WorldWideScience

Sample records for characterization mitochondrial localization

  1. Dual localized mitochondrial and nuclear proteins as gene expression regulators in plants?

    Directory of Open Access Journals (Sweden)

    Philippe eGiegé

    2012-09-01

    Full Text Available Mitochondria heavily depend on the coordinated expression of both mitochondrial and nuclear genomes because some of their most significant activities are held by multi-subunit complexes composed of both mitochondrial and nuclear encoded proteins. Thus, precise communication and signaling pathways are believed to exist between the two compartments. Proteins dual localized to both mitochondria and the nucleus make excellent candidates for a potential involvement in the envisaged communication. Here, we review the identified instances of dual localized nucleo-mitochondrial proteins with an emphasis on plant proteins and discuss their functions, which are seemingly mostly related to gene expression regulation. We discuss whether dual localization could be achieved by dual targeting and / or by re-localization and try to apprehend the signals required for the respective processes. Finally, we propose that in some instances, dual localized mitochondrial and nuclear proteins might act as retrograde signaling molecules for mitochondrial biogenesis.

  2. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration

    Science.gov (United States)

    Schaefer, Patrick M.; von Einem, Bjoern; Walther, Paul; Calzia, Enrico; von Arnim, Christine A. F.

    2016-01-01

    One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aβ), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aβ and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aβ, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aβ in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aβ levels or Aβ alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aβ levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aβ-mediated mitochondrial toxicity. Analyzing Aβ localization revealed that intracellular levels of Aβ and an increased spatial association of APP/Aβ with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aβ accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases. PMID:28005987

  3. Characterization of Bombyx mori mitochondrial transcription factor A, a conserved regulator of mitochondrial DNA.

    Science.gov (United States)

    Sumitani, Megumi; Kondo, Mari; Kasashima, Katsumi; Endo, Hitoshi; Nakamura, Kaoru; Misawa, Toshihiko; Tanaka, Hiromitsu; Sezutsu, Hideki

    2017-04-15

    In the present study, we initially cloned and characterized a mitochondrial transcription factor A (Tfam) homologue in the silkworm, Bombyx mori. Bombyx mori TFAM (BmTFAM) localized to mitochondria in cultured silkworm and human cells, and co-localized with mtDNA nucleoids in human HeLa cells. In an immunoprecipitation analysis, BmTFAM was found to associate with human mtDNA in mitochondria, indicating its feature as a non-specific DNA-binding protein. In spite of the low identity between BmTFAM and human TFAM (26.5%), the expression of BmTFAM rescued mtDNA copy number reductions and enlarged mtDNA nucleoids in HeLa cells, which were induced by human Tfam knockdown. Thus, BmTFAM compensates for the function of human TFAM in HeLa cells, demonstrating that the mitochondrial function of TFAM is highly conserved between silkworms and humans. BmTfam mRNA was strongly expressed in early embryos. Through double-stranded RNA (dsRNA)-based RNA interference (RNAi) in silkworm embryos, we found that the knockdown of BmTFAM reduced the amount of mtDNA and induced growth retardation at the larval stage. Collectively, these results demonstrate that BmTFAM is a highly conserved mtDNA regulator and may be a good candidate for investigating and modulating mtDNA metabolism in this model organism. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells.

    Science.gov (United States)

    Landerer, Eduardo; Villegas, Jaime; Burzio, Veronica A; Oliveira, Luciana; Villota, Claudio; Lopez, Constanza; Restovic, Franko; Martinez, Ronny; Castillo, Octavio; Burzio, Luis O

    2011-08-01

    We have previously shown a differential expression of a family of mitochondrial ncRNAs in normal and cancer cells. Normal proliferating cells and cancer cells express the sense mitochondrial ncRNA (SncmtRNA). In addition, while normal proliferating cells express two antisense mitochondrial ncRNAs (ASncmtRNAs-1 and -2), these transcripts seem to be universally down-regulated in cancer cells. In situ hybridization (ISH) of some normal and cancer tissues reveals nuclear localization of these transcripts suggesting that they are exported from mitochondria. FISH and confocal microscopy, in situ digestion with RNase previous to ISH and electron microscopy ISH was employed to confirm the extra-mitochondrial localization of the SncmtRNA and the ASncmtRNAs in normal proliferating and cancer cells of human and mouse. In normal human kidney and mouse testis the SncmtRNA and the ASncmtRNAs were found outside the organelle and especially localized in the nucleus associated to heterochromatin. In cancer cells, only the SncmtRNA was expressed and was found associated to heterochromatin and nucleoli. The ubiquitous localization of these mitochondrial transcripts in the nucleus suggests that they are new players in the mitochondrial-nuclear communication pathway or retrograde signaling. Down regulation of the ASncmtRNAs seems to be an important step on neoplastic transformation and cancer progression.

