altered expression of the atwhy2 gene. Organellar DNA immunoprecipitation experiments demonstrated that AtWhy2 binds to mitochondrial DNA. Overexpression of atwhy2 in plants perturbs mitochondrial function by causing a diminution in transcript levels and mtDNA content which translates into a low activity level of respiratory chain complexes containing mtDNA-encoded subunits. This lowered activity of mitochondria yielded plants that were reduced in size and had distorted leaves that exhibited accelerated senescence. Overexpression of atwhy2 also led to early accumulation of senescence marker transcripts in mature leaves. Inactivation of the atwhy2 gene did not affect plant development and had no detectable effect on mitochondrial morphology, activity of respiratory chain complexes, transcription or the amount of mtDNA present. This lack of phenotype upon abrogation of atwhy2 expression suggests the presence of functional homologues of the Whirlies or the activation of compensating mechanisms in mitochondria. Conclusion AtWhy2 is associated with mtDNA and its overexpression results in the production of dysfunctional mitochondria. This report constitutes the first evidence of a function for the Whirlies in organelles. We propose that they could play a role in the regulation of the gene expression machinery of organelles.

  6. Large-scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity.

    Directory of Open Access Journals (Sweden)

    Saeid Naderi

    Full Text Available BACKGROUND: From the beginning of domestication, the transportation of domestic animals resulted in genetic and demographic processes that explain their present distribution and genetic structure. Thus studying the present genetic diversity helps to better understand the history of domestic species. METHODOLOGY/PRINCIPAL FINDINGS: The genetic diversity of domestic goats has been characterized with 2430 individuals from all over the old world, including 946 new individuals from regions poorly studied until now (mainly the Fertile Crescent. These individuals represented 1540 haplotypes for the HVI segment of the mitochondrial DNA (mtDNA control region. This large-scale study allowed the establishment of a clear nomenclature of the goat maternal haplogroups. Only five of the six previously defined groups of haplotypes were divergent enough to be considered as different haplogroups. Moreover a new mitochondrial group has been localized around the Fertile Crescent. All groups showed very high haplotype diversity. Most of this diversity was distributed among groups and within geographic regions. The weak geographic structure may result from the worldwide distribution of the dominant A haplogroup (more than 90% of the individuals. The large-scale distribution of other haplogroups (except one, may be related to human migration. The recent fragmentation of local goat populations into discrete breeds is not detectable with mitochondrial markers. The estimation of demographic parameters from mismatch analyses showed that all groups had a recent demographic expansion corresponding roughly to the period when domestication took place. But even with a large data set it remains difficult to give relative dates of expansion for different haplogroups because of large confidence intervals. CONCLUSIONS/SIGNIFICANCE: We propose standard criteria for the definition of the different haplogroups based on the result of mismatch analysis and on the use of sequences of

  7. Neurological mitochondrial cytopathies.

    Directory of Open Access Journals (Sweden)

    Mehndiratta M

    2002-04-01

    Full Text Available The mitochondrial cytopathies are genetically and phenotypically heterogeneous group of disorders caused by structural and functional abnormalities in mitochondria. To the best of our knowledge, there are very few studies published from India till date. Selected and confirmed fourteen cases of neurological mitochondrial cytopathies with different clinical syndromes admitted between 1997 and 2000 are being reported. There were 8 male and 6 female patients. The mean age was 24.42+/-11.18 years (range 4-40 years. Twelve patients could be categorized into well-defined syndromes, while two belonged to undefined group. In the defined syndrome categories, three patients had MELAS (mitochondrial encephalopathy, lactic acidosis and stroke like episodes, three had MERRF (myoclonic epilepsy and ragged red fibre myopathy, three cases had KSS (Kearns-Sayre Syndrome and three were diagnosed to be suffering from mitochondrial myopathy. In the uncategorized group, one case presented with paroxysmal kinesogenic dystonia and the other manifested with generalized chorea alone. Serum lactic acid level was significantly increased in all the patients (fasting 28.96+/-4.59 mg%, post exercise 41.02+/-4.93 mg%. Muscle biopsy was done in all cases. Succinic dehydrogenase staining of muscle tissue showed subsarcolemmal accumulation of mitochondria in 12 cases. Mitochondrial DNA study could be performed in one case only and it did not reveal any mutation at nucleotides 3243 and 8344. MRI brain showed multiple infarcts in MELAS, hyperintensities in putaminal areas in chorea and bilateral cerebellar atrophy in MERRF.

  8. Mitochondrial fusion and inheritance of the mitochondrial genome.

    Science.gov (United States)

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion. PMID:20196232

  9. Adult-onset mitochondrial myopathy.

    Science.gov (United States)

    Fernandez-Sola, J.; Casademont, J.; Grau, J. M.; Graus, F.; Cardellach, F.; Pedrol, E.; Urbano-Marquez, A.

    1992-01-01

    Mitochondrial diseases are polymorphic entities which may affect many organs and systems. Skeletal muscle involvement is frequent in the context of systemic mitochondrial disease, but adult-onset pure mitochondrial myopathy appears to be rare. We report 3 patients with progressive skeletal mitochondrial myopathy starting in adult age. In all cases, the proximal myopathy was the only clinical feature. Mitochondrial pathology was confirmed by evidence of ragged-red fibres in muscle histochemistry, an abnormal mitochondrial morphology in electron microscopy and by exclusion of other underlying diseases. No deletions of mitochondrial DNA were found. We emphasize the need to look for a mitochondrial disorder in some non-specific myopathies starting in adult life. Images Figure 1 Figure 2 PMID:1589382

  10. Molecular characterization of brinjal shoot and fruit borer, Leucinodes orbonalis (Guenée) (Lepidoptera: Crambidae) based on mitochondrial marker cytochrome oxidase I and their phylogenetic relationship.

    Science.gov (United States)

    Shashank, P R; Ojha, Rakshit; Venkatesan, T; Jalali, S K; Bhanu, K R M

    2015-01-01

    Shoot and fruit borer, Leucinodes orbonalis is an important insect pest infesting brinjal or eggplant in India. Molecular characterization of nine different populations belonging to various brinjal growing regions was done using Cytochorome C Oxidase I (COI) gene. Nucleotide analysis of genetic diversity and phylogenetic analysis of the COI indicate that the L. orbonalis from different geographical regions are homogenous. The results showed less nucleotide diversity (π = 0.007895) and overall mean distance (0.008 ± 0.003). Topologies of neighbour-joining (NJ) trees indicate all the populations belong to single major clade. Therefore, it is inferred that there was no significant molecular diversity within L. orbonalis of different geographical locations of India with respect to COI. PMID:25675712

  11. Mitochondrial function in normal and diabetic beta-cells

    OpenAIRE

    Maechler, Pierre; Wollheim, Claes

    2001-01-01

    The aetiology of type 2, or non-insulin-dependent, diabetes mellitus has been characterized in only a limited number of cases. Among these, mitochondrial diabetes, a rare subform of the disease, is the consequence of pancreatic beta-cell dysfunction caused by mutations in mitochondrial DNA, which is distinct from the nuclear genome. The impact of such mutations on beta-cell function reflects the importance of mitochondria in the control of insulin secretion. The beta-cell mitochondria serve a...

  12. Cancer: Mitochondrial Origins.

    Science.gov (United States)

    Stefano, George B; Kream, Richard M

    2015-12-01

    The primacy of glucose derived from photosynthesis as an existential source of chemical energy across plant and animal phyla is universally accepted as a core principle in the biological sciences. In mammalian cells, initial processing of glucose to triose phosphate intermediates takes place within the cytosolic glycolytic pathway and terminates with temporal transport of reducing equivalents derived from pyruvate metabolism by membrane-associated respiratory complexes in the mitochondrial matrix. The intra-mitochondrial availability of molecular oxygen as the ultimate electron acceptor drives the evolutionary fashioned chemiosmotic production of ATP as a high-efficiency biological process. The mechanistic bases of carcinogenesis have demonstrated profound alteration of normative mitochondrial function, notably dysregulated respiratory processes. Accordingly, the classic Warburg effect functionally links aerobic glycolysis, aberrant production and release of lactate, and metabolic down-regulation of mitochondrial oxidative processes with the carcinogenetic phenotype. We surmise, however, that aerobic fermentation by cancer cells may also represent a developmental re-emergence of an evolutionarily conserved early phenotype, which was "sidelined" with the emergence of mitochondrial oxidative phosphorylation as a primary mechanism for ATP production in normal cells. Regardless of state-dependent physiological status in mixed populations of cancer cells, it has been established that mitochondria are functionally linked to the initiation of cancer and its progression. Biochemical, molecular, and physiological differences in cancer cell mitochondria, notably mtDNA heteroplasmy and allele-specific expression of selected nuclear genes, may represent major focal points for novel targeting and elimination of cancer cells in metastatic disease afflicting human populations. To date, and despite considerable research efforts, the practical realization of advanced mitochondrial

  13. Mitochondrial calcium uptake.

    Science.gov (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  14. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation.

    Science.gov (United States)

    Münch, Christian; Harper, J Wade

    2016-06-30

    The mitochondrial matrix is unique in that it must integrate the folding and assembly of proteins derived from the nuclear and mitochondrial genomes. In Caenorhabditis elegans, the mitochondrial unfolded protein response (UPRmt) senses matrix protein misfolding and induces a program of nuclear gene expression, including mitochondrial chaperonins, to promote mitochondrial proteostasis. While misfolded mitochondrial-matrix-localized ornithine transcarbamylase induces chaperonin expression, our understanding of mammalian UPRmt is rudimentary, reflecting a lack of acute triggers for UPRmt activation. This limitation has prevented analysis of the cellular responses to matrix protein misfolding and the effects of UPRmt on mitochondrial translation to control protein folding loads. Here we combine pharmacological inhibitors of matrix-localized HSP90/TRAP1 (ref. 8) or LON protease, which promote chaperonin expression, with global transcriptional and proteomic analysis to reveal an extensive and acute response of human cells to UPRmt. This response encompasses widespread induction of nuclear genes, including matrix-localized proteins involved in folding, pre-RNA processing and translation. Functional studies revealed rapid but reversible translation inhibition in mitochondria occurring concurrently with defects in pre-RNA processing caused by transcriptional repression and LON-dependent turnover of the mitochondrial pre-RNA processing nuclease MRPP3 (ref. 10). This study reveals that acute mitochondrial protein folding stress activates both increased chaperone availability within the matrix and reduced matrix-localized protein synthesis through translational inhibition, and provides a framework for further dissection of mammalian UPRmt. PMID:27350246

  15. Characterization of L1 ORF1p self-interaction and cellular localization using a mammalian two-hybrid system.

    Directory of Open Access Journals (Sweden)

    Mark Sokolowski

    Full Text Available Long INterspersed Element-1 (LINE-1, L1 is an active retrotransposon that mobilizes using a ribonucleoprotein particle (RNP intermediate composed of the full-length bicistronic L1 mRNA and the two proteins (ORF1p and ORF2p encoded by that mRNA. ORF1p and ORF2p demonstrate cis-preference for their encoding mRNA. Previous studies of ORF1p, purified from bacterial and insect cells demonstrated that this protein forms trimers in vitro. While valuable for understanding ORF1p function, these in vitro approaches do not provide any information on ORF1p self-interaction in the context of mammalian cells. We used a mammalian two-hybrid (M2H system in order to study L1 ORF1p self-interaction in human and mouse cells. We demonstrate that the M2H system successfully detects human and mouse ORF1p self-interactions in transiently transfected mammalian cells. We also generated mouse and human ORF1p-specific antibodies to characterize the expression of ORF1p fusion proteins used in the M2H system. Using these antibodies, we demonstrate that ORF1p interaction in trans leads to the formation of heterodimers that are expected to produce a positive signal in the M2H system. Although the role for L1 ORF1p cis-preference in L1 mobilization is established, the impact of ability of ORF1pto interact in trans on the L1 replication cycle is not known. Furthermore, western blot analysis of ORF1p generated by a full-length L1, wild type ORF1, or a codon-optimized ORF1 expression vector is detected in the nucleus. In contrast, the addition of a tag to the N-terminus of the mouse and human ORF1 proteins can significantly alter the subcellular localization in a tag-specific manner. These data support that nuclear localization of ORF1p may contribute to L1 (and potentially the SINE Alu RNP nuclear access in the host cell.

  16. The mitochondrial complexome of Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Leonard Muriithi Kiirika

    2013-04-01

    Full Text Available Legumes (Fabaceae, Leguminosae are unique in their ability to carry out an elaborate endosymbiotic nitrogen fixation process with rhizobia proteobacteria. The symbiotic nitrogen fixation enables the host plants to grow almost independently of any other nitrogen source. Establishment of symbiosis requires adaptations of the host cellular metabolism, here foremost of the energy metabolism mainly taking place in mitochondria. Since the early 1990s, the galegoid legume Medicago truncatula Gaertn. is a well-established model for studying legume biology, but little is known about the protein complement of mitochondria from this species. An initial characterization of the mitochondrial proteome of M. truncatula (Jemalong A17 was published recently. In the frame of this study, mitochondrial protein complexes were characterized using 2D BN / SDS PAGE. From 139 detected spots, the "first hit" (= most abundant proteins of 59 spots were identified by mass spectrometry. Here, we present a comprehensive analysis of the mitochondrial complexome (the protein complex proteome of M. truncatula via 2D BN / SDS PAGE in combination with high sensitive MS protein identification. In total, 1,485 proteins were identified within 158 gel spots, representing 467 unique proteins. Data evaluation by the novel GelMap annotation tool allowed recognition of protein complexes of low abundance. Overall, at least 36 mitochondrial protein complexes were found. To our knowledge several of these complexes were described for the first time in Medicago. The data set is accessible under http://www.gelmap.de/medicago/. The mitochondrial protein complex proteomes of Arabidopsis (available at http://www.gelmap.de/arabidopsis/ and Medicago are compared.

  17. Mitochondrial Dysfunction and Psychiatric Disorders

    OpenAIRE

    Shaw-Hwa Jou; Nan-Yin Chiu; Chin-San Liu

    2009-01-01

    Mitochondria are intracellular organelles crucial in the production of cellular energy.Mitochondrial diseases may result from malfunctions in this biochemical cascade. Severalinvestigators have proposed that mitochondrial dysfunction is related to the pathophysiologyof bipolar disorder (BD), major depressive disorder (MDD) and schizophrenia (SZ). Theauthors reviewed recent study findings and tried to delineate the current understanding of thecorrelation between mitochondrial dysfunction and p...

  18. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Jianxin Lu; Lokendra Kumar Sharma; Yidong Bai

    2009-01-01

    Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed.

  19. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Omar Ortiz-Avila

    2015-01-01

    Full Text Available Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats. Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential ΔΨm, besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  20. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    Science.gov (United States)

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  1. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    Science.gov (United States)

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress. PMID:26180820

  2. Mapping of mitochondrial ferritin in the brainstem of Macaca fascicularis.

    Science.gov (United States)

    Yang, Mingchun; Yang, Hongkuan; Guan, Hongpeng; Bellier, Jean-Pierre; Zhao, Shiguang; Tooyama, Ikuo

    2016-07-22

    Mitochondrial ferritin (FtMt), a recently-studied iron storage protein, which we suspect is an important defense against oxidative stress in neurons and elsewhere. The 242-amino acid FtMt precursor protein is cleaved to mature protein (of molecular weight about 22-kDa) in the mitochondrial matrix. Compared with the ubiquitously expressed traditional ferritin (H-ferritin and L-ferritin), FtMt has been found in fewer locations including the testis, heart and brain. Previous studies have reported that the expression of FtMt in mouse and human brain is predominantly localized to neurons and partly to glial cells, and FtMt exerts protective effects on neurons by maintaining normal function and regulates apoptosis in Alzheimer's disease and Parkinson's disease. To find out the function of FtMt in neurodegenerative disease, we had a novel antibody made against human FtMt and characterized it via Western blot analysis, immunoabsorption testing, and double immunofluorescence histochemistry. Then we used this new FtMt antibody to map the distribution of FtMt in the monkey brainstem. We demonstrated widespread distribution of FtMt immunoreactivity throughout the monkey brainstem, with variable staining intensity. FtMt immunoreactivity was observed in the extrapyramidal system, sensory trigeminal nerve nuclei, some motor nuclei including ambiguous nucleus, dorsal motor nucleus of the vagus and hypoglossal nucleus, and some dorsal column nuclei such as the gracile nucleus and cuneate nucleus. In addition, double immunohistochemical stainings confirmed that FtMt immunoreactivity was co-localized with catecholaminergic neurons in the locus coeruleus (63.64%), substantia nigra pars compacta (69.18%), and ventral tegmental area (56.89%). The distribution of FtMt which we found in the brainstem implies possible involvement of FtMt in several physiological mechanisms, especially in the catecholaminergic neurons, and the possibility of significant involvement in neurodegenerative

  3. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter.

    Science.gov (United States)

    Pan, Xin; Liu, Jie; Nguyen, Tiffany; Liu, Chengyu; Sun, Junhui; Teng, Yanjie; Fergusson, Maria M; Rovira, Ilsa I; Allen, Michele; Springer, Danielle A; Aponte, Angel M; Gucek, Marjan; Balaban, Robert S; Murphy, Elizabeth; Finkel, Toren

    2013-12-01

    Mitochondrial calcium has been postulated to regulate a wide range of processes from bioenergetics to cell death. Here, we characterize a mouse model that lacks expression of the recently discovered mitochondrial calcium uniporter (MCU). Mitochondria derived from MCU(-/-) mice have no apparent capacity to rapidly uptake calcium. Whereas basal metabolism seems unaffected, the skeletal muscle of MCU(-/-) mice exhibited alterations in the phosphorylation and activity of pyruvate dehydrogenase. In addition, MCU(-/-) mice exhibited marked impairment in their ability to perform strenuous work. We further show that mitochondria from MCU(-/-) mice lacked evidence for calcium-induced permeability transition pore (PTP) opening. The lack of PTP opening does not seem to protect MCU(-/-) cells and tissues from cell death, although MCU(-/-) hearts fail to respond to the PTP inhibitor cyclosporin A. Taken together, these results clarify how acute alterations in mitochondrial matrix calcium can regulate mammalian physiology.

  4. Characterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior.

    Science.gov (United States)

    Öner-Sieben, Soner; Rappl, Christine; Sauer, Norbert; Stadler, Ruth; Lohaus, Gertrud

    2015-08-01

    Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Sucrose concentration was recently shown to be higher in the phloem sap than in the mesophyll cells. This suggests the involvement of apoplastic steps and the activity of sucrose transporters in addition to symplastic phloem-loading processes. In this study, the sucrose transporter FeSUT1 from F. excelsior was analysed. Heterologous expression in baker's yeast showed that FeSUT1 mediates the uptake of sucrose. Immunohistochemical analyses revealed that FeSUT1 was exclusively located in phloem cells of minor veins and in the transport phloem of F. excelsior. Further characterization identified these cells as sieve elements and possibly ordinary companion cells but not as intermediary cells. The localization and expression pattern point towards functions of FeSUT1 in phloem loading of sucrose as well as in sucrose retrieval. FeSUT1 is most likely responsible for the observed sucrose gradient between mesophyll and phloem. The elevated expression level of FeSUT1 indicated an increased apoplastic carbon export activity from the leaves during spring and late autumn. It is hypothesized that the importance of apoplastic loading is high under low-sucrose conditions and that the availability of two different phloem-loading mechanisms confers advantages for temperate woody species like F. excelsior. PMID:26022258

  5. Characterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior.

    Science.gov (United States)

    Öner-Sieben, Soner; Rappl, Christine; Sauer, Norbert; Stadler, Ruth; Lohaus, Gertrud

    2015-08-01

    Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Sucrose concentration was recently shown to be higher in the phloem sap than in the mesophyll cells. This suggests the involvement of apoplastic steps and the activity of sucrose transporters in addition to symplastic phloem-loading processes. In this study, the sucrose transporter FeSUT1 from F. excelsior was analysed. Heterologous expression in baker's yeast showed that FeSUT1 mediates the uptake of sucrose. Immunohistochemical analyses revealed that FeSUT1 was exclusively located in phloem cells of minor veins and in the transport phloem of F. excelsior. Further characterization identified these cells as sieve elements and possibly ordinary companion cells but not as intermediary cells. The localization and expression pattern point towards functions of FeSUT1 in phloem loading of sucrose as well as in sucrose retrieval. FeSUT1 is most likely responsible for the observed sucrose gradient between mesophyll and phloem. The elevated expression level of FeSUT1 indicated an increased apoplastic carbon export activity from the leaves during spring and late autumn. It is hypothesized that the importance of apoplastic loading is high under low-sucrose conditions and that the availability of two different phloem-loading mechanisms confers advantages for temperate woody species like F. excelsior.

  6. Molecular characterization, functional expression, tissue localization and protective potential of a Taenia solium fatty acid-binding protein.

    Science.gov (United States)

    Illescas, Oscar; Carrero, Julio C; Bobes, Raúl J; Flisser, Ana; Rosas, Gabriela; Laclette, Juan P

    2012-12-01

    The fatty acid-binding proteins (FABPs) comprise a family of proteins that are widely expressed in animal cells and perform a variety of vital functions. Here, we report the identification, characterization, recombinant expression, tissue localization and protective potential of a Taenia solium FABP (TsFABP1). The TsFABP1 primary structure showed all the conserved residues characteristic of the subfamily iv of the intracellular Lipid-Binding Proteins (iLBPs), including those involved in the binding stabilization of the fatty acid molecule. Through a competitive binding assay we found that TsFABP1 is able to bind at least six different fatty acids with preference toward palmitic and stearic acid, suggesting that TsFABP1 is a member of the iLBP subfamily iv. Immunolocalization assays carried out on larval and adult tissues of four species of taeniids using anti-TsFABP1 hyperimmune sera produced in mice and rabbit, showed intense labeling in the tegument of the spiral canal and in subtegumental cytons of the larvae. These findings suggest that the spiral canal might be a major place for FA uptake in the developing scolex. In contrast, only subtegumental cytons in the adult worms stained positive. We propose that TsFABP1 is involved in the mechanism to mobilize fatty acids between compartments in the extensive syncytial tissue of taeniids. Protection assays carried out in a murine model of cysticercosis showed that subcutaneous immunization with TsFABP1 resulted in about 45% reduction of parasite load against an intraperitoneal challenge with Taenia crassiceps cysts. This reduction in parasite load correlated with the level of cellular and humoral immune responses against TsFABP1, as determined in spleen lymphocyte proliferation and ELISA testing.

  7. Mitochondrial Dysfunction in Cancer

    Directory of Open Access Journals (Sweden)

    Michelle L Boland

    2013-12-01

    Full Text Available A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability and other more conventional aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the sigificance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis and spatial dynamics and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knockon effects for cell proliferation and growth. Scientifically, there is also scope for defining what mitochondria dysfunction is and here we address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment.

  8. Mitochondrial Ion Channels

    Science.gov (United States)

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  9. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB

    OpenAIRE

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B.; Gorski, Sharon M.

    2014-01-01

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide t...

  10. Upstream Pathways Controlling Mitochondrial Function in Major Psychosis: A Focus on Bipolar Disorder.

    Science.gov (United States)

    Machado, Alencar Kolinski; Pan, Alexander Yongshuai; da Silva, Tatiane Morgana; Duong, Angela; Andreazza, Ana Cristina

    2016-08-01

    Mitochondrial dysfunction is commonly observed in bipolar disorder (BD) and schizophrenia (SCZ) and may be a central feature of psychosis. These illnesses are complex and heterogeneous, which is reflected by the complexity of the processes regulating mitochondrial function. Mitochondria are typically associated with energy production; however, dysfunction of mitochondria affects not only energy production but also vital cellular processes, including the formation of reactive oxygen species, cell cycle and survival, intracellular Ca(2+) homeostasis, and neurotransmission. In this review, we characterize the upstream components controlling mitochondrial function, including 1) mutations in nuclear and mitochondrial DNA, 2) mitochondrial dynamics, and 3) intracellular Ca(2+) homeostasis. Characterizing and understanding the upstream factors that regulate mitochondrial function is essential to understand progression of these illnesses and develop biomarkers and therapeutics. PMID:27310240

  11. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  12. Audiological evaluation in Chinese patients with mitochondrial encephalomyopathies

    Institute of Scientific and Technical Information of China (English)

    Liu Yuhe; Xue Junfang; Zhao Danhua; Chen Li; Yuan Yun; Wang Zhaoxia

    2014-01-01

    Background Hearing impairment has been reported to be common in patients with mitochondrial disorders,a group of diseases characterized by pleiomorphic clinical manifestations due to defects in oxidative phosphorylation of mitochondria.This study aimed to investigate the audiological characteristics in a large cohort of patients with mitochondrial disease.Methods Comprehensive audiological evaluations,including pure tone audiometry,tympanometry,speech audiometry,otoacoustic emissions,electrocochleography and auditory brainstem evoked potentials,were performed in 73 Chinese patients with mitochondrial encephalomyopathy and with confirmed mitochondrial DNA (mtDNA) defects.Results Among the patients,71% had hearing impairment.However,the incidence rate and severity of hearing impairment were much less in the chronic progressive external ophthalmoplegia (CPEO) subtype than in the mitochondrial encephalomyopathy,lactic acidosis,and stroke-like episodes (MELAS),myoclonic epilepsy with ragged red fibers (MERRF) and Kearns-Sayre syndrome (KSS) subtypes.While most of our patients had a predominantly cochlea origin for the hearing deficit,five patients had an auditory neuropathy spectrum disorder and three patients had impairment of both cochlea and auditory codex.Conclusions Various portions of the auditory system could be involved in patients with mitochondrial diseases,including cochlea,auditory nerve,auditory pathway and cortex.Hearing loss was more associated with multisystem involvement.Genotype,mutant load of mtDNA and other unknown factors could contribute to heterogeneity of hearing impairment in mitochondrial disease.

  13. Characterization of Local Wind Patterns around the Kori Nuclear Power Plant using Cluster Analysis and WRF meteorological modeling

    International Nuclear Information System (INIS)

    To accurately predict the atmospheric diffusion of radioactive effluent, detailed analysis of local wind patterns nearby nuclear power plants are necessary. In this study, the characteristics of typical local winds around the Kori Nuclear Power Plant (Kori NPP) were investigated using the cluster analysis and Weather Research and Forecasting (WRF) meteorological modeling. In this study, the local wind characteristics around the Kori NPP were analyzed using cluster analysis and WRF meteorological modeling. As a result of the cluster analysis, four wind patterns around the Kori NPP were selected. The model study indicated the possibility that the local winds in the target area can largely contribute to the atmospheric diffusion of radioactive effluents

  14. NOA1, a Novel ClpXP Substrate, Takes an Unexpected Nuclear Detour Prior to Mitochondrial Import

    OpenAIRE

    Al-Furoukh, Natalie; Kardon, Julia R.; Krüger, Marcus; Szibor, Marten; Baker, Tania A.; Braun, Thomas

    2014-01-01

    The mitochondrial matrix GTPase NOA1 is a nuclear encoded protein, essential for mitochondrial protein synthesis, oxidative phosphorylation and ATP production. Here, we demonstrate that newly translated NOA1 protein is imported into the nucleus, where it localizes to the nucleolus and interacts with UBF1 before nuclear export and import into mitochondria. Mutation of the nuclear localization signal (NLS) prevented both nuclear and mitochondrial import while deletion of the N-terminal mitochon...

  15. p53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity

    Institute of Scientific and Technical Information of China (English)

    Sonja Wolff; Susan Erster; Gustavo Palacios; Ute M Moll

    2008-01-01

    p53's apoptotic program consists of transcription-dependent and transcription-independent pathways. In the latter, physical interactions between mitochondrial p53 and anti-and pro-apoptotic members of the Bcl2 family of mitochondrial permeability regulators are central. Using isogenic cell systems with defined deficiencies, we characterize in detail how mitochondrial p53 contributes to mitochondrial permeabilization, to what extent its action depends on other key Bcl2 family members and define its release activity. We show that mitochondrial p53 is highly efficient in inducing the release of soluble and insoluble apoptogenic factors by severely disrupting outer and inner mitochondrial membrane integrity. This action is associated with wild-type p53-induced oligomerization of Bax, Bak and VDAC and the formation of a stress-induced endogenous complex between p53 and cyclophilin D, normally located at the inner membrane. Tumor-derived p53 mutants are deficient in activating the Bax/Bak lipid pore. These actions are independent of Puma and Bax. Importantly, the latter distinguishes the mitochondrial from the cytosolic p53 death pathway.

  16. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Philippe A Parone

    Full Text Available Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS. At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis.

  17. Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis.

