WorldWideScience

Sample records for characterization mitochondrial localization

  1. Molecular characterization of six sub population Indonesian local goats based on mitochondrial DNA D-loop

    Directory of Open Access Journals (Sweden)

    Aron Batubara

    2013-03-01

    Full Text Available Indonesian local goats were spread in some region, but there was still limited data’s known about the characteristics of its genetic diversity and origin. The Mitochondrial DNA D-loop sequences were used to study the genetic diversity and relationships of six sub population Indonesian local goats, namely, Kacang, Marica, Samosir, Jawarandu, Muara and Bengali goats. From 539 blood samples and DNA extraction collections were selected about 60 samples (10 samples each sub populations analyzed by PCR-RFLP methods, followed sequence analyzed about 5 PCR products each sub population. The results of the sequence analyses were edited and acquired about 957 bp of nucleotides length. After the alignment analyses were found 50 polymorphic sites which divided into 19 haplotype groups of mtDNA D-loop region. The value of nucleotide diversity was 0.014 ± 0.002. Analysis of Neighbour Joining with Kimura 2 Parameter methods and bootstrap test with 1000 replication indicated that each sub population groups was significantly different between one groups to the others. The maternal lineages origin of six breeds of Indonesian local goats was included to the group of lineage B. The Lineage B was the maternal origin of the haplogroup of goats in the region of East Asia, South Asia, China, Mongolia, North and South Africa, Malaysia, Indonesia, Pakistan and India.

  2. Characterization of the mitochondrial inner membrane protein translocator Tim17 from Trypanosoma brucei

    OpenAIRE

    Singha, Ujjal K; PEPRAH, EMMANUEL; Williams, Shuntae; Walker, Robert; Saha, Lipi; Chaudhuri, Minu

    2008-01-01

    Mitochondrial protein translocation machinery in the kinetoplastid parasites, like Trypanosoma brucei, has been characterized poorly. In T. brucei genome data base, one homolog for a protein translocator of mitochondrial inner membrane (Tim) has been found, which is closely related to Tim17 from other species. The T. brucei Tim17 (TbTim17) has a molecular mass 16.2 kDa and it possesses four characteristic transmembrane domains. The protein is localized in the mitochondrial inner membrane. The...

  3. Linear Discriminant Analysis Identifies Mitochondrially Localized Proteins in Neurospora crassa.

    Science.gov (United States)

    Wirsing, Lisette; Klawonn, Frank; Sassen, Wiebke Anna; Lünsdorf, Heinrich; Probst, Corinna; Hust, Michael; Mendel, Ralf R; Kruse, Tobias; Jänsch, Lothar

    2015-09-01

    Besides their role as powerhouses, mitochondria play a pivotal role in the spatial organization of numerous enzymatic functions. They are connected to the ER, and many pathways are organized through the mitochondrial membranes. Thus, the precise definition of mitochondrial proteomes remains a challenging task. Here, we have established a proteomic strategy to accurately determine the mitochondrial localization of proteins from the fungal model organism Neurospora crassa. This strategy relies on both highly pure mitochondria as well as the quantitative monitoring of mitochondrial components along their consecutive enrichment. Pure intact mitochondria were obtained by a multistep approach combining differential and density Percoll (ultra) centrifugations. When compared with three other intermediate enrichment stages, peptide sequencing and quantitative profiling of pure mitochondrial fractions revealed prototypic regulatory profiles of per se mitochondrial components. These regulatory profiles constitute a distinct cluster defining the mitochondrial compartment and support linear discriminant analyses, which rationalized the annotation process. In total, this approach experimentally validated the mitochondrial localization of 512 proteins including 57 proteins that had not been reported for N. crassa before. PMID:26215788

  4. Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal localization and partial analysis of the gene.

    OpenAIRE

    Britton, C H; Schultz, R.A.; Zhang, B; Esser, V; Foster, D W; McGarry, J D

    1995-01-01

    Using the cDNA for rat liver mitochondrial carnitine palmitoyltransferase I (CPT I; EC 2.3.1.21) as a probe, we isolated its counterpart as three overlapping clones from a human liver cDNA library. Both the nucleotide sequence of the human cDNA and the predicted primary structure of the protein (773 aa) proved to be very similar to those of the rat enzyme (82% and 88% identity, respectively). The CPT I mRNA size was also found to be the same (approximately 4.7 kb) in both species. Screening o...

  5. Leveraging genomic approaches to characterize mitochondrial RNA biology

    OpenAIRE

    Wolf, Ashley Robin

    2014-01-01

    Transcription and translation of mammalian mitochondrial DNA (mtDNA) occurs within the mitochondrial matrix to produce oxidative phosphorylation subunits required for efficient energy production. These mtDNA-encoded subunits complex with mitochondrial-localized, nuclear-encoded subunits to form the respiratory chain, and aberrant production or function of these subunits can cause devastating human disease. In addition to 13 oxidative phosphorylation subunits, mtDNA encodes 2 rRNAs and 22 tRNA...

  6. Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal localization and partial analysis of the gene.

    Science.gov (United States)

    Britton, C H; Schultz, R A; Zhang, B; Esser, V; Foster, D W; McGarry, J D

    1995-01-01

    Using the cDNA for rat liver mitochondrial carnitine palmitoyltransferase I (CPT I; EC 2.3.1.21) as a probe, we isolated its counterpart as three overlapping clones from a human liver cDNA library. Both the nucleotide sequence of the human cDNA and the predicted primary structure of the protein (773 aa) proved to be very similar to those of the rat enzyme (82% and 88% identity, respectively). The CPT I mRNA size was also found to be the same (approximately 4.7 kb) in both species. Screening of a human genomic library with the newly obtained cDNA yielded a positive clone of approximately 6.5 kb which, upon partial analysis, was found to contain at least two complete exons linked by a 2.3-kb intron. Oligonucleotide primers specific to upstream and downstream regions of one of the exon/intron junctions were tested in PCRs with DNA from a panel of somatic cell hybrids, each containing a single human chromosome. The results allowed unambiguous assignment of the human liver CPT I gene to the q (long) arm of chromosome 11. Additional experiments established that liver and fibroblasts express the same isoform of mitochondrial CPT I, legitimizing the use of fibroblast assays in the differential diagnosis of the "muscle" and "hepatic" forms of CPT deficiency. The data provide insights into the structure of a human CPT I isoform and its corresponding gene and establish unequivocally that CPT I and CPT II are distinct gene products. Availability of the human CPT I cDNA should open the way to an understanding of the genetic basis of inherited CPT I deficiency syndromes, how the liver CPT I gene is regulated, and which tissues other than liver express this particular variant of the enzyme. Images Fig. 4 Fig. 5 PMID:7892212

  7. Axonal Protein Synthesis and the Regulation of Local Mitochondrial Function

    OpenAIRE

    2009-01-01

    Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had...

  8. Axonal protein synthesis and the regulation of local mitochondrial function

    OpenAIRE

    Kaplan, B.B.; Gioio, A.E.; Hillefors, M.; Aschrafi, A.

    2009-01-01

    Axons and presynaptic nerve terminals of both invertebrate and mammalian SCG neurons contain a heterogeneous population of nuclear-encoded mitochondrial mRNAs and a local cytosolic protein synthetic system. Nearly one quarter of the total protein synthesized in these structural/functional domains of the neuron is destined for mitochondria. Acute inhibition of axonal protein synthesis markedly reduces the functional activity of mitochondria. The blockade of axonal protein into mitochondria had...

  9. Mitochondrial presequence and open reading frame mediate asymmetric localization of messenger RNA

    OpenAIRE

    Garcia, Mathilde; Delaveau, Thierry; Goussard, Sebastien; Jacq, Claude

    2010-01-01

    Although a considerable amount of data have been gathered on mitochondrial translocases, which control the import of a large number of nuclear-encoded proteins, the preceding steps taking place in the cytosol are poorly characterized. The localization of messenger RNAs (mRNAs) on the surface of mitochondria was recently shown to involve specific classes of protein and could be an important regulatory step. By using an improved statistical fluorescent in situ hybridization technique, we analys...

  10. Dynamic mitochondrial localization of nuclear transcription factor HMGA1

    International Nuclear Information System (INIS)

    It has been well established that high mobility group A1 (HMGA1) proteins act within the nucleus of mammalian cells as architectural transcription factors that regulate the expression of numerous genes. Here, however, we report on the unexpected cytoplasmic/mitochondrial localization of the HMGA1 proteins within multiple cell types. Indirect immunofluorescence, electron microscopic immunolocalization, and Western blot studies revealed that, in addition to the nucleus, HMGA1 proteins could also be found in both the cytoplasm and mitochondria of randomly dividing populations of wild-type murine NIH3T3 cells and transgenic human MCF-7 breast cancer epithelial cells expressing a hemagglutinin tagged-HMGA1a fusion protein. While the molecular mechanisms underlying these novel subcellular localization patterns have not yet been determined, initial synchronization studies revealed a dynamic, cell cycle-dependent translocation of HMGA1 proteins from the nucleus into the cytoplasm and mitochondria of NIH3T3 cells. Furthermore, preliminary functionality studies utilizing a modified 'chromatin' immunoprecipitation protocol revealed that HMGA1 retains its DNA binding capabilities within the mitochondria and associates with the regulatory D-loop region in vivo. We discuss potential new biological roles for the classically nuclear HMGA1 proteins with regard to the observed nucleocytoplasmic translocation, mitochondrial internalization, and regulatory D-loop DNA binding

  11. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity

    DEFF Research Database (Denmark)

    Croteau, Deborah L; Rossi, Marie L; Canugovi, Chandrika;

    2012-01-01

    premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present...... in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the......'-5' RecQ helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity....

  12. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    Science.gov (United States)

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. PMID:26722004

  13. Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth

    International Nuclear Information System (INIS)

    Research highlights: → Fission yeast manganese superoxide dismutase (MnSOD) is acetylated. → The mitochondrial targeting sequence (MTS) is required for the acetylation of MnSOD. → The MTS is not crucial for MnSOD activity, but is important for respiratory growth. → Posttranslational regulation of MnSOD differs between budding and fission yeast. -- Abstract: Manganese-dependent superoxide dismutase (MnSOD) is localized in the mitochondria and is important for oxidative stress resistance. Although transcriptional regulation of MnSOD has been relatively well studied, much less is known about the protein's posttranslational regulation. In budding yeast, MnSOD is activated after mitochondrial import by manganese ion incorporation. Here we characterize posttranslational modification of MnSOD in the fission yeast Schizosaccharomyces pombe. Fission yeast MnSOD is acetylated at the 25th lysine residue. This acetylation was diminished by deletion of N-terminal mitochondrial targeting sequence, suggesting that MnSOD is acetylated after import into mitochondria. Mitochondrial localization of MnSOD is not essential for the enzyme activity, but is crucial for oxidative stress resistance and growth under respiratory conditions of fission yeast. These results suggest that, unlike the situation in budding yeast, S. pombe MnSOD is already active even before mitochondrial localization; nonetheless, mitochondrial localization is critical to allow the cell to cope with reactive oxygen species generated inside or outside of mitochondria.

  14. An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function.

    Science.gov (United States)

    Zabezhinsky, Dmitry; Slobodin, Boris; Rapaport, Doron; Gerst, Jeffrey E

    2016-04-19

    Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs) can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1), we observed that COPI inactivation (or mutation of the potential COPI-interaction site) led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins. PMID:27068463

  15. An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Dmitry Zabezhinsky

    2016-04-01

    Full Text Available Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1, we observed that COPI inactivation (or mutation of the potential COPI-interaction site led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins.

  16. Experimental Approaches to Study Mitochondrial Localization and Function of a Nuclear Cell Cycle Kinase, Cdk1.

    Science.gov (United States)

    Candas, Demet; Qin, Lili; Fan, Ming; Li, Jian-Jian

    2016-01-01

    Although mitochondria possess their own transcriptional machinery, merely 1% of mitochondrial proteins are synthesized inside the organelle. The nuclear-encoded proteins are transported into mitochondria guided by their mitochondria targeting sequences (MTS); however, a majority of mitochondrial localized proteins lack an identifiable MTS. Nevertheless, the fact that MTS can instruct proteins to go into the mitochondria provides a valuable tool for studying mitochondrial functions of normally nuclear and/or cytoplasmic proteins. We have recently identified the cell cycle kinase CyclinB1/Cdk1 complex in the mitochondria. To specifically study the mitochondrial functions of this complex, mitochondrial overexpression and knock-down of this complex without interfering with its nuclear or cytoplasmic functions were essential. By tagging CyclinB1/Cdk1 with MTS, we were able to achieve mitochondrial overexpression of this complex to study its mitochondrial targets as well as functions. Via tagging dominant-negative Cdk1 with MTS, inhibition of Cdk1 activity was accomplished particularly in the mitochondria. Potential mitochondrial targets of CyclinB1/Cdk1 complex were identified using a gel-based proteomics approach. Unlike traditional 2D gel analysis, we employed 2-dimensional difference gel electrophoresis (2D-DIGE) technology followed by phosphoprotein staining to fluorescently label differentially phosphorylated proteins in mitochondrial Cdk1 expressing cells. Identification of phosphoprotein spots that were altered in wild type versus dominant negative Cdk1 bearing mitochondria revealed the identity of mitochondrial targets of Cdk1. Finally, to determine the effect of CyclinB1/Cdk1 mitochondrial localization in cell cycle progression, a cell proliferation assay using a synthetic thymidine analogue EdU (5-ethynyl-2'-deoxyuridine) was used to monitor the cells as they go through the cell cycle and replicate their DNA. Altogether, we demonstrated a variety of approaches

  17. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. PMID:27053724

  18. Mitochondrial localization of the low level p53 protein in proliferative cells

    International Nuclear Information System (INIS)

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  19. Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Andersen, Kasper Røjkjær; Kjær, Karina Hansen; Durand, Fiona; Faou, Pierre; Vestergaard, Anna Lindeløv; Talbo, Gert Hoy; Hoogenraad, Nick; Brodersen, Ditlev Egeskov; Justesen, Just; Martensen, Pia Møller

    2011-01-01

    The vertebrate 2-5A system is part of the innate immune system and central to cellular antiviral defense. Upon activation by viral double-stranded RNA, 5′-triphosphorylated, 2′–5′-linked oligoadenylate polyribonucleotides (2-5As) are synthesized by one of several 2′–5′-oligoadenylate synthetases....... role in the cellular immune system, may also function in mitochondrial RNA turnover.......The vertebrate 2-5A system is part of the innate immune system and central to cellular antiviral defense. Upon activation by viral double-stranded RNA, 5′-triphosphorylated, 2′–5′-linked oligoadenylate polyribonucleotides (2-5As) are synthesized by one of several 2′–5′-oligoadenylate synthetases....... Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference for...

  20. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults.

    Science.gov (United States)

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson's and Alzheimer's, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  1. Localization of transcription initiation sites on the mouse mitochondrial genome

    International Nuclear Information System (INIS)

    The authors have identified the primary transcription initiation sites on the H and L strands of mouse mitochondrial (mt) genome by mapping the 5' ends of in vitro capped mt RNA, and 5' end labelling of the nascent RNA synthesized in an in vitro mt system. RNA capped with 32P GTP resolve into 4 major (25 to 150 nucleotides) and one minor (0.75 kb) bands on denaturing gels. Only the 25 nucleotide long capped RNA hybridizes to the H strand of D-loop DNA and the rest hybridize to the L-strand DNA probes. S1 protection of capped RNA and DNA hybrids, and primer extention analysis using defined DNA primers show that all of the L-strand specific primary transcripts have a common 5' end mapping at about nucleotide 16,180 +/- 5 of the genome. The 3' ends of the small RNA species map near the start of conserved sequence boxes. The 3' end of the 0.75 Kb RNA maps to the start of gene coding for tRNA/sup Phe/. The 5' end of the capped RNA hybridizing to the H strand maps at about nucleotide 16,275 to 16,280 of the genome indicating a major H strand transcription initiation at this region. The authors have also used an in vitro transcription system which involves the use of mt extract from Ehrlich ascites cells to study transcription initiation. Nascent RNA 5' end labeled with γ32P ATP and GTP closely resemble the electrophoretic pattern and S1 protection pattern obtained with the capped RNA

  2. Aprataxin localizes to mitochondria and preserves mitochondrial function

    DEFF Research Database (Denmark)

    Sykora, Peter; Croteau, Deborah L; Bohr, Vilhelm A;

    2011-01-01

    aborted ligation reactions. We report herein that aprataxin localizes to mitochondria in human cells and we identify an N-terminal amino acid sequence that targets certain isoforms of the protein to this intracellular compartment. We also show that transcripts encoding this unique N-terminal stretch are...

  3. Localization of HPV-18 E2 at Mitochondrial Membranes Induces ROS Release and Modulates Host Cell Metabolism

    OpenAIRE

    Deborah Lai; Chye Ling Tan; Jayantha Gunaratne; Ling Shih Quek; Wenlong Nei; Françoise Thierry; Sophie Bellanger

    2013-01-01

    Papillomavirus E2 proteins are predominantly retained in the nuclei of infected cells, but oncogenic (high-risk) HPV-18 and 16 E2 can shuttle between the host nucleus and cytoplasm. We show here that cytoplasmic HPV-18 E2 localizes to mitochondrial membranes, and independent mass spectrometry analyses of the E2 interactome revealed association to the inner mitochondrial membrane including components of the respiratory chain. Mitochondrial E2 association modifies the cristae morphology when an...

  4. Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function.

    Science.gov (United States)

    Atlante, Anna; Favia, Maria; Bobba, Antonella; Guerra, Lorenzo; Casavola, Valeria; Reshkin, Stephan Joel

    2016-06-01

    Evidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase. Importantly, treatment of CF cells with the small molecules VX-809 and 4,6,4'-trimethylangelicin, which act as "correctors" for F508del CFTR by rescuing the F508del CFTR-dependent chloride secretion, while having no effect per sè on mitochondrial function in wt-CFTR cells, significantly improved all the above mitochondrial parameters towards values found in the airway cells expressing wt-CFTR. This novel study on mitochondrial bioenergetics provides a springboard for future research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the proteins primarily responsible for the F508del-CFTR-dependent mitochondrial impairment and thus reveal potential novel targets for CF therapy. PMID:27146408

  5. Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release

    Directory of Open Access Journals (Sweden)

    Seong‑Woon Yu

    2009-11-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  6. Probing of protein localization and shuttling in mitochondrial microcompartments by FLIM with sub-diffraction resolution.

    Science.gov (United States)

    Söhnel, Anna-Carina; Kohl, Wladislaw; Gregor, Ingo; Enderlein, Jörg; Rieger, Bettina; Busch, Karin B

    2016-08-01

    The cell is metabolically highly compartmentalized. Especially, mitochondria host many vital reactions in their different microcompartments. However, due to their small size, these microcompartments are not accessible by conventional microscopy. Here, we demonstrate that time-correlated single-photon counting (TCSPC) fluorescence lifetime-imaging microscopy (FLIM) classifies not only mitochondria, but different microcompartments inside mitochondria. Sensor proteins in the matrix had a different lifetime than probes at membrane proteins. Localization in the outer and inner mitochondrial membrane could be distinguished by significant differences in the lifetime. The method was sensitive enough to monitor shifts in protein location within mitochondrial microcompartments. Macromolecular crowding induced by changes in the protein content significantly affected the lifetime, while oxidizing conditions or physiological pH changes had only marginal effects. We suggest that FLIM is a versatile and completive method to monitor spatiotemporal events in mitochondria. The sensitivity in the time domain allows for gaining substantial information about sub-mitochondrial localization overcoming diffraction limitation. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27016377

  7. Induction and Characterization of Mitochondrial DNA Mutants in Chlamydomonas Reinhardtii

    OpenAIRE

    Matagne, René-Fernand; Michel-Wolwertz, M.R.; Munaut, Carine; Duyckaerts, Claire; Sluse, Francis

    1989-01-01

    In addition to lethal minute colony mutations which correspond to loss of mitochondrial DNA, acriflavin induces in Chlamydomonas reinhardtii a low percentage of cells that grow in the light but do not divide under heterotrophic conditions. Two such obligate photoautotrophic mutants were shown to lack the cyanide-sensitive cytochrome pathway of the respiration and to have a reduced cytochrome c oxidase activity. In crosses to wild type, the mutations are transmitted almost exclusively from the...

  8. Localization of HPV-18 E2 at mitochondrial membranes induces ROS release and modulates host cell metabolism.

    Directory of Open Access Journals (Sweden)

    Deborah Lai

    Full Text Available Papillomavirus E2 proteins are predominantly retained in the nuclei of infected cells, but oncogenic (high-risk HPV-18 and 16 E2 can shuttle between the host nucleus and cytoplasm. We show here that cytoplasmic HPV-18 E2 localizes to mitochondrial membranes, and independent mass spectrometry analyses of the E2 interactome revealed association to the inner mitochondrial membrane including components of the respiratory chain. Mitochondrial E2 association modifies the cristae morphology when analyzed by electron microscopy and increases production of mitochondrial ROS. This ROS release does not induce apoptosis, but instead correlates with stabilization of HIF-1α and increased glycolysis. These mitochondrial functions are not shared by the non-oncogenic (low-risk HPV-6 E2 protein, suggesting that modification of cellular metabolism by high-risk HPV E2 proteins could play a role in carcinogenesis by inducing the Warburg effect.

  9. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae

    DEFF Research Database (Denmark)

    Hansson Petersen, Camilla A; Alikhani, Nyosha; Behbahani, Homira;

    2008-01-01

    The amyloid beta-peptide (Abeta) has been suggested to exert its toxicity intracellularly. Mitochondrial functions can be negatively affected by Abeta and accumulation of Abeta has been detected in mitochondria. Because Abeta is not likely to be produced locally in mitochondria, we decided to...... investigate the mechanisms for mitochondrial Abeta uptake. Our results from rat mitochondria show that Abeta is transported into mitochondria via the translocase of the outer membrane (TOM) machinery. The import was insensitive to valinomycin, indicating that it is independent of the mitochondrial membrane...... potential. Subfractionation studies following the import experiments revealed Abeta association with the inner membrane fraction, and immunoelectron microscopy after import showed localization of Abeta to mitochondrial cristae. A similar distribution pattern of Abeta in mitochondria was shown by...

  10. Characterization of the mitochondrial genome of Amolops tuberodepressus (Anura: Ranidae).

    Science.gov (United States)

    Zhang, Chaohua; Xia, Yun; Zeng, Xiaomao

    2016-07-01

    Amolops tuberodepressus is a vulnerable torrent frog, and only know distributed in the Wuliang Mountain in southwestern China. In the present study, the mitochondrial DNA (mtDNA) sequence of A. tuberodepressus was determined. The genome was 18 348 bp in length, and it contained 37 genes (13 protein-coding genes, two ribosomal RNAs, and 22 transfer RNAs), one partial control region and one light strand replication origin. The gene rearrangement was observed within the WANCY tRNA gene cluster region, which similar to other Amolops species. In this paper, we utilized 13 protein-coding genes of A. tuberodepressus and other 10 closely ranid species to construct the species phylogenetic tree to verify the A. tuberodepressus was accuracy. PMID:26153745

  11. Mitochondrial DNA characterization of two Partamona species (Hymenoptera, Apidae, Meliponini) by PCR+RFLP and sequencing

    OpenAIRE

    Magalhães Brito, Rute; Cristina Arias, Maria

    2005-01-01

    We characterized the mitochondrial DNA of two stingless bee species of the genus Partamona. Partial restriction maps were obtained based on digestion of PCR amplified fragments with 8 restriction enzymes. Using Melipona bicolor mtDNA sequence as a model, we were able to amplify 12120 bp of P. mulata and 10300 bp of P. helleri, about 65.5% and 55.7% of their mitochondrial genome, respectively. The digestion assays showed 16 restriction sites for P. mulata and 20 for P. helleri, some of which w...

  12. Characterizing Local Optima for Maximum Parsimony.

    Science.gov (United States)

    Urheim, Ellen; Ford, Eric; St John, Katherine

    2016-05-01

    Finding the best phylogenetic tree under the maximum parsimony optimality criterion is computationally difficult. We quantify the occurrence of such optima for well-behaved sets of data. When nearest neighbor interchange operations are used, multiple local optima can occur even for "perfect" sequence data, which results in hill-climbing searches that never reach a global optimum. In contrast, we show that when neighbors are defined via the subtree prune and regraft metric, there is a single local optimum for perfect sequence data, and thus, every such search finds a global optimum quickly. We further characterize conditions for which sequences simulated under the Cavender-Farris-Neyman and Jukes-Cantor models of evolution yield well-behaved search spaces. PMID:27234257

  13. Mitochondrial Localization of PARP-1 Requires Interaction with Mitofilin and Is Involved in the Maintenance of Mitochondrial DNA Integrity*

    OpenAIRE

    Rossi, Marianna N.; Carbone, Mariarosaria; Mostocotto, Cassandra; Mancone, Carmine; Tripodi, Marco; Maione, Rossella; Amati, Paolo

    2009-01-01

    Poly(ADP-ribose)polymerase-1 (PARP-1) is a predominantly nuclear enzyme that exerts numerous functions in cellular physiology and pathology, from maintenance of DNA stability to transcriptional regulation. Through a proteomic analysis of PARP-1 co-immunoprecipitation complexes, we identified Mitofilin, a mitochondrial protein, as a new PARP-1 interactor. This result prompted us to further investigate the presence and the role of the enzyme in mitochondria. Using laser confocal microscopy and ...

  14. clueless, a conserved Drosophila gene required for mitochondrial subcellular localization, interacts genetically with parkin

    OpenAIRE

    Cox, Rachel T.; Spradling, Allan C.

    2009-01-01

    Parkinson’s disease has been linked to altered mitochondrial function. Mutations in parkin (park), the Drosophila ortholog of a human gene that is responsible for many familial cases of Parkinson’s disease, shorten life span, abolish fertility and disrupt mitochondrial structure. However, the role played by Park in mitochondrial function remains unclear. Here, we describe a novel Drosophila gene, clueless (clu), which encodes a highly conserved tetratricopeptide repeat protein that is related...

  15. The mitochondrial 60-kDa heat shock protein in marine invertebrates: biochemical purification and molecular characterization

    Science.gov (United States)

    Choresh, Omer; Loya, Yossi; Müller, Werner E.G.; Wiedenmann, Jörg; Azem, Abdussalam

    2004-01-01

    Sessile marine invertebrates undergo constant direct exposure to the surrounding environmental conditions, including local and global environmental fluctuations that may lead to fatal protein damage. Induction of heat shock proteins (Hsps) constitutes an important defense mechanism that protects these organisms from deleterious stress conditions. In a previous study, we reported the immunological detection of a 60-kDa Hsp (Hsp60) in the sea anemone Anemonia viridis (formerly called Anemonia sulcata) and studied its expression under a variety of stress conditions. In the present study, we show that the sponge Tetilla sp. from tidal habitats with a highly variable temperature regime is characterized by an increased level of Hsp60. Moreover, we show the expression of Hsp60 in various species among Porifera and Cnidaria, suggesting a general importance of this protein among marine invertebrates. We further cloned the hsp60 gene from A viridis, using a combination of conventional protein isolation methods and screening of a complementary deoxyribonucleic acid library by polymerase chain reaction. The cloned sequence (1764 bp) encodes for a protein of 62.8 kDa (588 amino acids). The 62.8-kDa protein, which contains an amino terminal extension that may serve as a mitochondrial targeting signal, shares a significant identity with mitochondrial Hsp60s from several animals but less identity with Hsp60s from either bacteria or plants. PMID:15270076

  16. AAE13 encodes a dual-localized malonyl-CoA synthetase that is crucial for mitochondrial fatty acid biosynthesis.

    Science.gov (United States)

    Guan, Xin; Nikolau, Basil J

    2016-03-01

    Malonyl-CoA is a key intermediate in a number of metabolic processes associated with its role as a substrate in acylation and condensation reactions. These types of reactions occur in plastids, the cytosol and mitochondria, and although carboxylation of acetyl-CoA is the known mechanism for generating the distinct plastidial and cytosolic pools, the metabolic origin of the mitochondrial malonyl-CoA pool is still unclear. In this study we demonstrate that malonyl-CoA synthetase encoded by the Arabidopsis AAE13 (AT3G16170) gene is localized in both the cytosol and the mitochondria. These isoforms are translated from two types of transcripts, one that contains and one that does not contain a mitochondrial-targeting pre-sequence. Whereas the cytosolic AAE13 protein is not essential, due to the presence of a redundant malonyl-CoA generating system provided by a cytosolic acetyl-CoA carboxylase, the mitochondrial AAE13 protein is essential for plant growth. Phenotypes of the aae13-1 mutant are transgenically reversed only if the mitochondrial pre-sequence is present in the ectopically expressed AAE13 proteins. The aae13-1 mutant exhibits typical metabolic phenotypes associated with a deficiency in the mitochondrial fatty acid synthase system, namely depleted lipoylation of the H subunit of the photorespiratory enzyme glycine decarboxylase, increased accumulation of glycine and glycolate and reduced levels of sucrose. Most of these metabolic alterations, and associated morphological changes, are reversed when the aae13-1 mutant is grown in a non-photorespiratory condition (i.e. a 1% CO2 atmosphere), demonstrating that they are a consequence of the deficiency in photorespiration due to the inability to generate lipoic acid from mitochondrially synthesized fatty acids. PMID:26836315

  17. Mitochondrial genome variations and functional characterization in Han Chinese families with schizophrenia.

    Science.gov (United States)

    Bi, Rui; Tang, Jinsong; Zhang, Wen; Li, Xiao; Chen, Shi-Yi; Yu, Dandan; Chen, Xiaogang; Yao, Yong-Gang

    2016-03-01

    The relationship between mitochondrial DNA (mtDNA) variants and schizophrenia has been strongly debated. To test whether mtDNA variants are involved in schizophrenia in Han Chinese patients, we sequenced the entire mitochondrial genomes of probands from 11 families with a family history and maternal inheritance pattern of schizophrenia. Besides the haplogroup-specific variants, we found 11 nonsynonymous private variants, one rRNA variant, and one tRNA variant in 5 of 11 probands. Among the nonsynonymous private variants, mutations m.15395 A>G and m.8536 A>G were predicted to be deleterious after web-based searches and in silico program affiliated analysis. Functional characterization further supported the potential pathogenicity of the two variants m.15395 A>G and m.8536 A>G to cause mitochondrial dysfunction at the cellular level. Our results showed that mtDNA variants were actively involved in schizophrenia in some families with maternal inheritance of this disease. PMID:26822593

  18. Mitochondrial Localization of Vitamin D Receptor in Human Platelets and Differentiated Megakaryocytes

    OpenAIRE

    Silvagno, Francesca; De Vivo, Enrico; Attanasio, Angelo; Gallo, Valentina; Mazzucco, Gianna; Pescarmona, Gianpiero

    2010-01-01

    Background Like other steroid hormones, vitamin D elicits both transcriptional events and rapid non genomic effects. Vitamin D receptor (VDR) localization and mechanisms of VDR-triggered non genomic responses are still controversial. Although anticoagulant effects of vitamin D have been reported and VDR signalling has been characterized in monocytes and vascular cells, nothing is known about VDR expression and functions in human platelets, anucleated fragments of megakaryocytes which are know...

  19. Mitochondrial localization of cyclooxygenase-2 and calcium-independent phospholipase A2 in human cancer cells: Implication in apoptosis resistance

    International Nuclear Information System (INIS)

    Cyclooxygenase-2 (COX-2) is inducible by myriad stimuli. The inducible COX-2 in primary cultured human cells has been reported to localize to nuclear envelope, endoplasmic reticulum, nucleus and caveolae. As COX-2 plays an important role in tumor growth, we were interested in its subcellular location in cancer cells. We examined COX-2 localization in several cancer cell lines by confocal microscopy. A majority of COX-2 was colocalized with heat shock protein 60, a mitochondrial protein, in colon cancer (HT-29, HCT-15 and DLD-1), breast cancer (MCF7), hepatocellular cancer (HepG2) and lung cancer cells (A549) with a similar distribution pattern. By contrast, COX-2 was not localized to mitochondria in human foreskin fibroblasts or endothelial cells. Immunoblot analysis of COX-2 in mitochondrial and cytosolic fractions confirmed localization of COX-2 to mitochondria in HT-29 and DLD-1 cells but not in fibroblasts. Calcium-independent phospholipase A2 was colocalized with heat shock protein 60 to mitochondria not only in cancer cells (HT-29 and DLD-1) but also in fibroblasts. HT-29 which expressed more abundant mitochondrial COX-2 than DLD-1 was highly resistant to arachidonic acid and H2O2-induced apoptosis whereas DLD-1 was less resistant and human fibroblasts were highly susceptible. Treatment of HT-29 cells with sulindac or SC-236, a selective COX-2 inhibitor, resulted in loss of resistance to apoptosis. These results suggest that mitochondrial COX-2 in cancer cells confer resistance to apoptosis by reducing the proapoptotic arachidonic acid

  20. Protein structure search and local structure characterization

    Directory of Open Access Journals (Sweden)

    Ku Shih-Yen

    2008-08-01

    Full Text Available Abstract Background Structural similarities among proteins can provide valuable insight into their functional mechanisms and relationships. As the number of available three-dimensional (3D protein structures increases, a greater variety of studies can be conducted with increasing efficiency, among which is the design of protein structural alphabets. Structural alphabets allow us to characterize local structures of proteins and describe the global folding structure of a protein using a one-dimensional (1D sequence. Thus, 1D sequences can be used to identify structural similarities among proteins using standard sequence alignment tools such as BLAST or FASTA. Results We used self-organizing maps in combination with a minimum spanning tree algorithm to determine the optimum size of a structural alphabet and applied the k-means algorithm to group protein fragnts into clusters. The centroids of these clusters defined the structural alphabet. We also developed a flexible matrix training system to build a substitution matrix (TRISUM-169 for our alphabet. Based on FASTA and using TRISUM-169 as the substitution matrix, we developed the SA-FAST alignment tool. We compared the performance of SA-FAST with that of various search tools in database-scale search tasks and found that SA-FAST was highly competitive in all tests conducted. Further, we evaluated the performance of our structural alphabet in recognizing specific structural domains of EGF and EGF-like proteins. Our method successfully recovered more EGF sub-domains using our structural alphabet than when using other structural alphabets. SA-FAST can be found at http://140.113.166.178/safast/. Conclusion The goal of this project was two-fold. First, we wanted to introduce a modular design pipeline to those who have been working with structural alphabets. Secondly, we wanted to open the door to researchers who have done substantial work in biological sequences but have yet to enter the field of protein

  1. Mitochondrial DNA characterization of five species of Plebeia (Apidae: Meliponini): RFLP and restriction maps

    OpenAIRE

    Flávio De Oliveira Francisco,; Silvestre, Daniela; Arias, Maria

    2001-01-01

    The present work characterized the mitochondrial DNA (mtDNA) of five species of Plebeia ( Plebeia droryana, P. emerina, P. remota, P. saiqui and P. sp.) and generate a data set to be used in further populational, phylogenetic, and biogeographic studies. The mtDNA of each species was analyzed using 17 restriction enzymes and restriction maps were built. A high level of interspecific variability was found. The total size of the mtDNA was estimated to be 18500 bp. Through a combination of PCR an...

  2. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells.

    Science.gov (United States)

    Matthews, Gideon D; Gur, Noa; Koopman, Werner J H; Pines, Ophry; Vardimon, Lily

    2010-02-01

    Evolution of the uricotelic system for ammonia detoxification required a mechanism for tissue-specific subcellular localization of glutamine synthetase (GS). In uricotelic vertebrates, GS is mitochondrial in liver cells and cytoplasmic in brain. Because these species contain a single copy of the GS gene, it is not clear how tissue-specific subcellular localization is achieved. Here we show that in chicken, which utilizes the uricotelic system, the GS transcripts of liver and brain cells are identical and, consistently, there is no difference in the amino acid sequence of the protein. The N-terminus of GS, which constitutes a 'weak' mitochondrial targeting signal (MTS), is sufficient to direct a chimeric protein to the mitochondria in hepatocytes and to the cytoplasm in astrocytes. Considering that a weak MTS is dependent on a highly negative mitochondrial membrane potential (DeltaPsi) for import, we examined the magnitude of DeltaPsi in hepatocytes and astrocytes. Our results unexpectedly revealed that DeltaPsi in hepatocytes is considerably more negative than that of astrocytes and that converting the targeting signal into 'strong' MTS abolished the capability to confer tissue-specific subcellular localization. We suggest that evolutional selection of weak MTS provided a tool for differential targeting of an identical protein by taking advantage of tissue-specific differences in DeltaPsi. PMID:20053634

  3. The BARD1 BRCT domain contributes to p53 binding, cytoplasmic and mitochondrial localization, and apoptotic function.

    Science.gov (United States)

    Tembe, Varsha; Martino-Echarri, Estefania; Marzec, Kamila A; Mok, Myth T S; Brodie, Kirsty M; Mills, Kate; Lei, Ying; DeFazio, Anna; Rizos, Helen; Kettle, Emma; Boadle, Ross; Henderson, Beric R

    2015-09-01

    BARD1 is a breast cancer tumor suppressor with multiple domains and functions. BARD1 comprises a tandem BRCT domain at the C-terminus, and this sequence has been reported to target BARD1 to distinct subcellular locations such as nuclear DNA breakage sites and the centrosome through binding to regulatory proteins such as HP1 and OLA1, respectively. We now identify the BRCT domain as a binding site for p53. We first confirmed previous reports that endogenous BARD1 binds to p53 by immunoprecipitation assay, and further show that BARD1/p53 complexes locate at mitochondria suggesting a cellular location for p53 regulation of BARD1 apoptotic activity. We used a proximity ligation assay to map three distinct p53 binding sequences in human BARD1, ranging from weak (425-525) and modest (525-567) to strong (551-777 comprising BRCT domains). Deletion of the BRCT sequence caused major defects in the ability of BARD1 to (1) bind p53, (2) localize to the cytoplasm and mitochondria, and (3) induce Bax oligomerization and apoptosis. Our data suggest that BARD1 can move to mitochondria independent of p53, but subsequently associates with p53 to induce Bax clustering in part by decreasing mitochondrial Bcl-2 levels. We therefore identify a role for the BRCT domain in stimulating BARD1 nuclear export and mitochondrial localization, and in assembling mitochondrial BARD1/p53 complexes to regulate specific activities such as apoptotic function. PMID:26022179

  4. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+.

    Directory of Open Access Journals (Sweden)

    Paola eVenco

    2015-05-01

    Full Text Available Mutations in C19orf12 have been identified in patients affected by Neurodegeneration with Brain Iron Accumulation (NBIA, a clinical entity characterized by iron accumulation in the basal ganglia. By using western blot analysis with specific antibody and confocal studies, we showed that wild-type C19orf12 protein was not exclusively present in mitochondria, but also in the Endoplasmic Reticulum (ER and MAM (Mitochondria Associated Membrane, while mutant C19orf12 variants presented a different localization. Moreover, after induction of oxidative stress, a GFP-tagged C19orf12 wild-type protein was able to relocate to the cytosol. On the contrary, mutant isoforms were not able to respond to oxidative stress. High mitochondrial calcium concentration and increased H2O2 induced apoptosis were found in fibroblasts derived from one patient as compared to controls.C19orf12 protein is a 17kDa mitochondrial membrane-associated protein whose function is still unknown. Our in silico investigation suggests that, the glycine zipper motifs of C19orf12 form helical regions spanning the membrane. The N- and C-terminal regions with respect to the transmembrane portion, on the contrary, are predicted to rearrange in a structural domain, which is homologues to the N-terminal regulatory domain of the magnesium transporter MgtE, suggesting that C19orf12 may act as a regulatory protein for human MgtE transporters. The mutations here described affect respectively one glycine residue of the glycine zipper motifs, which are involved in dimerization of transmembrane helices and predicted to impair the correct localization of the protein into the membranes, and one residue present in the regulatory domain, which is important for protein-protein interaction.

  5. Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast

    Science.gov (United States)

    García-Rodríguez, Luis J.; Gay, Anna Card; Pon, Liza A.

    2007-01-01

    Puf3p binds preferentially to messenger RNAs (mRNAs) for nuclear-encoded mitochondrial proteins. We find that Puf3p localizes to the cytosolic face of the mitochondrial outer membrane. Overexpression of PUF3 results in reduced mitochondrial respiratory activity and reduced levels of Pet123p, a protein encoded by a Puf3p-binding mRNA. Puf3p levels are reduced during the diauxic shift and growth on a nonfermentable carbon source, conditions that stimulate mitochondrial biogenesis. These findings support a role for Puf3p in mitochondrial biogenesis through effects on mRNA interactions. In addition, Puf3p links the mitochore, a complex required for mitochondrial–cytoskeletal interactions, to the Arp2/3 complex, the force generator for actin-dependent, bud-directed mitochondrial movement. Puf3p, the mitochore, and the Arp2/3 complex coimmunoprecipitate and have two-hybrid interactions. Moreover, deletion of PUF3 results in reduced interaction between the mitochore and the Arp2/3 complex and defects in mitochondrial morphology and motility similar to those observed in Arp2/3 complex mutants. Thus, Puf3p is a mitochondrial protein that contributes to the biogenesis and motility of the organelle. PMID:17210948

  6. Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, Andrea; Flores, Carmen-Lisset;

    2004-01-01

    3-Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is a key enzyme in the sterol biosynthesis pathway, but its subcellular distribution in the Trypanosomatidae family is somewhat controversial. Trypanosoma cruzi and Leishmania HMGRs are closely related in their catalytic domains to bacterial...... obtained with wild-type cells and transfectants overexpressing the enzyme established that HMGR in both T. cruzi and Leishmania major is localized primarily in the mitochondrion and that elimination of the mitochondrial targeting sequence in Leishmania leads to protein accumulation in the cytosolic...

  7. Cloning, characterization, and expression of Cytochrome b (Cytb)-a key mitochondrial gene from Prorocentrum donghaiense

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liyuan; MI Tiezhu; ZHEN Yu; YU Zhigang

    2012-01-01

    Mitochondrial cytochrome b (Cytb),one of the few proteins encoded by the mitochondrial DNA,plays an important role in transferring electrons.As a mitochondrial gene,it has been widely used for phylogenetic analysis.Previously,a 949-bp fragment of the coding gene and mRNA editing were characterized from Prorocentrum donghaiense,which might prove useful for resolving P.donghaiense from closely related species.However,the full-length coding region has not been characterized.In this study,we used rapid amplification of cDNA ends (RACE) to obtain full-length,1124 bp cDNA.Cytb transcript contained a standard initiation codon ATG,but did not have a recognizable stop codon.Homology comparison showed that the P.donghaiense Cytb had a high sequence identity to Cytb sequences from other dinoflagellate species.Phylogenetic analysis placed Cytb from P.donghaiense in the clade of dinofiagellates and it clustered together strongly with that from P.minimum.Based on the full-length sequence,we inferred 32 editing events at different positions,accounting for 2.93% of the Cytb gent.34.4% (11) of the changes were A to G,25% (8) were T to C,and 25% (8) were C to U,with smaller proportions of G to C and G to A edits (9.4% (3) and 6.2% (2),respectively).The expression level of the Cytb transcript was quantified by real-time PCR with a TaqMan probe at different times during the whole growth phase.The average Cytb transcript was present at 39.27±7.46 copies of cDNA per cell during the whole growth cycle,and the expression of Cytb was relatively stable over the different phases.These results deepen our understanding of the structure and characteristics of Cytb in P.donghaiense,and confirmed that Cytb in P.donghaiense is a candidate reference gene for studying the expression of other genes.

  8. Characterization of Thin Films Using Local Magneometer

    CERN Document Server

    Katzan N.

    2016-01-01

    SIS nanocomposite (Superconductor/Insulator/Superconductor) could improve the efficiency of bulk Nb accelerating cavities as proposed in 2006 by A. Gurevich [1]. The SRF multilayers concept takes advantage of the enhancement of HC1 of thin layers with thickness d~. The use of thin layers makes it easier to prevent avalanche penetration of vortices in case of local defects that could promote early penetration. The external field is not fully attenuated in such configuration, so several layers are necessary in order to screen the external field down to values below Nb HC1, decoupled from each other with a dielectric layer. Many deposition techniques exist that can allow the deposition of such multilayers but a few of them are adapted for accelerating cavities shapes. Moreover we do not know yet how the predicted properties evolve in realistic deposition conditions. It seems reasonable to start the optimization of such structure on samples. Two parameters need to be measured to predict their behavior in condi...

  9. The human MSH5 (MutSHomolog 5) protein localizes to mitochondria and protects the mitochondrial genome from oxidative damage.

    Science.gov (United States)

    Bannwarth, Sylvie; Figueroa, Alexia; Fragaki, Konstantina; Destroismaisons, Laurie; Lacas-Gervais, Sandra; Lespinasse, Françoise; Vandenbos, Fanny; Pradelli, Ludivine A; Ricci, Jean-Ehrland; Rötig, Agnès; Michiels, Jean-François; Vande Velde, Christine; Paquis-Flucklinger, Véronique

    2012-11-01

    MutS homologs play a central role in maintaining genetic stability. We show that MSH5 (MutSHomolog 5) is localized into the mitochondria of germ and somatic cells. This protein binds to mtDNA and interacts with the Twinkle helicase and the DNA polymerase gamma. hMSH5 stimulates mtDNA repair in response to DNA damage induced by oxidative stress. Furthermore, we observed a subsarcolemmal accumulation of hMSH5 in COX negative muscle fibers of patients presenting a mitochondrial myopathy. We report a novel localization for hMSH5 suggesting that this protein may have functions other than those known in meiotic recombination. PMID:22917773

  10. Characterization of the reaction of decoupling ubiquinone with bovine mitochondrial respiratory complex I.

    Science.gov (United States)

    Masuya, Takahiro; Okuda, Kenji; Murai, Masatoshi; Miyoshi, Hideto

    2016-08-01

    We previously produced the unique ubiquinone QT ("decoupling" quinone), the catalytic reduction of which in NADH-quinone oxidoreduction with bovine heart mitochondrial NADH-ubiquinone oxidoreductase (complex I) is completely decoupled from proton translocation across the membrane domain. This feature is markedly distinct from those of typical short-chain quinones such as ubiquinone-1. To further characterize the features of the QT reaction with complex I, we herein synthesized three QT analogs, QT2-QT4, and characterized their electron transfer reactions. We found that all aspects of electron transfer (e.g. electron-accepting activity and membrane potential formation) vary significantly among these analogs. The features of QT2 as decoupling quinone were slightly superior to those of original QT. Based on these results, we conclude that the bound positions of QTs within the quinone binding cavity susceptibly change depending on their side-chain structures, and the positions, in turn, govern the behavior of QTs as electron acceptors. PMID:27140857

  11. Characterization of mitochondrial haplogroups in a large population-based sample from the United States

    OpenAIRE

    Mitchell, Sabrina L.; Goodloe, Robert; Brown-Gentry, Kristin; Pendergrass, Sarah A; Murdock, Deborah G.; Crawford, Dana C.

    2014-01-01

    Mitochondrial DNA (mtDNA) haplogroups are valuable for investigations in forensic science, molecular anthropology, and human genetics. In this study, we developed a custom panel of 61 mtDNA markers for high-throughput classification of European, African, and Native American/Asian mitochondrial haplogroup lineages. Using these mtDNA markers we constructed a mitochondrial haplogroup classification tree and classified 18,832 participants from the National Health and Nutrition Examination Surveys...

  12. Localization of hexokinase in mitochondria from rabbit reticulocytes and its relation to mitochondrial ATP formation studied by measurement of 32P fluxes

    International Nuclear Information System (INIS)

    The submitochondrial distribution of hexokinase was studied by repeated specific solubilizations and by tryptic digestion of isolated rabbit reticulocyte mitochondria. Whereas most of the enzyme is dissociably bound to the outer side of outer mitochondrial membrane, a small tightly bound portion is localized more internally. Electrophoretic separation did not reveal a specific isoenzyme pattern of the internal mitochondrial enzyme. Relationships between mitochondrial hexokinases and the intramitochondrial ATP pool, generated by oxidative phosporylation, were studied by measuring 32P fluxes following γ-32P-ATP pulses on phosphorylating and non-phosphorylating mitochondria. Under both conditions, the specific activities in deoxyglucose-6-phosphate correspond closely to that of total γ-ATP, thus not supporting a preferential use of intramitochondrially generated ATP by parts of the mitochondrial hexokinases. (author)

  13. Characterization of the complete mitochondrial genome of the Rhinolophus sinicus sinicus (Chiroptera: Rhinolophidae) from Central China.

    Science.gov (United States)

    Xie, Lifen; Sun, Keping; Feng, Jiang

    2016-07-01

    We present a complete mitochondrial genome sequence of Rhinolophus sinicus sinicus from Central China and provide its annotation, as well as showed the phylogenetic relationship and mitogenomic variation with other published mitochondrial genomes of congeneric bat species. Our results revealed a relatively high mitogenomic variation between two R. s. sinucus from Central and East China, which is similar to interspecific divergence level. PMID:26057010

  14. Y chromosome and mitochondrial DNA characterization of Pasiegos, a human isolate from Cantabria (Spain).

    Science.gov (United States)

    Maca-Meyer, N; Sánchez-Velasco, P; Flores, C; Larruga, J-M; González, A-M; Oterino, A; Leyva-Cobián, F

    2003-07-01

    Mitochondrial DNA sequences and Y chromosome haplotypes were characterized in Pasiegos, a human isolate from Cantabria, and compared with those of other Cantabrian and neighbouring Northern Spain populations. Cantabria appears to be a genetically heterogeneous community. Whereas Lebaniegos do not differ from their eastern Basque and western Asturian and Galician neighbours, Pasiegos and other non-Lebaniego Cantabrians show significant differences with all of them. Pasiegos are peculiar for their high frequencies of Y chromosomal markers (E-M81) with North African assignation, and Y chromosomal (R-SRY2627) and mtDNA (V, I, U5) markers related to northern European populations. This dual geographic contribution is more in agreement with the complex demographic history of this isolate, as opposed to recent drift effects. The high incidence in Cantabrians with pre-V and V mtDNA haplotypes, considered as a signal of Postglacial recolonization in Europe from south-western refugees, points to such refugees as a better candidate population than Basques for this expansion. However, this does not discount a conjoint recolonization. PMID:12914567

  15. Characterization of the Complete Mitochondrial Genome Sequence of Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidae from China

    Directory of Open Access Journals (Sweden)

    Guo-Hua Liu, Chun Li, Jia-Yuan Li, Dong-Hui Zhou, Rong-Chuan Xiong, Rui-Qing Lin, Feng-Cai Zou, Xing-Quan Zhu

    2012-01-01

    Full Text Available Sparganosis, caused by the plerocercoid larvae of members of the genus Spirometra, can cause significant public health problem and considerable economic losses. In the present study, the complete mitochondrial DNA (mtDNA sequence of Spirometra erinaceieuropaei from China was determined, characterized and compared with that of S. erinaceieuropaei from Japan. The gene arrangement in the mt genome sequences of S. erinaceieuropaei from China and Japan is identical. The identity of the mt genomes was 99.1% between S. erinaceieuropaei from China and Japan, and the complete mtDNA sequence of S. erinaceieuropaei from China is slightly shorter (2 bp than that from Japan. Phylogenetic analysis of S. erinaceieuropaei with other representative cestodes using two different computational algorithms [Bayesian inference (BI and maximum likelihood (ML] based on concatenated amino acid sequences of 12 protein-coding genes, revealed that S. erinaceieuropaei is closely related to Diphyllobothrium spp., supporting classification based on morphological features. The present study determined the complete mtDNA sequences of S. erinaceieuropaei from China that provides novel genetic markers for studying the population genetics and molecular epidemiology of S. erinaceieuropaei in humans and animals.

  16. Immunoaffinity purification and characterization of mitochondrial membrane-bound D-3-hydroxybutyrate dehydrogenase from Jaculus orientalis

    Directory of Open Access Journals (Sweden)

    Cherkaoui-Malki Mustapha

    2008-09-01

    Full Text Available Abstract Background The interconversion of two important energy metabolites, 3-hydroxybutyrate and acetoacetate (the major ketone bodies, is catalyzed by D-3-hydroxybutyrate dehydrogenase (BDH1: EC 1.1.1.30, a NAD+-dependent enzyme. The eukaryotic enzyme is bound to the mitochondrial inner membrane and harbors a unique lecithin-dependent activity. Here, we report an advanced purification method of the mammalian BDH applied to the liver enzyme from jerboa (Jaculus orientalis, a hibernating rodent adapted to extreme diet and environmental conditions. Results Purifying BDH from jerboa liver overcomes its low specific activity in mitochondria for further biochemical characterization of the enzyme. This new procedure is based on the use of polyclonal antibodies raised against BDH from bacterial Pseudomonas aeruginosa. This study improves the procedure for purification of both soluble microbial and mammalian membrane-bound BDH. Even though the Jaculus orientalis genome has not yet been sequenced, for the first time a D-3-hydroxybutyrate dehydrogenase cDNA from jerboa was cloned and sequenced. Conclusion This study applies immunoaffinity chromatography to purify BDH, the membrane-bound and lipid-dependent enzyme, as a 31 kDa single polypeptide chain. In addition, bacterial BDH isolation was achieved in a two-step purification procedure, improving the knowledge of an enzyme involved in the lipid metabolism of a unique hibernating mammal. Sequence alignment revealed conserved putative amino acids for possible NAD+ interaction.

  17. Characterization of mitochondrial ATPase 6/8 genes in wild Labeo calbasu (Hamilton, 1822) and mapping of natural genetic diversity.

    Science.gov (United States)

    Singh, Rajeev K; Lal, Kuldeep K; Mohindra, Vindhya; Sah, Rama S; Kumar, Rajesh; Jena, J K

    2016-09-01

    We characterized mitochondrial ATP synthase (ATPase) 6 and 8 genes in Labeo calbasu (Hamilton, 1822) and determined genetic variation in wild populations across the natural distribution in Indian rivers. A total of 206 individuals were sampled from 11 riverine sites belonging to distinct geographical locations covering five major river basins. Sequencing of 842 base pairs of ATPase 6/8 revealed 21 haplotypes with haplotype diversity ranging from 0.1250 (River Satluj) to 0.8846 (River Bhagirathi). Analysis of molecular variance (AMOVA) of mitochondrial DNA (mtDNA) data revealed significant genetic differentiation among sites (FST = 0.192, p analysis of data demonstrated the potential of ATPase 6/8 genes in determining the genetic diversity and indicated considerable sub-structuring in wild calbasu populations present in different rivers. PMID:25630739

  18. Characterizing genetic diversity of contemporary pacific chickens using mitochondrial DNA analyses.

    Directory of Open Access Journals (Sweden)

    Kelsey Needham Dancause

    Full Text Available BACKGROUND: Mitochondrial DNA (mtDNA hypervariable region (HVR sequences of prehistoric Polynesian chicken samples reflect dispersal of two haplogroups--D and E--by the settlers of the Pacific. The distribution of these chicken haplogroups has been used as an indicator of human movement. Recent analyses suggested similarities between prehistoric Pacific and South American chicken samples, perhaps reflecting prehistoric Polynesian introduction of the chicken into South America. These analyses have been heavily debated. The current distribution of the D and E lineages among contemporary chicken populations in the Western Pacific is unclear, but might ultimately help to inform debates about the movements of humans that carried them. OBJECTIVES: We sought to characterize contemporary mtDNA diversity among chickens in two of the earliest settled archipelagos of Remote Oceania, the Marianas and Vanuatu. METHODS: We generated HVR sequences for 43 chickens from four islands in Vanuatu, and for 5 chickens from Guam in the Marianas. RESULTS: Forty samples from Vanuatu and three from Guam were assigned to haplogroup D, supporting this as a Pacific chicken haplogroup that persists in the Western Pacific. Two haplogroup E lineages were observed in Guam and two in Vanuatu. Of the E lineages in Vanuatu, one was identical to prehistoric Vanuatu and Polynesian samples and the other differed by one polymorphism. Contrary to our expectations, we observed few globally distributed domesticate lineages not associated with Pacific chicken dispersal. This might suggest less European introgression of chickens into Vanuatu than expected. If so, the E lineages might represent lineages maintained from ancient Pacific chicken introductions. The Vanuatu sample might thus provide an opportunity to distinguish between maintained ancestral Pacific chicken lineages and replacement by global domesticates through genomic analyses, which could resolve questions of contemporary

  19. Image Characterization from Statistical Reduction of Local Patterns

    OpenAIRE

    Guermeur, Philippe; Manzanera, Antoine

    2009-01-01

    International audience This paper tackles the image characterization problem from a statistical analysis of local patterns in one or several images. The induced image characteristics are not defined a priori, but depends on the content of the images to process. These characteristics are also simple image descriptors and thus considering an histogram of these elementary descriptors enables to apply "bags of words" techniques. Relevance of the approach is assessed when dealing with the image...

  20. Robotic palpation and mechanical property characterization for abnormal tissue localization.

    Science.gov (United States)

    Ahn, Bummo; Kim, Yeongjin; Oh, Cheol Kyu; Kim, Jung

    2012-09-01

    Palpation is an intuitive examination procedure in which the kinesthetic and tactile sensations of the physician are used. Although it has been widely used to detect and localize diseased tissues in many clinical fields, the procedure is subjective and dependent on the experience of the individual physician. Palpation results and biomechanics-based mechanical property characterization are possible solutions that can enable the acquisition of objective and quantitative information on abnormal tissue localization during diagnosis and surgery. This paper presents an integrated approach for robotic palpation combined with biomechanical soft tissue characterization. In particular, we propose a new palpation method that is inspired by the actual finger motions that occur during palpation procedures. To validate the proposed method, robotic palpation experiments on silicone soft tissue phantoms with embedded hard inclusions were performed and the force responses of the phantoms were measured using a robotic palpation system. Furthermore, we carried out a numerical analysis, simulating the experiments and estimating the objective and quantitative properties of the tissues. The results indicate that the proposed approach can differentiate diseased tissue from normal tissue and can characterize the mechanical information of diseased tissue, which means that this method can be applied as a means of abnormality localization to diagnose prostate cancers. PMID:22772733

  1. Palmitoylation of the immunity related GTPase, Irgm1: impact on membrane localization and ability to promote mitochondrial fission.

    Directory of Open Access Journals (Sweden)

    Stanley C Henry

    Full Text Available The Immunity-Related GTPases (IRG are a family of large GTPases that mediate innate immune responses. Irgm1 is particularly critical for immunity to bacteria and protozoa, and for inflammatory homeostasis in the intestine. Although precise functions for Irgm1 have not been identified, prior studies have suggested roles in autophagy/mitophagy, phagosome remodeling, cell motility, and regulating the activity of other IRG proteins. These functions ostensibly hinge on the ability of Irgm1 to localize to intracellular membranes, such as those of the Golgi apparatus and mitochondria. Previously, it has been shown that an amphipathic helix, the αK helix, in the C-terminal portion of the protein partially mediates membrane binding. However, in absence of αK, there is still substantial binding of Irgm1 to cellular membranes, suggesting the presence of other membrane binding motifs. In the current work, an additional membrane localization motif was found in the form of palmitoylation at a cluster of cysteines near the αK. An Irgm1 mutant possessing alanine to cysteine substitutions at these amino acids demonstrated little residual palmitoylation, yet it displayed only a small decrease in localization to the Golgi and mitochondria. In contrast, a mutant containing the palmitoylation mutations in combination with mutations disrupting the amphipathic character of the αK displayed a complete loss of apparent localization to the Golgi and mitochondria, as well as an overall loss of association with cellular membranes in general. Additionally, Irgm1 was found to promote mitochondrial fission, and this function was undermined in Irgm1 mutants lacking the palmitoylation domain, and to a greater extent in those lacking the αK, or the αK and palmitoylation domains combined. Our data suggest that palmitoylation together with the αK helix firmly anchor Irgm1 in the Golgi and mitochondria, thus facilitating function of the protein.

  2. Isolation and characterization of glutaminyl cyclases from Drosophila: evidence for enzyme forms with different subcellular localization.

    Science.gov (United States)

    Schilling, Stephan; Lindner, Christiane; Koch, Birgit; Wermann, Michael; Rahfeld, Jens-Ulrich; von Bohlen, Alex; Rudolph, Thomas; Reuter, Gunter; Demuth, Hans-Ulrich

    2007-09-25

    Glutaminyl cyclases (QCs) present in plants and vertebrates catalyze the formation of pyroglutamic acid (pGlu) from N-terminal glutamine. Pyroglutamyl hormones also identified in invertebrates imply the involvement of QC activity during their posttranslational maturation. Database mining led to the identification of two genes in Drosophila, which putatively encode QCs, CG32412 (DromeQC) and CG5976 (isoDromeQC). Analysis of their primary structure suggests different subcellular localizations. While DromeQC appeared to be secreted due to an N-terminal signal peptide, isoDromeQC contains either an N-terminal mitochondrial targeting or a secretion signal due to generation of different transcripts from gene CG5976. According to the prediction, homologous expression of the corresponding cDNAs in S2 cells revealed either secreted protein in the medium or intracellular QC activity. Subcellular fractionation and immunochemistry support export of isoDromeQC into the mitochondrion. For enzymatic characterization, DromeQC and isoDromeQC were expressed heterologously in Pichia pastoris and Escherichia coli, respectively. Compared to mammalian QCs, the specificity constants were about 1 order of magnitude lower for most of the analyzed substrates. The pH dependence of the specificity constant was similar for both enzymes, indicating the necessity of an unprotonated substrate amino group and two protonated groups of the enzyme, resulting in an asymmetric bell-shaped characteristic. The determination of the metal content of DromeQC revealed equimolar protein-bound zinc. These results prove conserved enzymatic mechanisms between QCs from invertebrates and mammals. Drosophila is the first organism for which isoenzymes of glutaminyl cyclase have been isolated. The identification of a mitochondrial QC points toward yet undiscovered physiological functions of these enzymes. PMID:17722885

  3. Mitochondrial localization, ELK-1 transcriptional regulation and Growth inhibitory functions of BRCA1, BRCA1a and BRCA1b proteins

    Science.gov (United States)

    Maniccia, Anna W; Lewis, Catherine; Begum, Nurjahan; Xu, Jingyao; Cui, Jianqi; Chipitsyna, Galina; Aysola, Kartik; Reddy, Vaishali; Bhat, Ganapathy; Fujimura, Yasuo; Henderson, Beric; Reddy, E. Shyam P.; Rao, Veena N.