  5. Mitochondrial localization of fission yeast manganese superoxide dismutase is required for its lysine acetylation and for cellular stress resistance and respiratory growth

    International Nuclear Information System (INIS)

    Takahashi, Hidekazu; Suzuki, Takehiro; Shirai, Atsuko; Matsuyama, Akihisa; Dohmae, Naoshi; Yoshida, Minoru

    2011-01-01

    Research highlights: → Fission yeast manganese superoxide dismutase (MnSOD) is acetylated. → The mitochondrial targeting sequence (MTS) is required for the acetylation of MnSOD. → The MTS is not crucial for MnSOD activity, but is important for respiratory growth. → Posttranslational regulation of MnSOD differs between budding and fission yeast. -- Abstract: Manganese-dependent superoxide dismutase (MnSOD) is localized in the mitochondria and is important for oxidative stress resistance. Although transcriptional regulation of MnSOD has been relatively well studied, much less is known about the protein's posttranslational regulation. In budding yeast, MnSOD is activated after mitochondrial import by manganese ion incorporation. Here we characterize posttranslational modification of MnSOD in the fission yeast Schizosaccharomyces pombe. Fission yeast MnSOD is acetylated at the 25th lysine residue. This acetylation was diminished by deletion of N-terminal mitochondrial targeting sequence, suggesting that MnSOD is acetylated after import into mitochondria. Mitochondrial localization of MnSOD is not essential for the enzyme activity, but is crucial for oxidative stress resistance and growth under respiratory conditions of fission yeast. These results suggest that, unlike the situation in budding yeast, S. pombe MnSOD is already active even before mitochondrial localization; nonetheless, mitochondrial localization is critical to allow the cell to cope with reactive oxygen species generated inside or outside of mitochondria.

  6. Localization of mRNAs coding for mitochondrial proteins in the yeast Saccharomyces cerevisiae

    OpenAIRE

    Gadir, Noga; Haim-Vilmovsky, Liora; Kraut-Cohen, Judith; Gerst, Jeffrey E.

    2011-01-01

    Targeted mRNA localization is a likely determinant of localized protein synthesis. To investigate whether mRNAs encoding mitochondrial proteins (mMPs) localize to mitochondria and, thus, might confer localized protein synthesis and import, we visualized endogenously expressed mMPs in vivo for the first time. We determined the localization of 24 yeast mMPs encoding proteins of the mitochondrial matrix, outer and inner membrane, and intermembrane space and found that many mMPs colocalize with m...

  7. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants

    DEFF Research Database (Denmark)

    Zhang, Ning; Rao, R Shyama Prasad; Salvato, Fernanda

    2018-01-01

    -sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently......, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino...

  8. HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the lncRNA RMRP

    Science.gov (United States)

    Noh, Ji Heon; Kim, Kyoung Mi; Abdelmohsen, Kotb; Yoon, Je-Hyun; Panda, Amaresh C.; Munk, Rachel; Kim, Jiyoung; Curtis, Jessica; Moad, Christopher A.; Wohler, Christina M.; Indig, Fred E.; de Paula, Wilson; Dudekula, Dawood B.; De, Supriyo; Piao, Yulan; Yang, Xiaoling; Martindale, Jennifer L.; de Cabo, Rafael; Gorospe, Myriam

    2016-01-01

    Some mitochondrial long noncoding RNAs (lncRNAs) are encoded by nuclear DNA, but the mechanisms that mediate their transport to mitochondria are poorly characterized. Using affinity RNA pull-down followed by mass spectrometry analysis, we found two RNA-binding proteins (RBPs), HuR (human antigen R) and GRSF1 (G-rich RNA sequence-binding factor 1), that associated with the nuclear DNA-encoded lncRNA RMRP and mobilized it to mitochondria. In cultured human cells, HuR bound RMRP in the nucleus and mediated its CRM1 (chromosome region maintenance 1)-dependent export to the cytosol. After RMRP was imported into mitochondria, GRSF1 bound RMRP and increased its abundance in the matrix. Loss of GRSF1 lowered the mitochondrial levels of RMRP, in turn suppressing oxygen consumption rates and modestly reducing mitochondrial DNA replication priming. Our findings indicate that RBPs HuR and GRSF1 govern the cytoplasmic and mitochondrial localization of the lncRNA RMRP, which is encoded by nuclear DNA but has key functions in mitochondria. PMID:27198227