    Science.gov (United States)

    Zallot, Rémi; Agrimi, Gennaro; Lerma-Ortiz, Claudia; Teresinski, Howard J; Frelin, Océane; Ellens, Kenneth W; Castegna, Alessandra; Russo, Annamaria; de Crécy-Lagard, Valérie; Mullen, Robert T; Palmieri, Ferdinando; Hanson, Andrew D

    2013-06-01

    Plants make coenzyme A (CoA) in the cytoplasm but use it for reactions in mitochondria, chloroplasts, and peroxisomes, implying that these organelles have CoA transporters. A plant peroxisomal CoA transporter is already known, but plant mitochondrial or chloroplastic CoA transporters are not. Mitochondrial CoA transporters belonging to the mitochondrial carrier family, however, have been identified in yeast (Saccharomyces cerevisiae; Leu-5p) and mammals (SLC25A42). Comparative genomic analysis indicated that angiosperms have two distinct homologs of these mitochondrial CoA transporters, whereas nonflowering plants have only one. The homologs from maize (Zea mays; GRMZM2G161299 and GRMZM2G420119) and Arabidopsis (Arabidopsis thaliana; At1g14560 and At4g26180) all complemented the growth defect of the yeast leu5Δ mitochondrial CoA carrier mutant and substantially restored its mitochondrial CoA level, confirming that these proteins have CoA transport activity. Dual-import assays with purified pea (Pisum sativum) mitochondria and chloroplasts, and subcellular localization of green fluorescent protein fusions in transiently transformed tobacco (Nicotiana tabacum) Bright Yellow-2 cells, showed that the maize and Arabidopsis proteins are targeted to mitochondria. Consistent with the ubiquitous importance of CoA, the maize and Arabidopsis mitochondrial CoA transporter genes are expressed at similar levels throughout the plant. These data show that representatives of both monocotyledons and eudicotyledons have twin, mitochondrially located mitochondrial carrier family carriers for CoA. The highly conserved nature of these carriers makes possible their reliable annotation in other angiosperm genomes. PMID:23590975

  18. SUMO-regulated mitochondrial function in Parkinson's disease.

    Science.gov (United States)

    Guerra de Souza, Ana Cristina; Prediger, Rui Daniel; Cimarosti, Helena

    2016-06-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by cardinal motor signs such as rigidity, bradykinesia or rest tremor that arise from a significant death of dopaminergic neurons. Non-dopaminergic degeneration also occurs and it seems to induce the deficits in olfactory, emotional, and memory functions that precede the classical motor symptoms in PD. Despite the majority of PD cases being sporadic, several genes have previously been associated with the hereditary forms of the disease. The proteins encoded by some of these genes, including α-synuclein, DJ-1, and parkin, are modified by small ubiquitin-like modifier (SUMO), a post-translational modification that regulates a variety of cellular processes. Among the several pathogenic mechanisms proposed for PD is mitochondrial dysfunction. Recent studies suggest that SUMOylation can interfere with mitochondrial dynamics, which is essential for neuronal function, and may play a pivotal role in PD pathogenesis. Here, we present an overview of recent studies on mitochondrial disturbance in PD and the potential SUMO-modified proteins and pathways involved in this process. SUMOylation, a post-translational modification, interferes with mitochondrial dynamics, and may play a pivotal role in Parkinson's disease (PD). SUMOylation maintains α-synuclein (α-syn) in a soluble form and activates DJ-1, decreasing mitochondrial oxidative stress. SUMOylation may reduce the amount of parkin available for mitochondrial recruitment and decreases mitochondrial biogenesis through suppression of peroxisomal proliferator-activated receptor-γ co-activator 1 α (PGC-1α). Mitochondrial fission can be regulated by dynamin-related protein 1 SUMO-1- or SUMO-2/3-ylation. A fine balance for the SUMOylation/deSUMOylation of these proteins is required to ensure adequate mitochondrial function in PD. PMID:26932327

  19. Import of a major mitochondrial enzyme depends on synergy between two distinct helices of its presequence

    Science.gov (United States)

    The human mitochondrial glutamate dehydrogenase isozymes (hGDH1 and 2) are abundant matrix-localized proteins encoded by nuclear genes. The proteins are synthesized in the cytoplasm, with an atypically long N-terminal mitochondrial targeting sequence (MTS). The results of secondary structure predi...

  20. Sealing the Mitochondrial Respirasome

    OpenAIRE

    Winge, Dennis R.

    2012-01-01

    The mitochondrial respiratory chain is organized within an array of supercomplexes that function to minimize the generation of reactive oxygen species (ROS) during electron transfer reactions. Structural models of supercomplexes are now known. Another recent advance is the discovery of non-OXPHOS complex proteins that appear to adhere to and seal the individual respiratory complexes to form stable assemblages that prevent electron leakage. This review highlights recent advances in our underst...

  1. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  2. Congenital sideroblastic anemia due to mutations in the mitochondrial HSP70 homologue HSPA9

    DEFF Research Database (Denmark)

    Schmitz-Abe, Klaus; Ciesielski, Szymon J; Schmidt, Paul J;

    2015-01-01

    The congenital sideroblastic anemias (CSAs) are relatively uncommon diseases, characterized by defects in mitochondrial heme synthesis, iron-sulfur cluster (Fe-S) biogenesis, or protein synthesis. Here we demonstrate that mutations in HSPA9, a mitochondrial HSP70 homologue located in the 5q...

  3. Prevalence and Severity of Voice and Swallowing Difficulties in Mitochondrial Disease

    Science.gov (United States)

    Read, Jennifer L.; Whittaker, Roger G.; Miller, Nick; Clark, Sue; Taylor, Robert; McFarland, Robert; Turnbull, Douglass

    2012-01-01

    Background: Mutations of mitochondrial DNA (mtDNA) cause a broad spectrum of clinical phenotypes. Anecdotal evidence suggests that voice and swallow problems are a common feature of these diseases. Aims: To characterize accurately the prevalence and severity of voice and swallow problems in a large cohort of patients with mitochondrial disease.…

  4. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    OpenAIRE

    Omar Ortiz-Avila; Mauricio Esquivel-Martínez; Berenice Eridani Olmos-Orizaba; Alfredo Saavedra-Molina; Alain R. Rodriguez-Orozco; Christian Cortés-Rojo

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the...

  5. Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin

    Directory of Open Access Journals (Sweden)

    Zhao J

    2012-09-01

    Full Text Available Jingmou Yu,1 Xin Xie,1 Meirong Zheng,1 Ling Yu,2 Lei Zhang,1 Jianguo Zhao,1 Dengzhao Jiang,1 Xiangxin Che11Key Laboratory of Systems Biology Medicine of Jiangxi Province, College of Basic Medical Science, Jiujiang University, Jiujiang, 2Division of Nursing, 2nd Affiliated Hospital, Yichun University, Yichun, People's Republic of ChinaBackground: Supramolecular micelles as drug-delivery vehicles are generally unable to enter the nucleus of nondividing cells. In the work reported here, nuclear localization signal (NLS-modified polymeric micelles were studied with the aim of improving nuclear drug delivery.Methods: In this research, cholesterol-modified glycol chitosan (CHGC was synthesized. NLS-conjugated CHGC (NCHGC was synthesized and characterized using proton nuclear magnetic resonance spectroscopy, dynamic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX, an anticancer drug with an intracellular site of action in the nucleus, was chosen as a model drug. DOX-loaded micelles were prepared by an emulsion/solvent evaporation method. The cellular uptake of different DOX formulations was analyzed by flow cytometry and confocal laser scanning microscopy. The cytotoxicity of blank micelles, free DOX, and DOX-loaded micelles in vitro was investigated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in HeLa and HepG2 cells.Results: The degree of substitution was 5.9 cholesterol and 3.8 NLS groups per 100 sugar residues of the NCHGC conjugate. The critical aggregation concentration of the NCHGC micelles in aqueous solution was 0.0209 mg/mL. The DOX-loaded NCHGC (DNCHGC micelles were observed as being almost spherical in shape under transmission electron microscopy, and the size was determined as 248 nm by dynamic light scattering. The DOX-loading content of the DNCHGC micelles was 10.1%. The DOX-loaded micelles showed slow drug-release behavior within 72 hours in vitro. The DNCHGC micelles exhibited greater

  6. Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins.

    Science.gov (United States)

    Birsa, Nicol; Norkett, Rosalind; Higgs, Nathalie; Lopez-Domenech, Guillermo; Kittler, Josef T

    2013-12-01

    Correct mitochondrial dynamics are essential to neuronal function. These dynamics include mitochondrial trafficking and quality-control systems that maintain a precisely distributed and healthy mitochondrial network, so that local energy demands or Ca2+-buffering requirements within the intricate architecture of the neuron can be met. Mitochondria make use of molecular machinery that couples these organelles to microtubule-based transport via kinesin and dynein motors, facilitating the required long-range movements. These motors in turn are associated with a variety of adaptor proteins allowing additional regulation of the complex dynamics demonstrated by these organelles. Over recent years, a number of new motor and adaptor proteins have been added to a growing list of components implicated in mitochondrial trafficking and distribution. Yet, there are major questions that remain to be addressed about the regulation of mitochondrial transport complexes. One of the core components of this machinery, the mitochondrial Rho GTPases Miro1 (mitochondrial Rho 1) and Miro2 have received special attention due to their Ca2+-sensing and GTPase abilities, marking Miro an exceptional candidate for co-ordinating mitochondrial dynamics and intracellular signalling pathways. In the present paper, we discuss the wealth of literature regarding Miro-mediated mitochondrial transport in neurons and recently highlighted involvement of Miro proteins in mitochondrial turnover, emerging as a key process affected in neurodegeneration. PMID:24256248

  7. Microtubules are Essential for Mitochondrial Dynamics-Fission, Fusion, and Motility- in Dictyostelium discoideum.

    Directory of Open Access Journals (Sweden)

    Laken C. Woods

    2016-03-01

    Full Text Available Mitochondrial function is dependent upon mitochondrial structure which is in turn dependent upon mitochondrial dynamics, including fission, fusion, and motility. Here we examined the relationship between mitochondrial dynamics and the cytoskeleton in Dictyostelium discoideum. Using time-lapse analysis, we quantified mitochondrial fission, fusion, and motility in the presence of cytoskeleton disrupting pharmaceuticals and the absence of the potential mitochondria-cytoskeleton linker protein, CluA. Our results indicate that microtubules are essential for mitochondrial movement, as well as fission and fusion; actin plays a less significant role, perhaps selecting the mitochondria for transport. We also suggest that CluA is not a linker protein but plays an unidentified role in mitochondrial fission and fusion. The significance of our work is to gain further insight into the role the cytoskeleton plays in mitochondrial dynamics and function. By better understanding these processes we can better appreciate the underlying mitochondrial contributions to many neurological disorders characterized by altered mitochondrial dynamics, structure, and/or function.

  8. Reduced calcium-dependent mitochondrial damage underlies the reduced vulnerability of excitotoxicity-tolerant hippocampal neurons.

    Science.gov (United States)

    Pivovarova, Natalia B; Stanika, Ruslan I; Watts, Charlotte A; Brantner, Christine A; Smith, Carolyn L; Andrews, S Brian

    2008-03-01

    In central neurons, over-stimulation of NMDA receptors leads to excessive mitochondrial calcium accumulation and damage, which is a critical step in excitotoxic death. This raises the possibility that low susceptibility to calcium overload-induced mitochondrial damage might characterize excitotoxicity-resistant neurons. In this study, we have exploited two complementary models of preconditioning-induced excitotoxicity resistance to demonstrate reduced calcium-dependent mitochondrial damage in NMDA-tolerant hippocampal neurons. We have further identified adaptations in mitochondrial calcium handling that account for enhanced mitochondrial integrity. In both models, enhanced tolerance was associated with improved preservation of mitochondrial membrane potential and structure. In the first model, which exhibited modest neuroprotection, mitochondria-dependent calcium deregulation was delayed, even though cytosolic and mitochondrial calcium loads were quantitatively unchanged, indicating that enhanced mitochondrial calcium capacity accounts for reduced injury. In contrast, the second model, which exhibited strong neuroprotection, displayed further delayed calcium deregulation and reduced mitochondrial damage because downregulation of NMDA receptor surface expression depressed calcium loading. Reducing calcium entry also modified the chemical composition of the calcium-buffering precipitates that form in calcium-loaded mitochondria. It thus appears that reduced mitochondrial calcium loading is a major factor underlying the robust neuroprotection seen in highly tolerant cells. PMID:18036152

  9. Mitochondrial haplogroup H1 in north Africa: an early holocene arrival from Iberia.

    Directory of Open Access Journals (Sweden)

    Claudio Ottoni

    Full Text Available The Tuareg of the Fezzan region (Libya are characterized by an extremely high frequency (61% of haplogroup H1, a mitochondrial DNA (mtDNA haplogroup that is common in all Western European populations. To define how and when H1 spread from Europe to North Africa up to the Central Sahara, in Fezzan, we investigated the complete mitochondrial genomes of eleven Libyan Tuareg belonging to H1. Coalescence time estimates suggest an arrival of the European H1 mtDNAs at about 8,000-9,000 years ago, while phylogenetic analyses reveal three novel H1 branches, termed H1v, H1w and H1x, which appear to be specific for North African populations, but whose frequencies can be extremely different even in relatively close Tuareg villages. Overall, these findings support the scenario of an arrival of haplogroup H1 in North Africa from Iberia at the beginning of the Holocene, as a consequence of the improvement in climate conditions after the Younger Dryas cold snap, followed by in situ formation of local H1 sub-haplogroups. This process of autochthonous differentiation continues in the Libyan Tuareg who, probably due to isolation and recent founder events, are characterized by village-specific maternal mtDNA lineages.

  10. "Stiff neonate" with mitochondrial DNA depletion and secondary neurotransmitter defects.

    LENUS (Irish Health Repository)

    Moran, Margaret M

    2011-12-01

    Mitochondrial disorders comprise a heterogenous group. A neonate who presented with episodes of severe truncal hypertonia and apnea progressed to a hypokinetic rigid syndrome characterized by hypokinesia, tremulousness, profound head lag, absent suck and gag reflexes, brisk deep tendon reflexes, ankle and jaw clonus, and evidence of autonomic dysfunction. Analysis of cerebrospinal fluid neurotransmitters from age 7 weeks demonstrated low levels of amine metabolites (homovanillic acid and 5-hydroxyindoleacetic acid), tetrahydrobiopterin, and pyridoxal phosphate. Mitochondrial DNA quantitative studies on muscle homogenate demonstrated a mitochondrial DNA depletion disorder. Respiratory chain enzymology demonstrated decreased complex IV activity. Screening for mitochondrial DNA rearrangement disorders and sequencing relevant mitochondrial genes produced negative results. No clinical or biochemical response to treatment with pyridoxal phosphate, tetrahydrobiopterin, or l-dopa occurred. The clinical course was progressive, and the patient died at age 19 months. Mitochondrial disorders causing secondary neurotransmitter diseases are usually severe, but are rarely reported. This diagnosis should be considered in neonates or infants who present with hypertonia, hypokinesia rigidity, and progressive neurodegeneration.

  11. Mitochondrial Ca(2+) uptake in skeletal muscle health and disease.

    Science.gov (United States)

    Zhou, Jingsong; Dhakal, Kamal; Yi, Jianxun

    2016-08-01

    Muscle uses Ca(2+) as a messenger to control contraction and relies on ATP to maintain the intracellular Ca(2+) homeostasis. Mitochondria are the major sub-cellular organelle of ATP production. With a negative inner membrane potential, mitochondria take up Ca(2+) from their surroundings, a process called mitochondrial Ca(2+) uptake. Under physiological conditions, Ca(2+) uptake into mitochondria promotes ATP production. Excessive uptake causes mitochondrial Ca(2+) overload, which activates downstream adverse responses leading to cell dysfunction. Moreover, mitochondrial Ca(2+) uptake could shape spatio-temporal patterns of intracellular Ca(2+) signaling. Malfunction of mitochondrial Ca(2+) uptake is implicated in muscle degeneration. Unlike non-excitable cells, mitochondria in muscle cells experience dramatic changes of intracellular Ca(2+) levels. Besides the sudden elevation of Ca(2+) level induced by action potentials, Ca(2+) transients in muscle cells can be as short as a few milliseconds during a single twitch or as long as minutes during tetanic contraction, which raises the question whether mitochondrial Ca(2+) uptake is fast and big enough to shape intracellular Ca(2+) signaling during excitation-contraction coupling and creates technical challenges for quantification of the dynamic changes of Ca(2+) inside mitochondria. This review focuses on characterization of mitochondrial Ca(2+) uptake in skeletal muscle and its role in muscle physiology and diseases. PMID:27430885

  12. Giardia mitosomal protein import machinery differentially recognizes mitochondrial targeting signals.

    Science.gov (United States)

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Estraño, Carlos E

    2014-01-01

    Giardia lamblia mitosomes are believed to be vestigial mitochondria which lack a genome. Similar to higher eukaryotes, mitosomal proteins possess either N-terminal or internal mitosomal targeting sequences. To date, some components of the higher eukaryote archetypal mitochondrial protein import apparatus have been identified and characterized in Giardia mitosomes; therefore, it is expected that mitochondrial signals will be recognized by the mitosomal protein import system. To further determine the level of conservation of the Giardia mitosome protein import apparatus, we expressed mitochondrial proteins from higher eukaryotes in Giardia. These recombinant proteins include Tom20 and Tom22; two components of the mitochondrial protein import machinery. Our results indicate that N-terminal mitochondrial targeting sequence is recognized by the mitosomal protein import machinery; however, interestingly the internal mitochondrial targeting sequences of higher eukaryotes are not recognized by the mitosome. Our results indicate that Giardia mitosome protein transport machinery shows differential recognition of higher eukaryotic mitochondria transfer signals, suggesting a divergence of the transport system in G. lamblia. Therefore, our data support the hypothesis that the protein import machinery in Giardia lamblia mitosome is an incomplete vestigial derivative of mitochondria components.

  13. Sugarcane genes related to mitochondrial function

    Directory of Open Access Journals (Sweden)

    Fonseca Ghislaine V.

    2001-01-01

    Full Text Available Mitochondria function as metabolic powerhouses by generating energy through oxidative phosphorylation and have become the focus of renewed interest due to progress in understanding the subtleties of their biogenesis and the discovery of the important roles which these organelles play in senescence, cell death and the assembly of iron-sulfur (Fe/S centers. Using proteins from the yeast Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana we searched the sugarcane expressed sequence tag (SUCEST database for the presence of expressed sequence tags (ESTs with similarity to nuclear genes related to mitochondrial functions. Starting with 869 protein sequences, we searched for sugarcane EST counterparts to these proteins using the basic local alignment search tool TBLASTN similarity searching program run against 260,781 sugarcane ESTs contained in 81,223 clusters. We were able to recover 367 clusters likely to represent sugarcane orthologues of the corresponding genes from S. cerevisiae, H. sapiens and A. thaliana with E-value <= 10-10. Gene products belonging to all functional categories related to mitochondrial functions were found and this allowed us to produce an overview of the nuclear genes required for sugarcane mitochondrial biogenesis and function as well as providing a starting point for detailed analysis of sugarcane gene structure and physiology.

  14. Mitochondrial calcium uptake capacity modulates neocortical excitability.

    Science.gov (United States)

    Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed; Kannurpatti, Sridhar S

    2013-07-01

    Local calcium (Ca(2+)) changes regulate central nervous system metabolism and communication integrated by subcellular processes including mitochondrial Ca(2+) uptake. Mitochondria take up Ca(2+) through the calcium uniporter (mCU) aided by cytoplasmic microdomains of high Ca(2+). Known only in vitro, the in vivo impact of mCU activity may reveal Ca(2+)-mediated roles of mitochondria in brain signaling and metabolism. From in vitro studies of mitochondrial Ca(2+) sequestration and cycling in various cell types of the central nervous system, we evaluated ranges of spontaneous and activity-induced Ca(2+) distributions in multiple subcellular compartments in vivo. We hypothesized that inhibiting (or enhancing) mCU activity would attenuate (or augment) cortical neuronal activity as well as activity-induced hemodynamic responses in an overall cytoplasmic and mitochondrial Ca(2+)-dependent manner. Spontaneous and sensory-evoked cortical activities were measured by extracellular electrophysiology complemented with dynamic mapping of blood oxygen level dependence and cerebral blood flow. Calcium uniporter activity was inhibited and enhanced pharmacologically, and its impact on the multimodal measures were analyzed in an integrated manner. Ru360, an mCU inhibitor, reduced all stimulus-evoked responses, whereas Kaempferol, an mCU enhancer, augmented all evoked responses. Collectively, the results confirm aforementioned hypotheses and support the Ca(2+) uptake-mediated integrative role of in vivo mitochondria on neocortical activity.

  15. LRPPRC is a mitochondrial matrix protein that is conserved in metazoans

    Energy Technology Data Exchange (ETDEWEB)

    Sterky, Fredrik H. [Department of Laboratory Medicine, Karolinska Institutet, Retzius vaeg 8, SE-171 77 Stockholm (Sweden); Ruzzenente, Benedetta [Max-Planck-Institut fuer Biologie des Alterns, Gleueler Str. 50a, D-50931 Cologne (Germany); Department of Biology, University of Padova, Via Ugo Bassi 58B, I-35127 Padova (Italy); Gustafsson, Claes M. [Max-Planck-Institut fuer Biologie des Alterns, Gleueler Str. 50a, D-50931 Cologne (Germany); Department of Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg (Sweden); Samuelsson, Tore [Department of Biochemistry and Cell Biology, University of Gothenburg, P.O. Box 440, SE-405 30 Gothenburg (Sweden); Larsson, Nils-Goeran, E-mail: larsson@age.mpg.de [Max-Planck-Institut fuer Biologie des Alterns, Gleueler Str. 50a, D-50931 Cologne (Germany)

    2010-08-06

    Research highlights: {yields} LRPPRC orthologs are restricted to metazoans. {yields} LRPPRC is imported to the mitochondrial matrix. {yields} No evidence of nuclear isoform. -- Abstract: LRPPRC (also called LRP130) is an RNA-binding pentatricopeptide repeat protein. LRPPRC has been recognized as a mitochondrial protein, but has also been shown to regulate nuclear gene transcription and to bind specific RNA molecules in both the nucleus and the cytoplasm. We here present a bioinformatic analysis of the LRPPRC primary sequence, which reveals that orthologs to the LRPPRC gene are restricted to metazoan cells and that all of the corresponding proteins contain mitochondrial targeting signals. To address the subcellular localization further, we have carefully analyzed LRPPRC in mammalian cells and identified a single isoform that is exclusively localized to mitochondria. The LRPPRC protein is imported to the mitochondrial matrix and its mitochondrial targeting sequence is cleaved upon entry.

  16. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes.

    Science.gov (United States)

    Golic, I; Velickovic, K; Markelic, M; Stancic, A; Jankovic, A; Vucetic, M; Otasevic, V; Buzadzic, B; Korac, B; Korac, A

    2014-01-01

    Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control) drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1) and mitofusin 2 (MFN2) were increased, and mitochondrial fission as dynamin related protein 1 (DRP1) was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER). The level of uncoupling protein-1 (UCP1) was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes. PMID:25308841

  17. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes

    Directory of Open Access Journals (Sweden)

    I. Golic

    2014-09-01

    Full Text Available Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1 and mitofusin 2 (MFN2 were increased, and mitochondrial fission as dynamin related protein 1 (DRP1 was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER. The level of uncoupling protein-1 (UCP1 was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes

  18. The human mitochondrial ribosome recycling factor is essential for cell viability.

    NARCIS (Netherlands)

    Rorbach, J.; Richter, R.; Wessels, H.J.; Wydro, M.; Pekalski, M.; Farhoud, M.; Kuhl, I.; Gaisne, M.; Bonnefoy, N.; Smeitink, J.A.M.; Lightowlers, R.N.; Chrzanowska-Lightowlers, Z.M.

    2008-01-01

    The molecular mechanism of human mitochondrial translation has yet to be fully described. We are particularly interested in understanding the process of translational termination and ribosome recycling in the mitochondrion. Several candidates have been implicated, for which subcellular localization

  19. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  20. Linear polarizer local characterizations by polarimetric imaging for applications to polarimetric sensors for torque measurement for hybrid cars

    Science.gov (United States)

    Georges, F.; Remouche, M.; Meyrueis, P.

    2011-06-01

    Usually manufacturer's specifications do not deal with the ability of linear sheet polarizers to have a constant transmittance function over their geometric area. These parameters are fundamental for developing low cost polarimetric sensors(for instance rotation, torque, displacement) specifically for hybrid car (thermic + electricity power). It is then necessary to specially characterize commercial polarizers sheets to find if they are adapted to this kind of applications. In this paper, we present measuring methods and bench developed for this purpose, and some preliminary characterization results. We state conclusions for effective applications to hybrid car gearbox control and monitoring.

  1. Sealing the mitochondrial respirasome.

    Science.gov (United States)

    Winge, Dennis R

    2012-07-01

    The mitochondrial respiratory chain is organized within an array of supercomplexes that function to minimize the generation of reactive oxygen species (ROS) during electron transfer reactions. Structural models of supercomplexes are now known. Another recent advance is the discovery of non-OXPHOS complex proteins that appear to adhere to and seal the individual respiratory complexes to form stable assemblages that prevent electron leakage. This review highlights recent advances in our understanding of the structures of supercomplexes and the factors that mediate their stability.

  2. Identification and Characterization of Nuclear Localization Signals within the Nucleocapsid Protein VP15 of White Spot Syndrome Virus

    Institute of Scientific and Technical Information of China (English)

    Li-juan LI; Hua-jun ZHANG; Cong ZHANG; Zheng-li SHI

    2009-01-01

    The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus.

  3. Miro sculpts mitochondrial dynamics in neuronal health and disease.

    Science.gov (United States)

    Devine, Michael J; Birsa, Nicol; Kittler, Josef T

    2016-06-01

    Neurons are highly polarised cells with an elaborate and diverse cytoarchitecture. But this complex architecture presents a major problem: how to appropriately distribute metabolic resources where they are most needed within the cell. The solution comes in the form of mitochondria: highly dynamic organelles subject to a repertoire of trafficking, fission/fusion and quality control systems which work in concert to orchestrate a precisely distributed and healthy mitochondrial network. Mitochondria are critical for maintaining local energy supply and buffering Ca(2+) flux within neurons, and are increasingly recognised as being essential for healthy neuronal function. Mitochondrial movements are facilitated by their coupling to microtubule-based transport via kinesin and dynein motors. Adaptor proteins are required for this coupling and the mitochondrial Rho GTPases Miro1 and Miro2 are core components of this machinery. Both Miros have Ca(2+)-sensing and GTPase domains, and are therefore ideally suited to coordinating mitochondrial dynamics with intracellular signalling pathways and local energy turnover. In this review, we focus on Miro's role in mediating mitochondrial transport in neurons, and the relevance of these mechanisms to neuronal health and disease. PMID:26707701

  4. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNA{sup Val} mutation

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Kacem, Maha [Service de Medecine interne, C.H.U. Fattouma Bourguiba de Monastir (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Hadj Salem, Ikhlass [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha; Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-04-22

    Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  5. Differential mitochondrial calcium responses in different cell types detected with a mitochondrial calcium fluorescent indicator, mito-GCaMP2

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Yanru Wang; Tingting Hou; Huiliang Zhang; Aijuan Qu; Xianhua Wang

    2011-01-01

    Mitochondrial calcium plays a crucial role in mitochondriai metabolism,cell calcium handling,and cell death.However,some mechanisms concerning mitochondrial calcium regulation are still unknown,especially how mitochondrial calcium couples with cytosolic calcium.In this work,we constructed a novel mitochondrial calcium fluorescent indicator (mito-GCaMP2) by genetic manipulation.Mito-GCaMP2 was imported into mitochondria with high efficiency and the fluorescent signals co-localized with that of tetramethyl rhodamine methyl ester,a mitochondrial membrane potential indicator.The mitochondrial inhibitors specifically decreased the signals of mito-GCaMP2.The apparent Kd of mito-GCaMP2 was 195.0 nmol/L at pH 8.0 in adult rat cardiomyocytes.Furthermore,we observed that mito-GCaMP2 preferred the alkaline pH surrounding of mitochondria.In HeLa cells,we found that mitochondrial calcium ([Ca2+]mito)responded to the changes of cytosolic calcium ([Ca2+]cyto)induced by histamine or thapasigargin.Moreover,external Ca2+ (100 μmol/L) directly induced an increase of [Ca2+]mito in permeabilized HeLa cells.However,in rat cardiomyocytes [Ca2+]mito did not respond to cytosolic calcium transients stimulated by electric pacing or caffeine.In permeabilized cardiomyocytes,600 nmol/L free Ca2+ repeatedly increased the fluorescent signals of mito-GCaMP2,which excluded the possibility that mito-GCaMP2 lost its function in cardiomyocytes mitochondria.These results showed that the response of mitochondrial calcium is diverse in different cell lineages and suggested that mitochondria in cardiomyocytes may have a special defense mechanism to control calcium flux.

  6. Biochemical diagnosis of mitochondrial disorders

    NARCIS (Netherlands)

    Rodenburg, R.J.T.

    2011-01-01

    Establishing a diagnosis in patients with a suspected mitochondrial disorder is often a challenge. Both knowledge of the clinical spectrum of mitochondrial disorders and the number of identified disease-causing molecular genetic defects are continuously expanding. The diagnostic examination of patie

  7. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D;

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...

  8. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model.

    Directory of Open Access Journals (Sweden)

    Kelly Jean Thomas

    Full Text Available Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549 cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype-mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1. A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy. A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.

  9. Fatal hypertensive crisis as presentation of mitochondrial complex I deficiency.

    NARCIS (Netherlands)

    Lohmeier, K.; Distelmaier, F.; Heuvel, L.P.W.J. van den; Rodenburg, R.J.T.; Smeitink, J.A.M.; Mayatepek, E.; Hoehn, T.