    2009-01-01

    BRCA1 is a tumor suppressor gene that is mutated in families with breast and ovarian cancer. Several BRCA1 splice variants are found in different tissues, but their subcellular localization and functions are poorly understood at the moment. We previously described BRCA1 splice variant BRCA1a to induce apoptosis and function as a tumor suppressor of triple negative breast, ovarian and prostate cancers. In this study we have analyzed the function of BRCA1 isoforms (BRCA1a and BRCA1b) and compared them to the wild type BRCA1 protein using several criteria like studying expression in normal and tumor cells by RNase protection assays, sub cellular localization/fractionation by immunofluorescence microscopy and western blot analysis, transcription regulation of biological relevant proteins and growth suppression in breast cancer cells. We are demonstrating for the first time that ectopically expressed GFP-tagged BRCA1, BRCA1a, and BRCA1b proteins are localized to the mitochondria, repress ELK-1 transcriptional activity and possess antiproliferative activity on breast cancer cells. These results suggest that the exon 9,10 and 11 sequences (aa 263 – 1365) which contain two nuclear localization signals, p53, Rb, c-Myc, γ- tubulin, Stat, Rad 51, Rad 50 binding domains, angiopoietin-1 repression domain are not absolutely required for mitochondrial localization and growth suppressor function of these proteins. Since mitochondrial dysfunction is a hallmark of cancer, we can speculate that the mitochondrial localization of BRCA1 proteins may be functionally significant in regulating both the mitochondrial DNA damage as well as apoptotic activity of BRCA1 proteins and mislocalization causes cancer. PMID:19170108

  4. Characterization of the complete mitochondrial genome of the king pigeon (Columba livia breed king).

    Science.gov (United States)

    Zhang, Rui-Hua; He, Wen-Xiao; Xu, Tong

    2015-06-01

    The king pigeon is a breed of pigeon developed over many years of selective breeding primarily as a utility breed. In the present work, we report the complete mitochondrial genome sequence of king pigeon for the first time. The total length of the mitogenome was 17,221 bp with the base composition of 30.14% for A, 24.05% for T, 31.82% for C, and 13.99% for G and an A-T (54.22 %)-rich feature was detected. It harbored 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and one non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of king pigeon would serve as an important data set of the germplasm resources for further study. PMID:25648922

  5. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    Science.gov (United States)

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  6. Localization and functional characterization of the human NKCC2 isoforms

    DEFF Research Database (Denmark)

    Carota, I; Theilig, F; Oppermann, M;

    2010-01-01

    inhibited by bumetanide than by furosemide. A sequence analysis of the amino acids encoded by exon 4 variants revealed high similarities between human and rodent NKCC2 isoforms, suggesting that differences in ion transport characteristics between species may be related to sequence variations outside the...... isoforms have specific localizations and transport characteristics, as assessed for rabbit, rat and mouse. In the present study, we aimed to address the localization and transport characteristics of the human NKCC2 isoforms. METHODS: RT-PCR, in situ hybridization and uptake studies in Xenopus oocytes were...... performed to characterize human NKCC2 isoforms. RESULTS: All three classical NKCC2 isoforms were detected in the human kidney; in addition, we found splice variants with tandem duplicates of the variable exon 4. Contrary to rodents, in which NKCC2F is the most abundant NKCC2 isoform, NKCC2A was the dominant...

  7. Mitochondrial DNA evidence indicates the local origin of domestic pigs in the upstream region of the Yangtze River.

    Directory of Open Access Journals (Sweden)

    Long Jin

    Full Text Available Previous studies have indicated two main domestic pig dispersal routes in East Asia: one is from the Mekong region, through the upstream region of the Yangtze River (URYZ to the middle and upstream regions of the Yellow River, the other is from the middle and downstream regions of the Yangtze River to the downstream region of the Yellow River, and then to northeast China. The URYZ was regarded as a passageway of the former dispersal route; however, this assumption remains to be further investigated. We therefore analyzed the hypervariable segements of mitochondrial DNA from 513 individual pigs mainly from Sichuan and the Tibet highlands and 1,394 publicly available sequences from domestic pigs and wild boars across Asia. From the phylogenetic tree, most of the samples fell into a mixed group that was difficult to distinguish by breed or geography. The total network analysis showed that the URYZ pigs possessed a dominant position in haplogroup A and domestic pigs shared the same core haplotype with the local wild boars, suggesting that pigs in group A were most likely derived from the URYZ pool. In addition, a region-wise network analysis determined that URYZ contains 42 haplotypes of which 22 are unique indicating the high diversity in this region. In conclusion, our findings confirmed that pigs from the URYZ were domesticated in situ.

  8. Characterization of the complete mitochondrial genome of the firefly, Luciola substriata (Coleoptera: Lampyridae).

    Science.gov (United States)

    Mu, Feng-Juan; Ao, Liang; Zhao, Hua-Bin; Wang, Kai

    2016-09-01

    The firefly, Luciola substriata (Coleoptera: Lampyridae), is an aquatic firefly species, whose larvae inhabit ponds or lakes. Here we present the complete mitochondrial (mt) genome of the firefly (GenBank accession number KP313820) and provide its annotation. This circular genome is 16,248 bp in length and contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and a non-coding AT-rich region. Similar to other firefly species, the base composition of this mitochondrial genome is also biased toward A and T (44.09% A, 34.00% T, 12.89% C, and 9.01% G). All 13 protein-coding genes start with a typical mitochondrial start codon, and terminate with a usual stop codon TAA, or TAG or a single T. The non-coding AT-rich region (1636 bp in length) include one (A)20, and two (T)15 tandem repeats, and one (AAT)5 element. This mitochondrial genome sequence will promote a better understanding for firefly evolution in the future. PMID:25714154

  9. The Porcine Mitochondrial Transcription Factor a Gene: Molecular Characterization, Radiation Hybrid Mapping and Genetic Diversity among 12 Pig Breeds

    Directory of Open Access Journals (Sweden)

    Tanja Kunej

    2009-01-01

    Full Text Available Problem statement: Mitochondrial transcription factor A (TFAM is a nucleus-encoded protein that is a key activator of mitochondrial transcription as well as a major participant in mitochondrial genome replication. Genomic characterization of the porcine TFAM gene is, therefore, necessary to determine its involvement in regulation of fat depots and meat quality traits in pigs. Approach: Genomic DNA sequence was determined using a comparative in silico annotation approach. RT-PCR was used for analysis of alternative splicing. Genome location was determined using Radiation Hybrid (RH mapping. Genetic marker was identified by sequencing and genotyped by the PCR-RFLP method with SacI. GENEPOP version 3.3 software was used for statistic analysis. Results: We determined both full-length cDNA and genomic DNA sequences of the porcine TFAM gene. Gene expression analysis revealed an alternative 5’ splice site, which excludes exon 4 of the pig gene. We assigned this gene to porcine chromosome 14 (SSC14. A G/A substitution was detected in intron 1 of porcine TFAM gene and genotyped on a total of 252 animals, including 165 from seven Chinese and 87 from five Western pig breeds. The Bayesian analysis via MCMC (Markov chain Monte Carlo revealed that these two groups of pigs were well separated at this locus during the breed history; 95% of the posterior difference of TFAM allelic frequency between these two pig groups was greater than zero. Conclusion/Recommendations: All these data provided basic genomic information needed for further functional characterization of the porcine TFAM gene. Because marked differences in fat and lean tissue deposition exist between Western and Chinese pig breeds, the G557A mutation in the TFAM gene deserves further evaluation to determine its phenotypic effect on fattening and carcass traits in commercial pig populations.

  10. Over-expressed copper/zinc superoxide dismutase localizes to mitochondria in neurons inhibiting the angiotensin II-mediated increase in mitochondrial superoxide

    Directory of Open Access Journals (Sweden)

    Shumin Li

    2014-01-01

    Full Text Available Angiotensin II (AngII is the main effector peptide of the renin–angiotensin system (RAS, and contributes to the pathogenesis of cardiovascular disease by exerting its effects on an array of different cell types, including central neurons. AngII intra-neuronal signaling is mediated, at least in part, by reactive oxygen species, particularly superoxide (O2·−. Recently, it has been discovered that mitochondria are a major subcellular source of AngII-induced O2·−. We have previously reported that over-expression of manganese superoxide dismutase (MnSOD, a mitochondrial matrix-localized O2·− scavenging enzyme, inhibits AngII intra-neuronal signaling. Interestingly, over-expression of copper/zinc superoxide dismutase (CuZnSOD, which is believed to be primarily localized to the cytoplasm, similarly inhibits AngII intra-neuronal signaling and provides protection against AngII-mediated neurogenic hypertension. Herein, we tested the hypothesis that CuZnSOD over-expression in central neurons localizes to mitochondria and inhibits AngII intra-neuronal signaling by scavenging mitochondrial O2·−. Using a neuronal cell culture model (CATH.a neurons, we demonstrate that both endogenous and adenovirus-mediated over-expressed CuZnSOD (AdCuZnSOD are present in mitochondria. Furthermore, we show that over-expression of CuZnSOD attenuates the AngII-mediated increase in mitochondrial O2·− levels and the AngII-induced inhibition of neuronal potassium current. Taken together, these data clearly show that over-expressed CuZnSOD in neurons localizes in mitochondria, scavenges AngII-induced mitochondrial O2·−, and inhibits AngII intra-neuronal signaling.

  11. Characterization of a Dairy Gyr herd with respect to its mitochondrial DNA (mt DNA origin

    Directory of Open Access Journals (Sweden)

    Anibal Eugênio Vercesi Filho

    2010-01-01

    Full Text Available The Zebu breeds were introduced in Brazil mainly in the last century by imports from the Indian subcontinent. When the Zebu cattle arrived, the national herd suffered a significative change by backcrossing the national cows of taurine origin with Zebu sires. These processes created a polymorphism in the mitochondrial DNA (mtDNA in the Zebu animals with are in a major part derived from backcrossing and sharing mtDNA of taurine origin. To verify the maternal origin of cows belonging to the Dairy Gyr herd of APTA, Mococa 60 females were analyzed and 33 presented mtDNA from Bos taurus origin and 27 presented mtDNA from Bos indicus origin. None of these animals presented patterns of both mtDNA origins, indicating absence of heteroplasmy for these mitochondrial genotypes.

  12. Complete sequence of the mitochondrial genome of Odontamblyopus rubicundus (Perciformes: Gobiidae): genome characterization and phylogenetic analysis

    Indian Academy of Sciences (India)

    Tianxing Liu; Xiaoxiao Jin; Rixin Wang; Tianjun Xu

    2013-12-01

    Odontamblyopus rubicundus is a species of gobiid fishes, inhabits muddy-bottomed coastal waters. In this paper, the first complete mitochondrial genome sequence of O. rubicundus is reported. The complete mitochondrial genome sequence is 17119 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, a control region and an L-strand origin as in other teleosts. Most mitochondrial genes are encoded on H-strand except for ND6 and seven tRNA genes. Some overlaps occur in protein-coding genes and tRNAs ranging from 1 to 7 bp. The possibly nonfunctional L-strand origin folded into a typical stem-loop secondary structure and a conserved motif (5′-GCCGG-3′) was found at the base of the stem within the $tRNA^{Cys}$ gene. The TAS, CSB-2 and CSB-3 could be detected in the control region. However, in contrast to most of other fishes, the central conserved sequence block domain and the CSB-1 could not be recognized in O. rubicundus, which is consistent with Acanthogobius hasta (Gobiidae). In addition, phylogenetic analyses based on different sequences of species of Gobiidae and different methods showed that the classification of O. rubicundus into Odontamblyopus due to morphology is debatable.

  13. Defect localization, characterization and reliability assessment in emerging photovoltaic devices.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Benjamin Bing-Yeh; Cruz-Campa, Jose Luis; Haase, Gad S.; Tangyunyong, Paiboon; Cole, Edward Isaac,; Okandan, Murat; Nielson, Gregory N.

    2014-04-01

    Microsystems-enabled photovoltaics (MEPV) can potentially meet increasing demands for light-weight, portable, photovoltaic solutions with high power density and efficiency. The study in this report examines failure analysis techniques to perform defect localization and evaluate MEPV modules. CMOS failure analysis techniques, including electroluminescence, light-induced voltage alteration, thermally-induced voltage alteration, optical beam induced current, and Seabeck effect imaging were successfully adapted to characterize MEPV modules. The relative advantages of each approach are reported. In addition, the effects of exposure to reverse bias and light stress are explored. MEPV was found to have good resistance to both kinds of stressors. The results form a basis for further development of failure analysis techniques for MEPVs of different materials systems or multijunction MEPVs. The incorporation of additional stress factors could be used to develop a reliability model to generate lifetime predictions for MEPVs as well as uncover opportunities for future design improvements.

  14. A local characterization for static charged black holes

    Science.gov (United States)

    González, Guillermo A.; Vera, Raül

    2011-01-01

    We obtain a purely local characterization that singles out the Majumdar-Papapetrou class, the near-horizon Bertotti-Robinson geometry and the Reissner-Nordström exterior solution, together with its plane and hyperbolic counterparts, among the static electrovacuum spacetimes. These five classes are found to form the whole set of static Einstein-Maxwell fields without sources and conformally flat space of orbits, that is, the conformastat electrovacuum spacetimes. The main part of the proof consists in showing that a functional relationship between the gravitational and electromagnetic potentials must always exist. The classification procedure also provides an improved characterization of Majumdar-Papapetrou, by only requiring a conformally flat space of orbits with a vanishing Ricci scalar of the usual conveniently rescaled 3-metric. A simple global consideration allows us to state that the asymptotically flat subset of the Majumdar-Papapetrou class and the Reissner-Nordström exterior solution are the only asymptotically flat conformastat electrovacuum spacetimes.

  15. Complete mitochondrial DNA sequences of the Victoria tilapia (Oreochromis variabilis) and Redbelly Tilapia (Tilapia zilli): genome characterization and phylogeny analysis.

    Science.gov (United States)

    Kinaro, Zachary Omambia; Xue, Liangyi; Volatiana, Josies Ancella

    2016-07-01

    The Cichlid fishes have played an important role in evolutionary biology, population studies and aquaculture industry with East African species representing a model suited for studying adaptive radiation and speciation for cichlid genome projects in which closely related genomes are fast emerging presenting questions on phenotype-genotype relations. The complete mitochondrial genomes presented here are for two closely related but eco-morphologically distinct Lake Victoria basin cichlids, Oreochromis variabilis, an endangered native species and Tilapia zilli, an invasive species, both of which are important economic fishes in local areas. The complete mitochondrial genomes determined for O. variabilis and T. zilli are 16 626 and 16,619 bp, respectively. Both the mitogenomes contain 13 protein-coding genes, 22 tRNAs, 2 rRNAs and a non-coding control region, which are typical of vertebrate mitogenomes. Phylogenetic analyses of the two species revealed that though both lie within family Cichlidae, they are remotely related. PMID:27158785

  16. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy.

    Science.gov (United States)

    Vincent, Amy E; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M; McFarland, Robert; Gorman, Grainne S; Taylor, Robert W; Turnbull, Doug M; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  17. Isolation and characterization of a Ca/sup 2 +/ carrier candidate from calf heart inner mitochondrial membrane

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, A.Y.

    1979-01-01

    A protein was isolated from calf heart inner mitochondrial membrane with the aid of an electron paramagnetic resonance assay based on the relative binding properties of Ca/sup 2 +/, Mn/sup 2 +/, and Mg/sup 2 +/ to the protein. Partial delipidation of the protein was performed by using either the organic solvent extraction procedure or the silicic acid column chromatography. Control experiments indicated that the Ca/sup 2 +/ transport properties of the isolated protein were not due to the contaminating phospholipids. A complete delipidation procedure was developd by using Sephadex LH-20 column chromatography. Further characterization of the physical and chemical properties of the delipidated protein showed that delipidated protein becomes more hydrophobic in the presence of Ca/sup 2 +/ and alkaline pH in the organic solvent extraction experiments. Two possible models of calciphorin-mediated Ca/sup 2 +/ transport in mitochondria are proposed. (PCS)

  18. Interleukin-1 receptors in mouse brain: Characterization and neuronal localization

    International Nuclear Information System (INIS)

    The cytokine interleukin-1 (IL-1) has a variety of effects in brain, including induction of fever, alteration of slow wave sleep, and alteration of neuroendocrine activity. To examine the potential sites of action of IL-1 in brain, we used iodine-125-labeled recombinant human interleukin-1 [( 125I]IL-1) to identify and characterize IL-1 receptors in crude membrane preparations of mouse (C57BL/6) hippocampus and to study the distribution of IL-1-binding sites in brain using autoradiography. In preliminary homogenate binding and autoradiographic studies, [125I]IL-1 alpha showed significantly higher specific binding than [125I]IL-1 beta. Thus, [125I]IL-1 alpha was used in all subsequent assays. The binding of [125I]IL-1 alpha was linear over a broad range of membrane protein concentrations, saturable, reversible, and of high affinity, with an equilibrium dissociation constant value of 114 +/- 35 pM and a maximum number of binding sites of 2.5 +/- 0.4 fmol/mg protein. In competition studies, recombinant human IL-1 alpha, recombinant human IL-1 beta, and a weak IL-1 beta analog. IL-1 beta +, inhibited [125I]IL-1 alpha binding to mouse hippocampus in parallel with their relative bioactivities in the T-cell comitogenesis assay, with inhibitory binding affinity constants of 55 +/- 18, 76 +/- 20, and 2940 +/- 742 pM, respectively; rat/human CRF and human tumor necrosis factor showed no effect on [125I]IL-1 alpha binding. Autoradiographic localization studies revealed very low densities of [125I]IL-1 alpha-binding sites throughout the brain, with highest densities present in the molecular and granular layers of the dentate gyrus of the hippocampus and in the choroid plexus. Quinolinic acid lesion studies demonstrated that the [125I]IL-1 alpha-binding sites in the hippocampus were localized to intrinsic neurons

  19. Local Guided Wavefield Analysis for Characterization of Delaminations in Composites

    Science.gov (United States)

    Rogge, Matthew D.; Campbell Leckey, Cara A.

    2012-01-01

    Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspection techniques are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure. Alternatively, a noncontact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially-dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Finally, experimental wavefield data obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage is analyzed and wavenumber is measured to an accuracy of 8.5% in the region of shallow delaminations. Keywords: Ultrasonic wavefield imaging, Windowed Fourier transforms, Guided waves, Structural health monitoring, Nondestructive evaluation

  20. Characterization of local heat fluxes around ICRF antennas on JET

    Energy Technology Data Exchange (ETDEWEB)

    Campergue, A.-L. [Ecole Nationale des Ponts et Chaussées, F77455 Marne-la-Vallée (France); Jacquet, P.; Monakhov, I.; Arnoux, G.; Brix, M.; Sirinelli, A. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Bobkov, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Milanesio, D. [Politecnico di Torino, Department of Electronics, Torino (Italy); Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Collaboration: JET-EFDA Contributors

    2014-02-12

    When using Ion Cyclotron Range of Frequency (ICRF) heating, enhanced power deposition on Plasma-Facing Components (PFCs) close to the antennas can occur. Experiments have recently been carried out on JET with the new ITER-Like-Wall (ILW) to characterize the heat fluxes on the protection of the JET ICRF antennas, using Infra-Red (IR) thermography measurement. The measured heat flux patterns along the poloidal limiters surrounding powered antennas were compared to predictions from a simple RF sheath rectification model. The RF electric field, parallel to the static magnetic field in front of the antenna, was evaluated using the TOPICA code, integrating a 3D flattened model of the JET A2 antennas. The poloidal density variation in front of the limiters was obtained from the mapping of the Li-beam or edge reflectometry measurements using the flux surface geometry provided by EFIT equilibrium reconstruction. In many cases, this simple model can well explain the position of the maximum heat flux on the different protection limiters and the heat-flux magnitude, confirming that the parallel RF electric field and the electron plasma density in front of the antenna are the main driving parameters for ICRF-induced local heat fluxes.

  1. Characterization of Black and Green Tea from Local Market

    Directory of Open Access Journals (Sweden)

    Sonia Ancuta Socaci

    2013-11-01

    Full Text Available The leaves from Camellia sinensis are used from ancient times for preparation of tea but also as raw material for different extracts which are used in food industry as well as in pharmaceutical or cosmetic products. Due to the increasing interest in tea health benefits, the aim of the present study was to characterize several brands of green and black tea found on local market, regarding their content in total phenolic compounds, flavonoids and antioxidant capacity. Total phenolics and flavonoids were determined spectrophotometrically using a modified Folin-Ciocalteu method, respectively a chromogenic system of NaNO2–Al(NO33–NaOH based method. The antioxidant capacity of each tea sample was assessed through the evaluation of free radical scavenging effect on 2,2-diphenyl-1-picrylhydrazyl. The results obtained for the green and black tea samples varied widely, depending on the tea variety. The antioxidant capacity of the analyzed teas ranged between 12.10 and 40.03%RSA, while the total phenolic content was within 2090 and 6080 mg GA/ 100g. The concentrantion in flavonoids was between 9.04 and 15.34 g/100g of tea.

  2. Accuracy characterization and measurement point planning for workpiece localization

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    [1]Ding, H., Zhu, L. M., Xiong, Z. H., A survey on coordinate measurement, geometric modeling and PR or NC code generation from measured data points, Chinese Journal of Mechanical Engineering, 2003, 39(11): 28-37.[2]Zhu, L. M., Xiong, Z. H., Ding, H. et al., A distance function based approach for localization and profile error evaluation of complex surface, Transactions of ASME, Journal of Manufacturing Science & Engineering, 2004, 126(3): 542-554.[3]Zhu, L. M., Ding, H., Application of kinematic geometry to computational metrology: distance function based heirarchical algorithms for cylindricity evaluation, International Journal of Machine Tools & Manufacture, 2003, 43(2): 203-215.[4]Li, Z., Gou, J., Chu, Y., Geometric algorithms for workpiece localization, IEEE Transactions on Robotics and Automation, 1998, 14: 864-878.[5]Sourlier, D., Bucher, A., Surface-independent, theoretically exact bestfit for arbitrary sculptured, complex, or standard geometries, Precision Engineering, 1995, 17: 101-113.[6]Forbes, A. B., Least-squares best-fit geometric elements, in Algorithms for Approximation II (ed. Mason, J. C., Cox, M. G.), London: Chapman and Hall, 1990, 311-319.[7]Hong, J. W., Tan, X. L., Method and apparatus for determining position and orientation of mechanical objects, U.S. Patent 5208763, 1990.[8]Yan, Z. C., Meng, C. H., Uncertainty analysis and variation reduction of three-dimensional coordinate metrology, International Journal of Machine Tools & Manufacture, 1999, 39: 1199-1261.[9]Yau, H. T., Uncertainty analysis in geometric best fit, International Journal of Machine Tools and Manufacture, 1998, 38: 1323-1342.[10]Murray, R. M., Li, Z., Sastry, S. S., A Mathematical Introduction to Robotic Manipulation, Boca Raton: CRC Press, 1994.[11]Wang, M. Y., Characterizations of localization accuracy of fixtures, IEEE Transactions on Robotics and Automation, 2002, 18(6): 976-981.[12]Chu, Y. X., Gou, J. B., Li, Z. X

  3. Sequence Characterization of Mitochondrial 12S rRNA Gene in Mouse Deer (Moschiola indica for PCR-RFLP Based Species Identification

    Directory of Open Access Journals (Sweden)

    Chandra Mohan Siddappa

    2013-01-01

    Full Text Available Mitochondrial 12S rRNA has proven to be a useful molecular marker for better conservation and management of the endangered species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP of the mitochondrial 12S rRNA gene has proven to be a reliable and efficient tool for the identification of different Indian deer species of family cervidae. In the present study, mitochondrial 12S rRNA gene sequence of mouse deer (Moschiola indica belonging to the family Tragulidae was characterized and analysed in silico for its use in species identification. Genomic DNA was isolated from the hair follicles and mitochondrial 12S rRNA gene was amplified using universal primers. PCR product was cloned and sequenced for the first time. The sequence of mouse deer showed 90.04, 90.08, 90.04, 91.2, 90.04, and 90.08% identities with sika deer, sambar, hog deer, musk deer, chital, and barking deer, respectively. Restriction mapping in Lasergene (DNAstar Inc., Madison, WI, USA revealed that mouse deer mitochondrial 12S rRNA gene sequence can be differentiated from the other deer species in PCR-RFLP using RsaI, DdeI, BsrI, and BstSFI. With the help of predicted pattern, mouse deer can be identified using genomic DNA from a variety of biomaterials, thereby providing molecular aid in wildlife forensics and conservation of the species.

  4. Characterization of the Complete Mitochondrial Genomes of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae

    Directory of Open Access Journals (Sweden)

    Huan-Na Chai, Yu-Zhou Du, Bao-Ping Zhai

    2012-01-01

    Full Text Available The complete mitochondrial genomes (mitogenomes of Cnaphalocrocis medinalis and Chilo suppressalis (Lepidoptera: Pyralidae were determined and analyzed. The circular genomes were 15,388 bp long for C. medinalis and 15,395 bp long for C. suppressalis. Both mitogenomes contained 37 genes, with gene order similar to that of other lepidopterans. Notably, 12 protein-coding genes (PCGs utilized the standard ATN, but the cox1 gene used CGA as the initiation codon; the cox1, cox2, and nad4 genes in the two mitogenomes had the truncated termination codons T, T, and TA, respectively, but the nad5 gene was found to use T as the termination codon only in the C. medinalis mitogenome. Additionally, the codon distribution and Relative Synonymous Codon Usage of the 13 PCGs in the C. medinalis mitogenome were very different from those in other pyralid moth mitogenomes. Most of the tRNA genes had typical cloverleaf secondary structures. However, the dihydrouridine (DHU arm of the trnS1(AGN gene did not form a stable stem-loop structure. Forty-nine helices in six domains, and 33 helices in three domains were present in the secondary structures of the rrnL and rrnS genes of the two mitogenomes, respectively. There were four major intergenic spacers, except for the A+T-rich region, spanning at least 12 bp in the two mitogenomes. The A+T-rich region contained an 'ATAGT(A'-like motif followed by a poly-T stretch in the two mitogenomes. In addition, there were a potential stem-loop structure, a duplicated 25-bp repeat element, and a microsatellite '(TA13' observed in the A+T-rich region of the C. medinalis mitogenome. A poly-T motif, a duplicated 31-bp repeat element, and a 19-bp triplication were found in the C. suppressalis mitogenome. However, there are many differences in the A+T-rich regions between the C. suppressalis mitogenome sequence in the present study and previous reports. Finally, the phylogenetic relationships of these insects were reconstructed based on

  5. Characterization of the complete mitochondrial genome of the Scarlet Tiger moth Callimorpha dominula (Insecta: Lepidoptera: Arctiidae).

    Science.gov (United States)

    Peng, Xiao-Yi; Duan, Xiao-Yu; Qiang, Yi

    2016-09-01

    The complete mitochondrial genome of the Scarlet Tiger moth Callimorpha dominula (Insecta: Lepidoptera: Arctiidae) has been reconstructed from the whole-genome Illumina sequencing data. This circular genome is 15 496 bp in size, and contains 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs), and one A + T-rich D-loop or control region. Most PCGs are initiated with the ATN codons, except for COX1 with the unusual CGA as its initiation codon. Four PCGs (COX1, COX2, ND3, and ND4) are terminated with incomplete codon T, ND4L uses TAG as its termination codon, while all the other eight PCGs employ the usual ATN codons. The nucleotide composition is highly asymmetric (40.1% A, 40.9% T, 7.6% G, and 11.4% C) with an overall A + T content of 81.0%. The phylogenetic analysis based on the neighbor-joining (NJ) method suggests that C. dominula is more phylogenetically related to its confamilial counterparts than to those from other families. PMID:26329289

  6. Characterization of the complete mitochondrial genome of the red crayfish, Procambarus clarkii (Decapoda: Cambaridae).

    Science.gov (United States)

    Liu, Qiu-Ning; Chai, Xin-Yue; Jiang, Sen-Hao; Zhou, Chun-Lin; Xuan, Fu-Jun; Tang, Bo-Ping

    2016-09-01

    Here we present the complete mitochondrial (mt) genome of Procambarus clarkii (Decapoda: Cambaridae) and provide its annotation. The complete mt genome was determined to be 15 929 bp and contains 22 tRNA genes, 13 protein-coding genes (PCGs), two rRNA genes, and a D-loop region. The nucleotide composition was biased toward A + T nucleotides (72.91%) and the AT skew of this mt genome was slightly negative. All the 22 tRNA genes displayed a typical clover-leaf structure, with the exception of trnS1 (AGN). About 13 PCGs were initiated by ATN codons, except for cox1 and nad2 genes which were initiated by ACG and GTG, respectively. Six of the 13 PCGs harbor the incomplete termination codon by T or TA. The D-loop region of the mt genome was 1188 bp in length and the A + T content was 81.08%. Phylogenetic analysis showed that the placement of P. clarkii was within the Cambaridae. This mt genome sequence will provide a better understanding for crayfish evolution in the future. PMID:26258501

  7. The complete mitochondrial genome of rabbit pinworm Passalurus ambiguus: genome characterization and phylogenetic analysis.

    Science.gov (United States)

    Liu, Guo-Hua; Li, Sheng; Zou, Feng-Cai; Wang, Chun-Ren; Zhu, Xing-Quan

    2016-01-01

    Passalurus ambiguus (Nematda: Oxyuridae) is a common pinworm which parasitizes in the caecum and colon of rabbits. Despite its significance as a pathogen, the epidemiology, genetics, systematics, and biology of this pinworm remain poorly understood. In the present study, we sequenced the complete mitochondrial (mt) genome of P. ambiguus. The circular mt genome is 14,023 bp in size and encodes of 36 genes, including 12 protein-coding, two ribosomal RNA, and 22 transfer RNA genes. The mt gene order of P. ambiguus is the same as that of Wellcomia siamensis, but distinct from that of Enterobius vermicularis. Phylogenetic analyses based on concatenated amino acid sequences of 12 protein-coding genes by Bayesian inference (BI) showed that P. ambiguus was more closely related to W. siamensis than to E. vermicularis. This mt genome provides novel genetic markers for studying the molecular epidemiology, population genetics, systematics of pinworm of animals and humans, and should have implications for the diagnosis, prevention, and control of passaluriasis in rabbits and other animals. PMID:26472717

  8. Purification and characterization of pyrroline-5-carboxylate dehydrogenase from rat liver mitochondrial matrix

    International Nuclear Information System (INIS)

    Pyrroline-5-carboxylate (P5C) dehydrogenase catalyzes the second step of the irreversible two-step oxidation of proline to glutamate or the oxidative second step of the two-step conversion of ornithine to glutamate in mitochondria. Activity was assayed by monitoring directly the conversion of (3H) L-P5C to (3H) L-glutamate. Using this assay, the authors find P5C dehydrogenase most prevalent in liver in rat, with kidney having 71%, heart 51%, and and spleen 15% of the specific activity of liver. Starting with a subcellular fraction enriched for mitochondria, they have isolated a protein fraction enriched in this activity. The soluble protein fraction of the mitochondrial isolate was subjected to (NH4)2SO4 precipitation and successive chromatography on DE 52 anion exchange and Brown 10 dye ligand affinity resins. This procedure yielded a fraction purified more than 500-fold over whole liver homogenate. HPLC and 5'-AMP agarose fractionation experiments now in progress to achieve further purification show promise. Physical studies show a M/sub r/ of 105,000 upon sucrose density gradient centrifugation and 94,000 on molecular sieve HPLC for the activity. Flat bed gel isoelectric focusing of the protein indicates a pI of 5.7. The purified protein exhibits an apparent K/sub m/ of 0.1 mM for L-P5C

  9. Complete sequence and characterization of the Silurus lanzhouensis (Siluriformes: Siluridae) mitochondrial genome.

    Science.gov (United States)

    Lian, Zong-Qiang; Wu, Xu-Dong; Xiao, Wei; Sai, Qing-Yun; Gun, Shuang-Bao

    2016-07-01

    The complete mitochondrial DNA (mtDNA) sequence of Silurus lanzhouensis was constructed from whole-genome Illumina sequencing data. The 16 523 bp circular genome comprises typical mtDNA components. All 13 protein-coding genes (PCGs) are initiated by an ATG except for COX1, which uses GTG. Some PCGs harbor TAG (ND2 and ND3) or an incomplete stop codon T (COX2, ND4, and CYTB), while others use TAA as their stop codon. 12S rRNA and 16S rRNA secondary structures are composed of four domains with 45 helices and six domains with 54 helices, respectively. All tRNAs are predicted to fold into the expected typical cloverleaf secondary structure except tRNA-Ser((AGN)). The largest intergenic spacer sequence was predicted to be the origin of light-strand replication. Eight conserved sequences were identified in the control region (CR). This complete S. lanzhouensis mitogenome provides useful data for further studies on molecular systematics, taxonomic status, stock evaluation, and conservation genetics. PMID:26171872

  10. Ionising radiation induces persistent alterations in the cardiac mitochondrial function of C57BL/6 mice 40 weeks after local heart exposure

    International Nuclear Information System (INIS)

    Background and purpose: Radiotherapy of thoracic and chest-wall tumours increases the long-term risk of radiation-induced heart disease. The aim of this study was to investigate the long-term effect of local heart irradiation on cardiac mitochondria. Methods: C57BL/6 and atherosclerosis-prone ApoE−/− mice received local heart irradiation with a single X-ray dose of 2 Gy. To investigate the low-dose effect, C57BL/6 mice also received a single heart dose of 0.2 Gy. Functional and proteomic alterations of cardiac mitochondria were evaluated after 40 weeks, compared to age-matched controls. Results: The respiratory capacity of irradiated C57BL/6 cardiac mitochondria was significantly reduced at 40 weeks. In parallel, protein carbonylation was increased, suggesting enhanced oxidative stress. Considerable alterations were found in the levels of proteins of mitochondria-associated cytoskeleton, respiratory chain, ion transport and lipid metabolism. Radiation induced similar but less pronounced effects in the mitochondrial proteome of ApoE−/− mice. In ApoE−/−, no significant change was observed in mitochondrial respiration or protein carbonylation. The dose of 0.2 Gy had no significant effects on cardiac mitochondria. Conclusion: This study suggests that ionising radiation causes non-transient alterations in cardiac mitochondria, resulting in oxidative stress that may ultimately lead to malfunctioning of the heart muscle

  11. Characterization and evaluation of metformin-loaded solid lipid nanoparticles for celluar and mitochondrial uptake.

    Science.gov (United States)

    Xu, Qiang; Zhu, Tao; Yi, Chaoli; Shen, Qi

    2016-01-01

    Considered a popular drug for diabetes in recent years, metformin was determined to have a moderate anti-tumor effect, particularly in breast cancer. In this study, the anticancer mechanism of metformin was verified by preparing solid lipid nanoparticles (SLNs) and chitosan-modified solid lipid nanoparticles (CSLNs) containing metformin and then estimating the potential of these SLNs for uptake in cells and mitochondria. Metformin-SLNs were prepared using an emulsification and low-temperature solidification method. The mean particle size, zeta potential, entrapment efficiency, and loading efficiency of metformin-SLNs and metformin chitosan-modified SLNs were 102.3 ± 4.16 and 200.1 ± 17.69 nm, -21.25 ± 4.89 and 50.6 ± 4.09 mv, 26.25 ± 2.59% and 33.6 ± 2.21%, and 1.74 ± 0.16% and 1.46 ± 0.10%, respectively. TEM images showed that both the nanoparticles had spherical morphologies with no aggregation. Results of cellular and mitochondrial uptake showed that the metformin-SLNs were easier to uptake in cells and mitochondria than the pure drug group (that was the control group without SLN structure modification). The findings of this research provide a basis for conducting further studies on the anticancer mechanism of metformin. PMID:26288997

  12. A decidable characterization of locally testable tree languages

    OpenAIRE

    Place, Thomas; Segoufin, Luc

    2011-01-01

    A regular tree language L is locally testable if membership of a tree in L depends only on the presence or absence of some fix set of neighborhoods in the tree. In this paper we show that it is decidable whether a regular tree language is locally testable. The decidability is shown for ranked trees and for unranked unordered trees.

  13. Molecular characterization of Opisthorchis noverca (Digenea: Opisthorchiidae) based on nuclear ribosomal ITS2 and mitochondrial COI genes.

    Science.gov (United States)

    Sahu, R; Biswal, D K; Roy, B; Tandon, V

    2016-09-01

    Opisthorchiasis is a public health problem in South-East Asian countries and Eastern Europe. The infection implicates mainly two species of Opisthorchis, namely O. viverrini and O. felineus, that occur mostly in fish-eating mammals and humans, although there are rare reports of human cases involving two other species, O. noverca and O. guayaquilensis. Opisthorchis noverca has been reported frequently in dogs and pigs from the Indian subcontinent, with rare reports from cattle and human subjects. With a view to supplementing morphology-based identification of this species, the present study aimed to provide molecular characterization of O. noverca, using rDNA internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome oxidase I (mt COI) markers so as to determine its genetic correlation with other species of Opisthorchiidae, and also to generate a taxon-specific molecular marker based on the ITS2 region. The phylogenetic relationship between O. noverca and other species of the genus was determined using molecular sequence data. To strengthen the result, secondary structure sequence analyses of ITS2 with hemi-compensatory base changes (hCBCs), and amino acid sequence analyses, were also evaluated. Our results confirm that O. noverca is a distinct and valid species. PMID:26467395

  14. Biochemical characterization of the deafness-associated mitochondrial tRNASer(UCN) A7445G mutation in osteosarcoma cell cybrids

    International Nuclear Information System (INIS)

    The deafness-associated A7445G mutation in the precursor of mitochondrial tRNASer(UCN) has been identified in several pedigrees from different ethnic backgrounds. To determine the role of nuclear background in the biochemical manifestation associated with the A7445G mutation, we performed a biochemical characterization of this mutation using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a New Zealand family into human osteosarcoma mtDNA-less (ρ0) cells. Compared with three control cybrids, three cybrids derived from an affected matrilineal relative carrying the homoplasmic A7445G mutation exhibited ∼38-57% decrease in the steady-state level of tRNASer(UCN), which is less reduced levels than in lymphoblastoid cells in the previous study. Furthermore, ∼22% reduction in the level of aminoacylation of tRNASer(UCN) was observed in the mutant cybrid cells. Interestingly, ∼60-63% decrease of steady-state level of ND6 gene, which belongs to the same precursor as that of tRNASer(UCN), in cybrid cell lines carrying the A7445G mutation, is more than that observed in lymphoblastoid cells. These observations strongly point out a mechanistic link between the processing defect of the tRNASer(UCN) precursor and decreased stability of ND6 mRNA precursor. These results also imply the influence of nuclear background on the biochemical phenotype associated with the A7445G mutation

  15. Myoclonus in mitochondrial disorders.

    Science.gov (United States)

    Mancuso, Michelangelo; Orsucci, Daniele; Angelini, Corrado; Bertini, Enrico; Catteruccia, Michela; Pegoraro, Elena; Carelli, Valerio; Valentino, Maria L; Comi, Giacomo P; Minetti, Carlo; Bruno, Claudio; Moggio, Maurizio; Ienco, Elena Caldarazzo; Mongini, Tiziana; Vercelli, Liliana; Primiano, Guido; Servidei, Serenella; Tonin, Paola; Scarpelli, Mauro; Toscano, Antonio; Musumeci, Olimpia; Moroni, Isabella; Uziel, Graziella; Santorelli, Filippo M; Nesti, Claudia; Filosto, Massimiliano; Lamperti, Costanza; Zeviani, Massimo; Siciliano, Gabriele

    2014-05-01

    Myoclonus is a possible manifestation of mitochondrial disorders, and its presence is considered, in association with epilepsy and the ragged red fibers, pivotal for the syndromic diagnosis of MERRF (myoclonic epilepsy with ragged red fibers). However, its prevalence in mitochondrial diseases is not known. The aims of this study are the evaluation of the prevalence of myoclonus in a big cohort of mitochondrial patients and the clinical characterization of these subjects. Based on the database of the "Nation-wide Italian Collaborative Network of Mitochondrial Diseases," we reviewed the clinical and molecular data of mitochondrial patients with myoclonus among their clinical features. Myoclonus is a rather uncommon clinical feature of mitochondrial diseases (3.6% of 1,086 patients registered in our database). It is not strictly linked to a specific genotype or phenotype, and only 1 of 3 patients with MERRF harbors the 8344A>G mutation (frequently labeled as "the MERRF mutation"). Finally, myoclonus is not inextricably linked to epilepsy in MERRF patients, but more to cerebellar ataxia. In a myoclonic patient, evidences of mitochondrial dysfunction must be investigated, even though myoclonus is not a common sign of mitochondriopathy. Clinical, histological, and biochemical data may predict the finding of a mitochondrial or nuclear DNA mutation. Finally, this study reinforces the notion that myoclonus is not inextricably linked to epilepsy in MERRF patients, and therefore the term "myoclonic epilepsy" seems inadequate and potentially misleading. PMID:24510442

  16. Characterization of Two Mitochondrial Flavin Adenine Dinucleotide-Dependent Glycerol-3-Phosphate Dehydrogenases in Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Škodová, Ingrid; Verner, Zdeněk; Bringaud, F.; Fabian, P.; Lukeš, Julius; Horváth, A.

    2013-01-01

    Roč. 12, č. 12 (2013), s. 1664-1673. ISSN 1535-9778 R&D Projects: GA ČR(CZ) GAP305/11/2179; GA ČR GD206/09/H026; GA MŠk LH12104 Institutional support: RVO:60077344 Keywords : alternative NADH dehydrogenase * inducible expression system * blood-stream forms * complex-I * procyclic trypanosomes * sleeping sickness * oxidase * localization * metabolism * cycle Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.179, year: 2013

  17. Characterization of Edge Localized Modes in Tokamak Plasmas

    NARCIS (Netherlands)

    Boom, J. E.

    2012-01-01

    To mimic the fusion of hydrogen nuclei in the sun as an energy source on Earth, fusion scientists have to deal with miniature solar flares in their nuclear fusion reactor. These 'Edge Localized Modes' (ELMs) can damage the wall of the reactor. Physicist Jurrian Boom from the FOM Institute

  18. Mitochondrial haplogroups

    DEFF Research Database (Denmark)

    Benn, Marianne; Schwartz, Marianne; Nordestgaard, Børge G;

    2008-01-01

    Rare mutations in the mitochondrial genome may cause disease. Mitochondrial haplogroups defined by common polymorphisms have been associated with risk of disease and longevity. We tested the hypothesis that common haplogroups predict risk of ischemic cardiovascular disease, morbidity from other...

  19. Characterization and localization of side population cells in the lens

    OpenAIRE

    Oka, Mikako; Toyoda, Chizuko; Kaneko, Yuka; Nakazawa, Yosuke; Aizu-Yokota, Eriko; Takehana, Makoto

    2010-01-01

    Purpose Side population (SP) cells were isolated and the possibility whether lens epithelial cells contain stem cells was investigated. Methods Mouse lens epithelial cells were stained by Hoechst 33342 and then sorted by fluorescence-activated cell sorting (FACS). The expression of stem cell markers in sorted SP cells and the main population of epithelial cells were analyzed by quantitative real-time PCR. Localization of SP cells in the mouse lens was studied by fluorescence microscopy. Resul...

  20. A variant of Leber hereditary optic neuropathy characterized by recovery of vision and by an unusual mitochondrial genetic etiology

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, D. (Royal Children' s Hospital, Melbourne (Australia)); Howell, N. (Univ. of Texas, Galveston (United States))

    1992-12-01

    The Tas2 and Vic2 Australian families are affected with a variant of Leber hereditary optic neuropathy (LHON). The risk of developing the optic neuropathy shows strict maternal inheritance, and the opthalmological changes in affected family members are characteristic of LHON. However, in contrast to the common form of the disease, members of these two families show a high frequency of vision recovery. To ascertain the mitochondrial genetic etiology of the LHON in these families, both (a) the nucleotide sequences of the seven mitochondrial genes encoding subunits of respiratory-chain complex I and (b) the mitochondrial cytochrome b gene were determined for representatives of both families. Neither family carries any of the previously identified primary mitochondrial LHON mutations: ND4/11778, ND1/3460, or ND1/4160. Instead, both LHON families carry multiple nucleotide changes in the mitochondrial complex I genes, which produce conservative amino acid changes. From the available sequence data, it is inferred that the Vic2 and Tas2 LHON families are phylogenetically related to each other and to a cluster of LHON families in which mutations in the mitochondrial cytochrome b gene have been hypothesized to play a primary etiological role. However, sequencing analysis establishes that the Vic2 and Tas2 LHON families do not carry these cytochrome b mutations. There are two hypotheses to account for the unusual mitochondrial genetic etiology of the LHON in the Tas2 and Vic2 LHON families. One possibility is that there is a primary LHON mutation within the mitochondrial genome but that it is at a site that was not included in the sequencing analyses. Alternatively, the disease in these families may result from the cumulative effects of multiple secondary LHON mutations that have less severe phenotypic consequences. 29 refs., 3 figs., 3 tabs.

  1. Characterization of local wind patterns in complex mountain valleys

    OpenAIRE

    Pérez Foguet, Agustí

    2014-01-01

    In this work, the wind patterns in high mountain areas with complex orography are characterized using hourly data provided by a network of weather stations. The key novelty of the study is the methodology. Data are grouped separately by wind speed and wind direction using two cluster analyses. The groups are analysed and described according to measurements at key stations in the network and their hourly presence. Both classifications are subsequently compared using contingency tables, and the...

  2. Lentils biodiversity: the characterization of two local landraces

    OpenAIRE

    Viscosi, Vincenzo; Ialiciccio, Manuela; Rocco, Mariapina; Trupiano, Dalila; Arena, Simona; CHIATANTE, DONATO; Scaloni, Andrea; SCIPPA, GABRIELLA STEFANIA

    2010-01-01

    A multi-disciplinary approach was used to characterize two autochthonous lentil landraces from Molise region (Central Italy). Different mature seed populations for each landrace were provided by the Molise Germoplasm Bank at the University of Molise (Pesche, Italy), and analyzed at the morphological and molecular (DNA and protein) levels. Nuclear ISSR markers were used to assess genetic differences, whereas phenotypic variability was detected by biochemical (proteomics) and ...

  3. Characterization of Edge Localized Modes in Tokamak Plasmas

    OpenAIRE

    Boom, JE Jurrian

    2012-01-01

    To mimic the fusion of hydrogen nuclei in the sun as an energy source on Earth, fusion scientists have to deal with miniature solar flares in their nuclear fusion reactor. These 'Edge Localized Modes' (ELMs) can damage the wall of the reactor. Physicist Jurrian Boom from the FOM Institute DIFFER researched ELMs with a new detector in the fusion experiment ASDEX Upgrade and investigated what happens when magnetic coils are used to dampen the ELMs. Boom successfully defended his PhD thesis &quo...

  4. Mitochondrial localization of CNP2 is regulated by phosphorylation of the N-terminal targeting signal by PKC: implications of a mitochondrial function for CNP2 in glial and non-glial cells.

    Science.gov (United States)

    Lee, John; O'Neill, Ryan C; Park, Min Woo; Gravel, Michel; Braun, Peter E

    2006-03-01

    Both 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP) isoforms are abundantly expressed in myelinating cells. CNP2 differs from CNP1 by a 20 amino acid N-terminal extension and is also expressed at much lower levels in non-myelinating tissues. The functional role of CNP2, apart from CNP1, and the significance for CNP2 expression in non-myelinating tissues are unknown. Here, we demonstrate that CNP2 is translocated to mitochondria by virtue of a mitochondrial targeting signal at the N-terminus. PKC-mediated phosphorylation of the targeting signal inhibits CNP2 translocation to mitochondria, thus retaining it in the cytoplasm. CNP2 is imported into mitochondria and the targeting signal cleaved, yielding a mature, truncated form similar in size to CNP1. CNP2 is entirely processed in adult liver and embryonic brain, indicating that it is localized specifically to mitochondria in non-myelinating cells. Our results point to a broader biological role for CNP2 in mitochondria that is likely to be different from its specific role in the cytoplasm, along with CNP1, during myelination. PMID:16343930

  5. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism

    International Nuclear Information System (INIS)

    Full text: Glutamine is an essential nutrient for cancer cell proliferation, especially in the context of citric acid cycle anaplerosis. In this manuscript we present results that collectively demonstrate that, of the three major mammalian glutaminases identified to date, the lesser studied splice variant of the gene gls, known as Glutaminase C (GAC), is important for tumor metabolism. We show that, although levels of both the kidney-type isoforms are elevated in tumor versus normal tissues, GAC is distinctly mitochondrial. GAC is also most responsive to the activator inorganic phosphate, the content of which is supposedly higher in mitochondria subject to hypoxia. Analysis of X-ray crystal structures of GAC in different bound states suggests a mechanism that introduces the tetramerization-induced lifting of a gating loop as essential for the phosphate-dependent activation process. Surprisingly, phosphate binds inside the catalytic pocket rather than at the oligomerization interface. It also mediates substrate entry by competing with glutamate. A greater tendency to oligomerize differentiates GAC from its alternatively spliced isoform and the cycling of phosphate in and out of the active site distinguishes it from the liver-type isozyme, which is known to be less dependent on this ion. (author)

  6. cDNA cloning, functional expression and cellular localization of rat liver mitochondrial electron-transfer flavoprotein-ubiquinone oxidoreductase protein

    Institute of Scientific and Technical Information of China (English)

    HUANG Shengbing; SONG Wei; LIN Qishui

    2005-01-01

    A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5'-terminal and 3'-terminal were obtained by RACE technique. The full-length cDNA that encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-Qop. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.

  7. Mitochondrial vasculopathy

    Science.gov (United States)

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2016-01-01

    Mitochondrial disorders (MIDs) are usually multisystem disorders (mitochondrial multiorgan disorder syndrome) either on from onset or starting at a point during the disease course. Most frequently affected tissues are those with a high oxygen demand such as the central nervous system, the muscle, endocrine glands, or the myocardium. Recently, it has been shown that rarely also the arteries may be affected (mitochondrial arteriopathy). This review focuses on the type, diagnosis, and treatment of mitochondrial vasculopathy in MID patients. A literature search using appropriate search terms was carried out. Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy. Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy, migraine-like headache, stroke-like episodes, or peripheral retinopathy. Mitochondrial macroangiopathy manifests as atherosclerosis, ectasia of arteries, aneurysm formation, dissection, or spontaneous rupture of arteries. The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes. Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes. Mitochondrial vasculopathy exists and manifests as micro- or macroangiopathy. Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications. PMID:27231520

  8. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen;

    2010-01-01

    Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies.......02), and complex V (ATP5B; p=0.005). Our data demonstrate that genetically determined insulin resistance is associated with a co-ordinated down-regulation of OxPhos components both at the transcriptional and translational level. These findings suggest that an impaired biological response to insulin in skeletal...

  9. Genomic organization of the human gene (CA5) and pseudogene for mitochondrial carbonic anhydrase V and their localization to chromosomes 16q and 16p

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiro; Sly, W.S.; Batanian, J.R. [St. Louis Univ. School of Medicine, MO (United States)] [and others

    1995-08-10

    Carbonic anhydrase V (CA V) is expressed in mitochondrial matrix in liver and several other tissues. It is of interest for its putative roles in providing bicarbonate to carbamoyl phosphate synthetase for ureagenesis and to pyruvate carboxylase for gluconeogenesis and its possible importance in explaining certain inherited metabolic disorders with hyperammonemia and hypoglycemia. Following the recent characterization of the cDNA for human CA V, we report the isolation of the human gene from two {lambda} genomic libraries and its characterization. The CA V gene (CA5) is approximately 50 kb long and contains 7 exons and 6 introns. The exon-intron boundaries are found in positions identical to those determined for the previously described CA II, CA III, and CA VII genes. Like the CA VII gene, CA5 does not contain typical TATA and CAAT promoter elements in the 5{prime} flanking region but does contain a TTTAA sequence 147 nucleotides upstream of the initiation codon. CA5 also contains a 12-bp GT-rich segment beginning 13 bp downstream of the polyadenylation signal in the 3{prime} untranslated region of exon 7. FISH analysis allowed CA5 to be assigned to chromosome 16q24.3. An unprocessed pseudogene containing sequence homologous to exons 3-7 and introns 3-6 was also isolated and was assigned by FISH analysis to chromosome 16p11.2-p12. 22 refs., 4 figs., 1 tab.

  10. Human Misato regulates mitochondrial distribution and morphology

    International Nuclear Information System (INIS)

    Misato of Drosophila melanogaster and Saccharomyces cerevisiae DML1 are conserved proteins having a homologous region with a part of the GTPase family that includes eukaryotic tubulin and prokaryotic FtsZ. We characterized human Misato sharing homology with Misato of D. melanogaster and S. cerevisiae DML1. Tissue distribution of Misato exhibited ubiquitous distribution. Subcellular localization of the protein studied using anti-Misato antibody suggested that it is localized to the mitochondria. Further experiments of fractionating mitochondria revealed that Misato was localized to the outer membrane. The transfection of Misato siRNA led to growth deficiencies compared with control siRNA transfected HeLa cells, and the Misato-depleted HeLa cells showed apoptotic nuclear fragmentation resulting in cell death. After silencing of Misato, the filamentous mitochondrial network disappeared and fragmented mitochondria were observed, indicating human Misato has a role in mitochondrial fusion. To examine the effects of overexpression, COS-7 cells were transfected with cDNA encoding EGFP-Misato. Its overexpression resulted in the formation of perinuclear aggregations of mitochondria in these cells. The Misato-overexpressing cells showed low viability and had no nuclei or a small and structurally unusual ones. These results indicated that human Misato has a role(s) in mitochondrial distribution and morphology and that its unregulated expression leads to cell death

  11. Characterization of the Cardiac Overexpression of HSPB2 Reveals Mitochondrial and Myogenic Roles Supported by a Cardiac HspB2 Interactome.

    Directory of Open Access Journals (Sweden)

    Julianne H Grose

    Full Text Available Small Heat Shock Proteins (sHSPs are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2, which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait and a human cardiac library (prey coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 "cardiac interactome" to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID. A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH, has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is

  12. Characterization of the Cardiac Overexpression of HSPB2 Reveals Mitochondrial and Myogenic Roles Supported by a Cardiac HspB2 Interactome.

    Science.gov (United States)

    Grose, Julianne H; Langston, Kelsey; Wang, Xiaohui; Squires, Shayne; Mustafi, Soumyajit Banerjee; Hayes, Whitney; Neubert, Jonathan; Fischer, Susan K; Fasano, Matthew; Saunders, Gina Moore; Dai, Qiang; Christians, Elisabeth; Lewandowski, E Douglas; Ping, Peipei; Benjamin, Ivor J

    2015-01-01

    Small Heat Shock Proteins (sHSPs) are molecular chaperones that transiently interact with other proteins, thereby assisting with quality control of proper protein folding and/or degradation. They are also recruited to protect cells from a variety of stresses in response to extreme heat, heavy metals, and oxidative-reductive stress. Although ten human sHSPs have been identified, their likely diverse biological functions remain an enigma in health and disease, and much less is known about non-redundant roles in selective cells and tissues. Herein, we set out to comprehensively characterize the cardiac-restricted Heat Shock Protein B-2 (HspB2), which exhibited ischemic cardioprotection in transgenic overexpressing mice including reduced infarct size and maintenance of ATP levels. Global yeast two-hybrid analysis using HspB2 (bait) and a human cardiac library (prey) coupled with co-immunoprecipitation studies for mitochondrial target validation revealed the first HspB2 "cardiac interactome" to contain many myofibril and mitochondrial-binding partners consistent with the overexpression phenotype. This interactome has been submitted to the Biological General Repository for Interaction Datasets (BioGRID). A related sHSP chaperone HspB5 had only partially overlapping binding partners, supporting specificity of the interactome as well as non-redundant roles reported for these sHSPs. Evidence that the cardiac yeast two-hybrid HspB2 interactome targets resident mitochondrial client proteins is consistent with the role of HspB2 in maintaining ATP levels and suggests new chaperone-dependent functions for metabolic homeostasis. One of the HspB2 targets, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), has reported roles in HspB2 associated phenotypes including cardiac ATP production, mitochondrial function, and apoptosis, and was validated as a potential client protein of HspB2 through chaperone assays. From the clientele and phenotypes identified herein, it is tempting to

  13. Mitochondrial Myopathy

    Science.gov (United States)

    ... NINDS supports research focused on effective treatments and cures for mitochondrial myopathies and other mitochondrial diseases. Scientists are investigating the possible benefits of exercise programs and nutritional supplements, primarily natural and synthetic versions of CoQ10. While CoQ10 has ...

  14. Characterization of the complete mitochondrial genome and a set of polymorphic microsatellite markers through next-generation sequencing for the brown brocket deer Mazama gouazoubira

    Science.gov (United States)

    Caparroz, Renato; Mantellatto, Aline M.B.; Bertioli, David J.; Figueiredo, Marina G.; Duarte, José Maurício B.

    2015-01-01

    The complete mitochondrial genome of the brown brocket deer Mazama gouazoubira and a set of polymorphic microsatellite markers were identified by 454-pyrosequencing. De novo genome assembly recovered 98% of the mitochondrial genome with a mean coverage of 9-fold. The mitogenome consisted of 16,356 base pairs that included 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs and the control region, as found in other deer. The genetic divergence between the mitogenome described here and a previously published report was ∼0.5%, with the control region and ND5 gene showing the highest intraspecific variation. Seven polymorphic loci were characterized using 15 unrelated individuals; there was moderate genetic variation across most loci (mean of 5.6 alleles/locus, mean expected heterozygosity = 0.70), with only one locus deviating significantly from Hardy-Weinberg equilibrium, probably because of null alleles. Marker independence was confirmed with tests for linkage disequilibrium. The genetic variation of the mitogenome and characterization of microsatellite markers will provide useful tools for assessing the phylogeography and population genetic patterns in M. gouazoubira, particularly in the context of habitat fragmentation in South America. PMID:26500438

  15. Mitochondrial cytopathies.

    Science.gov (United States)

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-09-01

    Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Most of mitochondrial proteins are encoded by the nuclear DNA (nDNA) whereas a very small fraction is encoded by the mitochondrial DNA (mtDNA). Mutations in mtDNA or mitochondria-related nDNA genes can result in mitochondrial dysfunction which leads to a wide range of cellular perturbations including aberrant calcium homeostasis, excessive reactive oxygen species production, dysregulated apoptosis, and insufficient energy generation to meet the needs of various organs, particularly those with high energy demand. Impaired mitochondrial function in various tissues and organs results in the multi-organ manifestations of mitochondrial diseases including epilepsy, intellectual disability, skeletal and cardiac myopathies, hepatopathies, endocrinopathies, and nephropathies. Defects in nDNA genes can be inherited in an autosomal or X-linked manners, whereas, mtDNA is maternally inherited. Mitochondrial diseases can result from mutations of nDNA genes encoding subunits of the electron transport chain complexes or their assembly factors, proteins associated with the mitochondrial import or networking, mitochondrial translation factors, or proteins involved in mtDNA maintenance. MtDNA defects can be either point mutations or rearrangements. The diagnosis of mitochondrial disorders can be challenging in many cases and is based on clinical recognition, biochemical screening, histopathological studies, functional studies, and molecular genetic testing. Currently, there are no satisfactory therapies available for mitochondrial disorders that significantly alter the course of the disease. Therapeutic options include symptomatic treatment, cofactor supplementation, and exercise. PMID:26996063

  16. Characterization of the complete mitochondrial genome of Cynoglossus gracilis and a comparative analysis with other Cynoglossinae fishes.

    Science.gov (United States)

    Wei, Min; Liu, Yang; Guo, Hua; Zhao, Fazhen; Chen, Songlin

    2016-10-15

    Mitochondrial genomes can provide basic information for phylogenetic analysis and evolutionary studies. We present here the mitochondrial genome of Cynoglossus gracilis, which is 16,565bp in length. Numerous distinct regions were identified, including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, a light-strand replication origin, and a control region. Interestingly, we detected rearrangement of genes in C. gracilis, including a control region translocation, tRNA(Gln) gene inversion, and tRNA(Ile) gene shuffling. Additionally, a phylogenetic analysis based on the nucleotide sequences of the 13 PCGs using maximum likelihood and Bayesian inference methods reveals that C. gracilis is closely related to Cynoglossus semilaevis. This study provides important mitogenomic data for analyzing phylogenetic relationships in the Cynoglossinae. PMID:27312953

  17. Synthesis and biological characterization of new amino-phosphonates for mitochondrial pH determination by 31P NMR spectroscopy

    International Nuclear Information System (INIS)

    A series of mitochondria targeted α-amino-phosphonates combining a diethoxy-phosphoryl group and an alkyl chain-connected triphenylphosphonium bromide tail were designed and synthesized, and their pH-sensitive 31P NMR properties and biological activities in vitro and in vivo were evaluated. The results showed a number of these mitoaminophosphonates exhibiting pKa values fitting the mitochondrial pH range, short relaxation, and chemical shift parameters compatible with sensitive 31P NMR detection, and low cytotoxicity on green algae and murine fibroblasts cell cultures. Of these, two selected compounds demonstrated to distribute at NMR detectable levels within the cytosolic and mitochondrial sites following their perfusion to isolated rat livers, with no detrimental effects on cell energetics and aerobic respiration. This study provided a new molecular scaffold for further development of in situ spectroscopic real-time monitoring of mitochondrion/cytosol pH gradients. (authors)

  18. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  19. Genetic characterization of the honeybee (Apis mellifera) population of Rodrigues Island, based on microsatellite and mitochondrial DNA

    OpenAIRE

    Techer, Maéva Angélique; Clémencet, Johanna; Turpin, Patrick; Volbert, Nicolas; Reynaud, Bernard; Delatte, Hélène

    2015-01-01

    International audience AbstractApis mellifera is present in Rodrigues, an island in the South-West Indian Ocean. The history of the established honeybee population is poorly known, and its biodiversity has never been studied. In this study, maternal origins of A. mellifera in Rodrigues have been assessed with the DraI test and sequencing of the mitochondrial COI-COII region. Nuclear genetic diversity was investigated with 18 microsatellite markers. A total of 524 colonies were sampled from...

  20. hNOA1 interacts with complex I and DAP3 and regulates mitochondrial respiration and apoptosis.

    OpenAIRE

    Tang, Tingdong; Zheng, Bin; Chen, Sheng-Hong; Murphy, Anne N.; Kudlicka, Krystyna; Zhou, Huilin; Farquhar, Marilyn G.

    2009-01-01

    Mitochondria are dynamic organelles that play key roles in metabolism, energy production, and apoptosis. Coordination of these processes is essential to maintain normal cellular functions. Here we characterized hNOA1, the human homologue of AtNOA1 (Arabidopsis thaliana nitric oxide-associated protein 1), a large mitochondrial GTPase. By immunofluorescence, immunoelectron microscopy, and mitochondrial subfractionation, endogenous hNOA1 is localized within mitochondria where it is peripherally ...

  1. hNOA1 Interacts with Complex I and DAP3 and Regulates Mitochondrial Respiration and Apoptosis*S⃞

    OpenAIRE

    Tang, Tingdong; Zheng, Bin; Chen, Sheng-Hong; Murphy, Anne N.; Kudlicka, Krystyna; Zhou, Huilin; Farquhar, Marilyn G.

    2009-01-01

    Mitochondria are dynamic organelles that play key roles in metabolism, energy production, and apoptosis. Coordination of these processes is essential to maintain normal cellular functions. Here we characterized hNOA1, the human homologue of AtNOA1 (Arabidopsis thaliana nitric oxide-associated protein 1), a large mitochondrial GTPase. By immunofluorescence, immunoelectron microscopy, and mitochondrial subfractionation, endogenous hNOA1 is localized within mitochondria w...