  9. Mitochondrial localization of the low level p53 protein in proliferative cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferecatu, Ioana; Bergeaud, Marie; Rodriguez-Enfedaque, Aida; Le Floch, Nathalie [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Oliver, Lisa [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Rincheval, Vincent; Renaud, Flore [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vallette, Francois M. [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Mignotte, Bernard [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vayssiere, Jean-Luc, E-mail: jean-luc.vayssiere@uvsq.fr [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France)

    2009-10-02

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  10. Mitochondrial localization of the low level p53 protein in proliferative cells

    International Nuclear Information System (INIS)

    Ferecatu, Ioana; Bergeaud, Marie; Rodriguez-Enfedaque, Aida; Le Floch, Nathalie; Oliver, Lisa; Rincheval, Vincent; Renaud, Flore; Vallette, Francois M.; Mignotte, Bernard; Vayssiere, Jean-Luc

    2009-01-01

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  11. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2018-05-01

    Full Text Available Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org.

  12. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    Science.gov (United States)

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  13. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    Science.gov (United States)

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. © FASEB.

  14. Characterization of mitochondrial respiratory chain energetics in the vestibular nucleus complex.

    Science.gov (United States)

    Ashton, John C; Khalessi, Amirala; Kapoor, Mohit; Clarkson, Andrew; Sammut, Ivan A; Darlington, Cynthia L; Smith, Paul F

    2005-04-01

    Despite having very high neuronal firing rates, the VNC does not have unusually high mitochondrial activity in vitro. This study is the first in which functionally active mitochondria from the hindbrain have been isolated and characterized. Neurons in the vestibular nucleus complex (VNC) have exceptionally high spontaneous firing rates. Neuronal mitochondria generate adenosine triphosphate critical for maintaining the membrane potentials required for axon firing. We therefore hypothesized a high rate of mitochondrial activity in the VNC. To test this hypothesis, we compared mitochondrial activity in the VNC with mitochondrial activity from another area of the hindbrain, the cerebellum. Mitochondrial respiratory activity was assessed by measuring oxidative phosphorylation and mitochondrial respiratory enzyme complex activity. Assay results were not significantly different in the VNC compared to those obtained with the cerebellum or with rat brain mitochondria in previous studies.

  15. Molecular characterization of six sub population Indonesian local goats based on mitochondrial DNA D-loop

    Directory of Open Access Journals (Sweden)

    Aron Batubara

    2013-03-01

    Full Text Available Indonesian local goats were spread in some region, but there was still limited data’s known about the characteristics of its genetic diversity and origin. The Mitochondrial DNA D-loop sequences were used to study the genetic diversity and relationships of six sub population Indonesian local goats, namely, Kacang, Marica, Samosir, Jawarandu, Muara and Bengali goats. From 539 blood samples and DNA extraction collections were selected about 60 samples (10 samples each sub populations analyzed by PCR-RFLP methods, followed sequence analyzed about 5 PCR products each sub population. The results of the sequence analyses were edited and acquired about 957 bp of nucleotides length. After the alignment analyses were found 50 polymorphic sites which divided into 19 haplotype groups of mtDNA D-loop region. The value of nucleotide diversity was 0.014 ± 0.002. Analysis of Neighbour Joining with Kimura 2 Parameter methods and bootstrap test with 1000 replication indicated that each sub population groups was significantly different between one groups to the others. The maternal lineages origin of six breeds of Indonesian local goats was included to the group of lineage B. The Lineage B was the maternal origin of the haplogroup of goats in the region of East Asia, South Asia, China, Mongolia, North and South Africa, Malaysia, Indonesia, Pakistan and India.

  16. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    Science.gov (United States)

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  17. CLC-Nt1, a putative chloride channel protein of tobacco, co-localizes with mitochondrial membrane markers.