    2007-01-01

    Complex I deficiency is a frequent defect of the mitochondrial electron transport chain. We report on a 3-year-old boy, who rapidly deteriorated after sudden flushing and collapse. This fatal and unusual case was characterized by widely uncontrollable arterial hypertension. It might indicate that hy

  10. Locally infiltrative ameloblastic fibroma in a rhesus macaque (Macaca mulatta) with characterizations of its proliferating activity and biological behavior

    OpenAIRE

    Liu, David X.; Doyle, Lara A.; Bouljihad, Mostafa T.; Didier, Peter J.; Gilbert, Margaret H.; Wang, Xiaolei; Pahar, Bapi; Bohm, Rudolf P.; Veazey, Ronald S.; Lackner, Andrew A.

    2012-01-01

    An 8-year-old male rhesus macaque (Macaca mulatta) presented with unilateral enlargement of the left mandible. Radiographs revealed a marked expansion of the left mandible with a multilocular radiolucent mass with abundant osteolysis. The mass was grossly firm, fleshy, and gelatinous on the cut surface. Histologically, the mass was locally infiltrative and composed of neoplastic epithelial and mesenchymal components that stained positive for cytokeratin and vimentin, respectively. Occasional ...

  11. Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis.

    Science.gov (United States)

    Rençber, Seda; Karavana, Sinem Yaprak; Yılmaz, Fethiye Ferda; Eraç, Bayri; Nenni, Merve; Özbal, Seda; Pekçetin, Çetin; Gurer-Orhan, Hande; Hoşgör-Limoncu, Mine; Güneri, Pelin; Ertan, Gökhan

    2016-01-01

    This study aimed to develop a suitable buccal mucoadhesive nanoparticle (NP) formulation containing fluconazole for the local treatment of oral candidiasis. The suitability of the prepared formulations was assessed by means of particle size (PS), polydispersity index, and zeta potential measurements, morphology analysis, mucoadhesion studies, drug entrapment efficiency (EE), in vitro drug release, and stability studies. Based on the optimum NP formulation, ex vivo drug diffusion and in vitro cytotoxicity studies were performed. Besides, evaluation of the antifungal effect of the optimum formulation was evaluated using agar diffusion method, fungicidal activity-related in vitro release study, and time-dependent fungicidal activity. The effect of the optimum NP formulation on the healing of oral candidiasis was investigated in an animal model, which was employed for the first time in this study. The zeta potential, mucoadhesion, and in vitro drug release studies of various NP formulations revealed that chitosan-coated NP formulation containing EUDRAGIT(®) RS 2.5% had superior properties than other formulations. Concerning the stability study of the selected formulation, the formulation was found to be stable for 6 months. During the ex vivo drug diffusion study, no drug was found in receptor phase, and this is an indication of local effect. The in vitro antifungal activity studies showed the in vitro efficacy of the NP against Candida albicans for an extended period. Also, the formulation had no cytotoxic effect at the tested concentration. For the in vivo experiments, infected rabbits were successfully treated with local administration of the optimum NP formulation once a day. This study has shown that the mucoadhesive NP formulation containing fluconazole is a promising candidate with once-a-day application for the local treatment of oral candidiasis.

  12. Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis

    Science.gov (United States)

    Rençber, Seda; Karavana, Sinem Yaprak; Yılmaz, Fethiye Ferda; Eraç, Bayri; Nenni, Merve; Özbal, Seda; Pekçetin, Çetin; Gurer-Orhan, Hande; Hoşgör-Limoncu, Mine; Güneri, Pelin; Ertan, Gökhan

    2016-01-01

    This study aimed to develop a suitable buccal mucoadhesive nanoparticle (NP) formulation containing fluconazole for the local treatment of oral candidiasis. The suitability of the prepared formulations was assessed by means of particle size (PS), polydispersity index, and zeta potential measurements, morphology analysis, mucoadhesion studies, drug entrapment efficiency (EE), in vitro drug release, and stability studies. Based on the optimum NP formulation, ex vivo drug diffusion and in vitro cytotoxicity studies were performed. Besides, evaluation of the antifungal effect of the optimum formulation was evaluated using agar diffusion method, fungicidal activity-related in vitro release study, and time-dependent fungicidal activity. The effect of the optimum NP formulation on the healing of oral candidiasis was investigated in an animal model, which was employed for the first time in this study. The zeta potential, mucoadhesion, and in vitro drug release studies of various NP formulations revealed that chitosan-coated NP formulation containing EUDRAGIT® RS 2.5% had superior properties than other formulations. Concerning the stability study of the selected formulation, the formulation was found to be stable for 6 months. During the ex vivo drug diffusion study, no drug was found in receptor phase, and this is an indication of local effect. The in vitro antifungal activity studies showed the in vitro efficacy of the NP against Candida albicans for an extended period. Also, the formulation had no cytotoxic effect at the tested concentration. For the in vivo experiments, infected rabbits were successfully treated with local administration of the optimum NP formulation once a day. This study has shown that the mucoadhesive NP formulation containing fluconazole is a promising candidate with once-a-day application for the local treatment of oral candidiasis. PMID:27358561

  13. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    Science.gov (United States)

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  14. Characterization by a time-frequency method of classical waves propagation in one-dimensional lattice : effects of the dispersion and localized nonlinearities

    CERN Document Server

    Richoux, Olivier; Hardy, Jean

    2009-01-01

    This paper presents an application of time-frequency methods to characterize the dispersion of acoustic waves travelling in a one-dimensional periodic or disordered lattice made up of Helmholtz resonators connected to a cylindrical tube. These methods allow (1) to evaluate the velocity of the wave energy when the input signal is an acoustic pulse ; (2) to display the evolution of the spectral content of the transient signal ; (3) to show the role of the localized nonlinearities on the propagation .i.e the emergence of higher harmonics. The main result of this paper is that the time-frequency methods point out how the nonlinearities break the localization of the waves and/or the filter effects of the lattice.

  15. Synthesis and Characterization of Poly(lactic-co-glycolic Acid Nanoparticles-Loaded Chitosan/Bioactive Glass Scaffolds as a Localized Delivery System in the Bone Defects

    Directory of Open Access Journals (Sweden)

    K. Nazemi

    2014-01-01

    Full Text Available The functionality of tissue engineering scaffolds can be enhanced by localized delivery of appropriate biological macromolecules incorporated within biodegradable nanoparticles. In this research, chitosan/58S-bioactive glass (58S-BG containing poly(lactic-co-glycolic acid (PLGA nanoparticles has been prepared and then characterized. The effects of further addition of 58S-BG on the structure of scaffolds have been investigated to optimize the characteristics of the scaffolds for bone tissue engineering applications. The results showed that the scaffolds had high porosity with open pores. It was also shown that the porosity decreased with increasing 58S-BG content. Furthermore, the PLGA nanoparticles were homogenously distributed within the scaffolds. According to the obtained results, the nanocomposites could be considered as highly bioactive bone tissue engineering scaffolds with the potential of localized delivery of biological macromolecules.

  16. CHARACTERIZATION, BIO-FORMULATION DEVELOPMENT AND SHELF-LIFE STUDIES OF LOCALLY ISOLATED BIO-FERTILIZER STRAINS

    OpenAIRE

    Vipin Kumar

    2014-01-01

    Nitrogen fixing, phosphate solubilizing and potash mobilizing bacterial strains were isolated from rhizosphere soil of agricultural land, the isolated bacterial strains were further characterized by a series of biochemical reactions and identified as genus Azotobacter, Bacillus and Pseudomonas respectively. A technology for their mass multiplication and their bio-formulation has been developed. Fly-ash was used as carrier materials for bio-formulation development of bio-fertilizer strains. Sh...

  17. Yeast Exonuclease 5 Is Essential for Mitochondrial Genome Maintenance▿

    OpenAIRE

    Burgers, Peter M.; Stith, Carrie M.; Yoder, Bonita L.; Sparks, Justin L

    2010-01-01

    Yeast exonuclease 5 is encoded by the YBR163w (DEM1) gene, and this gene has been renamed EXO5. It is distantly related to the Escherichia coli RecB exonuclease class. Exo5 is localized to the mitochondria, and EXO5 deletions or nuclease-defective EXO5 mutants invariably yield petites, amplifying either the ori3 or ori5 region of the mitochondrial genome. These petites remain unstable and undergo continuous rearrangement. The mitochondrial phenotype of exo5Δ strains suggests an essential role...

  18. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik;

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... hypotheses. Firstly, cellular feedback regulation may occur between UCPs and ACE. Secondly, cellular UCP regulation of sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic...

  19. ES1 is a mitochondrial enlarging factor contributing to form mega-mitochondria in zebrafish cones.

    Science.gov (United States)

    Masuda, Takamasa; Wada, Yasutaka; Kawamura, Satoru

    2016-03-01

    Total mass of mitochondria increases during cell proliferation and differentiation through mitochondrial biogenesis, which includes mitochondrial proliferation and growth. During the mitochondrial growth, individual mitochondria have been considered to be enlarged independently of mitochondrial fusion. However, molecular basis for this enlarging process has been poorly understood. Cone photoreceptor cells in the retina possess large mitochondria, so-called mega-mitochondria that have been considered to arise via the enlarging process. Here we show that ES1 is a novel mitochondria-enlarging factor contributing to form mega-mitochondria in cones. ES1 is specifically expressed in cones and localized to mitochondria including mega-mitochondria. Knockdown of ES1 markedly reduced the mitochondrial size in cones. In contrast, ectopic expression of ES1 in rods significantly increased both the size of individual mitochondria and the total mass of the mitochondrial cluster without changing the number of them. RNA-seq analysis showed that ERRα and its downstream mitochondrial genes were significantly up-regulated in the ES1-expressing rods, suggesting facilitation of mitochondrial enlargement via ERRα-dependent processes. Furthermore, higher energy state was detected in the ES1-expressing rods, indicating that the enlarged mitochondria by ES1 are capable of producing high energy. ES1 is the mitochondrial protein that is first found to promote enlargement of individual mitochondria.

  20. The mitochondrial Ca2+ uniporter: regulation by auxiliary subunits and signal transduction pathways.

    Science.gov (United States)

    Jhun, Bong Sook; Mishra, Jyotsna; Monaco, Sarah; Fu, Deming; Jiang, Wenmin; Sheu, Shey-Shing; O-Uchi, Jin

    2016-07-01

    Mitochondrial Ca(2+) homeostasis, the Ca(2+) influx-efflux balance, is responsible for the control of numerous cellular functions, including energy metabolism, generation of reactive oxygen species, spatiotemporal dynamics of Ca(2+) signaling, and cell growth and death. Recent discovery of the molecular identity of the mitochondrial Ca(2+) uniporter (MCU) provides new possibilities for application of genetic approaches to study the mitochondrial Ca(2+) influx mechanism in various cell types and tissues. In addition, the subsequent discovery of various auxiliary subunits associated with MCU suggests that mitochondrial Ca(2+) uptake is not solely regulated by a single protein (MCU), but likely by a macromolecular protein complex, referred to as the MCU-protein complex (mtCUC). Moreover, recent reports have shown the potential role of MCU posttranslational modifications in the regulation of mitochondrial Ca(2+) uptake through mtCUC. These observations indicate that mtCUCs form a local signaling complex at the inner mitochondrial membrane that could significantly regulate mitochondrial Ca(2+) handling, as well as numerous mitochondrial and cellular functions. In this review we discuss the current literature on mitochondrial Ca(2+) uptake mechanisms, with a particular focus on the structure and function of mtCUC, as well as its regulation by signal transduction pathways, highlighting current controversies and discrepancies.

  1. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals.

    Science.gov (United States)

    Qiu, Jing; Tan, Yan-Wei; Hagenston, Anna M; Martel, Marc-Andre; Kneisel, Niclas; Skehel, Paul A; Wyllie, David J A; Bading, Hilmar; Hardingham, Giles E

    2013-01-01

    The recent identification of the mitochondrial Ca(2+) uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca(2+) uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca(2+) levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca(2+), resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca(2+) overload when cytoplasmic Ca(2+) levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca(2+) and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca(2+) uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders.

  2. Molecular characterization and population structure of the honeybees from the balearic islands (Spain)

    OpenAIRE

    De la Rúa, Pilar; Galián, José; Serrano, José; Moritz, R.

    2001-01-01

    International audience Honeybees (Apis mellifera L.) were collected from 23 localities on the Balearic islands in the Mediterranean Sea. The mitochondrial genome (mtDNA) was surveyed for diagnostic restriction sites and characterized with DraI digestion of the tRNA$^{{\\rm leu}}$-COII intergenic region. Both approaches demonstrated that honeybees bearing either African or west European haplotypes coexist on the Balearic islands. Two African and two west European haplotypes were found with d...

  3. A specific isoform of poly(ADP-ribose) glycohydrolase is targeted to the mitochondrial matrix by a N-terminal mitochondrial targeting sequence

    Energy Technology Data Exchange (ETDEWEB)

    Whatcott, Clifford J. [Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85728 (United States); Meyer-Ficca, Mirella L.; Meyer, Ralph G. [Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, NBC Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania, Kennett Square, PA 19348 (United States); Jacobson, Myron K., E-mail: mjacobson@pharmacy.arizona.edu [Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ 85728 (United States)

    2009-12-10

    Poly(ADP-ribose) polymerases (PARPs) convert NAD to polymers of ADP-ribose that are converted to free ADP-ribose by poly(ADP-ribose) glycohydrolase (PARG). The activation of the nuclear enzyme PARP-1 following genotoxic stress has been linked to release of apoptosis inducing factor from the mitochondria, but the mechanisms by which signals are transmitted between nuclear and mitochondrial compartments are not well understood. The study reported here has examined the relationship between PARG and mitochondria in HeLa cells. Endogenous PARG associated with the mitochondrial fraction migrated in the range of 60 kDa. Transient transfection of cells with PARG expression constructs with amino acids encoded by exon 4 at the N-terminus was targeted to the mitochondria as demonstrated by subcellular fractionation and immunofluorescence microscopy of whole cells. Deletion and missense mutants allowed identification of a canonical N-terminal mitochondrial targeting sequence consisting of the first 16 amino acids encoded by PARG exon 4. Sub-mitochondrial localization experiments indicate that this mitochondrial PARG isoform is targeted to the mitochondrial matrix. The identification of a PARG isoform as a component of the mitochondrial matrix raises several interesting possibilities concerning mechanisms of nuclear-mitochondrial cross talk involved in regulation of cell death pathways.

  4. Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials

    Science.gov (United States)

    Lopour, Beth A.; Staba, Richard J.; Stern, John M.; Fried, Itzhak; Ringach, Dario L.

    2016-04-01

    Objective. Quantifying the relationship between microelectrode-recorded multi-unit activity (MUA) and local field potentials (LFPs) in distinct brain regions can provide detailed information on the extent of functional connectivity in spatially widespread networks. These methods are common in studies of cognition using non-human animal models, but are rare in humans. Here we applied a neuronal spike-triggered impulse response to electrophysiological recordings from the human epileptic brain for the first time, and we evaluate functional connectivity in relation to brain areas supporting the generation of seizures. Approach. Broadband interictal electrophysiological data were recorded from microwires adapted to clinical depth electrodes that were implanted bilaterally using stereotactic techniques in six presurgical patients with medically refractory epilepsy. MUA and LFPs were isolated in each microwire, and we calculated the impulse response between the MUA on one microwire and the LFPs on a second microwire for all possible MUA/LFP pairs. Results were compared to clinical seizure localization, including sites of seizure onset and interictal epileptiform discharges. Main results. We detected significant interictal long-range functional connections in each subject, in some cases across hemispheres. Results were consistent between two independent datasets, and the timing and location of significant impulse responses reflected anatomical connectivity. However, within individual subjects, the spatial distribution of impulse responses was unique. In two subjects with clear seizure localization and successful surgery, the epileptogenic zone was associated with significant impulse responses. Significance. The results suggest that the spike-triggered impulse response can provide valuable information about the neuronal networks that contribute to seizures using only interictal data. This technique will enable testing of specific hypotheses regarding functional connectivity

  5. Molecular characterization of five new S alleles associated with self-incompatibility in local Spanish almond cultivars

    OpenAIRE

    Kodad, Ossama; Sánchez, A.; Saibo, N.; M. M. Oliveira; Socias i Company, Rafel

    2011-01-01

    Almond is a highly heterozygous species with a high number of S-alleles controlling its gametophytic self-incompatibility system (GSI). In this work we have analysed Spanish local almond cultivars for S-RNase allele diversity. By cloning and sequencing five new S-RNase alleles were identified: S31 (804 bp) in 'Pou de Felanitx' and 'Totsol', S32 (855 bp) in 'Taiatona', S33 (1165 bp) in 'Pou d'Establiments' and 'Muel', S34 (1663 bp) in 'Pané-Barquets', and S35 (1658 bp) in 'Planeta de les Garri...

  6. Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis

    Directory of Open Access Journals (Sweden)

    Rençber S

    2016-06-01

    Full Text Available Seda Rençber,1 Sinem Yaprak Karavana,1 Fethiye Ferda Yilmaz,2 Bayri Eraç,2 Merve Nenni,3 Seda Özbal,4 Çetin Pekçetin,4 Hande Gurer-Orhan,3 Mine Hoşgör Limoncu,2 Pelin Güneri,5 Gökhan Ertan11Faculty of Pharmacy, Department of Pharmaceutical Technology, 2Department of Pharmaceutical Microbiology, 3Department of Pharmaceutical Toxicology, Ege University, Bornova, Turkey; 4Department of Histology and Embryology, School of Medicine, Dokuz Eylul University, Inciralti, Turkey; 5Faculty of Dentistry, Department of Oral Diagnosis and Radiology, Ege University, Bornova, TurkeyAbstract: This study aimed to develop a suitable buccal mucoadhesive nanoparticle (NP formulation containing fluconazole for the local treatment of oral candidiasis. The suitability of the prepared formulations was assessed by means of particle size (PS, polydispersity index, and zeta potential measurements, morphology analysis, mucoadhesion studies, drug entrapment efficiency (EE, in vitro drug release, and stability studies. Based on the optimum NP formulation, ex vivo drug diffusion and in vitro cytotoxicity studies were performed. Besides, evaluation of the antifungal effect of the optimum formulation was evaluated using agar diffusion method, fungicidal activity-related in vitro release study, and time-dependent fungicidal activity. The effect of the optimum NP formulation on the healing of oral candidiasis was investigated in an animal model, which was employed for the first time in this study. The zeta potential, mucoadhesion, and in vitro drug release studies of various NP formulations revealed that chitosan-coated NP formulation containing EUDRAGIT® RS 2.5% had superior properties than other formulations. Concerning the stability study of the selected formulation, the formulation was found to be stable for 6 months. During the ex vivo drug diffusion study, no drug was found in receptor phase, and this is an indication of local effect. The in vitro antifungal

  7. Characterization, sub-cellular localization and expression profiling of the isoprenylcysteine methylesterase gene family in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Ma Wujun

    2010-09-01

    Full Text Available Abstract Background Isoprenylcysteine methylesterases (ICME demethylate prenylated protein in eukaryotic cell. Until now, knowledge about their molecular information, localization and expression pattern is largely unavailable in plant species. One ICME in Arabidopsis, encoded by At5g15860, has been identified recently. Over-expression of At5g15860 caused an ABA hypersensitive phenotype in transgenic Arabidopsis plants, indicating that it functions as a positive regulator of ABA signaling. Moreover, ABA induced the expression of this gene in Arabidopsis seedlings. The current study extends these findings by examining the sub-cellular localization, expression profiling, and physiological functions of ICME and two other ICME-like proteins, ICME-LIKE1 and ICME-LIKE2, which were encoded by two related genes At1g26120 and At3g02410, respectively. Results Bioinformatics investigations showed that the ICME and other two ICME-like homologs comprise a small subfamily of carboxylesterase (EC 3.1.1.1 in Arabidopsis. Sub-cellular localization of GFP tagged ICME and its homologs showed that the ICME and ICME-like proteins are intramembrane proteins predominantly localizing in the endoplasmic reticulum (ER and Golgi apparatus. Semi-quantitative and real-time quantitative PCR revealed that the ICME and ICME-like genes are expressed in all examined tissues, including roots, rosette leaves, cauline leaves, stems, flowers, and siliques, with differential expression levels. Within the gene family, the base transcript abundance of ICME-LIKE2 gene is very low with higher expression in reproductive organs (flowers and siliques. Time-course analysis uncovered that both ICME and ICME-like genes are up-regulated by mannitol, NaCl and ABA treatment, with ICME showing the highest level of up-regulation by these treatments. Heat stress resulted in up-regulation of the ICME gene significantly but down-regulation of the ICME-LIKE1 and ICME-LIKE2 genes. Cold and dehydration

  8. Characterization and overexpression of the Lactococcus lactis pepN gene and localization of its product, aminopeptidase N.

    OpenAIRE

    van Alen-Boerrigter, I J; Baankreis, R; de Vos, W M

    1991-01-01

    The chromosomal pepN gene encoding lysyl-aminopeptidase activity in Lactococcus lactis has been identified in a lambda EMBL3 library in Escherichia coli by using an immunological screening with antiserum against a purified aminopeptidase fraction. The pepN gene was localized and subcloned in E. coli on the basis of its expression and hybridization to a mixed-oligonucleotide probe for the previously determine N-terminal amino acid sequence of lysyl-aminopeptidase (P. S. T. Tan and W. N. Koning...

  9. A Targetable Fluorescent Sensor Reveals that Copper-Deficient SCO1 and SCO2 Patient Cells Prioritize Mitochondrial Copper Homeostasis

    OpenAIRE

    Dodani, Sheel C.; Leary, Scot C.; Cobine, Paul A.; Winge, Dennis R; Chang, Christopher J.

    2011-01-01

    We present the design, synthesis, spectroscopy, and biological applications of Mitochondrial Coppersensor-1 (Mito-CS1), a new type of targetable fluorescent sensor for imaging exchangeable mitochondrial copper pools in living cells. Mito-CS1 is a bifunctional reporter that combines a Cu+-responsive fluorescent platform with a mitochondrial-targeting triphenylphosphonium moiety for localizing the probe to this organelle. Molecular imaging with Mito-CS1 establishes that this new chemical tool c...

  10. MoDnm1 Dynamin Mediating Peroxisomal and Mitochondrial Fission in Complex with MoFis1 and MoMdv1 Is Important for Development of Functional Appressorium in Magnaporthe oryzae

    Science.gov (United States)

    Zhong, Kaili; Li, Xiao; Le, Xinyi; Kong, Xiangyi; Zhang, Haifeng; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2016-01-01

    Dynamins are large superfamily GTPase proteins that are involved in various cellular processes including budding of transport vesicles, division of organelles, cytokinesis, and pathogen resistance. Here, we characterized several dynamin-related proteins from the rice blast fungus Magnaporthe oryzae and found that MoDnm1 is required for normal functions, including vegetative growth, conidiogenesis, and full pathogenicity. In addition, we found that MoDnm1 co-localizes with peroxisomes and mitochondria, which is consistent with the conserved role of dynamin proteins. Importantly, MoDnm1-dependent peroxisomal and mitochondrial fission involves functions of mitochondrial fission protein MoFis1 and WD-40 repeat protein MoMdv1. These two proteins display similar cellular functions and subcellular localizations as MoDnm1, and are also required for full pathogenicity. Further studies showed that MoDnm1, MoFis1 and MoMdv1 are in complex to regulate not only peroxisomal and mitochondrial fission, pexophagy and mitophagy progression, but also appressorium function and host penetration. In summary, our studies provide new insights into how MoDnm1 interacts with its partner proteins to mediate peroxisomal and mitochondrial functions and how such regulatory events may link to differentiation and pathogenicity in the rice blast fungus. PMID:27556292

  11. MoDnm1 Dynamin Mediating Peroxisomal and Mitochondrial Fission in Complex with MoFis1 and MoMdv1 Is Important for Development of Functional Appressorium in Magnaporthe oryzae.

    Science.gov (United States)

    Zhong, Kaili; Li, Xiao; Le, Xinyi; Kong, Xiangyi; Zhang, Haifeng; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2016-08-01

    Dynamins are large superfamily GTPase proteins that are involved in various cellular processes including budding of transport vesicles, division of organelles, cytokinesis, and pathogen resistance. Here, we characterized several dynamin-related proteins from the rice blast fungus Magnaporthe oryzae and found that MoDnm1 is required for normal functions, including vegetative growth, conidiogenesis, and full pathogenicity. In addition, we found that MoDnm1 co-localizes with peroxisomes and mitochondria, which is consistent with the conserved role of dynamin proteins. Importantly, MoDnm1-dependent peroxisomal and mitochondrial fission involves functions of mitochondrial fission protein MoFis1 and WD-40 repeat protein MoMdv1. These two proteins display similar cellular functions and subcellular localizations as MoDnm1, and are also required for full pathogenicity. Further studies showed that MoDnm1, MoFis1 and MoMdv1 are in complex to regulate not only peroxisomal and mitochondrial fission, pexophagy and mitophagy progression, but also appressorium function and host penetration. In summary, our studies provide new insights into how MoDnm1 interacts with its partner proteins to mediate peroxisomal and mitochondrial functions and how such regulatory events may link to differentiation and pathogenicity in the rice blast fungus. PMID:27556292

  12. Mitochondrial dysfunction in heart failure.

    Science.gov (United States)

    Rosca, Mariana G; Hoppel, Charles L

    2013-09-01

    Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF, several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin-angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cyclic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction.

  13. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress.

    Science.gov (United States)

    Picard, Martin; McManus, Meagan J; Gray, Jason D; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K; Seifert, Erin L; McEwen, Bruce S; Wallace, Douglas C

    2015-12-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism's multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic-pituitary-adrenal axis, sympathetic adrenal-medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  14. Systematic Site Characterization at Seismic Stations combined with Empirical Spectral Modeling: critical data for local hazard analysis

    Science.gov (United States)

    Michel, Clotaire; Hobiger, Manuel; Edwards, Benjamin; Poggi, Valerio; Burjanek, Jan; Cauzzi, Carlo; Kästli, Philipp; Fäh, Donat

    2016-04-01

    The Swiss Seismological Service operates one of the densest national seismic networks in the world, still rapidly expanding (see http://www.seismo.ethz.ch/monitor/index_EN). Since 2009, every newly instrumented site is characterized following an established procedure to derive realistic 1D VS velocity profiles. In addition, empirical Fourier spectral modeling is performed on the whole network for each recorded event with sufficient signal-to-noise ratio. Besides the source characteristics of the earthquakes, statistical real time analyses of the residuals of the spectral modeling provide a seamlessly updated amplification function w.r. to Swiss rock conditions at every station. Our site characterization procedure is mainly based on the analysis of surface waves from passive experiments and includes cross-checks of the derived amplification functions with those obtained through spectral modeling. The systematic use of three component surface-wave analysis, allowing the derivation of both Rayleigh and Love waves dispersion curves, also contributes to the improved quality of the retrieved profiles. The results of site characterisation activities at recently installed strong-motion stations depict the large variety of possible effects of surface geology on ground motion in the Alpine context. Such effects range from de-amplification at hard-rock sites to amplification up to a factor of 15 in lacustrine sediments with respect to the Swiss reference rock velocity model. The derived velocity profiles are shown to reproduce observed amplification functions from empirical spectral modeling. Although many sites are found to exhibit 1D behavior, our procedure allows the detection and qualification of 2D and 3D effects. All data collected during the site characterization procedures in the last 20 years are gathered in a database, implementing a data model proposed for community use at the European scale through NERA and EPOS (www.epos-eu.org). A web stationbook derived from it

  15. Scanning capacitance microscopy and spectroscopy applied to local charge modifications and characterization of nitride-oxide-silicon heterostructures

    Science.gov (United States)

    Dreyer, M.; Wiesendanger, R.

    1995-10-01

    We have combined a home-built capacitance sensor with a commercial scanning force microscope to obtain a Scanning Capacitance Microscope (SCM). The SCM has been used to study Nitride-Oxide-Silicon (NOS) heterostructures which offer potential applications in charge storage technology. Charge writing and reading on a submicrometer scale is demonstrated with our SCM setup. In addition, SCM appears to be very useful for the characterization of subsurface defects in semiconductor devices which are inaccessible by most of the other scanning probe microscopies. Finally, we introduce a novel spectroscopic mode of SCM operation which offers combined voltage-dependent and spatially resolved information about inhomogeneous charge distributions in semiconductor devices.

  16. Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy ☆

    OpenAIRE

    Gasiorowski, Jacek; Mardare, Andrei Ionut; Sariciftci, Niyazi Serdar; Hassel, Achim Walter

    2013-01-01

    The electrochemical oxidation of a next generation low bandgap high performance photovoltaic material namely poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b] thiophene-2,6-diyl] (PBDTTT-c) thin film was investigated using a scanning droplet cell microscope. Cyclic voltammetry was used for the basic characterization of the oxidation/doping of PBDTTT-c. Application of the different final potentials during the electrochemical study provides a close...

  17. Oxidative stress, mitochondrial dysfunction and the mitochondria theory of aging.

    Science.gov (United States)

    Kong, Yahui; Trabucco, Sally E; Zhang, Hong

    2014-01-01

    Aging is characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-associated diseases and death. One potential cause of aging is the progressive accumulation of dysfunctional mitochondria and oxidative damage with age. Considerable efforts have been made in our understanding of the role of mitochondrial dysfunction and oxidative stress in aging and age-associated diseases. This chapter outlines the interplay between oxidative stress and mitochondrial dysfunction, and discusses their impact on senescence, cell death, stem cell function, age-associated diseases and longevity.