  2. Mitochondrial biogenesis: pharmacological approaches.

    Science.gov (United States)

    Valero, Teresa

    2014-01-01

    diseases do not have exclusively a mitochondrial origin but they might have an important mitochondrial component both on their onset and on their development. This is the case of type 2 diabetes or neurodegenerative diseases. Type 2 diabetes is characterized by a peripheral insulin resistance accompanied by an increased secretion of insulin as a compensatory system. Among the explanations about the origin of insulin resistance Mónica Zamora and Josep A. Villena (Department of Experimental and Health Sciences, Universitat Pompeu Fabra / Laboratory of Metabolism and Obesity, Universitat Autònoma de Barcelona, Spain) [5] consider the hypothesis that mitochondrial dysfunction, e.g. impaired (mitochondrial) oxidative capacity of the cell or tissue, is one of the main underlying causes of insulin resistance and type 2 diabetes. Although this hypothesis is not free of controversy due to the uncertainty on the sequence of events during type 2 diabetes onset, e.g. whether mitochondrial dysfunction is the cause or the consequence of insulin resistance, it has been widely observed that improving mitochondrial function also improves insulin sensitivity and prevents type 2 diabetes. Thus restoring oxidative capacity by increasing mitochondrial mass appears as a suitable strategy to treat insulin resistance. The effort made by researchers trying to understand the signaling pathways mediating mitochondrial biogenesis has uncovered new potential pharmacological targets and opens the perspectives for the design of suitable treatments for insulin resistance. In addition some of the current used strategies could be used to treat insulin resistance such as lifestyle interventions (caloric restriction and endurance exercise) and pharmacological interventions (thiazolidinediones and other PPAR agonists, resveratrol and other calorie restriction mimetics, AMPK activators, ERR activators). Mitochondrial biogenesis is of special importance in modern neurochemistry because of the broad spectrum

  3. Generation and characterization of transgenic mice expressing mitochondrial targeted red fluorescent protein selectively in neurons: modeling mitochondriopathy in excitotoxicity and amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Wang Yi

    2011-11-01

    Full Text Available Abstract Background Mitochondria have roles or appear to have roles in the pathogenesis of several chronic age-related and acute neurological disorders, including Charcot-Marie-Tooth disease, amyotrophic lateral sclerosis, Parkinson's disease, and cerebral ischemia, and could be critical targets for development of rational mechanism-based, disease-modifying therapeutics for treating these disorders effectively. A deeper understanding of neural tissue mitochondria pathobiologies as definitive mediators of neural injury, disease, and cell death merits further study, and the development of additional tools to study neural mitochondria will help achieve this unmet need. Results We created transgenic mice that express the coral (Discosoma sp. red fluorescent protein DsRed2 specifically in mitochondria of neurons using a construct engineered with a Thy1 promoter, specific for neuron expression, to drive expression of a fusion protein of DsRed2 with a mitochondrial targeting sequence. The biochemical and histological characterization of these mice shows the expression of mitochondrial-targeted DsRed2 to be specific for mitochondria and concentrated in distinct CNS regions, including cerebral cortex, hippocampus, thalamus, brainstem, and spinal cord. Red fluorescent mitochondria were visualized in cerebral cortical and hippocampal pyramidal neurons, ventrobasal thalamic neurons, subthalamic neurons, and spinal motor neurons. For the purpose of proof of principle application, these mice were used in excitotoxicity paradigms and double transgenic mice were generated by crossing Thy1-mitoDsRed2 mice with transgenic mice expressing enhanced-GFP (eGFP under the control of the Hlxb9 promoter that drives eGFP expression specifically in motor neurons and by crossing Thy1-mitoDsRed2 mice to amyotrophic lateral sclerosis (ALS mice expressing human mutant superoxide dismutase-1. Conclusions These novel transgenic mice will be a useful tool for better understanding

  4. AFM characterization of the shape of surface structures with localization factor.

    Science.gov (United States)

    Bonyár, Attila

    2016-08-01

    Although with the use of scanning probe microscopy (SPM) methods the topographical imaging of surfaces is now widely available, the characterization of surface structures, especially their shape, and the processes which change these features is not trivial with the existing surface describing parameters. In this work the application of a parameter called localization factor is demonstrated for the quantitative characterization of surface structures and for processes which alter the shape of these structures. The theory and optimal operation range of this parameter are discussed with three application examples: microstructure characterization of gold thin films, characterization of the changes in the grain structure of these films during thermal annealing, and finally, characterization of the oxidation processes on a polished tin surface. PMID:27174696

  5. Mechanisms of Disease: Is Mitochondrial Function Altered in Heart Failure?

    OpenAIRE

    Hamilton, Dale J.

    2013-01-01

    The human heart sustains an exceptional energy transfer rate, consuming more energy per gram weight than any other organ system. The healthy heart can rapidly adapt to changes in demand, while the failing heart cannot. Cardiac energy flux systems falter in the failing heart. The purpose of this review is to characterize the fundamental role of mitochondria in this energy transfer system and describe our local research on mitochondrial respiratory capacity in failing human hearts.

  6. Mitochondrial Diseases

    Science.gov (United States)

    ... in your body tissues. If you have a metabolic disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are small structures that produce energy in ...

  7. Molecular characterization of Aedes aegypti (L. (Diptera: Culicidae of Easter Island based on analysis of the mitochondrial ND4 gene

    Directory of Open Access Journals (Sweden)

    Claudia Andrea Núñez

    2016-06-01

    Full Text Available ABSTRACT Aedes aegypti mosquitoes are the main vector of viruses Dengue, Zika and Chikungunya. Shortly after the first report of the dengue vector Ae. aegypti in Easter Island (Rapa Nui in late 2000, the first disease outbreak dengue occurred. Viral serotyping during the 2002 outbreak revealed a close relationship with Pacific DENV-1 genotype IV viruses, supporting the idea that the virus most likely originated in Tahiti. Mitochondrial NADH dehydrogenase subunit 4 (ND4 DNA sequences generated from 68 specimens of Ae. aegypti from Easter Island reporting a unique finding of a single maternal lineage of Ae. aegypti on Easter Island.

  8. Characterization of a novel plasmid-like element in Neurospora crassa derived mostly from the mitochondrial DNA.

    OpenAIRE

    Almasan, A.; Mishra, N. C.

    1990-01-01

    We have identified a plasmid-like element within mitochondria of Neurospora crassa strain stp-B1. It is derived from the EcoRI-4 and EcoRI-6 regions of the mitochondrial DNA, and an additional 124 bp DNA segment of unknown origin. The plasmid DNA consists of an oligomeric series of circular molecules of monomer length 2.2 kbp. The abundance of the plasmid suggests its autonomous replication and the presence of an efficient origin of replication. An unusually large number of palindromes capabl...

  9. Increased ER–mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress

    Science.gov (United States)

    Bravo, Roberto; Vicencio, Jose Miguel; Parra, Valentina; Troncoso, Rodrigo; Munoz, Juan Pablo; Bui, Michael; Quiroga, Clara; Rodriguez, Andrea E.; Verdejo, Hugo E.; Ferreira, Jorge; Iglewski, Myriam; Chiong, Mario; Simmen, Thomas; Zorzano, Antonio; Hill, Joseph A.; Rothermel, Beverly A.; Szabadkai, Gyorgy; Lavandero, Sergio

    2011-01-01

    Increasing evidence indicates that endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response (UPR), but that beyond a certain degree of ER damage, this response triggers apoptotic pathways. The general mechanisms of the UPR and its apoptotic pathways are well characterized. However, the metabolic events that occur during the adaptive phase of ER stress, before the cell death response, remain unknown. Here, we show that, during the onset of ER stress, the reticular and mitochondrial networks are redistributed towards the perinuclear area and their points of connection are increased in a microtubule-dependent fashion. A localized increase in mitochondrial transmembrane potential is observed only in redistributed mitochondria, whereas mitochondria that remain in other subcellular zones display no significant changes. Spatial re-organization of these organelles correlates with an increase in ATP levels, oxygen consumption, reductive power and increased mitochondrial Ca2+ uptake. Accordingly, uncoupling of the organelles or blocking Ca2+ transfer impaired the metabolic response, rendering cells more vulnerable to ER stress. Overall, these data indicate that ER stress induces an early increase in mitochondrial metabolism that depends crucially upon organelle coupling and Ca2+ transfer, which, by enhancing cellular bioenergetics, establishes the metabolic basis for the adaptation to this response. PMID:21628424

  10. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  11. Mitochondrial functions of RECQL4 are required for the prevention of aerobic glycolysis-dependent cell invasion.

    Science.gov (United States)

    Kumari, Jyoti; Hussain, Mansoor; De, Siddharth; Chandra, Suruchika; Modi, Priyanka; Tikoo, Shweta; Singh, Archana; Sagar, Chandrasekhar; Sepuri, Naresh Babu V; Sengupta, Sagar

    2016-04-01

    Germline mutations in RECQL4 helicase are associated with Rothmund-Thomson syndrome, which is characterized by a predisposition to cancer. RECQL4 localizes to the mitochondria, where it acts as an accessory factor during mitochondrial DNA replication. To understand the specific mitochondrial functions of RECQL4, we created isogenic cell lines, in which the mitochondrial localization of the helicase was either retained or abolished. The mitochondrial integrity was affected due to the absence of RECQL4 in mitochondria, leading to a decrease in F1F0-ATP synthase activity. In cells where RECQL4 does not localize to mitochondria, the membrane potential was decreased, whereas ROS levels increased due to the presence of high levels of catalytically inactive SOD2. Inactive SOD2 accumulated owing to diminished SIRT3 activity. Lack of the mitochondrial functions of RECQL4 led to aerobic glycolysis that, in turn, led to an increased invasive capability within these cells. Together, this study demonstrates for the first time that, owing to its mitochondrial functions, the accessory mitochondrial replication helicase RECQL4 prevents the invasive step in the neoplastic transformation process. PMID:26906415

  12. Statistical Characterization and Mitigation of NLOS Errors in UWB Localization Systems

    CERN Document Server

    Montorsi, Francesco; Vitetta, Giorgio M; 10.1109/ICUWB.2011.6058928

    2012-01-01

    In this paper some new experimental results about the statistical characterization of the non-line-of-sight (NLOS) bias affecting time-of-arrival (TOA) estimation in ultrawideband (UWB) wireless localization systems are illustrated. Then, these results are exploited to assess the performance of various maximum-likelihood (ML) based algorithms for joint TOA localization and NLOS bias mitigation. Our numerical results evidence that the accuracy of all the considered algorithms is appreciably influenced by the LOS/NLOS conditions of the propagation environment.

  13. Complete sequence and characterization of mitochondrial genome in the swimming crab Portunus sanguinolentus (Herbst, 1783) (Decapoda, Brachyura, Portunidae).

    Science.gov (United States)

    Meng, Xianliang; Jia, Fulong; Zhang, Xiaohui; Liu, Ping; Li, Jian

    2016-07-01

    The three-spot swimming crab Portunus sanguinolentus (Herbst, 1783) is a commercially important fishery species, widely distributed in the Indo-Pacific region. In this study, we present the complete mitochondrial genome of P. sanguinolentus. The genome is 16 027 bp in length with circular organization, encoding the standard set of 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. The overall A + T content is 65.60%, which is lower than that of its congeneric species Portunus pelagicus and Portunus trituberculatus. The mitogenome carries 1254 bp of intergenic region constituting 7.82% of the genome, and six pairs of overlapping genes with the overlap size from 1 to 7 bp. The complete mitogenome sequence information of P. sanguinolentus would provide useful data for further studies on population genetics and molecular systematics. PMID:26153754

  14. The mitochondrial DNA makeup of Romanians: A forensic mtDNA control region database and phylogenetic characterization.

    Science.gov (United States)

    Turchi, Chiara; Stanciu, Florin; Paselli, Giorgia; Buscemi, Loredana; Parson, Walther; Tagliabracci, Adriano

    2016-09-01

    To evaluate the pattern of Romanian population from a mitochondrial perspective and to establish an appropriate mtDNA forensic database, we generated a high-quality mtDNA control region dataset from 407 Romanian subjects belonging to four major historical regions: Moldavia, Transylvania, Wallachia and Dobruja. The entire control region (CR) was analyzed by Sanger-type sequencing assays and the resulting 306 different haplotypes were classified into haplogroups according to the most updated mtDNA phylogeny. The Romanian gene pool is mainly composed of West Eurasian lineages H (31.7%), U (12.8%), J (10.8%), R (10.1%), T (9.1%), N (8.1%), HV (5.4%),K (3.7%), HV0 (4.2%), with exceptions of East Asian haplogroup M (3.4%) and African haplogroup L (0.7%). The pattern of mtDNA variation observed in this study indicates that the mitochondrial DNA pool is geographically homogeneous across Romania and that the haplogroup composition reveals signals of admixture of populations of different origin. The PCA scatterplot supported this scenario, with Romania located in southeastern Europe area, close to Bulgaria and Hungary, and as a borderland with respect to east Mediterranean and other eastern European countries. High haplotype diversity (0.993) and nucleotide diversity indices (0.00838±0.00426), together with low random match probability (0.0087) suggest the usefulness of this control region dataset as a forensic database in routine forensic mtDNA analysis and in the investigation of maternal genetic lineages in the Romanian population. PMID:27414754

  15. Characterization of uranium effects on the zebra fish Danio rerio. Stress mechanisms, neuro-toxicity and mitochondrial metabolism

    International Nuclear Information System (INIS)

    This research explored several biological effects of uranium (U) in zebra fish exposed to low waterborne uranium concentrations (20 and 100 microgram/L). In tissue specific study (brain, liver, skeletal muscles and gills) of transcriptional responses in 20 genes identified the nature of the potential U effects during 28 days of exposure followed by an 8-day depuration phase in connection with U bioaccumulation. Liver and gills accumulate high concentrations of U and the depuration is efficient contrary to the brain and muscles. U exposure induced a later response in liver (inflammatory process, apoptosis and detoxification) and gills (oxidative balance) and an early one in brain (neuronal response) and muscles (mitochondrial metabolism). Brain and muscles appear sensitive since defence mechanisms are inefficient above low concentrations. A further study on these two organs examined the function and protein content of the respiratory mitochondrial chain following U exposure. An inhibition of the respiratory control ratio for the lowest concentration, variation in the protein synthesis of the complex IV (induction of cytochrome c oxidase sub-unit I and IV) and histological damage (dilatation in brain and vacuolisation in muscles) were observed. Another study focused on the early effects on the brain and was accomplished through a large transcriptional analysis coupled with examinations of the olfactory bulb ultrastructure. A depression of genes encoding olfactory receptor or111-7 and or102-5 was observed as rapidly as 3 days post-exposure to the lowest concentration of U. These responses and histological injuries suggest that the olfactory system could be sensitive to U exposure. (author)

  16. Mitochondrial Dysfunction in Neurodegenerative Diseases

    OpenAIRE

    Johri, Ashu; Beal, M. Flint

    2012-01-01

    Neurodegenerative diseases are a large group of disabling disorders of the nervous system, characterized by the relative selective death of neuronal subtypes. In most cases, there is overwhelming evidence of impaired mitochondrial function as a causative factor in these diseases. More recently, evidence has emerged for impaired mitochondrial dynamics (shape, size, fission-fusion, distribution, movement etc.) in neurodegenerative diseases such as Parkinson's disease, Huntington's disease, amyo...

  17. Development and characterization of biodegradable chitosan films for local delivery of paclitaxel

    OpenAIRE

    Dhanikula, Anand Babu; Panchagnula, Ramesh

    2004-01-01

    Intratumoral and local drug delivery strategies have gained momentum recently as a promising modality in cancer therapy. In order to deliver paclitaxel at the tumor site in therapeutically relevant concentrations, chitosan films were fabricated. Paclitaxel could be loaded at 31% wt/wt in films, which were translucent and flexible. Physicochemical characterization of paclitaxel via thermal, spectroscopic, x-ray diffraction, and electron microscopy techniques revealed information on solid-state...

  18. Statistical Characterization and Mitigation of NLOS Bias in UWB Localization Systems

    CERN Document Server

    Montorsi, Francesco; Vitetta, Giorgio M

    2012-01-01

    Propagation in non-line-of-sight (NLOS) conditions is one of the major impairments in ultrawideband (UWB) wireless localization systems based on time-of-arrival (TOA) measurements. In this paper the problem of the joint statistical characterization of the NLOS bias and of the most representative features of LOS/NLOS UWB waveforms is investigated. In addition, the performance of various maximum-likelihood (ML) estimators for joint localization and NLOS bias mitigation is assessed. Our numerical results evidence that the accuracy of all the considered estimators is appreciably influenced by the LOS/NLOS conditions of the propagation environment and that a statistical knowledge of multiple signal features can be exploited to mitigate the NLOS bias, reducing the overall localization error.

  19. Characterizing wave propagation to improve indoor step-level person localization using floor vibration

    Science.gov (United States)

    Mirshekari, Mostafa; Pan, Shijia; Zhang, Pei; Noh, Hae Young

    2016-04-01

    The objective of this paper is to characterize frequency-dependent wave propagation of footstep induced floor vibration to improve robustness of vibration-based occupant localization. Occupant localization is an essential part of many smart structure applications (e.g., energy management, patient/customer tracking, etc.). Exist- ing techniques include visual (e.g. cameras and IR sensors), acoustic, RF, and load-based approaches. These approaches have many deployment and operational requirements that limits their adaptation. To overcome these limitations, prior work has utilized footstep-induced vibrations to allow sparse sensor configuration and non-intrusive detection. However, frequency dependent propagation characteristics and low signal-to-noise ratio (SNR) of footstep-induced vibrations change the shape of the signal. Furthermore, estimating the wave propagation velocity for forming the multilateration equations and localizing the footsteps is a challenging task. They, in turn, lead to large errors of localization. In this paper, we present a structural vibration based indoor occupant localization technique using improved time-difference-of-arrival between multiple vibration sensors. In particular we overcome signal distortion by decomposing the signal into frequency components and focusing on high energy components for accurate indoor localization. Such decomposition leverages the frequency-specific propagation characteristics and reduces the effect of low SNR (by choosing the components of highest energy). Furthermore, we develop a velocity calibration method that finds the optimal velocity which minimizes the localization error. We validate our approach through field experiments in a building with human participants. We are able to achieve an average localization error of less than 0.21 meters, which corresponds to a 13X reduction in error when compared to the baseline method using raw data.

  20. Characterization of a mitochondrial manganese superoxide dismutase gene from Apis cerana cerana and its role in oxidative stress.

    Science.gov (United States)

    Jia, Haihong; Sun, Rujiang; Shi, Weina; Yan, Yan; Li, Han; Guo, Xingqi; Xu, Baohua

    2014-01-01

    Mitochondrial manganese superoxide dismutase (mMnSOD) plays a vital role in the defense against reactive oxygen species (ROS) in eukaryotic mitochondria. In this study, we isolated and identified a mMnSOD gene from Apis cerana cerana, which we named AccSOD2. Several putative transcription factor-binding sites were identified within the 5'-flanking region of AccSOD2, which suggests that AccSOD2 may be involved in organismal development and/or environmental stress responses. Quantitative real-time PCR analysis showed that AccSOD2 is highly expressed in larva and pupae during different developmental stages. In addition, the expression of AccSOD2 could be induced by cold (4 °C), heat (42 °C), H2O2, ultraviolet light (UV), HgCl2, and pesticide treatment. Using a disc diffusion assay, we provide evidence that recombinant AccSOD2 protein can play a functional role in protecting cells from oxidative stress. Finally, the in vivo activities of AccSOD2 were measured under a variety of stressful conditions. Taken together, our results indicate that AccSOD2 plays an important role in cellular stress responses and anti-oxidative processes and that it may be of critical importance to honeybee survival. PMID:24269344

  1. The effect of neoadjuvant chemoradiotherapy on whole-body physical fitness and skeletal muscle mitochondrial oxidative phosphorylation in vivo in locally advanced rectal cancer patients--an observational pilot study.

    Directory of Open Access Journals (Sweden)

    Malcolm A West

    Full Text Available BACKGROUND: In the United Kingdom, patients with locally advanced rectal cancer routinely receive neoadjuvant chemoradiotherapy. However, the effects of this on physical fitness are unclear. This pilot study is aimed to investigate the effect of neoadjuvant chemoradiotherapy on objectively measured in vivo muscle mitochondrial function and whole-body physical fitness. METHODS: We prospectively studied 12 patients with rectal cancer who completed standardized neoadjuvant chemoradiotherapy, recruited from a large tertiary cancer centre, between October 2012 and July 2013. All patients underwent a cardiopulmonary exercise test and a phosphorus magnetic resonance spectroscopy quadriceps muscle exercise-recovery study before and after neoadjuvant chemoradiotherapy. Data were analysed and reported blind to patient identity and clinical course. Primary variables of interest were the two physical fitness measures; oxygen uptake at estimated anaerobic threshold and oxygen uptake at Peak exercise (ml.kg-1.min-1, and the post-exercise phosphocreatine recovery rate constant (min-1, a measure of muscle mitochondrial capacity in vivo. RESULTS: Median age was 67 years (IQR 64-75. Differences (95%CI in all three primary variables were significantly negative post-NACRT: Oxygen uptake at estimated anaerobic threshold -2.4 ml.kg-1.min-1 (-3.8, -0.9, p = 0.004; Oxygen uptake at Peak -4.0 ml.kg-1.min-1 (-6.8, -1.1, p = 0.011; and post-exercise phosphocreatine recovery rate constant -0.34 min-1 (-0.51, -0.17, p<0.001. CONCLUSION: The significant decrease in both whole-body physical fitness and in vivo muscle mitochondrial function raises the possibility that muscle mitochondrial mechanisms, no doubt multifactorial, may be important in deterioration of physical fitness following neoadjuvant chemoradiotherapy. This may have implications for targeted interventions to improve physical fitness pre-surgery. TRIAL REGISTRATION: Clinicaltrials.gov registration NCT01859442.

  2. Possible Implication of Local Immune Response in Darier's Disease: An Immunohistochemical Characterization of Lesional Inflammatory Infiltrate

    Directory of Open Access Journals (Sweden)

    Clelia Miracco

    2010-01-01

    Full Text Available Cell-mediated immunity is considered to be normal in Darier's Disease (DD, an inherited skin disorder complicated by skin infections. To date, there are no investigations on the local inflammatory infiltrate in DD skin lesions. In this immunohistochemical study we characterized and quantified it, making comparisons with two other inflammatory skin disorders, that is, pemphigus vulgaris (PV and lichen ruber planus (LRP, and with the normal skin (NSk. We found a significant (<.05 decrease of CD1a+ Langerhans cells (LCs in DD, compared to PV, LRP, and NSk, and of CD123+ plasmacytoid dendritic cells (pDCs, compared to PV and LRP. We hypothesize that the genetic damage of keratinocytes might result in a loss of some subsets of dendritic cells and, consequently, in an impaired local immune response, which might worsen the infections that inevitably occur in this disease.

  3. Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Tangyunyong, Paiboon; Miller, Mary A.; Cole, Edward Isaac, Jr.

    2012-03-01

    We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

  4. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    International Nuclear Information System (INIS)

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation

  5. Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction

    OpenAIRE

    Baseler, Walter A.; Dabkowski, Erinne R.; Williamson, Courtney L.; Croston, Tara L.; Thapa, Dharendra; Powell, Matthew J.; Razunguzwa, Trust T.; Hollander, John M.

    2010-01-01

    Diabetic cardiomyopathy is associated with increased risk of heart failure in type 1 diabetic patients. Mitochondrial dysfunction is suggested as an underlying contributor to diabetic cardiomyopathy. Cardiac mitochondria are characterized by subcellular spatial locale, including mitochondria located beneath the sarcolemma, subsarcolemmal mitochondria (SSM), and mitochondria situated between the myofibrils, interfibrillar mitochondria (IFM). The goal of this study was to determine whether type...

  6. Isolation and characterization of chitosan from different local insects in Egypt.

    Science.gov (United States)

    Marei, Narguess H; El-Samie, Emtithal Abd; Salah, Taher; Saad, Gamal R; Elwahy, Ahmed H M

    2016-01-01

    Chitin was extracted from four different local sources: the shrimp (Penaeus monodon), the desert locust (Schistocerca gregaria), the honey bee (Apis mellifera) and the beetles (Calosoma rugosa). Chitosan was then obtained by deacetylation of chitin and physicochemically characterized using the Fourier transform infrared (FTIR) and X-ray diffraction. The moisture content, water binding capacity, fats binding capacity, ash content were determined and chitosans morphology was visualized using the scanning electron microscope (SEM). The difference between the obtained chitosans from three insect sources and α-chitosan from shrimp in terms of crystallinity, fibrous structure was discussed. PMID:26459168

  7. Mitochondrial Evolution

    OpenAIRE

    Gray, Michael W

    2012-01-01

    Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis—the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell—has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineag...

  8. Oxidative stress, mitochondrial damage and neurodegenerative diseases****

    Institute of Scientific and Technical Information of China (English)

    Chunyan Guo; Li Sun; Xueping Chen; Danshen Zhang

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. Al these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive thera-peutic interventions for the treatment of various neurodegenerative diseases.

  9. Novel super-resolution capable mitochondrial probe, MitoRed AIE, enables assessment of real-time molecular mitochondrial dynamics

    Science.gov (United States)

    Lo, Camden Yeung-Wah; Chen, Sijie; Creed, Sarah Jayne; Kang, Miaomiao; Zhao, Na; Tang, Ben Zhong; Elgass, Kirstin Diana

    2016-01-01

    Mitochondria and mitochondrial dynamics play vital roles in health and disease. With the intricate nanometer-scale structure and rapid dynamics of mitochondria, super-resolution microscopy techniques possess great un-tapped potential to significantly contribute to understanding mitochondrial biology and kinetics. Here we present a novel mitochondrial probe (MitoRed AIE) suitable for live mitochondrial dynamics imaging and single particle tracking (SPT), together with a multi-dimensional data analysis approach to assess local mitochondrial (membrane) fluidity. The MitoRed AIE probe localizes primarily to mitochondrial membranes, with 95 ms fluorophore on-time delivering 106 photons/ms, characteristics which we exploit to demonstrate live cell 100 fps 3D time-lapse tracking of mitochondria. Combining our experimental and analytical approaches, we uncover mitochondrial dynamics at unprecedented time scales. This approach opens up a new regime into high spatio-temporal resolution dynamics in many areas of mitochondrial biology. PMID:27492961

  10. Ketamine-Induced Apoptosis in Normal Human Urothelial Cells: A Direct, N-Methyl-d-Aspartate Receptor-Independent Pathway Characterized by Mitochondrial Stress.

    Science.gov (United States)

    Baker, Simon C; Shabir, Saqib; Georgopoulos, Nikolaos T; Southgate, Jennifer

    2016-05-01

    Recreational abuse of ketamine has been associated with the emergence of a new bladder pain syndrome, ketamine-induced cystitis, characterized by chronic inflammation and urothelial ulceration. We investigated the direct effects of ketamine on normal human urothelium maintained in organ culture or as finite cell lines in vitro. Exposure of urothelium to ketamine resulted in apoptosis, with cytochrome c release from mitochondria and significant subsequent caspase 9 and 3/7 activation. The anesthetic mode-of-action for ketamine is mediated primarily through N-methyl d-aspartate receptor (NMDAR) antagonism; however, normal (nonimmortalized) human urothelial cells were unresponsive to NMDAR agonists or antagonists, and no expression of NMDAR transcript was detected. Exposure to noncytotoxic concentrations of ketamine (≤1 mmol/L) induced rapid release of ATP, which activated purinergic P2Y receptors and stimulated the inositol trisphosphate receptor to provoke transient release of calcium from the endoplasmic reticulum into the cytosol. Ketamine concentrations >1 mmol/L were cytotoxic and provoked a larger-amplitude increase in cytosolic Ca(2+) concentration that was unresolved. The sustained elevation in cytosolic Ca(2+) concentration was associated with pathological mitochondrial oxygen consumption and ATP deficiency. Damage to the urinary barrier initiates bladder pain and, in ketamine-induced cystitis, loss of urothelium from large areas of the bladder wall is a reported feature. This study offers first evidence for a mechanism of direct toxicity of ketamine to urothelial cells by activating the intrinsic apoptotic pathway. PMID:27001627

  11. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  12. Characterization of a beta-catenin nuclear localization defect in MCF-7 breast cancer cells.

    Science.gov (United States)

    Jamieson, Cara; Mills, Kate M; Lui, Christina; Semaan, Crystal; Molloy, Mark P; Sharma, Manisha; Forwood, Jade K; Henderson, Beric R

    2016-02-15

    Beta-catenin plays a key role in transducing Wnt signals from the plasma membrane to the nucleus. Here we characterize an unusual subcellular distribution of beta-catenin in MCF-7 breast cancer cells, wherein beta-catenin localizes to the cytoplasm and membrane but atypically did not relocate to the nucleus after Wnt treatment. The inability of Wnt or the Wnt agonist LiCl to induce nuclear localization of beta-catenin was not due to defective nuclear transport, as the transport machinery was intact and ectopic GFP-beta-catenin displayed rapid nuclear entry in living cells. The mislocalization is explained by a shift in the retention of beta-catenin from nucleus to cytoplasm. The reduced nuclear retention is caused by unusually low expression of lymphoid enhancer factor/T-cell factor (LEF/TCF) transcription factors. The reconstitution of LEF-1 or TCF4 expression rescued nuclear localization of beta-catenin in Wnt treated cells. In the cytoplasm, beta-catenin accumulated in recycling endosomes, golgi and beta-COP-positive coatomer complexes. The peripheral association with endosomes diminished after Wnt treatment, potentially releasing β-catenin into the cytoplasm for nuclear entry. We propose that in MCF-7 and perhaps other breast cancer cells, beta-catenin may contribute to cytoplasmic functions such as ER-golgi transport, in addition to its transactivation role in the nucleus. PMID:26844628

  13. Characterizing Dust Attenuation in Local Star Forming Galaxies: UV and Optical Reddening

    CERN Document Server

    Battisti, A J; Chary, R -R

    2016-01-01

    The dust attenuation for a sample of $\\sim$10000 local ($z\\lesssim0.1$) star forming galaxies is constrained as a function of their physical properties. We utilize aperture-matched multi-wavelength data available from the Galaxy Evolution Explorer (GALEX) and the Sloan Digital Sky Survey (SDSS) to ensure that regions of comparable size in each galaxy are being analyzed. We follow the method of Calzetti et al. (1994) and characterize the dust attenuation through the UV power-law index, $\\beta$, and the dust optical depth, which is quantified using the difference in Balmer emission line optical depth, $\\tau_B^l=\\tau_{\\mathrm{H}\\beta} - \\tau_{\\mathrm{H}\\alpha}$. The observed linear relationship between $\\beta$ and $\\tau_B^l$ is similar to the local starburst relation, but the large scatter ($\\sigma_{\\mathrm{int}}=0.44$) suggests there is significant variation in the local Universe. We derive a selective attenuation curve over the range $1250\\mathrm{\\AA}<\\lambda<8320\\mathrm{\\AA}$ and find that a single atte...

  14. Stat3 binds to mitochondrial DNA and regulates mitochondrial gene expression in keratinocytes

    OpenAIRE

    Macias, Everardo; Rao, Dharanija; Carbajal, Steve; Kiguchi, Kaoru; DiGiovanni, John

    2014-01-01

    The nuclear transcription factor Stat3 has recently been reported to have a localized mitochondrial regulatory function. Current data suggest that mitochondrial Stat3 (mitoStat3) is necessary for maximal mitochondrial activity and for Ras-mediated transformation independent of Stat3 nuclear activity. We have previously shown that Stat3 plays a pivotal role in epithelial carcinogenesis. Therefore, the aim of the current study was to determine the role of mitoStat3 in epidermal keratinocytes. H...

  15. Expression of the rat liver carnitine palmitoyltransferase I (CPT-Ialpha) gene is regulated by Sp1 and nuclear factor Y: chromosomal localization and promoter characterization.

    Science.gov (United States)

    Steffen, M L; Harrison, W R; Elder, F F; Cook, G A; Park, E A

    1999-01-01

    Carnitine palmitoyltransferase (CPT)-I catalyses the transfer of long-chain fatty acids from CoA to carnitine for translocation across the mitochondrial inner membrane. Expression of the 'liver' isoform of the CPT-I gene (CPT-Ialpha) is subject to developmental, hormonal and tissue-specific regulation. To understand the basis for control of CPT-Ialpha gene expression, we have characterized the proximal promoter of the CPT-Ialpha gene. Here, we report the sequence of 6839 base pairs of the promoter and the localization of the rat CPT-Ialpha gene to region q43 on chromosome 1. Our studies show that the first 200 base pairs of the promoter are sufficient to drive transcription of the CPT-Ialpha gene. Within this region are two sites that bind both Sp1 and Sp3 transcription factors. In addition, nuclear factor Y (NF-Y) binds the proximal promoter. Mutation at the Sp1 or NF-Y sites severely decreases transcription from the CPT-Ialpha promoter. Other protein binding sites were identified within the first 200 base pairs of the promoter by DNase I footprinting, and these elements contribute to CPT-Ialpha gene expression. Our studies demonstrate that CPT-Ialpha is a TATA-less gene which utilizes NF-Y and Sp proteins to drive basal expression. PMID:10333485

  16. Effects of mitochondrial dysfunction on the immunological properties of microglia

    OpenAIRE

    Ferger Annette I; Campanelli Loretta; Reimer Valentina; Muth Katharina N; Merdian Irma; Ludolph Albert C; Witting Anke

    2010-01-01

    Abstract Background Neurodegenerative diseases are characterized by both mitochondrial dysfunction and activation of microglia, the macrophages of the brain. Here, we investigate the effects of mitochondrial dysfunction on the activation profile of microglial cells. Methods We incubated primary mouse microglia with the mitochondrial toxins 3-nitropropionic acid (3-NP) or rotenone. These mitochondrial toxins are known to induce neurodegeneration in humans and in experimental animals. We charac...

  17. Characterization of Local Mechanical Properties of Polymer Thin Films and Polymer Nanocomposites via AFM indentations

    Science.gov (United States)

    Cheng, Xu

    AFM indentation has become a tool with great potential in the characterization of nano-mechanical properties of materials. Thanks to the nanometer sized probes, AFM indentation is capable of capturing the changes of multiple properties within the range of tens of nanometers, such task would otherwise be difficult by using other experiment instruments. Despite the great potentials of AFM indentation, it operates based on a simple mechanism: driving the delicate AFM probe to indent the sample surface, and recording the force-displacement response. With limited information provided by AFM indentation, efforts are still required for any practice to successfully extract the desired nano-scale properties from specific materials. In this thesis, we focus on the mechanical properties of interphase between polymer and inorganic materials. It is known that in nanocomposites, a region of polymer exist around nanoparticles with altered molecular structures and improved properties, which is named as interphase polymer. The system with polymer thin films and inorganic material substrates is widely used to simulate the interphase effect in nanocomposites. In this thesis, we developed an efficient and reliable method to process film/substrate samples and characterize the changes of local mechanical properties inside the interphase region with ultra-high resolution AFM mechanical mapping technique. Applying this newly developed method, the interphase of several film/substrate pairs were examined and compared. The local mechanical properties on the other side of the polymer thin film, the free surface side, was also investigated using AFM indentation equipped with surface modified probes. In order to extract the full spectrum of local elastic modulus inside the surface region in the range of only tens of nanometers, the different contact mechanics models were studied and compared, and a Finite Element model was also established. Though the film/substrate system has been wide used as

  18. Mitochondrial DNA suggests a single maternal origin for the widespread triploid parthenogenetic pest species, Paratanytarsus grimmii, but microsatellite variation shows local endemism

    Institute of Scientific and Technical Information of China (English)

    Melissa Carew; Bryant Gagliardi; Ary A.Hoffmann

    2013-01-01

    Parthenogenesis is common among invasive pest species,with many parthenogenetic species also showing polyploidy.Parthenogenetic polyploid species often have multiple hybrid origins and the potential to rapidly spread over vast geographical areas.In this study,we examine patterns of mitochondrial and microsatellite variation in a widespread triploid parthenogenetic chironomid pest species,Paratanytarsus grimmii.Based on samples from five countries,including Australia,England,Germany,Japan,and Canada,we found extremely low mitochondrial diversity (< 0.14%),with most individuals sharing a common and widespread haplotype.In contrast,microsatellite diversity revealed 41 clonal variants,which were regionally endemic.These findings suggest a single invasive maternal lineage of P.grimmii is likely to have recently spread over a broad geographical range.High levels of genotypic endemism suggest P.grimmii populations have remained relatively isolated after an initial spread,with little ongoing migration.This,in part,can be attributed to rapid genetic differentiation via mutations of common clonal genotypes after P.grimmii spread,but multiple polyploidization and subsequent founder events are also likely to be contributing factors.

  19. Characterization of atmospheric aerosols in Ile-de-France: Local contribution and Long range transport

    International Nuclear Information System (INIS)

    Atmospheric aerosols interact directly in a great number of processes related to climate change and public health, modifying the energy budget and partly determining the quality of the air we breathe. In my PhD, I chose to study the perturbation, if not the aggravation, of the living conditions in Ile-de-France associated to aerosol transport episodes in the free troposphere. This situation is rather frequent and still badly known. To achieve my study, I developed the observation platform 'TReSS' Transportable Remote Sensing Station, whose instruments were developed at the Laboratoire de Meteorology Dynamique by the LiMAG team. 'TReSS' consists of a new high-performance 'Mini-Lidar' and of two standard radiometers: a sun photometer and a thermal infrared radiometer. The principle of my experimental approach is the synergy of the vertical Lidar profiles and the particle size distributions over the column, obtained by the 'Almucantar' inversion of sun photometer data. The new 'Lidar and Almucantar' method characterizes the vertical distribution by layer and the optical micro-physical properties of the local and transported aerosols. Firstly, I undertook the characterization of the Paris aerosol, mainly of anthropogenic origin. Their radiative properties were analyzed in the daily and yearly scales. Then, I conducted a statistical multi-year study of transport episodes and a two-week study case, representative of a succession of desert dust intrusion in Ile-de-France. My PhD work concludes by a study on the impact of biomass burning aerosols during the heat wave on August 2003. I study the impact of the transported aerosols into the local radiative budget and the possible consequences on the diurnal cycle of the atmospheric boundary layer. (author)

  20. Sequencing and characterization of the complete mitochondrial genomes of three Pneumocystis species provide new insights into divergence between human and rodent Pneumocystis

    OpenAIRE

    Ma, Liang; Huang, Da-Wei; Cuomo, Christina A.; Sykes, Sean; Fantoni, Giovanna; Das, Biswajit; Sherman, Brad T.; Yang, Jun; Huber, Charles; Xia, Yun; Davey, Emma; Kutty, Geetha; Bishop, Lisa; Sassi, Monica; Lempicki, Richard A.

    2013-01-01

    Pneumocystis jirovecii is an important opportunistic pathogen associated with AIDS and other immunodeficient conditions. Currently, very little is known about its nuclear and mitochondrial genomes. In this study, we sequenced the complete mitochondrial genome (mtDNA) of this organism and its closely related species Pneumocystis carinii and Pneumocystis murina by a combination of sequencing technologies. Our study shows that P. carinii and P. murina mtDNA share a nearly identical number and or...

  1. A new inverse approach for the localization and characterization of defects based on compressive experiments

    Science.gov (United States)

    Barbarella, E.; Allix, O.; Daghia, F.; Lamon, J.; Jollivet, T.

    2016-06-01

    Compressive tests involving buckling are known to be defect sensitive, nevertheless, to our knowledge, no inverse approach has been proposed yet to use this property for the localization and characterization of material defects. This is due to geometric imperfections, which greatly influence and even dominate the response of defective parts under compression. In comparison with a system lacking geometric imperfections, the modified system does not present any bifurcation, showing that the non-linear progressive response is mainly governed by such imperfections. Before implementing any inverse procedures it is necessary to know whether extracting meaningful material defect information from compressive tests on specimen which also have geometric imperfections is possible. To tackle this issue, an equivalent eigenvalue problem will be extracted from the non-linear response, a problem corrected from geometric imperfections. A dedicated inverse formulation based on the modified constitutive relation error will then be constructed which will involve only well-posed linear problems. Examples illustrate the potential of the methodology to localize and identify single and multiple defects.

  2. Purification and characterization of the plastid-localized NAD-dependent malate dehydrogenase from Arabidopsis thaliana.

    Science.gov (United States)

    An, Yan; Cao, Youzhi; Xu, Yingwu

    2016-07-01

    Malate dehydrogenase (MDH) ubiquitously exists in living organisms and has many isoforms in a single species. MDHs from some classes have been characterized for their catalytic properties, which show significant variations despite that they share high sequence identity for the active sites. One class MDH, the plastid-localized NAD-dependent MDH (plNAD-MDH) is known to be important for plant survival in a dark environment, but its biochemical and enzymatic properties have not been well characterized. This study attempts to fill the gap. plNAD-MDH was expressed in an Escherichia coli system and purified using nickel-affinity chromatography followed by size exclusion chromatography. The N-terminal fusion his-tag was removed by protease cleavage. The gel filtration assay and glutaraldehyde cross-linking results showed that the active enzyme was a homodimer in solution. Further assay indicated that plNAD-MDH is most active at a neutral pH value. The Km values for oxaloacetate and NADH are found in the submillimolar order, a median range for most MDHs. The maximum reaction rate values, however, are dramatically different from other plant MDHs, indicating that plNAD-MDH has different substrate specificity. Moreover, we obtained crystals for this enzyme, which laid the groundwork for further analysis of the enzymatic mechanism from structural stand point. PMID:26095832

  3. Site effects characterization in Lorca city; Caracterizacion de efectos sismicos locales en la ciudad de Lorca

    Energy Technology Data Exchange (ETDEWEB)

    Figueras Vila, S.; Macau Roig, A.; Belvaux, M.; Peix Tarres, M.; Benjumea Moreno, B.; Gabas Gasa, A.; Susadna Vidal, T.; Goula Surinach, X.

    2012-07-01

    This study is focused on the characterization of seismic local effects in Lorca city. This aspect fits to one of the interesting points of a field survey for a post-seismic inspection organized by Institut Geologic of Catalonia (IGC), the Universitat Politecnica of Catalonia (UPC), the Spanish Association of Seismic Engineering (AEIS) together with the Earthquake Engineering Associations of France (AFPS) and Portugal (SPES) with the aim to calibrate, check and validate methodologies for seismic risk assessment that these organisms use. We present the work done and the obtained results in order to characterize the soil layers applying two passive seismic techniques: the H/V spectral ratio and the array method. The record of aftershocks in different emplacements has allowed us to obtain the soil seismic response of these sites. The information obtained from the geophysical field survey allowed the definition of representative soil columns and the soil classification according the Eurocode 8. Subsequently, the soil seismic response has been modelled and the increase of macroseismic intensity due to the presence of soft soils has been assessed. (Author) 28 refs.

  4. Two Examples of Integrated Aquifer Characterization at Local and Regional Scales

    Science.gov (United States)

    Lefebvre, R.; Gloaguen, E.; Rivard, C.; Parent, M.; Morin, R. H.; Pugin, A.; Pullan, S.; Crow, H.; Paradis, D.; Tremblay, L.; Blouin, M.; Laurencelle, M.

    2012-12-01

    An integrated aquifer characterization approach was developed with the aim of efficiently providing detailed data that could be used to develop conceptual hydrogeological models and quantitatively describe the spatial continuity and heterogeneity of unconsolidated sediments. The approach involves the integration of geological, hydraulic, geophysical and geochemical data. The emphasis of the approach is placed on the acquisition of detailed and continuous indirect data and selective soil sampling and direct measurements of hydraulic properties covering the full range of materials present in the system. Direct data are used to establish relations between indirect hydrogeophysical measurements and hydrofacies (HF), which are material types with distinct hydraulic conductivity (K). Surface geophysical surveys are used to provide 1D or 2D definitions of sediment structures and material types. Hydraulic tests are used to define HF and estimate their ranges of K. Groundwater (GW) geochemistry (major, minor, isotopes, GW age) is used to support the definition of conceptual models and to provide constraints on numerical models of GW flow and transport (mass and GW age). The approach relies on the geostatistical integration of multi-source data to define aquifer boundaries, on the recognition of HF and estimation of K from CPT/SMR data using fuzzy clustering and relevant vector machines for HF classification and K regression, on the geostatistical simulation of HF and K to provide the spatial distribution of hydraulic parameters in GW flow and transport models, and on the validation of these models using geochemical data. The integrated characterization approach was first developed and tested at local scale for the study of a shallow granular aquifer within a 12 km2 sub-watershed where a former unlined landfill is located. Results are being applied to the assessment of the efficiency of natural attenuation as a site management approach. The integrated characterization

  5. Drosophila Porin/VDAC affects mitochondrial morphology.

    Directory of Open Access Journals (Sweden)

    Jeehye Park

    Full Text Available Voltage-dependent anion channel (VDAC has been suggested to be a mediator of mitochondrial-dependent cell death induced by Ca(2+ overload, oxidative stress and Bax-Bid activation. To confirm this hypothesis in vivo, we generated and characterized Drosophila VDAC (porin mutants and found that Porin is not required for mitochondrial apoptosis, which is consistent with the previous mouse studies. We also reported a novel physiological role of Porin. Loss of porin resulted in locomotive defects and male sterility. Intriguingly, porin mutants exhibited elongated mitochondria in indirect flight muscle, whereas Porin overexpression produced fragmented mitochondria. Through genetic analysis with the components of mitochondrial fission and fusion, we found that the elongated mitochondria phenotype in porin mutants were suppressed by increased mitochondrial fission, but enhanced by increased mitochondrial fusion. Furthermore, increased mitochondrial fission by Drp1 expression suppressed the flight defects in the porin mutants. Collectively, our study showed that loss of Drosophila Porin results in mitochondrial morphological defects and suggested that the defective mitochondrial function by Porin deficiency affects the mitochondrial remodeling process.

  6. Noninvasive Characterization of Locally Advanced Breast Cancer Using Textural Analysis of Quantitative Ultrasound Parametric Images

    Directory of Open Access Journals (Sweden)

    Hadi Tadayyon

    2014-12-01

    Full Text Available PURPOSE: The identification of tumor pathologic characteristics is an important part of breast cancer diagnosis, prognosis, and treatment planning but currently requires biopsy as its standard. Here, we investigated a noninvasive quantitative ultrasound method for the characterization of breast tumors in terms of their histologic grade, which can be used with clinical diagnostic ultrasound data. METHODS: Tumors of 57 locally advanced breast cancer patients were analyzed as part of this study. Seven quantitative ultrasound parameters were determined from each tumor region from the radiofrequency data, including mid-band fit, spectral slope, 0-MHz intercept, scatterer spacing, attenuation coefficient estimate, average scatterer diameter, and average acoustic concentration. Parametric maps were generated corresponding to the region of interest, from which four textural features, including contrast, energy, homogeneity, and correlation, were determined as further tumor characterization parameters. Data were examined on the basis of tumor subtypes based on histologic grade (grade I versus grade II to III. RESULTS: Linear discriminant analysis of the means of the parametric maps resulted in classification accuracy of 79%. On the other hand, the linear combination of the texture features of the parametric maps resulted in classification accuracy of 82%. Finally, when both the means and textures of the parametric maps were combined, the best classification accuracy was obtained (86%. CONCLUSIONS: Textural characteristics of quantitative ultrasound spectral parametric maps provided discriminant information about different types of breast tumors. The use of texture features significantly improved the results of ultrasonic tumor characterization compared to conventional mean values. Thus, this study suggests that texture-based quantitative ultrasound analysis of in vivo breast tumors can provide complementary diagnostic information about tumor histologic

  7. Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties

    Energy Technology Data Exchange (ETDEWEB)

    Tadayyon, Hadi [Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Sadeghi-Naini, Ali; Czarnota, Gregory, E-mail: Gregory.Czarnota@sunnybrook.ca [Physical Sciences, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada); Department of Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5T 1P5 (Canada); Wirtzfeld, Lauren [Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3 (Canada); Wright, Frances C. [Division of Surgical Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5 (Canada)

    2014-01-15

    Purpose: Tumor grading is an important part of breast cancer diagnosis and currently requires biopsy as its standard. Here, the authors investigate quantitative ultrasound parameters in locally advanced breast cancers that can potentially separate tumors from normal breast tissue and differentiate tumor grades. Methods: Ultrasound images and radiofrequency data from 42 locally advanced breast cancer patients were acquired and analyzed. Parameters related to the linear regression of the power spectrum—midband fit, slope, and 0-MHz-intercept—were determined from breast tumors and normal breast tissues. Mean scatterer spacing was estimated from the spectral autocorrelation, and the effective scatterer diameter and effective acoustic concentration were estimated from the Gaussian form factor. Parametric maps of each quantitative ultrasound parameter were constructed from the gated radiofrequency segments in tumor and normal tissue regions of interest. In addition to the mean values of the parametric maps, higher order statistical features, computed from gray-level co-occurrence matrices were also determined and used for characterization. Finally, linear and quadratic discriminant analyses were performed using combinations of quantitative ultrasound parameters to classify breast tissues. Results: Quantitative ultrasound parameters were found to be statistically different between tumor and normal tissue (p < 0.05). The combination of effective acoustic concentration and mean scatterer spacing could separate tumor from normal tissue with 82% accuracy, while the addition of effective scatterer diameter to the combination did not provide significant improvement (83% accuracy). Furthermore, the two advanced parameters, including effective scatterer diameter and mean scatterer spacing, were found to be statistically differentiating among grade I, II, and III tumors (p = 0.014 for scatterer spacing, p = 0.035 for effective scatterer diameter). The separation of the tumor

  8. Quantitative ultrasound characterization of locally advanced breast cancer by estimation of its scatterer properties

    International Nuclear Information System (INIS)

    Purpose: Tumor grading is an important part of breast cancer diagnosis and currently requires biopsy as its standard. Here, the authors investigate quantitative ultrasound parameters in locally advanced breast cancers that can potentially separate tumors from normal breast tissue and differentiate tumor grades. Methods: Ultrasound images and radiofrequency data from 42 locally advanced breast cancer patients were acquired and analyzed. Parameters related to the linear regression of the power spectrum—midband fit, slope, and 0-MHz-intercept—were determined from breast tumors and normal breast tissues. Mean scatterer spacing was estimated from the spectral autocorrelation, and the effective scatterer diameter and effective acoustic concentration were estimated from the Gaussian form factor. Parametric maps of each quantitative ultrasound parameter were constructed from the gated radiofrequency segments in tumor and normal tissue regions of interest. In addition to the mean values of the parametric maps, higher order statistical features, computed from gray-level co-occurrence matrices were also determined and used for characterization. Finally, linear and quadratic discriminant analyses were performed using combinations of quantitative ultrasound parameters to classify breast tissues. Results: Quantitative ultrasound parameters were found to be statistically different between tumor and normal tissue (p < 0.05). The combination of effective acoustic concentration and mean scatterer spacing could separate tumor from normal tissue with 82% accuracy, while the addition of effective scatterer diameter to the combination did not provide significant improvement (83% accuracy). Furthermore, the two advanced parameters, including effective scatterer diameter and mean scatterer spacing, were found to be statistically differentiating among grade I, II, and III tumors (p = 0.014 for scatterer spacing, p = 0.035 for effective scatterer diameter). The separation of the tumor

  9. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus;

    2014-01-01

    determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  10. Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes.

    Science.gov (United States)

    Wada, Jun; Nakatsuka, Atsuko

    2016-06-01

    The mitochondria are involved in active and dynamic processes, such as mitochondrial biogenesis, fission, fusion and mitophagy to maintain mitochondrial and cellular functions. In obesity and type 2 diabetes, impaired oxidation, reduced mitochondrial contents, lowered rates of oxidative phosphorylation and excessive reactive oxygen species (ROS) production have been reported. Mitochondrial biogenesis is regulated by various transcription factors such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and nuclear respiratory factors (NRFs). Mitochondrial fusion is promoted by mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1), while fission is governed by the recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and fission 1 (FIS1). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and PARKIN-dependent mitophagy. This review describes the molecular mechanism of mitochondrial dynamics, its abnormality in diabetes and obesity, and pharmaceuticals targeting mitochondrial biogenesis, fission, fusion and mitophagy. PMID:27339203

  11. Granular vortices: Identification, characterization and conditions for the localization of deformation

    Science.gov (United States)

    Tordesillas, Antoinette; Pucilowski, Sebastian; Lin, Qun; Peters, John F.; Behringer, Robert P.

    2016-05-01

    We relate the micromechanics of vortex evolution to that of force chain buckling and, on this basis, formulate the conditions for strain localization in a continuum model of dense granular media. Using the traditional bifurcation analysis of shear bands, we show that kinematic vortex fields are in fact solutions to the boundary value problem satisfying null boundary conditions. To establish an empirical basis for our study, we first develop a method to identify the location of the core and boundary of each vortex from a given displacement field in two dimensions. We then employ this method to characterize the residual deformation field (i.e., the deviation of particle motions from the continuum deformation) in a physical experiment and a discrete element simulation of dense granular samples submitted to biaxial compression. Vortices in the failure regime are essentially confined to the shear band. Primary vortices, the clear majority, rotate in the same direction as the shear band; secondary vortices, the so-called wakes, rotate in the opposite direction. Primary vortices align in spatial succession along the central axis of the band; wakes form next to the band boundaries, in between and beside two adjacent primary vortices. Force chain buckling, the governing mechanism for shear bands, is responsible for vortex formation in the failure regime. Vortex dynamics are consistent with stick-slip dynamics. From quiescent conditions of jamming or stick, vortical motions arise from force chain buckling and associated relative particle rotations and sliding; these in turn precipitate intermittent periods of unjamming or slip, evident in the attendant drops in stress ratio and bursts in both kinetic energy and local nonaffine deformation. A kinematic vortex field inside shear bands is proposed that is consistent with the equations of continuum mechanics and the underlying instability of force chain buckling: such a field is periodic with a repeating unit cell comprising a

  12. On characterizations of weighted composition opeartors on non-locally convex weighted spaces of continuous functions

    Directory of Open Access Journals (Sweden)

    S. D. Sharma

    2000-03-01

    Full Text Available For a system $V$ of weights on a completely regular Hausdorff space $X$ and a Hausdorff topological vector space $E$, let $ CV_b(X,E$ and $ CV_0(X,E$ respectively denote the weighted spaces of continuouse $E$-valued functions $f$ on $X$ for which $ (vf(X$ is bounded in $E$ and $vf$ vanishes at infinity on $X$ all $ v\\in V$. On $CV_b(X,E(CV_0(X,E$, consider the weighted topology, which is Hausdorff, linear and has a base of neighbourhoods of 0 consising of all sets of the form: $ N(v,G=\\{f:(vf(X\\subseteq G\\}$, where $v\\in V$ and $G$ is a neighbourhood of 0 in $E$. In this paper, we characterize weighted composition operators on weighted spaces for the case when $V$ consists of those weights which are bounded and vanishing at infinity on $X$. These results, in turn, improve and extend some of the recent works of Singh and Singh [10, 12] and Manhas [6] to a non-locally convex setting as well as that of Singh and Manhas [14] and Khan and Thaheem [4] to a larger class of operators.

  13. Characterization and localization of in vivo phospholipid methylation in the hamster testis

    International Nuclear Information System (INIS)

    Although previous studies have demonstrated that phospholipid methylation occurs in the testis and may be involved in Leydig cell function, phospholipid methylation in spermatogenic cells has not been characterized. In this study we describe the occurrence, time course, and localization of phospholipid methylation in the hamster testis following intratesticular injection of radioactive methyl precursor. Adult and pubertal (seven day old) hamsters were injected intratesticularly with [3H-methyl]-methionine and sacrificed 10 min. to 31 hours thereafter. The testes were then removed and homogenized or dispersed into cell suspensions. Spermatogenic cell and Leydig cell enriched preparations were isolated from the dispersed cell preparations using elutriation and Percoll gradient centrifugation and assayed for methylated phospholipids and proteins. These experiments demonstrated that (1) phospholipid methylation occurs in the hamster testis at a level seven-fold greater than protein methylation, (2) the incorporation of radioactivity associated with phospholipid methylation is progressive over time, and (3) in vivo, spermatogenic cell preparations enriched with pachytene spermatocytes have an almost four-fold higher level of measurable phospholipid methylation when compared to whole testis preparations. Taken together, these results suggest that phospholipid methylation may play an important stage-specific role in spermatogenesis

  14. A Tool for Local Thickness Determination and Grain Boundary Characterization by CTEM and HRTEM Techniques.

    Science.gov (United States)

    Kiss, Ákos K; Rauch, Edgar F; Pécz, Béla; Szívós, János; Lábár, János L

    2015-04-01

    A new approach for measurement of local thickness and characterization of grain boundaries is presented. The method is embodied in a software tool that helps to find and set sample orientations useful for high-resolution transmission electron microscopic (HRTEM) examination of grain boundaries in polycrystalline thin films. The novelty is the simultaneous treatment of the two neighboring grains and orienting both grains and the boundary plane simultaneously. The same metric matrix-based formalism is used for all crystal systems. Input into the software tool includes orientation data for the grains in question, which is determined automatically for a large number of grains by the commercial ASTAR program. Grain boundaries suitable for HRTEM examination are automatically identified by our software tool. Individual boundaries are selected manually for detailed HRTEM examination from the automatically identified set. Goniometer settings needed to observe the selected boundary in HRTEM are advised by the software. Operation is demonstrated on examples from cubic and hexagonal crystal systems. PMID:25801740

  15. Magnetic microscopy for characterization of local critical current in iron-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Highlights: • We developed a characterization method of local critical current in MgB2 wires. • Local homogeneity was visualized by the scanning Hall-probe microscopy (SHPM). • Local critical current value was quantified with the aid of the finite element method (FEM). • MgB2 wire still has inhomogeneous distribution in local critical current. • Higher potential than that estimated by the four-probe transport method was suggested. - Abstract: We have developed a characterization method of local critical current in iron-sheathed MgB2 wires. Local homogeneity was visualized by the scanning Hall-probe microscopy (SHPM). The value of local critical current was quantified with the aid of the finite element method (FEM) considering the ferromagnetic properties of the iron sheath. The results suggested that MgB2 wires fabricated by internal Mg diffusion processes still have large longitudinal inhomogeneity and much higher potential than that estimated by the four-probe transport method. This will be very important information for making a correct strategy for further development of MgB2 wires

  16. A phosphopantetheinyl transferase that is essential for mitochondrial fatty acid biosynthesis.

    Science.gov (United States)

    Guan, Xin; Chen, Hui; Abramson, Alex; Man, Huimin; Wu, Jinxia; Yu, Oliver; Nikolau, Basil J

    2015-11-01

    In this study we report the molecular genetic characterization of the Arabidopsis mitochondrial phosphopantetheinyl transferase (mtPPT), which catalyzes the phosphopantetheinylation and thus activation of mitochondrial acyl carrier protein (mtACP) of mitochondrial fatty acid synthase (mtFAS). This catalytic capability of the purified mtPPT protein (encoded by AT3G11470) was directly demonstrated in an in vitro assay that phosphopantetheinylated mature Arabidopsis apo-mtACP isoforms. The mitochondrial localization of the AT3G11470-encoded proteins was validated by the ability of their N-terminal 80-residue leader sequence to guide a chimeric GFP protein to this organelle. A T-DNA-tagged null mutant mtppt-1 allele shows an embryo-lethal phenotype, illustrating a crucial role of mtPPT for embryogenesis. Arabidopsis RNAi transgenic lines with reduced mtPPT expression display typical phenotypes associated with a deficiency in the mtFAS system, namely miniaturized plant morphology, slow growth, reduced lipoylation of mitochondrial proteins, and the hyperaccumulation of photorespiratory intermediates, glycine and glycolate. These morphological and metabolic alterations are reversed when these plants are grown in a non-photorespiratory condition (i.e. 1% CO2 atmosphere), demonstrating that they are a consequence of a deficiency in photorespiration due to the reduced lipoylation of the photorespiratory glycine decarboxylase. PMID:26402847

  17. Development of nanoindentation techniques for characterizing local mechanical properties of soft materials

    Science.gov (United States)

    Wood, Charles David

    Indentation has become a popular mechanical characterization technique due to the promise of high-resolution maps of material stiffness. Due to the far-reaching nature of the testing framework, indentation tests can occur on nearly any material type and on any length scale. In this dissertation, we will look at three different materials systems and demonstrate new and unique uses for the indentation framework. These results will provide information not available by other methodologies, thereby proving its universal value. Two different indentation schemes are employed, either probing the top surface of cross-section samples or by probing into the thickness of a thin film. The differences between each of the studies highlight the importance of sample geometry/orientation, contact conditions, material response, etc. First, we will use indentation to probe local regions near carbon nanotube/glass fiber hybrid composites in an epoxy matrix. Indentations were performed to determine the radial gradient of modulus enhancements from the glass fiber surface. The results from indentation demonstrated that spatial reinforcement due to the presence of nanotubes was tied to fiber morphology and not the local morphology of carbon nanotubes. Secondly, we look at rubber and filler interaction on two different levels; macroscale and nanoscale. On the nanoscale, we show that interactions at the filler/polymer interface create regions of altered polymer mobility. These regions are influenced by geometric and chemical confinement, which increase the stiffness of these small regions (materials, such as hydrogels and tissues, pose rather unique challenges when they are tested mechanically. However, with tissues and gels, the sensitivity of the machines is challenged and therefore protocols must be developed to produce accurate results. We validate indentation results on a variety of soft materials and demonstrate the proper corrections for these materials. Once validated, indentation is

  18. Seismic local site effects characterization in the Andarax River Valley (SE Spain) from ambient seismic noise

    Science.gov (United States)

    Carmona, Enrique; García-Jerez, Antonio; Luzón, Francisco; Sánchez-Martos, Francisco; Sánchez-Sesma, Francisco J.; Piña, José

    2014-05-01

    This work is focused on the characterization of seismic local effects in the Low Andarax River Valley (SE Spain). The Low Andarax River valley is located in an active seismic region, with the higher seismic hazard values in Spain. The landform is composed mainly by sedimentary materials which increase its seismic hazard due to the amplification of the seismic inputs and spectral resonances. We study seismic local effects in the Low Andarax River by analyzing the Horizontal-to-Vertical Spectral Ratio (HVSR) of ambient noise records. The noise data were recorded during two field campaigns in 2012 and 2013. There have been a total of 374 noise measurements with 15 and 30 minutes duration. The acquisition was performed with a Digital Broadband Seismometer Guralp CMG-6TD. The distance between measurements was about 200 meters, covering an area around 40 km2. There have been 6 significant peak frequencies between 0.3 Hz and 5 Hz. It was possible to find interesting areas with similar spectral peaks that coincide with zones with similar microgravimetric anomalies at the alluvial valley. It is also observed a decrease in the frequency peaks from West to East suggesting increased sediment layer. We also compute the soil models at those sites where geotechnical information is available, assuming that the seismic noise is diffuse. We invert the HVSR for these places using horizontally layered models and in the imaginary part the Green functions at the source. It is observed that the S wave velocity inverted models are consistent with the known geotechnical information obtained from drilled boreholes. We identify the elastodynamic properties of the limestone-dolomite materials with a formation of phyllites and quartzite that form the basement of the depression, and those properties of the Miocene and Pliocene detrital deposits (marls, sandy silts, sands and conglomerates) that fill the valley. These results together with the observed resonant frequencies along the Andarax

  19. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Abhishek; Kollath-Leiß, Krisztina; Kempken, Frank, E-mail: fkempken@bot.uni-kiel.de

    2013-08-30

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  20. Characterization of bud emergence 46 (BEM46) protein: Sequence, structural, phylogenetic and subcellular localization analyses

    International Nuclear Information System (INIS)

    Highlights: •All eukaryotes have at least a single copy of a bem46 ortholog. •The catalytic triad of BEM46 is illustrated using sequence and structural analysis. •We identified indels in the conserved domain of BEM46 protein. •Localization studies of BEM46 protein were carried out using GFP-fusion tagging. -- Abstract: The bud emergence 46 (BEM46) protein from Neurospora crassa belongs to the α/β-hydrolase superfamily. Recently, we have reported that the BEM46 protein is localized in the perinuclear ER and also forms spots close by the plasma membrane. The protein appears to be required for cell type-specific polarity formation in N. crassa. Furthermore, initial studies suggested that the BEM46 amino acid sequence is conserved in eukaryotes and is considered to be one of the widespread conserved “known unknown” eukaryotic genes. This warrants for a comprehensive phylogenetic analysis of this superfamily to unravel origin and molecular evolution of these genes in different eukaryotes. Herein, we observe that all eukaryotes have at least a single copy of a bem46 ortholog. Upon scanning of these proteins in various genomes, we find that there are expansions leading into several paralogs in vertebrates. Usingcomparative genomic analyses, we identified insertion/deletions (indels) in the conserved domain of BEM46 protein, which allow to differentiate fungal classes such as ascomycetes from basidiomycetes. We also find that exonic indels are able to differentiate BEM46 homologs of different eukaryotic lineage. Furthermore, we unravel that BEM46 protein from N. crassa possess a novel endoplasmic-retention signal (PEKK) using GFP-fusion tagging experiments. We propose that three residues namely a serine 188S, a histidine 292H and an aspartic acid 262D are most critical residues, forming a catalytic triad in BEM46 protein from N. crassa. We carried out a comprehensive study on bem46 genes from a molecular evolution perspective with combination of functional

  1. Mitochondrial disease and epilepsy.

    Science.gov (United States)

    Rahman, Shamima

    2012-05-01

    Mitochondrial respiratory chain disorders are relatively common inborn errors of energy metabolism, with a combined prevalence of one in 5000. These disorders typically affect tissues with high energy requirements, and cerebral involvement occurs frequently in childhood, often manifesting in seizures. Mitochondrial diseases are genetically heterogeneous; to date, mutations have been reported in all 37 mitochondrially encoded genes and more than 80 nuclear genes. The major genetic causes of mitochondrial epilepsy are mitochondrial DNA mutations (including those typically associated with the mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes [MELAS] and myoclonic epilepsy with ragged red fibres [MERRF] syndromes); mutations in POLG (classically associated with Alpers syndrome but also presenting as the mitochondrial recessive ataxia syndrome [MIRAS], spinocerebellar ataxia with epilepsy [SCAE], and myoclonus, epilepsy, myopathy, sensory ataxia [MEMSA] syndromes in older individuals) and other disorders of mitochondrial DNA maintenance; complex I deficiency; disorders of coenzyme Q(10) biosynthesis; and disorders of mitochondrial translation such as RARS2 mutations. It is not clear why some genetic defects, but not others, are particularly associated with seizures. Epilepsy may be the presenting feature of mitochondrial disease but is often part of a multisystem clinical presentation. Mitochondrial epilepsy may be very difficult to manage, and is often a poor prognostic feature. At present there are no curative treatments for mitochondrial disease. Individuals with mitochondrial epilepsy are frequently prescribed multiple anticonvulsants, and the role of vitamins and other nutritional supplements and the ketogenic diet remain unproven. PMID:22283595

  2. Characterization of Shigella sonnei in Malaysia, an increasingly prevalent etiologic agent of local shigellosis cases

    Directory of Open Access Journals (Sweden)

    Koh Xiu

    2012-05-01

    Full Text Available Abstract Background Shigellosis is a major public health concern worldwide, especially in developing countries. It is an acute intestinal infection caused by bacteria of the genus Shigella, with a minimum infective dose as low as 10–100 bacterial cells. Increasing prevalence of Shigella sonnei as the etiologic agent of shigellosis in Malaysia has been reported. As there is limited information on the genetic background of S. sonnei in Malaysia, this study aimed to characterize Malaysian S. sonnei and to evaluate the prospect of using multilocus variable-number tandem-repeat (VNTR analysis (MLVA for subtyping of local S. sonnei. Methods Forty non-repeat clinical strains of S. sonnei isolated during the years 1997–2000, and 2007–2009 were studied. The strains were isolated from stools of patients in different hospitals from different regions in Malaysia. These epidemiologically unrelated strains were characterized using biotyping, antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE and MLVA. Results The two biotypes identified in this study were biotype a (n = 29, 73% and biotype g (n = 11, 27%. All the 40 strains were sensitive to kanamycin, ceftriaxone and ciprofloxacin. Highest resistance rate was observed for streptomycin (67.5%, followed by tetracycline (40% and trimethoprim-sulfamethoxazole (37.5%. All the S. sonnei biotype g strains had a core resistance type of streptomycin - trimethoprim-sulfamethoxazole - tetracycline whereas the 29 biotype a strains were subtyped into eight resistotypes. All the strains were equally distinguishable by PFGE and MLVA. Overall, PFGE analysis indicated that S. sonnei biotype a strains were genetically more diverse than biotype g strains. Cluster analysis by MLVA was better in grouping the strains according to biotypes, was reflective of the epidemiological information and was equally discriminative as PFGE. Conclusions The S. sonnei strains circulating in Malaysia

  3. Remote Sensing-Based Characterization of Settlement Structures for Assessing Local Potential of District Heat

    Directory of Open Access Journals (Sweden)

    Michael Nast

    2011-07-01

    Full Text Available In Europe, heating of houses and commercial areas is one of the major contributors to greenhouse gas emissions. When considering the drastic impact of an increasing emission of greenhouse gases as well as the finiteness of fossil resources, the usage of efficient and renewable energy generation technologies has to be increased. In this context, small-scale heating networks are an important technical component, which enable the efficient and sustainable usage of various heat generation technologies. This paper investigates how the potential of district heating for different settlement structures can be assessed. In particular, we analyze in which way remote sensing and GIS data can assist the planning of optimized heat allocation systems. In order to identify the best suited locations, a spatial model is defined to assess the potential for small district heating networks. Within the spatial model, the local heat demand and the economic costs of the necessary heat allocation infrastructure are compared. Therefore, a first and major step is the detailed characterization of the settlement structure by means of remote sensing data. The method is developed on the basis of a test area in the town of Oberhaching in the South of Germany. The results are validated through detailed in situ data sets and demonstrate that the model facilitates both the calculation of the required input parameters and an accurate assessment of the district heating potential. The described method can be transferred to other investigation areas with a larger spatial extent. The study underlines the range of applications for remote sensing-based analyses with respect to energy-related planning issues.