    Science.gov (United States)

    Lurin, C; Güclü, J; Cheniclet, C; Carde, J P; Barbier-Brygoo, H; Maurel, C

    2000-06-01

    The voltage-dependent chloride channel (CLC) family of membrane proteins has cognates in animals, yeast, bacteria and plants, and chloride-channel activity has been assigned to most of the animal homologues. Lack of evidence of CLC functions in plants prompted us to characterize the cellular localization of the tobacco CLC-Nt1 protein. Specific polyclonal antibodies were raised against an N-terminal polypeptide of CLC-Nt1. These antibodies were used to probe membrane proteins prepared by various cell-fractionation methods. These included aqueous two-phase partitioning (for plasma membranes), free-flow electrophoresis (for vacuolar and plasma membranes), intact vacuole isolation, Percoll-gradient centrifugation (for plastids and mitochondria) and stepped, linear, sucrose-density-gradient centrifugation (for mitochondria). Each purified membrane fraction was characterized with specific marker enzyme activities or antibodies. Our studies ruled out the possibility that the major cell localization of CLC-Nt1 was the vacuolar or plasma membranes, the endoplasmic reticulum, the Golgi apparatus or the plastids. In contrast, we showed that the tobacco CLC-Nt1 specifically co-localized with the markers of the mitochondrial inner membrane, cytochrome c oxidase and NAD9 protein. CLC-Nt1 may correspond to the inner membrane anion channel ('IMAC') described previously in animal and plant mitochondria.

  18. Characterization of mitochondrial proteome in a severe case of ETF-QO deficiency.

    Science.gov (United States)

    Rocha, H; Ferreira, R; Carvalho, J; Vitorino, R; Santa, C; Lopes, L; Gregersen, N; Vilarinho, L; Amado, F

    2011-12-10

    Multiple acyl-CoA dehydrogenase deficiency (MADD) is a mitochondrial fatty acid oxidation disorder caused by mutations that affect electron transfer flavoprotein (ETF) or ETF:ubiquinone oxidoreductase (ETF-QO) or even due to unidentified disturbances of riboflavin metabolism. Besides all the available data on the molecular basis of FAO disorders, including MADD, the pathophysiological mechanisms underlying clinical phenotype development, namely at the mitochondrial level, are poorly understood. In order to contribute to the elucidation of these mechanisms, we isolated mitochondria from cultured fibroblasts, from a patient with a severe MADD presentation due to ETF-QO deficiency, characterize its mitochondrial proteome and compare it with normal controls. The used approach (2-DE-MS/MS) allowed the positive identification of 287 proteins in both patient and controls, presenting 35 of the significant differences in their relative abundance. Among the differentially expressed are proteins associated to binding/folding functions, mitochondrial antioxidant enzymes as well as proteins associated to apoptotic events. The overexpression of chaperones like Hsp60 or mitochondrial Grp75, antioxidant enzymes and apoptotic proteins reflects the mitochondrial response to a complete absence of ETF-QO. Our study provides a global perspective of the mitochondrial proteome plasticity in a severe case of MADD and highlights the main molecular pathways involved in its pathogenesis. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme.

    Science.gov (United States)

    Vidone, Michele; Clima, Rosanna; Santorsola, Mariangela; Calabrese, Claudia; Girolimetti, Giulia; Kurelac, Ivana; Amato, Laura Benedetta; Iommarini, Luisa; Trevisan, Elisa; Leone, Marco; Soffietti, Riccardo; Morra, Isabella; Faccani, Giuliano; Attimonelli, Marcella; Porcelli, Anna Maria; Gasparre, Giuseppe

    2015-06-01

    Glioblastoma multiforme (GBM) is the most malignant brain cancer in adults, with a poor prognosis, whose molecular stratification still represents a challenge in pathology and clinics. On the other hand, mitochondrial DNA (mtDNA) mutations have been found in most tumors as modifiers of the bioenergetics state, albeit in GBM a characterization of the mtDNA status is lacking to date. Here, a characterization of the burden of mtDNA mutations in GBM samples was performed. First, investigation of tumor-specific vs. non tumor-specific mutations was carried out with the MToolBox bioinformatics pipeline by analyzing 45 matched tumor/blood samples, from whole genome or whole exome sequencing datasets obtained from The Cancer Genome Atlas (TCGA) consortium. Additionally, the entire mtDNA sequence was obtained in a dataset of 104 fresh-frozen GBM samples. Mitochondrial mutations with potential pathogenic interest were prioritized based on heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. A preliminary biochemical analysis of the activity of mitochondrial respiratory complexes was also performed on fresh-frozen GBM samples. Although a high number of mutations was detected, we report that the large majority of them does not pass the prioritization filters. Therefore, a relatively limited burden of pathogenic mutations is indeed carried by GBM, which did not appear to determine a general impairment of the respiratory chain. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation.