  18. Complete mitochondrial genome of Sinovipera sichuanensis (Reptilia: Squamata: Viperidae).

    Science.gov (United States)

    Zhu, Fei; Liu, Qin; Zhong, Guanghui; Xiao, Rong; Fang, Min; Guo, Peng

    2016-09-01

    Sinovipera sichuanensis is one of the Asian green pit vipers with less concern. It is endemic to China and only known in Hejiang, Sichuan Province and Jiangkou, Guizhou Province. In this study, we report the complete mitochondrial genome and characterize each partition. The complete mitochondrial genome is 17 225 bp in length containing 2 rRNAs, 13 protein-coding genes, 2 control regions and 22 tRNAs. We use Bayesian Inference (BI) and Maximum Likelihood (ML) methods to infer the phylogenetic relationship of S. sichuanensis. Both BI and ML analyses strongly support that S. sichuanensis is independent from the other two Asian green pit vipers. PMID:26406352

  19. Identification and characterization of a nuclear localization signal of TRIM28 that overlaps with the HP1 box

    International Nuclear Information System (INIS)

    Tripartite motif-containing 28 (TRIM28) is a transcription regulator, which forms a repressor complex containing heterochromatin protein 1 (HP1). Here, we report identification of a nuclear localization signal (NLS) within the 462-494 amino acid region of TRIM28 that overlaps with its HP1 binding site, HP1 box. GST-pulldown experiments revealed the interaction of the arginine-rich TRIM28 NLS with various importin α subtypes (α1, α2 and α4). In vitro transport assay demonstrated that nuclear localization of GFP-TRIM28 NLS is mediated by importin αs, in conjunction with importin β1 and Ran. Further, we demonstrated that HP1 and importin αs compete for binding to TRIM28. Together, our findings suggest that importin α has an essential role in the nuclear delivery and preferential HP1 interaction of TRIM28. - Highlights: • TRIM28 contains an NLS within the 462-494 amino acid region. • The nuclear import of TRIM28 is mediated by importin α/importin β1. • TRIM28 NLS overlaps with HP1 Box. • HP1 and importin α compete for binding to TRIM28

  20. Identification and characterization of a nuclear localization signal of TRIM28 that overlaps with the HP1 box

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Tetsuji; Sangel, Percival [Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085 (Japan); Yamaguchi, Hiroki [School of Medicine, Osaka University, Osaka 565-0871 (Japan); Obuse, Chikashi [Graduate School of Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Miyamoto, Yoichi [Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085 (Japan); Oka, Masahiro, E-mail: moka@nibiohn.go.jp [Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085 (Japan); Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 (Japan); Yoneda, Yoshihiro, E-mail: y-yoneda@nibiohn.go.jp [National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085 (Japan); Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 (Japan)

    2015-07-03

    Tripartite motif-containing 28 (TRIM28) is a transcription regulator, which forms a repressor complex containing heterochromatin protein 1 (HP1). Here, we report identification of a nuclear localization signal (NLS) within the 462-494 amino acid region of TRIM28 that overlaps with its HP1 binding site, HP1 box. GST-pulldown experiments revealed the interaction of the arginine-rich TRIM28 NLS with various importin α subtypes (α1, α2 and α4). In vitro transport assay demonstrated that nuclear localization of GFP-TRIM28 NLS is mediated by importin αs, in conjunction with importin β1 and Ran. Further, we demonstrated that HP1 and importin αs compete for binding to TRIM28. Together, our findings suggest that importin α has an essential role in the nuclear delivery and preferential HP1 interaction of TRIM28. - Highlights: • TRIM28 contains an NLS within the 462-494 amino acid region. • The nuclear import of TRIM28 is mediated by importin α/importin β1. • TRIM28 NLS overlaps with HP1 Box. • HP1 and importin α compete for binding to TRIM28.

  1. Evaluation of local energy densities in disturbed flow: A new approach to characterize inhibitor efficiencies to mitigate erosion corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, G.; Werner, C. [Laboratory for Corrosion Protection, Iserlohn University of Applied Sciences, Frauenstuhlweg 31, D-58644 Iserlohn (Germany); Bakalli, M. [Institute for Technical Chemistry and Macromolecular Chemistry, Aachen University of Technology, Worringer Weg 1, D-52056 Aachen (Germany)

    2004-07-01

    Electrochemical current noise has been measured at microelectrodes under conditions of mass transport control in order to quantify local flow intensities in terms of wall shear stresses in disturbed flow, e.g. jet impingement or horizontal slug flow. Analysis of the noise data using Wavelet transform yields not only local flow intensities in the frequency-amplitude-time domain but allows also to quantify maximum interaction energies between the flowing liquid and the solid wall. This is done using a similar 'phasing' algorithm as applied to simulate oceanic freak waves. Such freak energy densities at the viscous sublayer have been quantified and allow for the first time realistic correlations between flow intensities and fracture stresses of protective scales. The near-wall freak energy densities can be damped significantly by adding surface active compounds at concentrations above the critical micelle concentration. The additive effect cannot be explained by surface adsorption but can be related to interactions of supramolecular aggregates (e.g. micelles) with near-wall micro-turbulences affecting the near-wall fluid dynamic properties. The model is exemplified with the quantification of maximum (freak) energy densities encountered in jet impingement flow and horizontal slug flow. (authors)

  2. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  3. Respiratory active mitochondrial supercomplexes.

    Science.gov (United States)

    Acín-Pérez, Rebeca; Fernández-Silva, Patricio; Peleato, Maria Luisa; Pérez-Martos, Acisclo; Enriquez, Jose Antonio

    2008-11-21

    The structural organization of the mitochondrial respiratory complexes as four big independently moving entities connected by the mobile carriers CoQ and cytochrome c has been challenged recently. Blue native gel electrophoresis reveals the presence of high-molecular-weight bands containing several respiratory complexes and suggesting an in vivo assembly status of these structures (respirasomes). However, no functional evidence of the activity of supercomplexes as true respirasomes has been provided yet. We have observed that (1) supercomplexes are not formed when one of their component complexes is absent; (2) there is a temporal gap between the formation of the individual complexes and that of the supercomplexes; (3) some putative respirasomes contain CoQ and cytochrome c; (4) isolated respirasomes can transfer electrons from NADH to O(2), that is, they respire. Therefore, we have demonstrated the existence of a functional respirasome and propose a structural organization model that accommodates these findings.

  4. Abnormal mitochondrial L-arginine transport contributes to the pathogenesis of heart failure and rexoygenation injury.

    Directory of Open Access Journals (Sweden)

    David Williams

    Full Text Available BACKGROUND: Impaired mitochondrial function is fundamental feature of heart failure (HF and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. METHODS AND RESULTS: In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01 compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05. The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1 exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. CONCLUSION: These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury.

  5. Abnormal Mitochondrial L-Arginine Transport Contributes to the Pathogenesis of Heart Failure and Rexoygenation Injury

    Science.gov (United States)

    Byrne, Melissa; Joshi, Mandar; Horlock, Duncan; Lam, Nicholas T.; Gregorevic, Paul; McGee, Sean L.; Kaye, David M.

    2014-01-01

    Background Impaired mitochondrial function is fundamental feature of heart failure (HF) and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO) metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. Methods and Results In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model) we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively) and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01) compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05). The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1) exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. Conclusion These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury. PMID:25111602

  6. Influence of RNA interference on the mitochondrial subcellular localization of alpha-synuclein and on the formation of Lewy body-like inclusions in the cytoplasm of human embryonic kidney 293 cells induced by the overexpression of alpha- synuclein

    Institute of Scientific and Technical Information of China (English)

    Tao Chen; Xiaoping Liao; Guoqiang Wen; Yidong Deng; Min Guo; Zhigang Long; Feng Ouyang

    2012-01-01

    The specific and effective α-synuclein RNA interference (RNAi) plasmids, and the α-synuclein-pEGFP recombinant plasmids were co-transfected into human embryonic kidney 293 (HEK293) cells using the lipofectamine method. Using an inverted fluorescence microscope, α-synuclein proteins were observed to aggregate in the cytoplasm and nucleus. Wild-type α-synuclein proteins co-localized with mitochondria. Hematoxylin-eosin staining revealed round eosinophilic bodies (Lewy body-like inclusions) in the cytoplasm of some cells transfected with α-synuclein-pEGFP plasmid. However, the formation of Lewy body-like inclusions was not observed following transfection with the RNAi pSYN-1 plasmid. RNAi blocked Lewy body-like inclusions in the cytoplasm of HEK293 cells induced by wild-type α-synuclein overexpression, but RNAi did not affect the subcellular localization of wild-type α-synuclein in mitochondria.

  7. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper;

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  8. Characterization of duodenal expression and localization of fatty acid-sensing receptors in humans: relationships with body mass index.

    Science.gov (United States)

    Little, Tanya J; Isaacs, Nicole J; Young, Richard L; Ott, Raffael; Nguyen, Nam Q; Rayner, Christopher K; Horowitz, Michael; Feinle-Bisset, Christine

    2014-11-15

    Fatty acids (FAs) stimulate the secretion of gastrointestinal hormones, including cholecystokinin (CCK) and glucagon like peptide-1 (GLP-1), which suppress energy intake. In obesity, gastrointestinal responses to FAs are attenuated. Recent studies have identified a key role for the FA-sensing receptors cluster of differentiation (CD)36, G protein-coupled receptor (GPR)40, GPR120, and GPR119 in mediating gastrointestinal hormone secretion. This study aimed to determine the expression and localization of these receptors in the duodenum of humans and to examine relationships with obesity. Duodenal mucosal biopsies were collected from nine lean [body mass index (BMI): 22 ± 1 kg/m2], six overweight (BMI: 28 ± 1 kg/m2), and seven obese (BMI: 49 ± 5 kg/m2) participants. Absolute levels of receptor transcripts were quantified using RT-PCR, while immunohistochemistry was used for localization. Transcripts were expressed in the duodenum of lean, overweight, and obese individuals with abundance of CD36>GPR40>GPR120>GPR119. Expression levels of GPR120 (r = 0.46, P = 0.03) and CD36 (r = 0.69, P = 0.0004) were directly correlated with BMI. There was an inverse correlation between expression of GPR119 with BMI (r2 = 0.26, P = 0.016). Immunolabeling studies localized CD36 to the brush border membrane of the duodenal mucosa and GPR40, GPR120, and GPR119 to enteroendocrine cells. The number of cells immunolabeled with CCK (r = -0.54, P = 0.03) and GLP-1 (r = -0.49, P = 0.045) was inversely correlated with BMI, such that duodenal CCK and GLP-1 cell density decreased with increasing BMI. In conclusion, CD36, GPR40, GPR120, and GPR119 are expressed in the human duodenum. Transcript levels of duodenal FA receptors and enteroendocrine cell density are altered with increasing BMI, suggesting that these changes may underlie decreased gastrointestinal hormone responses to fat and impaired energy intake regulation in obesity. PMID:25258406

  9. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions

    OpenAIRE

    Tadi, Satish Kumar; Sebastian, Robin; Dahal, Sumedha; Babu, Ravi K.; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized....

  10. Characterization of atmospheric aerosols in Ile-de-France: Local contribution and Long range transport; Caracteisation des aeosols atmospheiques en Ile-de-France: contribution locale et transport a longues distances

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta, J.E

    2006-06-15

    Atmospheric aerosols interact directly in a great number of processes related to climate change and public health, modifying the energy budget and partly determining the quality of the air we breathe. In my PhD, I chose to study the perturbation, if not the aggravation, of the living conditions in Ile-de-France associated to aerosol transport episodes in the free troposphere. This situation is rather frequent and still badly known. To achieve my study, I developed the observation platform 'TReSS' Transportable Remote Sensing Station, whose instruments were developed at the Laboratoire de Meteorology Dynamique by the LiMAG team. 'TReSS' consists of a new high-performance 'Mini-Lidar' and of two standard radiometers: a sun photometer and a thermal infrared radiometer. The principle of my experimental approach is the synergy of the vertical Lidar profiles and the particle size distributions over the column, obtained by the 'Almucantar' inversion of sun photometer data. The new 'Lidar and Almucantar' method characterizes the vertical distribution by layer and the optical micro-physical properties of the local and transported aerosols. Firstly, I undertook the characterization of the Paris aerosol, mainly of anthropogenic origin. Their radiative properties were analyzed in the daily and yearly scales. Then, I conducted a statistical multi-year study of transport episodes and a two-week study case, representative of a succession of desert dust intrusion in Ile-de-France. My PhD work concludes by a study on the impact of biomass burning aerosols during the heat wave on August 2003. I study the impact of the transported aerosols into the local radiative budget and the possible consequences on the diurnal cycle of the atmospheric boundary layer. (author)

  11. Mitochondrial Stress: A Bridge between Mitochondrial Dysfunction and Metabolic Diseases?

    OpenAIRE

    Hu, Fang; Liu, Feng

    2011-01-01

    Under pathophysiological conditions such as obesity, excessive oxidation of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPRmt) and initiation of a retrograde stress signaling pathway. Defects in the UPRmt and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective a...

  12. Characterization and interpretation of the Edge Snake in between type-I edge localized modes at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, F; Guenter, S; Kallenbach, A; Maraschek, M; Boom, J; Fischer, R; Hicks, N; Reiter, B; Wolfrum, E [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching, EURATOM Association (Germany); Luhmann, N C Jr [University of California at Davis, Davis, CA 95616 (United States); Park, H K [POSTECH, Pahang, Gyeongbuk 790-784 (Korea, Republic of); Wenninger, R, E-mail: fabian.sommer@ipp.mpg.de [Universitaetssternwarte der Ludwig-Maximilians-Universitaet, D-81679 Muenchen (Germany)

    2011-08-15

    A new magnetohydrodynamic instability called the 'Edge Snake', which was found in 2006 at the tokamak ASDEX Upgrade during type-I ELMy H-modes, is investigated. It is located within the separatrix in the region of high temperature and density gradients and has a toroidal mode number of n = 1. The Edge Snake consists of a radially and poloidally strongly localized current wire, in which the temperature and density profiles flatten. This significant reduction in pressure gradient leads to a reduction in the neoclassical Bootstrap current and can plausibly explain the drive of the instability. The experimental observations point towards a magnetic island with a defect current inside the O-point of the island. The Edge Snake is compared with similar instabilities at JET, DIII-D and ASDEX Upgrade.

  13. Characterization and sub-cellular localization of GalNAc-binding proteins isolated from human hepatic stellate cells.

    Science.gov (United States)

    Zhong, Yaogang; Zhang, Jing; Yu, Hanjie; Zhang, Jiaxu; Sun, Xiu-Xuan; Chen, Wentian; Bian, Huijie; Li, Zheng

    2015-12-25

    Although the expression levels of total GalNAc-binding proteins (GNBPs) were up-regulated significantly in human hepatic stellate cells (HSCs) activated with transforming growth factor-β1(TGF-β1), yet little is known about the precise types, distribution and sub-cellular localization of the GNBPs in HSCs. Here, 264 GNBPs from the activated HSCs and 257 GNBPs from the quiescent HSCs were identified and annotated. A total of 46 GNBPs were estimated to be significantly up-regulated and 40 GNBPs were estimated to be significantly down-regulated in the activated HSCs. For example, the GNBPs (i.e. BTF3, COX17, and ATP5A1) responsible for the regulation of protein binding were up-regulated, and those (i.e. FAM114A1, ENO3, and TKT) responsible for the regulation of protein binding were down-regulated in the activated HSCs. The motifs of the isolated GNBPs showed that Proline residue had the maximum preference in consensus sequences. The western blotting showed the expression levels of COX17, and PRMT1 were significantly up-regulated, while, the expression level of CLIC1(B5) was down-regulated in the activated HSCs and liver cirrhosis tissues. Moreover, the GNBPs were sub-localized in the Golgi apparatus of HSCs. In conclusion, the precision alteration of the GNBPs referred to pathological changes in liver fibrosis/cirrhosis may provide useful information to find new molecular mechanism of HSC activation and discover the biomarkers for diagnosis of liver fibrosis/cirrhosis as well as development of new anti-fibrotic strategies.

  14. Investigation of hydrodynamic parameters in a novel expanded bed configuration: local axial dispersion characterization and an empirical correlation study

    Directory of Open Access Journals (Sweden)

    E. S. Taheri

    2012-12-01

    Full Text Available Study of liquid behavior in an expanded bed adsorption (EBA system is important for understanding, modeling and predicting nanobioproduct/biomolecule adsorption performance in such processes. In this work, in order to analyze the local axial dispersion parameters, simple custom NBG (Nano Biotechnology Group expanded bed columns with 10 and 26 mm inner diameter were modified by insertion of sampling holes. Based on this configuration, the particles and liquid can be withdrawn directly from various axial positions of the columns. Streamline DEAE particles were used as solid phase in this work. The effects of factors such as liquid velocity, viscosity, settled bed height and column diameter on the hydrodynamic parameters were investigated. Local bed voidages in different axial bed positions were measured by a direct procedure within the column with 26 mm diameter. Increasing trend of voidage with velocity at a certain position of the bed and with bed height at a certain degree of expansion was observed. Residence time distribution (RTD analysis at various bed points showed approximately uniform hydrodynamic behavior in the column with 10 mm diameter while a decreasing trend of mixing/dispersion along the bed height at a certain degree of expansion was seen in the column with 26 mm diameter. Also lower mixing/dispersion occured in the smaller diameter column. Finally, a combination of two empirical correlations proposed by Richardson-Zaki and Tong-Sun was successfully employed for identification of the bed voidage at various bed heights (RSSE=99.9%. Among the empirical correlations presented in the literatures for variation of the axial dispersion coefficient, the Yun correlation gave good agreement with our experimental data (RSSE=87% in this column.

  15. Paclitaxel loaded biodegradable poly (sebacic acid-co-ricinoleic acid cylindrical implants for local delivery-in vitro characterization

    Directory of Open Access Journals (Sweden)

    Jagadeesh G Hiremath

    2013-01-01

    Full Text Available The aim of the present research work was to develop the biodegradable polymeric implant for the delivery of antineoplastic drug, paclitaxel (PTX using poly (sebacic-co-recinoleic acid 70:30 w/w. PTX loaded implants were prepared by indigenously developed melt molding technique. Implants were characterized in terms of physico-chemical evaluations, drug content, drug stability and intactness, thermal analysis, drug physical state and crystallinity, surface morphology, hydrolytic degradation, drug release and its kinetics. Prepared implants were yellow and cylindrical in shape with smooth surfaces. Drug in the implants was found to be stable, intact and uniformly dispersed as amorphous state within the polymer matrix. In vitro release, kinetic studies showed zero order and Korsmeyer-Peppas model release being exhibited. Drug release from the polymeric implants was occurred could be as results of diffusion.

  16. Topical tacrolimus and periodontal therapy in the management of a case of oral chronic GVHD characterized by specific gingival localization.

    Science.gov (United States)

    Conrotto, Davide; Broccoletti, Roberto; Carcieri, Paola; Giaccone, Luisa; Arduino, Paolo G

    2014-01-01

    Background. Chronic graft versus host disease (cGVHD) is a complication following bone marrow transplantation. The oral lesions are difficult to control with a systemic pharmacological therapy. Case Description. A 63-year-old female patient, who underwent an allogeniec transplantation for acute myeloid leukemia, developed a chronic oral and cutaneous GVHD. The patient was treated with topical tacrolimus 0.1%, twice daily for two months, and underwent a protocol of oral hygiene characterized by 3 appointments of scaling, root planning, and daily oral hygiene instructions. The patient showed marked resolution of gingival lesions and a significant improvement of related pain and gingival inflammatory indexes. Clinical Implications. This case report suggests that treatment with topical tacrolimus and professional oral hygiene may be helpful in the management of chronic oral GVHD with severe gingival involvement.

  17. Topical Tacrolimus and Periodontal Therapy in the Management of a Case of Oral Chronic GVHD Characterized by Specific Gingival Localization

    Directory of Open Access Journals (Sweden)

    Davide Conrotto

    2014-01-01

    Full Text Available Background. Chronic graft versus host disease (cGVHD is a complication following bone marrow transplantation. The oral lesions are difficult to control with a systemic pharmacological therapy. Case Description. A 63-year-old female patient, who underwent an allogeniec transplantation for acute myeloid leukemia, developed a chronic oral and cutaneous GVHD. The patient was treated with topical tacrolimus 0.1%, twice daily for two months, and underwent a protocol of oral hygiene characterized by 3 appointments of scaling, root planning, and daily oral hygiene instructions. The patient showed marked resolution of gingival lesions and a significant improvement of related pain and gingival inflammatory indexes. Clinical Implications. This case report suggests that treatment with topical tacrolimus and professional oral hygiene may be helpful in the management of chronic oral GVHD with severe gingival involvement.

  18. The Byzantine ceramics from Pergamon excavations. Characterization of local and imported productions by elementary analysis using PIXE and INAA methods and by petrography

    International Nuclear Information System (INIS)

    An important ceramics material dated back to the 12th-14th centuries has been excavated in Pergamon (Turkey). Among these findings, wasters, tripod stilts and unfinished ware attest to local production in the Byzantine period. Elemental analysis by the methods PIXE (Particle Induced X-ray Emission) and INAA (Instrumental Neutron Activation Analysis) has been performed on a representative sampling of 160 sherds, including attested local material. Multivariate statistical techniques were used to classify the sherds into groups of similar composition and thus to distinguish ceramics made in Pergamon from imported wares. Several groups of local production have been constituted, which correspond to wares differing in date and fabric. The geochemical characterization of the pastes, complemented with petrographical and mineralogical data, shows that specific raw materials have been used to manufacture each ware. The analytical data related to ceramics made in Pergamon will serve as reference data for future provenance studies. Such reference groups of Byzantine ceramics are very rare, and therefore the ceramics imported into Pergamon cannot be attributed as to their origin. Among the ceramics widely diffused in the Byzantine world, some importations belonging to the ''fine sgraffito'' and ''Zeuxippus ware'' types have been identified. The latter type has been a source of stylistic influence for the workshops of Pergamon, since the analyses show that imitated ''Zeuxippus ware'' has been produced there. These imitations were probably themselves diffused on a regional scale. (author). 238 refs., 48 figs., 53 tabs., 22 photos., 8 appends

  19. Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter.

    Science.gov (United States)

    Mammucari, Cristina; Raffaello, Anna; Vecellio Reane, Denis; Rizzuto, Rosario

    2016-10-01

    Mitochondrial Ca(2+) uptake regulates a wide array of cell functions, from stimulation of aerobic metabolism and ATP production in physiological settings, to induction of cell death in pathological conditions. The molecular identity of the Mitochondrial Calcium Uniporter (MCU), the highly selective channel responsible for Ca(2+) entry through the IMM, has been described less than five years ago. Since then, research has been conducted to clarify the modulation of its activity, which relies on the dynamic interaction with regulatory proteins, and its contribution to the pathophysiology of organs and tissues. Particular attention has been placed on characterizing the role of MCU in cardiac and skeletal muscles. In this review we summarize the molecular structure and regulation of the MCU complex in addition to its pathophysiological role, with particular attention to striated muscle tissues. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:26968367

  20. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging

    Directory of Open Access Journals (Sweden)

    Lisa Staunton

    2011-01-01

    Full Text Available Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  1. Bioenergetic roles of mitochondrial fusion.

    Science.gov (United States)

    Silva Ramos, Eduardo; Larsson, Nils-Göran; Mourier, Arnaud

    2016-08-01

    Mitochondria are bioenergetic hotspots, producing the bulk of ATP by the oxidative phosphorylation process. Mitochondria are also structurally dynamic and undergo coordinated fusion and fission to maintain their function. Recent studies of the mitochondrial fusion machinery have provided new evidence in detailing their role in mitochondrial metabolism. Remarkably, mitofusin 2, in addition to its role in fusion, is important for maintaining coenzyme Q levels and may be an integral player in the mevalonate synthesis pathway. Here, we review the bioenergetic roles of mitochondrial dynamics and emphasize the importance of the in vitro growth conditions when evaluating mitochondrial respiration. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016,' edited by Prof. Paolo Bernardi. PMID:27060252

  2. Glom is a novel mitochondrial DNA packaging protein in Physarum polycephalum and causes intense chromatin condensation without suppressing DNA functions.

    Science.gov (United States)

    Sasaki, Narie; Kuroiwa, Haruko; Nishitani, Chikako; Takano, Hiroyoshi; Higashiyama, Tetsuya; Kobayashi, Tamaki; Shirai, Yuki; Sakai, Atsushi; Kawano, Shigeyuki; Murakami-Murofushi, Kimiko; Kuroiwa, Tsuneyoshi

    2003-12-01

    Mitochondrial DNA (mtDNA) is packed into highly organized structures called mitochondrial nucleoids (mt-nucleoids). To understand the organization of mtDNA and the overall regulation of its genetic activity within the mt-nucleoids, we identified and characterized a novel mtDNA packaging protein, termed Glom (a protein inducing agglomeration of mitochondrial chromosome), from highly condensed mt-nucleoids of the true slime mold, Physarum polycephalum. This protein could bind to the entire mtDNA and package mtDNA into a highly condensed state in vitro. Immunostaining analysis showed that Glom specifically localized throughout the mt-nucleoid. Deduced amino acid sequence revealed that Glom has a lysine-rich region with proline-rich domain in the N-terminal half and two HMG boxes in C-terminal half. Deletion analysis of Glom revealed that the lysine-rich region was sufficient for the intense mtDNA condensation in vitro. When the recombinant Glom proteins containing the lysine-rich region were expressed in Escherichia coli, the condensed nucleoid structures were observed in E. coli. Such in vivo condensation did not interfere with transcription or replication of E. coli chromosome and the proline-rich domain was essential to keep those genetic activities. The expression of Glom also complemented the E. coli mutant lacking the bacterial histone-like protein HU and the HMG-boxes region of Glom was important for the complementation. Our results suggest that Glom is a new mitochondrial histone-like protein having a property to cause intense DNA condensation without suppressing DNA functions. PMID:12960433

  3. The assembly of mitochondrial complex I : a product of nuclear-mitochondrial synergy

    NARCIS (Netherlands)

    Vogel, Rutger Oscar

    2007-01-01

    Mitochondria are essential to cellular energy production. Embedded in the mitochondrial inner membrane, the engine of the mitochondrial powerhouse is formed by the five enzymatic complexes of the oxidative phosphorylation (OXPHOS) system. Dysfunction of this system results in mitochondrial disease,

  4. Protein kinase B (PKB/AKT1) formed signaling complexes with mitochondrial proteins and prevented glycolytic energy dysfunction in cultured cardiomyocytes during ischemia-reperfusion injury.

    Science.gov (United States)

    Deng, Wu; Leu, Hsin-Bang; Chen, Yumay; Chen, Yu-Han; Epperson, Christine M; Juang, Charity; Wang, Ping H

    2014-05-01

    Our previous studies showed that insulin stimulated AKT1 translocation into mitochondria and modulated oxidative phosphorylation complex V in cardiac muscle. This raised the possibility that mitochondrial AKT1 may regulate glycolytic oxidative phosphorylation and mitochondrial function in cardiac muscle cells. The aims of this project were to study the effects of mitochondrial AKT1 signaling on cell survival in stressed cardiomyocytes, to define the effect of mitochondrial AKT1 signaling on glycolytic bioenergetics, and to identify mitochondrial targets of AKT1 signaling in cardiomyocytes. Mitochondrial AKT1 signaling played a protective role against apoptosis and necrosis during ischemia-reperfusion stress, suppressed mitochondrial calcium overload, and alleviated mitochondrial membrane depolarization. Activation of AKT1 signaling in mitochondria increased glucose uptake, enhanced respiration efficiency, reduced superoxide generation, and increased ATP production in the cardiomyocytes. Inhibition of mitochondrial AKT attenuated insulin response, indicating that insulin regulation of ATP production required mitochondrial AKT1 signaling. A proteomic approach was used to reveal 15 novel targets of AKT1 signaling in mitochondria, including pyruvate dehydrogenase complex (PDC). We have confirmed and characterized the association of AKT1 and PDC subunits and verified a stimulatory effect of mitochondrial AKT1 on the enzymatic activity of PDC. These findings suggested that AKT1 formed protein complexes with multiple mitochondrial proteins and improved mitochondrial function in stressed cardiomyocytes. The novel AKT1 signaling targets in mitochondria may become a resource for future metabolism research.

  5. Mitochondrial haplotypes associated with biomarkers for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    Full Text Available Various studies have suggested that the mitochondrial genome plays a role in late-onset Alzheimer's disease, although results are mixed. We used an endophenotype-based approach to further characterize mitochondrial genetic variation and its relationship to risk markers for Alzheimer's disease. We analyzed longitudinal data from non-demented, mild cognitive impairment, and late-onset Alzheimer's disease participants in the Alzheimer's Disease Neuroimaging Initiative with genetic, brain imaging, and behavioral data. We assessed the relationship of structural MRI and cognitive biomarkers with mitochondrial genome variation using TreeScanning, a haplotype-based approach that concentrates statistical power by analyzing evolutionarily meaningful groups (or clades of haplotypes together for association with a phenotype. Four clades were associated with three different endophenotypes: whole brain volume, percent change in temporal pole thickness, and left hippocampal atrophy over two years. This is the first study of its kind to identify mitochondrial variation associated with brain imaging endophenotypes of Alzheimer's disease. Our results provide additional evidence that the mitochondrial genome plays a role in risk for Alzheimer's disease.