  4. Characterization and localization of metal-responsive-element-binding transcription factors from tilapia

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Andrew Pok-Lap; Au, Candy Yee-Man; Chan, William Wai-Lun [Department of Biochemistry, Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong (Hong Kong); Chan, King Ming, E-mail: kingchan@cuhk.edu.hk [Department of Biochemistry, Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong (Hong Kong)

    2010-08-01

    Two isoforms of MTF-1, MTF-1L (long form) and MTF-1S (short form), were cloned in tilapia (Ti) and characterized in a tilapia liver cell line, Hepa-T1. The cloned tiMTF-1L has the characteristics of all of the tiMTF-1S identified so far with the zinc finger domain having six fingers, the acidic-rich, proline-rich, and serine/threonine-rich domains; however, the short form encodes for the zinc finger domain with five zinc fingers only and no other domains. The transient transfection of tiMTF-1L into human HepG2 cells showed both constitutive and zinc-induced metal-responsive-element (MRE)-driven reporter gene expression. However, the transfection of tiMTF-1S (which lacks all three transactivation domains) into a human cell line showed reduced transcriptional activities compared with an endogenous control in both basal- and Zn{sup 2+}-induced conditions. The tiMTF-1 isoforms were tagged with GFP and transfected into Hepa-T1 cells (tilapia hepatocytes). The nuclear translocation of tiMTF-1L was observed when the cells were exposed to a sufficient concentration of metals for 6 h. However, tiMTF-1S, was localized in the nucleus with or without metal treatment. Electrophoretic mobility shift assay (EMSA) confirmed that both of the isoforms were able to bind to the MRE specifically in vitro. Tissue distribution studies showed that tiMTF-1L was more abundant than tiMTF-1S in all of the tissues tested.

  5. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India); Godbole, Madan M., E-mail: madangodbole@yahoo.co.in [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India)

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  6. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    International Nuclear Information System (INIS)

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1α, NRF-1α and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  7. Alterations in mitochondrial number and function in Alzheimer's disease fibroblasts.

    Science.gov (United States)

    Gray, Nora E; Quinn, Joseph F

    2015-10-01

    Mitochondrial dysfunction is observed in brains of Alzheimer's Disease patients as well as many rodent model systems including those modeling mutations in preseinilin 1 (PSEN1). The aim of our study was to characterize mitochondrial function and number in fibroblasts from AD patients with PSEN1 mutations. We used biochemical assays, metabolic profiling and fluorescent labeling to assess mitochondrial number and function in fibroblasts from three AD patients compared to fibroblasts from three controls. The mutant AD fibroblasts had increased Aβ42 relative to controls along with reduction in ATP, basal and maximal mitochondrial respiration as well as impaired spare mitochondrial respiratory capacity. Fluorescent staining and expression of genes encoding electron transport chain enzymes showed diminished mitochondrial content in the AD fibroblasts. This study demonstrates that mitochondrial dysfunction is observable in AD fibroblasts and provides evidence that this model system could be useful as a tool to screen disease-modifying compounds. PMID:25862550

  8. Miro, MCU, and calcium: bridging our understanding of mitochondrial movement in axons

    Directory of Open Access Journals (Sweden)

    Karen Chang

    2013-09-01

    Full Text Available Neurons are extremely polarized structures with long axons and dendrites, which require proper distribution of mitochondria and maintenance of mitochondrial dynamics for neuronal functions and survival. Indeed, recent studies show that various neurological disorders are linked to mitochondrial transport in neurons. Mitochondrial anterograde transport is believed to deliver metabolic energy to synaptic terminals where energy demands are high, while mitochondrial retrograde transport is required to repair or remove damaged mitochondria in axons. It has been suggested that Ca2+ plays a key role in regulating mitochondrial transport by altering the configuration of mitochondrial protein, miro. However, molecular mechanisms that regulate mitochondrial transport in neurons still are not well characterized. In this review, we will discuss the roles of miro in mitochondrial transport and how the recently identified components of the mitochondrial calcium uniporter add to our current model of mitochondrial mobility regulation.

  9. Mevalonate Pathway Blockade, Mitochondrial Dysfunction and Autophagy: A Possible Link

    Directory of Open Access Journals (Sweden)

    Paola Maura Tricarico

    2015-07-01

    Full Text Available The mevalonate pathway, crucial for cholesterol synthesis, plays a key role in multiple cellular processes. Deregulation of this pathway is also correlated with diminished protein prenylation, an important post-translational modification necessary to localize certain proteins, such as small GTPases, to membranes. Mevalonate pathway blockade has been linked to mitochondrial dysfunction: especially involving lower mitochondrial membrane potential and increased release of pro-apoptotic factors in cytosol. Furthermore a severe reduction of protein prenylation has also been associated with defective autophagy, possibly causing inflammasome activation and subsequent cell death. So, it is tempting to hypothesize a mechanism in which defective autophagy fails to remove damaged mitochondria, resulting in increased cell death. This mechanism could play a significant role in Mevalonate Kinase Deficiency, an autoinflammatory disease characterized by a defect in Mevalonate Kinase, a key enzyme of the mevalonate pathway. Patients carrying mutations in the MVK gene, encoding this enzyme, show increased inflammation and lower protein prenylation levels. This review aims at analysing the correlation between mevalonate pathway defects, mitochondrial dysfunction and defective autophagy, as well as inflammation, using Mevalonate Kinase Deficiency as a model to clarify the current pathogenetic hypothesis as the basis of the disease.

  10. Opposing roles of mitochondrial and nuclear PARP1 in the regulation of mitochondrial and nuclear DNA integrity: implications for the regulation of mitochondrial function

    OpenAIRE

    Szczesny, Bartosz; Brunyanszki, Attila; Olah, Gabor; Mitra, Sankar; Szabo, Csaba

    2014-01-01

    The positive role of PARP1 in regulation of various nuclear DNA transactions is well established. Although a mitochondrial localization of PARP1 has been suggested, its role in the maintenance of the mitochondrial DNA is currently unknown. Here we investigated the role of PARP1 in the repair of the mitochondrial DNA in the baseline and oxidative stress conditions. We used wild-type A549 cells or cells depleted of PARP1. Our data show that intra-mitochondrial PARP1 interacts with a key mitocho...

  11. Goa1p of Candida albicans Localizes to the Mitochondria during Stress and Is Required for Mitochondrial Function and Virulence▿ †

    OpenAIRE

    Bambach, Adrienne; Fernandes, Mariana P.; Ghosh, Anup; Kruppa, Michael; Alex, Deepu; Li, Dongmei; Fonzi, William A.; Chauhan, Neeraj; Sun, Nuo; Agrellos, Orlando A.; Anibal E. Vercesi; Rolfes, Ronda J.; Calderone, Richard

    2009-01-01

    Using a Tn7 transposon library of Candida albicans, we have identified a mutant that exhibited sensitivity in drop plate assays to oxidants such as menadione and hydrogen peroxide. To verify the role of the mutated gene in stress adaptation, null mutants were constructed and phenotypically characterized. Because of its apparent functions in growth and oxidant adaptation, we have named the gene GOA1. Goa1p appears to be unique to the CTG subclade of the Saccharomycotina, including C. albicans....

  12. Mitochondrial DNA Variants of Respiratory Complex I that Uniquely Characterize Haplogroup T2 Are Associated with Increased Risk of Age-Related Macular Degeneration

    OpenAIRE

    SanGiovanni, John Paul; Arking, Dan E.; Sudha K. Iyengar; Elashoff, Michael; Clemons, Traci E.; Reed, George F.; Henning, Alice K.; Sivakumaran, Theru A; Xu, Xuming; DeWan, Andrew; Agrón, Elvira; Rochtchina, Elena; Carolyn M Sue; Wang, Jie Jin; Mitchell, Paul

    2009-01-01

    Background Age-related macular degeneration (AMD), a chronic neurodegenerative and neovascular retinal disease, is the leading cause of blindness in elderly people of western European origin. While structural and functional alterations in mitochondria (mt) and their metabolites have been implicated in the pathogenesis of chronic neurodegenerative and vascular diseases, the relationship of inherited variants in the mitochondrial genome and mt haplogroup subtypes with advanced AMD has not been ...

  13. Mitochondrial restriction fragment length polymorphism (RFLP) and sequence variation among closely related avian species and the genetic characterization of hybrid Dendroica warblers.

    Science.gov (United States)

    Lovette, I J; Bermingham, E; Rohwer, S; Wood, C

    1999-09-01

    To address several interconnected goals, we used mitochondrial DNA (mtDNA) sequences to explore evolutionary relationships among four potentially hybridizing taxa in a North American avian superspecies (Dendroica occidentalis, D. townsendi, D. virens, and D. nigrescens). We first compared the results of a previous restriction fragment length polymorphism (RFLP)-based study with 1453 nucleotides from the mitochondrial cytochrome oxidase subunit I (COI), ATP-synthase 6 (ATPase 6), and ATP-synthase 8 (ATPase 8) genes. Separate phylogenetic analyses of the RFLP and sequence data provided identical and well-supported hierarchical species-level reconstructions that grouped occidentalis and townsendi as sister taxa. We then explored several general features of mitochondrial evolution via a comparison of the RFLP and sequence data sets. Qualitative rate differences that seemed evident in highly autocorrelated comparisons of RFLP vs. sequence pairwise distances were not supported when autocorrelation was removed. We also noted a high variance in corresponding RFLP and sequence distances after the removal of autocorrelation effects. This variance suggests that caution should be used when combining RFLP and sequence-based data in studies that require the large-scale synthesis of divergence estimates drawn from sources employing different molecular techniques. Finally, we used our parallel RFLP and sequence data to design and validate a rapid and inexpensive polymerase chain reaction-RFLP (PCR-RFLP) protocol for determining species-specific mitochondrial haplotypes. This PCR-RFLP technique will be applied in ongoing studies of the occidentalis/townsendi hybrid zone, where the historic and geographical complexity of the interbreeding populations necessitates the genotyping of thousands of individual warblers. PMID:10564448

  14. Strokes in mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    N V Pizova

    2012-06-01

    Full Text Available It is suggested that mitochondrial diseases might be identified in 22—33% of cryptogenic stroke cases in young subjects. The incidence of mitochondrial disorders in patients with stroke is unknown; it is 0.8 to 7.2% according to the data of some authors. The paper gives data on the prevalence, pathogenesis, and clinical manifestations of mitochondrial diseases, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome (MELAS and insulin-like episodes; myoclonic epilepsy and ragged-red fibers (MERRF syndrome, and Kearns-Sayre syndrome (sporadic multisystem mitochondrial pathology.

  15. Mitochondrial dysfunction in inherited renal disease and acute kidney injury.

    Science.gov (United States)

    Emma, Francesco; Montini, Giovanni; Parikh, Samir M; Salviati, Leonardo

    2016-05-01

    Mitochondria are increasingly recognized as key players in genetic and acquired renal diseases. Most mitochondrial cytopathies that cause renal symptoms are characterized by tubular defects, but glomerular, tubulointerstitial and cystic diseases have also been described. For example, defects in coenzyme Q10 (CoQ10) biosynthesis and the mitochondrial DNA 3243 A>G mutation are important causes of focal segmental glomerulosclerosis in children and in adults, respectively. Although they sometimes present with isolated renal findings, mitochondrial diseases are frequently associated with symptoms related to central nervous system and neuromuscular involvement. They can result from mutations in nuclear genes that are inherited according to classic Mendelian rules or from mutations in mitochondrial DNA, which are transmitted according to more complex rules of mitochondrial genetics. Diagnosis of mitochondrial disorders involves clinical characterization of patients in combination with biochemical and genetic analyses. In particular, prompt diagnosis of CoQ10 biosynthesis defects is imperative because of their potentially reversible nature. In acute kidney injury (AKI), mitochondrial dysfunction contributes to the physiopathology of tissue injury, whereas mitochondrial biogenesis has an important role in the recovery of renal function. Potential therapies that target mitochondrial dysfunction or promote mitochondrial regeneration are being developed to limit renal damage during AKI and promote repair of injured tissue. PMID:26804019

  16. Mitochondrial localization, ELK-1 transcriptional regulation and Growth inhibitory functions of BRCA1, BRCA1a and BRCA1b proteins

    OpenAIRE

    Maniccia, Anna W.; Lewis, Catherine; BEGUM, NURJAHAN; Xu, Jingyao; Cui, Jianqi; Chipitsyna, Galina; AYSOLA, KARTIK; REDDY, VAISHALI; Bhat, Ganapathy; Fujimura, Yasuo; Henderson, Beric; Reddy, E. Shyam P; Rao, Veena N.

    2009-01-01

    BRCA1 is a tumor suppressor gene that is mutated in families with breast and ovarian cancer. Several BRCA1 splice variants are found in different tissues, but their subcellular localization and functions are poorly understood at the moment. We previously described BRCA1 splice variant BRCA1a to induce apoptosis and function as a tumor suppressor of triple negative breast, ovarian and prostate cancers. In this study we have analyzed the function of BRCA1 isoforms (BRCA1a and BRCA1b) and compar...

  17. Isoenzyme characterization of Leishmania isolated from human cases with localized cutaneous leishmaniasis from the State of Campeche, Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Canto-Lara, S B; Cardenas-Maruffo, M F; Vargas-Gonzalez, A; Andrade-Narvaez, F

    1998-04-01

    Seventy-five isolates from the State of Campeche, Mexico, an area endemic for localized cutaneous leishmaniasis (LCL), were characterized by isoenzyme markers (glucose phosphate isomerase, mannose phospate isomerase, nucleoside hydrolase, phosphoglucomutase, 6-phosphogluconate dehydrogenase, and glucose-6-phosphate dehydrogenase). Seventy (93.3%) were identified as Leishmania (Leishmania) mexicana and 5 (6.7%) as L. (Viannia) braziliensis. This is the first report of authochthonus human LCL caused by L. (V.) braziliensis in the State of Campeche, Yucatan Peninsula, Mexico. PMID:9574789

  18. Localization and characterization of hydrothermal alteration zones in a geothermal reservoir and their significance for rock mechanics

    OpenAIRE

    Meller, Carola

    2014-01-01

    The present thesis introduces a method to localize hydrothermally altered zones in a crystalline geothermal reservoir. On the basis of synthetic clay content logs, the geomechanical significance of clay zones is demonstrated. It is shown that clay zones reduce the rock strength, thus creating aseismic slips on fractures and affecting the evolution of induced seismicity. The results of the thesis highlight the importance of hydrothermal alteration for hydro-mechanical reservoir characterization.

  19. Histopathological characterization of corrosion product associated adverse local tissue reaction in hip implants: a study of 285 cases

    OpenAIRE

    Ricciardi, Benjamin F.; Nocon, Allina A.; Jerabek, Seth A.; Wilner, Gabrielle; Kaplowitz, Elianna; Goldring, Steven R.; Purdue, P Edward; Perino, Giorgio

    2016-01-01

    Background Adverse local tissue reaction (ALTR), characterized by a heterogeneous cellular inflammatory infiltrate and the presence of corrosion products in the periprosthetic soft tissues, has been recognized as a mechanism of failure in total hip replacement (THA). Different histological subtypes may have unique needs for longitudinal clinical follow-up and complication rates after revision arthroplasty. The purpose of this study was to describe the histological patterns observed in the per...

  20. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  1. Dynamics of Mitochondrial Transport in Axons.

    Science.gov (United States)

    Niescier, Robert F; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  2. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik;

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...

  3. Characterization of a nuclear localization signal in the foot-and-mouth disease virus polymerase

    International Nuclear Information System (INIS)

    We have experimentally tested whether the MRKTKLAPT sequence in FMDV 3D protein (residues 16 to 24) can act as a nuclear localization signal (NLS). Mutants with substitutions in two basic residues within this sequence, K18E and K20E, were generated. A decreased nuclear localization was observed in transiently expressed 3D and its precursor 3CD, suggesting a role of K18 and K20 in nuclear targeting. Fusion of MRKTKLAPT to the green fluorescence protein (GFP) increased the nuclear localization of GFP, which was not observed when GFP was fused to the 3D mutated sequences. These results indicate that the sequence MRKTKLAPT can be functionally considered as a NLS. When introduced in a FMDV full length RNA replacements K18E and K20E led to production of revertant viruses that replaced the acidic residues introduced (E) by K, suggesting that the presence of lysins at positions 18 and 20 of 3D is essential for virus multiplication. - Highlights: • The FMDV 3D polymerase contains a nuclear localization signal. • Replacements K18E and K20E decrease nuclear localization of 3D and its precursor 3CD. • Fusion of the MRKTKLAPT 3D motif to GFP increases the nuclear localization of GFP. • Replacements K18E and K20E abolish the ability of MRKTKLAPT to relocate GFP. • RNAs harboring replacements K18E and K20E lead to recovery of revertant FMDVs

  4. Characterization of a nuclear localization signal in the foot-and-mouth disease virus polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Aparicio, Maria Teresa; Rosas, Maria Flora [Centro de Biología Molecular, “Severo Ochoa” (CSIC-UAM), Cantoblanco 28049, Madrid (Spain); Sobrino, Francisco, E-mail: fsobrino@cbm.uam.es [Centro de Biología Molecular, “Severo Ochoa” (CSIC-UAM), Cantoblanco 28049, Madrid (Spain); Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, 28130 Madrid (Spain)

    2013-09-15

    We have experimentally tested whether the MRKTKLAPT sequence in FMDV 3D protein (residues 16 to 24) can act as a nuclear localization signal (NLS). Mutants with substitutions in two basic residues within this sequence, K18E and K20E, were generated. A decreased nuclear localization was observed in transiently expressed 3D and its precursor 3CD, suggesting a role of K18 and K20 in nuclear targeting. Fusion of MRKTKLAPT to the green fluorescence protein (GFP) increased the nuclear localization of GFP, which was not observed when GFP was fused to the 3D mutated sequences. These results indicate that the sequence MRKTKLAPT can be functionally considered as a NLS. When introduced in a FMDV full length RNA replacements K18E and K20E led to production of revertant viruses that replaced the acidic residues introduced (E) by K, suggesting that the presence of lysins at positions 18 and 20 of 3D is essential for virus multiplication. - Highlights: • The FMDV 3D polymerase contains a nuclear localization signal. • Replacements K18E and K20E decrease nuclear localization of 3D and its precursor 3CD. • Fusion of the MRKTKLAPT 3D motif to GFP increases the nuclear localization of GFP. • Replacements K18E and K20E abolish the ability of MRKTKLAPT to relocate GFP. • RNAs harboring replacements K18E and K20E lead to recovery of revertant FMDVs.

  5. Identification and characterization of a highly variable region in mitochondrial genomes of fusarium species and analysis of power generation from microbial fuel cells

    Science.gov (United States)

    Hamzah, Haider Mousa

    In the microbial fuel cell (MFC) project, power generation from Shewanella oneidensis MR-1 was analyzed looking for a novel system for both energy generation and sustainability. The results suggest the possibility of generating electricity from different organic substances, which include agricultural and industrial by-products. Shewanella oneidensis MR-1 generates usable electrons at 30°C using both submerged and solid state cultures. In the MFC biocathode experiment, most of the CO2 generated at the anodic chamber was converted into bicarbonate due the activity of carbonic anhydrase (CA) of the Gluconobacter sp.33 strain. These findings demonstrate the possibility of generation of electricity while at the same time allowing the biomimetic sequestration of CO2 using bacterial CA. In the mitochondrial genomes project, the filamentous fungal species Fusarium oxysporum was used as a model. This species causes wilt of several important agricultural crops. A previous study revealed that a highly variable region (HVR) in the mitochondrial DNA (mtDNA) of three species of Fusarium contained a large, variable unidentified open reading frame (LV-uORF). Using specific primers for two regions of the LV-uORF, six strains were found to contain the ORF by PCR and database searches identified 18 other strains outside of the Fusarium oxysporum species complex. The LV-uORF was also identified in three isolates of the F. oxysporum species complex. Interestingly, several F. oxysporum isolates lack the LV-uORF and instead contain 13 ORFs in the HVR, nine of which are unidentified. The high GC content and codon usage of the LV-uORF indicate that it did not co-evolve with other mt genes and was horizontally acquired and was introduced to the Fusarium lineage prior to speciation. The nonsynonymous/synonymous (dN/dS) ratio of the LV-uORFs (0.43) suggests it is under purifying selection and the putative polypeptide is predicted to be located in the mitochondrial membrane. Growth assays

  6. Oxygen Glucose Deprivation in Rat Hippocampal Slice Cultures Results in Alterations in Carnitine Homeostasis and Mitochondrial Dysfunction

    OpenAIRE

    Thomas F. Rau; Qing Lu; Shruti Sharma; Xutong Sun; Gregory Leary; Beckman, Matthew L.; Yali Hou; Wainwright, Mark S; Michael Kavanaugh; Poulsen, David J.; Black, Stephen M.

    2012-01-01

    Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neurop...

  7. In situ characterization of localized corrosion of stainless steel by scanning electrochemical microscope

    Science.gov (United States)

    Yin, Yuehua; Niu, Lin; Lu, Min; Guo, Weikuan; Chen, Shenhao

    2009-08-01

    Scanning electrochemical microscopy (SECM) area scan measurements have been performed to investigate the localized corrosion of type 304 stainless steel in neutral chloride solution. Variations in the Faradaic current measured at selected tip potential values can be related to changes in the local concentration and electrochemical activities of electroactive species involved in corrosion reactions occurring at the substrate as a function of immersion times of the substrate and polarized currents or potentials applied on the substrate. To further verify the results acquired from cyclic voltammetric experiments, SECM measurements were employed to in situ study the compositions and electrochemical activity distribution profile of the pitting corrosion products of stainless steel. It has been demonstrated that the combination of feedback current mode with generation-collection (G-C) mode of SECM is suitable to elucidate the possible reaction mechanisms and paths involved in the localize corrosion of stainless steel in neutral chloride solution.

  8. Characterization by TEM of local crystalline changes during irradiation damage of hydroxyapatite compounds

    International Nuclear Information System (INIS)

    Local crystalline changes during transmission electron microscopy (TEM) examination of hydroxyapatite (OHAp) compounds have been revealed by combining electron diffraction analysis and the Moire fringe method. The latter is a sensitive tool for the detection of small crystal variations induced by beam irradiation damage in the OHAp structure. TEM observations suggest that a hexagonal (P63/m) to monoclinic (with b = 2a) transformation could occur as a possible result of beam-induced stoichiometry changes. Such order-disorder transformations seem to be related to very small local crystal lattice rotations as deduced by the changing of the Moire patterns period under the electron beam

  9. Characterization of the Nuclear Localization Signal of High Risk HPV16 E2 Protein

    OpenAIRE

    Klucevsek, Kristin; Wertz, Mary; Lucchi, John; Leszczynski, Anna; Moroianu, Junona

    2006-01-01

    The E2 protein of high risk human papillomavirus type 16 (HPV16) contains an amino-terminal (N) domain, a hinge (H) region and a carboxyl-terminal (C) DNA binding domain. Using enhanced green fluorescent protein (EGFP) fusions with full length E2 and E2 domains in transfection assays in HeLa cells we found that the C domain is responsible for the nuclear localization of E2 in vivo, whereas the N and H domains do not contain additional nuclear localization signals (NLSs). Deletion analysis of ...

  10. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior. This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.

  11. Characterization and expression of a cDNA, AmphiSDHD,encoding the amphioxus cytochrome b small subunit in mitochondrial succinate-ubiquinone oxidoreductase

    Institute of Scientific and Technical Information of China (English)

    MA Lifang; ZHANG Shicui; ZHUANG Zhimeng; LIU Zhenhui; LI Hongyan; XIA Jianjun

    2005-01-01

    In this study, an amphioxus cDNA, AmphiSDHD, encoding the cytochrome b small subunit in mitochondrial succinate-ubiquinone oxidoreductase, was isolated from the gut cDNA library of amphioxus Branchiostoma belcheri tsingtauense. It is 1429 bp in length, with an open reading frame of 465 bp coding for a protein of 154 amino acids. The deduced protein contains a mitochondrial targeting presequence of 65 amino acids rich in basic residues like arginine and hydroxy residues such as serine and threonine. Alignment of the amino acid sequences of AmphiSDHD and other eukaryotic SDHD proteins showed that AmphiSDHD has three transmembrane segments, and includes two histidine residues in the second transmembrane segment that are the putative binding sites for the heme b molecule. The phylogenetic tree constructed suggests that AmphiSDHD appears more closely related to vertebrate SDHD proteins than invertebrate ones. Northern blotting demonstrated that AmphiSDHD is ubiquitously expressed in amphioxus, being in line with the fact that SDHD is a house-keeping protein.

  12. Prevalence and clinical characterization of Japanese diabetes mellitus with an A-to-G mutation at nucleotide 3243 of the mitochondrial tRNA{sup Leu (UUR)} gene

    Energy Technology Data Exchange (ETDEWEB)

    Odawara, Masato; Sasaki, Kayoko; Yamashita, Kamejiro [Univ. of Tsukuba (Japan)

    1995-04-01

    An A-to-G mutation at nucleotide position 3243 of the mitochondrial genome has been associated with insulin-dependent diabetes mellitus (IDDM) and with noninsulin-dependent diabetes mellitus (NIDDM) with deafness. We investigated the prevalence of this mutation in Japanese patients with IDDM, NIDDM, and impaired glucose tolerance (IGT) and in nondiabetic control individuals, and we identified it in 3 of 300 patients with NIDDM or IGT (1.0%). None of these individuals had significant sensorineural hearing loss. None of the 94 IDDM or the 115 nondiabetic control subjects was positive for this mutation. Oral glucose tolerance test revealed that a 57-yr-old male with this mutation was rather hyperinsulinemic in the fasting state. The insulin secretion in this patient decreased with age; he did not complain of any hearing disorder, although audiometry revealed a slight elevation of hearing threshold at high frequencies. In conclusion, we found that a mitochondrial gene mutation at nucleotide position 3243 was present in about 1% of NIDDM patients including those patients with IGT. The subtype of diabetes mellitus with this mutation may have a clinical profile similar to that found in patients with NIDDM commonly seen in outpatient clinics. 25 refs., 2 figs., 1 tab.

  13. Method to characterize local meteorology at nuclear facilities for application to emergency response needs

    International Nuclear Information System (INIS)

    Effluent dispersion is evaluated using computer codes that require various meteorological parameters such as wind and stability data. These data will be based on current conditions at the site in question, and on forecasts of the expected local meteorology for the time period to be simulated. To assist NRC personnel in preparing these forecasts, a weather-typing model was implemented to analyze the characteristic behavior of local meteorology as it responds to various synoptic-scale weather features (e.g., warm fronts, cold fronts, high pressure systems). Historical observations acquired by instrumented towers at several nuclear power plants were analyzed as a function of the prevailing synoptic weather feature, synoptic-scale pressure gradient, and time of year. This study focused on sites located in shoreline and complex terrain environments because of the occurrence of mesoscale circulations, which are the sea/lake-land breeze and valley wind systems. Such circulations produce diurnally changing wind and stability conditions that cannot be readily identified by synoptic-scale weather forecasts. The advantage in analyzing the climatological behavior of local meteorology as it responds to various synoptic weather systems is that certain weather systems will control the local meteorology and produce persistent conditions

  14. Women with inoperable or locally advanced breast cancer -- what characterizes them?

    DEFF Research Database (Denmark)

    El-Charnoubi, Waseem Asim Ghulam; Svendsen, Jesper Brink; Tange, Ulla Brix; Kroman, Niels

    2012-01-01

    Breast cancer is the most common cancer among Danish women. Locally advanced breast cancer occurs in a relatively large proportion of all new primary breast cancer diagnoses and for unexplained reasons 20-30% of women with breast cancer wait more than eight weeks from the initial breast cancer...

  15. Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium

    NARCIS (Netherlands)

    Ahmed, M.; Wijnholds, A.; Stal, L.J.; Hasnain, S.

    2014-01-01

    Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated strai

  16. Characterization, subcellular localization and nuclear targeting of casein kinase 2 from Zea mays

    DEFF Research Database (Denmark)

    Peracchia, G; Jensen, A B; Culiáñez-Macià, F A;

    1999-01-01

    by using in-frame fusions of the maize CK2alpha subunit to the reporter gene encoding beta-glucuronidase (GUS) which were assayed in transiently transformed onion epidermal cells. Analysis of chimeric constructs identified one region containing a nuclear localization signal (NLS) that is highly conserved...

  17. Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase

    OpenAIRE

    Tomecki, Rafal; Dmochowska, Aleksandra; Gewartowski, Kamil; Dziembowski, Andrzej; Stepien, Piotr P.

    2004-01-01

    We report here on the identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase. Immunocytochemical experiments confirm that the enzyme indeed localizes to mitochondrial compartment. Inhibition of expression of the enzyme by RNA interference results in significant shortening of the poly(A) tails of the mitochondrial ND3, COX III and ATP 6/8 transcripts, suggesting that the investigated protein represents a bona fide mitochondrial poly(A) polymerase. This is in agreement...

  18. Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling

    OpenAIRE

    Williams, Christopher C.; Jan, Calvin H.; Weissman, Jonathan S.

    2014-01-01

    Nearly all mitochondrial proteins are nuclear-encoded and are targeted to their mitochondrial destination from the cytosol. Here, we used proximity-specific ribosome profiling to comprehensively measure translation at the mitochondrial surface in yeast. Most inner membrane proteins were co-translationally targeted to mitochondria, reminiscent of proteins entering the endoplasmic reticulum (ER). Comparison between mitochondrial and ER localization demonstrated that the vast majority of protein...

  19. Mitochondrial oxidative stress causes hyperphosphorylation of tau.

    Directory of Open Access Journals (Sweden)

    Simon Melov

    Full Text Available Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD: tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2 die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576 with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

  20. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    International Nuclear Information System (INIS)

    Highlights: ► We report first time that ionizing radiation induces mitochondrial dynamic changes. ► Radiation-induced mitochondrial fission was caused by Drp1 localization. ► We found that radiation causes delayed ROS from mitochondria. ► Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O2·- production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O2·-. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.

  1. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  2. Characterization of immune cells and cytokine localization in the rat utero-placental unit mid- to late gestation.

    Science.gov (United States)

    Tessier, Daniel R; Raha, Sandeep; Holloway, Alison C; Yockell-Lelièvre, Julien; Tayade, Chandrakant; Gruslin, Andrée

    2015-08-01

    The success of pregnancy is dependent on the precise regulation of the immune response within the utero-placental environment. Rats are beginning to be widely used as a model for human immune-related pregnancy complications. However, our knowledge of immune cells and cytokine localization in the rat utero-placental tissue is limited. The current study aimed to localize the immune cell populations, including uterine natural killer (uNK) cells, neutrophils, and macrophages within the rat utero-placental unit at two crucial gestational ages, gestational days 15.5 and 18.5. In addition, we characterized the distribution of the cytokines TNFα, IFNγ, and IL-10 in the utero-placental regions at both the above-mentioned gestational ages. Our study has demonstrated co-localization TNFα and IFNγ with uNK cells in perivascular regions of the rat mesometrial triangle at both gestational ages. Neutrophils and IL-10-positive cells were localized at the maternal-fetal interface and in the spiral artery lumen of the rat mesometrial triangle at both gestational ages. TNFα and IL-10 demonstrated a temporal change in the localization from GD15.5 to GD18.5, which coincides with the leading edge of trophoblast invasion into the mesometrial triangle. The current study furthers our knowledge of the localization of uterine immune cells and relevant cytokines, and provides a base from which to research the function of these immune cells and cytokines during rat pregnancy as a model to study human immune-related pregnancy complications. PMID:25725501

  3. A Human Mitochondrial Transcription Factor Is Related to RNA Adenine Methyltransferases and Binds S-Adenosylmethionine

    OpenAIRE

    McCulloch, Vicki; Seidel-Rogol, Bonnie L.; Shadel, Gerald S.

    2002-01-01

    A critical step toward understanding mitochondrial genetics and its impact on human disease is to identify and characterize the full complement of nucleus-encoded factors required for mitochondrial gene expression and mitochondrial DNA (mtDNA) replication. Two factors required for transcription initiation from a human mitochondrial promoter are h-mtRNA polymerase and the DNA binding transcription factor, h-mtTFA. However, based on studies in model systems, the existence of a second human mito...

  4. Cytonuclear Interactions in the Evolution of Animal Mitochondrial tRNA Metabolism

    OpenAIRE

    Pett, Walker; Lavrov, Dennis V.

    2015-01-01

    The evolution of mitochondrial information processing pathways, including replication, transcription and translation, is characterized by the gradual replacement of mitochondrial-encoded proteins with nuclear-encoded counterparts of diverse evolutionary origins. Although the ancestral enzymes involved in mitochondrial transcription and replication have been replaced early in eukaryotic evolution, mitochondrial translation is still carried out by an apparatus largely inherited from the α-prote...

  5. Autism in the Son of a Woman with Mitochondrial Myopathy and Dysautonomia: A Case Report

    OpenAIRE

    Brown, Bradley D; Rais, Theodore

    2015-01-01

    The relationship between autism spectrum disorders and mitochondrial dysfunction, including mitochondrial myopathies and other mitochondrial diseases, is an area of ongoing research. All autism spectrum disorders are known to be heritable, via genetic and/or epigenetic mechanisms, but specific modes of inheritance are not well characterized. Nevertheless, autism spectrum disorders have been linked to many specific genes associated with mitochondrial function, especially to genes involved in m...

  6. Local non-negative initial data scalar characterization of the Kerr solution

    Science.gov (United States)

    García-Parrado Gómez-Lobo, Alfonso

    2015-12-01

    For any vacuum initial data set, we define a local, non-negative scalar quantity that vanishes at every point of the data hypersurface if and only if the data are Kerr initial data. Our scalar quantity depends only on the quantities used to construct the vacuum initial data set that are the Riemannian metric defined on the initial data hypersurface and a symmetric tensor that plays the role of the second fundamental form of the embedded initial data hypersurface. The dependency is algorithmic in the sense that given the initial data one can compute the scalar quantity by algebraic and differential manipulations, being thus suitable for an implementation in a numerical code. The scalar could also be useful in studies of the nonlinear stability of the Kerr solution because it serves to measure the deviation of a vacuum initial data set from the Kerr initial data in a local and algorithmic way.

  7. Localization and characterization of brain somatostatin receptors as studied with somatostatin-14 and somatostatin-28 receptor radioautography

    International Nuclear Information System (INIS)

    The localization and characterization of receptors for somatostatin-14 (S-14) and somatostatin-28 (S-28) were studied in the rat brain using the iodinated agonists [Tyr0,D-Trp8]S-14 and [Leu8,D-Trp22,Tyr25]S-28 as tracers. By radioautography, the distribution of receptors for both S-14 and S-28 appeared very similar with high levels of binding in the deep layers of the cortex, the cingulate cortex, the claustrum, the locus coeruleus and most structures of the limbic system. Generally, there was a correlation between the localization of somatostatin receptors and that of immunoreactive somatostatin, as evaluated by immunocytochemistry. However, in some areas, an inverse correlation between receptor and peptide concentrations was observed. (Auth.)

  8. Characterization of Adenomatous Polyposis Coli Protein Dynamics and Localization at the Centrosome

    OpenAIRE

    Christina Lui; Myth T. S. Mok; Henderson, Beric R.

    2016-01-01

    The adenomatous polyposis coli (APC) tumor suppressor is a multifunctional regulator of Wnt signaling and acts as a mobile scaffold at different cellular sites. APC was recently found to stimulate microtubule (MT) growth at the interphase centrosome; however, little is known about its dynamics and localization at this site. To address this, we analysed APC dynamics in fixed and live cells by fluorescence microscopy. In detergent-extracted cells, we discovered that APC was only weakly retained...

  9. Localization and Characterization of α-Glucosidase Activity in Brettanomyces lambicus

    OpenAIRE

    Kumara, H. M. C. Shantha; Cort, S.; Verachtert, H.

    1993-01-01

    Brettanomyces lambicus was isolated and identified from a typical overattenuating Belgian lambic beer and exhibited extracellular and intracellular α-glucosidase activities. Production of the intracellular enzyme was higher than production of the extracellular enzyme, and localization studies showed that the intracellular α-glucosidase is mostly soluble and partially cell wall bound. Both intracellular and extracellular enzymes were purified by ammonium sulfate precipitation, gel filtration (...

  10. CHARACTERIZATION OF MUNICIPAL SOLID WASTE, IN KAZAURE LOCAL GOVERNMENT AREA, JIGAWA STATE, NIGERIA

    OpenAIRE

    Abubakar Abdullahi Musa*, Armaya’u Suleiman Labo, Surayya M. Lamido, Sarki Aliyu Salisu, Muhammad Bello Ibrahim, Nura Bello

    2016-01-01

    Municipal solid waste is been one of the greatest challenge facing environmental Protection agencies in most cities of the world. This Paper presents a generation and compositions of municipal solid waste in Kazaure local government Jigawa state, the compositions of municipal solid waste were determined using samples obtained from Central collection situated at Kanti area. However, Kanti landfill received a volume of municipal solid waste from eleven wards of 175.07 m3 in dry season and 182.2...

  11. Drosophila melanogaster Hsp22: a mitochondrial small heat shock protein influencing the aging process

    Directory of Open Access Journals (Sweden)

    Genevieve eMorrow

    2015-03-01

    Full Text Available Mitochondria are involved in many key cellular processes and therefore need to rely on good protein quality control (PQC. Three types of mechanisms are in place to insure mitochondrial protein integrity: reactive oxygen species (ROS scavenging by anti-oxidant enzymes, protein folding/degradation by molecular chaperones and proteases and clearance of defective mitochondria by mitophagy. Drosophila melanogaster Hsp22 is part of the molecular chaperone axis of the PQC and is characterized by its intra-mitochondrial localization and preferential expression during aging. As a stress biomarker, the level of its expression during aging has been shown to partially predict the remaining lifespan of flies. Since over-expression of this small heat shock protein (sHSP increases lifespan and resistance to stress, Hsp22 most likely has a positive effect on mitochondrial integrity. Accordingly, Hsp22 has recently been implicated in the mitochondrial unfolding protein response (mtUPR of flies. This review will summarize the key findings on D. melanogaster Hsp22 and emphasis on its links with the aging process.

  12. Biochemical characterization and subcellular localization of the red kidney bean purple acid phosphatase

    International Nuclear Information System (INIS)

    Phosphatases are known to play a crucial role in phosphate turnover in plants. However, the exact role of acid phosphatases in plants has been elusive because of insufficient knowledge of their in vivo substrate and subcellular localization. We investigated the biochemical properties of a purple acid phosphatase isolated from red kidney bean (Phaseolus vulgaris) (KBPAP) with respect to its substrate and inhibitor profiles. The kinetic parameters were estimated for five substrates. We used 31P nuclear magnetic resonance to investigate the in vivo substrate of KBPAP. Chemical and enzymological estimation of polyphosphates and ATP, respectively, indicated the absence of polyphosphates and the presence of ATP in trace amounts in the seed extracts. Immunolocalization using antibodies raised against KBPAP was unsuccessful because of the nonspecificity of the antiserum toward glycoproteins. Using histoenzymological methods with ATP as a substrate, we could localize KBPAP exclusively in the cell walls of the peripheral two to three rows of cells in the cotyledons. KBPAP activity was not detected in the embryo. In vitro experiments indicated that pectin, a major component of the cell wall, significantly altered the kinetic properties of KBPAP. The substrate profile and localization suggest that KBPAP may have a role in mobilizing organic phosphates in the soil during germination

  13. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    International Nuclear Information System (INIS)

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces

  14. The defective expression of gtpbp3 related to tRNA modification alters the mitochondrial function and development of zebrafish.

    Science.gov (United States)

    Chen, Danni; Li, Feng; Yang, Qingxian; Tian, Miao; Zhang, Zengming; Zhang, Qinghai; Chen, Ye; Guan, Min-Xin

    2016-08-01

    Human mitochondrial DNA (mtDNA) mutations have been associated with a wide spectrum of clinical abnormalities. However, nuclear modifier gene(s) modulate the phenotypic expression of pathogenic mtDNA mutations. In our previous investigation, we identified the human GTPBP3 related to mitochondrial tRNA modification, acting as a modifier to influence of deafness-associated mtDNA mutation. Mutations in GTPBP3 have been found to be associated with other human diseases. However, the pathophysiology of GTPBP3-associated disorders is still not fully understood. Here, we reported the generation and characterization of Gtpbp3 depletion zebrafish model using antisense morpholinos. Zebrafish gtpbp3 has three isoforms localized at mitochondria. Zebrafish gtpbp3 is expressed at various embryonic stages and in multiple tissues. In particular, the gtpbp3 was expressed more abundantly in adult zebrafish ovary and testis. The expression of zebrafish gtpbp3 can functionally restore the growth defects caused by the mss1/gtpbp3 mutation in yeast. A marked decrease of mitochondrial ATP generation accompanied by increased levels of apoptosis and reactive oxygen species were observed in gtpbp3 knockdown zebrafish embryos. The Gtpbp3 morphants exhibited defective in embryonic development including bleeding, melenin, oedema and curved tails within 5days post fertilization, as compared with uninjected controls. The co-injection of wild type gtpbp3 mRNA partially rescued these defects in Gtpbp3 morphants. These data suggest that zebrafish Gtpbp3 is a structural and functional homolog of human and yeast GTPBP3. The mitochondrial dysfunction caused by defective Gtpbp3 may alter the embryonic development in the zebrafish. In addition, this zebrafish model of mitochondrial disease may provide unique opportunities for studying defective tRNA modification, mitochondrial biogenesis, and pathophysiology of mitochondrial disorders. PMID:27184967

  15. Data on the characterization of follicle-stimulating hormone monoclonal antibodies and localization in Japanese eel pituitary.

    Science.gov (United States)

    Kim, Dae-Jung; Park, Chae-Won; Byambaragchaa, Munkhzaya; Kim, Shin-Kwon; Lee, Bae-Ik; Hwang, Hyung-Kyu; Myeong, Jeong-In; Hong, Sun-Mee; Kang, Myung-Hwa; Min, Kwan-Sik

    2016-09-01

    Monoclonal antibodies were generated against recombinant follicle-stimulating hormone (rec-FSH) from Japanese eel Anguilla japonica; rec-FSH was produced in Escherichia coli and purified using Ni-NTA Sepharose column chromatography. In support of our recent publication, "Production and characterization of monoclonal antibodies against recombinant tethered follicle-stimulating hormone from Japanese eel Anguilla japonica" [1], it was important to characterize the specificity of eel follicle-stimulating hormone antibodies. Here, the production and ELISA system of these monoclonal antibodies are presented. The affinity-purified monoclonal antibodies specifically detected eel rec-FSH in ELISA and on western blots of rec-FSH produced from CHO cells. Immunohistochemical analysis revealed that FSH staining was specifically localized in the eel pituitary. PMID:27331121

  16. Preparation and physico-chemical characterization of inclusion complexes between local anesthetics and hydroxypropyl-β-cyclodextrin

    International Nuclear Information System (INIS)

    S(-) Bupivacaine (S(-)BVC) and Lidocaine (LDC) are widely used local anesthetics (LA). Hydroxypropyl β-cyclodextrin (HP-β-CD) is used as a drug-carrier system. The aim of this work was to characterize inclusion complexes between LA and HP-β-CD. The affinity constants determined at different pHs show favourable complexation. The release kinetics experiments showed that S(-)BVC and LDC changed the released profiles in the presence of HP-β-CD. Nuclear magnetic resonance experiments gave information about the interaction between LA and the cyclodextrin cavity. This study focused on the physicochemical characterization of drug-delivery formulations that come out as potentially new therapeutic options for pain treatment. (author)

  17. A highly conserved Poc1 protein characterized in embryos of the hydrozoan Clytia hemisphaerica: localization and functional studies.

    Directory of Open Access Journals (Sweden)

    Cécile Fourrage

    Full Text Available Poc1 (Protein of Centriole 1 proteins are highly conserved WD40 domain-containing centriole components, well characterized in the alga Chlamydomonas, the ciliated protazoan Tetrahymena, the insect Drosophila and in vertebrate cells including Xenopus and zebrafish embryos. Functions and localizations related to the centriole and ciliary axoneme have been demonstrated for Poc1 in a range of species. The vertebrate Poc1 protein has also been reported to show an additional association with mitochondria, including enrichment in the specialized "germ plasm" region of Xenopus oocytes. We have identified and characterized a highly conserved Poc1 protein in the cnidarian Clytia hemisphaerica. Clytia Poc1 mRNA was found to be strongly expressed in eggs and early embryos, showing a punctate perinuclear localization in young oocytes. Fluorescence-tagged Poc1 proteins expressed in developing embryos showed strong localization to centrioles, including basal bodies. Anti-human Poc1 antibodies decorated mitochondria in Clytia, as reported in human cells, but failed to recognise endogenous or fluorescent-tagged Clytia Poc1. Injection of specific morpholino oligonucleotides into Clytia eggs prior to fertilization to repress Poc1 mRNA translation interfered with cell division from the blastula stage, likely corresponding to when neosynthesis normally takes over from maternally supplied protein. Cell cycle lengthening and arrest were observed, phenotypes consistent with an impaired centriolar biogenesis or function. The specificity of the defects could be demonstrated by injection of synthetic Poc1 mRNA, which restored normal development. We conclude that in Clytia embryos, Poc1 has an essentially centriolar localization and function.

  18. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    OpenAIRE

    Hyun Woo Nho; Yogesh Kalegowda; Hyun-Joon Shin; Tae Hyun Yoon

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC ...

  19. Characterization of subcellular localization and stability of a splice variant of G alphai2

    Directory of Open Access Journals (Sweden)

    Wedegaertner Philip B

    2002-05-01

    Full Text Available Abstract Background Alternative mRNA splicing of αi2, a heterotrimeric G protein α subunit, has been shown to produce an additional protein, termed sαi2. In the sαi2 splice variant, 35 novel amino acids replace the normal C-terminal 24 amino acids of αi2. Whereas αi2 is found predominantly at cellular plasma membranes, sαi2 has been localized to intracellular Golgi membranes, and the unique 35 amino acids of sαi2 have been suggested to constitute a specific targeting signal. Results This paper proposes and examines an alternative hypothesis: disruption of the normal C-terminus of αi2 produces an unstable protein that fails to localize to plasma membranes. sαi2 is poorly expressed upon transfection of cultured cells; however, radiolabeling indicated that αi2 and sαi2 undergo myristoylation, a co-translational modification, equally well suggesting that protein stability rather than translation is affected. Indeed, pulse-chase analysis indicates that sαi2 is more rapidly degraded compared to αi2. Co-expression of βγ rescues PM localization and increases expression of sαi2. In addition, αi2A327S, a mutant previously shown to be unstable and defective in guanine-nucleotide binding, and αi2(1–331, in which the C-terminal 24 amino acids of αi2 are deleted, show a similar pattern of subcellular localization as sαi2 (i.e., intracellular membranes rather than plasma membranes. Finally, sαi2 displays a propensity to localize to potential aggresome-like structures. Conclusions Thus, instead of the novel C-terminus of sαi2 functioning as a specific Golgi targeting signal, the results presented here indicate that the disruption of the normal C-terminus of αi2 causes mislocalization and rapid degradation of sαi2.

  20. Local versus field scale soil heterogeneity characterization – a challenge for representative sampling in pollution studies

    OpenAIRE

    Z. Kardanpour; Jacobsen, O. S.; Esbensen, K.H.

    2015-01-01

    This study is a contribution to development of a heterogeneity characterization facility for "next-generation" soil sampling aimed, for example, at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity in quantification of a set of exemplar parameters is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pol...

  1. Mitochondrial Dynamics in Diabetes

    OpenAIRE

    Yoon, Yisang; Galloway, Chad A.; Jhun, Bong Sook; Yu, Tianzheng

    2011-01-01

    Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emergin...

  2. Pharmacological characterization and autoradiographic localization and dopamine receptors in the human adrenal cortex

    International Nuclear Information System (INIS)

    The pharmacological characteristics and the anatomical localization of dopamine D1-like and D2-like receptors were studied in sections of the human adrenal cortex using radioligand binding and autoradiographic techniques. [3H]SCH 23390 was used as a ligand of D1-like receptors, whereas [3H]spiroperidol was used to label D2-like receptors. No specific [3H]SCH 23390 binding was detectable in sections of the human adrenal cortex. On the other hand, [3H]spiroperidol was bound to sections of the adrenal gland in a manner consistent with the labelling of dopamine D2-like receptor sites. The binding was time, temperature and concentration dependent, belonging in the range of concentrations of the radioligand used for a single class of high-affinity sites. The dissociation constant (Kd) averaged 2.7 nmol/l, whereas the maximum density of binding sites (Bmax) was 160 nmol/mg tissue. Experiments on the pharmacological specificity of [3H]spiroperidol binding to sections of the human adrenal cortex revealed that clozapine was the most powerful displacer of [3H]spiroperidol from sections of the human adrenal cortex. This suggests the presence in the human adrenal cortex of dopamine receptors of the D4 subtype. Light microscope autoradiography showed the highest density of specific [3H]spiroperidol binding sites in the zona glomerulosa and to a lesser extent in the zona reticularis. Only sparse [3H]spiroperidol binding sites were localized in the zona fasciculata. The possible functional consequences of this localization of dopamine D2-like receptor sites in the human adrenal cortex are discussed. 37 refs., 3 figs., 1 tab

  3. Characterization and subcellular localization of an RNA silencing suppressor encoded by Rice stripe tenuivirus

    International Nuclear Information System (INIS)

    Rice stripe virus (RSV) is a single-stranded (ss) RNA virus belonging to the genus Tenuivirus. RSV is present in many East Asian countries and causes severe diseases in rice fields, especially in China. In this study, we analyzed six proteins encoded by the virus for their abilities to suppress RNA silencing in plant using a green fluorescent protein (GFP)-based transient expression assay. Our results indicate that NS3 encoded by RSV RNA3, but not other five RSV encoded proteins, can strongly suppress local GFP silencing in agroinfiltrated Nicotiana benthamiana leaves. NS3 can reverse the GFP silencing, it can also prevent long distance spread of silencing signals which have been reported to be necessary for inducing systemic silencing in host plants. The NS3 protein can significantly reduce the levels of small interfering RNAs (siRNAs) in silencing cells, and was found to bind 21-nucleotide ss-siRNA, siRNA duplex and long ssRNA but not long double-stranded (ds)-RNA. Both N and C terminal of the NS3 protein are critical for silencing suppression, and mutation of the putative nuclear localization signal decreases its local silencing suppression efficiency and blocks its systemic silencing suppression. The NS3-GFP fusion protein and NS3 were shown to accumulate predominantly in nuclei of onion, tobacco and rice cells through transient expression assay or immunocytochemistry and electron microscopy. In addition, transgenic rice and tobacco plants expressing the NS3 did not show any apparent alteration in plant growth and morphology, although NS3 was proven to be a pathogenicity determinant in the PVX heterogenous system. Taken together, our results demonstrate that RSV NS3 is a suppressor of RNA silencing in planta, possibly through sequestering siRNA molecules generated in cells that are undergoing gene silencing.

  4. “PRODUCTION & CHARACTERIZATION OF ALKALINE PROTEASE FROM LOCALLY ISOLATED ALKALIPHILIC BACILLUS SPECIES”

    OpenAIRE

    Afshan Jameel,; Mazharuddin Khan Mohd

    2011-01-01

    In present study 50 bacterial alkaliphilic Bacillus species were isolated from local habitat. Out of fifty, 5 promising isolates were selected for production of protease enzyme. Horikoshi I media was used in production. Production was carried out at different temperatures, different pH and at different substrate concentrations.Maximum production recorded at 400C and at pH- 10 by isolates 3, 4 and 5 and isolates 1 and 2 produce maximum protease at 400C and at pH – 9. Low substrate concentratio...

  5. Characterization and local magnetic modification of ion irradiated GaMnAs

    International Nuclear Information System (INIS)

    We study the influence of ion irradiation on magnetic, magneto-transport and structural properties in Ga0.94Mn0.06As films. The carrier concentration is accurately controlled by defects introduced via ion irradiation. Magnetic properties strongly depend on the hole concentration. We present the modification of coercivity, magnetic anisotropy, and magnetotransport properties during such a procedure. By X-ray diffraction and Raman spectra, we exclude the effects from structural changes. Using lithograph made resist mask, one can realize planar local structures with different magnetic properties, indicating the promising future of ion irradiation for spintronics device fabrication.

  6. Differential localization and characterization of functional calcitonin gene-related peptide receptors in human subcutaneous arteries

    DEFF Research Database (Denmark)

    Edvinsson, L; Ahnstedt, H; Larsen, R;

    2014-01-01

    Calcitonin gene-related peptide (CGRP) and its receptor are widely distributed within the circulation and the mechanism behind its vasodilation not only differs from one animal species to another but is also dependent on the type and size of vessel. The present study examines the nature of CGRP......-induced vasodilation, characteristics of the CGRP receptor antagonist telcagepant and localization of the key components calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1 (RAMP1) of the CGRP receptor in human subcutaneous arteries....

  7. Factors affecting characterization and localization of interindividual differences in functional connectivity using MRI.

    Science.gov (United States)

    Airan, Raag D; Vogelstein, Joshua T; Pillai, Jay J; Caffo, Brian; Pekar, James J; Sair, Haris I

    2016-05-01

    Much recent attention has been paid to quantifying anatomic and functional neuroimaging on the individual subject level. For optimal individual subject characterization, specific acquisition and analysis features need to be identified that maximize interindividual variability while concomitantly minimizing intra-subject variability. We delineate the effect of various acquisition parameters (length of acquisition, sampling frequency) and analysis methods (time course extraction, region of interest parcellation, and thresholding of connectivity-derived network graphs) on characterizing individual subject differentiation. We utilize a non-parametric statistical metric that quantifies the degree to which a parameter set allows this individual subject differentiation by both maximizing interindividual variance and minimizing intra-individual variance. We apply this metric to analysis of four publicly available test-retest resting-state fMRI (rs-fMRI) data sets. We find that for the question of maximizing individual differentiation, (i) for increasing sampling, there is a relative tradeoff between increased sampling frequency and increased acquisition time; (ii) for the sizes of the interrogated data sets, only 3-4 min of acquisition time was sufficient to maximally differentiate each subject with an algorithm that utilized no a priori information regarding subject identification; and (iii) brain regions that most contribute to this individual subject characterization lie in the default mode, attention, and executive control networks. These findings may guide optimal rs-fMRI experiment design and may elucidate the neural bases for subject-to-subject differences. Hum Brain Mapp 37:1986-1997, 2016. © 2016 Wiley Periodicals, Inc. PMID:27012314

  8. Characterization and histologic localization of human growth hormone-variant gene expression in the placenta.

    OpenAIRE

    Liebhaber, S A; Urbanek, M; Ray, J.; Tuan, R.S.; Cooke, N E

    1989-01-01

    The human growth hormone-variant (hGH-V) gene is one of five highly similar growth hormone-related genes clustered on the short arm of chromosome 17. Although the pattern of expression of the adjacent normal growth hormone (hGH-N) and chorionic somatomammotropin (hCS) genes in this cluster are well characterized, the expression of the hGH-V gene remains to be defined. In previous studies, we have demonstrated that the hGH-V gene is transcribed in the term placenta and expressed as two alterna...

  9. Characterization of Adenomatous Polyposis Coli Protein Dynamics and Localization at the Centrosome.

    Science.gov (United States)

    Lui, Christina; Mok, Myth T S; Henderson, Beric R

    2016-01-01

    The adenomatous polyposis coli (APC) tumor suppressor is a multifunctional regulator of Wnt signaling and acts as a mobile scaffold at different cellular sites. APC was recently found to stimulate microtubule (MT) growth at the interphase centrosome; however, little is known about its dynamics and localization at this site. To address this, we analysed APC dynamics in fixed and live cells by fluorescence microscopy. In detergent-extracted cells, we discovered that APC was only weakly retained at the centrosome during interphase suggesting a rapid rate of exchange. This was confirmed in living cells by fluorescence recovery after photobleaching (FRAP), which identified two pools of green fluorescent protein (GFP)-APC: a major rapidly exchanging pool (~86%) and minor retained pool (~14%). The dynamic exchange rate of APC was unaffected by C-terminal truncations implicating a targeting role for the N-terminus. Indeed, we mapped centrosome localization to N-terminal armadillo repeat (ARM) domain amino acids 334-625. Interestingly, the rate of APC movement to the centrosome was stimulated by intact MTs, and APC dynamics slowed when MTs were disrupted by nocodazole treatment or knockdown of γ-tubulin. Thus, the rate of APC recycling at the centrosome is enhanced by MT growth, suggesting a positive feedback to stimulate its role in MT growth. PMID:27144584

  10. Characterization of Adenomatous Polyposis Coli Protein Dynamics and Localization at the Centrosome

    Directory of Open Access Journals (Sweden)

    Christina Lui

    2016-04-01

    Full Text Available The adenomatous polyposis coli (APC tumor suppressor is a multifunctional regulator of Wnt signaling and acts as a mobile scaffold at different cellular sites. APC was recently found to stimulate microtubule (MT growth at the interphase centrosome; however, little is known about its dynamics and localization at this site. To address this, we analysed APC dynamics in fixed and live cells by fluorescence microscopy. In detergent-extracted cells, we discovered that APC was only weakly retained at the centrosome during interphase suggesting a rapid rate of exchange. This was confirmed in living cells by fluorescence recovery after photobleaching (FRAP, which identified two pools of green fluorescent protein (GFP-APC: a major rapidly exchanging pool (~86% and minor retained pool (~14%. The dynamic exchange rate of APC was unaffected by C-terminal truncations implicating a targeting role for the N-terminus. Indeed, we mapped centrosome localization to N-terminal armadillo repeat (ARM domain amino acids 334–625. Interestingly, the rate of APC movement to the centrosome was stimulated by intact MTs, and APC dynamics slowed when MTs were disrupted by nocodazole treatment or knockdown of γ-tubulin. Thus, the rate of APC recycling at the centrosome is enhanced by MT growth, suggesting a positive feedback to stimulate its role in MT growth.