    Science.gov (United States)

    Nagaraj, Raghavendra; Sharpley, Mark S; Chi, Fangtao; Braas, Daniel; Zhou, Yonggang; Kim, Rachel; Clark, Amander T; Banerjee, Utpal

    2017-01-12

    Transcriptional control requires epigenetic changes directed by mitochondrial tricarboxylic acid (TCA) cycle metabolites. In the mouse embryo, global epigenetic changes occur during zygotic genome activation (ZGA) at the 2-cell stage. Pyruvate is essential for development beyond this stage, which is at odds with the low activity of mitochondria in this period. We now show that a number of enzymatically active mitochondrial enzymes associated with the TCA cycle are essential for epigenetic remodeling and are transiently and partially localized to the nucleus. Pyruvate is essential for this nuclear localization, and a failure of TCA cycle enzymes to enter the nucleus correlates with loss of specific histone modifications and a block in ZGA. At later stages, however, these enzymes are exclusively mitochondrial. In humans, the enzyme pyruvate dehydrogenase is transiently nuclear at the 4/8-cell stage coincident with timing of human embryonic genome activation, suggesting a conserved metabolic control mechanism underlying early pre-implantation development. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Outer Mitochondrial Membrane Localization of Apoptosis-Inducing Factor: Mechanistic Implications for Release

    Directory of Open Access Journals (Sweden)

    Seong-Woon Yu

    2009-10-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  2. Acetylglutamate synthase in Neurospora crassa: characterization, localization, and genetic behavior of a regulatory enzyme of arginine biosynthesis

    International Nuclear Information System (INIS)

    Jacobson, J.A.

    1988-01-01

    This study describes the characterization and localization of the first enzyme of arginine biosynthesis in Neurospora crassa. A radioactive assay was developed to detect this enzyme whereby radioactive substrate and product molecules could be separated by ion-exchange chromatography. The enzyme was found to have a pH optimum of 9.0 and K/sub m/ values for glutamate and acetyl-CoA of approximately 4.7 and 0.45 mM, respectively. The enzyme was shown to be feedback inhibited by arginine. Half-maximal inhibition was observed at 0.13 mM arginine, a concentration which is similar to be in vivo cytosolic concentration of 0.2 mM. Arginine was found to act as a competitive inhibitor with respect to acetyl-CoA. Acetylglutamate synthase was localized to the mitochondrion. However, in contrast to the mitochondrial matrix location of the other ornithine biosynthetic enzymes, this enzyme was found to reside on the mitochondrial inner membrane

  3. Preliminary characterization of mitochondrial genome of Melipona scutellaris, a Brazilian stingless bee.

    Science.gov (United States)

    Silverio, Manuella Souza; Rodovalho, Vinícius de Rezende; Bonetti, Ana Maria; de Oliveira, Guilherme Corrêa; Cuadros-Orellana, Sara; Ueira-Vieira, Carlos; Rodrigues dos Santos, Anderson

    2014-01-01

    Bees are manufacturers of relevant economical products and have a pollinator role fundamental to ecosystems. Traditionally, studies focused on the genus Melipona have been mostly based on behavioral, and social organization and ecological aspects. Only recently the evolutionary history of this genus has been assessed using molecular markers, including mitochondrial genes. Even though these studies have shed light on the evolutionary history of the Melipona genus, a more accurate picture may emerge when full nuclear and mitochondrial genomes of Melipona species become available. Here we present the assembly, annotation, and characterization of a draft mitochondrial genome of the Brazilian stingless bee Melipona scutellaris using Melipona bicolor as a reference organism. Using Illumina MiSeq data, we achieved the annotation of all protein coding genes, as well as the genes for the two ribosomal subunits (16S and 12S) and transfer RNA genes as well. Using the COI sequence as a DNA barcode, we found that M. cramptoni is the closest species to M. scutellaris.

  4. RECQL4 localizes to mitochondria and preserves mitochondrial DNA integrity

    DEFF Research Database (Denmark)

    Croteau, Deborah L; Rossi, Marie L; Canugovi, Chandrika

    2012-01-01

    in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present...... in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial......Q helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity....

  5. Mitochondrial disease and endocrine dysfunction.

    Science.gov (United States)

    Chow, Jasmine; Rahman, Joyeeta; Achermann, John C; Dattani, Mehul T; Rahman, Shamima

    2017-02-01

    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases.