  6. Beta-cell mitochondrial carriers and the diabetogenic stress response.

    Science.gov (United States)

    Brun, Thierry; Maechler, Pierre

    2016-10-01

    Mitochondria play a central role in pancreatic beta-cells by coupling metabolism of the secretagogue glucose to distal events of regulated insulin exocytosis. This process requires transports of both metabolites and nucleotides in and out of the mitochondria. The molecular identification of mitochondrial carriers and their respective contribution to beta-cell function have been uncovered only recently. In type 2 diabetes, mitochondrial dysfunction is an early event and may precipitate beta-cell loss. Under diabetogenic conditions, characterized by glucotoxicity and lipotoxicity, the expression profile of mitochondrial carriers is selectively modified. This review describes the role of mitochondrial carriers in beta-cells and the selective changes in response to glucolipotoxicity. In particular, we discuss the importance of the transfer of metabolites (pyruvate, citrate, malate, and glutamate) and nucleotides (ATP, NADH, NADPH) for beta-cell function and dysfunction. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:26979549

  7. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  8. Mitochondrial calcium uniporter protein MCU is involved in oxidative stress-induced cell death.

    Science.gov (United States)

    Liao, Yajin; Hao, Yumin; Chen, Hong; He, Qing; Yuan, Zengqiang; Cheng, Jinbo

    2015-06-01

    Mitochondrial calcium uniporter (MCU) is a conserved Ca(2+) transporter at mitochondrial in eukaryotic cells. However, the role of MCU protein in oxidative stress-induced cell death remains unclear. Here, we showed that ectopically expressed MCU is mitochondrial localized in both HeLa and primary cerebellar granule neurons (CGNs). Knockdown of endogenous MCU decreases mitochondrial Ca(2+) uptake following histamine stimulation and attenuates cell death induced by oxidative stress in both HeLa cells and CGNs. We also found MCU interacts with VDAC1 and mediates VDAC1 overexpression-induced cell death in CGNs. This finding demonstrates that MCU-VDAC1 complex regulates mitochondrial Ca(2+) uptake and oxidative stress-induced apoptosis, which might represent therapeutic targets for oxidative stress related diseases.

  9. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  10. Mitochondrial transplantation for therapeutic use

    OpenAIRE

    McCully, James Donald; Levitsky, Sidney; del Nido, Pedro J.; Cowan, Douglas Burr

    2016-01-01

    Mitochondria play a key role in the homeostasis of the vast majority of the body’s cells. In the myocardium where mitochondria constitute 30 % of the total myocardial cell volume, temporary attenuation or obstruction of blood flow and as a result oxygen delivery to myocardial cells (ischemia) severely alters mitochondrial structure and function. These alterations in mitochondrial structure and function occur during ischemia and continue after blood flow and oxygen delivery to the myocardium i...

  11. Mitochondrial dysfunction and organophosphorus compounds

    International Nuclear Information System (INIS)

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP

  12. Purification of mitochondrial proteins HSP60 and ATP synthase from ascidian eggs: implications for antibody specificity.

    Directory of Open Access Journals (Sweden)

    Janet Chenevert

    Full Text Available Use of antibodies is a cornerstone of biological studies and it is important to identify the recognized protein with certainty. Generally an antibody is considered specific if it labels a single band of the expected size in the tissue of interest, or has a strong affinity for the antigen produced in a heterologous system. The identity of the antibody target protein is rarely confirmed by purification and sequencing, however in many cases this may be necessary. In this study we sought to characterize the myoplasm, a mitochondria-rich domain present in eggs and segregated into tadpole muscle cells of ascidians (urochordates. The targeted proteins of two antibodies that label the myoplasm were purified using both classic immunoaffinity methods and a novel protein purification scheme based on sequential ion exchange chromatography followed by two-dimensional gel electrophoresis. Surprisingly, mass spectrometry sequencing revealed that in both cases the proteins recognized are unrelated to the original antigens. NN18, a monoclonal antibody which was raised against porcine spinal cord and recognizes the NF-M neurofilament subunit in vertebrates, in fact labels mitochondrial ATP synthase in the ascidian embryo. PMF-C13, an antibody we raised to and purified against PmMRF, which is the MyoD homolog of the ascidian Phallusia mammillata, in fact recognizes mitochondrial HSP60. High resolution immunolabeling on whole embryos and isolated cortices demonstrates localization to the inner mitochondrial membrane for both ATP synthase and HSP60. We discuss the general implications of our results for antibody specificity and the verification methods which can be used to determine unequivocally an antibody's target.

  13. The Star Formation Histories of Local Group Dwarf Galaxies III. Characterizing Quenching in Low-Mass Galaxies

    CERN Document Server

    Weisz, Daniel R; Skillman, Evan D; Holtzman, Jon; Gilbert, Karoline M; Dalcanton, Julianne J; Williams, Benjamin F

    2015-01-01

    We explore the quenching of low-mass galaxies (10^4 < Mstar < 10^8 Msun) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived from analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) Lower mass galaxies quench earlier than higher mass galaxies; (2) Inside of virial radius there is no correlation between a satellite's current proximity to a massive host and its quenching epoch; (3) There are hints of systematic differences in quenching times of M31 and Milky Way (MW) satellites, although the sample sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with literature results, we qualitatively consider the redshift evolution (z=0-1) of the quenched galaxy fraction over ~7 dex in stellar mass (10^4 < Mstar < 10^11.5 Msun). The quenched fraction of all galaxies generally increases to...

  14. EXAFS Characterization of the Local Structure of Fe in Fe-ZSM-5: An Experimental And Theoretical Study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.H.; Wood, B.R.; Ryder, J.A.; Bell, A.T.

    2006-10-25

    The local structure of Fe in Fe-ZSM-5 prepared by solid-state exchange was investigated with EXAFS. Fe K-edge spectra taken at liquid nitrogen temperature of He- and CO-pretreated sample show two main peaks, one at 1.6 {angstrom} and the other at 2.5 {angstrom}. To interpret the origin of these peaks, RSFs were simulated for a number of mono- and di-iron structures obtained from quantum chemical calculations. The peak at 1.6 {angstrom} is clearly identified with scattering from O atoms coordinated to a Fe atom. The peak at 2.5 {angstrom} has been used to argue for the presence of di-iron oxo species. However, the origin of this peak and its interpretation remains an open question. The imaginary part of the Fourier-transformed data for the peak at 2.5 {angstrom} has the same characteristics as that generated theoretically for Fe-Al scattering. This evidence strongly suggests that iron in Fe-ZSM-5 is present as isolated cations in an aluminum framework. Further evidence for such a structure is the absence of any change in the magnitude of the peak at 2.5 {angstrom} with sample treatment.

  15. Molecular cloning and characterization of a surface-localized adhesion protein in Mycoplasma bovis Hubei-1 strain.

    Directory of Open Access Journals (Sweden)

    Xiaohui Zou

    Full Text Available Mycoplasma bovis (M. bovis is an important pathogen that causes various bovine diseases, such as mastitis in cows and pneumonia in calves. The surface proteins are generally thought to play a central role in the pathogenesis of this organism. We screened the entire genome of M. bovis Hubei-1 and discovered a gene named vpmaX that encodes the 25 kDa variable surface lipoprotein A (VpmaX. Sequence analysis revealed that VpmaX contains several repetitive units and a typical bacterial lipoprotein signal sequence. The vpmaX gene was cloned and expressed in E. coli to obtain recombinant VpmaX (rVpmaX. Western blot analysis using a rabbit antibody against rVpmaX demonstrated that VpmaX is a membrane protein. Immunostaining visualized via confocal laser scanning microscopy showed that rVpmaX was able to adhere to embryonic bovine lung cells (EBL, and this was also confirmed by a sandwich ELISA. In summary, a surface-localized adhesion protein was identified in M. bovis Hubei-1.

  16. Bio-Technological Characterization of the Saccharomyces bayanus Yeast Strains in Order to Preserve the Local Specificity

    Directory of Open Access Journals (Sweden)

    Enikő Gaspar

    2011-05-01

    Full Text Available The wine yeasts have multiple and important applications in the industry, aiming to obtain pure cultures and the selection of those strains which, according to the lab investigations, present superior bio-technological properties. In this study we monitored three types of Saccharomyces bayanus yeast strains, isolated from indigenous grapes varieties, Apold Iordana, Italian Blaj Riesling and Royal Feteasca from Jidvei area, which are present in the collection of the Biotechnologies and Microbiology Research Center of SAIAPM University. The yeast strains were subject to alcoholic fermentation in malt must at different temperatures, in the presence of alcohol, sugar and SO2 in various concentrations. The obtained results led to selecting of those strains which had best results regarding the alcoholic tolerance, osmo-tolerance, fermentation speed under stress conditions and resistance to SO2. These results can have practical applications in using the indigenous strains, isolated from grapes which are from inside the country, so that we preserve the local specificity, and reduce imports regarding this area.

  17. Macro-instabilities of the Flow Pattern in a Stirred Vessel: Detection and Characterization Using Local Velocity Data

    Directory of Open Access Journals (Sweden)

    P. Hasal

    2000-01-01

    Full Text Available Velocity data obtained by laser Doppler velocimetry (LDV in a flat-bottomed cylindrical stirred vessel (diameter: 300 mm, filling height: 300 mm, working liquids: water and aqueous glycerine, impeller Reynolds number values (ReM: 750, 1200 and 75000 equipped with four radial baffles and stirred with a pitched blade impeller are analyzed by methods of non-linear analysis. The macro-instability of the flow pattern (MI was extracted from the experimental data by a combination of the proper orthogonal decomposition (POD technique and spectral analysis. The relative magnitude of the MI (the fraction of flow total kinetic energy captured by MI was evaluated and its spatial distribution was determined. The temporal evolution of the MI was constructed from the POD eigenmodes. The chaotic attractors of the macro-instabilities were reconstructed by the method of delays. The embedding dimension was determined by the false nearest neighbor analysis (FNN method, and the time delay from the first min imum of mutual information. Correlation dimension de and the largest Lyapunov exponents λmax of the reconstructed attractorswere evaluated. The correlation dimension slightly increases with the increasing ReM value. The spatial distribution of dc is quite uniform at all ReM values. The maximum Lyapunov exponent is clearly positive for all analyzed at tractors. Spatial distribution of λmax is markedly non-uniform and exhibits irregular variations. Possible applications of nonlinear analysis of local velocity data in mixing processes are mentioned.

  18. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  19. Mitochondrial efficiency and insulin resistance.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Liverini, Giovanna; Iossa, Susanna

    2014-01-01

    Insulin resistance, "a relative impairment in the ability of insulin to exert its effects on glucose, protein and lipid metabolism in target tissues," has many detrimental effects on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues. Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation. Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin resistance has been proposed and many studies have dealt with possible alteration in mitochondrial function in obesity and diabetes, both in humans and animal models. Data reporting evidence of mitochondrial dysfunction in type two diabetes mellitus are numerous, even though the issue that this reduced mitochondrial function is causal in the development of the disease is not yet solved, also because a variety of parameters have been used in the studies carried out on this subject. By assessing the alterations in mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis of skeletal muscle cells, we have obtained results that allow us to suggest that an increase in mitochondrial efficiency precedes and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle. PMID:25601841

  20. Mitochondrial Metabolism in Aging Heart.

    Science.gov (United States)

    Lesnefsky, Edward J; Chen, Qun; Hoppel, Charles L

    2016-05-13

    Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952

  1. Mitochondrial Epigenetics and Environmental Exposure.

    Science.gov (United States)

    Lambertini, Luca; Byun, Hyang-Min

    2016-09-01

    The rising toll of chronic and debilitating diseases brought about by the exposure to an ever expanding number of environmental pollutants and socio-economic factors is calling for action. The understanding of the molecular mechanisms behind the effects of environmental exposures can lead to the development of biomarkers that can support the public health fields of both early diagnosis and intervention to limit the burden of environmental diseases. The study of mitochondrial epigenetics carries high hopes to provide important biomarkers of exposure and disease. Mitochondria are in fact on the frontline of the cellular response to the environment. Modifications of the epigenetic factors regulating the mitochondrial activity are emerging as informative tools that can effectively report on the effects of the environment on the phenotype. Here, we will discuss the emerging field of mitochondrial epigenetics. This review describes the main epigenetic phenomena that modify the activity of the mitochondrial DNA including DNA methylation, long and short non-coding RNAs. We will discuss the unique pattern of mitochondrial DNA methylation, describe the challenges of correctly measuring it, and report on the existing studies that have analysed the correlation between environmental exposures and mitochondrial DNA methylation. Finally, we provide a brief account of the therapeutic approaches targeting mitochondria currently under consideration. PMID:27344144

  2. CFTR activity and mitochondrial function

    Directory of Open Access Journals (Sweden)

    Angel Gabriel Valdivieso

    2013-01-01

    Full Text Available Cystic Fibrosis (CF is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy.

  3. MOLECULAR NEUROGENETICS OF MITOCHONDRIAL DISEASES

    Directory of Open Access Journals (Sweden)

    E. Cardaioli

    2012-01-01

    Full Text Available Mitochondrial diseases are an expanding group of clinically heterogeneous disorders associated with mitochondrial DNA (mtDNA mutations or nuclear gene defects. Whatever the mechanism, the final common step in mitochondrial disorders is a defect of energy production resulting from respiratory chain impairment. The complexity of the biochemical and genetic features of the respiratory chain accounts for the extraordinarily wide range of clinical presentations of mitochondrial disorders. In general, organs with high aerobic demand, such as skeletal muscle, brain and heart, are the most affected. However, virtually any organ or tissue in the body may be affected and the disorders can be multisystemic (mitochondrial encephalomyopathiesor confined to a single tissue. Moreover, mitochondrial diseases can be sporadic or transmitted by mendelian (nuclear genes or maternal inheritance (mutations in mtDNA. Precise diagnosis is often a challenge; we go through the traditional steps of the diagnostic process, starting with study of inheritance in the family, clinical manifestations in the individual,electrophysiology and imaging techniques at organ level, down to biochemistry, pathology and molecular genetics at tissue, cell and DNA level, respectively. In fact the ultimate goal is to reach, whenever possible, a definitive molecular diagnosis, which can permit rational therapeutic approach and a genetic counseling.

  4. Characterization of cDNAs encoding human leukosialin and localization of the leukosialin gene to chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Pallant, A.; Eskenazi, A.; Frelinger, J.G. (Univ. of Rochester Medical Center, NY (USA)); Mattei, M.G. (Hopital d' Enfants de la Timone, Marseille (France)); Fournier, R.E.K. (Fred Hutchinson Cancer Research Center, Seattle, WA (USA)); Carlsson, S.R.; Fukuda, M. (La Jolla Center Research Foundation, CA (USA))

    1989-02-01

    The authors describe the isolation and characterization of cDNA clones encoding human leukosialin, a major sialoglycoprotein of human leukocytes. Leukosialin is very closely related or identical to the sialophorin molecule, which is involved in T-cell proliferation and whose expression is altered in Wiskott-Aldrich syndrome (WAS), an X-chromosome-linked immunodeficiency disease. Using a rabbit antiserum to leukosialin, a cDNA clone was isolated from a {lambda}gt11 cDNA library constructed from human peripheral blood cells. The {lambda}gt11 clone was used to isolate longer cDNA clones that correspond to the entire coding sequence of leukosialin. DNA sequence analysis reveals three domains in the predicted mature protein. The extracellular domain is enriched for Ser, Thr, and Pro and contains four contiguous 18-amino acid repeats. The transmembrane and intracellular domains of the human leukosialin molecule are highly homologous to the rat W3/13 molecule. RNA gel blot analysis reveals two polyadenylylated species of 2.3 and 8 kilobases. Southern blot analysis suggests that human leukosialin is a single-copy gene. Analysis of monochromosomal cell hybrids indicates that the leukosialin gene is not X chromosome linked and in situ hybridization shows leukosialin is located on chromosome 16. These findings demonstrate that the primary mutation in WAS is not a defect in the structural gene for leukosialin.

  5. CHARACTERIZATION, BIO-FORMULATION DEVELOPMENT AND SHELF-LIFE STUDIES OF LOCALLY ISOLATED BIO-FERTILIZER STRAINS

    Directory of Open Access Journals (Sweden)

    Vipin Kumar

    2014-03-01

    Full Text Available Nitrogen fixing, phosphate solubilizing and potash mobilizing bacterial strains were isolated from rhizosphere soil of agricultural land, the isolated bacterial strains were further characterized by a series of biochemical reactions and identified as genus Azotobacter, Bacillus and Pseudomonas respectively. A technology for their mass multiplication and their bio-formulation has been developed. Fly-ash was used as carrier materials for bio-formulation development of bio-fertilizer strains. Shelf-life studies of the bio-formulations were carried out during storage period. The selected isolates were found to be potent nitrogen fixer, phosphate solubilizers showing clear halo zone around their colonies and potash mobilizer showing mobilization of potassium on respective medium. A general decline in cfu count was noticed in fly-ash based bio-formulations. All the bio-formulations however, retained more than 108 cfu/g viable propagules up to 270 days. The present studies were shown encouraging results in respect to fly-ash as carrier materials for bio-fertilizer strains which are comparable to other commercially available carrier materials.

  6. Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy☆

    Science.gov (United States)

    Gasiorowski, Jacek; Mardare, Andrei Ionut; Sariciftci, Niyazi Serdar; Hassel, Achim Walter

    2013-01-01

    The electrochemical oxidation of a next generation low bandgap high performance photovoltaic material namely poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b] thiophene-2,6-diyl] (PBDTTT-c) thin film was investigated using a scanning droplet cell microscope. Cyclic voltammetry was used for the basic characterization of the oxidation/doping of PBDTTT-c. Application of the different final potentials during the electrochemical study provides a close look to the oxidation kinetics. The electrical properties of both doped and undoped PBDTTT-c were analyzed in situ by electrochemical impedance spectroscopy giving the possibility to correlate the changes in the doping level with the subsequent changes in the resistance and capacitance. As a result one oxidation peak was found during the cyclic voltammetry and in potentiostatic measurements. From Mott–Schottky analysis a donor concentration of 2.3 × 1020 cm−3 and a flat band potential of 1.00 V vs. SHE were found. The oxidation process resulted in an increase of the conductivity by two orders of magnitude reaching a maximum for the oxidized form of 1.4 S cm−1. PMID:25843970

  7. Characterization and evaluation of 2.5 MV electronic portal imaging for accurate localization of intra- and extracranial stereotactic radiosurgery.

    Science.gov (United States)

    Song, Kwang Hyun; Snyder, Karen Chin; Kim, Jinkoo; Li, Haisen; Ning, Wen; Rusnac, Robert; Jackson, Paul; Gordon, James; Siddiqui, Salim M; Chetty, Indrin J

    2016-01-01

    2.5 MV electronic portal imaging, available on Varian TrueBeam machines, was characterized using various phantoms in this study. Its low-contrast detectability, spatial resolution, and contrast-to-noise ratio (CNR) were compared with those of conventional 6 MV and kV planar imaging. Scatter effect in large patient body was simulated by adding solid water slabs along the beam path. The 2.5 MV imaging mode was also evaluated using clinically acquired images from 24 patients for the sites of brain, head and neck, lung, and abdomen. With respect to 6 MV, the 2.5 MV achieved higher contrast and preserved sharpness on bony structures with only half of the imaging dose. The quality of 2.5 MV imaging was comparable to that of kV imaging when the lateral separation of patient was greater than 38 cm, while the kV image quality degraded rapidly as patient separation increased. Based on the results of patient images, 2.5 MV imaging was better for cranial and extracranial SRS than the 6 MV imaging. PMID:27455505

  8. Yeast as a Tool to Study Signaling Pathways in Mitochondrial Stress Response and Cytoprotection

    Directory of Open Access Journals (Sweden)

    Maša Ždralević

    2012-01-01

    Full Text Available Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways.

  9. Cloning, tissue expression pattern characterization and chromosome localization of human peptide methionine sulfoxide reductase cDNA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Oxidation and reduction of some amino acids are one of the molecular mechanisms for regulating the function of proteins. The oxidation of methionine (Met) to methionine sulfoxide (Met(O)) results in decreasing or loss of the biological activity of related proteins. It was found that peptide methionine sulfoxide reductase (msrA) can reduce Met(O) to Met and therefore restored the biological function of the oxidized proteins. To reveal the methionine oxidation-reduction mechanism in human body, in this study, the cDNA sequence of bovine msrA was used as an information-probe to screen the human EST database. Based on a contig assembled from homologous ESTs, a 1 256-bp human MSRA cDNA was cloned from several human cDNA libraries. The cDNA contains an open reading frame (ORF) of 705 bp in length, which encodes 235 amino acid residues. Homology comparison revealed that human MSRA shares 88% and 61% identities with bovine and Escherichia coli msrA protein respectively. Expression pattern analysis revealed a single 1.6-kb transcript of human MSRA in most human tissues and with highest expression in kidney. By radiation hybrid panel mapping, the gene was localized to human chromosome 8p22-23 between markers D8S518 and D8S550. There are 2 human inherited diseases Keratolytic Winter Erythema and Microcephaly related genes in this region, it is inferred that human MSRA might be the candidate of the two diseases.

  10. Localization and characterization of gelsolin in nervous tissues: gelsolin is specifically enriched in myelin-forming cells.

    Science.gov (United States)

    Tanaka, J; Sobue, K

    1994-03-01

    Gelsolin is a Ca(2+)-sensitive actin filament-severing protein. To elucidate the role of gelsolin in nervous tissues, we have investigated localization and expression of gelsolin in rat CNS and PNS using biochemical and morphological methods with a polyclonal antibody against the COOH-terminal fragment of plasma gelsolin. Immunohistochemical study showed that gelsolin was specifically enriched in oligodendrocytes and Schwann cells, and was also detected in myelin sheath, especially around the Ranvier's nodes. The immunohistochemical stainings using indirect immunofluorescence, avidin-biotin-peroxidase complex, and immunogold methods were carefully confirmed by immunoblotting against the tissue homogenates. The expressional changes of gelsolin in developing brain were investigated. The protein was detectable in newborn rat brain; however, it began to increase at 8-10 d after birth and reached maximal at 20-30 d when myelinogenesis actively occurred. After this period, the protein decreased gradually, although myelin basic protein was increasing until 6 months after birth. The immunostaining of gelsolin in Schwann cells was enhanced upon regeneration of injured sciatic nerves by freezing. Immunoelectron microscopy revealed that gelsolin was present not only in the cytoplasm but also in compact myelin. Following solubilization by detergents, gelsolin in the myelin fraction could be purified using anion exchange and blue Sepharose column chromatographies. The purified protein possessed a Ca(2+)-dependent severing activity against actin filaments similar to that of cytoplasmic and plasma gelsolin. These data strongly suggest that gelsolin in nervous tissues might be involved in lamellipodial movement to wrap axons of myelin-forming cells by modulating actin polymerization. PMID:8120612

  11. Functional characterization of nuclear localization and export signals in hepatitis C virus proteins and their role in the membranous web.

    Directory of Open Access Journals (Sweden)

    Aviad Levin

    Full Text Available The hepatitis C virus (HCV is a positive strand RNA virus of the Flavivirus family that replicates in the cytoplasm of infected hepatocytes. Previously, several nuclear localization signals (NLS and nuclear export signals (NES have been identified in HCV proteins, however, there is little evidence that these proteins travel into the nucleus during infection. We have recently shown that nuclear pore complex (NPC proteins (termed nucleoporins or Nups are present in the membranous web and are required during HCV infection. In this study, we identify a total of 11 NLS and NES sequences in various HCV proteins. We show direct interactions between HCV proteins and importin α5 (IPOA5/kapα1, importin β3 (IPO5/kap β3, and exportin 1 (XPO1/CRM1 both in-vitro and in cell culture. These interactions can be disrupted using peptides containing the specific NLS or NES sequences of HCV proteins. Moreover, using a synchronized infection system, we show that these peptides inhibit HCV infection during distinct phases of the HCV life cycle. The inhibitory effects of these peptides place them in two groups. The first group binds IPOA5 and inhibits infection during the replication stage of HCV life cycle. The second group binds IPO5 and is active during both early replication and early assembly. This work delineates the entire life cycle of HCV and the active involvement of NLS sequences during HCV replication and assembly. Given the abundance of NLS sequences within HCV proteins, our previous finding that Nups play a role in HCV infection, and the relocation of the NLS double-GFP reporter in HCV infected cells, this work supports our previous hypothesis that NPC-like structures and nuclear transport factors function in the membranous web to create an environment conducive to viral replication.

  12. Efficient Mitochondrial Genome Editing by CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Areum Jo

    2015-01-01

    Full Text Available The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9 system has been widely used for nuclear DNA editing to generate mutations or correct specific disease alleles. Despite its flexible application, it has not been determined if CRISPR/Cas9, originally identified as a bacterial defense system against virus, can be targeted to mitochondria for mtDNA editing. Here, we show that regular FLAG-Cas9 can localize to mitochondria to edit mitochondrial DNA with sgRNAs targeting specific loci of the mitochondrial genome. Expression of FLAG-Cas9 together with gRNA targeting Cox1 and Cox3 leads to cleavage of the specific mtDNA loci. In addition, we observed disruption of mitochondrial protein homeostasis following mtDNA truncation or cleavage by CRISPR/Cas9. To overcome nonspecific distribution of FLAG-Cas9, we also created a mitochondria-targeted Cas9 (mitoCas9. This new version of Cas9 localizes only to mitochondria; together with expression of gRNA targeting mtDNA, there is specific cleavage of mtDNA. MitoCas9-induced reduction of mtDNA and its transcription leads to mitochondrial membrane potential disruption and cell growth inhibition. This mitoCas9 could be applied to edit mtDNA together with gRNA expression vectors without affecting genomic DNA. In this brief study, we demonstrate that mtDNA editing is possible using CRISPR/Cas9. Moreover, our development of mitoCas9 with specific localization to the mitochondria should facilitate its application for mitochondrial genome editing.

  13. The Star Formation Histories of Local Group Dwarf Galaxies. III. Characterizing Quenching in Low-mass Galaxies

    Science.gov (United States)

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2015-05-01

    We explore the quenching of low-mass galaxies (104 ≲ {{M}\\star } ≲ 108 {{M}⊙ }) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived by analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) lower-mass galaxies quench earlier than higher-mass galaxies; (2) inside of Rvirial there is no correlation between a satellite’s current proximity to a massive host and its quenching epoch; and (3) there are hints of systematic differences in the quenching times of M31 and Milky Way (MW) satellites, although the sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with results from the literature, we qualitatively consider the redshift evolution (z = 0-1) of the quenched galaxy fraction over ˜7 dex in stellar mass (104 ≲ {{M}\\star } ≲ 1011.5 {{M}⊙ }). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest-mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between {{M}\\star } ˜ 108-1010 {{M}⊙ } have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times for low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall, while higher-mass satellites (e.g., Leo I, Fornax) typically quench ˜1-4 Gyr after infall. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA constract NAS 5-26555.

  14. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Anne Grünewald

    Full Text Available BACKGROUND: Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD. The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7, as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and

  15. Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging.

    Directory of Open Access Journals (Sweden)

    François Casas

    Full Text Available In previous studies, we characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43 acting as a mitochondrial transcription factor. In in vitro and in vivo studies, we have shown that p43 increases mitochondrial transcription and mitochondrial biogenesis. In addition, p43 overexpression in skeletal muscle stimulates mitochondrial respiration and induces a shift in metabolic and contractile features of muscle fibers which became more oxidative.Here we have studied the influence of p43 overexpression in skeletal muscle of mice during aging. We report that p43 overexpression initially increased mitochondrial mass. However, after the early rise in mitochondrial DNA occurring at 2 months of age in transgenic mice, we observed a progressive decrease of mitochondrial DNA content which became 2-fold lower at 23 months of age relatively to control animals. Moreover, p43 overexpression induced an oxidative stress characterized by a strong increase of lipid peroxidation and protein oxidation in quadriceps muscle, although antioxidant enzyme activities (catalase and superoxide dismutase were stimulated. In addition, muscle atrophy became detectable at 6 months of age, probably through a stimulation of the ubiquitin proteasome pathway via two muscle-specific ubiquitin ligases E3, Atrogin-1/MAFbx and MuRF1.Taken together, these results demonstrate that a prolonged stimulation of mitochondrial activity induces muscle atrophy. In addition, these data underline the importance of a tight control of p43 expression and suggest that a deregulation of the direct T3 mitochondrial pathway could be one of the parameters involved in the occurrence of sarcopenia.

  16. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders.

    Science.gov (United States)

    Fields, Jerel Adam; Serger, Elisabeth; Campos, Sofia; Divakaruni, Ajit S; Kim, Changyoun; Smith, Kendall; Trejo, Margarita; Adame, Anthony; Spencer, Brian; Rockenstein, Edward; Murphy, Anne N; Ellis, Ronald J; Letendre, Scott; Grant, Igor; Masliah, Eliezer

    2016-02-01

    HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration.

  17. Application of a damped Locally Optimized Combination of Images method to the spectral characterization of faint companions using an Integral Field Spectrograph

    CERN Document Server

    Pueyo, Laurent; Vasisht, Gautam; Brenner, Douglas; Oppenheimer, Ben R; Zimmerman, Neil; Hinkley, Sasha; Parry, Ian; Beichman, Charles; Hillenbrand, Lynne; Roberts, Lewis C; Dekany, Richard; Shao, Mike; Burruss, Rick; Bouchez, Antonin; Roberts, Jenny; Soummer, Rémi

    2011-01-01

    High-contrast imaging instruments are now being equipped with integral field spectrographs (IFS) to facilitate the detection and characterization of faint substellar companions. Algorithms currently envisioned to handle IFS data, such as the Locally Optimized Combination of Images (LOCI) algorithm, rely upon aggressive point-spread-function (PSF) subtraction, which is ideal for initially identifying companions but results in significantly biased photometry and spectroscopy due to unwanted mixing with residual starlight. This spectro-photometric issue is further complicated by the fact that algorithmic color response is a function of the companion's spectrum, making it difficult to calibrate the effects of the reduction without using iterations involving a series of injected synthetic companions. In this paper, we introduce a new PSF calibration method, which we call "damped LOCI", that seeks to alleviate these concerns. By modifying the cost function that determines the weighting coefficients used to construc...