  11. Identification and characterization of multiple conserved nuclear localization signals within adenovirus E1A

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Kris S.; Cohen, Michael J.; Fonseca, Greg J.; Todorovic, Biljana; King, Cason R. [Department of Microbiology and Immunology, Western University, London Regional Cancer Program, London, ON, Canada N6A 4L6 (Canada); Yousef, Ahmed F. [Department of Chemical and Environmental Engineering, Masdar Institute, Abu Dhabi (United Arab Emirates); Zhang, Zhiying [College of Animal Science and Technologies, Northwest A and F University, Yangling, Shaanxi 712100 (China); Mymryk, Joe S., E-mail: jmymryk@uwo.ca [Department of Microbiology and Immunology, Western University, London Regional Cancer Program, London, ON, Canada N6A 4L6 (Canada); Department of Oncology, Western University, London Regional Cancer Program, London, ON, Canada N6A 4L6 (Canada)

    2014-04-15

    The human adenovirus 5 (HAdV-5) E1A protein has a well defined canonical nuclear localization signal (NLS) located at its C-terminus. We used a genetic assay in the yeast Saccharomyces cerevisiae to demonstrate that the canonical NLS is present and functional in the E1A proteins of each of the six HAdV species. This assay also detects a previously described non-canonical NLS within conserved region 3 and a novel active NLS within the N-terminal/conserved region 1 portion of HAdV-5 E1A. These activities were also present in the E1A proteins of each of the other five HAdV species. These results demonstrate that, despite substantial differences in primary sequence, HAdV E1A proteins are remarkably consistent in that they contain one canonical and two non-canonical NLSs. By utilizing independent mechanisms, these multiple NLSs ensure nuclear localization of E1A in the infected cell. - Highlights: • HAdV E1A uses multiple mechanisms for nuclear import. • We identified an additional non-canonical NLS in the N-terminal/CR1 portion of E1A. • The new NLS does not contact importin-alpha directly. • All NLSs are functionally conserved in the E1A proteins of all 6 HAdV species.

  12. Molecular characterization and physical localization of highly repetitive DNA sequences from Brazilian Alstroemeria species.

    Science.gov (United States)

    Kuipers, A G J; Kamstra, S A; de Jeu, M J; Visser, R G F

    2002-01-01

    Highly repetitive DNA sequences were isolated from genomic DNA libraries of Alstroemeria psittacina and A. inodora. Among the repetitive sequences that were isolated, tandem repeats as well as dispersed repeats could be discerned. The tandem repeats belonged to a family of interlinked Sau3A subfragments with sizes varying from 68-127 bp, and constituted a larger HinfI repeat of approximately 400 bp. Southern hybridization showed a similar molecular organization of the tandem repeats in each of the Brazilian Alstroemeria species tested. None of the repeats hybridized with DNA from Chilean Alstroemeria species, which indicates that they are specific for the Brazilian species. In-situ localization studies revealed the tandem repeats to be localized in clusters on the chromosomes of A. inodora and A. psittacina: distal hybridization sites were found on chromosome arms 2PS, 6PL, 7PS, 7PL and 8PL, interstitial sites on chromosome arms 2PL, 3PL, 4PL and 5PL. The applicability of the tandem repeats for cytogenetic analysis of interspecific hybrids and their role in heterochromatin organization are discussed. PMID:12296521

  13. Characterization of rock samples localized in some sites of the Mexican Pacific coast

    International Nuclear Information System (INIS)

    Geophysical studies in zones of high seismicity have showed differences in the content of radioactive material that is used in the study of the geochemical behavior of the subsoil. In an emanometric mapping of radon in soil realized in the Mexican Pacific coast were finding distinct levels in zones with different lithology. With the finality to know the mineralization types in two zones of study which are localized in the Guerrero coast and they belonging to terrains named Guerrero and Xolapa it was determined the mineralogic characteristics in two types of rocks. The identification of the rocks was realized by X-ray diffraction and was determined the elemental chemical composition using a scanning electron microscope. It was indicated in the results obtained that in the two types of rocks were found minerals such as: quartz, albite, microcline anortite, ferroactinolite and biotite. However, it was found differences between them by the presence of their mineralogic compounds because in the rock belonging to Xolapa terrain were presented whereas in the rock localized in the Guerrero terrain were presented sodic and potassic feldspars. The analysis by the Elemental Chemical Composition technique (Energy Dispersive Spectroscopy) corroborated the results obtained by the X-ray diffraction technique. (Author)

  14. Determination of relationship between some Turkish local tomato genotypes by using phenotypic characterization

    Directory of Open Access Journals (Sweden)

    Asu OĞUZ

    2014-06-01

    Full Text Available Turkey is the fourth producer country among the other countries in the world and tomato are produced around 11 million tons per year. Over many years, tomato adapted to the geography of Turkey has shown a high biodiversity. In this research, with 76 local tomato genotypes collected from 52 different provience, 4 foreign and 8 wild species, total 88 tomato genotypes were used. Morphological variations among these materials were investigated. Some of the local genotypes were determined to be accessions increasing variations. A cluster diagram obtained from the morphological descriptors produced ten main sub-cluster groups of tomato accessions at a coefficient of 0.15. Accessions were put into cluster groups based on certain qualities unique. It was observed that 86 out of 88 tomato accessions under study were distinct accessions. G80 and G83 were recorded similar (94% accessions in all accessions. Similarity coefficient values among the 88 accessions ranged from -0.11 to 0.94. Accessions with similar quantitative and qualitative morphological characters appeared well grouped in the same cluster. These accessions are considered as important genetic resources in tomato breeding studies.

  15. Improved characterization of local seismicity using the Dubai Seismic Network, United Arab Emirates

    Science.gov (United States)

    Al Khatibi, Eman; Abou Elenean, K. M.; Megahed, A. S.; El-Hussain, I.

    2014-08-01

    In April 2006, Dubai Municipality established a broadband seismological network in Dubai Emirate, United Arab Emirates (UAE). This network was the first seismic network in UAE and consists of four remote seismic stations to observe local and regional seismic activity that may have an effect on Dubai Emirate and the surrounding areas. The network exchanges real-time data with the National Center of Meteorology and Seismology in Abu Dhabi, the Earthquake Monitoring Center in Oman and imports in real-time data from few Global Seismic Network stations, which increases the aperture of the network. In April 2012, Dubai Municipality installed an additional five free-field strong motion stations inside the urban area to estimate and publish real-time ShakeMaps for public and decision makers. Although the local seismic activity from April 2006 to June 2013 reflects low seismic activity with the Emirate, it indicates active tectonics in the relatively aseismic northern Oman Mountains region. A few inland clusters of micro-to-small earthquakes have been identified with the new network. A clear cluster of small-to-moderate earthquakes took place in the eastern part of UAE to the east of Masafi, while two clusters of micro-to-small earthquakes took place at Wadi Nazwa and northern Huwaylat. Focal mechanisms of few well recorded earthquakes in this region indicate normal faulting, generally trending NE in parallel to the transition shear zone between the collision at Zagros and the subduction at the Makran zone.

  16. Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development.

    Science.gov (United States)

    Wang, Pengwei; Richardson, Christine; Hawkins, Timothy J; Sparkes, Imogen; Hawes, Chris; Hussey, Patrick J

    2016-06-01

    The endoplasmic reticulum (ER) is connected to the plasma membrane (PM) through the plant-specific NETWORKED protein, NET3C, and phylogenetically conserved vesicle-associated membrane protein-associated proteins (VAPs). Ten VAP homologues (VAP27-1 to 27-10) can be identified in the Arabidopsis genome and can be divided into three clades. Representative members from each clade were tagged with fluorescent protein and expressed in Nicotiana benthamiana. Proteins from clades I and III localized to the ER as well as to ER/PM contact sites (EPCSs), whereas proteins from clade II were found only at the PM. Some of the VAP27-labelled EPCSs localized to plasmodesmata, and we show that the mobility of VAP27 at EPCSs is influenced by the cell wall. EPCSs closely associate with the cytoskeleton, but their structure is unaffected when the cytoskeleton is removed. VAP27-labelled EPCSs are found in most cell types in Arabidopsis, with the exception of cells in early trichome development. Arabidopsis plants expressing VAP27-GFP fusions exhibit pleiotropic phenotypes, including defects in root hair morphogenesis. A similar effect is also observed in plants expressing VAP27 RNAi. Taken together, these data indicate that VAP27 proteins used at EPCSs are essential for normal ER-cytoskeleton interaction and for plant development. PMID:27159525

  17. Mitochondrial genomes are retained by selective constraints on protein targeting.

    Science.gov (United States)

    Björkholm, Patrik; Harish, Ajith; Hagström, Erik; Ernst, Andreas M; Andersson, Siv G E

    2015-08-18

    Mitochondria are energy-producing organelles in eukaryotic cells considered to be of bacterial origin. The mitochondrial genome has evolved under selection for minimization of gene content, yet it is not known why not all mitochondrial genes have been transferred to the nuclear genome. Here, we predict that hydrophobic membrane proteins encoded by the mitochondrial genomes would be recognized by the signal recognition particle and targeted to the endoplasmic reticulum if they were nuclear-encoded and translated in the cytoplasm. Expression of the mitochondrially encoded proteins Cytochrome oxidase subunit 1, Apocytochrome b, and ATP synthase subunit 6 in the cytoplasm of HeLa cells confirms export to the endoplasmic reticulum. To examine the extent to which the mitochondrial proteome is driven by selective constraints within the eukaryotic cell, we investigated the occurrence of mitochondrial protein domains in bacteria and eukaryotes. The accessory protein domains of the oxidative phosphorylation system are unique to mitochondria, indicating the evolution of new protein folds. Most of the identified domains in the accessory proteins of the ribosome are also found in eukaryotic proteins of other functions and locations. Overall, one-third of the protein domains identified in mitochondrial proteins are only rarely found in bacteria. We conclude that the mitochondrial genome has been maintained to ensure the correct localization of highly hydrophobic membrane proteins. Taken together, the results suggest that selective constraints on the eukaryotic cell have played a major role in modulating the evolution of the mitochondrial genome and proteome. PMID:26195779

  18. Local versus field scale soil heterogeneity characterization - a challenge for representative sampling in pollution studies

    Science.gov (United States)

    Kardanpour, Z.; Jacobsen, O. S.; Esbensen, K. H.

    2015-12-01

    This study is a contribution to development of a heterogeneity characterization facility for "next-generation" soil sampling aimed, for example, at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity in quantification of a set of exemplar parameters is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The theory of sampling (TOS) and variographic analysis has been applied to develop a more general fit-for-purpose soil heterogeneity characterization approach. All parameters were assessed in large-scale transect (1-100 m) vs. small-scale (0.1-0.5 m) replication sampling point variability. Variographic profiles of experimental analytical results from a specific well-mixed soil type show that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among other soils types. This study has a significant carrying-over potential for related research areas, e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.

  19. Characterization of Localized Corrosion in an Al-Cu-Li Alloy

    Science.gov (United States)

    Luo, Chen; Zhang, Xinxin; Zhou, Xiaorong; Sun, Zhihua; Zhang, Xiaoyun; Tang, Zhihui; Lu, Feng; Thompson, George E.

    2016-05-01

    Corrosion behaviors of recently developed 2A97-T6 aluminum-copper-lithium alloy in sodium chloride solution are investigated using scanning electron and transmission electron microscopies in conjunction with electron backscatter diffraction. It has been found that corrosion product rings were established on the alloy surface as early as 5 min during immersion in sodium chloride solution. Meanwhile, hydrogen continuously evolved from within the rings. Pitting corrosion is evident with crystallographic dependant corrosion channel facets mainly parallel to {100} planes. Non-uniform distribution of misorientation in the 2A97 aluminum alloy results in a portion of grains of relatively high stored energy. Such grains were preferentially attacked, serving as local anodes, during the development of crystallographic pitting.

  20. “PRODUCTION & CHARACTERIZATION OF ALKALINE PROTEASE FROM LOCALLY ISOLATED ALKALIPHILIC BACILLUS SPECIES”

    Directory of Open Access Journals (Sweden)

    Afshan Jameel,

    2011-06-01

    Full Text Available In present study 50 bacterial alkaliphilic Bacillus species were isolated from local habitat. Out of fifty, 5 promising isolates were selected for production of protease enzyme. Horikoshi I media was used in production. Production was carried out at different temperatures, different pH and at different substrate concentrations.Maximum production recorded at 400C and at pH- 10 by isolates 3, 4 and 5 and isolates 1 and 2 produce maximum protease at 400C and at pH – 9. Low substrate concentration were favourable for isolates 1, 2 and 3 while high substrate concentration ( higher than 1,2 and 3 were suitable for 4 and 5 isolates in production of protease.

  1. Localization and pharmacological characterization of voltage dependent calcium channels in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Timmermann, D B; Lund, T M; Belhage, B;

    2001-01-01

    in cytosolic calcium concentration. The results of this investigation demonstrate that pharmacologically distinct types of voltage dependent calcium channels are differentially localized in cell bodies, neurites and nerve terminals of mouse cortical neurons but that the Q-type calcium channel appears......The physiological significance and subcellular distribution of voltage dependent calcium channels was defined using calcium channel blockers to inhibit potassium induced rises in cytosolic calcium concentration in cultured mouse neocortical neurons. The cytosolic calcium concentration was measured...... using the fluorescent calcium chelator fura-2. The types of calcium channels present at the synaptic terminal were determined by the inhibitory action of calcium channel blockers on potassium-induced [3H]GABA release in the same cell preparation. L-, N-, P-, Q- and R-/T-type voltage dependent calcium...

  2. Localized Quantitative Characterization of Chemical Functionalization Effects on Adhesion Properties of SWNT

    International Nuclear Information System (INIS)

    Chemical modification of single-walled carbon nano tubes (SWNT) has been found to be an excellent method to promote SWNT dispersion, and possibly to improve interaction with matrices via covalent bonding. It is thus a quite promising technique to enhance the mechanical properties of SWNT-reinforced nano composites. However, the underlying mechanism of SWNT chemical functionalization effects on interfacial strength is not quantitatively understood, limiting their usefulness in the design of nano composites. In this work, an atomic force microscopy (AFM-) based adhesive force mapping technique combined with a statistical analysis method were developed and implemented to study adhesive interactions of small SWNT bundles functionalized by amino, epoxide, and hydroperoxide groups as compared to SDS-treated SWNT in controlled environment. Finally, the importance of such localized quantitative measurements in SWNT-reinforced nano composites design and fabrication was also discussed.

  3. Involvement of the mitochondrial compartment in human NCL fibroblasts

    International Nuclear Information System (INIS)

    Highlights: ► Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. ► Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. ► Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  4. Involvement of the mitochondrial compartment in human NCL fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Pezzini, Francesco; Gismondi, Floriana [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy); Tessa, Alessandra [IRCCS Fondazione Stella Maris-Molecular Medicine Unit, Pisa (Italy); Tonin, Paola [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy); Carrozzo, Rosalba [IRCCS Bambino Gesu Hospital-Molecular Medicine Unit, Roma (Italy); Mole, Sara E. [MRC Laboratory for Molecular Cell Biology, Molecular Medicines Unit, UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London (United Kingdom); Santorelli, Filippo M. [IRCCS Fondazione Stella Maris-Molecular Medicine Unit, Pisa (Italy); Simonati, Alessandro, E-mail: alessandro.simonati@univr.it [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. Black-Right-Pointing-Pointer Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. Black-Right-Pointing-Pointer Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  5. Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation

    International Nuclear Information System (INIS)

    Two statistical approaches for linking large-scale atmospheric circulation patterns and daily local rainfall are described and applied to several GCM (general circulation model) climate simulations. The ultimate objective is to simulate local precipitation associated with alternative climates. The index stations are located near the West and East North American coasts. The first method is based on CART analysis (Classification and Regression trees). It finds the classification of observed daily SLR (sea level pressure) fields in weather types that are most strongly associated with the presence/absence of rainfall in a set of index stations. The best results were obtained for winter rainfall for the West Coast, where a set of physically reasonable weather types could be identified, whereas for the East Coast the rainfall process seemed to be spatially less coherent. The GCM simulations were validated against observations in terms of probability of occurrence and survival time of these weather states. Some discrepancies werefound but there was no systematic bias, indicating that this behavior depends on the particular dynamics of each model. This classification method was then used for the generation of daily rainfall time series from the daily SLP fields from historical observation and from the GCM simulations. Whereas the mean rainfall and probability distributions were rather well replicated, the simulated dry periods were in all cases shorter than in the rainfall observations. The second rainfall generator is based on the analog method and uses information on the evolution of the SLP field in several previous days. It was found to perform reasonably well, although some downward bias in the simulated rainfall persistence was still present. Rainfall changes in a 2xCO2 climate were investigated by applying both methods to the output of a greenhouse-gas experiment. The simulated precipitation changes were small. (orig.)

  6. Characterizing the local population of star-forming and passive galaxies with analytical models of chemical evolution

    CERN Document Server

    Spitoni, E; Matteucci, F

    2016-01-01

    Analytical models of chemical evolution, including inflow and outflow of gas, are important tools to study how the metal content in galaxies evolves as a function of time. In this work, we present new analytical solutions for the evolution of the gas mass, total mass and metallicity of a galactic system, when a decaying exponential infall rate of gas and galactic winds are assumed. We apply our model to characterize a sample of local star-forming and passive galaxies from the Sloan Digital Sky Survey data, with the aim of reproducing their observed mass-metallicity relation; in this way, we can derive how the two populations of star-forming and passive galaxies differ in their particular distribution of ages, formation time scales, infall masses and mass loading factors. We find that the local passive galaxies are on average older and assembled on shorter typical time-scales than the local star-forming ones; on the other hand, the larger mass star-forming galaxies show generally older ages and longer typical ...

  7. Partial characterization of bacitracin like inhibitory substance from bacillus subtilis BS15, a local soil isolate

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the production of bacteriocin/bacteriocin-like inhibitory substances (BLIS) from Bacillus subtilis BS15, isolated from soil. The inhibitory substance was partially purified and characterized as BLIS with a molecular-weight of 3-5 kDa, as determined by SDS-PAGE. Its production was observed during the late exponential phase or at the beginning of stationary-phase. It retained its activity up to 80 deg. C and over a wide range of pH i.e., 3-9. It was found active against several clinically important bacterial species such as Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Salmonella typhi and also against the food-spoilage causing microbes, and may be considered as future food preservative. (author)

  8. Generation and Characterization of Novel Local and Metastatic Human Neuroblastoma Variants

    Directory of Open Access Journals (Sweden)

    Ido Nevo

    2008-08-01

    Full Text Available Neuroblastoma (NB is the most commonly occurring solid tumor in children. The disease usually arises in the adrenal medulla, and it is characterized by a remarkable heterogeneity in its progression. Most NB patients with an advanced disease have massive bone marrow infiltration at diagnosis. Lung metastasis represents a widely disseminated stage and is typically considered to be a terminal event. Much like other malignancies, NB progression is a complex, multistep process. The expression, function, and significance of the various factors involved in NB progression must be studied in relevant in vivo and in vitro models. Currently, models consisting of metastatic and nonmetastatic cell variants of the same genetic background exist for several types of cancer; however, none exists for NB. In the present study, we describe the generation of a NB metastasis model. SH-SY5Y and MHH-NB-11 NB cells were inoculated orthotopically into the adrenal glands of athymic nude mice. Neuroblastoma cells metastasizing to the lungs were isolated from mice bearing adrenal tumors. Lung metastatic variants were generated by repeated cycles of in vivo passage. Characterization of these variants included cellular morphology and immunophenotyping in vitro, aggressiveness in vivo, and various biologic parameters in vitro. The NB metastatic variant in each model displayed unique properties, and both metastatic variants demonstrated a metastatic phenotype in vivo. These reproducible models of human NB metastasis will serve as an unlimited source of transcriptomic and proteomic material. Such models can facilitate future studies on NB metastasis and the identification of novel NB biomarkers and targets for therapy.

  9. Effects of mitochondrial dysfunction on the immunological properties of microglia

    Directory of Open Access Journals (Sweden)

    Ferger Annette I

    2010-08-01

    Full Text Available Abstract Background Neurodegenerative diseases are characterized by both mitochondrial dysfunction and activation of microglia, the macrophages of the brain. Here, we investigate the effects of mitochondrial dysfunction on the activation profile of microglial cells. Methods We incubated primary mouse microglia with the mitochondrial toxins 3-nitropropionic acid (3-NP or rotenone. These mitochondrial toxins are known to induce neurodegeneration in humans and in experimental animals. We characterized lipopolysaccharide- (LPS- induced microglial activation and the alternative, interleukin-4- (IL-4- induced microglial activation in these mitochondrial toxin-treated microglial cells. Results We found that, while mitochondrial toxins did not affect LPS-induced activation, as measured by release of tumor necrosis factor α (TNF-α, interleukin-6 (IL-6 and interleukin-1β (IL-1β, they did inhibit part of the IL-4-induced alternative activation, as measured by arginase activity and expression, induction of insulin-like growth factor 1 (IGF-1 and the counteraction of the LPS induced cytokine release. Conclusions Mitochondrial dysfunction in microglial cells inhibits part of the IL-4-induced alternative response. Because this alternative activation is considered to be associated with wound healing and an attenuation of inflammation, mitochondrial dysfunction in microglial cells might contribute to the detrimental effects of neuroinflammation seen in neurodegenerative diseases.

  10. A local bottom-gate structure with low parasitic capacitance for dielectrophoresis assembly and electrical characterization of suspended nanomaterials

    International Nuclear Information System (INIS)

    A device including a pair of top electrodes and a local gate in the bottom of an SU-8 trench was fabricated on a glass substrate for dielectrophoresis assembly and electrical characterization of suspended nanomaterials. The three terminals were made of gold electrodes and electrically isolated from each other by an air gap. Compared to the widely used global back-gate silicon device, the parasitic capacitance between the three terminals was significantly reduced and an individual gate was assigned to each device. In addition, the spacing from the bottom-gate to either the source or drain was larger than twice the source-drain gap, which guaranteed that the electric field between the source and drain in the dielectrophoresis assembly was not distinguished by the bottom-gate. To prove the feasibility and versatility of the device, a suspended carbon nanotube and graphene film were assembled by dielectrophoresis and characterized successfully. Accordingly, the proposed device holds promise for the electrical characterization of suspended nanomaterials, especially in a high frequency resonator or transistor configuration. (paper)

  11. A local bottom-gate structure with low parasitic capacitance for dielectrophoresis assembly and electrical characterization of suspended nanomaterials

    Science.gov (United States)

    Wang, Tun; Liu, Bin; Jiang, Shusen; Rong, Hao; Lu, Miao

    2014-05-01

    A device including a pair of top electrodes and a local gate in the bottom of an SU-8 trench was fabricated on a glass substrate for dielectrophoresis assembly and electrical characterization of suspended nanomaterials. The three terminals were made of gold electrodes and electrically isolated from each other by an air gap. Compared to the widely used global back-gate silicon device, the parasitic capacitance between the three terminals was significantly reduced and an individual gate was assigned to each device. In addition, the spacing from the bottom-gate to either the source or drain was larger than twice the source-drain gap, which guaranteed that the electric field between the source and drain in the dielectrophoresis assembly was not distinguished by the bottom-gate. To prove the feasibility and versatility of the device, a suspended carbon nanotube and graphene film were assembled by dielectrophoresis and characterized successfully. Accordingly, the proposed device holds promise for the electrical characterization of suspended nanomaterials, especially in a high frequency resonator or transistor configuration.

  12. Characterization and Localization of Citrullinated Proteoglycan Aggrecan in Human Articular Cartilage.

    Directory of Open Access Journals (Sweden)

    Tibor T Glant

    Full Text Available Rheumatoid arthritis (RA is an autoimmune disease of the synovial joints. The autoimmune character of RA is underscored by prominent production of autoantibodies such as those against IgG (rheumatoid factor, and a broad array of joint tissue-specific and other endogenous citrullinated proteins. Anti-citrullinated protein antibodies (ACPA can be detected in the sera and synovial fluids of RA patients and ACPA seropositivity is one of the diagnostic criteria of RA. Studies have demonstrated that RA T cells respond to citrullinated peptides (epitopes of proteoglycan (PG aggrecan, which is one of the most abundant macromolecules of articular cartilage. However, it is not known if the PG molecule is citrullinated in vivo in human cartilage, and if so, whether citrulline-containing neoepitopes of PG (CitPG can contribute to autoimmunity in RA.CitPG was detected in human cartilage extracts using ACPA+ RA sera in dot blot and Western blot. Citrullination status of in vitro citrullinated recombinant G1 domain of human PG (rhG1 was confirmed by antibody-based and chemical methods, and potential sites of citrullination in rhG1 were explored by molecular modeling. CitPG-specific serum autoantibodies were quantified by enzyme-linked immunosorbent assays, and CitPG was localized in osteoarthritic (OA and RA cartilage using immunohistochemistry.Sera from ACPA+ RA patients reacted with PG purified from normal human cartilage specimens. PG fragments (mainly those containing the G1 domain from OA or RA cartilage extracts were recognized by ACPA+ sera but not by serum from ACPA- individuals. ACPA+ sera also reacted with in vitro citrullinated rhG1 and G3 domain-containing fragment(s of PG. Molecular modeling suggested multiple sites of potential citrullination within the G1 domain. The immunohistochemical localization of CitPG was different in OA and RA cartilage.CitPG is a new member of citrullinated proteins identified in human joints. CitPG could be found in

  13. Characterization and Localization of Iron-Oxidizing Proteins in Acid Mine Drainage Biofilms

    Science.gov (United States)

    Chan, C. S.; Thelen, M. P.; Hwang, M.; Banfield, J. F.

    2005-12-01

    As molecular geomicrobiologists, we are interested in the microbially-produced molecules that effect geochemical transformations, particularly proteins involved in lithotrophic energy generation. We have identified two such proteins produced by Leptospirillum group II microbes, which dominate biofilms floating on acidic waters in the Richmond Mine at Iron Mountain, CA. Leptospirillum generates energy by iron oxidation, producing the ferric iron catalyst responsible for pyrite oxidation, subsequent acid generation and toxic metal release. We have shown that a small (~16 kDa) soluble protein, cytochrome-579, extracted from environmental biofilm samples is capable of iron oxidation in vitro, consistent with prior studies on similar cytochromes from L. ferriphilum and ferrooxidans (Blake et al., 1993; Hart et al., 1991). The abundance of cyt579 and its ability to oxidize iron makes it a key link between microbial metabolism and acid mine drainage. Given the importance of cyt579 in biofilm sustenance as well as acid generation, we want to understand more about its distribution and also the architecture of the biofilm environment in which it functions. Using transmission electron microscopy (TEM) on ultrathin sections, we observe biofilms as thin as 15 microns with densely-packed cells in a matrix of polymers. To localize cyt579 in the biofilm, we purified the protein and developed antibodies for immunolabeling. The antibodies were shown to be highly specific for cyt579 using Western blots of whole biofilm lysate. Fluorescence- and gold-labeled secondary antibodies were used to visualize immunolabeled biofilms by confocal laser scanning microscopy and TEM, respectively. Preliminary results suggest that the cytochrome is on the bacterial cell surface or in the periplasm but not throughout the biofilm, as we had postulated due to the abundance of cytochrome in extracellular fractions of biofilm samples. These localization studies will be helpful in determining the

  14. Molecular characterization of Wolbachia infection in bed bugs (Cimex lectularius collected from several localities in France

    Directory of Open Access Journals (Sweden)

    Akhoundi Mohammad

    2016-01-01

    Full Text Available Wolbachia symbionts are maternally inherited intracellular bacteria that have been detected in numerous insects including bed bugs. The objective of this study, the first epidemiological study in Europe, was to screen Wolbachia infection among Cimex lectularius collected in the field, using PCR targeting the surface protein gene (wsp, and to compare obtained Wolbachia strains with those reported from laboratory colonies of C. lectularius as well as other Wolbachia groups. For this purpose, 284 bed bug specimens were caught and studied from eight different regions of France including the suburbs of Paris, Bouches-du-Rhône, Lot-et-Garonne, and five localities in Alpes-Maritimes. Among the samples, 166 were adults and the remaining 118 were considered nymphs. In all, 47 out of 118 nymphs (40% and 61 out of 166 adults (37% were found positive on wsp screening. Among the positive cases, 10 samples were selected randomly for sequencing. The sequences had 100% homology with wsp sequences belonging to the F-supergroup strains of Wolbachia. Therefore, we confirm the similarity of Wolbachia strains detected in this epidemiological study to Wolbachia spp. reported from laboratory colonies of C. lectularius.

  15. Single spore isolation and morphological characterization of local Malaysian isolates of rice blast fungus Magnoporthe grisea

    Science.gov (United States)

    Mishra, Ankitta; Ratnam, Wickneswari; Bhuiyan, Md Atiqur Rahman; Ponaya, Ariane; Jena, Khisord K.

    2015-09-01

    Rice blast is a destructive disease, caused by the fungal pathogen Magnaporthe grisea. It causes considerable damage to rice and leads to crop loss in rice growing regions worldwide. Although fungicides can be used to control rice blast, they generate additional cost in rice production and contamination of environment and food. Therefore, the use of resistant varieties is thought to be one of the most economically and environmentally efficient ways of crop protection from the disease. Six new local Malaysian isolates of M. grisea were isolated using single spore isolation method. Five isolates were from infected leaf samples collected from Kompleks Latihan MADA, Kedah and one was from Kelantan. These isolates were identified using morphological characteristics and microscopic studies and later confirmed by ITSequences. These isolates were induced to sporulate and used for greenhouse screening on two differential rice varieties: Mahsuri (susceptible) and Pongsu Seribu 2 (resistant). Among the 6 isolates, isolate number 3 was found to be the most virulent showing high sporulation while isolate number 4 was very slow growing, and the least virulent.

  16. Characterization of Bacillus cereus isolates from local dairy farms in China.

    Science.gov (United States)

    Cui, Yifang; Liu, Xiaoye; Dietrich, Richard; Märtlbauer, Erwin; Cao, Jie; Ding, Shuangyang; Zhu, Kui

    2016-06-01

    Bacillus cereus is an important opportunistic foodborne pathogen. In the present work, a total of 306 milk and environmental samples were collected from 10 local dairy farms in Beijing, China. Of the 92 B. cereus-like isolates, 88 and 4 belonged to B. cereus and B. thuringiensis, respectively. The prevalence of B. cereus isolates in bedding, feces, feed, liquid manure and raw milk was 93.3%, 78.9%, 41.2%, 100.0% and 9.8%, respectively. Three main toxin genes nhe, hbl and ces were detected with rates of 100.0%, 78.3% and 1.1%, but no strain harbored cytK1 The production of Nhe, Hbl and cereulide could be confirmed by specific monoclonal antibodies-based enzyme immunoassays in 94.6%, 70.7% and 1.1% of all isolates, respectively. Cytotoxicity tests were used to further corroborate the results of genetic and protein-based assays; 91.3% of the isolates showed cytotoxicity to Vero cells. All isolates were tested for antimicrobial resistance against 17 antibiotics. All isolates were resistant to lincomycin, retapamulin, tiamulin and valnemulin, while two strains were susceptible to ampicillin and ceftiofur. A total of 16 isolated strains were resistant to tetracycline. Since spores of B. cereus are not inactivated during manufacturing of most milk products, contamination of milk with B. cereus on the farm level may represent a potential hazard, particularly with respect to emetic toxin-producing strains. PMID:27190168

  17. Small scale production and characterization of xanthan gum synthesized by local isolates of Xanthomonas campestris.

    Science.gov (United States)

    Barua, Rajesh; Alam, Md Jahangir; Salim, Mohammad; Ashrafee, Tamzida Shamim

    2016-02-01

    Xanthan gum is a commercially important microbial exopolysaccharide (EPS) produced by Xanthomonas campestris. X. campestris is a plant pathogen causing various plant diseases such as black rot of crucifers, bacterial leaf blight and citrus canker disease resulting in crop damage. In this study, we isolated efficient local bacterial isolates which are capable to produce xanthan gum utilizing different sources of carbon (maltose, sucrose and glucose). Bacterial isolates from different plant leaves and fruits were identified as Xanthomonas campestris based on their morphological and biochemical characteristics. Among the 23 isolates, 70% were capable of producing gum. Taro plant, considered as new bacterial host, also have the capability to produce xanthan gum. Production conditions of xanthan gum and their relative viscosity by these bacterial isolates were optimized using basal medium containing commercial carbon and nitrogen sources and various temperature and rotation. Highest level of xanthan gum (18.286 g/l) with relative viscosity (7.2) was produced (Host, Citrus macroptera) at 28 degrees C, pH 7.0, 150 rpm using sucrose as a carbon source at orbital shaker. Whereas, in lab fermenter, same conditions gave best result (19.587 g/l gum) with 7.8 relative viscosity. Chilled alcohol (96%) was used to recover the xanthan gum. FTIR studies also carried out for further confirmation of compatibility by detecting the chemical groups. PMID:26934783

  18. Molecular characterization of a mitochondrial DNA segment from the Japanese scallop (Patinopecten yessoensis): demonstration of a region showing sequence polymorphism in the population.

    Science.gov (United States)

    Sato, M; Nagashima, K

    2001-07-01

    A 1.3-kb mitochondrial DNA segment from the Japanese scallop Patinopecten yessoensis was cloned and sequenced. This segment contained the transfer RNA(Met) gene and partial sequences of 2 ribosomal RNA genes, together with 2 separate noncoding regions (designated NcR1 and NcR2). The NcR regions derived from 78 individuals cultured in Lake Saroma or Matsu Bay, were sequenced, and we found 15 loci with sequence alterations including 13 substitutions, 1 deletion, and 1 insertion (1 locus in NcR1, 14 loci in NcR2), and 17 haplotypes. Of the 17 haplotypes, 10 were found in the Saroma population only, 3 in the Mutsu population only, and 4 in both populations. The gene diversity and nucleotide diversity values were, respectively, 0.87 and 0.0069 for the Saroma population, 0.63 and 0.0040 for the Mutsu population, and 0.83 and 0.0203 overall. Thus the NcR segment was considered to have sufficient sequence variation for population genetic studies. The 16 variants of the NcR2 sequence were separated successfully by denaturing gradient gel electrophoresis, confirming the sequence variation in NcR2. PMID:14961353

  19. Forensic utility of the mitochondrial hypervariable region 1 of domestic dogs, in conjunction with breed and geographic information.

    Science.gov (United States)

    Himmelberger, Andrea L; Spear, Theresa F; Satkoski, Jessica A; George, Debra A; Garnica, Wendy T; Malladi, Venkat S; Smith, David G; Webb, Kristen M; Allard, Marc W; Kanthaswamy, Sreetharan

    2008-01-01

    The 608-bp hypervariable region 1 (HV1) sequences from 36 local dogs were analyzed to characterize the population genetic structure of canid mitochondrial DNA (mtDNA). Sixteen haplotypes were identified. A 417-bp segment of this sequence was compared with GenBank sequences from a geographically representative sample of 201 dogs, two coyotes, and two wolves. Sixty-six haplotypes were identified including 62 found only in domestic dogs. Fourteen of these correspond to the 16 local haplotypes and were among the most frequent haplotypes. The local sample was judged to be representative of the much broader geographic sample. No correlation was observed between local haplotypes and the owner's characterization of dog breed. A 60-bp variation "hotspot" within the canid HV1 was identified as a potentially valuable molecular tool, particularly for assaying limited or degraded DNA samples. PMID:18279243

  20. Mitochondrial diseases and epilepsy.

    Science.gov (United States)

    Bindoff, Laurence A; Engelsen, Bernt A

    2012-09-01

    The mitochondrial respiratory chain is the final common pathway for energy production. Defects affecting this pathway can give rise to disease that presents at any age and affects any tissue. However, irrespective of genetic defect, epilepsy is common and there is a significant risk of status epilepticus. This review summarizes our current understanding of the epilepsy that occurs in mitochondrial disease, focusing on three of the most common disorders: mitochondrial myopathy encephalopathy, lactic acidosis and stroke-like episodes (MELAS), myoclonus epilepsy and ragged-red fibers (MERRF), and polymerase gamma (POLG) related disease. In addition, we review the pathogenesis and possible treatment of these disorders. PMID:22946726

  1. Molecular characterization of salmonella isolated from patients at a local hospital in Islamabad

    International Nuclear Information System (INIS)

    The present study is based on molecular characterization of 17 clinical isolates of Salmonella obtained from Children's Hospital, PIMS, Islamabad, Pakistan. Whole cell protein profile analysis of all the isolates was similar and did not reveal any difference within the population. However, analysis of outer membrane protein profiles showed that the isolates fell into two groups on the basis of level of expression and presence or absences of two peptide, i.e. 48 Kd and 43 Kd. A 27 Kd outer membrane protein was expressed strongly only in one isolate. Analysis of purified lipopolysaccharide fractions obtained from Salmonella paratyphi showed a lower optical density/absorption, i.e. 1.003 as compared to the fractions obtained from Salmonella typhoid i.e. 2.001-2.224. Western blot analysis of cell lysate fraction against sera from a typhoid patient indicated that four major outer membrane protein bands were immunogenic. The data revealed a 46 Kd outer membrane protein to be highly immunogenic which was not reported earlier. (author)

  2. Characterizing the relationship between hyperstoichiometry, defect structure and local corrosion kinetics of uranium dioxide

    International Nuclear Information System (INIS)

    The ability of the UO2 fluorite structure to accommodate large amounts of interstitial oxygen in various lattice sites leads to the formation of hyper-stoichiometric phases. The defect structures occurring in hyper-stoichiometric UO2+x over the range 0.02 ≤ x ≤ 0.1 have been characterized by SEM/EDX and Raman analyses. The results demonstrate that as the nominal stoichiometry increases from 2.002 to 2.1, the diversity of defective structures existing on the UO2+ surface also increases. Scanning electrochemical microscopy (SECM) measurements combined with a theoretical model were used to determine the rate constant for the reduction of the redox mediator ferrocene methanol, acting as a cathodic oxidant to corrode the four UO2+x specimens. The rate constant was found to vary with location on the surface. Stoichiometric locations, with a well defined fluorite structure, exhibited very low corrosion rates. Higher rates were observed at more non-stoichiometric locations with the highest rates being obtained on locations exhibiting tetragonal distortions as their composition approached UO2.33. The distribution of rates increases with the degree of nominal non-stoichiometry as the diversity of microstructures existing on the UO2+x surface increases.

  3. Highly selective luminescent nanostructures for mitochondrial imaging and targeting

    Science.gov (United States)

    Fanizza, E.; Iacobazzi, R. M.; Laquintana, V.; Valente, G.; Caliandro, G.; Striccoli, M.; Agostiano, A.; Cutrignelli, A.; Lopedota, A.; Curri, M. L.; Franco, M.; Depalo, N.; Denora, N.

    2016-02-01

    Here a luminescent hybrid nanostructure based on functionalized quantum dots (QDs) is used as a fluorescent imaging agent able to target selectively mitochondria thanks to the molecular recognition of the translocator protein (TSPO). The selective targeting of such an 18 kDa protein mainly located in the outer mitochondrial membrane and overexpressed in several pathological states including neurodegenerative diseases and cancers may provide valuable information for the early diagnosis and therapy of human disorders. In particular, the rational design of amino functionalized luminescent silica coated QD nanoparticles (QD@SiO2 NPs) provides a versatile nanoplatform to anchor a potent and selective TSPO ligand, characterized by a 2-phenyl-imidazo[1,2-a]pyridine acetamide structure along with a derivatizable carboxylic end group, useful to conjugate the TSPO ligand and achieve TSPO-QD@SiO2 NPs by means of a covalent amide bond. The colloidal stability and optical properties of the proposed nanomaterials are comprehensively investigated and their potential as mitochondrial imaging agents is fully assessed. Sub-cellular fractionation, together with confocal laser scanning fluorescence microscopy and co-localization analysis of targeted TSPO-QD@SiO2 NPs in C6 glioma cells overexpressing the TSPO, proves the great potential of these multifunctional nanosystems as in vitro selective mitochondrial imaging agents.Here a luminescent hybrid nanostructure based on functionalized quantum dots (QDs) is used as a fluorescent imaging agent able to target selectively mitochondria thanks to the molecular recognition of the translocator protein (TSPO). The selective targeting of such an 18 kDa protein mainly located in the outer mitochondrial membrane and overexpressed in several pathological states including neurodegenerative diseases and cancers may provide valuable information for the early diagnosis and therapy of human disorders. In particular, the rational design of amino

  4. Cytonuclear Interactions in the Evolution of Animal Mitochondrial tRNA Metabolism.

    Science.gov (United States)

    Pett, Walker; Lavrov, Dennis V

    2015-08-01

    The evolution of mitochondrial information processing pathways, including replication, transcription and translation, is characterized by the gradual replacement of mitochondrial-encoded proteins with nuclear-encoded counterparts of diverse evolutionary origins. Although the ancestral enzymes involved in mitochondrial transcription and replication have been replaced early in eukaryotic evolution, mitochondrial translation is still carried out by an apparatus largely inherited from the α-proteobacterial ancestor. However, variation in the complement of mitochondrial-encoded molecules involved in translation, including transfer RNAs (tRNAs), provides evidence for the ongoing evolution of mitochondrial protein synthesis. Here, we investigate the evolution of the mitochondrial translational machinery using recent genomic and transcriptomic data from animals that have experienced the loss of mt-tRNAs, including phyla Cnidaria and Ctenophora, as well as some representatives of all four classes of Porifera. We focus on four sets of mitochondrial enzymes that directly interact with tRNAs: Aminoacyl-tRNA synthetases, glutamyl-tRNA amidotransferase, tRNA(Ile) lysidine synthetase, and RNase P. Our results support the observation that the fate of nuclear-encoded mitochondrial proteins is influenced by the evolution of molecules encoded in mitochondrial DNA, but in a more complex manner than appreciated previously. The data also suggest that relaxed selection on mitochondrial translation rather than coevolution between mitochondrial and nuclear subunits is responsible for elevated rates of evolution in mitochondrial translational proteins. PMID:26116918

  5. Mouse Peroxisomal Protein cDNA Cloning and Characterization of its Intraclleular Localization

    Directory of Open Access Journals (Sweden)

    Somayeh Tanhaie

    2009-01-01

    Full Text Available Objective: The aim of this study was to clone peroxisomal protein (PEP cDNA in a mammalianexpression vector in a chimeric cDNA type, with enhanced green fluorescent protein(EGFP cDNA. To investigate the intracellular localization of PEP protein linked to EGFPmarker, the constructed plasmid was used for transfection into the chinese hamster ovary(CHO cells.Materials and Methods: Total RNA was extracted from the heart tissue of an adult mouse.PEP cDNA was constructed using reverse transcriptase and was amplified with specific primerscovering the entire length of ORF. RT-PCR products containing PEP cDNA were treatedby enzymatic digestion and inserted into the pEGFP-C1 downstream of EGFP cDNA and wereused for transformation into bacterial competent cells. The positive colonies which showedinserted PEP cDNA were selected for plasmid preparations and additional analysis was performedto ensure that PEP cDNA was inserted properly. Finally, to confirm the intracellularlocalization of EGFP-PEP, CHO cells were transfected with the constructed plasmid.Results: Our results confirmed amplification and cloning of the expected product. PEP cDNAencompasses 630 bp which encodes 209 amino acid residues. Bioinformatics analyses haveshown the presence of a fibronectin type III domain (31-114 a.a. and two hydrophobic domains(12-32 a.a. and 152-169 a.a., respectively. Because of the presence of serine, Lysine,leucine (SKI in the C-terminal of the related protein, transfection data showed peroxisomallocalization of PEP as was similar to the catalase.Conclusion: Taken together these data showed that PEP is a peroxisomal protein. Howeverthe importance of its fibronectin type III and two hydrophobic domains should be assessedby further experiments.

  6. Characterization of small, Type V edge-localized modes in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Maingi, Rajesh [ORNL; Bell, M. [Princeton Plasma Physics Laboratory (PPPL); Fredrickson, E. [Princeton Plasma Physics Laboratory (PPPL); Lee, K. C. [Princeton Plasma Physics Laboratory (PPPL); Maqueda, R. J. [Nova Photonics, Princeton, NJ; Snyder, P. [General Atomics, San Diego; Tritz, K. [Johns Hopkins University; Zweben, S. J. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Biewer, Theodore M [ORNL; Bush, Charles E [ORNL; Boedo, J. [University of California, San Diego; Brooks, N. H. [General Atomics, San Diego; Delgado-Aparicio, L. [Johns Hopkins University; Domier, C. W. [University of California, Davis; Gates, D. [Princeton Plasma Physics Laboratory (PPPL); Johnson, D. W. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. M. [Princeton Plasma Physics Laboratory (PPPL); Kugel, H. [Princeton Plasma Physics Laboratory (PPPL); LaBlanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Luhmann, N. C. [University of California, Davis; Menard, J. [Princeton Plasma Physics Laboratory (PPPL); Mueller, D. [Princeton Plasma Physics Laboratory (PPPL); Park, H. [Princeton Plasma Physics Laboratory (PPPL); Raman, R [University of Washington, Seattle; Roquemore, A. L. [Princeton Plasma Physics Laboratory (PPPL); Sabbagh, S. A. [Columbia University; Soukhanovskii, V. A. [Lawrence Livermore National Laboratory (LLNL); Stevenson, T. [Princeton Plasma Physics Laboratory (PPPL); Stutman, D. [General Atomics, San Diego

    2006-01-01

    There has been a substantial international research effort in the fusion community to identify tokamak operating regimes with either small or no periodic bursts of particles and power from the edge plasma, known as edge-localized modes (ELMs). While several candidate regimes have been presented in the literature, very little has been published on the characteristics of the small ELMs themselves. One such small ELM regime, also known as the Type V ELM regime, was recently identified in the National Spherical Torus Experiment [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)]. In this paper, the spatial and temporal structure of the Type V ELMs is presented, as measured by several different diagnostics. The composite picture of the Type V ELM is of an instability with one or two filaments that rotate toroidally at ~5-10 km/s, in the direction opposite to the plasma current and neutral beam injection. The toroidal extent of Type V ELMs is typically ~5 m, whereas the cross-field (radial) extent is typically 10 cm (3cm), yielding a portrait of an electromagnetic, ribbon-like perturbation aligned with the total magnetic field. The filaments comprising the Type V ELM appear to be destabilized near the top of the H-mode pedestal and drift radially outward as they rotate toroidally. After the filaments come in contact with the open field lines, the divertor plasma perturbations are qualitatively similar to other ELM types, albeit with only one or two filaments in the Type V ELM versus more filaments for Type I and Type III ELMs. Preliminary stability calculations eliminate pressure driven modes as the underlying instability for Type V ELMs, but more work is required to determine if current driven modes are responsible for destabilization.

  7. Ubiquitination of specific mitochondrial matrix proteins.

    Science.gov (United States)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G; Ciechanover, Aaron

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems - at least partially - in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. PMID:27157140

  8. Characterization and autoradiographic localization of multiple tachykinin binding sites in gastrointestinal tract and bladder

    Energy Technology Data Exchange (ETDEWEB)

    Burcher, E.; Buck, S.H.; Lovenberg, W.; O' Donohue, T.L.

    1986-03-01

    Binding sites for the (125I)Bolton-Hunter-labeled tachykinins substance K (BHSK), eledoisin (BHE) and substance P (BHSP) were investigated using crude membrane suspensions and autoradiography. In smooth muscle membranes from guinea-pig small intestine and rat duodenum, specific binding of BHSK was saturable and reversible, showing a single class of sites with a KD of 1 to 3 nM and maximum number of specific binding sites of 1 to 2 fmol/mg of wet weight tissue. Pharmacological characterization of this binding revealed a novel receptor site (K) with affinity for substance K greater than kassinin greater than or equal to eledoisin greater than neuromedin K greater than substance P greater than physalaemin. Inhibition of the binding of BHSK in membranes from mouse urinary bladder exhibited a similar K-type pattern. In rat duodenum and mouse bladder membranes, the binding of BHE was inhibited by substance K greater than kassinin greater than eledoisin greater than neuromedin K greater than substance P greater than physalaemin indicating the same receptor site as for BHSK. In rat cerebral cortex membranes BHE binding was inhibited by neuromedin K = kassinin = eledoisin greater than physalaemin greater than substance K greater than substance P indicating a definitive tachykinin E receptor site. The same displacement pattern of BHE binding was also detected in longitudinal muscle membranes from the guinea-pig small intestine. In mouse bladder membranes and in rat and guinea-pig intestine, the binding of BHSP was inhibited by substance P greater than physalaemin greater than substance K greater than or equal to eledoisin = kassinin greater than neuromedin K indicating a definitive tachykinin P receptor site. Autoradiographic binding sites for both BHSK and BHSP were seen in circular muscle of the rat stomach, small intestine and colon and in circular and longitudinal muscle of the guinea-pig small intestine and colon.

  9. Mitochondrial functions on oocytes and preimplantation embryos

    Institute of Scientific and Technical Information of China (English)

    Li-ya WANG; Da-hui WANG; Xiang-yang ZOU; Chen-ming XU

    2009-01-01

    Oocyte quality has long been considered as a main limiting factor for in vitro fertilization (IVF). In the past decade,extensive observations demonstrated that the mitochondrion plays a vital role in the oocyte cytoplasm, for it can provide adenosine triphosphate (ATP) for fertilization and preimplantation embryo development and also act as stores of intracellular calcium and proapoptotic factors. During the oocyte maturation, mitochondria are characterized by distinct changes of their distribution pattern from being homogeneous to heterogeneous, which is correlated with the cumulus apoptosis. Oocyte quality decreases with the increasing maternal age. Recent studies have shown that low quality oocytes have some age-related dysfunctions, which include the decrease in mitochondrial membrane potential, increase of mitochondrial DNA (mtDNA) damages, chromosomal aneuploidies,the incidence of apoptosis, and changes in mitochondrial gene expression. All these dysfunctions may cause a high level of developmental retardation and arrest of preimplantation embryos. It has been suggested that these mitochondrial changes may arise from excessive reactive oxygen species (ROS) that is closely associated with the oxidative energy production or calcium overload,which may trigger permeability transition pore opening and subsequent apoptosis. Therefore, mitochondria can be seen as signs for oocyte quality evaluation, and it is possible that the oocyte quality can be improved by enhancing the physical function of mitochondria. Here we reviewed recent advances in mitochondrial functions on oocytes.

  10. Iterative de-convolution of the local waveforms: Characterization of the seismic sources in Kachchh, India

    Science.gov (United States)

    Mandal, Prantik; Satyamurty, C.; Raju, I. P.

    2009-12-01

    The deviatoric and double couple (DC) constrained moment tensor inversions of multiple point sources (10-20 s) for regional (or local) earthquakes, developed by Zahradnik et al. (2005), has been applied on the data of nine significant Bhuj aftershocks of Mw4.4- Mw5.6 recorded at three-component 5-15 accelerograph and 5-11 seismograph stations (epicentral distances < 130 km). The deviatoric moment tensor solutions of events on the north Wagad fault (NWF) in the 15-29 km depth range reveal a systematic depth-wise variation in the faulting patterns. At shallow depth (~ 15 km), they suggest a left lateral strike-slip movement with a minor reverse component along a south dipping plane (~ 61°), whereas, at 18-22 km depth range they change to pure reverse movement on a preferred south dipping plane (10-54°) and finally they change to the normal movement with minor strike-slip (S-S) component at deeper (25-29 km) depth range. The deviatoric MT solution of one event on the south Wagad fault (SWF) suggests a reverse movement with a minor S-S component on a 35° southeast dipping plane at 24 km depth. The deviatoric MT solutions for two events on the Gedi fault reveal a reverse movement with a minor left-lateral strike-slip component on an E-W trending and south dipping (40-61°) plane at 3-4 km depth. Whereas, one event on the Island belt fault (IBF) suggests a right lateral strike slip movement with a normal component on an almost vertical (~ 79°) plane at 29 km depth. The deviatoric moment tensor solutions of all the nine events show a larger (94-99%) double-couple (DC) component at shallow (3-15 km) depth range suggesting domination of brittle failure in the upper crust beneath the Kachchh region. However, the deeper events show larger non-DC (i.e. compensated linear vector dipole, CLVD) component suggesting increase in deviation from the double-couple (DC) solution in the lower crust (15-30 km depth range). This increase in non-DC component could be attributed to the

  11. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNAVal mutation

    International Nuclear Information System (INIS)

    Highlights: → We report a young Tunisian patient with clinical features of MELAS syndrome. → Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. → We described a novel m.1640A>G mutation in the tRNAVal gene which was absent in 150 controls. → Mitochondrial deletions and POLG1 gene mutations were absent. → The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNAVal. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  12. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite.

    Directory of Open Access Journals (Sweden)

    Rajesh Prasad

    Full Text Available Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4. Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5, suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3 to moderate (KP4 preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease

  13. Mitochondrial dynamics and apoptosis

    OpenAIRE

    Suen, Der-Fen; Norris, Kristi L.; Youle, Richard J.

    2008-01-01

    In healthy cells, mitochondria continually divide and fuse to form a dynamic interconnecting network. The molecular machinery that mediates this organelle fission and fusion is necessary to maintain mitochondrial integrity, perhaps by facilitating DNA or protein quality control. This network disintegrates during apoptosis at the time of cytochrome c release and prior to caspase activation, yielding more numerous and smaller mitochondria. Recent work shows that proteins involved in mitochondri...

  14. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.;

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  15. Mitochondrial metabolism and diabetes

    OpenAIRE

    Kwak, Soo Heon; Park, Kyong Soo; Lee, Ki‐Up; Lee, Hong Kyu

    2010-01-01

    Abstract The oversupply of calories and sedentary lifestyle has resulted in a rapid increase of diabetes prevalence worldwide. During the past two decades, lines of evidence suggest that mitochondrial dysfunction plays a key role in the pathophysiology of diabetes. Mitochondria are vital to most of the eukaryotic cells as they provide energy in the form of adenosine triphosphate by oxidative phosphorylation. In addition, mitochondrial function is an integral part of glucose‐stimulated insulin...

  16. Characterization of plasma jet ejected from a parallel-plate rail gun for simulating edge localized mode

    International Nuclear Information System (INIS)

    Highlights: • A small plasma gun is constructed to study edge localized mode. • A plasma jet ejected from the gun is characterized with a quadruple Langmuir probe. • The device and diagnostics are suitable for research about the control of plasma jet. -- Abstract: A small plasma gun with parallel-plate configuration is fabricated to generate a bunch of plasma which is similar to ELM (edge localized mode) plasma, by taking advantages of its simplicity and cost-effectiveness. Prior to explore how to control the ELM-like plasma so as to relieve heat load on the divertor target, characteristics of a plasma jet ejected from the plasma gun are investigated using a quadruple Langmuir probe which is appropriate for measuring rapidly varying plasma parameters such as electron density, temperature, and ion velocity at the same time. The plasma density and ion velocity measured at 112 mm away from the exit are 3 × 1019 m−3 and 11 km/s, respectively, which seem to be suitable for investigating next step research on the control of ELM-like plasma using various methods such as electromagnetic waves and high-voltage pulses. Also, the quadruple Langmuir probe is proven to be adequate for use in such experiments

  17. Characterization of plasma jet ejected from a parallel-plate rail gun for simulating edge localized mode

    Energy Technology Data Exchange (ETDEWEB)

    Chung, K.S., E-mail: alsk3@snu.ac.kr; Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr; Jung, B.K.; Hwang, Y.S., E-mail: yhwang@snu.ac.kr

    2013-10-15

    Highlights: • A small plasma gun is constructed to study edge localized mode. • A plasma jet ejected from the gun is characterized with a quadruple Langmuir probe. • The device and diagnostics are suitable for research about the control of plasma jet. -- Abstract: A small plasma gun with parallel-plate configuration is fabricated to generate a bunch of plasma which is similar to ELM (edge localized mode) plasma, by taking advantages of its simplicity and cost-effectiveness. Prior to explore how to control the ELM-like plasma so as to relieve heat load on the divertor target, characteristics of a plasma jet ejected from the plasma gun are investigated using a quadruple Langmuir probe which is appropriate for measuring rapidly varying plasma parameters such as electron density, temperature, and ion velocity at the same time. The plasma density and ion velocity measured at 112 mm away from the exit are 3 × 10{sup 19} m{sup −3} and 11 km/s, respectively, which seem to be suitable for investigating next step research on the control of ELM-like plasma using various methods such as electromagnetic waves and high-voltage pulses. Also, the quadruple Langmuir probe is proven to be adequate for use in such experiments.

  18. Neurodegenerative and Fatiguing Illnesses, Infections and Mitochondrial Dysfunction: Use of Natural Supplements to Improve Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Garth L. Nicolson

    2014-01-01

    Full Text Available Background: Many chronic diseases and illnesses are associated with one or more chronic infections, dysfunction of mitochondria and reduced production of ATP. This results in fatigue and other symptoms that occur in most if not all chronic conditions and diseases. Methods: This is a review of the published literature on chronic infections in neurodegenerative diseases and fatiguing illnesses that are also typified by mitochondrial dysfunction. This contribution also reviews the use of natural supplements to enhance mitochondrial function and reduce the effects of chronic infections to improve overall function in various chronic illnesses. Results: Mitochondrial function can be enhanced by the use of various natural supplements, notably Lipid Replacement Therapy (LRT using glyerolphospholipids and other mitochondrial supplements. In various chronic illnesses that are characterized by the presence of chronic infections, such as intracellular bacteria (Mycoplasma, Borrelia, Chlamydia and other infections and viruses, LRT has proven useful in multiple clinical trials. For example, in clinical studies on chronic fatigue syndrome, fibromyalgia syndrome and other chronic fatiguing illnesses where a large majority of patients have chronic infections, LRT significantly reduced fatigue by 35-43% in different clinical trials and increased mitochondrial function. In clinical trials on patients with multiple intracellular bacterial infections and intractable fatigue LRT plus other mitochondrial supplements significantly decreased fatigue and improved mood and cognition. Conclusions: LRT formulations designed to improve mitochondrial function appear to be useful as non-toxic dietary supplements for reducing fatigue and restoring mitochondrial and other cellular membrane functions in patients with chronic illnesses and multiple chronic infections.

  19. Inherited mitochondrial neuropathies.

    Science.gov (United States)

    Finsterer, Josef

    2011-05-15

    Mitochondrial disorders (MIDs) occasionally manifest as polyneuropathy either as the dominant feature or as one of many other manifestations (inherited mitochondrial neuropathy). MIDs in which polyneuropathy is the dominant feature, include NARP syndrome due to the transition m.8993T>, CMT2A due to MFN2 mutations, CMT2K and CMT4A due to GDAP1 mutations, and axonal/demyelinating neuropathy with external ophthalmoplegia due to POLG1 mutations. MIDs in which polyneuropathy is an inconstant feature among others is the MELAS syndrome, MERRF syndrome, LHON, Mendelian PEO, KSS, Leigh syndrome, MNGIE, SANDO; MIRAS, MEMSA, AHS, MDS (hepato-cerebral form), IOSCA, and ADOA syndrome. In the majority of the cases polyneuropathy presents in a multiplex neuropathy distribution. Nerve conduction studies may reveal either axonal or demyelinated or mixed types of neuropathies. If a hereditary neuropathy is due to mitochondrial dysfunction, the management of these patients is at variance from non-mitochondrial hereditary neuropathies. Patients with mitochondrial hereditary neuropathy need to be carefully investigated for clinical or subclinical involvement of other organs or systems. Supportive treatment with co-factors, antioxidants, alternative energy sources, or lactate lowering agents can be tried. Involvement of other organs may require specific treatment. Mitochondrial neuropathies should be included in the differential diagnosis of hereditary neuropathies. PMID:21402391

  20. Generalized non-local surface susceptibility model and Fresnel coefficients for the characterization of periodic metafilms with bianisotropic scatterers

    Energy Technology Data Exchange (ETDEWEB)

    Dimitriadis, Alexandros I., E-mail: aldimitr@ee.auth.gr [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kantartzis, Nikolaos V., E-mail: kant@auth.gr [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Tsiboukis, Theodoros D., E-mail: tsibukis@auth.gr [Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Hafner, Christian, E-mail: hafner@ethz.ch [Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich (Switzerland)

    2015-01-15

    Highlights: •Formulas for E/M fields radiated by continuous surface polarization distributions. •Non-local effective surface susceptibility model for periodic metafilms. •Generalized reflection and transmission coefficients for an arbitrary metafilm. •Successful treatment of non-planar scatterer arrays and spatial dispersion effects. -- Abstract: A non-local surface susceptibility model for the consistent description of periodic metafilms formed by arbitrarily-shaped, electrically-small, bianisotropic scatterers is developed in this paper. The rigorous scheme is based on the point-dipole approximation technique and is valid for any polarization and propagation direction of an electromagnetic wave impinging upon the metafilm, unlike existing approaches whose applicability is practically confined to very specific cases of incidence. Next, the universal form of the resulting surface susceptibility matrix is employed for the derivation of the generalized Fresnel coefficients for such surfaces, which enable the comprehensive interpretation of several significant, yet relatively unexamined, physical interactions. Essentially, these coefficients include eight distinct terms, corresponding to the co-polarized and cross-polarized reflection and transmission coefficients for the two orthogonal eigenpolarizations of a linearly-polarized incident plane wave. The above formulas are, then, utilized for the prediction of the scattering properties of metafilms with different planar and non-planar resonators, which are characterized via the featured model and two previously reported local ones. Their comparison with numerical simulation outcomes substantiates the merits of the proposed method, reveals important aspects of the underlying physics, and highlights the differences between the various modeling procedures.

  1. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy.

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-01-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141

  2. Nanoscale characterization of local structures and defects in photonic crystals using synchrotron-based transmission soft X-ray microscopy

    Science.gov (United States)

    Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun

    2016-04-01

    For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties.