  6. Preliminary Characterization of Mitochondrial Genome of Melipona scutellaris, a Brazilian Stingless Bee

    Directory of Open Access Journals (Sweden)

    Manuella Souza Silverio

    2014-01-01

    Full Text Available Bees are manufacturers of relevant economical products and have a pollinator role fundamental to ecosystems. Traditionally, studies focused on the genus Melipona have been mostly based on behavioral, and social organization and ecological aspects. Only recently the evolutionary history of this genus has been assessed using molecular markers, including mitochondrial genes. Even though these studies have shed light on the evolutionary history of the Melipona genus, a more accurate picture may emerge when full nuclear and mitochondrial genomes of Melipona species become available. Here we present the assembly, annotation, and characterization of a draft mitochondrial genome of the Brazilian stingless bee Melipona scutellaris using Melipona bicolor as a reference organism. Using Illumina MiSeq data, we achieved the annotation of all protein coding genes, as well as the genes for the two ribosomal subunits (16S and 12S and transfer RNA genes as well. Using the COI sequence as a DNA barcode, we found that M. cramptoni is the closest species to M. scutellaris.

  7. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    Science.gov (United States)

    Tan, Dun-Xian; Manchester, Lucien C.; Qin, Lilan; Reiter, Russel J.

    2016-01-01

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria. PMID:27999288

  8. Cannabinoid CB1 Receptors Are Localized in Striated Muscle Mitochondria and Regulate Mitochondrial Respiration

    Directory of Open Access Journals (Sweden)

    Juan Mendizabal-Zubiaga

    2016-10-01

    Full Text Available The cannabinoid type 1 (CB1 receptor is widely distributed in the brain and peripheral organs where it regulates cellular functions and metabolism. In the brain, CB1 is mainly localized on presynaptic axon terminals but is also found on mitochondria (mtCB1, where it regulates cellular respiration and energy production. Likewise, CB1 is localized on muscle mitochondria, but very little is known about it. The aim of this study was to further investigate in detail the distribution and functional role of mtCB1 in three different striated muscles. Immunoelectron microscopy for CB1 was used in skeletal muscles (gastrocnemius and rectus abdominis and myocardium from wild-type and CB1-KO mice. Functional assessments were performed in mitochondria purified from the heart of the mice and the mitochondrial oxygen consumption upon application of different acute delta-9-tetrahidrocannabinol (Δ9-THC concentrations (100 nM or 200 nM was monitored. About 26% of the mitochondrial profiles in gastrocnemius, 22% in the rectus abdominis and 17% in the myocardium expressed CB1. Furthermore, the proportion of mtCB1 versus total CB1 immunoparticles was about 60% in the gastrocnemius, 55% in the rectus abdominis and 78% in the myocardium. Importantly, the CB1 immunolabeling pattern disappeared in muscles of CB1-KO mice. Functionally, acute 100 nM or 200 nM THC treatment specifically decreased mitochondria coupled respiration between 12% and 15% in wild-type isolated mitochondria of myocardial muscles but no significant difference was noticed between THC treated and vehicle in mitochondria isolated from CB1-KO heart. Furthermore, gene expression of key enzymes involved in pyruvate synthesis, tricarboxylic acid (TCA cycle and mitochondrial respiratory chain was evaluated in the striated muscle of CB1-WT and CB1-KO. CB1-KO showed an increase in the gene expression of Eno3, Pkm2, and Pdha1, suggesting an increased production of pyruvate. In contrast, no significant

  9. Peripheral neuropathy in genetically characterized patients with mitochondrial disorders: A study from south India.

    Science.gov (United States)

    Bindu, Parayil Sankaran; Govindaraju, Chikanna; Sonam, Kothari; Nagappa, Madhu; Chiplunkar, Shwetha; Kumar, Rakesh; Gayathri, Narayanappa; Bharath, M M Srinivas; Arvinda, Hanumanthapura R; Sinha, Sanjib; Khan, Nahid Akthar; Govindaraj, Periyasamy; Nunia, Vandana; Paramasivam, Arumugam; Thangaraj, Kumarasamy; Taly, Arun B