  18. Decidual cell polyploidization necessitates mitochondrial activity.

    Directory of Open Access Journals (Sweden)

    Xinghong Ma

    Full Text Available Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation.

  19. Mitochondrial drug targets in neurodegenerative diseases.

    Science.gov (United States)

    Lee, Jiyoun

    2016-02-01

    Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.

  20. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  1. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    Directory of Open Access Journals (Sweden)

    Masakazu Kohda

    2016-01-01

    Full Text Available Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4 as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3 and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21 as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.

  2. Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress

    Directory of Open Access Journals (Sweden)

    Bross Peter

    2009-05-01

    Full Text Available Abstract Background Mitochondrial proteins are central to various metabolic activities and are key regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with disease. Large scale protein data are required to capture the mitochondrial protein levels and mass spectrometry based proteomics is suitable for generating such data. To study the relative quantities of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides. Results When fibroblast cultures were exposed to mild metabolic stress – by cultivation in galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of individual proteins were altered. Proteins of respiratory chain complex I and IV were increased together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a median standard error below 6%, were obtained for the following mitochondrial pathways: fatty acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism, mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis. Conclusion The robust analytical platform in combination with a well-defined compendium of mitochondrial proteins allowed quantification of single proteins as well as mapping of entire pathways. This enabled characterization of the interplay between metabolism and stress response in human cells exposed to mild stress.

  3. Effects of hydrogen peroxide on mitochondrial gene expression of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Ming Li; Qian Cai; Hong Zhou; Guang-Xia Xiao

    2002-01-01

    AIM: To study the effects of hydrogen peroxide on mitochondrial gene expression of intestinal epithelial cells in in vitro model of hydrogen peroxide-stimulated SW-480 cells.METHODS: RNA of hydrogen peroxide-induced SW-480 cells was isolated, and reverse-transcriptional polymerase chain reaction was performed to study gene expression of ATPase subunit 6, ATPase subunit 8, cytochrome c oxidase subunit Ⅰ (COⅠ), cytochrome coxidase subuit Ⅱ (COⅡ) and cytochrome c oxidase subunit Ⅲ (COⅢ). Mitochondria were isolated and activities of mitochondrial cytochrome c oxidase and ATPase were also measured simultaneously.RESULTS: Hydrogen peroxide led to differential expression of mitochondrial genes with some genes up-regulated or down-regulated in a dose dependent manner. Differences were very obvious in expressions of mitochondrial genes of cells treated with hydrogen peroxide in a concentration of 400 μmol/L or 4 mmol/L. In general, differential expression of mitochondrial genes was characterized by up-regulation of mitochondrial genes in the concentration of 400 μmol/L and down-regulation in the concentration of 4 mmol/L. In consistence with changes in mitochondrial gene expressions, hydrogen peroxide resulted in decreased activities of cytochrome c oxidase and ATPase.CONCLUSIONS: The differential expression of mitochondrial genes encoding cytochrome c oxidase and ATPase is involved in apoptosis of intestinal epithelial cells by affecting activities of cytochorme c oxidase and ATPase.

  4. Mitochondrial protection by the mixed muscarinic/σ1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Aβ25-35 peptide-injected mice, a nontransgenic Alzheimer's disease model.

    Science.gov (United States)

    Lahmy, Valentine; Long, Romain; Morin, Didier; Villard, Vanessa; Maurice, Tangui

    2014-01-01

    Alzheimer's disease (AD), the most prevalent dementia in the elderly, is characterized by progressive synaptic and neuronal loss. Mitochondrial dysfunctions have been consistently reported as an early event in AD and appear before Aβ deposition and memory decline. In order to define a new neuroprotectant strategy in AD targeting mitochondrial alterations, we develop tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine (ANAVEX2-73, AE37), a mixed muscarinic receptor ligand and a sigma-1 receptor (σ1R) agonist. We previously reported that ANAVEX2-73 shows anti-amnesic and neuroprotective activities in mice injected intracerebroventricular (ICV) with oligomeric amyloid-β25-35 peptide (Aβ25-35). The σ1R is present at mitochondria-associated endoplasmic reticulum (ER) membranes, where it acts as a sensor/modulator of ER stress responses and local Ca(2+) exchanges with the mitochondria. We therefore evaluated the effect of ANAVEX2-73 and PRE-084, a reference σ1R agonist, on preservation of mitochondrial integrity in Aβ25-35-injected mice. In isolated mitochondria from hippocampus preparations of Aβ25-35 injected animals, we measured respiration rates, complex activities, lipid peroxidation, Bax/Bcl-2 ratios and cytochrome c release into the cytosol. Five days after Aβ25-35 injection, mitochondrial respiration in mouse hippocampus was altered. ANAVEX2-73 (0.01-1 mg/kg IP) restored normal respiration and PRE-084 (0.5-1 mg/kg IP) increased respiration rates. Both compounds prevented Aβ25-35-induced increases in lipid peroxidation levels, Bax/Bcl-2 ratio and cytochrome c release into the cytosol, all indicators of increased toxicity. ANAVEX2-73 and PRE-084 efficiently prevented the mitochondrial respiratory dysfunction and resulting oxidative stress and apoptosis. The σ1R, targeted selectively or non-selectively, therefore appears as a valuable target for protection against mitochondrial damages in AD. PMID:25653589

  5. EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter.

    Science.gov (United States)

    Vais, Horia; Mallilankaraman, Karthik; Mak, Don-On Daniel; Hoff, Henry; Payne, Riley; Tanis, Jessica E; Foskett, J Kevin

    2016-01-26

    The mitochondrial uniporter (MCU) is an ion channel that mediates Ca(2+) uptake into the matrix to regulate metabolism, cell death, and cytoplasmic Ca(2+) signaling. Matrix Ca(2+) concentration is similar to that in cytoplasm, despite an enormous driving force for entry, but the mechanisms that prevent mitochondrial Ca(2+) overload are unclear. Here, we show that MCU channel activity is governed by matrix Ca(2+) concentration through EMRE. Deletion or charge neutralization of its matrix-localized acidic C terminus abolishes matrix Ca(2+) inhibition of MCU Ca(2+) currents, resulting in MCU channel activation, enhanced mitochondrial Ca(2+) uptake, and constitutively elevated matrix Ca(2+) concentration. EMRE-dependent regulation of MCU channel activity requires intermembrane space-localized MICU1, MICU2, and cytoplasmic Ca(2+). Thus, mitochondria are protected from Ca(2+) depletion and Ca(2+) overload by a unique molecular complex that involves Ca(2+) sensors on both sides of the inner mitochondrial membrane, coupled through EMRE.

  6. Problem-Solving Test: Submitochondrial Localization of Proteins

    Science.gov (United States)

    Szeberenyi, Jozsef

    2011-01-01

    Mitochondria are surrounded by two membranes (outer and inner mitochondrial membrane) that separate two mitochondrial compartments (intermembrane space and matrix). Hundreds of proteins are distributed among these submitochondrial components. A simple biochemical/immunological procedure is described in this test to determine the localization of…

  7. Mitochondrial Dynamics Decrease Prior to Axon Degeneration Induced by Vincristine and are Partially Rescued by Overexpressed cytNmnat1.

    Science.gov (United States)

    Berbusse, Gregory W; Woods, Laken C; Vohra, Bhupinder P S; Naylor, Kari

    2016-01-01

    Axon degeneration is a prominent feature of various neurodegenerative diseases, such as Parkinson's and Alzheimer's, and is often characterized by aberrant mitochondrial dynamics. Mitochondrial fission, fusion, and motility have been shown to be particularly important in progressive neurodegeneration. Thus we investigated these imperative dynamics, as well as mitochondrial fragmentation in vincristine induced axon degradation in cultured dorsal root ganglia (DRG) neurons. CytNmnat1 inhibits axon degeneration in various paradigms including vincristine toxicity. The mechanism of its protection is not yet fully understood; therefore, we also investigated the effect of cytNmnat1 on mitochondrial dynamics in vincristine treated neurons. We observed that vincristine treatment decreases the rate of mitochondrial fission, fusion and motility and induces mitochondrial fragmentation. These mitochondrial events precede visible axon degeneration. Overexpression of cytNmnat1 inhibits axon degeneration and preserves the normal mitochondrial dynamics and motility in vincristine treated neurons. We suggest the alterations in mitochondrial structure and dynamics are early events which lead to axon degeneration and cytNmnat1 blocks axon degeneration by halting the vincristine induced changes to mitochondrial structure and dynamics. PMID:27486387

  8. Overview of mitochondrial bioenergetics.

    Science.gov (United States)

    Madeira, Vitor M C

    2012-01-01

    Bioenergetic Science started in seventh century with the pioneer works by Joseph Priestley and Antoine Lavoisier on photosynthesis and respiration, respectively. New developments were implemented by Pasteur in 1860s with the description of fermentations associated to microorganisms, further documented by Buchner brothers who discovered that fermentations also occurred in cell extracts in the absence of living cells. In the beginning of twentieth century, Harden and Young demonstrated that orthophosphate and other heat-resistant compounds (cozymase), later identified as NAD, ADP, and metal ions, were mandatory in the fermentation of glucose. The full glycolysis pathway has been detailed in 1940s with the contributions of Embden, Meyeroff, Parnas, Warburg, among others. Studies on the citric acid cycle started in 1910 (Thunberg) and were elucidated by Krebs et al. in the 1940s. Mitochondrial bioenergetics gained emphasis in the late 1940s and 1950s with the works of Lenhinger, Racker, Chance, Boyer, Ernster, and Slater, among others. The prevalent "chemical coupling hypothesis" of energy conservation in oxidative phosphorylation was challenged and replaced by the "chemiosmotic hypothesis" originally formulated in 1960s by Mitchell and later substantiated and extended to energy conservation in bacteria and chloroplasts, besides mitochondria, with clear-cut identification of molecular proton pumps. After identification of most reactive mechanisms, emphasis has been directed to structure resolution of molecular complex clusters, e.g., cytochrome c oxidase, complex III, complex II, ATP synthase, photosystem I, photosynthetic water splitting center, and energy collecting antennæ of several photosynthetic systems. Modern trends concern to the reactivity of radical and other active species in association with bioenergetic activities. A promising trend concentrates on the cell redox status quantified in terms of redox potentials. In spite of significant development and

  9. Hsp90 inhibition decreases mitochondrial protein turnover.

    Directory of Open Access Journals (Sweden)

    Daciana H Margineantu

    Full Text Available BACKGROUND: Cells treated with hsp90 inhibitors exhibit pleiotropic changes, including an expansion of the mitochondrial compartment, accompanied by mitochondrial fragmentation and condensed mitochondrial morphology, with ultimate compromise of mitochondrial integrity and apoptosis. FINDINGS: We identified several mitochondrial oxidative phosphorylation complex subunits, including several encoded by mtDNA, that are upregulated by hsp90 inhibitors, without corresponding changes in mRNA abundance. Post-transcriptional accumulation of mitochondrial proteins observed with hsp90 inhibitors is also seen in cells treated with proteasome inhibitors. Detailed studies of the OSCP subunit of mitochondrial F1F0-ATPase revealed the presence of mono- and polyubiquitinated OSCP in mitochondrial fractions. We demonstrate that processed OSCP undergoes retrotranslocation to a trypsin-sensitive form associated with the outer mitochondrial membrane. Inhibition of proteasome or hsp90 function results in accumulation of both correctly targeted and retrotranslocated mitochondrial OSCP. CONCLUSIONS: Cytosolic turnover of mitochondrial proteins demonstrates a novel connection between mitochondrial and cytosolic compartments through the ubiquitin-proteasome system. Analogous to defective protein folding in the endoplasmic reticulum, a mitochondrial unfolded protein response may play a role in the apoptotic effects of hsp90 and proteasome inhibitors.

  10. Molecular genetic characterization of two pedigrees with mitochondrial 12S rRNA C1494T mutation and aminoglycoside-induced hearing loss%两个线粒体12S rRNA C1494T突变及药物性耳聋家系的分子遗传学研究

    Institute of Scientific and Technical Information of China (English)

    李海峰; 陈智斌; 邢光前

    2011-01-01

    目的:探讨2个氨基糖甙类药物性耳聋及非综合征型耳聋家系的分子遗传学特征.方法:收集家系成员外周血样,常规方法提取基因组DNA.首先,利用基因芯片对中国人4个常见耳聋基因的9个突变热点进行分子筛查,9个位点分别为:CJB2基因的35 delG、176 de116、235 delC和299 delAT;GJB3基因的538 C>T;PDS基因的IVS7-2 A>G和2168 A>G以及mtDNA 12S rRNA基因的1494 C>T和1555 A>G.然后,对两家系的先证者分别进行线粒体DNA全序列及核基因TRMU和MTO1编码区的PCR扩增和测序分析.结果:芯片检测发现两家系的7名母系成员均存在同质性mtDNA 12S rRNA C1494T突变.与修正的剑桥参考序列相比,2名先证者的mtDNA全序列分析共检测到53个碱基变异,但除已知的12S rRNA C1494T突变外,其余52个碱基变异均为已报道的多态性位点;两家系先证者线粒体单体型分别是D4和D5a;TRMU和MTO1基因序列分析无异常发现.结论:线粒体DNA 12SrRNA C1494T突变是两个家系耳聋发生的主要分子基础,而氨基糖甙类抗生素的应用增强了该突变的表型表达:未能证实线粒体单体型以及核基因TRMU和MTO1对家系成员C1494T突变的表型具有修饰作用.%Objective:To explore the molecular genetic characterization of two families with aminoglycoside-induced and nonsyndromie sensofineural hearing loss. Methods:Blood samples were obtained from 7 maternal members and I married-in spouse of the two families. Genomic DNA was extracted with conventional method. Firstly, 9 hot spots for mutations in four most common pathologic genes, GJB2, GJB3, SLC26A4 and mitochondrial 12S rRNA, were screened with the DNA mieroarray to detect the deafness-associated mutations. The whole mitochondrial genomes and nuclear modifier genes TRMU and MTO1 of two probands were then PCR amplified and submitted for sequence analysis. Results:Mitochondrial 12S rRNA C1494T mutation was detected in all 7 maternal members of

  11. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays.

    Science.gov (United States)

    Barrientos, Antoni; Fontanesi, Flavia; Díaz, Francisca

    2009-10-01

    The oxidative phosphorylation (OXPHOS) system consists of five multimeric complexes embedded in the mitochondrial inner membrane. They work in concert to drive the aerobic synthesis of ATP. Mitochondrial and nuclear DNA mutations affecting the accumulation and function of these enzymes are the most common cause of mitochondrial diseases and have also been associated with neurodegeneration and aging. For this reason, several approaches for the assessment of the OXPHOS system enzymes have been developed. Based on the methods described elsewhere, the assays describe methods that form a biochemical characterization of the OXPHOS system in cells and mitochondria isolated from cultured cells or tissues.

  12. Role of polymerase η in mitochondrial mutagenesis of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Nimrat; Pabla, Ritu [Dept. of Cell Biology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States); Siede, Wolfram, E-mail: wolfram.siede@unthsc.edu [Dept. of Cell Biology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States)

    2013-02-08

    Highlights: ► DNA polymerase η is detectable in mitochondria of budding yeast. ► Pol η reduces UV-induced mitochondrial base pair substitutions and frameshifts. ► For UV-induced base pair substitutions, Pol η and Pol ζ interact epistatically. -- Abstract: DNA polymerase η mostly catalyzes an error-free bypass of the most frequent UV lesions, pyrimidine dimers of the cyclobutane-type. In addition to its nuclear localization, we show here for the first time its mitochondrial localization in budding yeast. In mitochondria, this polymerase improves bypass replication fidelity opposite UV damage as shown in base pair substitution and frameshift assays. For base pair substitutions, polymerase η appears to be related in function and epistatic to DNA polymerase ζ which, however, plays the opposite role in the nucleus.

  13. Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model.

    Directory of Open Access Journals (Sweden)

    Guo Luo

    Full Text Available Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A harboring a superoxide dismutase mutation (SOD1(G93A. Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1(G93A in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1(G93A forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP caused abnormalities in mitochondrial dynamics similar to that in the SOD1(G93A model muscle. A specific mitochondrial fission inhibitor (Mdivi-1 reversed the SOD1(G93A action on mitochondrial dynamics, indicating SOD1(G93A likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1(G93A inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and

  14. Mitochondrial DNA and Cancer Epidemiology Workshop

    Science.gov (United States)

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  15. Nanodelivery System for Mitochondrial Targeting

    Science.gov (United States)

    Yoong, Sia Lee; Pastorin, Giorgia

    2014-02-01

    Mitochondria are indispensable in cellular functions such as energy production and death execution. They are emerging as intriguing therapeutic target as their dysregulation was found to be monumental in diseases such as neurodegenerative disease, obesity, and cancer etc. Despite tremendous interest being focused on therapeutically intervening mitochondrial function, few mito-active drugs were successfully developed, particularly due to challenges in delivering active compound to this organelle. In this review, effort in utilizing nanotechnology for targeted mitochondrial delivery of compound is expounded based on the nature of the nanomaterial used. The advantage and potential offered are discussed alongside the limitation. Finally the review is concluded with perspectives of the application of nanocarrier in mitochondrial medicine, given the unresolved concern on potential complications.

  16. Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development*

    OpenAIRE

    Adán, Cristina; Matsushima, Yuichi; Hernández-Sierra, Rosana; Marco-Ferreres, Raquel; Fernández-Moreno, Miguel Ángel; González-Vioque, Emiliano; Calleja, Manuel; Aragón, Juan J.; Kaguni, Laurie S.; Garesse, Rafael

    2008-01-01

    Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval deve...

  17. Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region

    OpenAIRE

    Burbrink Frank T; Austin Christopher C; Castoe Todd A; Jiang Zhi J; Herron Matthew D; McGuire Jimmy A; Parkinson Christopher L; Pollock David D.

    2007-01-01

    Abstract Background The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of t...

  18. Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma

    OpenAIRE

    Trian, Thomas; Benard, Giovanni; Begueret, Hugues; Rossignol, Rodrigue; Girodet, Pierre-Olivier; Ghosh, Debajyoti; Ousova, Olga; Vernejoux, Jean-Marc; Marthan, Roger; Tunon-de-Lara, José-Manuel; Berger, Patrick

    2007-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are characterized by different patterns of airway remodeling, which all include an increased mass of bronchial smooth muscle (BSM). A remaining major question concerns the mechanisms underlying such a remodeling of BSM. Because mitochondria play a major role in both cell proliferation and apoptosis, we hypothesized that mitochondrial activation in BSM could play a role in this remodeling. We describe that both the mitochondrial mass and ...

  19. Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat.

    Science.gov (United States)

    Jiménez-Menéndez, Nereida; Fernández-Millán, Pablo; Rubio-Cosials, Anna; Arnan, Carme; Montoya, Julio; Jacobs, Howard T; Bernadó, Pau; Coll, Miquel; Usón, Isabel; Solà, Maria

    2010-07-01

    The regulation of mitochondrial DNA (mtDNA) processes is slowly being characterized at a structural level. We present here crystal structures of human mitochondrial regulator mTERF, a transcription termination factor also implicated in replication pausing, in complex with double-stranded DNA oligonucleotides containing the tRNA(Leu)(UUR) gene sequence. mTERF comprises nine left-handed helical tandem repeats that form a left-handed superhelix, the Zurdo domain.

  20. Mitochondrial DNA variation of the common hippopotamus: evidence for a recent population expansion

    DEFF Research Database (Denmark)

    Okello, John Bosco A.; Nyakaana, Silvester; Masembe, C.;

    2005-01-01

    Mitochondrial DNA control region sequence variation was obtained and the population history of the common hippopotamus was inferred from 109 individuals from 13 localities covering six populations in sub-Saharan Africa. In all, 100 haplotypes were defined, of which 98 were locality specific...

  1. Unexplained gastrointestinal symptoms: Think mitochondrial disease

    OpenAIRE

    Chapman, TP; Hadley, G.; Fratter, C; Cullen, SN; Bax, BE; Bain, MD; Sapsford, RA; Poulton, J; Travis, SP

    2014-01-01

    Defects in mitochondrial function are increasingly recognised as central to the pathogenesis of many diseases, both inherited and acquired. Many of these mitochondrial defects arise from abnormalities in mitochondrial DNA and can result in multisystem disease, with gastrointestinal involvement common. Moreover, mitochondrial disease may present with a range of non-specific symptoms, and thus can be easily misdiagnosed, or even considered to be non-organic.We describe the clinical, histopathol...

  2. Unexplained gastrointestinal symptoms: think mitochondrial disease.

    OpenAIRE

    Chapman, TP; Hadley, G.; Fratter, C; Cullen, SN; Bax, BE; Bain, MD; Sapsford, RA; Poulton, J; Travis, SP

    2014-01-01

    Defects in mitochondrial function are increasingly recognised as central to the pathogenesis of many diseases, both inherited and acquired. Many of these mitochondrial defects arise from abnormalities in mitochondrial DNA and can result in multisystem disease, with gastrointestinal involvement common. Moreover, mitochondrial disease may present with a range of non-specific symptoms, and thus can be easily misdiagnosed, or even considered to be non-organic. We describe the clinical, histopatho...

  3. Platelet mitochondrial membrane potential in Parkinson's disease

    OpenAIRE

    Antony, P.M.; Boyd, O.; Trefois, C.; Ammerlaan, W; Ostaszewski, M.; Baumuratov, A.S.; Longhino, L.; Antunes, L; Koopman, W.J.H.; Balling, R; Diederich, N.J.

    2014-01-01

    OBJECTIVE: Mitochondrial dysfunction is a hallmark of idiopathic Parkinson's disease (IPD), which has been reported not to be restricted to striatal neurons. However, studies that analyzed mitochondrial function at the level of selected enzymatic activities in peripheral tissues have produced conflicting data. We considered the electron transport chain as a complex system with mitochondrial membrane potential as an integrative indicator for mitochondrial fitness. METHODS: Twenty-five IPD pati...

  4. Unexplained gastrointestinal symptoms: think mitochondrial disease.

    OpenAIRE

    Chapman, TP; Hadley, G.; Fratter, C; Cullen, SN; Bax, BE; Bain, MD; Sapsford, RA; Poulton, J; Travis, SP

    2014-01-01

    Defects in mitochondrial function are increasingly recognised as central to the pathogenesis of many diseases, both inherited and acquired. Many of these mitochondrial defects arise from abnormalities in mitochondrial DNA and can result in multisystem disease, with gastrointestinal involvement common. Moreover, mitochondrial disease may present with a range of non-specific symptoms, and thus can be easily misdiagnosed, or even considered to be non-organic.We describe the clinical, histopathol...

  5. Ethics of mitochondrial therapy for deafness.

    Science.gov (United States)

    Legge, Michael; Fitzgerald, Ruth P

    2014-11-07

    Mitochondrial therapy may provide the relief to many families with inherited mitochondrial diseases. However, it also has the potential for use in non-fatal disorders such as inherited mitochondrial deafness, providing an option for correction of the deafness using assisted reproductive technology. In this paper we discuss the potential for use in correcting mitochondrial deafness and consider some of the issues for the deaf community.

  6. Mitochondrial Cardiomyopathy: Pathophysiology, Diagnosis, and Management

    OpenAIRE

    Meyers, Deborah E.; Basha, Haseeb Ilias; Koenig, Mary Kay

    2013-01-01

    Mitochondrial disease is a heterogeneous group of multisystemic diseases that develop consequent to mutations in nuclear or mitochondrial DNA. The prevalence of inherited mitochondrial disease has been estimated to be greater than 1 in 5,000 births; however, the diagnosis and treatment of this disease are not taught in most adult-cardiology curricula. Because mitochondrial diseases often occur as a syndrome with resultant multiorgan dysfunction, they might not immediately appear to be specifi...

  7. Mitochondrial myopathy and myoclonic epilepsy

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1990-03-01

    Full Text Available The authors describe a family (mother, son and two daughters with mitochondrial myopathy. The mother was asymptomatic. Two daughters had lactic acidosis and myoclonic epilepsy, mild dementia, ataxia, weakness and sensory neuropathy. The son suffered one acute hemiplegic episode due to an ischemic infarct in the right temporal region. All the patients studied had hypertension. EEG disclosed photomyoclonic response in the proband patient. Muscle biopsy disclosed ragged-red fibers and abnormal mitochondria by electron microscopy. Biochemical analysis showed a defect of cytochrome C oxidase in mitochondria isolated from skeletal muscle. Several clinical and genetic aspects of the mitochondrial encephalomyopathies are discussed.

  8. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Chong-Chong Xu

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA, characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1 gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this study, we examined the role of SMN in mitochondrial axonal transport and morphology in human motor neurons by generating SMA type 1 patient-specific induced pluripotent stem cells (iPSCs and differentiating these cells into spinal motor neurons. The initial specification of spinal motor neurons was not affected, but these SMA spinal motor neurons specifically degenerated following long-term culture. Moreover, at an early stage in SMA spinal motor neurons, but not in SMA forebrain neurons, the number of mitochondria, mitochondrial area and mitochondrial transport were significantly reduced in axons. Knocking down of SMN expression led to similar mitochondrial defects in spinal motor neurons derived from human embryonic stem cells, confirming that SMN deficiency results in impaired mitochondrial dynamics. Finally, the application of N-acetylcysteine (NAC mitigated the impairment in mitochondrial transport and morphology and rescued motor neuron degeneration in SMA long-term cultures. Furthermore, NAC ameliorated the reduction in mitochondrial membrane potential in SMA spinal motor neurons, suggesting that NAC might rescue apoptosis and motor neuron degeneration by improving mitochondrial health. Overall, our data demonstrate that SMN deficiency results in abnormal mitochondrial transport and morphology and a subsequent reduction in mitochondrial health, which are implicated in the specific degeneration of spinal motor neurons in SMA.

  9. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy.

    Science.gov (United States)

    Giordano, Carla; Iommarini, Luisa; Giordano, Luca; Maresca, Alessandra; Pisano, Annalinda; Valentino, Maria Lucia; Caporali, Leonardo; Liguori, Rocco; Deceglie, Stefania; Roberti, Marina; Fanelli, Francesca; Fracasso, Flavio; Ross-Cisneros, Fred N; D'Adamo, Pio; Hudson, Gavin; Pyle, Angela; Yu-Wai-Man, Patrick; Chinnery, Patrick F; Zeviani, Massimo; Salomao, Solange R; Berezovsky, Adriana; Belfort, Rubens; Ventura, Dora Fix; Moraes, Milton; Moraes Filho, Milton; Barboni, Piero; Sadun, Federico; De Negri, Annamaria; Sadun, Alfredo A; Tancredi, Andrea; Mancini, Massimiliano; d'Amati, Giulia; Loguercio Polosa, Paola; Cantatore, Palmiro; Carelli, Valerio

    2014-02-01

    Leber's hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy. Environmental triggers and genetic modifying factors have been considered to explain its variable penetrance. We measured the mitochondrial DNA copy number and mitochondrial mass indicators in blood cells from affected and carrier individuals, screening three large pedigrees and 39 independently collected smaller families with Leber's hereditary optic neuropathy, as well as muscle biopsies and cells isolated by laser capturing from post-mortem specimens of retina and optic nerves, the latter being the disease targets. We show that unaffected mutation carriers have a significantly higher mitochondrial DNA copy number and mitochondrial mass compared with their affected relatives and control individuals. Comparative studies of fibroblasts from affected, carriers and controls, under different paradigms of metabolic demand, show that carriers display the highest capacity for activating mitochondrial biogenesis. Therefore we postulate that the increased mitochondrial biogenesis in carriers may overcome some of the pathogenic effect of mitochondrial DNA mutations. Screening of a few selected genetic variants in candidate genes involved in mitochondrial biogenesis failed to reveal any significant association. Our study provides a valuable mechanism to explain variability of penetrance in Leber's hereditary optic neuropathy and clues for high throughput genetic screening to identify the nuclear modifying gene(s), opening an avenue to develop predictive genetic tests on disease risk and therapeutic strategies.

  10. Cathepsin E Promotes Pulmonary Emphysema via Mitochondrial Fission

    OpenAIRE

    Zhang, Xuchen; Shan, Peiying; Homer, Robert; Zhang, Yi; Petrache, Irina; Mannam, Praveen; Lee, Patty J.

    2014-01-01

    Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose funct...

  11. Metabolic Inflexibility: When Mitochondrial Indecision Leads to Metabolic Gridlock

    OpenAIRE

    Muoio, Deborah M.

    2014-01-01

    Normal energy metabolism is characterized by periodic shifts in glucose and fat oxidation, as the mitochondrial machinery responsible for carbon combustion switches freely between alternative fuels according to physiological and nutritional circumstances. These transitions in fuel choice are orchestrated by an intricate network of metabolic and cell signaling events that enable exquisite crosstalk and cooperation between competing substrates to maintain energy and glucose homeostasis. By cont...

  12. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy.