  3. Characterization of Extracellular Penicilin G Acylase Produced by A New Local Strain of Bacillus subtilis BAC4

    Directory of Open Access Journals (Sweden)

    SUPARTONO

    2008-06-01

    Full Text Available Penicillin G acylase (PGA which catalyses penicillin G hydrolysis reaction is a key enzyme for the industrial production of penicilin G derivatives used in therapeutics. A new local strain of Bacillus subtilis BAC4 was found capable of producing extracellular PGA. However, characteristics of this extracellular PGA are not known. The goal of this research was to characterize the extracellular PGA produced by B. subtilis BAC4. Enzyme production was carried out by batch fermentation, followed by enzyme purification and characterization of the PGA. The PGA activity was determined by the Kornfeld method, with optimal activity for hydrolysing penicillin G observed at 43 oC and pH 8.5. The activation energy of penicillin G hydrolysis by the PGA of B. subtilis BAC4 was determined as 4.9 kcal.mol-1 and Vmax and Km values were found to be 0.7 µmole.min-1.mg-1 and 3.5 mM respectively. PGA catalytic activity was competitively inhibited by phenylacetic acid with an inhibition constant, Ki(PAA, of 347.2 mM. It was concluded that the extracellular PGA of B. subtilis BAC4 can hydrolyse penicillin G efficiently.

  4. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    International Nuclear Information System (INIS)

    Highlights: ► The study presents cloning and characterization of TCP1γ gene from L. donovani. ► TCP1γ is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. ► LdTCPγ exhibited differential expression in different stages of promastigotes. ► LdTCPγ co-localized with actin, a cytoskeleton protein. ► The data suggests that this gene may have a role in differentiation/biogenesis. ► First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1γ), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1γ of Leishmania donovani (LdTCP1γ), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1γ revealed the presence of all the characteristic features of TCP1γ. However, leishmanial TCP1γ represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1γ exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1γ as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1γ was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1γ with actin suggests that, this gene may have a role in maintaining the structural dynamics of cytoskeleton of parasite.

  5. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar,; Kumari, Neeti [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India); Goyal, Neena, E-mail: neenacdri@yahoo.com [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer The study presents cloning and characterization of TCP1{gamma} gene from L. donovani. Black-Right-Pointing-Pointer TCP1{gamma} is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. Black-Right-Pointing-Pointer LdTCP{gamma} exhibited differential expression in different stages of promastigotes. Black-Right-Pointing-Pointer LdTCP{gamma} co-localized with actin, a cytoskeleton protein. Black-Right-Pointing-Pointer The data suggests that this gene may have a role in differentiation/biogenesis. Black-Right-Pointing-Pointer First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1{gamma}), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1{gamma} of Leishmania donovani (LdTCP1{gamma}), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1{gamma} revealed the presence of all the characteristic features of TCP1{gamma}. However, leishmanial TCP1{gamma} represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1{gamma} exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1{gamma} as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1{gamma} was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1{gamma} with actin suggests

  6. Complex patterns of mitochondrial dynamics in human pancreatic cells revealed by fluorescent confocal imaging.

    Science.gov (United States)

    Kuznetsov, Andrey V; Hermann, Martin; Troppmair, Jakob; Margreiter, Raimund; Hengster, Paul

    2010-01-01

    Mitochondrial morphology and intracellular organization are tightly controlled by the processes of mitochondrial fission-fusion. Moreover, mitochondrial movement and redistribution provide a local ATP supply at cellular sites of particular demands. Here we analysed mitochondrial dynamics in isolated primary human pancreatic cells. Using real time confocal microscopy and mitochondria-specific fluorescent probes tetramethylrhodamine methyl ester and MitoTracker Green we documented complex and novel patterns of spatial and temporal organization of mitochondria, mitochondrial morphology and motility. The most commonly observed types of mitochondrial dynamics were (i) fast fission and fusion; (ii) small oscillating movements of the mitochondrial network; (iii) larger movements, including filament extension, retraction, fast (0.1-0.3 mum/sec.) and frequent oscillating (back and forth) branching in the mitochondrial network; (iv) as well as combinations of these actions and (v) long-distance intracellular translocation of single spherical mitochondria or separated mitochondrial filaments with velocity up to 0.5 mum/sec. Moreover, we show here for the first time, a formation of unusual mitochondrial shapes like rings, loops, and astonishingly even knots created from one or more mitochondrial filaments. These data demonstrate the presence of extensive heterogeneity in mitochondrial morphology and dynamics in living cells under primary culture conditions. In summary, this study reports new patterns of morphological changes and dynamic motion of mitochondria in human pancreatic cells, suggesting an important role of integrations of mitochondria with other intracellular structures and systems. PMID:19382913

  7. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V;

    2010-01-01

    mitochondria, whereas base excision repair (BER) has been comprehensively characterized in these organelles. The BER proteins are associated with the inner membrane in mitochondria and thus with the mitochondrial nucleoid, where TFAM is also situated. However, a function for TFAM in BER has not yet been...

  8. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function

    Directory of Open Access Journals (Sweden)

    Abou-Rached Charbel

    2008-04-01

    Full Text Available Abstract Background StWhy1, a member of the plant-specific Whirly single-stranded DNA-binding protein family, was first characterized as a transcription factor involved in the activation of the nuclear PR-10a gene following defense-related stress in potato. In Arabidopsis thaliana, Whirlies have recently been shown to be primarily localized in organelles. Two representatives of the family, AtWhy1 and AtWhy3 are imported into plastids while AtWhy2 localizes to mitochondria. Their function in organelles is currently unknown. Results To understand the role of mitochondrial Whirlies in higher plants, we produced A. thaliana lines with altered expression of the atwhy2 gene. Organellar DNA immunoprecipitation experiments demonstrated that AtWhy2 binds to mitochondrial DNA. Overexpression of atwhy2 in plants perturbs mitochondrial function by causing a diminution in transcript levels and mtDNA content which translates into a low activity level of respiratory chain complexes containing mtDNA-encoded subunits. This lowered activity of mitochondria yielded plants that were reduced in size and had distorted leaves that exhibited accelerated senescence. Overexpression of atwhy2 also led to early accumulation of senescence marker transcripts in mature leaves. Inactivation of the atwhy2 gene did not affect plant development and had no detectable effect on mitochondrial morphology, activity of respiratory chain complexes, transcription or the amount of mtDNA present. This lack of phenotype upon abrogation of atwhy2 expression suggests the presence of functional homologues of the Whirlies or the activation of compensating mechanisms in mitochondria. Conclusion AtWhy2 is associated with mtDNA and its overexpression results in the production of dysfunctional mitochondria. This report constitutes the first evidence of a function for the Whirlies in organelles. We propose that they could play a role in the regulation of the gene expression machinery of organelles.

  9. Polymorphisms in mitochondrial genes and prostate cancer risk

    OpenAIRE

    Wang, Liang; McDonnell, Shannon K.; Hebbring, Scott J.; Cunningham, Julie M.; SAUVER, Jennifer ST.; Cerhan, James R.; Isaya, Grazia; Schaid, Daniel J; Thibodeau, Stephen N.

    2008-01-01

    The mitochondrion, conventionally thought to be an organelle specific to energy metabolism, is in fact multi-functional and implicated in many diseases, including cancer. To evaluate whether mitochondria-related genes are associated with increased risk for prostate cancer, we genotyped 24 single nucleotide polymorphisms (SNPs) within the mitochondrial genome (mtSNPs) and 376 tagSNPs localized to 78 nuclear-encoded mitochondrial genes. The tagSNPs were selected to achieve ≥80% coverage based o...

  10. Mitochondrial emitted electromagnetic signals mediate retrograde signaling.

    Science.gov (United States)

    Bagkos, Georgios; Koufopoulos, Kostas; Piperi, Christina

    2015-12-01

    Recent evidence shows that mitochondria regulate nuclear transcriptional activity both in normal and cell stress conditions, known as retrograde signaling. Under normal mitochondrial function, retrograde signaling is associated with mitochondrial biogenesis, normal cell phenotype and metabolic profile. In contrast, mitochondrial dysfunction leads to abnormal (oncogenic) cell phenotype and altered bio-energetic profile (nucleus reprogramming). Despite intense research efforts, a concrete mechanism through which mitochondria determine the group of genes expressed by the nucleus is still missing. The present paper proposes a novel hypothesis regarding retrograde signaling. More specifically, it reveals the mitochondrial membrane potential (MMP) and the accompanied strong electromagnetic field (EF) as key regulatory factors of nuclear activity. Mitochondrial emitted EFs extend in long distance and affect the function of nuclear membrane receptors. Depending on their frequencies, EFs can directly activate or deactivate different groups of nuclear receptors and so determine nuclear gene expression. One of the key features of the above hypothesis is that nuclear membrane receptors, besides their own endogenous or chemical ligands (hormones, lipids, etc.), can also be activated by electromagnetic signals. Moreover, normal MMP values (about -140 mV) are associated with the production of high ATP quantities and small levels of reactive oxygen species (ROS) while the hyperpolarization observed in all cancer cell types leads to a dramatic fall in ATP production and an analogous increase in ROS. The diminished ATP and increased ROS production negatively affect the function of all cellular systems including nucleus. Restoration of mitochondrial function, which is characterized by the fluctuation of MMP and EF values within a certain (normal) range, is proposed as a necessary condition for normal nuclear function and cancer therapy. PMID:26474928

  11. Neurological mitochondrial cytopathies.

    Directory of Open Access Journals (Sweden)

    Mehndiratta M

    2002-04-01

    Full Text Available The mitochondrial cytopathies are genetically and phenotypically heterogeneous group of disorders caused by structural and functional abnormalities in mitochondria. To the best of our knowledge, there are very few studies published from India till date. Selected and confirmed fourteen cases of neurological mitochondrial cytopathies with different clinical syndromes admitted between 1997 and 2000 are being reported. There were 8 male and 6 female patients. The mean age was 24.42+/-11.18 years (range 4-40 years. Twelve patients could be categorized into well-defined syndromes, while two belonged to undefined group. In the defined syndrome categories, three patients had MELAS (mitochondrial encephalopathy, lactic acidosis and stroke like episodes, three had MERRF (myoclonic epilepsy and ragged red fibre myopathy, three cases had KSS (Kearns-Sayre Syndrome and three were diagnosed to be suffering from mitochondrial myopathy. In the uncategorized group, one case presented with paroxysmal kinesogenic dystonia and the other manifested with generalized chorea alone. Serum lactic acid level was significantly increased in all the patients (fasting 28.96+/-4.59 mg%, post exercise 41.02+/-4.93 mg%. Muscle biopsy was done in all cases. Succinic dehydrogenase staining of muscle tissue showed subsarcolemmal accumulation of mitochondria in 12 cases. Mitochondrial DNA study could be performed in one case only and it did not reveal any mutation at nucleotides 3243 and 8344. MRI brain showed multiple infarcts in MELAS, hyperintensities in putaminal areas in chorea and bilateral cerebellar atrophy in MERRF.

  12. A role for septin 2 in Drp1-mediated mitochondrial fission.

    Science.gov (United States)

    Pagliuso, Alessandro; Tham, To Nam; Stevens, Julia K; Lagache, Thibault; Persson, Roger; Salles, Audrey; Olivo-Marin, Jean-Christophe; Oddos, Stéphane; Spang, Anne; Cossart, Pascale; Stavru, Fabrizia

    2016-06-01

    Mitochondria are essential eukaryotic organelles often forming intricate networks. The overall network morphology is determined by mitochondrial fusion and fission. Among the multiple mechanisms that appear to regulate mitochondrial fission, the ER and actin have recently been shown to play an important role by mediating mitochondrial constriction and promoting the action of a key fission factor, the dynamin-like protein Drp1. Here, we report that the cytoskeletal component septin 2 is involved in Drp1-dependent mitochondrial fission in mammalian cells. Septin 2 localizes to a subset of mitochondrial constrictions and directly binds Drp1, as shown by immunoprecipitation of the endogenous proteins and by pulldown assays with recombinant proteins. Depletion of septin 2 reduces Drp1 recruitment to mitochondria and results in hyperfused mitochondria and delayed FCCP-induced fission. Strikingly, septin depletion also affects mitochondrial morphology in Caenorhabditis elegans, strongly suggesting that the role of septins in mitochondrial dynamics is evolutionarily conserved. PMID:27215606

  13. Biochemical and structural characterization of an endoplasmic reticulum-localized late embryogenesis abundant (LEA) protein from the liverwort Marchantia polymorpha.

    Science.gov (United States)

    Hatanaka, Rie; Furuki, Takao; Shimizu, Tempei; Takezawa, Daisuke; Kikawada, Takahiro; Sakurai, Minoru; Sugawara, Yasutake

    2014-11-28

    Late embryogenesis abundant (LEA) proteins, which accumulate to high levels in seeds during late maturation, are associated with desiccation tolerance. A member of the LEA protein family was found in cultured cells of the liverwort Marchantia polymorpha; preculture treatment of these cells with 0.5M sucrose medium led to their acquisition of desiccation tolerance. We characterized this preculture-induced LEA protein, designated as MpLEA1. MpLEA1 is predominantly hydrophilic with a few hydrophobic residues that may represent its putative signal peptide. The protein also contains a putative endoplasmic reticulum (ER) retention sequence, HEEL, at the C-terminus. Microscopic observations indicated that GFP-fused MpLEA1 was mainly localized in the ER. The recombinant protein MpLEA1 is intrinsically disordered in solution. On drying, MpLEA1 shifted predominantly toward α-helices from random coils. Such changes in conformation are a typical feature of the group 3 LEA proteins. Recombinant MpLEA1 prevented the aggregation of α-casein during desiccation-rehydration events, suggesting that MpLEA1 exerts anti-aggregation activity against desiccation-sensitive proteins by functioning as a "molecular shield". Moreover, the anti-aggregation activity of MpLEA1 was ten times greater than that of BSA or insect LEA proteins, which are known to prevent aggregation on drying. Here, we show that an ER-localized LEA protein, MpLEA1, possesses biochemical and structural features specific to group 3 LEA proteins. PMID:25450698

  14. Mitochondrial fusion and inheritance of the mitochondrial genome.

    Science.gov (United States)

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion. PMID:20196232

  15. Mitochondrial function in normal and diabetic beta-cells

    OpenAIRE

    Maechler, Pierre; Wollheim, Claes

    2001-01-01

    The aetiology of type 2, or non-insulin-dependent, diabetes mellitus has been characterized in only a limited number of cases. Among these, mitochondrial diabetes, a rare subform of the disease, is the consequence of pancreatic beta-cell dysfunction caused by mutations in mitochondrial DNA, which is distinct from the nuclear genome. The impact of such mutations on beta-cell function reflects the importance of mitochondria in the control of insulin secretion. The beta-cell mitochondria serve a...

  16. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation.

    Science.gov (United States)

    Münch, Christian; Harper, J Wade

    2016-06-30

    The mitochondrial matrix is unique in that it must integrate the folding and assembly of proteins derived from the nuclear and mitochondrial genomes. In Caenorhabditis elegans, the mitochondrial unfolded protein response (UPRmt) senses matrix protein misfolding and induces a program of nuclear gene expression, including mitochondrial chaperonins, to promote mitochondrial proteostasis. While misfolded mitochondrial-matrix-localized ornithine transcarbamylase induces chaperonin expression, our understanding of mammalian UPRmt is rudimentary, reflecting a lack of acute triggers for UPRmt activation. This limitation has prevented analysis of the cellular responses to matrix protein misfolding and the effects of UPRmt on mitochondrial translation to control protein folding loads. Here we combine pharmacological inhibitors of matrix-localized HSP90/TRAP1 (ref. 8) or LON protease, which promote chaperonin expression, with global transcriptional and proteomic analysis to reveal an extensive and acute response of human cells to UPRmt. This response encompasses widespread induction of nuclear genes, including matrix-localized proteins involved in folding, pre-RNA processing and translation. Functional studies revealed rapid but reversible translation inhibition in mitochondria occurring concurrently with defects in pre-RNA processing caused by transcriptional repression and LON-dependent turnover of the mitochondrial pre-RNA processing nuclease MRPP3 (ref. 10). This study reveals that acute mitochondrial protein folding stress activates both increased chaperone availability within the matrix and reduced matrix-localized protein synthesis through translational inhibition, and provides a framework for further dissection of mammalian UPRmt. PMID:27350246

  17. Cathodoluminescence characterization of quartz grains from the Upper Cretaceous of dinosaur fossil localities in the Gobi desert, Mongolia

    Science.gov (United States)

    Saneyoshi, M.; Nishido, H.; Masuda, R.; Tsogtbaatar, K.; Chinzorig, T.

    2013-12-01

    The Upper Cretaceous eolian sediments in Mongolia's Gobi desert are one of the most important occurrences of the dinosaurs in the world. Large numbers of confiscated dinosaur fossils illegally worked out by poachers has been stored in the Mongolian Paleontological Center at Ulaanbaatar. In most cases, their localities are unknown. The purpose of this study is to identify their localities by cathodoluminescence (CL) features of quartz grains attached to the dinosaur specimens by comparing to the quartz samples collected from the sediments of circumjacent resources in this area. This study focuses on the confiscated specimen which makes up the nest with the babies' Protoceratops. Most of all Protoceratops in every growth process, have been discovered from the Djadokhta Formation in the Gobi desert. This formation crops out at Tugrikin Shireh and Bayn Dzak in the central part of the Gobi desert, and is derived from medium- to fine-grained sand mainly composed of quartz grains, of which sedimentary environments should be obvious to be eolian. The formation age of the sand beds at Tugrikin Shireh and Bayn Dzak has been estimated to be Middle Campanian. CL spectra of quartz have been demonstrated to show different features between the quartz from hydrothermal, plutonic, volcanic and metamorphic origins, suggesting the spectra reflect the condition of the quartz formation and the local environment. Therefore, we have applied the CL characterization of quartz grains to the evaluation of the provenance of the desert sediments. The quartz grains after sieving (#60-80 mesh size) were embedded in the brass holders with non-luminescent epoxy resin, and their surfaces were polished with 1 μm diamond abrasive. Color CL images obtained by the Luminoscope exhibit blue, violet and red emissions in the grains, suggesting various types of emission centers in the quartz. SEM-CL analysis was conducted using an SEM (JSM-5410) combined with a grating monochromator (Mono CL2) to measure

  18. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Omar Ortiz-Avila

    2015-01-01

    Full Text Available Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats. Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential ΔΨm, besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  19. Hypoxia up-regulates mitochondrial genome-encoded transcripts in Arabidopsis roots.

    Science.gov (United States)

    Hameed, Muhammad Waqar

    2016-04-28

    Plants are frequently exposed to limitations in oxygen availability during their lifetime. During evolution, they have developed a number of physiological and morphological adaptations to tolerate oxygen and other stress conditions. These include regulation of growth by gene expression and ATP generation. The regulation of nuclear genes after hypoxia and anoxia is well studied; however, the regulation of mitochondrial genes in response to oxygen stress has not been characterized to date. Therefore, we have established an Arabidopsis mitochondrial genome-specific microarray that accommodates probes for all mitochondrial DNA-encoded genes and conserved open reading frames. Our analysis showed an up-regulation of mitochondrial transcripts in Arabidopsis roots after 48 h of hypoxia. Since no significant difference was detected in the expression of mitochondrial RNA polymerases or the mitochondrial DNA content per cell, we propose a transcriptional mode of induction of mitochondrial gene expression under hypoxia. PMID:27002184

  20. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    Science.gov (United States)

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress. PMID:26180820

  1. Phenotypic dichotomy in mitochondrial complex II genetic disorders.

    Science.gov (United States)

    Baysal, B E; Rubinstein, W S; Taschner, P E

    2001-09-01

    This review presents our current knowledge on the genetic and phenotypic aspects of mitochondrial complex II gene defects. The mutations of the complex II subunits cause two strikingly different group of disorders, revealing a phenotypic dichotomy. Genetic disorders of the mitochondrial respiratory chain are often characterized by hypotonia, growth retardation, cardiomyopathy, myopathy, neuropathy, organ failure, and metabolic derangement. These disorders are transmitted through maternal lineage if the defective gene is located in the mitochondrial genome or may follow a Mendelian pattern if it is in the nucleus. Mitochondrial complex II (succinate:ubiquinone oxidoreductase) is the smallest complex in the respiratory chain and is composed of four subunits encoded by nuclear genes SDHA, SDHB, SDHC, and SDHD. Complex II oxidizes succinate to fumarate in the Krebs cycle and is involved in the mitochondrial electron transport chain. SDHA and SDHB encode the flavoprotein and iron-sulfur proteins, respectively, and SDHC and SDHD encode the two hydrophobic membrane-spanning subunits. While mutations in SDHA display a phenotype resembling other mitochondrial and Krebs cycle gene defects, those in SDHB, SDHC and SDHD cause hereditary paraganglioma. Paraganglioma is characterized by slow-growing vascular tumors of the paraganglionic tissue (i.e., adrenal and extra-adrenal paragangliomas, including those in the head and neck, mediastinum, abdomen, and pheochromocytomas). Paraganglioma caused by SDHD mutations occurs exclusively after paternal transmission, suggesting that genomic imprinting influences gene expression. Association of a mitochondrial gene defect with tumorigenesis expands the phenotypic spectrum of mitochondrial diseases and adds genomic imprinting as a new transmission mode in mitochondrial genetics. The phenotypic features of complex II gene mutations suggest that whereas the catalytic subunit SDHA mutations may compromise the Krebs cycle, those in other

  2. Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, Daniel J.; Buranda, T. (University of New Mexico, Albuquerque, NM); Burns, Alan Richard

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid domains in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup-labeled GM1 ganglioside probes and for headgroup- and tailgroup-labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components (fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.

  3. Lattice Wind Description and Characterization of Mexico City Local Wind Events in the 2001–2006 Period

    Directory of Open Access Journals (Sweden)

    Alejandro Salcido

    2015-07-01

    Full Text Available Urban transformation and expansion in Mexico City continuously affect its urban morphology, and therefore the modes of wind circulation inside it and their occurrence probabilities. Knowledge on these topics is an important issue for urban planning and for other urban studies, such as air quality assessment. In this paper, using a lattice wind model at a meso-β scale, we develop a simple description and characterization of Mexico City local wind events that occurred during the period 2001–2006, including an estimation of the occurrence probabilities. This region was modeled as a 2D lattice domain of identical cells, and wind conditions in each cell were described by four wind attributes: the horizontal velocity components, divergence, and vorticity. Models of one and four cells were applied to wind data furnished by the meteorological network of the city. Results include the following: Early morning: low intensity winds (75% from N, NW, W and SW (75%, convergent (93%, with a slight predominance of cyclonic vorticity (54%. Morning and early afternoon: winds from N, NE and E (72% with speeds from 0.5 to 3.5 m/s, slight prevailing of convergent winds (51%, and slight predominance of cyclonic vorticity (57%. Late afternoon and night: winds blowing from N, NW, and S (63% with speeds from 1.5 to 3.5 m/s (66%, convergent (90%, and cyclonic (72%.

  4. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    Science.gov (United States)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2001-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  5. Mitochondrial Dysfunction and Psychiatric Disorders

    OpenAIRE

    Shaw-Hwa Jou; Nan-Yin Chiu; Chin-San Liu

    2009-01-01

    Mitochondria are intracellular organelles crucial in the production of cellular energy.Mitochondrial diseases may result from malfunctions in this biochemical cascade. Severalinvestigators have proposed that mitochondrial dysfunction is related to the pathophysiologyof bipolar disorder (BD), major depressive disorder (MDD) and schizophrenia (SZ). Theauthors reviewed recent study findings and tried to delineate the current understanding of thecorrelation between mitochondrial dysfunction and p...

  6. Visible Light-Controlled Nitric Oxide Release from Hindered Nitrobenzene Derivatives for Specific Modulation of Mitochondrial Dynamics.

    Science.gov (United States)

    Kitamura, Kai; Kawaguchi, Mitsuyasu; Ieda, Naoya; Miyata, Naoki; Nakagawa, Hidehiko

    2016-05-20

    Nitric oxide (NO) is a physiological signaling molecule, whose biological production is precisely regulated at the subcellular level. Here, we describe the design, synthesis, and evaluation of novel mitochondria-targeted NO releasers, Rol-DNB-mor and Rol-DNB-pyr, that are photocontrollable not only in the UV wavelength range but also in the biologically favorable visible wavelength range (530-590 nm). These caged NO compounds consist of a hindered nitrobenzene as the NO-releasing moiety and a rhodamine chromophore. Their NO-release properties were characterized by an electron spin resonance (ESR) spin trapping method and fluorometric analysis using NO probes, and their mitochondrial localization in live cells was confirmed by costaining. Furthermore, we demonstrated visible light control of mitochondrial fragmentation via activation of dynamin-related protein 1 (Drp1) by means of precisely controlled NO delivery into mitochondria of cultured HEK293 cells, utilizing Rol-DNB-pyr. PMID:26878937

  7. Oxidative Stress, Mitochondrial Dysfunction, and Aging

    OpenAIRE

    Yahui Kong; Hang Cui; Hong Zhang

    2012-01-01

    Aging is an intricate phenomenon characterized by progressive decline in physiological functions and increase in mortality that is often accompanied by many pathological diseases. Although aging is almost universally conserved among all organisms, the underlying molecular mechanisms of aging remain largely elusive. Many theories of aging have been proposed, including the free-radical and mitochondrial theories of aging. Both theories speculate that cumulative damage to mitochondria and mitoch...

  8. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Jianxin Lu; Lokendra Kumar Sharma; Yidong Bai

    2009-01-01

    Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed.

  9. Mapping of mitochondrial ferritin in the brainstem of Macaca fascicularis.

    Science.gov (United States)

    Yang, Mingchun; Yang, Hongkuan; Guan, Hongpeng; Bellier, Jean-Pierre; Zhao, Shiguang; Tooyama, Ikuo

    2016-07-22

    Mitochondrial ferritin (FtMt), a recently-studied iron storage protein, which we suspect is an important defense against oxidative stress in neurons and elsewhere. The 242-amino acid FtMt precursor protein is cleaved to mature protein (of molecular weight about 22-kDa) in the mitochondrial matrix. Compared with the ubiquitously expressed traditional ferritin (H-ferritin and L-ferritin), FtMt has been found in fewer locations including the testis, heart and brain. Previous studies have reported that the expression of FtMt in mouse and human brain is predominantly localized to neurons and partly to glial cells, and FtMt exerts protective effects on neurons by maintaining normal function and regulates apoptosis in Alzheimer's disease and Parkinson's disease. To find out the function of FtMt in neurodegenerative disease, we had a novel antibody made against human FtMt and characterized it via Western blot analysis, immunoabsorption testing, and double immunofluorescence histochemistry. Then we used this new FtMt antibody to map the distribution of FtMt in the monkey brainstem. We demonstrated widespread distribution of FtMt immunoreactivity throughout the monkey brainstem, with variable staining intensity. FtMt immunoreactivity was observed in the extrapyramidal system, sensory trigeminal nerve nuclei, some motor nuclei including ambiguous nucleus, dorsal motor nucleus of the vagus and hypoglossal nucleus, and some dorsal column nuclei such as the gracile nucleus and cuneate nucleus. In addition, double immunohistochemical stainings confirmed that FtMt immunoreactivity was co-localized with catecholaminergic neurons in the locus coeruleus (63.64%), substantia nigra pars compacta (69.18%), and ventral tegmental area (56.89%). The distribution of FtMt which we found in the brainstem implies possible involvement of FtMt in several physiological mechanisms, especially in the catecholaminergic neurons, and the possibility of significant involvement in neurodegenerative

  10. Molecular characterization of brinjal shoot and fruit borer, Leucinodes orbonalis (Guenée) (Lepidoptera: Crambidae) based on mitochondrial marker cytochrome oxidase I and their phylogenetic relationship.

    Science.gov (United States)

    Shashank, P R; Ojha, Rakshit; Venkatesan, T; Jalali, S K; Bhanu, K R M

    2015-01-01

    Shoot and fruit borer, Leucinodes orbonalis is an important insect pest infesting brinjal or eggplant in India. Molecular characterization of nine different populations belonging to various brinjal growing regions was done using Cytochorome C Oxidase I (COI) gene. Nucleotide analysis of genetic diversity and phylogenetic analysis of the COI indicate that the L. orbonalis from different geographical regions are homogenous. The results showed less nucleotide diversity (π = 0.007895) and overall mean distance (0.008 ± 0.003). Topologies of neighbour-joining (NJ) trees indicate all the populations belong to single major clade. Therefore, it is inferred that there was no significant molecular diversity within L. orbonalis of different geographical locations of India with respect to COI. PMID:25675712

  11. DNA methylation status of nuclear-encoded mitochondrial genes underlies the tissue-dependent mitochondrial functions

    Directory of Open Access Journals (Sweden)

    Takasugi Masaki

    2010-08-01

    Full Text Available Abstract Background Mitochondria are semi-autonomous, semi-self-replicating organelles harboring their own DNA (mitochondrial DNA, mtDNA, and their dysregulation is involved in the development of various diseases. While mtDNA does not generally undergo epigenetic modifications, almost all mitochondrial proteins are encoded by nuclear DNA. However, the epigenetic regulation of nuclear-encoded mitochondrial genes (nuclear mt genes has not been comprehensively analyzed. Results We analyzed the DNA methylation status of 899 nuclear mt genes in the liver, brain, and heart tissues of mouse, and identified 636 nuclear mt genes carrying tissue-dependent and differentially methylated regions (T-DMRs. These nuclar mt genes are involved in various mitochondrial functions and they also include genes related to human diseases. T-DMRs regulate the expression of nuclear mt genes. Nuclear mt genes with tissue-specific hypomethylated T-DMRs were characterized by enrichment of the target genes of specific transcription factors such as FOXA2 in the liver, and CEBPA and STAT1 in the brain. Conclusions A substantial proportion of nuclear mt genes contained T-DMRs, and the DNA methylation status of numerous T-DMRs should underlie tissue-dependent mitochondrial functions.

  12. Upstream Pathways Controlling Mitochondrial Function in Major Psychosis: A Focus on Bipolar Disorder.

    Science.gov (United States)

    Machado, Alencar Kolinski; Pan, Alexander Yongshuai; da Silva, Tatiane Morgana; Duong, Angela; Andreazza, Ana Cristina

    2016-08-01

    Mitochondrial dysfunction is commonly observed in bipolar disorder (BD) and schizophrenia (SCZ) and may be a central feature of psychosis. These illnesses are complex and heterogeneous, which is reflected by the complexity of the processes regulating mitochondrial function. Mitochondria are typically associated with energy production; however, dysfunction of mitochondria affects not only energy production but also vital cellular processes, including the formation of reactive oxygen species, cell cycle and survival, intracellular Ca(2+) homeostasis, and neurotransmission. In this review, we characterize the upstream components controlling mitochondrial function, including 1) mutations in nuclear and mitochondrial DNA, 2) mitochondrial dynamics, and 3) intracellular Ca(2+) homeostasis. Characterizing and understanding the upstream factors that regulate mitochondrial function is essential to understand progression of these illnesses and develop biomarkers and therapeutics. PMID:27310240

  13. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB

    OpenAIRE

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B.; Gorski, Sharon M.

    2014-01-01

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide t...

  14. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: panderson@rics.bwh.harvard.edu [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  15. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    International Nuclear Information System (INIS)

    Research highlights: → Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. → The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. → Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  16. Mitochondrial pyruvate carrier in Trypanosoma brucei.

    Science.gov (United States)

    Štáfková, Jitka; Mach, Jan; Biran, Marc; Verner, Zdeněk; Bringaud, Frédéric; Tachezy, Jan

    2016-05-01

    Pyruvate is a key product of glycolysis that regulates the energy metabolism of cells. In Trypanosoma brucei, the causative agent of sleeping sickness, the fate of pyruvate varies dramatically during the parasite life cycle. In bloodstream forms, pyruvate is mainly excreted, whereas in tsetse fly forms, pyruvate is metabolized in mitochondria yielding additional ATP molecules. The character of the molecular machinery that mediates pyruvate transport across mitochondrial membrane was elusive until the recent discovery of mitochondrial pyruvate carrier (MPC) in yeast and mammals. Here, we characterized pyruvate import into mitochondrion of T. brucei. We identified mpc1 and mpc2 homologs in the T. brucei genome with attributes of MPC protein family and we demonstrated that both proteins are present in the mitochondrial membrane of the parasite. Investigations of mpc1 or mpc2 gene knock-out cells proved that T. brucei MPC1/2 proteins facilitate mitochondrial pyruvate transport. Interestingly, MPC is expressed not only in procyclic trypanosomes with fully activated mitochondria but also in bloodstream trypanosomes in which most of pyruvate is excreted. Moreover, MPC appears to be essential for bloodstream forms, supporting the recently emerging picture that the functions of mitochondria in bloodstream forms are more diverse than it was originally thought. PMID:26748989

  17. THE MEANING OF MITOCHONDRIAL DISEASES IN DEFECTOLOGY

    Directory of Open Access Journals (Sweden)

    Vladimir TRAJKOVSKI

    1999-11-01

    Full Text Available Mitochondrial diseases are a group of disorders characterized by morphological or functional defects of the mitochondria, the organelles producing most of our cellular energy. As the only extranuclear site carrying genetic information, the mitochondria add an important chapter in to the inheritance patterns of genetic disease. Because the mitochondria produce energy in all the tissues, symptoms resulting from mt DNA mutations may originate from any organ system, and the clinical spectrum of mitochondrial diseases has expanded to virtually all branches of medicine.Diagnosis of mitochondrial dysfunction may be difficult with currently available tools, however, measuring respiratory chain enzyme activities, mt DNA levels, and searching for mt DNA mutations and deletions are specific tests.Treatment of these disorders is currently empirical, involving agents that may improve the redox status of mitochondria, promote electron flow, or act as mitochondrial antioxidants.Limited data are available for genotype/phenotype correlation's in disorder caused by mt DNA mutations, therefore, prenatal diagnosis for mt DNA mutations has been hindered by an inability to predict accurately the clinical severity expected from a mutant load measured in fetal tissue

  18. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  19. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson's disease.

    Science.gov (United States)

    Di Maio, Roberto; Barrett, Paul J; Hoffman, Eric K; Barrett, Caitlyn W; Zharikov, Alevtina; Borah, Anupom; Hu, Xiaoping; McCoy, Jennifer; Chu, Charleen T; Burton, Edward A; Hastings, Teresa G; Greenamyre, J Timothy

    2016-06-01

    α-Synuclein accumulation and mitochondrial dysfunction have both been strongly implicated in the pathogenesis of Parkinson's disease (PD), and the two appear to be related. Mitochondrial dysfunction leads to accumulation and oligomerization of α-synuclein, and increased levels of α-synuclein cause mitochondrial impairment, but the basis for this bidirectional interaction remains obscure. We now report that certain posttranslationally modified species of α-synuclein bind with high affinity to the TOM20 (translocase of the outer membrane 20) presequence receptor of the mitochondrial protein import machinery. This binding prevented the interaction of TOM20 with its co-receptor, TOM22, and impaired mitochondrial protein import. Consequently, there were deficient mitochondrial respiration, enhanced production of reactive oxygen species, and loss of mitochondrial membrane potential. Examination of postmortem brain tissue from PD patients revealed an aberrant α-synuclein-TOM20 interaction in nigrostriatal dopaminergic neurons that was associated with loss of imported mitochondrial proteins, thereby confirming this pathogenic process in the human disease. Modest knockdown of endogenous α-synuclein was sufficient to maintain mitochondrial protein import in an in vivo model of PD. Furthermore, in in vitro systems, overexpression of TOM20 or a mitochondrial targeting signal peptide had beneficial effects and preserved mitochondrial protein import. This study characterizes a pathogenic mechanism in PD, identifies toxic species of wild-type α-synuclein, and reveals potential new therapeutic strategies for neuroprotection. PMID:27280685

  20. Mitochondrial Processing Peptidase

    Czech Academy of Sciences Publication Activity Database

    Kutejová, Eva; Kučera, Tomáš; Matušková, Anna; Janata, Jiří

    Vol. 1. Oxford : Oxford: Academic Press, 2013 - (Rawlings, N.; Salvesen, G.), s. 1435-1442 ISBN 978-0-12-382219-2 R&D Projects: GA MŠk 2B08064 Institutional support: RVO:61388971 Keywords : mitochondria * mitochondrial peptidase Subject RIV: CE - Biochemistry

  1. Mitochondrial Dysfunction in Cancer

    Directory of Open Access Journals (Sweden)

    KayFMacleod

    2013-12-01

    Full Text Available A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability and other more conventional aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the sigificance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis and spatial dynamics and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knockon effects for cell proliferation and growth. Scientifically, there is also scope for defining what mitochondria dysfunction is and here we address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment.

  2. Mitochondrial Ion Channels

    Science.gov (United States)

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  3. Mitochondrial Dysfunction in Gliomas

    Czech Academy of Sciences Publication Activity Database

    Katsetos, C.D.; Anni, H.; Dráber, Pavel

    2013-01-01

    Roč. 20, č. 3 (2013), s. 216-227. ISSN 1071-9091 R&D Projects: GA MŠk LH12050 Institutional support: RVO:68378050 Keywords : gliomas * mitochondrial dysfunction * microtubule proteins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.883, year: 2013

  4. Mitochondrial dysfunction in epilepsy

    Czech Academy of Sciences Publication Activity Database

    Folbergrová, Jaroslava; Kunz, W.S.

    2012-01-01

    Roč. 12, č. 1 (2012), s. 35-40. ISSN 1567-7249 R&D Projects: GA ČR(CZ) GA309/05/2015; GA ČR GA309/08/0292 Institutional research plan: CEZ:AV0Z50110509 Keywords : epilepsy * mitochondrial dysfunction * neurodegeneration Subject RIV: FH - Neurology Impact factor: 4.025, year: 2012

  5. Characterization of L1 ORF1p self-interaction and cellular localization using a mammalian two-hybrid system.

    Directory of Open Access Journals (Sweden)

    Mark Sokolowski

    Full Text Available Long INterspersed Element-1 (LINE-1, L1 is an active retrotransposon that mobilizes using a ribonucleoprotein particle (RNP intermediate composed of the full-length bicistronic L1 mRNA and the two proteins (ORF1p and ORF2p encoded by that mRNA. ORF1p and ORF2p demonstrate cis-preference for their encoding mRNA. Previous studies of ORF1p, purified from bacterial and insect cells demonstrated that this protein forms trimers in vitro. While valuable for understanding ORF1p function, these in vitro approaches do not provide any information on ORF1p self-interaction in the context of mammalian cells. We used a mammalian two-hybrid (M2H system in order to study L1 ORF1p self-interaction in human and mouse cells. We demonstrate that the M2H system successfully detects human and mouse ORF1p self-interactions in transiently transfected mammalian cells. We also generated mouse and human ORF1p-specific antibodies to characterize the expression of ORF1p fusion proteins used in the M2H system. Using these antibodies, we demonstrate that ORF1p interaction in trans leads to the formation of heterodimers that are expected to produce a positive signal in the M2H system. Although the role for L1 ORF1p cis-preference in L1 mobilization is established, the impact of ability of ORF1pto interact in trans on the L1 replication cycle is not known. Furthermore, western blot analysis of ORF1p generated by a full-length L1, wild type ORF1, or a codon-optimized ORF1 expression vector is detected in the nucleus. In contrast, the addition of a tag to the N-terminus of the mouse and human ORF1 proteins can significantly alter the subcellular localization in a tag-specific manner. These data support that nuclear localization of ORF1p may contribute to L1 (and potentially the SINE Alu RNP nuclear access in the host cell.

  6. NOA1, a Novel ClpXP Substrate, Takes an Unexpected Nuclear Detour Prior to Mitochondrial Import

    OpenAIRE

    Al-Furoukh, Natalie; Kardon, Julia R.; Krüger, Marcus; Szibor, Marten; Baker, Tania A.; Braun, Thomas

    2014-01-01

    The mitochondrial matrix GTPase NOA1 is a nuclear encoded protein, essential for mitochondrial protein synthesis, oxidative phosphorylation and ATP production. Here, we demonstrate that newly translated NOA1 protein is imported into the nucleus, where it localizes to the nucleolus and interacts with UBF1 before nuclear export and import into mitochondria. Mutation of the nuclear localization signal (NLS) prevented both nuclear and mitochondrial import while deletion of the N-terminal mitochon...

  7. Early steps in bilirubin-mediated apoptosis in murine hepatoma (Hepa 1c1c7) cells are characterized by aryl hydrocarbon receptor-independent oxidative stress and activation of the mitochondrial pathway.

    Science.gov (United States)

    Oakes, Garth H; Bend, John R

    2005-01-01

    Unconjugated bilirubin (UCB), the end product of heme catabolism, causes apoptosis in cells of the central nervous system, endothelial cells, and hepatotoma cells. However, the molecular mechanisms that contribute to UCB cytotoxicity remain unclear. The purpose of this study was to characterize the sequence of early events leading to UCB-mediated cytotoxicity in murine hepatoma Hepa 1c1c7 cells. In the present study, UCB (5-50 microM) was found to markedly increase the intracellular generation of reactive oxygen species (ROS) in a concentration-dependent manner, which is significantly elevated by 30 min post-treatment. This generation of ROS by UCB is not dependent on aryl hydrocarbon receptor (Ahr) signaling, as cells deficient in the Ahr (C12 cells) or the Ahr nuclear translocator protein (Arnt; C4 cells) were as efficient at generating ROS as wild type (WT) Hepa 1c1c7 cells. Mitochondrial membrane depolarization, evaluated with the lipophilic cationic dye, JC-1, occurred at least by 2 h after treatment with 50 muM UCB. Analysis of the caspase cascade demonstrated that activation of caspase-9 preceded activation of caspase-3. No conversion of procaspase-2 to active caspase-2 was detected in this study. These results demonstrate that UCB-mediated apoptosis in Hepa 1c1c7 cells is associated with increased oxidative stress and that caspase-9, and definitely not caspase-2, is the initiator caspase for apoptosis in UCB-treated Hepa 1c1c7 cells. PMID:16173058

  8. Characterization, localization, and seasonal changes of the sucrose transporter FeSUT1 in the phloem of Fraxinus excelsior.

    Science.gov (United States)

    Öner-Sieben, Soner; Rappl, Christine; Sauer, Norbert; Stadler, Ruth; Lohaus, Gertrud

    2015-08-01

    Trees are generally assumed to be symplastic phloem loaders. A typical feature for most wooden species is an open minor vein structure with symplastic connections between mesophyll cells and phloem cells, which allow sucrose to move cell-to-cell through the plasmodesmata into the phloem. Fraxinus excelsior (Oleaceae) also translocates raffinose family oligosaccharides in addition to sucrose. Sucrose concentration was recently shown to be higher in the phloem sap than in the mesophyll cells. This suggests the involvement of apoplastic steps and the activity of sucrose transporters in addition to symplastic phloem-loading processes. In this study, the sucrose transporter FeSUT1 from F. excelsior was analysed. Heterologous expression in baker's yeast showed that FeSUT1 mediates the uptake of sucrose. Immunohistochemical analyses revealed that FeSUT1 was exclusively located in phloem cells of minor veins and in the transport phloem of F. excelsior. Further characterization identified these cells as sieve elements and possibly ordinary companion cells but not as intermediary cells. The localization and expression pattern point towards functions of FeSUT1 in phloem loading of sucrose as well as in sucrose retrieval. FeSUT1 is most likely responsible for the observed sucrose gradient between mesophyll and phloem. The elevated expression level of FeSUT1 indicated an increased apoplastic carbon export activity from the leaves during spring and late autumn. It is hypothesized that the importance of apoplastic loading is high under low-sucrose conditions and that the availability of two different phloem-loading mechanisms confers advantages for temperate woody species like F. excelsior. PMID:26022258

  9. Characterization, localization and function of pertussis toxin-sensitive G proteins in the nervous systems of Aplysia and Loligo

    International Nuclear Information System (INIS)

    The author has characterized pertussis toxin-sensitive G proteins in the nervous systems of the gastropod mollusc Aplysia and the cephalopod Loligo using [32P]ADP-ribosylation and immunoblotting with G protein specific antisera. As in vertebrates, this class of G protein is associated with membranes and enriched in nervous tissue in Aplysia. Analysis of dissected Aplysia ganglia reveal that it is enriched in neuropil, a region containing most of the central nervous system synapses. Because both Aplysia and Loligo synaptosomes are enriched in pertussis toxin-sensitive G proteins, it is likely that they are found in synaptic terminals. Fractionation of Aplysia synaptosomes into membrane and vesicle fractions reveals that, although the majority of G protein is recovered in the plasma membrane fraction, a small proportion is recovered in the vesicle fraction. He shows that G proteins are on intracellular membranes by ADP-ribosylating extruded axoplasm with pertussis toxin. A plausible explanation for vesicular localization of G protein in axoplasm is that G proteins are transported to terminals on vesicles. He has shown, using ligature experiments with Aplysia connectives and temperature block experiments in the giant axon of Loligo, that G proteins move by anterograde fast axonal transport. Injection of pertussis toxin into the identified Aplysia neuron L10 blocks histamine-induced presynaptic inhibition of transmitter release. This suggests that pertussis toxin sensitive G proteins play a role in modulating transmitter release at synaptic terminals. In the giant synapse of Loligo, he presents preliminary data that demonstrates that the activation of G proteins in the presynaptic terminal results in decreased transmitter release

  10. p53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity

    Institute of Scientific and Technical Information of China (English)

    Sonja Wolff; Susan Erster; Gustavo Palacios; Ute M Moll

    2008-01-01

    p53's apoptotic program consists of transcription-dependent and transcription-independent pathways. In the latter, physical interactions between mitochondrial p53 and anti-and pro-apoptotic members of the Bcl2 family of mitochondrial permeability regulators are central. Using isogenic cell systems with defined deficiencies, we characterize in detail how mitochondrial p53 contributes to mitochondrial permeabilization, to what extent its action depends on other key Bcl2 family members and define its release activity. We show that mitochondrial p53 is highly efficient in inducing the release of soluble and insoluble apoptogenic factors by severely disrupting outer and inner mitochondrial membrane integrity. This action is associated with wild-type p53-induced oligomerization of Bax, Bak and VDAC and the formation of a stress-induced endogenous complex between p53 and cyclophilin D, normally located at the inner membrane. Tumor-derived p53 mutants are deficient in activating the Bax/Bak lipid pore. These actions are independent of Puma and Bax. Importantly, the latter distinguishes the mitochondrial from the cytosolic p53 death pathway.

  11. Cutaneous mitochondrial respirometry: non-invasive monitoring of mitochondrial function.

    Science.gov (United States)

    Harms, Floor A; Bodmer, Sander I A; Raat, Nicolaas J H; Mik, Egbert G

    2015-08-01

    The recently developed technique for measuring cutaneous mitochondrial oxygen tension (mitoPO2) by means of the Protoporphyrin IX-Triplet State Lifetime Technique (PpIX-TSLT) provides new opportunities for assessing mitochondrial function in vivo. The aims of this work were to study whether cutaneous mitochondrial measurements reflect mitochondrial status in other parts of the body and to demonstrate the feasibility of the technique for potential clinical use. The first part of this paper demonstrates a correlation between alterations in mitochondrial parameters in skin and other tissues during endotoxemia. Experiments were performed in rats in which mitochondrial dysfunction was induced by a lipopolysaccharide-induced sepsis (n = 5) and a time control group (n = 5). MitoPO2 and mitochondrial oxygen consumption (mitoVO2) were measured using PpIX-TSLT in skin, liver and buccal mucosa of the mouth. Both skin and buccal mucosa show a significant mitoPO2-independent decrease (P paper describes the clinical concept of monitoring cutaneous mitochondrial respiration in man. A first prototype of a clinical PpIX-TSLT monitor is described and its usability is demonstrated on human skin. We expect that clinical implementation of this device will greatly contribute to our understanding of mitochondrial oxygenation and oxygen metabolism in perioperative medicine and in critical illness. Our ultimate goal is to develop a clinical monitor for mitochondrial function and the current results are an important step forward. PMID:25388510

  12. Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis.

    Science.gov (United States)

    Zallot, Rémi; Agrimi, Gennaro; Lerma-Ortiz, Claudia; Teresinski, Howard J; Frelin, Océane; Ellens, Kenneth W; Castegna, Alessandra; Russo, Annamaria; de Crécy-Lagard, Valérie; Mullen, Robert T; Palmieri, Ferdinando; Hanson, Andrew D

    2013-06-01

    Plants make coenzyme A (CoA) in the cytoplasm but use it for reactions in mitochondria, chloroplasts, and peroxisomes, implying that these organelles have CoA transporters. A plant peroxisomal CoA transporter is already known, but plant mitochondrial or chloroplastic CoA transporters are not. Mitochondrial CoA transporters belonging to the mitochondrial carrier family, however, have been identified in yeast (Saccharomyces cerevisiae; Leu-5p) and mammals (SLC25A42). Comparative genomic analysis indicated that angiosperms have two distinct homologs of these mitochondrial CoA transporters, whereas nonflowering plants have only one. The homologs from maize (Zea mays; GRMZM2G161299 and GRMZM2G420119) and Arabidopsis (Arabidopsis thaliana; At1g14560 and At4g26180) all complemented the growth defect of the yeast leu5Δ mitochondrial CoA carrier mutant and substantially restored its mitochondrial CoA level, confirming that these proteins have CoA transport activity. Dual-import assays with purified pea (Pisum sativum) mitochondria and chloroplasts, and subcellular localization of green fluorescent protein fusions in transiently transformed tobacco (Nicotiana tabacum) Bright Yellow-2 cells, showed that the maize and Arabidopsis proteins are targeted to mitochondria. Consistent with the ubiquitous importance of CoA, the maize and Arabidopsis mitochondrial CoA transporter genes are expressed at similar levels throughout the plant. These data show that representatives of both monocotyledons and eudicotyledons have twin, mitochondrially located mitochondrial carrier family carriers for CoA. The highly conserved nature of these carriers makes possible their reliable annotation in other angiosperm genomes. PMID:23590975

  13. Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Sorensen, Martin M; Hvitby, Christina Poulsen;

    2010-01-01

    Cockayne syndrome (CS) is a human premature aging disorder associated with severe developmental deficiencies and neurodegeneration, and phenotypically it resembles some mitochondrial DNA (mtDNA) diseases. Most patients belong to complementation group B, and the CS group B (CSB) protein plays a role...... in genomic maintenance and transcriptome regulation. By immunocytochemistry, mitochondrial fractionation, and Western blotting, we demonstrate that CSB localizes to mitochondria in different types of cells, with increased mitochondrial distribution following menadione-induced oxidative stress....... Moreover, our results suggest that CSB plays a significant role in mitochondrial base excision repair (BER) regulation. In particular, we find reduced 8-oxo-guanine, uracil, and 5-hydroxy-uracil BER incision activities in CSB-deficient cells compared to wild-type cells. This deficiency correlates with...

  14. SUMO-regulated mitochondrial function in Parkinson's disease.

    Science.gov (United States)

    Guerra de Souza, Ana Cristina; Prediger, Rui Daniel; Cimarosti, Helena

    2016-06-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by cardinal motor signs such as rigidity, bradykinesia or rest tremor that arise from a significant death of dopaminergic neurons. Non-dopaminergic degeneration also occurs and it seems to induce the deficits in olfactory, emotional, and memory functions that precede the classical motor symptoms in PD. Despite the majority of PD cases being sporadic, several genes have previously been associated with the hereditary forms of the disease. The proteins encoded by some of these genes, including α-synuclein, DJ-1, and parkin, are modified by small ubiquitin-like modifier (SUMO), a post-translational modification that regulates a variety of cellular processes. Among the several pathogenic mechanisms proposed for PD is mitochondrial dysfunction. Recent studies suggest that SUMOylation can interfere with mitochondrial dynamics, which is essential for neuronal function, and may play a pivotal role in PD pathogenesis. Here, we present an overview of recent studies on mitochondrial disturbance in PD and the potential SUMO-modified proteins and pathways involved in this process. SUMOylation, a post-translational modification, interferes with mitochondrial dynamics, and may play a pivotal role in Parkinson's disease (PD). SUMOylation maintains α-synuclein (α-syn) in a soluble form and activates DJ-1, decreasing mitochondrial oxidative stress. SUMOylation may reduce the amount of parkin available for mitochondrial recruitment and decreases mitochondrial biogenesis through suppression of peroxisomal proliferator-activated receptor-γ co-activator 1 α (PGC-1α). Mitochondrial fission can be regulated by dynamin-related protein 1 SUMO-1- or SUMO-2/3-ylation. A fine balance for the SUMOylation/deSUMOylation of these proteins is required to ensure adequate mitochondrial function in PD. PMID:26932327

  15. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Philippe A Parone

    Full Text Available Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS. At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis.

  16. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function.

    Science.gov (United States)

    Martin, Laura A; Kennedy, Barry E; Karten, Barbara

    2016-04-01

    Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology. PMID:25425472

  17. Characterization of Local Wind Patterns around the Kori Nuclear Power Plant using Cluster Analysis and WRF meteorological modeling

    International Nuclear Information System (INIS)

    To accurately predict the atmospheric diffusion of radioactive effluent, detailed analysis of local wind patterns nearby nuclear power plants are necessary. In this study, the characteristics of typical local winds around the Kori Nuclear Power Plant (Kori NPP) were investigated using the cluster analysis and Weather Research and Forecasting (WRF) meteorological modeling. In this study, the local wind characteristics around the Kori NPP were analyzed using cluster analysis and WRF meteorological modeling. As a result of the cluster analysis, four wind patterns around the Kori NPP were selected. The model study indicated the possibility that the local winds in the target area can largely contribute to the atmospheric diffusion of radioactive effluents

  18. Prevalence and Severity of Voice and Swallowing Difficulties in Mitochondrial Disease

    Science.gov (United States)

    Read, Jennifer L.; Whittaker, Roger G.; Miller, Nick; Clark, Sue; Taylor, Robert; McFarland, Robert; Turnbull, Douglass

    2012-01-01

    Background: Mutations of mitochondrial DNA (mtDNA) cause a broad spectrum of clinical phenotypes. Anecdotal evidence suggests that voice and swallow problems are a common feature of these diseases. Aims: To characterize accurately the prevalence and severity of voice and swallow problems in a large cohort of patients with mitochondrial disease.…

  19. Congenital sideroblastic anemia due to mutations in the mitochondrial HSP70 homologue HSPA9

    DEFF Research Database (Denmark)

    Schmitz-Abe, Klaus; Ciesielski, Szymon J; Schmidt, Paul J;

    2015-01-01

    The congenital sideroblastic anemias (CSAs) are relatively uncommon diseases, characterized by defects in mitochondrial heme synthesis, iron-sulfur cluster (Fe-S) biogenesis, or protein synthesis. Here we demonstrate that mutations in HSPA9, a mitochondrial HSP70 homologue located in the 5q...

  20. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    OpenAIRE

    Omar Ortiz-Avila; Mauricio Esquivel-Martínez; Berenice Eridani Olmos-Orizaba; Alfredo Saavedra-Molina; Alain R. Rodriguez-Orozco; Christian Cortés-Rojo

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the...

  1. Cancer: Mitochondrial Origins

    OpenAIRE

    Stefano, George B.; Kream, Richard M.

    2015-01-01

    The primacy of glucose derived from photosynthesis as an existential source of chemical energy across plant and animal phyla is universally accepted as a core principle in the biological sciences. In mammalian cells, initial processing of glucose to triose phosphate intermediates takes place within the cytosolic glycolytic pathway and terminates with temporal transport of reducing equivalents derived from pyruvate metabolism by membrane-associated respiratory complexes in the mitochondrial ma...

  2. Mitochondrial Subversion in Cancer

    OpenAIRE

    Chatterjee, Aditi; Dasgupta, Santanu; Sidransky, David

    2011-01-01

    Mitochondria control essential cellular activities including generation of ATP via oxidative phosphorylation. Mitochondrial DNA (mtDNA) mutations in the regulatory D-loop region and somatic mtDNA mutations are common in primary human cancers. The biological impact of a given mutation may vary, depending on the nature of the mutation and the proportion of mutant mtDNAs carried by the cell. Identification of mtDNA mutations in precancerous lesions supports their early contribution to cell trans...

  3. Formulation and characterization of 5-Fluorouracil enteric coated nanoparticles for sustained and localized release in treating colorectal cancer.

    Science.gov (United States)

    Tummala, Shashank; Satish Kumar, M N; Prakash, Ashwati

    2015-07-01

    5-Fluorouracil is used in the treatment of colorectal cancer along with oxaliplatin as first line treatment, but it is having lack of site specificity and poor therapeutic effect. Also toxic effects to healthy cells and unavailability of major proportion of drug at the colon region remain as limitations. Toxic effects prevention and drug localization at colon area was achieved by preparing enteric-coated chitosan polymeric nanoparticles as it can be delivered directly to large bowel. Enteric coating helps in preventing the drug degradation at gastric pH. So the main objective was to prepare chitosan polymeric nanoparticles by solvent evaporation emulsification method by using different ratios of polymer (1:1, 1:2, 1:3, 1:4). Optimized polymer ratio was characterized by differential scanning calorimetry (DSC), X-ray diffraction (XRD), entrapment efficiency and particle size and further subjected to enteric coating. In vitro drug release studies were done using dialysis bag technique using simulated fluids at various pH (1.2, 4.5, 7.5, 7.0) to mimic the GIT tract. 5-FU nanoparticles with drug: polymer ratio of 1:2 and 1:3 has shown better particle size (149 ± 1.28 nm and 138 ± 1.01 nm respectively), entrapment efficiency (48.12 ± 0.08% and 69.18 ± 1.89 respectively). 5-FU E1 has shown better drug release after 4 h and has shown 82% drug release till 24 h in a sustained manner comparable to the non-enteric coated tablets, which released more than 50% of the drug before entering the colon region. So we can conclude that nanoparticles prepared by this method using the same polymer with the optimized ratio can represent as potential drug delivery approach for effective delivery of the active pharmaceutical ingredient to the colorectal tumors. PMID:26106279

  4. Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins.

    Science.gov (United States)

    Birsa, Nicol; Norkett, Rosalind; Higgs, Nathalie; Lopez-Domenech, Guillermo; Kittler, Josef T

    2013-12-01

    Correct mitochondrial dynamics are essential to neuronal function. These dynamics include mitochondrial trafficking and quality-control systems that maintain a precisely distributed and healthy mitochondrial network, so that local energy demands or Ca2+-buffering requirements within the intricate architecture of the neuron can be met. Mitochondria make use of molecular machinery that couples these organelles to microtubule-based transport via kinesin and dynein motors, facilitating the required long-range movements. These motors in turn are associated with a variety of adaptor proteins allowing additional regulation of the complex dynamics demonstrated by these organelles. Over recent years, a number of new motor and adaptor proteins have been added to a growing list of components implicated in mitochondrial trafficking and distribution. Yet, there are major questions that remain to be addressed about the regulation of mitochondrial transport complexes. One of the core components of this machinery, the mitochondrial Rho GTPases Miro1 (mitochondrial Rho 1) and Miro2 have received special attention due to their Ca2+-sensing and GTPase abilities, marking Miro an exceptional candidate for co-ordinating mitochondrial dynamics and intracellular signalling pathways. In the present paper, we discuss the wealth of literature regarding Miro-mediated mitochondrial transport in neurons and recently highlighted involvement of Miro proteins in mitochondrial turnover, emerging as a key process affected in neurodegeneration. PMID:24256248

  5. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  6. Reduced calcium-dependent mitochondrial damage underlies the reduced vulnerability of excitotoxicity-tolerant hippocampal neurons.

    Science.gov (United States)

    Pivovarova, Natalia B; Stanika, Ruslan I; Watts, Charlotte A; Brantner, Christine A; Smith, Carolyn L; Andrews, S Brian

    2008-03-01

    In central neurons, over-stimulation of NMDA receptors leads to excessive mitochondrial calcium accumulation and damage, which is a critical step in excitotoxic death. This raises the possibility that low susceptibility to calcium overload-induced mitochondrial damage might characterize excitotoxicity-resistant neurons. In this study, we have exploited two complementary models of preconditioning-induced excitotoxicity resistance to demonstrate reduced calcium-dependent mitochondrial damage in NMDA-tolerant hippocampal neurons. We have further identified adaptations in mitochondrial calcium handling that account for enhanced mitochondrial integrity. In both models, enhanced tolerance was associated with improved preservation of mitochondrial membrane potential and structure. In the first model, which exhibited modest neuroprotection, mitochondria-dependent calcium deregulation was delayed, even though cytosolic and mitochondrial calcium loads were quantitatively unchanged, indicating that enhanced mitochondrial calcium capacity accounts for reduced injury. In contrast, the second model, which exhibited strong neuroprotection, displayed further delayed calcium deregulation and reduced mitochondrial damage because downregulation of NMDA receptor surface expression depressed calcium loading. Reducing calcium entry also modified the chemical composition of the calcium-buffering precipitates that form in calcium-loaded mitochondria. It thus appears that reduced mitochondrial calcium loading is a major factor underlying the robust neuroprotection seen in highly tolerant cells. PMID:18036152

  7. Polymorphisms of mitochondrially encoded proteins.

    OpenAIRE

    Spinner, N B; King, M. C.

    1986-01-01

    Polymorphisms of mitochondrially encoded proteins can be detected in human lymphocytes by sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Using an SDS-polyacrylamide 8 M urea system, 17 mitochondrially encoded proteins are distinguishable. Three of these (ME-6, ME-8, and ME-17) were polymorphic among 92 individuals screened, and these polymorphisms are reported here for the first time. With SDS-polyacrylamide electrophoresis without urea, 18 mitochondrial proteins are de...

  8. Mitochondrial Dysfunction and Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Shaw-Hwa Jou

    2009-10-01

    Full Text Available Mitochondria are intracellular organelles crucial in the production of cellular energy.Mitochondrial diseases may result from malfunctions in this biochemical cascade. Severalinvestigators have proposed that mitochondrial dysfunction is related to the pathophysiologyof bipolar disorder (BD, major depressive disorder (MDD and schizophrenia (SZ. Theauthors reviewed recent study findings and tried to delineate the current understanding of thecorrelation between mitochondrial dysfunction and psychiatric disorders. A growing body ofevidence suggests that mitochondrial dysfunction is important in patients with psychiatricdisorders. The evidence include impaired energy metabolism in the brain detected usingresults of magnetic resonance spectroscopy, electron microscopy, co-morbidity with mitochondrialdiseases, the effects of psychotropics on mitochondria, increased mitochondrialDNA (mtDNA deletion in the brain, and association with mtDNA mutations/polymorphismsor nuclear-encoded mitochondrial genes. It is possible that the new information willlead to a focus on psychiatric disorder as a metabolic disease. Treatment with psychotropicsmight ultimately enhance energy metabolism and reduce the damage of oxidative stress. Thenext step in the study of mitochondrial dysfunction in patients with psychiatric disordersshould be clarification of how mitochondrial dysfunction, a nonspecific risk factor, causesspecific symptoms. Further study of mitochondrial dysfunction in patients with psychiatricdisorder is expected to be useful for the development of cellular disease markers and newpsychotropics.

  9. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D;

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  10. Secondary mitochondrial dysfunction in propionic aciduria: a pathogenic role for endogenous mitochondrial toxins

    OpenAIRE

    Schwab, M.A.; Sauer, S.W.; Okun, J.G.; Nijtmans, L.G.J.; Rodenburg, R.J.T.; Heuvel, L.P.W.J. van den; Drose, S.; Brandt, U; Hoffmann, G F; Laak, H.J. ter; S. Kolker; Smeitink, J.A.M.

    2006-01-01

    Mitochondrial dysfunction during acute metabolic crises is considered an important pathomechanism in inherited disorders of propionate metabolism, i.e. propionic and methylmalonic acidurias. Biochemically, these disorders are characterized by accumulation of propionyl-CoA and metabolites of alternative propionate oxidation. In the present study, we demonstrate uncompetitive inhibition of PDHc (pyruvate dehydrogenase complex) by propionyl-CoA in purified porcine enzyme and in submitochondrial ...