    2016-03-01

    There are relatively few studies, which focus on peripheral neuropathy in large cohorts of genetically characterized patients with mitochondrial disorders. This study sought to analyze the pattern of peripheral neuropathy in a cohort of patients with mitochondrial disorders. The study subjects were derived from a cohort of 52 patients with a genetic diagnosis of mitochondrial disorders seen over a period of 8 years (2006-2013). All patients underwent nerve conduction studies and those patients with abnormalities suggestive of peripheral neuropathy were included in the study. Their phenotypic features, genotype, pattern of peripheral neuropathy and nerve conduction abnormalities were analyzed retrospectively. The study cohort included 18 patients (age range: 18 months-50 years, M:F- 1.2:1).The genotype included mitochondrial DNA point mutations (n=11), SURF1 mutations (n=4) and POLG1(n=3). Axonal neuropathy was noted in 12 patients (sensori-motor:n=4; sensory:n=4; motor:n=4) and demyelinating neuropathy in 6. Phenotype-genotype correlations revealed predominant axonal neuropathy in mtDNA point mutations and demyelinating neuropathy in SURF1. Patients with POLG related disorders had both sensory ataxic neuropathy and axonal neuropathy. A careful analysis of the family history, clinical presentation, biochemical, histochemical and structural analysis may help to bring out the mitochondrial etiology in patients with peripheral neuropathy and may facilitate targeted gene testing. Presence of demyelinating neuropathy in Leigh's syndrome may suggest underlying SURF1 mutations. Sensory ataxic neuropathy with other mitochondrial signatures should raise the possibility of POLG related disorder. Copyright © 2015. Published by Elsevier B.V.

  10. MitoMiner: a data warehouse for mitochondrial proteomics data.

    Science.gov (United States)

    Smith, Anthony C; Blackshaw, James A; Robinson, Alan J

    2012-01-01

    MitoMiner (http://mitominer.mrc-mbu.cam.ac.uk/) is a data warehouse for the storage and analysis of mitochondrial proteomics data gathered from publications of mass spectrometry and green fluorescent protein tagging studies. In MitoMiner, these data are integrated with data from UniProt, Gene Ontology, Online Mendelian Inheritance in Man, HomoloGene, Kyoto Encyclopaedia of Genes and Genomes and PubMed. The latest release of MitoMiner stores proteomics data sets from 46 studies covering 11 different species from eumetazoa, viridiplantae, fungi and protista. MitoMiner is implemented by using the open source InterMine data warehouse system, which provides a user interface allowing users to upload data for analysis, personal accounts to store queries and results and enables queries of any data in the data model. MitoMiner also provides lists of proteins for use in analyses, including the new MitoMiner mitochondrial proteome reference sets that specify proteins with substantial experimental evidence for mitochondrial localization. As further mitochondrial proteomics data sets from normal and diseased tissue are published, MitoMiner can be used to characterize the variability of the mitochondrial proteome between tissues and investigate how changes in the proteome may contribute to mitochondrial dysfunction and mitochondrial-associated diseases such as cancer, neurodegenerative diseases, obesity, diabetes, heart failure and the ageing process.

  11. Characterization of mammalian selenoprotein o: a redox-active mitochondrial protein.

    Science.gov (United States)

    Han, Seong-Jeong; Lee, Byung Cheon; Yim, Sun Hee; Gladyshev, Vadim N; Lee, Seung-Rock

    2014-01-01

    Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO), the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells with 75Se, and it was abolished when selenocysteine was replaced with serine. A CxxU motif was identified in the C-terminal region of SelO. This protein was reversibly oxidized in a time- and concentration-dependent manner in HEK 293T cells when cells were treated with hydrogen peroxide. This treatment led to the formation of a transient 88 kDa SelO-containing complex. The formation of this complex was enhanced by replacing the CxxU motif with SxxC, but abolished when it was replaced with SxxS, suggesting a redox interaction of SelO with another protein through its Sec residue. SelO was localized to mitochondria and expressed across mouse tissues. Its expression was little affected by selenium deficiency, suggesting it has a high priority for selenium supply. Taken together, these results show that SelO is a redox-active mitochondrial selenoprotein.

  12. Characterization of mammalian selenoprotein o: a redox-active mitochondrial protein.

    Directory of Open Access Journals (Sweden)

    Seong-Jeong Han

    Full Text Available Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO, the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells with 75Se, and it was abolished when selenocysteine was replaced with serine. A CxxU motif was identified in the C-terminal region of SelO. This protein was reversibly oxidized in a time- and concentration-dependent manner in HEK 293T cells when cells were treated with hydrogen peroxide. This treatment led to the formation of a transient 88 kDa SelO-containing complex. The formation of this complex was enhanced by replacing the CxxU motif with SxxC, but abolished when it was replaced with SxxS, suggesting a redox interaction of SelO with another protein through its Sec residue. SelO was localized to mitochondria and expressed across mouse tissues. Its expression was little affected by selenium deficiency, suggesting it has a high priority for selenium supply. Taken together, these results show that SelO is a redox-active mitochondrial selenoprotein.