    Science.gov (United States)

    Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A; Hernandez, Dena G; Heutink, Peter; Gibbs, J Raphael; Hardy, John; Wood, Nicholas W; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis

    2016-03-01

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. PMID:26942284

  13. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy

    Science.gov (United States)

    Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A.; Hernandez, Dena G.; Heutink, Peter; Gibbs, J. Raphael; Hardy, John; Wood, Nicholas W.; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis; Lesage, Suzanne; Tison, François; Vidailhet, Marie; Corvol, Jean-Christophe; Agid, Yves; Anheim, Mathieu; Bonnet, Anne-Marie; Borg, Michel; Broussolle, Emmanuel; Damier, Philippe; Destée, Alain; Dürr, Alexandra; Durif, Franck; Krack, Paul; Klebe, Stephan; Lohmann, Ebba; Martinez, Maria; Pollak, Pierre; Rascol, Olivier; Tranchant, Christine; Vérin, Marc; Viallet, François; Brice, Alexis; Lesage, Suzanne; Majounie, Elisa; Tison, François; Vidailhet, Marie; Corvol, Jean Christophe; Nalls, Michael A.; Hernandez, Dena G.; Gibbs, J. Raphael; Dürr, Alexandra; Arepalli, Sampath; Barker, Roger A.; Ben-Shlomo, Yoav; Berg, Daniela; Bettella, Francesco; Bhatia, Kailash; de Bie, Rob M.A.; Biffi, Alessandro; Bloem, Bastiaan R.; Bochdanovits, Zoltan; Bonin, Michael; Lesage, Suzanne; Tison, François; Vidailhet, Marie; Corvol, Jean-Christophe; Agid, Yves; Anheim, Mathieu; Bonnet, Anne-Marie; Borg, Michel; Broussolle, Emmanuel; Damier, Philippe; Destée, Alain; Dürr, Alexandra; Durif, Franck; Krack, Paul; Klebe, Stephan; Lohmann, Ebba; Martinez, Maria; Pollak, Pierre; Rascol, Olivier; Tranchant, Christine; Vérin, Marc; Bras, Jose M.; Brockmann, Kathrin; Brooks, Janet; Burn, David J.; Charlesworth, Gavin; Chen, Honglei; Chinnery, Patrick F.; Chong, Sean; Clarke, Carl E.; Cookson, Mark R.; Counsell, Carl; Damier, Philippe; Dartigues, Jean-François; Deloukas, Panos; Deuschl, Günther; Dexter, David T.; van Dijk, Karin D.; Dillman, Allissa; Dong, Jing; Durif, Frank; Edkins, Sarah; Escott-Price, Valentina; Evans, Jonathan R.; Foltynie, Thomas; Gao, Jianjun; Gardner, Michelle; Goate, Alison; Gray, Emma; Guerreiro, Rita; Harris, Clare; van Hilten, Jacobus J.; Hofman, Albert; Hollenbeck, Albert; Holmans, Peter; Holton, Janice; Hu, Michèle; Huang, Xuemei; Huber, Heiko; Hudson, Gavin; Hunt, Sarah E.; Huttenlocher, Johanna; Illig, Thomas; Jónsson, Pálmi V.; Kilarski, Laura L.; Jansen, Iris E.; Lambert, Jean-Charles; Langford, Cordelia; Lees, Andrew; Lichtner, Peter; Limousin, Patricia; Lopez, Grisel; Lorenz, Delia; Lubbe, Steven; Lungu, Codrin; Martinez, María; Mätzler, Walter; McNeill, Alisdair; Moorby, Catriona; Moore, Matthew; Morrison, Karen E.; Mudanohwo, Ese; O’Sullivan, Sean S.; Owen, Michael J.; Pearson, Justin; Perlmutter, Joel S.; Pétursson, Hjörvar; Plagnol, Vincent; Pollak, Pierre; Post, Bart; Potter, Simon; Ravina, Bernard; Revesz, Tamas; Riess, Olaf; Rivadeneira, Fernando; Rizzu, Patrizia; Ryten, Mina; Saad, Mohamad; Simón-Sánchez, Javier; Sawcer, Stephen; Schapira, Anthony; Scheffer, Hans; Schulte, Claudia; Sharma, Manu; Shaw, Karen; Sheerin, Una-Marie; Shoulson, Ira; Shulman, Joshua; Sidransky, Ellen; Spencer, Chris C.A.; Stefánsson, Hreinn; Stefánsson, Kári; Stockton, Joanna D.; Strange, Amy; Talbot, Kevin; Tanner, Carlie M.; Tashakkori-Ghanbaria, Avazeh; Trabzuni, Daniah; Traynor, Bryan J.; Uitterlinden, André G.; Velseboer, Daan; Walker, Robert; van de Warrenburg, Bart; Wickremaratchi, Mirdhu; Williams-Gray, Caroline H.; Winder-Rhodes, Sophie; Wurster, Isabel; Williams, Nigel; Morris, Huw R.; Heutink, Peter; Hardy, John; Wood, Nicholas W.; Gasser, Thomas; Singleton, Andrew B.; Brice, Alexis

    2016-01-01

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. PMID:26942284

  14. UBIAD1 mutation alters a mitochondrial prenyltransferase to cause Schnyder corneal dystrophy.

    Directory of Open Access Journals (Sweden)

    Michael L Nickerson

    Full Text Available Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD. SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure.We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules.Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly

  15. Characterization of Vibrio parahaemolyticus clinical strains from Maryland (2012-2013 and comparisons to a locally and globally diverse V. parahaemolyticus strains by Whole-Genome Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Julie eHaendiges

    2015-02-01

    Full Text Available Vibrio parahaemolyticus is the leading cause of foodborne illnesses in the US associated with the consumption of raw shellfish. Previous population studies of V. parahaemolyticus have used Multi-Locus Sequence Typing (MLST or Pulsed Field Gel Electrophoresis (PFGE. Whole genome sequencing (WGS provides a much higher level of resolution, but has been used to characterize only a few United States (US clinical isolates. Here we report the WGS characterization of 34 genomes of V. parahaemolyticus strains that were isolated from clinical cases in the state of Maryland (MD during two years (2012-2013. Among these MD isolates, 28% were negative for tdh and trh, 8% were tdh positive only, 11% were trh positive only, and 53% contained both genes. We compared this set of V. parahaemolyticus genomes to those of a collection of 17 archival strains from the US (10 previously sequenced strains and 7 from NCBI, collected between 1988 and 2004 and 15 international strains, isolated from geographically-diverse environmental and clinical sources (collected between 1980 and 2010. A WGS phylogenetic analysis of these strains revealed the regional outbreak strains from MD are highly diverse and yet genetically distinct from the international strains. Some of the MD strains caused outbreaks two years in a row, indicating a local source of contamination (e.g. ST631. Advances in WGS will enable this type of analysis to become routine, providing an excellent tool for improved surveillance. Databases built with phylogenetic data will help pinpoint sources of contamination in future outbreaks and contribute to faster outbreak control.

  16. Characterization of PM2.5 aerosols dominated by local pollution and Asian dust observed at an urban site in Korea during aerosol characterization experiments (ACE)--Asia Project.

    Science.gov (United States)

    Park, Seung Shik; Kim, Young J; Cho, Sung Yong; Kim, Seung Jai

    2007-04-01

    Daily fine particulate matter (PM2.5) samples were collected at Gwangju, Korea, during the Aerosol Characterization Experiments (ACE)-Asia Project to determine the chemical properties of PM2.5 originating from local pollution and Asian dust (AD) storms. During the study period, two significant events occurred on April 10-13 and 24-25, 2001, and a minor event occurred on April 19, 2001. Based on air mass transport pathways identified by back-trajectory calculation, the PM2.5 dataset was classified into three types of aerosol populations: local pollution and two AD aerosol types. The two AD types were transported along different pathways. One originated from Gobi desert area in Mongolia, passing through Hunshandake desert in Northern Inner Mongolia, urban and polluted regions of China (AD1), and the other originated in sandy deserts located in the Northeast Inner Mongolia Plateau and then flowed southward through the Korean peninsula (AD2). During the AD2 event, a smoke plume that originated in North Korea was transported to our study site. Mass balance closures show that crustal materials were the most significant species during both AD events, contributing -48% to the PM2.5 mass; sulfate aerosols (19.1%) and organic matter (OM; 24.6%) were the second greatest contributors during the AD1 and AD2 periods, respectively, indicating that aerosol properties were dependent on the transport pathway. The sulfate concentration constituted only 6.4% (4.5 microg/m3) of the AD2 PM2.5 mass. OM was the major chemical species in the local pollution-dominated PM2.5 aerosols, accounting for 28.7% of the measured PM2.5 mass, followed by sulfate (21.4%), nitrate (15%), ammonium (12.8%), elemental carbon (8.9%), and crustal material (6.5%). Together with substantial enhancement of the crustal elements (Mg, Al, K, Ca, Sc, Ti, Mn, Fe, Sr, Zr, Ba, and Ce), higher concentrations of pollution elements (S, V, Ni, Zn, As, Cd, and Pb) were observed during AD1 and AD2 than during the local

  17. Applied proteomics: mitochondrial proteins and effect on function.

    Science.gov (United States)

    Lopez, Mary F; Melov, Simon

    2002-03-01

    The identification of a majority of the polypeptides in mitochondria would be invaluable because they play crucial and diverse roles in many cellular processes and diseases. The endogenous production of reactive oxygen species (ROS) is a major limiter of life as illustrated by studies in which the transgenic overexpression in invertebrates of catalytic antioxidant enzymes results in increased lifespans. Mitochondria have received considerable attention as a principal source---and target---of ROS. Mitochondrial oxidative stress has been implicated in heart disease including myocardial preconditioning, ischemia/reperfusion, and other pathologies. In addition, oxidative stress in the mitochondria is associated with the pathogenesis of Alzheimer's disease, Parkinson's disease, prion diseases, and amyotrophic lateral sclerosis (ALS) as well as aging itself. The rapidly emerging field of proteomics can provide powerful strategies for the characterization of mitochondrial proteins. Current approaches to mitochondrial proteomics include the creation of detailed catalogues of the protein components in a single sample or the identification of differentially expressed proteins in diseased or physiologically altered samples versus a reference control. It is clear that for any proteomics approach prefractionation of complex protein mixtures is essential to facilitate the identification of low-abundance proteins because the dynamic range of protein abundance within cells has been estimated to be as high as 10(7). The opportunities for identification of proteins directly involved in diseases associated with or caused by mitochondrial dysfunction are compelling. Future efforts will focus on linking genomic array information to actual protein levels in mitochondria. PMID:11884366

  18. Mitochondrial Haplogroups and Risk of Pulmonary Arterial Hypertension.

    Directory of Open Access Journals (Sweden)

    Samar Farha

    Full Text Available Pulmonary arterial hypertension (PAH is a serious and often fatal disease. It is a panvasculopathy of the pulmonary microcirculation characterized by vasoconstriction and arterial obstruction due to vascular proliferation and remodeling and ultimately right ventricular failure. Mitochondrial dysfunction is a universal finding in pulmonary vascular cells of patients with PAH, and is mechanistically linked to disease origins in animal models of pulmonary hypertension. Mitochondria have their own circular DNA (mtDNA, which can be subgrouped into polymorphic haplogroup variants, some of which have been identified as at-risk or protective from cardiovascular and/or neurodegenerative diseases. Here, we hypothesized that mitochondrial haplogroups may be associated with PAH. To test this, mitochondrial haplogroups were determined in a cohort of PAH patients and controls [N = 204 Caucasians (125 PAH and 79 controls and N = 46 African Americans (13 PAH and 33 controls]. Haplogroup L was associated with a lower rate of PAH as compared to macrohaplogroups N and M. When haplogroups were nested based on ancestral inheritance and controlled for age, gender and race, haplogroups M and HV, JT and UK of the N macro-haplogroup had significantly higher rates of PAH compared to the ancestral L (L0/1/2 and L3 (all p ≤ 0.05. Overall, the findings suggest that mitochondrial haplogroups influence risk of PAH and that a vulnerability to PAH may have emerged under the selective enrichment of specific haplogroups that occurred with the migration of populations out of Africa.

  19. Mitochondrial Haplogroups and Risk of Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Farha, Samar; Hu, Bo; Comhair, Suzy; Zein, Joe; Dweik, Raed; Erzurum, Serpil C; Aldred, Micheala A

    2016-01-01

    Pulmonary arterial hypertension (PAH) is a serious and often fatal disease. It is a panvasculopathy of the pulmonary microcirculation characterized by vasoconstriction and arterial obstruction due to vascular proliferation and remodeling and ultimately right ventricular failure. Mitochondrial dysfunction is a universal finding in pulmonary vascular cells of patients with PAH, and is mechanistically linked to disease origins in animal models of pulmonary hypertension. Mitochondria have their own circular DNA (mtDNA), which can be subgrouped into polymorphic haplogroup variants, some of which have been identified as at-risk or protective from cardiovascular and/or neurodegenerative diseases. Here, we hypothesized that mitochondrial haplogroups may be associated with PAH. To test this, mitochondrial haplogroups were determined in a cohort of PAH patients and controls [N = 204 Caucasians (125 PAH and 79 controls) and N = 46 African Americans (13 PAH and 33 controls)]. Haplogroup L was associated with a lower rate of PAH as compared to macrohaplogroups N and M. When haplogroups were nested based on ancestral inheritance and controlled for age, gender and race, haplogroups M and HV, JT and UK of the N macro-haplogroup had significantly higher rates of PAH compared to the ancestral L (L0/1/2 and L3) (all p ≤ 0.05). Overall, the findings suggest that mitochondrial haplogroups influence risk of PAH and that a vulnerability to PAH may have emerged under the selective enrichment of specific haplogroups that occurred with the migration of populations out of Africa. PMID:27224443

  20. Autism and Intellectual Disability Associated with Mitochondrial Disease and Hyperlactacidemia

    Directory of Open Access Journals (Sweden)

    José Guevara-Campos

    2015-02-01

    Full Text Available Autism spectrum disorder (ASD with intellectual disability (ID is a life-long debilitating condition, which is characterized by cognitive function impairment and other neurological signs. Children with ASD-ID typically attain motor skills with a significant delay. A sub-group of ASD-IDs has been linked to hyperlactacidemia and alterations in mitochondrial respiratory chain activity. The objective of this report is to describe the clinical features of patients with these comorbidities in order to shed light on difficult diagnostic and therapeutic approaches in such patients. We reported the different clinical features of children with ID associated with hyperlactacidemia and deficiencies in mitochondrial respiratory chain complex II–IV activity whose clinical presentations are commonly associated with the classic spectrum of mitochondrial diseases. We concluded that patients with ASD and ID presenting with persistent hyperlactacidemia should be evaluated for mitochondrial disorders. Administration of carnitine, coenzyme Q10, and folic acid is partially beneficial, although more studies are needed to assess the efficacy of this vitamin/cofactor treatment combination.

  1. Chaperone-Mediated Autophagy and Mitochondrial Homeostasis in Parkinson's Disease.

    Science.gov (United States)

    Yang, Ruixin; Gao, Guodong; Mao, Zixu; Yang, Qian

    2016-01-01

    Parkinson's disease (PD), a complex neurodegenerative disorder, is pathologically characterized by the formation of Lewy bodies and loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Mitochondrial dysfunction is considered to be one of the most important causative mechanisms. In addition, dysfunction of chaperone-mediated autophagy (CMA), one of the lysosomal proteolytic pathways, has been shown to play an important role in the pathogenesis of PD. An exciting and important development is recent finding that CMA and mitochondrial quality control may be linked. This review summarizes the studies revealing the link between autophagy and mitochondrial function. Discussions are focused on the connections between CMA and mitochondrial failure and on the role of MEF2D, a neuronal survival factor, in mediating the regulation of mitochondria in the context of CMA. These new findings highlight the need to further explore the possibility of targeting the MEF2D-mitochondria-CMA network in both understanding the PD pathogenesis and developing novel therapeutic strategies.

  2. Human Mitochondrial Transcription Revisited: ONLY TFAM AND TFB2M ARE REQUIRED FOR TRANSCRIPTION OF THE MITOCHONDRIAL GENES IN VITRO*

    OpenAIRE

    Litonin, Dmitry; Sologub, Marina; Shi, Yonghong; Savkina, Maria; Anikin, Michael; Falkenberg, Maria; Gustafsson, Claes M.; Temiakov, Dmitry

    2010-01-01

    Human mitochondrial transcription is driven by a single subunit RNA polymerase and a set of basal transcription factors. The development of a recombinant in vitro transcription system has allowed for a detailed molecular characterization of the individual components and their contribution to transcription initiation. We found that TFAM and TFB2M act synergistically and increase transcription efficiency 100–200-fold as compared with RNA polymerase alone. Both the light-strand promoter (LSP) an...

  3. Potentially diagnostic electron paramagnetic resonance spectra elucidate the underlying mechanism of mitochondrial dysfunction in the deoxyguanosine kinase deficient rat model of a genetic mitochondrial DNA depletion syndrome.

    Science.gov (United States)

    Bennett, Brian; Helbling, Daniel; Meng, Hui; Jarzembowski, Jason; Geurts, Aron M; Friederich, Marisa W; Van Hove, Johan L K; Lawlor, Michael W; Dimmock, David P

    2016-03-01

    A novel rat model for a well-characterized human mitochondrial disease, mitochondrial DNA depletion syndrome with associated deoxyguanosine kinase (DGUOK) deficiency, is described. The rat model recapitulates the pathologic and biochemical signatures of the human disease. The application of electron paramagnetic (spin) resonance (EPR) spectroscopy to the identification and characterization of respiratory chain abnormalities in the mitochondria from freshly frozen tissue of the mitochondrial disease model rat is introduced. EPR is shown to be a sensitive technique for detecting mitochondrial functional abnormalities in situ and, here, is particularly useful in characterizing the redox state changes and oxidative stress that can result from depressed expression and/or diminished specific activity of the distinct respiratory chain complexes. As EPR requires no sample preparation or non-physiological reagents, it provides information on the status of the mitochondrion as it was in the functioning state. On its own, this information is of use in identifying respiratory chain dysfunction; in conjunction with other techniques, the information from EPR shows how the respiratory chain is affected at the molecular level by the dysfunction. It is proposed that EPR has a role in mechanistic pathophysiological studies of mitochondrial disease and could be used to study the impact of new treatment modalities or as an additional diagnostic tool. PMID:26773591

  4. Natural Compounds Modulating Mitochondrial Functions

    Directory of Open Access Journals (Sweden)

    Lara Gibellini

    2015-01-01

    Full Text Available Mitochondria are organelles responsible for several crucial cell functions, including respiration, oxidative phosphorylation, and regulation of apoptosis; they are also the main intracellular source of reactive oxygen species (ROS. In the last years, a particular interest has been devoted to studying the effects on mitochondria of natural compounds of vegetal origin, quercetin (Qu, resveratrol (RSV, and curcumin (Cur being the most studied molecules. All these natural compounds modulate mitochondrial functions by inhibiting organelle enzymes or metabolic pathways (such as oxidative phosphorylation, by altering the production of mitochondrial ROS and by modulating the activity of transcription factors which regulate the expression of mitochondrial proteins. While Qu displays both pro- and antioxidant activities, RSV and Cur are strong antioxidant, as they efficiently scavenge mitochondrial ROS and upregulate antioxidant transcriptional programmes in cells. All the three compounds display a proapoptotic activity, mediated by the capability to directly cause the release of cytochrome c from mitochondria or indirectly by upregulating the expression of proapoptotic proteins of Bcl-2 family and downregulating antiapoptotic proteins. Interestingly, these effects are particularly evident on proliferating cancer cells and can have important therapeutic implications.

  5. Historical Perspective on Mitochondrial Medicine

    Science.gov (United States)

    DiMauro, Salvatore; Garone, Caterina

    2010-01-01

    In this review, we trace the origins and follow the development of mitochondrial medicine from the premolecular era (1962-1988) based on clinical clues, muscle morphology, and biochemistry into the molecular era that started in 1988 and is still advancing at a brisk pace. We have tried to stress conceptual advances, such as endosymbiosis,…

  6. Coenzyme Q and Mitochondrial Disease

    Science.gov (United States)

    Quinzii, Catarina M.; Hirano, Michio

    2010-01-01

    Coenzyme Q[subscript 10] (CoQ[subscript 10]) is an essential electron carrier in the mitochondrial respiratory chain and an important antioxidant. Deficiency of CoQ[subscript 10] is a clinically and molecularly heterogeneous syndrome, which, to date, has been found to be autosomal recessive in inheritance and generally responsive to CoQ[subscript…

  7. Mitochondrial dysfunction and Huntington disease

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Huntington disease (HD) is a chronic autosomal-dominant neurodegenerative disease. The gene coding Huntingtin has been identified, but the pathogenic mechanisms of the disease are still not fully understood. This paper reviews the involvement of mitochondrial dysfunction in pathogenesis of HD.

  8. Mitochondrial rejuvenation after induced pluripotency.

    Directory of Open Access Journals (Sweden)

    Steven T Suhr

    Full Text Available BACKGROUND: As stem cells of the early embryo mature and differentiate into all tissues, the mitochondrial complement undergoes dramatic functional improvement. Mitochondrial activity is low to minimize generation of DNA-damaging reactive oxygen species during pre-implantation development and increases following implantation and differentiation to meet higher metabolic demands. It has recently been reported that when the stem cell type known as induced pluripotent stem cells (IPSCs are re-differentiated for several weeks in vitro, the mitochondrial complement progressively re-acquires properties approximating input fibroblasts, suggesting that despite the observation that IPSC conversion "resets" some parameters of cellular aging such as telomere length, it may have little impact on other age-affected cellular systems such as mitochondria in IPSC-derived cells. METHODOLOGY/PRINCIPAL FINDINGS: We have examined the properties of mitochondria in two fibroblast lines, corresponding IPSCs, and fibroblasts re-derived from IPSCs using biochemical methods and electron microscopy, and found a dramatic improvement in the quality and function of the mitochondrial complement of the re-derived fibroblasts compared to input fibroblasts. This observation likely stems from two aspects of our experimental design: 1 that the input cell lines used were of advanced cellular age and contained an inefficient mitochondrial complement, and 2 the re-derived fibroblasts were produced using an extensive differentiation regimen that may more closely mimic the degree of growth and maturation found in a developing mammal. CONCLUSIONS/SIGNIFICANCE: These results - coupled with earlier data from our laboratory - suggest that IPSC conversion not only resets the "biological clock", but can also rejuvenate the energetic capacity of derived cells.

  9. Engineering characterization of ground motion. Task II. Effects of ground motion characteristics on structural response considering localized structural nonlinearities and soil-structure interaction effects. Volume 2

    International Nuclear Information System (INIS)

    This report presents the results of part of a two-task study on the engineering characterization of earthquake ground motion for nuclear power plant design. Task I of the study, which is presented in NUREG/CR-3805, Vol. 1, developed a basis for selecting design response spectra taking into account the characteristics of free-field ground motion found to be significant in causing structural damage. Task II incorporates additional considerations of effects of spatial variations of ground motions and soil-structure interaction on foundation motions and structural response. The results of Task II are presented in four parts: (1) effects of ground motion characteristics on structural response of a typical PWR reactor building with localized nonlinearities and soil-structure interaction effects; (2) empirical data on spatial variations of earthquake ground motion; (3) soil-structure interaction effects on structural response; and (4) summary of conclusions and recommendations based on Tasks I and II studies. This report presents the results of the first part of Task II. The results of the other parts will be presented in NUREG/CR-3805, Vols. 3 to 5

  10. Characterization of the human and rat phospholemman (PLM) cDNAs and localization of the human PLM gene to chromosome 19q13.1.

    Science.gov (United States)

    Chen, L S; Lo, C F; Numann, R; Cuddy, M

    1997-05-01

    Previous reports have demonstrated that the phospholemman (PLM), a 72-residue plasma-membrane protein enriched in skeletal muscle and heart, is a major substrate phosphorylated in response to insulin and adrenergic stimulation. Here we describe the isolation and characterization of human and rat PLM cDNA from the heart. Both PLM proteins share significant nucleotide and amino acid sequence and structural similarities with the previously published canine PLM and, to a lesser degree, with Na+/K(+)-ATPase gamma subunit, Mat-8 protein, and CHIF protein. Despite the functional diversity, all these proteins are quite small and possess a single transmembrane domain. Human PLM appears to be a unique gene localized on chromosome 19q13.1. The PLM mRNA is widely distributed in human tissues, with the highest expression in skeletal muscle and heart, suggesting a functional role in muscle contraction. Like canine PLM, both human and rat PLM induce a hyperpolarization-activated chloride current when expressed in Xenopus oocytes. The high degree of sequence and functional conservation among the mammalian PLM proteins indicates that this gene is conserved throughout evolution.

  11. Molecular characterization of Fasciola hepatica and phylogenetic analysis based on mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I and cytochrome oxidase subunit I) genes from the North-East of Iran

    Science.gov (United States)

    Reaghi, Saber; Haghighi, Ali; Harandi, Majid Fasihi; Spotin, Adel; Arzamani, Kourosh; Rouhani, Soheila

    2016-01-01

    Aim: Fascioliasis is one of the most zoonotic diseases with global extension. As the epidemiological distribution of Fasciola may lead to various genetic patterns of the parasite, the aim of this study is to identify Fasciola hepatica based on spermatogenesis, and phylogenetic analysis using mitochondrial (nicotiamide adenine dinucleotide dehydrogenase subunit I [ND1] and cytochrome oxidase subunit I) gene marker. Materials and Methods: In this study, 90 F. hepatica collected from 30 cattle at slaughterhouse located in three different geographical locations in the North-East of Iran were evaluated based on spermatogenetic ability and internal transcribed spacer 1 gene restriction fragment length polymorphism pattern. Genetic diversity and phylogenetic relationship using mtDNA gene marker for the isolates from the North-East of Iran, and other countries were then analyzed. Results: Partial sequences of mtDNA showed eight haplotypes in both genes. The phylogenic analysis using neighbor joining as well as maximum likelihood methods showed similar topologies of trees. Pairwise fixation index between different F. hepatica populations calculated from the nucleotide data set of ND1 gene are statistically significant and show the genetic difference. Conclusion: F. hepatica found in this region of Iran has different genetic structures through the other Fasciola populations in the world. PMID:27733809

  12. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies.

    Science.gov (United States)

    Lopez Sanchez, M I G; Crowston, J G; Mackey, D A; Trounce, I A

    2016-09-01

    Optic neuropathies are an important cause of blindness worldwide. The study of the most common inherited mitochondrial optic neuropathies, Leber hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) has highlighted a fundamental role for mitochondrial function in the survival of the affected neuron-the retinal ganglion cell. A picture is now emerging that links mitochondrial dysfunction to optic nerve disease and other neurodegenerative processes. Insights gained from the peculiar susceptibility of retinal ganglion cells to mitochondrial dysfunction are likely to inform therapeutic development for glaucoma and other common neurodegenerative diseases of aging. Despite it being a fast-evolving field of research, a lack of access to human ocular tissues and limited animal models of mitochondrial disease have prevented direct retinal ganglion cell experimentation and delayed the development of efficient therapeutic strategies to prevent vision loss. Currently, there are no approved treatments for mitochondrial disease, including optic neuropathies caused by primary or secondary mitochondrial dysfunction. Recent advances in eye research have provided important insights into the molecular mechanisms that mediate pathogenesis, and new therapeutic strategies including gene correction approaches are currently being investigated. Here, we review the general principles of mitochondrial biology relevant to retinal ganglion cell function and provide an overview of the major optic neuropathies with mitochondrial involvement, LHON and ADOA, whilst highlighting the emerging link between mitochondrial dysfunction and glaucoma. The pharmacological strategies currently being trialed to improve mitochondrial dysfunction in these optic neuropathies are discussed in addition to emerging therapeutic approaches to preserve retinal ganglion cell function.

  13. The complete mitochondrial genome of the Antarctic springtail Cryptopygus antarcticus (Hexapoda: Collembola

    Directory of Open Access Journals (Sweden)

    Nardi Francesco

    2008-07-01

    -strand replication of the Drosophila mtDNA. Conclusion The mitochondrial genome of C. antarcticus shares several features with other pancrustacean genomes, although the presence of unusual non-coding regions is also suggestive of molecular rearrangements that probably occurred before the differentiation of major collembolan families. Closer examination of gene boundaries also confirms previous observations on the presence of unusual start and stop codons, and suggests a role for tRNA secondary structures as potential cleavage signals involved in the maturation of the primary transcript. Sequences potentially involved in the regulation of replication/transcription are present both in the A+T-rich region and in other areas of the genome. Their position is similar to that observed in a limited number of insect species, suggesting unique replication/transcription mechanisms for basal and derived hexapod lineages. This initial description and characterization of the mitochondrial genome of C. antarcticus will constitute the essential foundation prerequisite for investigations of the evolutionary history of one of the most speciose collembolan genera present in Antarctica and other localities of the Southern Hemisphere.