  11. Isolating the segment of the mitochondrial electron transport chain responsible for mitochondrial damage during cardiac ischemia

    International Nuclear Information System (INIS)

    Ischemia damages the mitochondrial electron transport chain (ETC), mediated in part by damage generated by the mitochondria themselves. Mitochondrial damage resulting from ischemia, in turn, leads to cardiac injury during reperfusion. The goal of the present study was to localize the segment of the ETC that produces the ischemic mitochondrial damage. We tested if blockade of the proximal ETC at complex I differed from blockade distal in the chain at cytochrome oxidase. Isolated rabbit hearts were perfused for 15 min followed by 30 min stop-flow ischemia at 37 oC. Amobarbital (2.5 mM) or azide (5 mM) was used to block proximal (complex I) or distal (cytochrome oxidase) sites in the ETC. Time control hearts were buffer-perfused for 45 min. Subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM) were isolated. Ischemia decreased cytochrome c content in SSM but not in IFM compared to time control. Blockade of electron transport at complex I preserved the cytochrome c content in SSM. In contrast, blockade of electron transport at cytochrome oxidase with azide did not retain cytochrome c in SSM during ischemia. Since blockade of electron transport at complex III also prevented cytochrome c loss during ischemia, the specific site that elicits mitochondrial damage during ischemia is likely located in the segment between complex III and cytochrome oxidase.

  12. Mitochondrial haplogroup H1 in north Africa: an early holocene arrival from Iberia.

    Directory of Open Access Journals (Sweden)

    Claudio Ottoni

    Full Text Available The Tuareg of the Fezzan region (Libya are characterized by an extremely high frequency (61% of haplogroup H1, a mitochondrial DNA (mtDNA haplogroup that is common in all Western European populations. To define how and when H1 spread from Europe to North Africa up to the Central Sahara, in Fezzan, we investigated the complete mitochondrial genomes of eleven Libyan Tuareg belonging to H1. Coalescence time estimates suggest an arrival of the European H1 mtDNAs at about 8,000-9,000 years ago, while phylogenetic analyses reveal three novel H1 branches, termed H1v, H1w and H1x, which appear to be specific for North African populations, but whose frequencies can be extremely different even in relatively close Tuareg villages. Overall, these findings support the scenario of an arrival of haplogroup H1 in North Africa from Iberia at the beginning of the Holocene, as a consequence of the improvement in climate conditions after the Younger Dryas cold snap, followed by in situ formation of local H1 sub-haplogroups. This process of autochthonous differentiation continues in the Libyan Tuareg who, probably due to isolation and recent founder events, are characterized by village-specific maternal mtDNA lineages.

  13. "Stiff neonate" with mitochondrial DNA depletion and secondary neurotransmitter defects.

    LENUS (Irish Health Repository)

    Moran, Margaret M

    2011-12-01

    Mitochondrial disorders comprise a heterogenous group. A neonate who presented with episodes of severe truncal hypertonia and apnea progressed to a hypokinetic rigid syndrome characterized by hypokinesia, tremulousness, profound head lag, absent suck and gag reflexes, brisk deep tendon reflexes, ankle and jaw clonus, and evidence of autonomic dysfunction. Analysis of cerebrospinal fluid neurotransmitters from age 7 weeks demonstrated low levels of amine metabolites (homovanillic acid and 5-hydroxyindoleacetic acid), tetrahydrobiopterin, and pyridoxal phosphate. Mitochondrial DNA quantitative studies on muscle homogenate demonstrated a mitochondrial DNA depletion disorder. Respiratory chain enzymology demonstrated decreased complex IV activity. Screening for mitochondrial DNA rearrangement disorders and sequencing relevant mitochondrial genes produced negative results. No clinical or biochemical response to treatment with pyridoxal phosphate, tetrahydrobiopterin, or l-dopa occurred. The clinical course was progressive, and the patient died at age 19 months. Mitochondrial disorders causing secondary neurotransmitter diseases are usually severe, but are rarely reported. This diagnosis should be considered in neonates or infants who present with hypertonia, hypokinesia rigidity, and progressive neurodegeneration.

  14. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes.

    Science.gov (United States)

    Golic, I; Velickovic, K; Markelic, M; Stancic, A; Jankovic, A; Vucetic, M; Otasevic, V; Buzadzic, B; Korac, B; Korac, A

    2014-01-01

    Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control) drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1) and mitofusin 2 (MFN2) were increased, and mitochondrial fission as dynamin related protein 1 (DRP1) was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER). The level of uncoupling protein-1 (UCP1) was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes. PMID:25308841

  15. Calcium-induced alteration of mitochondrial morphology and mitochondrial-endoplasmic reticulum contacts in rat brown adipocytes

    Directory of Open Access Journals (Sweden)

    I. Golic

    2014-09-01

    Full Text Available Mitochondria are key organelles maintaining cellular bioenergetics and integrity, and their regulation of [Ca2+]i homeostasis has been investigated in many cell types. We investigated the short-term Ca-SANDOZ® treatment on brown adipocyte mitochondria, using imaging and molecular biology techniques. Two-month-old male Wistar rats were divided into two groups: Ca-SANDOZ® drinking or tap water (control drinking for three days. Alizarin Red S staining showed increased Ca2+ level in the brown adipocytes of treated rats, and potassium pyroantimonate staining localized electron-dense regions in the cytoplasm, mitochondria and around lipid droplets. Ca-SANDOZ® decreased mitochondrial number, but increased their size and mitochondrial cristae volume. Transmission electron microscopy revealed numerous enlarged and fusioned-like mitochondria in the Ca-SANDOZ® treated group compared to the control, and megamitochondria in some brown adipocytes. The Ca2+ diet affected mitochondrial fusion as mitofusin 1 (MFN1 and mitofusin 2 (MFN2 were increased, and mitochondrial fission as dynamin related protein 1 (DRP1 was decreased. Confocal microscopy showed a higher colocalization rate between functional mitochondria and endoplasmic reticulum (ER. The level of uncoupling protein-1 (UCP1 was elevated, which was confirmed by immunohistochemistry and Western blot analysis. These results suggest that Ca-SANDOZ® stimulates mitochondrial fusion, increases mitochondrial-ER contacts and the thermogenic capacity of brown adipocytes

  16. The human mitochondrial ribosome recycling factor is essential for cell viability.

    NARCIS (Netherlands)

    Rorbach, J.; Richter, R.; Wessels, H.J.; Wydro, M.; Pekalski, M.; Farhoud, M.; Kuhl, I.; Gaisne, M.; Bonnefoy, N.; Smeitink, J.A.M.; Lightowlers, R.N.; Chrzanowska-Lightowlers, Z.M.

    2008-01-01

    The molecular mechanism of human mitochondrial translation has yet to be fully described. We are particularly interested in understanding the process of translational termination and ribosome recycling in the mitochondrion. Several candidates have been implicated, for which subcellular localization

  17. Mitochondrial DNA mutations in gynecological cancers

    Directory of Open Access Journals (Sweden)

    Kinga Księżakowska

    2011-12-01

    Full Text Available Mitochondria are metabolic organelles inherited only from the mother and possessing their own genome(mtDNA. The mt DNA is a circular, double-stranded molecule of 16.569 bp length containing 37 genes coding13 polypeptides, 2 genes of rRNA (12S, 16S, and 22 genes of tRNA. All of these proteins are subunits of the oxidativephosphorylation system (OXPHO localized at the mitochondrial inner membrane. Human mitochondrialdysfunctions have been linked to various metabolic diseases and cancer development. So far we have knownseveral of the inherited and somatic mtDNA mutations predisposing to tumor development, occurring in bothnon-coding and coding regions. The genetic alternations in the mtDNA include point mutations, deletions, insertions,mtMSI (mitochondrial microsatellite instability. Most of mtDNA mutations in gynecological cancersare observed in the D-loop region. Studies suggest that both mtDNA polymorphism and classes of inherited haplogroupsin the human population may be correlated with the risk of cancer development. Mitochondrial DNAmutation and polymorphism analysis may enable to identify individuals with high risk of cancer development,establish early detection or monitor the progression of cancer.

  18. Sugarcane genes related to mitochondrial function

    Directory of Open Access Journals (Sweden)

    Fonseca Ghislaine V.

    2001-01-01

    Full Text Available Mitochondria function as metabolic powerhouses by generating energy through oxidative phosphorylation and have become the focus of renewed interest due to progress in understanding the subtleties of their biogenesis and the discovery of the important roles which these organelles play in senescence, cell death and the assembly of iron-sulfur (Fe/S centers. Using proteins from the yeast Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana we searched the sugarcane expressed sequence tag (SUCEST database for the presence of expressed sequence tags (ESTs with similarity to nuclear genes related to mitochondrial functions. Starting with 869 protein sequences, we searched for sugarcane EST counterparts to these proteins using the basic local alignment search tool TBLASTN similarity searching program run against 260,781 sugarcane ESTs contained in 81,223 clusters. We were able to recover 367 clusters likely to represent sugarcane orthologues of the corresponding genes from S. cerevisiae, H. sapiens and A. thaliana with E-value <= 10-10. Gene products belonging to all functional categories related to mitochondrial functions were found and this allowed us to produce an overview of the nuclear genes required for sugarcane mitochondrial biogenesis and function as well as providing a starting point for detailed analysis of sugarcane gene structure and physiology.

  19. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  20. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model.

    Directory of Open Access Journals (Sweden)

    Kelly Jean Thomas

    Full Text Available Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549 cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype-mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1. A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy. A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.

  1. Miro sculpts mitochondrial dynamics in neuronal health and disease.

    Science.gov (United States)

    Devine, Michael J; Birsa, Nicol; Kittler, Josef T

    2016-06-01

    Neurons are highly polarised cells with an elaborate and diverse cytoarchitecture. But this complex architecture presents a major problem: how to appropriately distribute metabolic resources where they are most needed within the cell. The solution comes in the form of mitochondria: highly dynamic organelles subject to a repertoire of trafficking, fission/fusion and quality control systems which work in concert to orchestrate a precisely distributed and healthy mitochondrial network. Mitochondria are critical for maintaining local energy supply and buffering Ca(2+) flux within neurons, and are increasingly recognised as being essential for healthy neuronal function. Mitochondrial movements are facilitated by their coupling to microtubule-based transport via kinesin and dynein motors. Adaptor proteins are required for this coupling and the mitochondrial Rho GTPases Miro1 and Miro2 are core components of this machinery. Both Miros have Ca(2+)-sensing and GTPase domains, and are therefore ideally suited to coordinating mitochondrial dynamics with intracellular signalling pathways and local energy turnover. In this review, we focus on Miro's role in mediating mitochondrial transport in neurons, and the relevance of these mechanisms to neuronal health and disease. PMID:26707701

  2. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNA{sup Val} mutation

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Kacem, Maha [Service de Medecine interne, C.H.U. Fattouma Bourguiba de Monastir (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Hadj Salem, Ikhlass [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha; Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-04-22

    Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  3. Differential mitochondrial calcium responses in different cell types detected with a mitochondrial calcium fluorescent indicator, mito-GCaMP2

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Yanru Wang; Tingting Hou; Huiliang Zhang; Aijuan Qu; Xianhua Wang

    2011-01-01

    Mitochondrial calcium plays a crucial role in mitochondriai metabolism,cell calcium handling,and cell death.However,some mechanisms concerning mitochondrial calcium regulation are still unknown,especially how mitochondrial calcium couples with cytosolic calcium.In this work,we constructed a novel mitochondrial calcium fluorescent indicator (mito-GCaMP2) by genetic manipulation.Mito-GCaMP2 was imported into mitochondria with high efficiency and the fluorescent signals co-localized with that of tetramethyl rhodamine methyl ester,a mitochondrial membrane potential indicator.The mitochondrial inhibitors specifically decreased the signals of mito-GCaMP2.The apparent Kd of mito-GCaMP2 was 195.0 nmol/L at pH 8.0 in adult rat cardiomyocytes.Furthermore,we observed that mito-GCaMP2 preferred the alkaline pH surrounding of mitochondria.In HeLa cells,we found that mitochondrial calcium ([Ca2+]mito)responded to the changes of cytosolic calcium ([Ca2+]cyto)induced by histamine or thapasigargin.Moreover,external Ca2+ (100 μmol/L) directly induced an increase of [Ca2+]mito in permeabilized HeLa cells.However,in rat cardiomyocytes [Ca2+]mito did not respond to cytosolic calcium transients stimulated by electric pacing or caffeine.In permeabilized cardiomyocytes,600 nmol/L free Ca2+ repeatedly increased the fluorescent signals of mito-GCaMP2,which excluded the possibility that mito-GCaMP2 lost its function in cardiomyocytes mitochondria.These results showed that the response of mitochondrial calcium is diverse in different cell lineages and suggested that mitochondria in cardiomyocytes may have a special defense mechanism to control calcium flux.

  4. Molecular Genetics of Mitochondrial Disorders

    Science.gov (United States)

    Wong, Lee-Jun C.

    2010-01-01

    Mitochondrial respiratory chain (RC) disorders (RCDs) are a group of genetically and clinically heterogeneous diseases because of the fact that protein components of the RC are encoded by both mitochondrial and nuclear genomes and are essential in all cells. In addition, the biogenesis, structure, and function of mitochondria, including DNA…

  5. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper;

    ) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber...

  6. Biochemical diagnosis of mitochondrial disorders

    NARCIS (Netherlands)

    Rodenburg, R.J.T.

    2011-01-01

    Establishing a diagnosis in patients with a suspected mitochondrial disorder is often a challenge. Both knowledge of the clinical spectrum of mitochondrial disorders and the number of identified disease-causing molecular genetic defects are continuously expanding. The diagnostic examination of patie

  7. Clueless is a conserved ribonucleoprotein that binds the ribosome at the mitochondrial outer membrane

    Directory of Open Access Journals (Sweden)

    Aditya Sen

    2016-02-01

    Full Text Available Mitochondrial function is tied to the nucleus, in that hundreds of proteins encoded by nuclear genes must be imported into mitochondria. While post-translational import is fairly well understood, emerging evidence supports that mitochondrial site-specific import, or co-translational import, also occurs. However, the mechanism and the extent to which it is used are not fully understood. We have previously shown Clueless (Clu, a conserved multi-domain protein, associates with mitochondrial outer membrane proteins, including Translocase of outer membrane 20, and genetically and physically interacts with the PINK1–Parkin pathway. The human ortholog of Clu, Cluh, was shown to bind nuclear-encoded mitochondrially destined mRNAs. Here we identify the conserved tetratricopeptide domain of Clu as predominantly responsible for binding mRNA. In addition, we show Clu interacts with the ribosome at the mitochondrial outer membrane. Taken together, these data support a model whereby Clu binds to and mitochondrially targets mRNAs to facilitate mRNA localization to the outer mitochondrial membrane, potentially for site-specific or co-translational import. This role may link the presence of efficient mitochondrial protein import to mitochondrial quality control through the PINK1–Parkin pathway.

  8. Clueless is a conserved ribonucleoprotein that binds the ribosome at the mitochondrial outer membrane.

    Science.gov (United States)

    Sen, Aditya; Cox, Rachel T

    2016-01-01

    Mitochondrial function is tied to the nucleus, in that hundreds of proteins encoded by nuclear genes must be imported into mitochondria. While post-translational import is fairly well understood, emerging evidence supports that mitochondrial site-specific import, or co-translational import, also occurs. However, the mechanism and the extent to which it is used are not fully understood. We have previously shown Clueless (Clu), a conserved multi-domain protein, associates with mitochondrial outer membrane proteins, including Translocase of outer membrane 20, and genetically and physically interacts with the PINK1-Parkin pathway. The human ortholog of Clu, Cluh, was shown to bind nuclear-encoded mitochondrially destined mRNAs. Here we identify the conserved tetratricopeptide domain of Clu as predominantly responsible for binding mRNA. In addition, we show Clu interacts with the ribosome at the mitochondrial outer membrane. Taken together, these data support a model whereby Clu binds to and mitochondrially targets mRNAs to facilitate mRNA localization to the outer mitochondrial membrane, potentially for site-specific or co-translational import. This role may link the presence of efficient mitochondrial protein import to mitochondrial quality control through the PINK1-Parkin pathway. PMID:26834020

  9. A specific isoform of poly(ADP-ribose) glycohydrolase is targeted to the mitochondrial matrix by a N-terminal mitochondrial targeting sequence

    International Nuclear Information System (INIS)

    Poly(ADP-ribose) polymerases (PARPs) convert NAD to polymers of ADP-ribose that are converted to free ADP-ribose by poly(ADP-ribose) glycohydrolase (PARG). The activation of the nuclear enzyme PARP-1 following genotoxic stress has been linked to release of apoptosis inducing factor from the mitochondria, but the mechanisms by which signals are transmitted between nuclear and mitochondrial compartments are not well understood. The study reported here has examined the relationship between PARG and mitochondria in HeLa cells. Endogenous PARG associated with the mitochondrial fraction migrated in the range of 60 kDa. Transient transfection of cells with PARG expression constructs with amino acids encoded by exon 4 at the N-terminus was targeted to the mitochondria as demonstrated by subcellular fractionation and immunofluorescence microscopy of whole cells. Deletion and missense mutants allowed identification of a canonical N-terminal mitochondrial targeting sequence consisting of the first 16 amino acids encoded by PARG exon 4. Sub-mitochondrial localization experiments indicate that this mitochondrial PARG isoform is targeted to the mitochondrial matrix. The identification of a PARG isoform as a component of the mitochondrial matrix raises several interesting possibilities concerning mechanisms of nuclear-mitochondrial cross talk involved in regulation of cell death pathways.

  10. Linear polarizer local characterizations by polarimetric imaging for applications to polarimetric sensors for torque measurement for hybrid cars

    Science.gov (United States)

    Georges, F.; Remouche, M.; Meyrueis, P.

    2011-06-01

    Usually manufacturer's specifications do not deal with the ability of linear sheet polarizers to have a constant transmittance function over their geometric area. These parameters are fundamental for developing low cost polarimetric sensors(for instance rotation, torque, displacement) specifically for hybrid car (thermic + electricity power). It is then necessary to specially characterize commercial polarizers sheets to find if they are adapted to this kind of applications. In this paper, we present measuring methods and bench developed for this purpose, and some preliminary characterization results. We state conclusions for effective applications to hybrid car gearbox control and monitoring.

  11. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease

    OpenAIRE

    Reddy, P. Hemachandra; Beal, M. Flint

    2008-01-01

    Recent studies of postmortem brains from Alzheimer’s disease (AD) patients and transgenic AD mice suggest that oxidative damage, induced by amyloid beta, is associated with mitochondria early in AD progression. Amyloid beta and amyloid precursor protein are known to localize to mitochondrial membranes, block the transport of nuclear-encoded mitochondrial proteins to mitochondria, interact with mitochondrial proteins, disrupt the electron transport chain, increase reactive oxygen species produ...

  12. Identification and Characterization of Nuclear Localization Signals within the Nucleocapsid Protein VP15 of White Spot Syndrome Virus

    Institute of Scientific and Technical Information of China (English)

    Li-juan LI; Hua-jun ZHANG; Cong ZHANG; Zheng-li SHI

    2009-01-01

    The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus.

  13. Yeast Exonuclease 5 Is Essential for Mitochondrial Genome Maintenance▿

    OpenAIRE

    Burgers, Peter M.; Stith, Carrie M.; Yoder, Bonita L.; Sparks, Justin L

    2010-01-01

    Yeast exonuclease 5 is encoded by the YBR163w (DEM1) gene, and this gene has been renamed EXO5. It is distantly related to the Escherichia coli RecB exonuclease class. Exo5 is localized to the mitochondria, and EXO5 deletions or nuclease-defective EXO5 mutants invariably yield petites, amplifying either the ori3 or ori5 region of the mitochondrial genome. These petites remain unstable and undergo continuous rearrangement. The mitochondrial phenotype of exo5Δ strains suggests an essential role...

  14. On the characterization of recrystallized fraction using electron backscatter diffraction: A direct comparison to local hardness in an IF steel using nanoindentation

    International Nuclear Information System (INIS)

    Research highlights: → EBSD-based techniques can be effectively used to assess the recrystallized fraction of many engineering alloys, including interstitial-free steels. → Kernel average misorientation and grain average misorientation agree with the local recrystallized state (as assessed by nanohardness) better than EBSD image quality, optical microscopy, or microhardness. → Kernel average misorientation and grain average misorientation produce the most reliable results of the methods analyzed in the present work for characterizing recrystallization fraction using EBSD, despite having a step size dependence. - Abstract: Recrystallized fraction was characterized in a Ti-stabilized interstitial-free (IF) steel by electron backscatter diffraction (EBSD), optical metallography, and hardness-based techniques. EBSD and nanoindentation were performed on overlapping areas to assess the agreement between standard methods of EBSD analysis of deformation microstructures and local hardness. The results of the study indicate that carefully implemented misorientation-based techniques may be used to effectively determine recrystallization fraction, to better agreement with the local recrystallization state than EBSD image quality, optical metallography, or microhardness-based techniques.

  15. MoDnm1 Dynamin Mediating Peroxisomal and Mitochondrial Fission in Complex with MoFis1 and MoMdv1 Is Important for Development of Functional Appressorium in Magnaporthe oryzae

    Science.gov (United States)

    Zhong, Kaili; Li, Xiao; Le, Xinyi; Kong, Xiangyi; Zhang, Haifeng; Zheng, Xiaobo; Wang, Ping; Zhang, Zhengguang

    2016-01-01

    Dynamins are large superfamily GTPase proteins that are involved in various cellular processes including budding of transport vesicles, division of organelles, cytokinesis, and pathogen resistance. Here, we characterized several dynamin-related proteins from the rice blast fungus Magnaporthe oryzae and found that MoDnm1 is required for normal functions, including vegetative growth, conidiogenesis, and full pathogenicity. In addition, we found that MoDnm1 co-localizes with peroxisomes and mitochondria, which is consistent with the conserved role of dynamin proteins. Importantly, MoDnm1-dependent peroxisomal and mitochondrial fission involves functions of mitochondrial fission protein MoFis1 and WD-40 repeat protein MoMdv1. These two proteins display similar cellular functions and subcellular localizations as MoDnm1, and are also required for full pathogenicity. Further studies showed that MoDnm1, MoFis1 and MoMdv1 are in complex to regulate not only peroxisomal and mitochondrial fission, pexophagy and mitophagy progression, but also appressorium function and host penetration. In summary, our studies provide new insights into how MoDnm1 interacts with its partner proteins to mediate peroxisomal and mitochondrial functions and how such regulatory events may link to differentiation and pathogenicity in the rice blast fungus. PMID:27556292

  16. Molecular characterization and population structure of the honeybees from the balearic islands (Spain)

    OpenAIRE

    De la Rúa, Pilar; Galián, José; Serrano, José; Moritz, R.

    2001-01-01

    International audience Honeybees (Apis mellifera L.) were collected from 23 localities on the Balearic islands in the Mediterranean Sea. The mitochondrial genome (mtDNA) was surveyed for diagnostic restriction sites and characterized with DraI digestion of the tRNA$^{{\\rm leu}}$-COII intergenic region. Both approaches demonstrated that honeybees bearing either African or west European haplotypes coexist on the Balearic islands. Two African and two west European haplotypes were found with d...

  17. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress.

    Science.gov (United States)

    Picard, Martin; McManus, Meagan J; Gray, Jason D; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K; Seifert, Erin L; McEwen, Bruce S; Wallace, Douglas C

    2015-12-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism's multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic-pituitary-adrenal axis, sympathetic adrenal-medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  18. Abnormal mitochondrial L-arginine transport contributes to the pathogenesis of heart failure and rexoygenation injury.

    Directory of Open Access Journals (Sweden)

    David Williams

    Full Text Available BACKGROUND: Impaired mitochondrial function is fundamental feature of heart failure (HF and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. METHODS AND RESULTS: In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01 compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05. The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1 exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. CONCLUSION: These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury.

  19. Complete mitochondrial genome of Sinovipera sichuanensis (Reptilia: Squamata: Viperidae).

    Science.gov (United States)

    Zhu, Fei; Liu, Qin; Zhong, Guanghui; Xiao, Rong; Fang, Min; Guo, Peng

    2016-09-01

    Sinovipera sichuanensis is one of the Asian green pit vipers with less concern. It is endemic to China and only known in Hejiang, Sichuan Province and Jiangkou, Guizhou Province. In this study, we report the complete mitochondrial genome and characterize each partition. The complete mitochondrial genome is 17 225 bp in length containing 2 rRNAs, 13 protein-coding genes, 2 control regions and 22 tRNAs. We use Bayesian Inference (BI) and Maximum Likelihood (ML) methods to infer the phylogenetic relationship of S. sichuanensis. Both BI and ML analyses strongly support that S. sichuanensis is independent from the other two Asian green pit vipers. PMID:26406352

  20. Dysregulation of the Axonal Trafficking of Nuclear-encoded Mitochondrial mRNA alters Neuronal Mitochondrial Activity and Mouse Behavior

    OpenAIRE

    Kar, Amar N.; Sun, Ching-Yu; Reichard, Kathryn; Gervasi, Noreen M.; Pickel, James; Nakazawa, Kazu; Gioio, Anthony E.; Kaplan, Barry B.

    2013-01-01

    Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3′ untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Over-expression of a ch...

  1. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions

    OpenAIRE

    Tadi, Satish Kumar; Sebastian, Robin; Dahal, Sumedha; Babu, Ravi K.; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Mitochondrial DNA (mtDNA) deletions are associated with various mitochondrial disorders. The deletions identified in humans are flanked by short, directly repeated mitochondrial DNA sequences; however, the mechanism of such DNA rearrangements has yet to be elucidated. In contrast to nuclear DNA (nDNA), mtDNA is more exposed to oxidative damage, which may result in double-strand breaks (DSBs). Although DSB repair in nDNA is well studied, repair mechanisms in mitochondria are not characterized....

  2. Lipid metabolism in mitochondrial membranes.

    Science.gov (United States)

    Mayr, Johannes A

    2015-01-01

    Mitochondrial membranes have a unique lipid composition necessary for proper shape and function of the organelle. Mitochondrial lipid metabolism involves biosynthesis of the phospholipids phosphatidylethanolamine, cardiolipin and phosphatidylglycerol, the latter is a precursor of the late endosomal lipid bis(monoacylglycero)phosphate. It also includes mitochondrial fatty acid synthesis necessary for the formation of the lipid cofactor lipoic acid. Furthermore the synthesis of coenzyme Q takes place in mitochondria as well as essential parts of the steroid and vitamin D metabolism. Lipid transport and remodelling, which are necessary for tailoring and maintaining specific membrane properties, are just partially unravelled. Mitochondrial lipids are involved in organelle maintenance, fission and fusion, mitophagy and cytochrome c-mediated apoptosis. Mutations in TAZ, SERAC1 and AGK affect mitochondrial phospholipid metabolism and cause Barth syndrome, MEGDEL and Sengers syndrome, respectively. In these disorders an abnormal mitochondrial energy metabolism was found, which seems to be due to disturbed protein-lipid interactions, affecting especially enzymes of the oxidative phosphorylation. Since a growing number of enzymes and transport processes are recognised as parts of the mitochondrial lipid metabolism, a further increase of lipid-related disorders can be expected. PMID:25082432

  3. Synthesis and Characterization of Poly(lactic-co-glycolic Acid Nanoparticles-Loaded Chitosan/Bioactive Glass Scaffolds as a Localized Delivery System in the Bone Defects

    Directory of Open Access Journals (Sweden)

    K. Nazemi

    2014-01-01

    Full Text Available The functionality of tissue engineering scaffolds can be enhanced by localized delivery of appropriate biological macromolecules incorporated within biodegradable nanoparticles. In this research, chitosan/58S-bioactive glass (58S-BG containing poly(lactic-co-glycolic acid (PLGA nanoparticles has been prepared and then characterized. The effects of further addition of 58S-BG on the structure of scaffolds have been investigated to optimize the characteristics of the scaffolds for bone tissue engineering applications. The results showed that the scaffolds had high porosity with open pores. It was also shown that the porosity decreased with increasing 58S-BG content. Furthermore, the PLGA nanoparticles were homogenously distributed within the scaffolds. According to the obtained results, the nanocomposites could be considered as highly bioactive bone tissue engineering scaffolds with the potential of localized delivery of biological macromolecules.

  4. Characterization by a time-frequency method of classical waves propagation in one-dimensional lattice : effects of the dispersion and localized nonlinearities

    CERN Document Server

    Richoux, Olivier; Hardy, Jean

    2009-01-01

    This paper presents an application of time-frequency methods to characterize the dispersion of acoustic waves travelling in a one-dimensional periodic or disordered lattice made up of Helmholtz resonators connected to a cylindrical tube. These methods allow (1) to evaluate the velocity of the wave energy when the input signal is an acoustic pulse ; (2) to display the evolution of the spectral content of the transient signal ; (3) to show the role of the localized nonlinearities on the propagation .i.e the emergence of higher harmonics. The main result of this paper is that the time-frequency methods point out how the nonlinearities break the localization of the waves and/or the filter effects of the lattice.

  5. Locally infiltrative ameloblastic fibroma in a rhesus macaque (Macaca mulatta) with characterizations of its proliferating activity and biological behavior

    OpenAIRE

    Liu, David X.; Doyle, Lara A.; Bouljihad, Mostafa T.; Didier, Peter J.; Gilbert, Margaret H.; Wang, Xiaolei; Pahar, Bapi; Bohm, Rudolf P.; Veazey, Ronald S.; Lackner, Andrew A.

    2012-01-01

    An 8-year-old male rhesus macaque (Macaca mulatta) presented with unilateral enlargement of the left mandible. Radiographs revealed a marked expansion of the left mandible with a multilocular radiolucent mass with abundant osteolysis. The mass was grossly firm, fleshy, and gelatinous on the cut surface. Histologically, the mass was locally infiltrative and composed of neoplastic epithelial and mesenchymal components that stained positive for cytokeratin and vimentin, respectively. Occasional ...

  6. Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis

    Science.gov (United States)

    Rençber, Seda; Karavana, Sinem Yaprak; Yılmaz, Fethiye Ferda; Eraç, Bayri; Nenni, Merve; Özbal, Seda; Pekçetin, Çetin; Gurer-Orhan, Hande; Hoşgör-Limoncu, Mine; Güneri, Pelin; Ertan, Gökhan

    2016-01-01

    This study aimed to develop a suitable buccal mucoadhesive nanoparticle (NP) formulation containing fluconazole for the local treatment of oral candidiasis. The suitability of the prepared formulations was assessed by means of particle size (PS), polydispersity index, and zeta potential measurements, morphology analysis, mucoadhesion studies, drug entrapment efficiency (EE), in vitro drug release, and stability studies. Based on the optimum NP formulation, ex vivo drug diffusion and in vitro cytotoxicity studies were performed. Besides, evaluation of the antifungal effect of the optimum formulation was evaluated using agar diffusion method, fungicidal activity-related in vitro release study, and time-dependent fungicidal activity. The effect of the optimum NP formulation on the healing of oral candidiasis was investigated in an animal model, which was employed for the first time in this study. The zeta potential, mucoadhesion, and in vitro drug release studies of various NP formulations revealed that chitosan-coated NP formulation containing EUDRAGIT® RS 2.5% had superior properties than other formulations. Concerning the stability study of the selected formulation, the formulation was found to be stable for 6 months. During the ex vivo drug diffusion study, no drug was found in receptor phase, and this is an indication of local effect. The in vitro antifungal activity studies showed the in vitro efficacy of the NP against Candida albicans for an extended period. Also, the formulation had no cytotoxic effect at the tested concentration. For the in vivo experiments, infected rabbits were successfully treated with local administration of the optimum NP formulation once a day. This study has shown that the mucoadhesive NP formulation containing fluconazole is a promising candidate with once-a-day application for the local treatment of oral candidiasis. PMID:27358561

  7. Characterization of smallholder pig production system: productive and reproductive performances of local and crossbred pigs in Sikkim Himalayan region.

    Science.gov (United States)

    Nath, B G; Pathak, P K; Ngachan, S V; Tripathi, A K; Mohanty, A K

    2013-10-01

    The present study was conducted to know the smallholder pig production system in tribal areas of Sikkim State, India. Two hundred tribal farmers were selected randomly from the North and East District of the state. Information on socio-economic characteristics of farmers (gender, occupation, educational status, and farming experience), management practices, disease prevalence, and economics in pig production was collected. The study recorded the mean land holding as 1.2 ± 0.8 ha, and the number of pigs per farm was 5.0 ± 0.28. Pigs were mainly kept as a source of income, and 70 % of farmers reared crossbreed pigs. Ninety percent (90 %) of respondents practiced the intensive system of management whereby kitchen wastes along with cooked mixture comprising maize bhusa, mustard oil cake, pseudostem of banana, tuber, stem, and plant leaves were used to feed their animals. About 40.5 % of farmers procured their breeding stock from government farms that had good records and utilized veterinary services like timely vaccination and deworming. The diseases prevalent in the study area were swine fever, diarrhea, helminthoses, sarcoptic mange, pneumonia, etc. The litter sizes at birth (local, 4.3 ± 0.45; crossbreed, 7.2 ± 0.33), at weaning (local, 2.79 ± 0.24; crossbreed, 6.1 ± 0.21), and age at first farrowing (local, 365.39 ± 7.96 days; crossbreed, 337.24 ± 8.79 days) were recorded. Production costs of meat extracted from local and crossbred pigs were 1.08 $/kg and 0.86 $/kg, respectively. PMID:23636408

  8. Characterizing the correlations between local phase fractions of gas-liquid two-phase flow with wire-mesh sensor.

    Science.gov (United States)

    Tan, C; Liu, W L; Dong, F

    2016-06-28

    Understanding of flow patterns and their transitions is significant to uncover the flow mechanics of two-phase flow. The local phase distribution and its fluctuations contain rich information regarding the flow structures. A wire-mesh sensor (WMS) was used to study the local phase fluctuations of horizontal gas-liquid two-phase flow, which was verified through comparing the reconstructed three-dimensional flow structure with photographs taken during the experiments. Each crossing point of the WMS is treated as a node, so the measurement on each node is the phase fraction in this local area. An undirected and unweighted flow pattern network was established based on connections that are formed by cross-correlating the time series of each node under different flow patterns. The structure of the flow pattern network reveals the relationship of the phase fluctuations at each node during flow pattern transition, which is then quantified by introducing the topological index of the complex network. The proposed analysis method using the WMS not only provides three-dimensional visualizations of the gas-liquid two-phase flow, but is also a thorough analysis for the structure of flow patterns and the characteristics of flow pattern transition.This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185959

  9. Integrating mitochondrial translation into the cellular context.

    Science.gov (United States)

    Richter-Dennerlein, Ricarda; Dennerlein, Sven; Rehling, Peter

    2015-10-01

    Mitochondrial-encoded subunits of the oxidative phosphorylation system assemble with nuclear-encoded subunits into enzymatic complexes. Recent findings showed that mitochondrial translation is linked to other mitochondrial functions, as well as to cellular processes. The supply of mitochondrial-encoded proteins is coordinated by the coupling of mitochondrial protein synthesis with assembly of respiratory chain complexes. MicroRNAs imported from the cytoplasm into mitochondria were, surprisingly, found to act as regulators of mitochondrial translation. In turn, translation in mitochondria controls cellular proliferation, and mitochondrial ribosomal subunits contribute to the cytoplasmic stress response. Thus, translation in mitochondria is apparently integrated into cellular processes. PMID:26535422

  10. Mitochondrial Defects in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Josefa Salgado

    2008-01-01

    Full Text Available Mitochondria play important roles in cellular energy metabolism, free radical generation, and apoptosis. Mitochondrial DNA has been proposed to be involved in carcinogenesis because of its high susceptibility to mutations and limited repair mechanisms in comparison to nuclear DNA. Breast cancer is the most frequent cancer type among women in the world and, although exhaustive research has been done on nuclear DNA changes, several studies describe a variety of mitochondrial DNA alterations present in breast cancer. In this review article, we to provide a summary of the mitochondrial genomic alterations reported in breast cancer and their functional consequences.

  11. CHARACTERIZATION, BIO-FORMULATION DEVELOPMENT AND SHELF-LIFE STUDIES OF LOCALLY ISOLATED BIO-FERTILIZER STRAINS

    OpenAIRE

    Vipin Kumar

    2014-01-01

    Nitrogen fixing, phosphate solubilizing and potash mobilizing bacterial strains were isolated from rhizosphere soil of agricultural land, the isolated bacterial strains were further characterized by a series of biochemical reactions and identified as genus Azotobacter, Bacillus and Pseudomonas respectively. A technology for their mass multiplication and their bio-formulation has been developed. Fly-ash was used as carrier materials for bio-formulation development of bio-fertilizer strains. Sh...

  12. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  13. Integrating mitochondrial translation into the cellular context.

    OpenAIRE

    Richter-Dennerlein, R.; Dennerlein Sven, S.; Rehling, P

    2015-01-01

    Mitochondrial-encoded subunits of the oxidative phosphorylation system assemble with nuclear-encoded subunits into enzymatic complexes. Recent findings showed that mitochondrial translation is linked to other mitochondrial functions, as well as to cellular processes. The supply of mitochondrial- encoded proteins is coordinated by the coupling of mitochondrial protein synthesis with assembly of respiratory chain complexes. MicroRNAs imported from the cytoplasm into mitochondria were, surprisin...

  14. Mitochondrial transcript maturation and its disorders

    OpenAIRE

    Van Haute, Lindsey; Pearce, Sarah F.; Powell, Christopher A.; D’Souza, Aaron R.; Nicholls, Thomas J.; Minczuk, Michal

    2015-01-01

    Mitochondrial respiratory chain deficiencies exhibit a wide spectrum of clinical presentations owing to defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mitochondrial DNA (mtDNA) or mutations in nuclear genes coding for mitochondrially-targeted proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial biology including expression of mtDNA-encoded genes. Expression of the mi...

  15. Mitochondrial Stress: A Bridge between Mitochondrial Dysfunction and Metabolic Diseases?

    OpenAIRE

    Hu, Fang; Liu, Feng

    2011-01-01

    Under pathophysiological conditions such as obesity, excessive oxidation of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPRmt) and initiation of a retrograde stress signaling pathway. Defects in the UPRmt and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective a...

  16. Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter.

    Science.gov (United States)

    Mammucari, Cristina; Raffaello, Anna; Vecellio Reane, Denis; Rizzuto, Rosario

    2016-10-01

    Mitochondrial Ca(2+) uptake regulates a wide array of cell functions, from stimulation of aerobic metabolism and ATP production in physiological settings, to induction of cell death in pathological conditions. The molecular identity of the Mitochondrial Calcium Uniporter (MCU), the highly selective channel responsible for Ca(2+) entry through the IMM, has been described less than five years ago. Since then, research has been conducted to clarify the modulation of its activity, which relies on the dynamic interaction with regulatory proteins, and its contribution to the pathophysiology of organs and tissues. Particular attention has been placed on characterizing the role of MCU in cardiac and skeletal muscles. In this review we summarize the molecular structure and regulation of the MCU complex in addition to its pathophysiological role, with particular attention to striated muscle tissues. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:26968367

  17. Integrative Analysis of the Mitochondrial Proteome in Yeast

    Energy Technology Data Exchange (ETDEWEB)

    Prokisch, Holger; Scharfe, Curt M.; Camp, David G.; Xiao, Wenzhong; David, Lior; Andreoli, Christophe; Monroe, Matthew E.; Moore, Ronald J.; Gritsenko, Marina A.; Kozany, Christian; Hixson, Kim K.; Mottaz, Heather M.; Zischka, Hans; Ueffing, Marius; Herman, Zelek S.; Davis, Ronald W.; Meitinger, Thomas; Oefner, Peter; Smith, Richard D.; Steinmetz, Lars M.

    2004-06-30

    In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidates genes available for mapping Mendelian and complex mitochondrial disorders in humans.

  18. Integrative Analysis of the Mitochondrial Proteome in Yeast

    Directory of Open Access Journals (Sweden)

    Prokisch Holger

    2004-01-01

    Full Text Available In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidate genes available for mapping Mendelian and complex mitochondrial disorders in humans.

  19. Mitochondrially targeted compounds and their impact on cellular bioenergetics

    Directory of Open Access Journals (Sweden)

    Colin Reily

    2013-01-01

    Full Text Available Mitochondria are recognized as critical sites of localized injury in a number of chronic pathologies which has led to the development of organelle directed therapeutics. One of the approaches employed to target molecules to the mitochondrion is to conjugate a delocalized cation such as triphenylphosphonium (TPP+ to various redox active compounds. Mitochondrially targeted antioxidants have also been used in numerous cell culture based studies as probes of the contribution of the mitochondrial generation of reactive oxygen species on cell signaling events. However, concentrations used in vitro are typically 10–100 times greater than those generated from oral dosing in a wide range of animal models and in humans. In the present study, we determined the effects of mitochondrial targeted antioxidants, MitoQ, MitoTempol, and MitoE on cellular bioenergetics of mesangial cells in culture and compared these to TPP+ conjugated compounds which lack the antioxidant functional group. We found that all TPP+ compounds inhibited oxidative phosphorylation to different extents independent of the antioxidant functional groups. These findings show that the TPP+ moiety can disrupt mitochondrial function at concentrations frequently observed in cell culture and this behavior is dependent on the linker group and independent of antioxidant properties. Moreover, the TPP+ moiety alone is unlikely to achieve the concentrations needed to contribute to the protective mechanisms of the mitochondrially targeted compounds that have been reported in vivo.

  20. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging

    Directory of Open Access Journals (Sweden)

    Lisa Staunton

    2011-01-01

    Full Text Available Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  1. Glom is a novel mitochondrial DNA packaging protein in Physarum polycephalum and causes intense chromatin condensation without suppressing DNA functions.

    Science.gov (United States)

    Sasaki, Narie; Kuroiwa, Haruko; Nishitani, Chikako; Takano, Hiroyoshi; Higashiyama, Tetsuya; Kobayashi, Tamaki; Shirai, Yuki; Sakai, Atsushi; Kawano, Shigeyuki; Murakami-Murofushi, Kimiko; Kuroiwa, Tsuneyoshi

    2003-12-01

    Mitochondrial DNA (mtDNA) is packed into highly organized structures called mitochondrial nucleoids (mt-nucleoids). To understand the organization of mtDNA and the overall regulation of its genetic activity within the mt-nucleoids, we identified and characterized a novel mtDNA packaging protein, termed Glom (a protein inducing agglomeration of mitochondrial chromosome), from highly condensed mt-nucleoids of the true slime mold, Physarum polycephalum. This protein could bind to the entire mtDNA and package mtDNA into a highly condensed state in vitro. Immunostaining analysis showed that Glom specifically localized throughout the mt-nucleoid. Deduced amino acid sequence revealed that Glom has a lysine-rich region with proline-rich domain in the N-terminal half and two HMG boxes in C-terminal half. Deletion analysis of Glom revealed that the lysine-rich region was sufficient for the intense mtDNA condensation in vitro. When the recombinant Glom proteins containing the lysine-rich region were expressed in Escherichia coli, the condensed nucleoid structures were observed in E. coli. Such in vivo condensation did not interfere with transcription or replication of E. coli chromosome and the proline-rich domain was essential to keep those genetic activities. The expression of Glom also complemented the E. coli mutant lacking the bacterial histone-like protein HU and the HMG-boxes region of Glom was important for the complementation. Our results suggest that Glom is a new mitochondrial histone-like protein having a property to cause intense DNA condensation without suppressing DNA functions. PMID:12960433

  2. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies.

    Science.gov (United States)

    Holt, I J; Harding, A E; Morgan-Hughes, J A

    1988-02-25

    In vitro studies of muscle mitochondrial metabolism in patients with mitochondrial myopathy have identified a variety of functional defects of the mitochondrial respiratory chain, predominantly affecting complex I (NADH-CoQ reductase) or complex III (ubiquinol-cytochrome c reductase) in adult cases. These two enzymes consist of approximately 36 subunits, eight of which are encoded by mitochondrial DNA (mtDNA). The increased incidence of maternal, as opposed to paternal, transmission in familial mitochondrial myopathy suggests that these disorders may be caused by mutations of mtDNA. Multiple restriction endonuclease analysis of leukocyte mtDNA from patients with the disease, and their relatives, showed no differences in cleavage patterns between affected and unaffected individuals in any single maternal line. When muscle mtDNA was studied, nine of 25 patients were found to have two populations of muscle mtDNA, one of which had deletions of up to 7 kilobases in length. These observations demonstrate that mtDNA heteroplasmy can occur in man and that human disease may be associated with defects of the mitochondrial genome. PMID:2830540

  3. Characterization of long-range functional connectivity in epileptic networks by neuronal spike-triggered local field potentials

    Science.gov (United States)

    Lopour, Beth A.; Staba, Richard J.; Stern, John M.; Fried, Itzhak; Ringach, Dario L.

    2016-04-01

    Objective. Quantifying the relationship between microelectrode-recorded multi-unit activity (MUA) and local field potentials (LFPs) in distinct brain regions can provide detailed information on the extent of functional connectivity in spatially widespread networks. These methods are common in studies of cognition using non-human animal models, but are rare in humans. Here we applied a neuronal spike-triggered impulse response to electrophysiological recordings from the human epileptic brain for the first time, and we evaluate functional connectivity in relation to brain areas supporting the generation of seizures. Approach. Broadband interictal electrophysiological data were recorded from microwires adapted to clinical depth electrodes that were implanted bilaterally using stereotactic techniques in six presurgical patients with medically refractory epilepsy. MUA and LFPs were isolated in each microwire, and we calculated the impulse response between the MUA on one microwire and the LFPs on a second microwire for all possible MUA/LFP pairs. Results were compared to clinical seizure localization, including sites of seizure onset and interictal epileptiform discharges. Main results. We detected significant interictal long-range functional connections in each subject, in some cases across hemispheres. Results were consistent between two independent datasets, and the timing and location of significant impulse responses reflected anatomical connectivity. However, within individual subjects, the spatial distribution of impulse responses was unique. In two subjects with clear seizure localization and successful surgery, the epileptogenic zone was associated with significant impulse responses. Significance. The results suggest that the spike-triggered impulse response can provide valuable information about the neuronal networks that contribute to seizures using only interictal data. This technique will enable testing of specific hypotheses regarding functional connectivity

  4. Characterization, sub-cellular localization and expression profiling of the isoprenylcysteine methylesterase gene family in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Ma Wujun

    2010-09-01

    Full Text Available Abstract Background Isoprenylcysteine methylesterases (ICME demethylate prenylated protein in eukaryotic cell. Until now, knowledge about their molecular information, localization and expression pattern is largely unavailable in plant species. One ICME in Arabidopsis, encoded by At5g15860, has been identified recently. Over-expression of At5g15860 caused an ABA hypersensitive phenotype in transgenic Arabidopsis plants, indicating that it functions as a positive regulator of ABA signaling. Moreover, ABA induced the expression of this gene in Arabidopsis seedlings. The current study extends these findings by examining the sub-cellular localization, expression profiling, and physiological functions of ICME and two other ICME-like proteins, ICME-LIKE1 and ICME-LIKE2, which were encoded by two related genes At1g26120 and At3g02410, respectively. Results Bioinformatics investigations showed that the ICME and other two ICME-like homologs comprise a small subfamily of carboxylesterase (EC 3.1.1.1 in Arabidopsis. Sub-cellular localization of GFP tagged ICME and its homologs showed that the ICME and ICME-like proteins are intramembrane proteins predominantly localizing in the endoplasmic reticulum (ER and Golgi apparatus. Semi-quantitative and real-time quantitative PCR revealed that the ICME and ICME-like genes are expressed in all examined tissues, including roots, rosette leaves, cauline leaves, stems, flowers, and siliques, with differential expression levels. Within the gene family, the base transcript abundance of ICME-LIKE2 gene is very low with higher expression in reproductive organs (flowers and siliques. Time-course analysis uncovered that both ICME and ICME-like genes are up-regulated by mannitol, NaCl and ABA treatment, with ICME showing the highest level of up-regulation by these treatments. Heat stress resulted in up-regulation of the ICME gene significantly but down-regulation of the ICME-LIKE1 and ICME-LIKE2 genes. Cold and dehydration

  5. The Star Formation Histories of Local Group Dwarf Galaxies III. Characterizing Quenching in Low-Mass Galaxies

    OpenAIRE

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2015-01-01

    We explore the quenching of low-mass galaxies (10^4 < Mstar < 10^8 Msun) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived from analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) Lower mass galaxies quench earlier than higher mass galaxies; (2) Inside of virial radius there is no correlation between a satellite's ...

  6. Molecular characterization of five new S alleles associated with self-incompatibility in local Spanish almond cultivars

    OpenAIRE

    Kodad, Ossama; Sánchez, A.; Saibo, N.; M. M. Oliveira; Socias i Company, Rafel

    2011-01-01

    Almond is a highly heterozygous species with a high number of S-alleles controlling its gametophytic self-incompatibility system (GSI). In this work we have analysed Spanish local almond cultivars for S-RNase allele diversity. By cloning and sequencing five new S-RNase alleles were identified: S31 (804 bp) in 'Pou de Felanitx' and 'Totsol', S32 (855 bp) in 'Taiatona', S33 (1165 bp) in 'Pou d'Establiments' and 'Muel', S34 (1663 bp) in 'Pané-Barquets', and S35 (1658 bp) in 'Planeta de les Garri...

  7. Characterization and overexpression of the Lactococcus lactis pepN gene and localization of its product, aminopeptidase N.

    OpenAIRE

    van Alen-Boerrigter, I J; Baankreis, R; de Vos, W M

    1991-01-01

    The chromosomal pepN gene encoding lysyl-aminopeptidase activity in Lactococcus lactis has been identified in a lambda EMBL3 library in Escherichia coli by using an immunological screening with antiserum against a purified aminopeptidase fraction. The pepN gene was localized and subcloned in E. coli on the basis of its expression and hybridization to a mixed-oligonucleotide probe for the previously determine N-terminal amino acid sequence of lysyl-aminopeptidase (P. S. T. Tan and W. N. Koning...

  8. The assembly of mitochondrial complex I : a product of nuclear-mitochondrial synergy

    NARCIS (Netherlands)

    Vogel, Rutger Oscar

    2007-01-01

    Mitochondria are essential to cellular energy production. Embedded in the mitochondrial inner membrane, the engine of the mitochondrial powerhouse is formed by the five enzymatic complexes of the oxidative phosphorylation (OXPHOS) system. Dysfunction of this system results in mitochondrial disease,

  9. Mitochondrial glycolate oxidation contributes to photorespiration in higher plants.

    Science.gov (United States)

    Niessen, Markus; Thiruveedhi, Krishnaveni; Rosenkranz, Ruben; Kebeish, Rashad; Hirsch, Heinz-Josef; Kreuzaler, Fritz; Peterhänsel, Christoph

    2007-01-01

    The oxidation of glycolate to glyoxylate is an important reaction step in photorespiration. Land plants and charophycean green algae oxidize glycolate in the peroxisome using oxygen as a co-factor, whereas chlorophycean green algae use a mitochondrial glycolate dehydrogenase (GDH) with organic co-factors. Previous analyses revealed the existence of a GDH in the mitochondria of Arabidopsis thaliana (AtGDH). In this study, the contribution of AtGDH to photorespiration was characterized. Both RNA abundance and mitochondrial GDH activity were up-regulated under photorespiratory growth conditions. Labelling experiments indicated that glycolate oxidation in mitochondrial extracts is coupled to CO(2) release. This effect could be enhanced by adding co-factors for aminotransferases, but is inhibited by the addition of glycine. T-DNA insertion lines for AtGDH show a drastic reduction in mitochondrial GDH activity and CO(2) release from glycolate. Furthermore, photorespiration is reduced in these mutant lines compared with the wild type, as revealed by determination of the post-illumination CO(2) burst and the glycine/serine ratio under photorespiratory growth conditions. The data show that mitochondrial glycolate oxidation contributes to photorespiration in higher plants. This indicates the conservation of chlorophycean photorespiration in streptophytes despite the evolution of leaf-type peroxisomes. PMID:17595195

  10. Mitochondrial haplotypes associated with biomarkers for Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    Full Text Available Various studies have suggested that the mitochondrial genome plays a role in late-onset Alzheimer's disease, although results are mixed. We used an endophenotype-based approach to further characterize mitochondrial genetic variation and its relationship to risk markers for Alzheimer's disease. We analyzed longitudinal data from non-demented, mild cognitive impairment, and late-onset Alzheimer's disease participants in the Alzheimer's Disease Neuroimaging Initiative with genetic, brain imaging, and behavioral data. We assessed the relationship of structural MRI and cognitive biomarkers with mitochondrial genome variation using TreeScanning, a haplotype-based approach that concentrates statistical power by analyzing evolutionarily meaningful groups (or clades of haplotypes together for association with a phenotype. Four clades were associated with three different endophenotypes: whole brain volume, percent change in temporal pole thickness, and left hippocampal atrophy over two years. This is the first study of its kind to identify mitochondrial variation associated with brain imaging endophenotypes of Alzheimer's disease. Our results provide additional evidence that the mitochondrial genome plays a role in risk for Alzheimer's disease.

  11. Beta-cell mitochondrial carriers and the diabetogenic stress response.

    Science.gov (United States)

    Brun, Thierry; Maechler, Pierre

    2016-10-01

    Mitochondria play a central role in pancreatic beta-cells by coupling metabolism of the secretagogue glucose to distal events of regulated insulin exocytosis. This process requires transports of both metabolites and nucleotides in and out of the mitochondria. The molecular identification of mitochondrial carriers and their respective contribution to beta-cell function have been uncovered only recently. In type 2 diabetes, mitochondrial dysfunction is an early event and may precipitate beta-cell loss. Under diabetogenic conditions, characterized by glucotoxicity and lipotoxicity, the expression profile of mitochondrial carriers is selectively modified. This review describes the role of mitochondrial carriers in beta-cells and the selective changes in response to glucolipotoxicity. In particular, we discuss the importance of the transfer of metabolites (pyruvate, citrate, malate, and glutamate) and nucleotides (ATP, NADH, NADPH) for beta-cell function and dysfunction. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:26979549

  12. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  13. Influence of RNA interference on the mitochondrial subcellular localization of alpha-synuclein and on the formation of Lewy body-like inclusions in the cytoplasm of human embryonic kidney 293 cells induced by the overexpression of alpha- synuclein

    Institute of Scientific and Technical Information of China (English)

    Tao Chen; Xiaoping Liao; Guoqiang Wen; Yidong Deng; Min Guo; Zhigang Long; Feng Ouyang

    2012-01-01

    The specific and effective α-synuclein RNA interference (RNAi) plasmids, and the α-synuclein-pEGFP recombinant plasmids were co-transfected into human embryonic kidney 293 (HEK293) cells using the lipofectamine method. Using an inverted fluorescence microscope, α-synuclein proteins were observed to aggregate in the cytoplasm and nucleus. Wild-type α-synuclein proteins co-localized with mitochondria. Hematoxylin-eosin staining revealed round eosinophilic bodies (Lewy body-like inclusions) in the cytoplasm of some cells transfected with α-synuclein-pEGFP plasmid. However, the formation of Lewy body-like inclusions was not observed following transfection with the RNAi pSYN-1 plasmid. RNAi blocked Lewy body-like inclusions in the cytoplasm of HEK293 cells induced by wild-type α-synuclein overexpression, but RNAi did not affect the subcellular localization of wild-type α-synuclein in mitochondria.

  14. Mutations in APOPT1, Encoding a Mitochondrial Protein, Cause Cavitating Leukoencephalopathy with Cytochrome c Oxidase Deficiency

    Science.gov (United States)

    Melchionda, Laura; Haack, Tobias B.; Hardy, Steven; Abbink, Truus E.M.; Fernandez-Vizarra, Erika; Lamantea, Eleonora; Marchet, Silvia; Morandi, Lucia; Moggio, Maurizio; Carrozzo, Rosalba; Torraco, Alessandra; Diodato, Daria; Strom, Tim M.; Meitinger, Thomas; Tekturk, Pinar; Yapici, Zuhal; Al-Murshedi, Fathiya; Stevens, René; Rodenburg, Richard J.; Lamperti, Costanza; Ardissone, Anna; Moroni, Isabella; Uziel, Graziella; Prokisch, Holger; Taylor, Robert W.; Bertini, Enrico; van der Knaap, Marjo S.; Ghezzi, Daniele; Zeviani, Massimo

    2014-01-01

    Cytochrome c oxidase (COX) deficiency is a frequent biochemical abnormality in mitochondrial disorders, but a large fraction of cases remains genetically undetermined. Whole-exome sequencing led to the identification of APOPT1 mutations in two Italian sisters and in a third Turkish individual presenting severe COX deficiency. All three subjects presented a distinctive brain MRI pattern characterized by cavitating leukodystrophy, predominantly in the posterior region of the cerebral hemispheres. We then found APOPT1 mutations in three additional unrelated children, selected on the basis of these particular MRI features. All identified mutations predicted the synthesis of severely damaged protein variants. The clinical features of the six subjects varied widely from acute neurometabolic decompensation in late infancy to subtle neurological signs, which appeared in adolescence; all presented a chronic, long-surviving clinical course. We showed that APOPT1 is targeted to and localized within mitochondria by an N-terminal mitochondrial targeting sequence that is eventually cleaved off from the mature protein. We then showed that APOPT1 is virtually absent in fibroblasts cultured in standard conditions, but its levels increase by inhibiting the proteasome or after oxidative challenge. Mutant fibroblasts showed reduced amount of COX holocomplex and higher levels of reactive oxygen species, which both shifted toward control values by expressing a recombinant, wild-type APOPT1 cDNA. The shRNA-mediated knockdown of APOPT1 in myoblasts and fibroblasts caused dramatic decrease in cell viability. APOPT1 mutations are responsible for infantile or childhood-onset mitochondrial disease, hallmarked by the combination of profound COX deficiency with a distinctive neuroimaging presentation. PMID:25175347

  15. Systematic Site Characterization at Seismic Stations combined with Empirical Spectral Modeling: critical data for local hazard analysis

    Science.gov (United States)

    Michel, Clotaire; Hobiger, Manuel; Edwards, Benjamin; Poggi, Valerio; Burjanek, Jan; Cauzzi, Carlo; Kästli, Philipp; Fäh, Donat

    2016-04-01

    The Swiss Seismological Service operates one of the densest national seismic networks in the world, still rapidly expanding (see http://www.seismo.ethz.ch/monitor/index_EN). Since 2009, every newly instrumented site is characterized following an established procedure to derive realistic 1D VS velocity profiles. In addition, empirical Fourier spectral modeling is performed on the whole network for each recorded event with sufficient signal-to-noise ratio. Besides the source characteristics of the earthquakes, statistical real time analyses of the residuals of the spectral modeling provide a seamlessly updated amplification function w.r. to Swiss rock conditions at every station. Our site characterization procedure is mainly based on the analysis of surface waves from passive experiments and includes cross-checks of the derived amplification functions with those obtained through spectral modeling. The systematic use of three component surface-wave analysis, allowing the derivation of both Rayleigh and Love waves dispersion curves, also contributes to the improved quality of the retrieved profiles. The results of site characterisation activities at recently installed strong-motion stations depict the large variety of possible effects of surface geology on ground motion in the Alpine context. Such effects range from de-amplification at hard-rock sites to amplification up to a factor of 15 in lacustrine sediments with respect to the Swiss reference rock velocity model. The derived velocity profiles are shown to reproduce observed amplification functions from empirical spectral modeling. Although many sites are found to exhibit 1D behavior, our procedure allows the detection and qualification of 2D and 3D effects. All data collected during the site characterization procedures in the last 20 years are gathered in a database, implementing a data model proposed for community use at the European scale through NERA and EPOS (www.epos-eu.org). A web stationbook derived from it

  16. Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy ☆

    OpenAIRE

    Gasiorowski, Jacek; Mardare, Andrei Ionut; Sariciftci, Niyazi Serdar; Hassel, Achim Walter

    2013-01-01

    The electrochemical oxidation of a next generation low bandgap high performance photovoltaic material namely poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b] thiophene-2,6-diyl] (PBDTTT-c) thin film was investigated using a scanning droplet cell microscope. Cyclic voltammetry was used for the basic characterization of the oxidation/doping of PBDTTT-c. Application of the different final potentials during the electrochemical study provides a close...

  17. Identification and characterization of a nuclear localization signal of TRIM28 that overlaps with the HP1 box

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Tetsuji; Sangel, Percival [Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085 (Japan); Yamaguchi, Hiroki [School of Medicine, Osaka University, Osaka 565-0871 (Japan); Obuse, Chikashi [Graduate School of Life Science, Hokkaido University, Sapporo 001-0021 (Japan); Miyamoto, Yoichi [Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085 (Japan); Oka, Masahiro, E-mail: moka@nibiohn.go.jp [Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085 (Japan); Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 (Japan); Yoneda, Yoshihiro, E-mail: y-yoneda@nibiohn.go.jp [National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085 (Japan); Laboratory of Biomedical Innovation, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 (Japan)

    2015-07-03

    Tripartite motif-containing 28 (TRIM28) is a transcription regulator, which forms a repressor complex containing heterochromatin protein 1 (HP1). Here, we report identification of a nuclear localization signal (NLS) within the 462-494 amino acid region of TRIM28 that overlaps with its HP1 binding site, HP1 box. GST-pulldown experiments revealed the interaction of the arginine-rich TRIM28 NLS with various importin α subtypes (α1, α2 and α4). In vitro transport assay demonstrated that nuclear localization of GFP-TRIM28 NLS is mediated by importin αs, in conjunction with importin β1 and Ran. Further, we demonstrated that HP1 and importin αs compete for binding to TRIM28. Together, our findings suggest that importin α has an essential role in the nuclear delivery and preferential HP1 interaction of TRIM28. - Highlights: • TRIM28 contains an NLS within the 462-494 amino acid region. • The nuclear import of TRIM28 is mediated by importin α/importin β1. • TRIM28 NLS overlaps with HP1 Box. • HP1 and importin α compete for binding to TRIM28.

  18. Identification and characterization of a nuclear localization signal of TRIM28 that overlaps with the HP1 box

    International Nuclear Information System (INIS)

    Tripartite motif-containing 28 (TRIM28) is a transcription regulator, which forms a repressor complex containing heterochromatin protein 1 (HP1). Here, we report identification of a nuclear localization signal (NLS) within the 462-494 amino acid region of TRIM28 that overlaps with its HP1 binding site, HP1 box. GST-pulldown experiments revealed the interaction of the arginine-rich TRIM28 NLS with various importin α subtypes (α1, α2 and α4). In vitro transport assay demonstrated that nuclear localization of GFP-TRIM28 NLS is mediated by importin αs, in conjunction with importin β1 and Ran. Further, we demonstrated that HP1 and importin αs compete for binding to TRIM28. Together, our findings suggest that importin α has an essential role in the nuclear delivery and preferential HP1 interaction of TRIM28. - Highlights: • TRIM28 contains an NLS within the 462-494 amino acid region. • The nuclear import of TRIM28 is mediated by importin α/importin β1. • TRIM28 NLS overlaps with HP1 Box. • HP1 and importin α compete for binding to TRIM28

  19. Evaluation of local energy densities in disturbed flow: A new approach to characterize inhibitor efficiencies to mitigate erosion corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, G.; Werner, C. [Laboratory for Corrosion Protection, Iserlohn University of Applied Sciences, Frauenstuhlweg 31, D-58644 Iserlohn (Germany); Bakalli, M. [Institute for Technical Chemistry and Macromolecular Chemistry, Aachen University of Technology, Worringer Weg 1, D-52056 Aachen (Germany)

    2004-07-01

    Electrochemical current noise has been measured at microelectrodes under conditions of mass transport control in order to quantify local flow intensities in terms of wall shear stresses in disturbed flow, e.g. jet impingement or horizontal slug flow. Analysis of the noise data using Wavelet transform yields not only local flow intensities in the frequency-amplitude-time domain but allows also to quantify maximum interaction energies between the flowing liquid and the solid wall. This is done using a similar 'phasing' algorithm as applied to simulate oceanic freak waves. Such freak energy densities at the viscous sublayer have been quantified and allow for the first time realistic correlations between flow intensities and fracture stresses of protective scales. The near-wall freak energy densities can be damped significantly by adding surface active compounds at concentrations above the critical micelle concentration. The additive effect cannot be explained by surface adsorption but can be related to interactions of supramolecular aggregates (e.g. micelles) with near-wall micro-turbulences affecting the near-wall fluid dynamic properties. The model is exemplified with the quantification of maximum (freak) energy densities encountered in jet impingement flow and horizontal slug flow. (authors)

  20. Bioenergetic roles of mitochondrial fusion.

    Science.gov (United States)

    Silva Ramos, Eduardo; Larsson, Nils-Göran; Mourier, Arnaud

    2016-08-01

    Mitochondria are bioenergetic hotspots, producing the bulk of ATP by the oxidative phosphorylation process. Mitochondria are also structurally dynamic and undergo coordinated fusion and fission to maintain their function. Recent studies of the mitochondrial fusion machinery have provided new evidence in detailing their role in mitochondrial metabolism. Remarkably, mitofusin 2, in addition to its role in fusion, is important for maintaining coenzyme Q levels and may be an integral player in the mevalonate synthesis pathway. Here, we review the bioenergetic roles of mitochondrial dynamics and emphasize the importance of the in vitro growth conditions when evaluating mitochondrial respiration. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016,' edited by Prof. Paolo Bernardi. PMID:27060252

  1. Bcmimp1, a Botrytis cinerea Gene Transiently Expressed in planta, Encodes a Mitochondrial Protein.

    Science.gov (United States)

    Benito-Pescador, David; Santander, Daniela; Arranz, M; Díaz-Mínguez, José M; Eslava, Arturo P; van Kan, Jan A L; Benito, Ernesto P

    2016-01-01

    Botrytis cinerea is a widespread necrotrophic fungus which infects more than 200 plant species. In an attempt to characterize the physiological status of the fungus in planta and to identify genetic factors contributing to its ability to infect the host cells, a differential gene expression analysis during the interaction B. cinerea-tomato was carried out. Gene Bcmimp1 codes for a mRNA detected by differential display in the course of this analysis. During the interaction with the host, it shows a transient expression pattern with maximal expression levels during the colonization and maceration of the infected tissues. Bioinformatic analysis suggested that BCMIMP1 is an integral membrane protein located in the mitochondrial inner membrane. Co-localization experiments with a BCMIMP1-GFP fusion protein confirmed that the protein is targeted to the mitochondria. ΔBcmimp1 mutants do not show obvious phenotypic differences during saprophytic growth and their infection ability was unaltered as compared to the wild-type. Interestingly, the mutants produced increased levels of reactive oxygen species, likely as a consequence of disturbed mitochondrial function. Although Bcmimp1 expression is enhanced in planta it cannot be considered a pathogenicity factor. PMID:26952144

  2. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  3. Yeast as a Tool to Study Signaling Pathways in Mitochondrial Stress Response and Cytoprotection

    Directory of Open Access Journals (Sweden)

    Maša Ždralević

    2012-01-01

    Full Text Available Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways.

  4. Mitochondrial dysfunction and organophosphorus compounds

    International Nuclear Information System (INIS)

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP

  5. Mitochondrial transplantation for therapeutic use

    OpenAIRE

    McCully, James Donald; Levitsky, Sidney; del Nido, Pedro J.; Cowan, Douglas Burr

    2016-01-01

    Mitochondria play a key role in the homeostasis of the vast majority of the body’s cells. In the myocardium where mitochondria constitute 30 % of the total myocardial cell volume, temporary attenuation or obstruction of blood flow and as a result oxygen delivery to myocardial cells (ischemia) severely alters mitochondrial structure and function. These alterations in mitochondrial structure and function occur during ischemia and continue after blood flow and oxygen delivery to the myocardium i...

  6. Mitochondrial Dysfunction in Parkinson's Disease

    OpenAIRE

    Keane, P. C.; Kurzawa, M.; Blain, P G; Morris, C M

    2011-01-01

    Parkinson's disease (PD) is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial ...

  7. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  8. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites.

    Science.gov (United States)

    Norkett, Rosalind; Modi, Souvik; Birsa, Nicol; Atkin, Talia A; Ivankovic, Davor; Pathania, Manav; Trossbach, Svenja V; Korth, Carsten; Hirst, Warren D; Kittler, Josef T

    2016-01-01

    The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development. PMID:26553875

  9. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites*

    Science.gov (United States)

    Norkett, Rosalind; Modi, Souvik; Birsa, Nicol; Atkin, Talia A.; Ivankovic, Davor; Pathania, Manav; Trossbach, Svenja V.; Korth, Carsten; Hirst, Warren D.; Kittler, Josef T.

    2016-01-01

    The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development. PMID:26553875

  10. Characterization of atmospheric aerosols in Ile-de-France: Local contribution and Long range transport; Caracteisation des aeosols atmospheiques en Ile-de-France: contribution locale et transport a longues distances

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta, J.E

    2006-06-15

    Atmospheric aerosols interact directly in a great number of processes related to climate change and public health, modifying the energy budget and partly determining the quality of the air we breathe. In my PhD, I chose to study the perturbation, if not the aggravation, of the living conditions in Ile-de-France associated to aerosol transport episodes in the free troposphere. This situation is rather frequent and still badly known. To achieve my study, I developed the observation platform 'TReSS' Transportable Remote Sensing Station, whose instruments were developed at the Laboratoire de Meteorology Dynamique by the LiMAG team. 'TReSS' consists of a new high-performance 'Mini-Lidar' and of two standard radiometers: a sun photometer and a thermal infrared radiometer. The principle of my experimental approach is the synergy of the vertical Lidar profiles and the particle size distributions over the column, obtained by the 'Almucantar' inversion of sun photometer data. The new 'Lidar and Almucantar' method characterizes the vertical distribution by layer and the optical micro-physical properties of the local and transported aerosols. Firstly, I undertook the characterization of the Paris aerosol, mainly of anthropogenic origin. Their radiative properties were analyzed in the daily and yearly scales. Then, I conducted a statistical multi-year study of transport episodes and a two-week study case, representative of a succession of desert dust intrusion in Ile-de-France. My PhD work concludes by a study on the impact of biomass burning aerosols during the heat wave on August 2003. I study the impact of the transported aerosols into the local radiative budget and the possible consequences on the diurnal cycle of the atmospheric boundary layer. (author)

  11. Characterization of duodenal expression and localization of fatty acid-sensing receptors in humans: relationships with body mass index.

    Science.gov (United States)

    Little, Tanya J; Isaacs, Nicole J; Young, Richard L; Ott, Raffael; Nguyen, Nam Q; Rayner, Christopher K; Horowitz, Michael; Feinle-Bisset, Christine

    2014-11-15

    Fatty acids (FAs) stimulate the secretion of gastrointestinal hormones, including cholecystokinin (CCK) and glucagon like peptide-1 (GLP-1), which suppress energy intake. In obesity, gastrointestinal responses to FAs are attenuated. Recent studies have identified a key role for the FA-sensing receptors cluster of differentiation (CD)36, G protein-coupled receptor (GPR)40, GPR120, and GPR119 in mediating gastrointestinal hormone secretion. This study aimed to determine the expression and localization of these receptors in the duodenum of humans and to examine relationships with obesity. Duodenal mucosal biopsies were collected from nine lean [body mass index (BMI): 22 ± 1 kg/m2], six overweight (BMI: 28 ± 1 kg/m2), and seven obese (BMI: 49 ± 5 kg/m2) participants. Absolute levels of receptor transcripts were quantified using RT-PCR, while immunohistochemistry was used for localization. Transcripts were expressed in the duodenum of lean, overweight, and obese individuals with abundance of CD36>GPR40>GPR120>GPR119. Expression levels of GPR120 (r = 0.46, P = 0.03) and CD36 (r = 0.69, P = 0.0004) were directly correlated with BMI. There was an inverse correlation between expression of GPR119 with BMI (r2 = 0.26, P = 0.016). Immunolabeling studies localized CD36 to the brush border membrane of the duodenal mucosa and GPR40, GPR120, and GPR119 to enteroendocrine cells. The number of cells immunolabeled with CCK (r = -0.54, P = 0.03) and GLP-1 (r = -0.49, P = 0.045) was inversely correlated with BMI, such that duodenal CCK and GLP-1 cell density decreased with increasing BMI. In conclusion, CD36, GPR40, GPR120, and GPR119 are expressed in the human duodenum. Transcript levels of duodenal FA receptors and enteroendocrine cell density are altered with increasing BMI, suggesting that these changes may underlie decreased gastrointestinal hormone responses to fat and impaired energy intake regulation in obesity. PMID:25258406

  12. Mitochondrial Metabolism in Aging Heart.

    Science.gov (United States)

    Lesnefsky, Edward J; Chen, Qun; Hoppel, Charles L

    2016-05-13

    Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952

  13. MOLECULAR NEUROGENETICS OF MITOCHONDRIAL DISEASES

    Directory of Open Access Journals (Sweden)

    E. Cardaioli

    2012-01-01

    Full Text Available Mitochondrial diseases are an expanding group of clinically heterogeneous disorders associated with mitochondrial DNA (mtDNA mutations or nuclear gene defects. Whatever the mechanism, the final common step in mitochondrial disorders is a defect of energy production resulting from respiratory chain impairment. The complexity of the biochemical and genetic features of the respiratory chain accounts for the extraordinarily wide range of clinical presentations of mitochondrial disorders. In general, organs with high aerobic demand, such as skeletal muscle, brain and heart, are the most affected. However, virtually any organ or tissue in the body may be affected and the disorders can be multisystemic (mitochondrial encephalomyopathiesor confined to a single tissue. Moreover, mitochondrial diseases can be sporadic or transmitted by mendelian (nuclear genes or maternal inheritance (mutations in mtDNA. Precise diagnosis is often a challenge; we go through the traditional steps of the diagnostic process, starting with study of inheritance in the family, clinical manifestations in the individual,electrophysiology and imaging techniques at organ level, down to biochemistry, pathology and molecular genetics at tissue, cell and DNA level, respectively. In fact the ultimate goal is to reach, whenever possible, a definitive molecular diagnosis, which can permit rational therapeutic approach and a genetic counseling.

  14. Mitochondrial Epigenetics and Environmental Exposure.

    Science.gov (United States)

    Lambertini, Luca; Byun, Hyang-Min

    2016-09-01

    The rising toll of chronic and debilitating diseases brought about by the exposure to an ever expanding number of environmental pollutants and socio-economic factors is calling for action. The understanding of the molecular mechanisms behind the effects of environmental exposures can lead to the development of biomarkers that can support the public health fields of both early diagnosis and intervention to limit the burden of environmental diseases. The study of mitochondrial epigenetics carries high hopes to provide important biomarkers of exposure and disease. Mitochondria are in fact on the frontline of the cellular response to the environment. Modifications of the epigenetic factors regulating the mitochondrial activity are emerging as informative tools that can effectively report on the effects of the environment on the phenotype. Here, we will discuss the emerging field of mitochondrial epigenetics. This review describes the main epigenetic phenomena that modify the activity of the mitochondrial DNA including DNA methylation, long and short non-coding RNAs. We will discuss the unique pattern of mitochondrial DNA methylation, describe the challenges of correctly measuring it, and report on the existing studies that have analysed the correlation between environmental exposures and mitochondrial DNA methylation. Finally, we provide a brief account of the therapeutic approaches targeting mitochondria currently under consideration. PMID:27344144

  15. CFTR activity and mitochondrial function

    Directory of Open Access Journals (Sweden)

    Angel Gabriel Valdivieso

    2013-01-01

    Full Text Available Cystic Fibrosis (CF is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy.

  16. Mitochondrial efficiency and insulin resistance.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Liverini, Giovanna; Iossa, Susanna

    2014-01-01

    Insulin resistance, "a relative impairment in the ability of insulin to exert its effects on glucose, protein and lipid metabolism in target tissues," has many detrimental effects on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues. Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation. Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin resistance has been proposed and many studies have dealt with possible alteration in mitochondrial function in obesity and diabetes, both in humans and animal models. Data reporting evidence of mitochondrial dysfunction in type two diabetes mellitus are numerous, even though the issue that this reduced mitochondrial function is causal in the development of the disease is not yet solved, also because a variety of parameters have been used in the studies carried out on this subject. By assessing the alterations in mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis of skeletal muscle cells, we have obtained results that allow us to suggest that an increase in mitochondrial efficiency precedes and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle. PMID:25601841

  17. Characterization and interpretation of the Edge Snake in between type-I edge localized modes at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, F; Guenter, S; Kallenbach, A; Maraschek, M; Boom, J; Fischer, R; Hicks, N; Reiter, B; Wolfrum, E [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching, EURATOM Association (Germany); Luhmann, N C Jr [University of California at Davis, Davis, CA 95616 (United States); Park, H K [POSTECH, Pahang, Gyeongbuk 790-784 (Korea, Republic of); Wenninger, R, E-mail: fabian.sommer@ipp.mpg.de [Universitaetssternwarte der Ludwig-Maximilians-Universitaet, D-81679 Muenchen (Germany)

    2011-08-15

    A new magnetohydrodynamic instability called the 'Edge Snake', which was found in 2006 at the tokamak ASDEX Upgrade during type-I ELMy H-modes, is investigated. It is located within the separatrix in the region of high temperature and density gradients and has a toroidal mode number of n = 1. The Edge Snake consists of a radially and poloidally strongly localized current wire, in which the temperature and density profiles flatten. This significant reduction in pressure gradient leads to a reduction in the neoclassical Bootstrap current and can plausibly explain the drive of the instability. The experimental observations point towards a magnetic island with a defect current inside the O-point of the island. The Edge Snake is compared with similar instabilities at JET, DIII-D and ASDEX Upgrade.

  18. The Byzantine ceramics from Pergamon excavations. Characterization of local and imported productions by elementary analysis using PIXE and INAA methods and by petrography

    International Nuclear Information System (INIS)

    An important ceramics material dated back to the 12th-14th centuries has been excavated in Pergamon (Turkey). Among these findings, wasters, tripod stilts and unfinished ware attest to local production in the Byzantine period. Elemental analysis by the methods PIXE (Particle Induced X-ray Emission) and INAA (Instrumental Neutron Activation Analysis) has been performed on a representative sampling of 160 sherds, including attested local material. Multivariate statistical techniques were used to classify the sherds into groups of similar composition and thus to distinguish ceramics made in Pergamon from imported wares. Several groups of local production have been constituted, which correspond to wares differing in date and fabric. The geochemical characterization of the pastes, complemented with petrographical and mineralogical data, shows that specific raw materials have been used to manufacture each ware. The analytical data related to ceramics made in Pergamon will serve as reference data for future provenance studies. Such reference groups of Byzantine ceramics are very rare, and therefore the ceramics imported into Pergamon cannot be attributed as to their origin. Among the ceramics widely diffused in the Byzantine world, some importations belonging to the ''fine sgraffito'' and ''Zeuxippus ware'' types have been identified. The latter type has been a source of stylistic influence for the workshops of Pergamon, since the analyses show that imitated ''Zeuxippus ware'' has been produced there. These imitations were probably themselves diffused on a regional scale. (author). 238 refs., 48 figs., 53 tabs., 22 photos., 8 appends

  19. Overexpression of the mitochondrial T3 receptor induces skeletal muscle atrophy during aging.

    Directory of Open Access Journals (Sweden)

    François Casas

    Full Text Available In previous studies, we characterized a new hormonal pathway involving a mitochondrial T3 receptor (p43 acting as a mitochondrial transcription factor. In in vitro and in vivo studies, we have shown that p43 increases mitochondrial transcription and mitochondrial biogenesis. In addition, p43 overexpression in skeletal muscle stimulates mitochondrial respiration and induces a shift in metabolic and contractile features of muscle fibers which became more oxidative.Here we have studied the influence of p43 overexpression in skeletal muscle of mice during aging. We report that p43 overexpression initially increased mitochondrial mass. However, after the early rise in mitochondrial DNA occurring at 2 months of age in transgenic mice, we observed a progressive decrease of mitochondrial DNA content which became 2-fold lower at 23 months of age relatively to control animals. Moreover, p43 overexpression induced an oxidative stress characterized by a strong increase of lipid peroxidation and protein oxidation in quadriceps muscle, although antioxidant enzyme activities (catalase and superoxide dismutase were stimulated. In addition, muscle atrophy became detectable at 6 months of age, probably through a stimulation of the ubiquitin proteasome pathway via two muscle-specific ubiquitin ligases E3, Atrogin-1/MAFbx and MuRF1.Taken together, these results demonstrate that a prolonged stimulation of mitochondrial activity induces muscle atrophy. In addition, these data underline the importance of a tight control of p43 expression and suggest that a deregulation of the direct T3 mitochondrial pathway could be one of the parameters involved in the occurrence of sarcopenia.

  20. Efficient Mitochondrial Genome Editing by CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Areum Jo

    2015-01-01

    Full Text Available The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9 system has been widely used for nuclear DNA editing to generate mutations or correct specific disease alleles. Despite its flexible application, it has not been determined if CRISPR/Cas9, originally identified as a bacterial defense system against virus, can be targeted to mitochondria for mtDNA editing. Here, we show that regular FLAG-Cas9 can localize to mitochondria to edit mitochondrial DNA with sgRNAs targeting specific loci of the mitochondrial genome. Expression of FLAG-Cas9 together with gRNA targeting Cox1 and Cox3 leads to cleavage of the specific mtDNA loci. In addition, we observed disruption of mitochondrial protein homeostasis following mtDNA truncation or cleavage by CRISPR/Cas9. To overcome nonspecific distribution of FLAG-Cas9, we also created a mitochondria-targeted Cas9 (mitoCas9. This new version of Cas9 localizes only to mitochondria; together with expression of gRNA targeting mtDNA, there is specific cleavage of mtDNA. MitoCas9-induced reduction of mtDNA and its transcription leads to mitochondrial membrane potential disruption and cell growth inhibition. This mitoCas9 could be applied to edit mtDNA together with gRNA expression vectors without affecting genomic DNA. In this brief study, we demonstrate that mtDNA editing is possible using CRISPR/Cas9. Moreover, our development of mitoCas9 with specific localization to the mitochondria should facilitate its application for mitochondrial genome editing.

  1. Paclitaxel loaded biodegradable poly (sebacic acid-co-ricinoleic acid cylindrical implants for local delivery-in vitro characterization

    Directory of Open Access Journals (Sweden)

    Jagadeesh G Hiremath

    2013-01-01

    Full Text Available The aim of the present research work was to develop the biodegradable polymeric implant for the delivery of antineoplastic drug, paclitaxel (PTX using poly (sebacic-co-recinoleic acid 70:30 w/w. PTX loaded implants were prepared by indigenously developed melt molding technique. Implants were characterized in terms of physico-chemical evaluations, drug content, drug stability and intactness, thermal analysis, drug physical state and crystallinity, surface morphology, hydrolytic degradation, drug release and its kinetics. Prepared implants were yellow and cylindrical in shape with smooth surfaces. Drug in the implants was found to be stable, intact and uniformly dispersed as amorphous state within the polymer matrix. In vitro release, kinetic studies showed zero order and Korsmeyer-Peppas model release being exhibited. Drug release from the polymeric implants was occurred could be as results of diffusion.

  2. Topical Tacrolimus and Periodontal Therapy in the Management of a Case of Oral Chronic GVHD Characterized by Specific Gingival Localization

    Directory of Open Access Journals (Sweden)

    Davide Conrotto

    2014-01-01

    Full Text Available Background. Chronic graft versus host disease (cGVHD is a complication following bone marrow transplantation. The oral lesions are difficult to control with a systemic pharmacological therapy. Case Description. A 63-year-old female patient, who underwent an allogeniec transplantation for acute myeloid leukemia, developed a chronic oral and cutaneous GVHD. The patient was treated with topical tacrolimus 0.1%, twice daily for two months, and underwent a protocol of oral hygiene characterized by 3 appointments of scaling, root planning, and daily oral hygiene instructions. The patient showed marked resolution of gingival lesions and a significant improvement of related pain and gingival inflammatory indexes. Clinical Implications. This case report suggests that treatment with topical tacrolimus and professional oral hygiene may be helpful in the management of chronic oral GVHD with severe gingival involvement.

  3. Mitochondrial dysfunction in cancer

    Directory of Open Access Journals (Sweden)

    Kinga Księżakowska-Łakoma

    2014-05-01

    Full Text Available Mitochondria are semi-autonomous organelles of eukaryotic cells. They perform crucial functions such as generating most of the cellular energy through the oxidative phosphorylation (OXPHOS system and some other metabolic processes. In addition, mitochondria are involved in regulation of cell death and reactive oxygen species (ROS generation. Also, mitochondria play important roles in carcinogenesis via altering energy metabolism, resistance to apoptosis, increase of production of ROS and mtDNA (mitochondrial genome changes. Studies have suggested that aerobic glycolysis is high in malignant tumors. Probably, it correlates with high glucose intake of cancerous tissues. This observation is contrary to Warburg’s theory that the main way of energy generation in cancer cells is non-oxidative glycolysis. Further studies have suggested that in tumor cells both oxidative phosphorylation and glycolysis were active at various rates. An increase of intracellular oxidative stress induces damage of cellular structure and somatic mutations. Further studies confirmed that permanent activity of oxidative stress and the influence of chronic inflammation damage the healthy neighboring epithelium and may lead to carcinogenesis. For instance, chronic inflammato­ry bowel disease could be related to high risk of colon adenocarcinoma. The data have shown a role of ROS generation, mtDNA or nDNA alterations and abnormal apoptotic machinery in endometrial cancer progress. Recent studies suggest that mtDNA mutations might play a potential role in endometrial cancer progress and indicate an increase of mitochondrial biogenesis in this cancer. The investigators suggested that MtCOI and MtND6 alteration has an influence on assembly of respiratory complexes in endometrial cancer. In many human cancers, there is a deregulation of the balance between cell growth and death. The tumor cells can avoid apoptosis through a loss of balance between anti- and pro

  4. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Anne Grünewald

    Full Text Available BACKGROUND: Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD. The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7, as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and

  5. Cucumber: a model angiosperm for mitochondrial transformation?

    Science.gov (United States)

    Havey, Michael J; Lilly, Jason W; Bohanec, Borut; Bartoszewski, Grzegorz; Malepszy, Stefan

    2002-01-01

    Plants possess three major genomes, carried in the chloroplast, mitochondrion, and nucleus. The chloroplast genomes of higher plants tend to be of similar sizes and structure. In contrast both the nuclear and mitochondrial genomes show great size differences, even among closely related species. The largest plant mitochondrial genomes exist in the genus Cucumis at 1500 to 2300 kilobases, over 100 times the sizes of the yeast or human mitochondrial genomes. Biochemical and molecular analyses have established that the huge Cucumis mitochondrial genomes are due to extensive duplication of short repetitive DNA motifs. The organellar genomes of almost all organisms are maternally transmitted and few methods exist to manipulate these important genomes. Although chloroplast transformation has been achieved, no routine method exists to transform the mitochondrial genome of higher plants. A mitochondrial-transformation system for a higher plant would allow geneticists to use reverse genetics to study mitochondrial gene expression and to establish the efficacy of engineered mitochondrial genes for the genetic improvement of the mitochondrial genome. Cucumber possesses three unique attributes that make it a potential model system for mitochondrial transformation of a higher plant. Firstly, its mitochondria show paternal transmission. Secondly, microspores possess relatively few, huge mitochondria. Finally, there exists in cucumber unique mitochondrial mutations conditioning strongly mosaic (msc) phenotypes. The msc phenotypes appear after regeneration of plants from cell culture and sort with specific rearranged and deleted regions in the mitochondrial genome. These mitochondrial deletions may be a useful genetic tool to develop selectable markers for mitochondrial transformation of higher plants. PMID:12084966

  6. Mitochondrial protection by the mixed muscarinic/σ1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Aβ25-35 peptide-injected mice, a nontransgenic Alzheimer's disease model.

    Science.gov (United States)

    Lahmy, Valentine; Long, Romain; Morin, Didier; Villard, Vanessa; Maurice, Tangui

    2014-01-01

    Alzheimer's disease (AD), the most prevalent dementia in the elderly, is characterized by progressive synaptic and neuronal loss. Mitochondrial dysfunctions have been consistently reported as an early event in AD and appear before Aβ deposition and memory decline. In order to define a new neuroprotectant strategy in AD targeting mitochondrial alterations, we develop tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine (ANAVEX2-73, AE37), a mixed muscarinic receptor ligand and a sigma-1 receptor (σ1R) agonist. We previously reported that ANAVEX2-73 shows anti-amnesic and neuroprotective activities in mice injected intracerebroventricular (ICV) with oligomeric amyloid-β25-35 peptide (Aβ25-35). The σ1R is present at mitochondria-associated endoplasmic reticulum (ER) membranes, where it acts as a sensor/modulator of ER stress responses and local Ca(2+) exchanges with the mitochondria. We therefore evaluated the effect of ANAVEX2-73 and PRE-084, a reference σ1R agonist, on preservation of mitochondrial integrity in Aβ25-35-injected mice. In isolated mitochondria from hippocampus preparations of Aβ25-35 injected animals, we measured respiration rates, complex activities, lipid peroxidation, Bax/Bcl-2 ratios and cytochrome c release into the cytosol. Five days after Aβ25-35 injection, mitochondrial respiration in mouse hippocampus was altered. ANAVEX2-73 (0.01-1 mg/kg IP) restored normal respiration and PRE-084 (0.5-1 mg/kg IP) increased respiration rates. Both compounds prevented Aβ25-35-induced increases in lipid peroxidation levels, Bax/Bcl-2 ratio and cytochrome c release into the cytosol, all indicators of increased toxicity. ANAVEX2-73 and PRE-084 efficiently prevented the mitochondrial respiratory dysfunction and resulting oxidative stress and apoptosis. The σ1R, targeted selectively or non-selectively, therefore appears as a valuable target for protection against mitochondrial damages in AD. PMID:25653589

  7. Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress

    Directory of Open Access Journals (Sweden)

    Bross Peter

    2009-05-01

    Full Text Available Abstract Background Mitochondrial proteins are central to various metabolic activities and are key regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with disease. Large scale protein data are required to capture the mitochondrial protein levels and mass spectrometry based proteomics is suitable for generating such data. To study the relative quantities of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides. Results When fibroblast cultures were exposed to mild metabolic stress – by cultivation in galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of individual proteins were altered. Proteins of respiratory chain complex I and IV were increased together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a median standard error below 6%, were obtained for the following mitochondrial pathways: fatty acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism, mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis. Conclusion The robust analytical platform in combination with a well-defined compendium of mitochondrial proteins allowed quantification of single proteins as well as mapping of entire pathways. This enabled characterization of the interplay between metabolism and stress response in human cells exposed to mild stress.

  8. Mitochondrial Dynamics Decrease Prior to Axon Degeneration Induced by Vincristine and are Partially Rescued by Overexpressed cytNmnat1.

    Science.gov (United States)

    Berbusse, Gregory W; Woods, Laken C; Vohra, Bhupinder P S; Naylor, Kari

    2016-01-01

    Axon degeneration is a prominent feature of various neurodegenerative diseases, such as Parkinson's and Alzheimer's, and is often characterized by aberrant mitochondrial dynamics. Mitochondrial fission, fusion, and motility have been shown to be particularly important in progressive neurodegeneration. Thus we investigated these imperative dynamics, as well as mitochondrial fragmentation in vincristine induced axon degradation in cultured dorsal root ganglia (DRG) neurons. CytNmnat1 inhibits axon degeneration in various paradigms including vincristine toxicity. The mechanism of its protection is not yet fully understood; therefore, we also investigated the effect of cytNmnat1 on mitochondrial dynamics in vincristine treated neurons. We observed that vincristine treatment decreases the rate of mitochondrial fission, fusion and motility and induces mitochondrial fragmentation. These mitochondrial events precede visible axon degeneration. Overexpression of cytNmnat1 inhibits axon degeneration and preserves the normal mitochondrial dynamics and motility in vincristine treated neurons. We suggest the alterations in mitochondrial structure and dynamics are early events which lead to axon degeneration and cytNmnat1 blocks axon degeneration by halting the vincristine induced changes to mitochondrial structure and dynamics. PMID:27486387

  9. Inherited mitochondrial disorders.

    Science.gov (United States)

    Finsterer, Josef

    2012-01-01

    Though inherited mitochondrial disorders (MIDs) are most well known for their syndromic forms, for which widely known acronyms (MELAS, MERRF, NARP, LHON etc.) have been coined, the vast majority of inherited MIDs presents in a non-syndromic form. Since MIDs are most frequently multisystem disorders already at onset or during the disease course, a MID should be suspected if there is a combination of neurological and non-neurological abnormalities. Neurological abnormalities occurring as a part of a MID include stroke-like episodes, epilepsy, migraine-like headache, movement disorders, cerebellar ataxia, visual impairment, encephalopathy, cognitive impairment, dementia, psychosis, hypopituitarism, aneurysms, or peripheral nervous system disease, such as myopathy, neuropathy, or neuronopathy. Non-neurological manifestations concern the ears, the endocrine organs, the heart, the gastrointestinal tract, the kidneys, the bone marrow, and the skin. Whenever there is an unexplained combination of neurological and non-neurological disease in a patient or kindred, a MID should be suspected and appropriate diagnostic measures initiated. Genetic testing should be guided by the phenotype, the biopsy findings, and the biochemical results. PMID:22399423

  10. General characterization of Tityus fasciolatus scorpion venom. Molecular identification of toxins and localization of linear B-cell epitopes.

    Science.gov (United States)

    Mendes, T M; Guimarães-Okamoto, P T C; Machado-de-Avila, R A; Oliveira, D; Melo, M M; Lobato, Z I; Kalapothakis, E; Chávez-Olórtegui, C

    2015-06-01

    This communication describes the general characteristics of the venom from the Brazilian scorpion Tityus fasciolatus, which is an endemic species found in the central Brazil (States of Goiás and Minas Gerais), being responsible for sting accidents in this area. The soluble venom obtained from this scorpion is toxic to mice being the LD50 is 2.984 mg/kg (subcutaneally). SDS-PAGE of the soluble venom resulted in 10 fractions ranged in size from 6 to 10-80 kDa. Sheep were employed for anti-T. fasciolatus venom serum production. Western blotting analysis showed that most of these venom proteins are immunogenic. T. fasciolatus anti-venom revealed consistent cross-reactivity with venom antigens from Tityus serrulatus. Using known primers for T. serrulatus toxins, we have identified three toxins sequences from T. fasciolatus venom. Linear epitopes of these toxins were localized and fifty-five overlapping pentadecapeptides covering complete amino acid sequence of the three toxins were synthesized in cellulose membrane (spot-synthesis technique). The epitopes were located on the 3D structures and some important residues for structure/function were identified. PMID:25817000

  11. The Star Formation Histories of Local Group Dwarf Galaxies III. Characterizing Quenching in Low-Mass Galaxies

    CERN Document Server

    Weisz, Daniel R; Skillman, Evan D; Holtzman, Jon; Gilbert, Karoline M; Dalcanton, Julianne J; Williams, Benjamin F

    2015-01-01

    We explore the quenching of low-mass galaxies (10^4 < Mstar < 10^8 Msun) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived from analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) Lower mass galaxies quench earlier than higher mass galaxies; (2) Inside of virial radius there is no correlation between a satellite's current proximity to a massive host and its quenching epoch; (3) There are hints of systematic differences in quenching times of M31 and Milky Way (MW) satellites, although the sample sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with literature results, we qualitatively consider the redshift evolution (z=0-1) of the quenched galaxy fraction over ~7 dex in stellar mass (10^4 < Mstar < 10^11.5 Msun). The quenched fraction of all galaxies generally increases to...

  12. Macro-instabilities of the Flow Pattern in a Stirred Vessel: Detection and Characterization Using Local Velocity Data

    Directory of Open Access Journals (Sweden)

    P. Hasal

    2000-01-01

    Full Text Available Velocity data obtained by laser Doppler velocimetry (LDV in a flat-bottomed cylindrical stirred vessel (diameter: 300 mm, filling height: 300 mm, working liquids: water and aqueous glycerine, impeller Reynolds number values (ReM: 750, 1200 and 75000 equipped with four radial baffles and stirred with a pitched blade impeller are analyzed by methods of non-linear analysis. The macro-instability of the flow pattern (MI was extracted from the experimental data by a combination of the proper orthogonal decomposition (POD technique and spectral analysis. The relative magnitude of the MI (the fraction of flow total kinetic energy captured by MI was evaluated and its spatial distribution was determined. The temporal evolution of the MI was constructed from the POD eigenmodes. The chaotic attractors of the macro-instabilities were reconstructed by the method of delays. The embedding dimension was determined by the false nearest neighbor analysis (FNN method, and the time delay from the first min imum of mutual information. Correlation dimension de and the largest Lyapunov exponents λmax of the reconstructed attractorswere evaluated. The correlation dimension slightly increases with the increasing ReM value. The spatial distribution of dc is quite uniform at all ReM values. The maximum Lyapunov exponent is clearly positive for all analyzed at tractors. Spatial distribution of λmax is markedly non-uniform and exhibits irregular variations. Possible applications of nonlinear analysis of local velocity data in mixing processes are mentioned.

  13. EXAFS Characterization of the Local Structure of Fe in Fe-ZSM-5: An Experimental And Theoretical Study

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.H.; Wood, B.R.; Ryder, J.A.; Bell, A.T.

    2006-10-25

    The local structure of Fe in Fe-ZSM-5 prepared by solid-state exchange was investigated with EXAFS. Fe K-edge spectra taken at liquid nitrogen temperature of He- and CO-pretreated sample show two main peaks, one at 1.6 {angstrom} and the other at 2.5 {angstrom}. To interpret the origin of these peaks, RSFs were simulated for a number of mono- and di-iron structures obtained from quantum chemical calculations. The peak at 1.6 {angstrom} is clearly identified with scattering from O atoms coordinated to a Fe atom. The peak at 2.5 {angstrom} has been used to argue for the presence of di-iron oxo species. However, the origin of this peak and its interpretation remains an open question. The imaginary part of the Fourier-transformed data for the peak at 2.5 {angstrom} has the same characteristics as that generated theoretically for Fe-Al scattering. This evidence strongly suggests that iron in Fe-ZSM-5 is present as isolated cations in an aluminum framework. Further evidence for such a structure is the absence of any change in the magnitude of the peak at 2.5 {angstrom} with sample treatment.

  14. Molecular cloning and characterization of a surface-localized adhesion protein in Mycoplasma bovis Hubei-1 strain.

    Directory of Open Access Journals (Sweden)

    Xiaohui Zou

    Full Text Available Mycoplasma bovis (M. bovis is an important pathogen that causes various bovine diseases, such as mastitis in cows and pneumonia in calves. The surface proteins are generally thought to play a central role in the pathogenesis of this organism. We screened the entire genome of M. bovis Hubei-1 and discovered a gene named vpmaX that encodes the 25 kDa variable surface lipoprotein A (VpmaX. Sequence analysis revealed that VpmaX contains several repetitive units and a typical bacterial lipoprotein signal sequence. The vpmaX gene was cloned and expressed in E. coli to obtain recombinant VpmaX (rVpmaX. Western blot analysis using a rabbit antibody against rVpmaX demonstrated that VpmaX is a membrane protein. Immunostaining visualized via confocal laser scanning microscopy showed that rVpmaX was able to adhere to embryonic bovine lung cells (EBL, and this was also confirmed by a sandwich ELISA. In summary, a surface-localized adhesion protein was identified in M. bovis Hubei-1.

  15. Natural radionuclides in the environment. A contribution for the localization and characterization of natural hot particles in solid samples

    International Nuclear Information System (INIS)

    In the present thesis appearance, spreading, origin, and mineralogical properties of natural hot particles are studied and the radioecological relevance of these particles judged. For this first relevent quaestions on radioactivity in the environment and on hot particles are theoretically treated. In the following detailedly the method of the autoradiography and solid-state track detectors is considered, which make possible to quote the precise position, the number and distribution of radioactive particles on the cutting area or surface of a sample. Basing on these methodical considerations by laboratory experiments determined track pattern formations of alpha emitters are documentated and interpreted. Starting from the knowledge obtained from this in the further part of the thesis a detection technique is developed, by means of which it is possible, to determine and mark the position of natural hot particles in sold samples. Thereafter follows a description of the electron-microscopical studies for the identification of the localized natural hot particles. Using the developed detection technique, as well as the electron-microscopical methods, a broad spectrum of samples - anthropogeneous depositions (industrial residues, industry products, by-products) and natural depositions (rocks, sediments, minerals) - is studied

  16. Bio-Technological Characterization of the Saccharomyces bayanus Yeast Strains in Order to Preserve the Local Specificity

    Directory of Open Access Journals (Sweden)

    Enikő Gaspar

    2011-05-01

    Full Text Available The wine yeasts have multiple and important applications in the industry, aiming to obtain pure cultures and the selection of those strains which, according to the lab investigations, present superior bio-technological properties. In this study we monitored three types of Saccharomyces bayanus yeast strains, isolated from indigenous grapes varieties, Apold Iordana, Italian Blaj Riesling and Royal Feteasca from Jidvei area, which are present in the collection of the Biotechnologies and Microbiology Research Center of SAIAPM University. The yeast strains were subject to alcoholic fermentation in malt must at different temperatures, in the presence of alcohol, sugar and SO2 in various concentrations. The obtained results led to selecting of those strains which had best results regarding the alcoholic tolerance, osmo-tolerance, fermentation speed under stress conditions and resistance to SO2. These results can have practical applications in using the indigenous strains, isolated from grapes which are from inside the country, so that we preserve the local specificity, and reduce imports regarding this area.

  17. Decidual cell polyploidization necessitates mitochondrial activity.

    Directory of Open Access Journals (Sweden)

    Xinghong Ma

    Full Text Available Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation.

  18. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  19. The Characterization of SaPIN2b, a Plant Trichome-Localized Proteinase Inhibitor from Solanum americanum

    Directory of Open Access Journals (Sweden)

    Zeng-Fu Xu

    2012-11-01

    Full Text Available Proteinase inhibitors play an important role in plant resistance of insects and pathogens. In this study, we characterized the serine proteinase inhibitor SaPIN2b, which is constitutively expressed in Solanum americanum trichomes and contains two conserved motifs of the proteinase inhibitor II (PIN2 family. The recombinant SaPIN2b (rSaPIN2b, which was expressed in Escherichia coli, was demonstrated to be a potent proteinase inhibitor against a panel of serine proteinases, including subtilisin A, chymotrypsin and trypsin. Moreover, rSaPIN2b also effectively inhibited the proteinase activities of midgut trypsin-like proteinases that were extracted from the devastating pest Helicoverpa armigera. Furthermore, the overexpression of SaPIN2b in transgenic tobacco plants resulted in enhanced resistance against H. armigera. Taken together, our results demonstrated that SaPIN2b is a potent serine proteinase inhibitor that may act as a protective protein in plant defense against insect attacks.

  20. Characterization of local electrochemical doping of high performance conjugated polymer for photovoltaics using scanning droplet cell microscopy☆

    Science.gov (United States)

    Gasiorowski, Jacek; Mardare, Andrei Ionut; Sariciftci, Niyazi Serdar; Hassel, Achim Walter

    2013-01-01

    The electrochemical oxidation of a next generation low bandgap high performance photovoltaic material namely poly[4,8-bis-substituted-benzo[1,2-b:4,5-b0]dithiophene-2,6-diyl-alt-4-substituted-thieno[3,4-b] thiophene-2,6-diyl] (PBDTTT-c) thin film was investigated using a scanning droplet cell microscope. Cyclic voltammetry was used for the basic characterization of the oxidation/doping of PBDTTT-c. Application of the different final potentials during the electrochemical study provides a close look to the oxidation kinetics. The electrical properties of both doped and undoped PBDTTT-c were analyzed in situ by electrochemical impedance spectroscopy giving the possibility to correlate the changes in the doping level with the subsequent changes in the resistance and capacitance. As a result one oxidation peak was found during the cyclic voltammetry and in potentiostatic measurements. From Mott–Schottky analysis a donor concentration of 2.3 × 1020 cm−3 and a flat band potential of 1.00 V vs. SHE were found. The oxidation process resulted in an increase of the conductivity by two orders of magnitude reaching a maximum for the oxidized form of 1.4 S cm−1. PMID:25843970

  1. Use of some local unconventional materials in the treatment of liquid radioactive wastes: characterization and adsorption studies

    International Nuclear Information System (INIS)

    Fossil fuel fly ash (F.A.) and fumed silica (F.S.), were investigated as possible sorbents in the treatment of liquid radioactive wastes. For the sorption studies, the original fly ash was activated at first by heat treatment at different temperatures: 200 degree, 500 degree C. Fumed silica was investigated as-received, where its washing by different solvents: water, dilute mineral acids and/ or heat treatment had no influence on its sorption tendency. Characterization for the original fly ash was carried out using: the inductively coupled plasma (Icp), the ion chromatograph (I C) and the infra the - Red (IR) spectrophotometers, which indicated the presence of some metal cations and non metal anions in addition to lower concentrations of organic matter. Differential thermal analyses (Dta) of the original fly ash indicated a phase transformation at 482.4 degree C, this result was confirmed by its x-Ray diffractograms. Photomicrographs, obtained from the scanning electron microscope (SEM) for the investigated materials had proven their porous and amorphous nature

  2. CHARACTERIZATION, BIO-FORMULATION DEVELOPMENT AND SHELF-LIFE STUDIES OF LOCALLY ISOLATED BIO-FERTILIZER STRAINS

    Directory of Open Access Journals (Sweden)

    Vipin Kumar

    2014-03-01

    Full Text Available Nitrogen fixing, phosphate solubilizing and potash mobilizing bacterial strains were isolated from rhizosphere soil of agricultural land, the isolated bacterial strains were further characterized by a series of biochemical reactions and identified as genus Azotobacter, Bacillus and Pseudomonas respectively. A technology for their mass multiplication and their bio-formulation has been developed. Fly-ash was used as carrier materials for bio-formulation development of bio-fertilizer strains. Shelf-life studies of the bio-formulations were carried out during storage period. The selected isolates were found to be potent nitrogen fixer, phosphate solubilizers showing clear halo zone around their colonies and potash mobilizer showing mobilization of potassium on respective medium. A general decline in cfu count was noticed in fly-ash based bio-formulations. All the bio-formulations however, retained more than 108 cfu/g viable propagules up to 270 days. The present studies were shown encouraging results in respect to fly-ash as carrier materials for bio-fertilizer strains which are comparable to other commercially available carrier materials.

  3. Characterization and evaluation of 2.5 MV electronic portal imaging for accurate localization of intra- and extracranial stereotactic radiosurgery.

    Science.gov (United States)

    Song, Kwang Hyun; Snyder, Karen Chin; Kim, Jinkoo; Li, Haisen; Ning, Wen; Rusnac, Robert; Jackson, Paul; Gordon, James; Siddiqui, Salim M; Chetty, Indrin J

    2016-01-01

    2.5 MV electronic portal imaging, available on Varian TrueBeam machines, was characterized using various phantoms in this study. Its low-contrast detectability, spatial resolution, and contrast-to-noise ratio (CNR) were compared with those of conventional 6 MV and kV planar imaging. Scatter effect in large patient body was simulated by adding solid water slabs along the beam path. The 2.5 MV imaging mode was also evaluated using clinically acquired images from 24 patients for the sites of brain, head and neck, lung, and abdomen. With respect to 6 MV, the 2.5 MV achieved higher contrast and preserved sharpness on bony structures with only half of the imaging dose. The quality of 2.5 MV imaging was comparable to that of kV imaging when the lateral separation of patient was greater than 38 cm, while the kV image quality degraded rapidly as patient separation increased. Based on the results of patient images, 2.5 MV imaging was better for cranial and extracranial SRS than the 6 MV imaging. PMID:27455505

  4. Localization and characterization of gelsolin in nervous tissues: gelsolin is specifically enriched in myelin-forming cells.

    Science.gov (United States)

    Tanaka, J; Sobue, K

    1994-03-01

    Gelsolin is a Ca(2+)-sensitive actin filament-severing protein. To elucidate the role of gelsolin in nervous tissues, we have investigated localization and expression of gelsolin in rat CNS and PNS using biochemical and morphological methods with a polyclonal antibody against the COOH-terminal fragment of plasma gelsolin. Immunohistochemical study showed that gelsolin was specifically enriched in oligodendrocytes and Schwann cells, and was also detected in myelin sheath, especially around the Ranvier's nodes. The immunohistochemical stainings using indirect immunofluorescence, avidin-biotin-peroxidase complex, and immunogold methods were carefully confirmed by immunoblotting against the tissue homogenates. The expressional changes of gelsolin in developing brain were investigated. The protein was detectable in newborn rat brain; however, it began to increase at 8-10 d after birth and reached maximal at 20-30 d when myelinogenesis actively occurred. After this period, the protein decreased gradually, although myelin basic protein was increasing until 6 months after birth. The immunostaining of gelsolin in Schwann cells was enhanced upon regeneration of injured sciatic nerves by freezing. Immunoelectron microscopy revealed that gelsolin was present not only in the cytoplasm but also in compact myelin. Following solubilization by detergents, gelsolin in the myelin fraction could be purified using anion exchange and blue Sepharose column chromatographies. The purified protein possessed a Ca(2+)-dependent severing activity against actin filaments similar to that of cytoplasmic and plasma gelsolin. These data strongly suggest that gelsolin in nervous tissues might be involved in lamellipodial movement to wrap axons of myelin-forming cells by modulating actin polymerization. PMID:8120612

  5. A Framework for Local Mechanical Characterization of Atherosclerotic Plaques: Combination of Ultrasound Displacement Imaging and Inverse Finite Element Analysis.

    Science.gov (United States)

    Akyildiz, Ali C; Hansen, Hendrik H G; Nieuwstadt, Harm A; Speelman, Lambert; De Korte, Chris L; van der Steen, Antonius F W; Gijsen, Frank J H

    2016-04-01

    Biomechanical models have the potential to predict plaque rupture. For reliable models, correct material properties of plaque components are a prerequisite. This study presents a new technique, where high resolution ultrasound displacement imaging and inverse finite element (FE) modeling is combined, to estimate material properties of plaque components. Iliac arteries with plaques were excised from 6 atherosclerotic pigs and subjected to an inflation test with pressures ranging from 10 to 120 mmHg. The arteries were imaged with high frequency 40 MHz ultrasound. Deformation maps of the plaques were reconstructed by cross correlation of the ultrasound radiofrequency data. Subsequently, the arteries were perfusion fixed for histology and structural components were identified. The histological data were registered to the ultrasound data to construct FE model of the plaques. Material properties of the arterial wall and the intima of the atherosclerotic plaques were estimated using a grid search method. The computed displacement fields showed good agreement with the measured displacement fields, implying that the FE models were able to capture local inhomogeneities within the plaque. On average, nonlinear stiffening of both the wall and the intima was observed, and the wall of the atheroslcerotic porcine iliac arteries was markedly stiffer than the intima (877 ± 459 vs. 100 ± 68 kPa at 100 mmHg). The large spread in the data further illustrates the wide variation of the material properties. We demonstrated the feasibility of a mixed experimental-numerical framework to determine the material properties of arterial wall and intima of atherosclerotic plaques from intact arteries, and concluded that, due to the observed variation, plaque specific properties are required for accurate stress simulations. PMID:26399991

  6. Functional characterization of nuclear localization and export signals in hepatitis C virus proteins and their role in the membranous web.

    Directory of Open Access Journals (Sweden)

    Aviad Levin

    Full Text Available The hepatitis C virus (HCV is a positive strand RNA virus of the Flavivirus family that replicates in the cytoplasm of infected hepatocytes. Previously, several nuclear localization signals (NLS and nuclear export signals (NES have been identified in HCV proteins, however, there is little evidence that these proteins travel into the nucleus during infection. We have recently shown that nuclear pore complex (NPC proteins (termed nucleoporins or Nups are present in the membranous web and are required during HCV infection. In this study, we identify a total of 11 NLS and NES sequences in various HCV proteins. We show direct interactions between HCV proteins and importin α5 (IPOA5/kapα1, importin β3 (IPO5/kap β3, and exportin 1 (XPO1/CRM1 both in-vitro and in cell culture. These interactions can be disrupted using peptides containing the specific NLS or NES sequences of HCV proteins. Moreover, using a synchronized infection system, we show that these peptides inhibit HCV infection during distinct phases of the HCV life cycle. The inhibitory effects of these peptides place them in two groups. The first group binds IPOA5 and inhibits infection during the replication stage of HCV life cycle. The second group binds IPO5 and is active during both early replication and early assembly. This work delineates the entire life cycle of HCV and the active involvement of NLS sequences during HCV replication and assembly. Given the abundance of NLS sequences within HCV proteins, our previous finding that Nups play a role in HCV infection, and the relocation of the NLS double-GFP reporter in HCV infected cells, this work supports our previous hypothesis that NPC-like structures and nuclear transport factors function in the membranous web to create an environment conducive to viral replication.

  7. Characterizing impact of local sea level rise through changes in extreme storm surges along the US coasts. (Invited)

    Science.gov (United States)

    Tebaldi, C.; Strauss, B.; Zervas, C.

    2010-12-01

    Over the time scale of centuries gradual sea level rise will carry significant impacts for all human infrastructures and natural ecosystems that lie close to mean sea level at present. But for the next few decades another aspect of sea level rise will likely pack the stronger punch. Even at present, episodic storm surges may create significant damage, and consideration of their return levels for long periods (50/100 years) have to be taken into account when planning structures or protecting pre-existing valuables, both within artificial and natural systems. When these same return levels are combined with the expected sea level rise in the next few decades it is very likely that the risk assessment will have to change, since the return period of damaging events is going to be in all cases shortened, and in many cases substantially so. We present an analysis of mid-term projections of changes in return levels/return periods in storm surges for a network of gauges along the coasts of the US lower 48. Our study starts by assessing a measure of gauge-specific, i.e., local, sea level rise, in light of which we propose to downscale future global sea level rise projections at each location. We then detrend and subtract the tidal and seasonal cycle from each gauge record, and perform an analysis of the maximum seasonal values of the residuals, representing our best estimates of current storm surge statistics. After determining return levels for a number of representative periods we add in projections of sea level rise. The latter we derive from a semi-empirical model recently proposed in the literature by Vermeer and Rahmstorf (2009). The analysis combines best estimates and ranges of uncertainty for each of the components into an overall assessment of the possible range of outcomes.

  8. Cloning, tissue expression pattern characterization and chromosome localization of human peptide methionine sulfoxide reductase cDNA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Oxidation and reduction of some amino acids are one of the molecular mechanisms for regulating the function of proteins. The oxidation of methionine (Met) to methionine sulfoxide (Met(O)) results in decreasing or loss of the biological activity of related proteins. It was found that peptide methionine sulfoxide reductase (msrA) can reduce Met(O) to Met and therefore restored the biological function of the oxidized proteins. To reveal the methionine oxidation-reduction mechanism in human body, in this study, the cDNA sequence of bovine msrA was used as an information-probe to screen the human EST database. Based on a contig assembled from homologous ESTs, a 1 256-bp human MSRA cDNA was cloned from several human cDNA libraries. The cDNA contains an open reading frame (ORF) of 705 bp in length, which encodes 235 amino acid residues. Homology comparison revealed that human MSRA shares 88% and 61% identities with bovine and Escherichia coli msrA protein respectively. Expression pattern analysis revealed a single 1.6-kb transcript of human MSRA in most human tissues and with highest expression in kidney. By radiation hybrid panel mapping, the gene was localized to human chromosome 8p22-23 between markers D8S518 and D8S550. There are 2 human inherited diseases Keratolytic Winter Erythema and Microcephaly related genes in this region, it is inferred that human MSRA might be the candidate of the two diseases.

  9. Hsp90 inhibition decreases mitochondrial protein turnover.

    Directory of Open Access Journals (Sweden)

    Daciana H Margineantu

    Full Text Available BACKGROUND: Cells treated with hsp90 inhibitors exhibit pleiotropic changes, including an expansion of the mitochondrial compartment, accompanied by mitochondrial fragmentation and condensed mitochondrial morphology, with ultimate compromise of mitochondrial integrity and apoptosis. FINDINGS: We identified several mitochondrial oxidative phosphorylation complex subunits, including several encoded by mtDNA, that are upregulated by hsp90 inhibitors, without corresponding changes in mRNA abundance. Post-transcriptional accumulation of mitochondrial proteins observed with hsp90 inhibitors is also seen in cells treated with proteasome inhibitors. Detailed studies of the OSCP subunit of mitochondrial F1F0-ATPase revealed the presence of mono- and polyubiquitinated OSCP in mitochondrial fractions. We demonstrate that processed OSCP undergoes retrotranslocation to a trypsin-sensitive form associated with the outer mitochondrial membrane. Inhibition of proteasome or hsp90 function results in accumulation of both correctly targeted and retrotranslocated mitochondrial OSCP. CONCLUSIONS: Cytosolic turnover of mitochondrial proteins demonstrates a novel connection between mitochondrial and cytosolic compartments through the ubiquitin-proteasome system. Analogous to defective protein folding in the endoplasmic reticulum, a mitochondrial unfolded protein response may play a role in the apoptotic effects of hsp90 and proteasome inhibitors.

  10. Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model.

    Directory of Open Access Journals (Sweden)

    Guo Luo

    Full Text Available Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A harboring a superoxide dismutase mutation (SOD1(G93A. Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1(G93A in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1(G93A forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP caused abnormalities in mitochondrial dynamics similar to that in the SOD1(G93A model muscle. A specific mitochondrial fission inhibitor (Mdivi-1 reversed the SOD1(G93A action on mitochondrial dynamics, indicating SOD1(G93A likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1(G93A inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and

  11. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    International Nuclear Information System (INIS)

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes

  12. Application of a damped Locally Optimized Combination of Images method to the spectral characterization of faint companions using an Integral Field Spectrograph

    CERN Document Server

    Pueyo, Laurent; Vasisht, Gautam; Brenner, Douglas; Oppenheimer, Ben R; Zimmerman, Neil; Hinkley, Sasha; Parry, Ian; Beichman, Charles; Hillenbrand, Lynne; Roberts, Lewis C; Dekany, Richard; Shao, Mike; Burruss, Rick; Bouchez, Antonin; Roberts, Jenny; Soummer, Rémi

    2011-01-01

    High-contrast imaging instruments are now being equipped with integral field spectrographs (IFS) to facilitate the detection and characterization of faint substellar companions. Algorithms currently envisioned to handle IFS data, such as the Locally Optimized Combination of Images (LOCI) algorithm, rely upon aggressive point-spread-function (PSF) subtraction, which is ideal for initially identifying companions but results in significantly biased photometry and spectroscopy due to unwanted mixing with residual starlight. This spectro-photometric issue is further complicated by the fact that algorithmic color response is a function of the companion's spectrum, making it difficult to calibrate the effects of the reduction without using iterations involving a series of injected synthetic companions. In this paper, we introduce a new PSF calibration method, which we call "damped LOCI", that seeks to alleviate these concerns. By modifying the cost function that determines the weighting coefficients used to construc...

  13. Architecture of the mitochondrial calcium uniporter.

    Science.gov (United States)

    Oxenoid, Kirill; Dong, Ying; Cao, Chan; Cui, Tanxing; Sancak, Yasemin; Markhard, Andrew L; Grabarek, Zenon; Kong, Liangliang; Liu, Zhijun; Ouyang, Bo; Cong, Yao; Mootha, Vamsi K; Chou, James J

    2016-05-12

    Mitochondria from many eukaryotic clades take up large amounts of calcium (Ca(2+)) via an inner membrane transporter called the uniporter. Transport by the uniporter is membrane potential dependent and sensitive to ruthenium red or its derivative Ru360 (ref. 1). Electrophysiological studies have shown that the uniporter is an ion channel with remarkably high conductance and selectivity. Ca(2+) entry into mitochondria is also known to activate the tricarboxylic acid cycle and seems to be crucial for matching the production of ATP in mitochondria with its cytosolic demand. Mitochondrial calcium uniporter (MCU) is the pore-forming and Ca(2+)-conducting subunit of the uniporter holocomplex, but its primary sequence does not resemble any calcium channel studied to date. Here we report the structure of the pore domain of MCU from Caenorhabditis elegans, determined using nuclear magnetic resonance (NMR) and electron microscopy (EM). MCU is a homo-oligomer in which the second transmembrane helix forms a hydrophilic pore across the membrane. The channel assembly represents a new solution of ion channel architecture, and is stabilized by a coiled-coil motif protruding into the mitochondrial matrix. The critical DXXE motif forms the pore entrance, which features two carboxylate rings; based on the ring dimensions and functional mutagenesis, these rings appear to form the selectivity filter. To our knowledge, this is one of the largest membrane protein structures characterized by NMR, and provides a structural blueprint for understanding the function of this channel. PMID:27135929

  14. Overview of mitochondrial bioenergetics.

    Science.gov (United States)

    Madeira, Vitor M C

    2012-01-01

    Bioenergetic Science started in seventh century with the pioneer works by Joseph Priestley and Antoine Lavoisier on photosynthesis and respiration, respectively. New developments were implemented by Pasteur in 1860s with the description of fermentations associated to microorganisms, further documented by Buchner brothers who discovered that fermentations also occurred in cell extracts in the absence of living cells. In the beginning of twentieth century, Harden and Young demonstrated that orthophosphate and other heat-resistant compounds (cozymase), later identified as NAD, ADP, and metal ions, were mandatory in the fermentation of glucose. The full glycolysis pathway has been detailed in 1940s with the contributions of Embden, Meyeroff, Parnas, Warburg, among others. Studies on the citric acid cycle started in 1910 (Thunberg) and were elucidated by Krebs et al. in the 1940s. Mitochondrial bioenergetics gained emphasis in the late 1940s and 1950s with the works of Lenhinger, Racker, Chance, Boyer, Ernster, and Slater, among others. The prevalent "chemical coupling hypothesis" of energy conservation in oxidative phosphorylation was challenged and replaced by the "chemiosmotic hypothesis" originally formulated in 1960s by Mitchell and later substantiated and extended to energy conservation in bacteria and chloroplasts, besides mitochondria, with clear-cut identification of molecular proton pumps. After identification of most reactive mechanisms, emphasis has been directed to structure resolution of molecular complex clusters, e.g., cytochrome c oxidase, complex III, complex II, ATP synthase, photosystem I, photosynthetic water splitting center, and energy collecting antennæ of several photosynthetic systems. Modern trends concern to the reactivity of radical and other active species in association with bioenergetic activities. A promising trend concentrates on the cell redox status quantified in terms of redox potentials. In spite of significant development and

  15. Mitochondrial DNA variants correlate with symptoms in myalgic encephalomyelitis/chronic fatigue syndrome

    OpenAIRE

    Billing-Ross, Paul; Germain, Arnaud; Ye, Kaixiong; Keinan, Alon; Gu, Zhenglong; Hanson, Maureen R.

    2016-01-01

    Background Mitochondrial dysfunction has been hypothesized to occur in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a disease characterized by fatigue, cognitive difficulties, pain, malaise, and exercise intolerance. We investigated whether haplogroup, single nucleotide polymorphisms (SNPs), or heteroplasmy of mitochondrial DNA (mtDNA) were associated with health status and/or symptoms. Methods Illumina sequencing of PCR-amplified mtDNA was performed to analyze sequence and ex...

  16. Mitochondrial Transcription Factor B2 Is Essential for Metabolic Function in Drosophila melanogaster Development*

    OpenAIRE

    Adán, Cristina; Matsushima, Yuichi; Hernández-Sierra, Rosana; Marco-Ferreres, Raquel; Fernández-Moreno, Miguel Ángel; González-Vioque, Emiliano; Calleja, Manuel; Aragón, Juan J.; Kaguni, Laurie S.; Garesse, Rafael

    2008-01-01

    Characterization of the basal transcription machinery of mitochondrial DNA (mtDNA) is critical to understand mitochondrial pathophysiology. In mammalian in vitro systems, mtDNA transcription requires mtRNA polymerase, transcription factor A (TFAM), and either transcription factor B1 (TFB1M) or B2 (TFB2M). We have silenced the expression of TFB2M by RNA interference in Drosophila melanogaster. RNA interference knockdown of TF2BM causes lethality by arrest of larval deve...

  17. Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma

    OpenAIRE

    Trian, Thomas; Benard, Giovanni; Begueret, Hugues; Rossignol, Rodrigue; Girodet, Pierre-Olivier; Ghosh, Debajyoti; Ousova, Olga; Vernejoux, Jean-Marc; Marthan, Roger; Tunon-de-Lara, José-Manuel; Berger, Patrick

    2007-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are characterized by different patterns of airway remodeling, which all include an increased mass of bronchial smooth muscle (BSM). A remaining major question concerns the mechanisms underlying such a remodeling of BSM. Because mitochondria play a major role in both cell proliferation and apoptosis, we hypothesized that mitochondrial activation in BSM could play a role in this remodeling. We describe that both the mitochondrial mass and ...

  18. Regulation of mitochondrial transcription and mtDNA copy number in mammals

    OpenAIRE

    Rantanen, Anja

    2003-01-01

    Functional mitochondria are essential for wellbeing of the cell and the whole organism. Gene expression from the mitochondrial genome (mtDNA) is indispensable for oxidative phosphorylation, but also for the replication of mtDNA, as the replication primers are processed from mtDNA transcripts. Mitochondrial transcription factor A (TFAM) is a key transcriptional activator that is also necessary for the maintenance of mtDNA. In this thesis we have focused on characterizing the ...

  19. Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore

    OpenAIRE

    Pilgrim Kristine; Liston Aaron; Cronn Richard; Knaus Brian J; Schwartz Michael K

    2011-01-01

    Abstract Background Science-based wildlife management relies on genetic information to infer population connectivity and identify conservation units. The most commonly used genetic marker for characterizing animal biodiversity and identifying maternal lineages is the mitochondrial genome. Mitochondrial genotyping figures prominently in conservation and management plans, with much of the attention focused on the non-coding displacement ("D") loop. We used massively parallel multiplexed sequenc...

  20. Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults

    OpenAIRE

    Safdar, Adeel; Hamadeh, Mazen J.; Kaczor, Jan J.; Raha, Sandeep; deBeer, Justin; Mark A. Tarnopolsky

    2010-01-01

    The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if...