  14. Estrogen regulation of mitochondrial bioenergetics: implications for prevention of Alzheimer's disease.

    Science.gov (United States)

    Yao, Jia; Brinton, Roberta Diaz

    2012-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease with a complex and progressive pathological phenotype characterized first by hypometabolism and impaired mitochondrial bioenergetics followed by pathological burden. Increasing evidence indicates an antecedent and potentially causal role of mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress in AD pathogenesis. Compromised aerobic glycolysis pathway coupled with oxidative stress is first accompanied by a shift toward a ketogenic pathway that eventually progresses into fatty acid oxidation (FAO) pathways and leads to white matter degeneration and overproduction and mitochondrial accumulation of β-amyloid. Estrogen-induced signaling pathways converge upon the mitochondria to enhance mitochondrial function and to sustain aerobic glycolysis coupled with citric acid cycle-driven oxidative phosphorylation to potentiate ATP (Adenosine triphosphate) generation. In addition to potentiated mitochondrial bioenergetics, estrogen also enhances neural survival and health through maintenance of calcium homeostasis, promotion of antioxidant defense against free radicals, efficient cholesterol trafficking, and beta amyloid clearance. Significantly, the convergence of E2 mechanisms of action onto mitochondria is also a potential point of vulnerability when activated in diseased neurons that exacerbates degeneration through increased load on dysregulated calcium homeostasis. The "healthy cell bias of estrogen action" hypothesis examines the role that regulating mitochondrial function and bioenergetics play in promoting neural health and the mechanistic crossroads that lead to divergent outcomes following estrogen exposure. As the continuum of neurological health progresses from healthy to unhealthy, so too do the benefits of estrogen or hormone therapy.

  15. Mitochondrial Dysfunction and β-Cell Failure in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Zhongmin Alex Ma

    2012-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM is the most common human endocrine disease and is characterized by peripheral insulin resistance and pancreatic islet β-cell failure. Accumulating evidence indicates that mitochondrial dysfunction is a central contributor to β-cell failure in the evolution of T2DM. As reviewed elsewhere, reactive oxygen species (ROS produced by β-cell mitochondria as a result of metabolic stress activate several stress-response pathways. This paper focuses on mechanisms whereby ROS affect mitochondrial structure and function and lead to β-cell failure. ROS activate UCP2, which results in proton leak across the mitochondrial inner membrane, and this leads to reduced β-cell ATP synthesis and content, which is a critical parameter in regulating glucose-stimulated insulin secretion. In addition, ROS oxidize polyunsaturated fatty acids in mitochondrial cardiolipin and other phospholipids, and this impairs membrane integrity and leads to cytochrome c release into cytosol and apoptosis. Group VIA phospholipase A2 (iPLA2β appears to be a component of a mechanism for repairing mitochondrial phospholipids that contain oxidized fatty acid substituents, and genetic or acquired iPLA2β-deficiency increases β-cell mitochondrial susceptibility to injury from ROS and predisposes to developing T2DM. Interventions that attenuate ROS effects on β-cell mitochondrial phospholipids might prevent or retard development of T2DM.

  16. Detouring of cisplatin to access mitochondrial genome for overcoming resistance.

    Science.gov (United States)

    Marrache, Sean; Pathak, Rakesh K; Dhar, Shanta

    2014-07-22

    Chemoresistance of cisplatin therapy is related to extensive repair of cisplatin-modified DNA in the nucleus by the nucleotide excision repair (NER). Delivering cisplatin to the mitochondria to attack mitochondrial genome lacking NER machinery can lead to a rationally designed therapy for metastatic, chemoresistant cancers and might overcome the problems associated with conventional cisplatin treatment. An engineered hydrophobic mitochondria-targeted cisplatin prodrug, Platin-M, was constructed using a strain-promoted alkyne-azide cycloaddition chemistry. Efficient delivery of Platin-M using a biocompatible polymeric nanoparticle (NP) based on biodegradable poly(lactic-co-glycolic acid)-block-polyethyleneglycol functionalized with a terminal triphenylphosphonium cation, which has remarkable activity to target mitochondria of cells, resulted in controlled release of cisplatin from Platin-M locally inside the mitochondrial matrix to attack mtDNA and exhibited otherwise-resistant advanced cancer sensitive to cisplatin-based chemotherapy. Identification of an optimized targeted-NP formulation with brain-penetrating properties allowed for delivery of Platin-M inside the mitochondria of neuroblastoma cells resulting in ∼17 times more activity than cisplatin. The remarkable activity of Platin-M and its targeted-NP in cisplatin-resistant cells was correlated with the hyperpolarization of mitochondria in these cells and mitochondrial bioenergetics studies in the resistance cells further supported this hypothesis. This unique dual-targeting approach to controlled mitochondrial delivery of cisplatin in the form of a prodrug to attack the mitochondrial genome lacking NER machinery and in vivo distribution of the delivery vehicle in the brain suggested previously undescribed routes for cisplatin-based therapy.

  17. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans.

    Science.gov (United States)

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-08-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures.

  18. Mitochondrial protection by low doses of insulin-like growth factor- Ⅰ in experimental cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Raquel Pérez; María García-Fernández; Matías Díaz-Sánchez; Juan E Puche; Gloria Delgado; Marian Conchillo; Jordi Muntané; Inma Castilla-Cortázar

    2008-01-01

    AIM:To characterize the mitochondrial dysfunction in experimental cirrhosis and to study whether insulin-like growth factor- I (IGF-I) therapy (4 wk) is able to in-duce beneficial effects on damaged mitochondria leading to cellular protection.METHODS:Wistar rats were divided into three groups:Control group,untreated cirrhotic rats and cirrhotic rats treated with IGF-I treatment (2 μg/100 g bw/d).Mitochondrial function was analyzed by flow cytometry in isolated hepatic mitochondria,caspase 3 activation was assessed by Western blot and apoptosis by TUNEL in the three experimental groups.RESULTS:Untreated cirrhotic rats showed a mitochondrial dysfunction characterized by a significant reduction of mitochondrial membrane potential (in status 4 and 3);an increase of intramitochondrial reactive oxigen species (ROS) generation and a significant reduction of ATPase activity.IGF-Ⅰ therapy normalized mitochondrial function by increasing the membrane potential and ATPase activity and reducing the intramitochondrial free radical production.Activity of the electron transport complexes Ⅰ and Ⅲ was increased in both cirrhotic groups.In addition,untreated cirrhotic rats showed an increase of caspase 3 activation and apoptosis.IGF- Ⅰ therapy reduced the expression of the active peptide of caspase 3 and resulted in reduced apoptosis.CONCLUSION:These results show that IGF- Ⅰ exerts a mitochondrial protection in experimental cirrhosis leading to reduced apoptosis and increased ATP production.

  19. RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats.

    Directory of Open Access Journals (Sweden)

    Masaki Odahara

    2015-03-01

    Full Text Available Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8-79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12-63 bp in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions.

  20. Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-knockdown mice.

    Directory of Open Access Journals (Sweden)

    Corey ePowers

    2013-04-01

    Full Text Available The phospholipid, cardiolipin, is essential for maintaining mitochondrial structure and optimal function. Cardiolipin-deficiency in humans, Barth syndrome, is characterized by exercise intolerance, dilated cardiomyopathy, neutropenia and 3-methyl-glutaconic aciduria. The causative gene is the mitochondrial acyl-transferase, tafazzin that is essential for remodeling acyl chains of cardiolipin. We sought to determine metabolic rates in tafazzin-deficient mice during resting and exercise, and investigate the impact of cardiolipin deficiency on mitochondrial respiratory chain activities. Tafazzin knockdown in mice markedly impaired oxygen consumption rates during an exercise, without any significant effect on resting metabolic rates. CL-deficiency resulted in significant reduction of mitochondrial respiratory reserve capacity in neonatal cardiomyocytes that is likely to be caused by diminished activity of complex-III, which requires CL for its assembly and optimal activity. Our results may provide mechanistic insights of Barth syndrome pathogenesis.

  1. Blood cell mitochondrial DNA content and premature ovarian aging.

    Directory of Open Access Journals (Sweden)

    Marco Bonomi

    Full Text Available Primary ovarian insufficiency (POI is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA content in a group of women undergoing ovarian hyperstimulation (OH, and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF and 42 poor responders (PR to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001 in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  2. Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins

    NARCIS (Netherlands)

    Haas, Jan M. de; Hille, Jacques; Kors, Frank; Meer, Bert van der; Kool, Ad J.; Folkerts, Otto; Nijkamp, H. John J.

    1991-01-01

    Four Petunia hybrida mitochondrial (mt) DNA fragments have been isolated, sequenced, localized on the physical map and analyzed for their ability to initiate specific DNA synthesis. When all four mtDNA fragments were tested as templates in an in vitro DNA synthesizing lysate system, developed from p

  3. Structure and function of mitochondrial complex I.

    Science.gov (United States)

    Wirth, Christophe; Brandt, Ulrich; Hunte, Carola; Zickermann, Volker

    2016-07-01

    Proton-pumping NADH:ubiquinone oxidoreductase (complex I) is the largest and most complicated enzyme of the respiratory chain. Fourteen central subunits represent the minimal form of complex I and can be assigned to functional modules for NADH oxidation, ubiquinone reduction, and proton pumping. In addition, the mitochondrial enzyme comprises some 30 accessory subunits surrounding the central subunits that are not directly associated with energy conservation. Complex I is known to release deleterious oxygen radicals (ROS) and its dysfunction has been linked to a number of hereditary and degenerative diseases. We here review recent progress in structure determination, and in understanding the role of accessory subunits and functional analysis of mitochondrial complex I. For the central subunits, structures provide insight into the arrangement of functional modules including the substrate binding sites, redox-centers and putative proton channels and pump sites. Only for two of the accessory subunits, detailed structures are available. Nevertheless, many of them could be localized in the overall structure of complex I, but most of these assignments have to be considered tentative. Strikingly, redox reactions and proton pumping machinery are spatially completely separated and the site of reduction for the hydrophobic substrate ubiquinone is found deeply buried in the hydrophilic domain of the complex. The X-ray structure of complex I from Yarrowia lipolytica provides clues supporting the previously proposed two-state stabilization change mechanism, in which ubiquinone redox chemistry induces conformational states and thereby drives proton pumping. The same structural rearrangements may explain the active/deactive transition of complex I implying an integrated mechanistic model for energy conversion and regulation. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26921811

  4. Cybrid models of Parkinson's disease show variable mitochondrial biogenesis and genotype-respiration relationships.

    Science.gov (United States)

    Keeney, Paula M; Dunham, Lisa D; Quigley, Caitlin K; Morton, Stephanie L; Bergquist, Kristen E; Bennett, James P

    2009-12-01

    Sporadic Parkinson's disease (sPD) is a nervous system-wide disease that presents with a bradykinetic movement disorder and frequently progresses to include depression and cognitive impairment. Cybrid models of sPD are based on expression of sPD platelet mitochondrial DNA (mtDNA) in neural cells and demonstrate some similarities to sPD brains. In sPD and CTL cybrids we characterized aspects of mitochondrial biogenesis, mtDNA genomics, composition of the respirasome and the relationships among isolated mitochondrial and intact cell respiration. Cybrid mtDNA levels varied and correlated with expression of PGC-1 alpha, a transcriptional co-activator regulator of mitochondrial biogenesis. Levels of mtDNA heteroplasmic mutations were asymmetrically distributed across the mitochondrial genome; numbers of heteroplasmies were more evenly distributed. Neither levels nor numbers of heteroplasmies distinguished sPD from CTL. sPD cybrid mitochondrial ETC subunit protein levels were not altered. Isolated mitochondrial complex I respiration rates showed limited correlation with whole cell complex I respiration rates in both sPD and CTL cybrids. Intact cell respiration during the normoxic-anoxic transition yielded K(m) values for oxygen that directly related to respiration rates in CTL but not in sPD cell lines. Both sPD and CTL cybrid cells are substantially heterogeneous in mitochondrial genomic and physiologic properties. Our results suggest that mtDNA depletion may occur in sPD neurons and could reflect impairment of mitochondrial biogenesis. Cybrids remain a valuable model for some aspects of sPD but their heterogeneity mitigates against a simple designation of sPD phenotype in this cell model.

  5. A complete mitochondrial genome of Youzhou black-skin goat.

    Science.gov (United States)

    E, Guangxin; Chen, Li-Peng; Na, Ri-Su; Zhao, Yong-Ju; Gao, Hui-Jiang; Zhao, Zhong-Quan; Jiang, Cao-De; Zhang, Jia-Hua; Sun, Ya-Wang; Zeng, Yan; Ma, Yue-Hui; Huang, Yong-Fu

    2016-09-01

    The Youzhou black-skin goat (Capra hircus), an indigenous breed of Chinese southwest. Here, we describe the complete mitochondrial genome sequence of Hechuan white goat. The mitogenome is 16,640 nt in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes and a control region. As in other mammals, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes, which are encoded on the light strand. Its overall base composition is A: 33.5%, T: 27.3%, C: 26.1% and G: 13.1%. The complete mitogenome of the local subspecies of Hechuan white goat could provide an important data to further breed improvement and animal genetics resource conservation in China. PMID:26702472

  6. Mitochondrial Protection by Exogenous Otx2 in Mouse Retinal Neurons

    Directory of Open Access Journals (Sweden)

    Hyoung-Tai Kim

    2015-11-01

    Full Text Available OTX2 (orthodenticle homeobox 2 haplodeficiency causes diverse defects in mammalian visual systems ranging from retinal dysfunction to anophthalmia. We find that the retinal dystrophy of Otx2+/GFP heterozygous knockin mice is mainly due to the loss of bipolar cells and consequent deficits in retinal activity. Among bipolar cell types, OFF-cone bipolar subsets, which lack autonomous Otx2 gene expression but receive Otx2 proteins from photoreceptors, degenerate most rapidly in Otx2+/GFP mouse retinas, suggesting a neuroprotective effect of the imported Otx2 protein. In support of this hypothesis, retinal dystrophy in Otx2+/GFP mice is prevented by intraocular injection of Otx2 protein, which localizes to the mitochondria of bipolar cells and facilitates ATP synthesis as a part of mitochondrial ATP synthase complex. Taken together, our findings demonstrate a mitochondrial function for Otx2 and suggest a potential therapeutic application of OTX2 protein delivery in human retinal dystrophy.

  7. The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing.

    Science.gov (United States)

    Tang, Jianwei; Kobayashi, Keiko; Suzuki, Masashi; Matsumoto, Shogo; Muranaka, Toshiya

    2010-02-01

    Unlike animals, plants synthesize isoprenoids via two pathways, the cytosolic mevalonate (MVA) pathway and the plastidial 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway. Little information is known about the mechanisms that regulate these complex biosynthetic networks over multiple organelles. To understand such regulatory mechanisms of the biosynthesis of isoprenoids in plants, we previously characterized the Arabidopsis mutant, lovastatin insensitive 1 (loi1), which is resistant to lovastatin and clomazone, specific inhibitors of the MVA and MEP pathways, respectively. LOI1 encodes a pentatricopeptide repeat (PPR) protein localized in mitochondria that is thought to have RNA binding ability and function in post-transcriptional regulation of mitochondrial gene expression. LOI1 belongs to the DYW subclass of PPR proteins, which is hypothesized to be correlated with RNA editing. As a result of analysis of RNA editing of mitochondrial genes in loi1, a defect in RNA editing of three genes, nad4, ccb203 and cox3, was identified in loi1. These genes are related to the respiratory chain. Wild type (WT) treated with some respiration inhibitors mimicked the loi1 phenotype. Interestingly, HMG-CoA reductase activity of WT treated with lovastatin combined with antimycin A, an inhibitor of complex III in the respiratory chain, was higher than that of WT treated with only lovastatin, despite the lack of alteration of transcript or protein levels of HMGR. These results suggest that HMGR enzyme activity is regulated through the respiratory cytochrome pathway. Although various mechanisms exist for isoprenoid biosynthesis, our studies demonstrate the novel possibility that mitochondrial respiration plays potentially regulatory roles in isoprenoid biosynthesis.

  8. Biochemival Characterization of an Antibactrial Glycoprotein from Achatina fulica ferussac Snail Mucus Local Isolate and Their Implication on Bacterial Dental Infection

    Directory of Open Access Journals (Sweden)

    Titiek Berniyanti

    2015-11-01

    Full Text Available Snails crawl over a variety of potentially contaminated surfaces and their foot is the primary site of entry forpathogens, parasites and a range of opportunistic organisms, so it is a little wonder that they must have a defensivesystem to protect them. The mucus secreted on the body surfaces of mollusks is known to play crucial role inlocomotion, feeding, osmoregulation, reproduction and protection of epithelial surfaces. The snail mucus alsocontains Glycoaminoglycans (GAGs which are complex polysaccharides that participate in the regulation ofphysiological processes through the interactions with a wide variety of proteins. GAGs, such as heparin, serve as keyto biological response modifiers, in example for acting asa a target for pathogen and parasitic factors for attachment,invasion, and immune system.For years, it has been known that the mucus secretions from snails Achatina fulica ferussac local isolate can be usedas a medication, and even empirically it is used to treat infected teeth tahat is suffered by people in rural area. Theantibacterial factor was surveyed in the aqueous extract and the mucin fraction of snail Achatina fulica ferussac, andthey exhibited positive antibacterial for Gram-positive, Escherichia coli and Gram negative, Streptococcus mutans. Inthe following study, it has been proved that an antibacterial content in the mucus was a Glycoprotein. It wascomposed of two subunits of Molecular Weight (MW 71-73 kDa. The GelCode Glycoprotein Staining Kit detectedglycoprotein sugar moieties in polyacrylamide gel and on nitrocellulose membrane, while the glycoproteincarbohydrate estimation kit detected glycoprotein and estimated carbohydrate content. The glycoprotein contentwas 4.537 ± 0.876 for carbohydrate and 6.420 ± 1.242 for protein.Keywords : characterization, glycoprotein, Achatina fullica Ferussac snail mucus, galur Jawa, antibacterialfactor

  9. Mitochondrial plasticity in pathophysiological conditions

    OpenAIRE

    Padrão, Ana Isabel Martins Novais

    2013-01-01

    Both skeletal and cardiac muscles daily burn tremendous amounts of ATP to meet the energy requirements for contraction. So, it is not surprising that the maintenance of mitochondrial morphology, number, distribution and functionality in striated muscle are important for muscle homeostasis. In these tissues mitochondria present the added dimension of two populations, the intermyofibrillar (IMF) and the subsarcolemmal (SS) mitochondria, being IMF the most abundant one. In the present thesis, th...

  10. Predicting the Subcellular Localization of Human Proteins Using Machine Learning and Exploratory Data Analysis

    Institute of Scientific and Technical Information of China (English)

    George K. Acquaah-Mensah; Sonia M. Leach; Chittibabu Guda

    2006-01-01

    Identifying the subcellular localization of proteins is particularly helpful in the functional annotation of gene products. In this study, we use Machine Learning and Exploratory Data Analysis (EDA) techniques to examine and characterize amino acid sequences of human proteins localized in nine cellular compartments. A dataset of 3,749 protein sequences representing human proteins was extracted from the SWISS-PROT database. Feature vectors were created to capture specific amino acid sequence characteristics. Relative to a Support Vector Machine, a Multi-layer Perceptron, and a Naive Bayes classifier, the C4.5 Decision Tree algorithm was the most consistent performer across all nine compartments in reliably predicting the subcellular localization of proteins based on their amino acid sequences (average Precision=0.88; average Sensitivity=0.86). Furthermore, EDA graphics characterized essential features of proteins in each compartment. As examples,proteins localized to the plasma membrane had higher proportions of hydrophobic amino acids; cytoplasmic proteins had higher proportions of neutral amino acids;and mitochondrial proteins had higher proportions of neutral amino acids and lower proportions of polar amino acids. These data showed that the C4.5 classifier and EDA tools can be effective for characterizing and predicting the subcellular localization of human proteins based on their amino acid sequences.

  11. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock.

    Science.gov (United States)

    Muoio, Deborah M

    2014-12-01

    Normal energy metabolism is characterized by periodic shifts in glucose and fat oxidation, as the mitochondrial machinery responsible for carbon combustion switches freely between alternative fuels according to physiological and nutritional circumstances. These transitions in fuel choice are orchestrated by an intricate network of metabolic and cell signaling events that enable exquisite crosstalk and cooperation between competing substrates to maintain energy and glucose homeostasis. By contrast, obesity-related cardiometabolic diseases are increasingly recognized as disorders of metabolic inflexibility, in which nutrient overload and heightened substrate competition result in mitochondrial indecision, impaired fuel switching, and energy dysregulation. This Perspective offers a speculative view on the molecular origins and pathophysiological consequences of metabolic inflexibility. PMID:25480291

  12. [Molecular genetic studies of mitochondrial ornithine transporter deficiency (HHH syndrome)].

    Science.gov (United States)

    Tsujino, S; Miyamoto, T; Kanazawa, N

    2001-11-01

    Mitochondrial ornithine transporter deficiency has been called HHH syndrome, because this disorder is characterized by three biochemical abnormalities; hyperornithinemia, hyperammonemia, and homocitrullinuria, and presents with various neurological symptoms; mental retardation, spastic paraparesis with pyramidal signs, cerebellar ataxia and episodic disturbance of consciousness or coma due to hyperammonemia. We identified four mutations in the mitochondrial ornithine transporter gene (ORNT1) of Japanese patients with HHH syndrome. These include a nonsense mutation (R179X), associated with exon skipping, missense mutations (G27E, P126R), and an insertion of AAC between codons 228 and 229, leading to an insertion of amino acid Asn. Especially, R179X was detected 4 of 7 Japanese patients (8 of 14 alleles), implying that this is a common mutation in Japanese population.

  13. Uncoupling Mitochondrial Respiration for Diabesity.

    Science.gov (United States)

    Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R

    2016-08-01

    Until recently, the mechanism of adaptive thermogenesis was ascribed to the expression of uncoupling protein 1 (UCP1) in brown and beige adipocytes. UCP1 is known to catalyze a proton leak of the inner mitochondrial membrane, resulting in uncoupled oxidative metabolism with no production of adenosine triphosphate and increased energy expenditure. Thus increasing brown and beige adipose tissue with augmented UCP1 expression is a viable target for obesity-related disorders. Recent work demonstrates an UCP1-independent pathway to uncouple mitochondrial respiration. A secreted enzyme, PM20D1, enriched in UCP1+ adipocytes, exhibits catalytic and hydrolytic activity to reversibly form N-acyl amino acids. N-acyl amino acids act as endogenous uncouplers of mitochondrial respiration at physiological concentrations. Administration of PM20D1 or its products, N-acyl amino acids, to diet-induced obese mice improves glucose tolerance by increasing energy expenditure. In short-term studies, treated animals exhibit no toxicity while experiencing 10% weight loss primarily of adipose tissue. Further study of this metabolic pathway may identify novel therapies for diabesity, the disease state associated with diabetes and obesity. PMID:27378359

  14. Characterization of local corrosion properties of lanthanum- and neodymium-modified (α-β) titanium alloys; Charakterisierung der lokalen Korrosionseigenschaften von lanthan- und neodymmodifizierten (α-β) Titanlegierungen

    Energy Technology Data Exchange (ETDEWEB)

    Depentori, Francesco

    2014-11-01

    Titanium alloys are of great value in today's industry. The most common alloy is Ti6AI4V with a share of around 50 %. Due to its high stiffness, machining of this alloy is difficult and expensive. Recently, so called ''free-machining titanium alloys'' have been developed to overcome this problem. These alloys are modified by rare earth metal addition. Addition of Lanthanum and Neodymium leads to the formation of mainly grain boundary oriented precipitates. These precipitates strongly change the corrosion properties in comparison to the same alloys without rare earth metal addition. The size of the precipitates usually lies in the micrometer range. Before technical use, the influence of these precipitates has to be clarified to be able to evaluate the long term stability of these alloys. The goal of this work was to gain a fundamental understanding of the corrosion properties of four different ''freemachining titanium alloys''. The alloys investigated were: - Ti6A12Fe1 Mo0.9La0.5Cu with and without the addition of 0.3Si, containing precipitates of Lanthanum and Lanthanum-Copper - Ti6AI4V2Nd, containing precipitates of Neodymium - Ti6AI2V3Nb0.9La0.7Fe0.3Si, containing precipitates of Lanthanum In this work a combination of integral techniques were used, characterizing the corrosion behavior on areas of several square centimeters, and localized techniques, characterizing the corrosion behavior on a small scale. Electrochemical methods like potentiodynamic polarization and chronoamperometry helped to gain an understanding about the stability and oxidation behavior of Lanthanum and Neodymium particles. lt could be shown, that the oxidation of precipitates took place within a few hours. After oxidation particles could not be found on the surface when using ex-situ methods. These results were confirmed by scanning electron microscopy analysis. Furthermore, the composition of precipitates was characterized by electron microprobe

  15. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  16. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  17. Hybrid male sterility in Mimulus (Phrymaceae) is associated with a geographically restricted mitochondrial rearrangement.

    Science.gov (United States)

    Case, Andrea L; Willis, John H

    2008-05-01

    Cytoplasmic male sterility (CMS) and nuclear fertility restoration (Rf) involves intergenomic coevolution. Although male-sterile phenotypes are rarely expressed in natural populations of angiosperms, CMS genes are thought to be common. The evolutionary dynamics of CMS/Rf systems are poorly understood, leaving gaps in our understanding of mechanisms and consequences of cytonuclear interactions. We characterized the molecular basis and geographic distribution of a CMS gene in Mimulus guttatus. We used outcrossing M. guttatus (with CMS and Rf) to self-fertilizing M. nasutus (lacking CMS and Rf) to generate hybrids segregating for CMS. Mitochondrial transcripts containing an essential gene (nad6) were perfectly associated with male sterility. The CMS mitotype was completely absent in M. nasutus, present in all genotypes collected from the original collection site, but in only two individuals from 34 other M. guttatus populations. This pattern suggests that the CMS likely originated at a single locality, spread to fixation within the population, but has not spread to other populations, indicating possible ecological or genetic constraints on dispersal of this CMS mitotype between populations. Extreme localization may be characteristic of CMS in hermaphroditic species, in contrast to geographically widespread mitotypes commonly found in gynodioecious species, and could directly contribute to hybrid incompatibilities in nature.

  18. Mitochondrial disease heterogeneity: a prognostic challenge.

    Science.gov (United States)

    Moggio, Maurizio; Colombo, Irene; Peverelli, Lorenzo; Villa, Luisa; Xhani, Rubjona; Testolin, Silvia; Di Mauro, Salvatore; Sciacco, Monica

    2014-10-01

    Mitochondrial diseases are a heterogeneous group of progressive, genetically transmitted, multisystem disorders caused by impaired mitochondrial function. The disease course for individuals with mitochondrial myopathies varies greatly from patient to patient because disease progression largely depends on the type of disease and on the degree of involvement of various organs which makes the prognosis unpredictable both within the same family and among families with the same mutation. This is particularly, but not exclusively, true for mitochondrial disorders caused by mtDNA point mutations, which are maternally inherited and subject to the randomness of the heteroplasmy. For this reason, the prognosis cannot be given by single mitochondrial disease, but should be formulated by any single mitochondrial disease-related event or complication keeping in mind that early recognition and treatment of symptoms are crucial for the prognosis. The following approach can help prevent severe organ dysfunctions or at least allow early diagnosis and treatment of disease-related complications. PMID:25709378

  19. Mitochondrial dysfunction and risk of cancer

    DEFF Research Database (Denmark)

    Lund, M; Melbye, M; Diaz, L J;

    2015-01-01

    BACKGROUND: Mitochondrial mutations are commonly reported in tumours, but it is unclear whether impaired mitochondrial function per se is a cause or consequence of cancer. To elucidate this, we examined the risk of cancer in a nationwide cohort of patients with mitochondrial dysfunction. METHODS......: We used nationwide results on genetic testing for mitochondrial disease and the Danish Civil Registration System, to construct a cohort of 311 patients with mitochondrial dysfunction. A total of 177 cohort members were identified from genetic testing and 134 genetically untested cohort members were...... mDNA mutation, cases=13. CONCLUSIONS: Patients with mitochondrial dysfunction do not appear to be at increased risk of cancer compared with the general population....

  20. Keshan disease and mitochondrial cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    YANG; Fuyu

    2006-01-01

    Keshan disease (KD) is a potentially fatal form of cardiomyopathy (disease of the heart muscle) endemic in certain areas of China. From 1984 to 1986, a national comprehensive scientific investigation on KD in Chuxiong region of Yunnan Province in the southwest China was conducted. The investigation team was composed of epidemiologists, clinic doctors, pathologists, biochemists, biophysicists and specialists in ecological environment. Results of pathological, biochemical and biophysical as well as clinical studies showed: an obvious increase of enlarged and swollen mitochondria with distended crista membranes in myocardium from patients with KD; significant reductions in the activity of oxidative phosphorylation (succinate dehydrogenase, cytochrome oxidase, succinate oxidase, H+-ATPase) of affected mitochondria; decrease in CoQ, cardiolipin, Se and GSHPx activity, while obvious increase in the Ca2+ content. So, it was suggested that mitochondria are the predominant target of the pathogenic factors of KD. Before Chuxiong KD survey only a few cases of mitochondrial cardiomyopathy were studied. During the multidisciplinary scientific investigation on KD in Chuxiong a large amount of samples from KD cases and the positive controls were examined. On the basis of the results obtained it was suggested that KD might be classified as a "Mitochondrial Cardiomyopathy" endemic in China. This is one of the achievements in the three years' survey in Chuxiong and is valuable not only to the deeper understanding of pathogenic mechanism of KD but also to the study of mitochondrial cardiomyopathy in general.Keshan disease is not a genetic disease, but is closely related to the malnutrition (especially microelement Se deficiency). KD occurs along a low Se belt, and Se supplementation has been effective in prevention of such disease. The incidence of KD has sharply decreased along with the steady raise of living standard and realization of preventive measures. At present, patients of