  13. The mitochondrial 60-kDa heat shock protein in marine invertebrates: biochemical purification and molecular characterization.

    Science.gov (United States)

    Choresh, Omer; Loya, Yossi; Müller, Werner E G; Wiedenmann, Jörg; Azem, Abdussalam

    2004-03-01

    Sessile marine invertebrates undergo constant direct exposure to the surrounding environmental conditions, including local and global environmental fluctuations that may lead to fatal protein damage. Induction of heat shock proteins (Hsps) constitutes an important defense mechanism that protects these organisms from deleterious stress conditions. In a previous study, we reported the immunological detection of a 60-kDa Hsp (Hsp60) in the sea anemone Anemonia viridis (formerly called Anemonia sulcata) and studied its expression under a variety of stress conditions. In the present study, we show that the sponge Tetilla sp. from tidal habitats with a highly variable temperature regime is characterized by an increased level of Hsp60. Moreover, we show the expression of Hsp60 in various species among Porifera and Cnidaria, suggesting a general importance of this protein among marine invertebrates. We further cloned the hsp60 gene from A viridis, using a combination of conventional protein isolation methods and screening of a complementary deoxyribonucleic acid library by polymerase chain reaction. The cloned sequence (1764 bp) encodes for a protein of 62.8 kDa (588 amino acids). The 62.8-kDa protein, which contains an amino terminal extension that may serve as a mitochondrial targeting signal, shares a significant identity with mitochondrial Hsp60s from several animals but less identity with Hsp60s from either bacteria or plants.

  14. Lost region in amyloid precursor protein (APP) through TALEN-mediated genome editing alters mitochondrial morphology.

    Science.gov (United States)

    Wang, Yajie; Wu, Fengyi; Pan, Haining; Zheng, Wenzhong; Feng, Chi; Wang, Yunfu; Deng, Zixin; Wang, Lianrong; Luo, Jie; Chen, Shi

    2016-02-29

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain. Aβ plaques are produced through sequential β/γ cleavage of amyloid precursor protein (APP), of which there are three main APP isoforms: APP695, APP751 and APP770. KPI-APPs (APP751 and APP770) are known to be elevated in AD, but the reason remains unclear. Transcription activator-like (TAL) effector nucleases (TALENs) induce mutations with high efficiency at specific genomic loci, and it is thus possible to knock out specific regions using TALENs. In this study, we designed and expressed TALENs specific for the C-terminus of APP in HeLa cells, in which KPI-APPs are predominantly expressed. The KPI-APP mutants lack a 12-aa region that encompasses a 5-aa trans-membrane (TM) region and 7-aa juxta-membrane (JM) region. The mutated KPI-APPs exhibited decreased mitochondrial localization. In addition, mitochondrial morphology was altered, resulting in an increase in spherical mitochondria in the mutant cells through the disruption of the balance between fission and fusion. Mitochondrial dysfunction, including decreased ATP levels, disrupted mitochondrial membrane potential, increased ROS generation and impaired mitochondrial dehydrogenase activity, was also found. These results suggest that specific regions of KPI-APPs are important for mitochondrial localization and function.

  15. Molecular characterization of Fasciola gigantica from Mauritania based on mitochondrial and nuclear ribosomal DNA sequences.

    Science.gov (United States)

    Amor, Nabil; Farjallah, Sarra; Salem, Mohamed; Lamine, Dia Mamadou; Merella, Paolo; Said, Khaled; Ben Slimane, Badreddine

    2011-10-01

    Fasciolosis caused by Fasciola hepatica and Fasciola gigantica (Platyhelminthes: Trematoda: Digenea) is considered the most important helminth infection of ruminants in tropical countries, causing considerable socioeconomic problems. From Africa, F. gigantica has been previously characterized from Burkina Faso, Senegal, Kenya, Zambia and Mali, while F. hepatica has been reported from Morocco and Tunisia, and both species have been observed from Ethiopia and Egypt on the basis of morphometric differences, while the use of molecular markers is necessary to distinguish exactly between species. Samples identified morphologically as F. gigantica (n=60) from sheep and cattle from different geographical localities of Mauritania were genetically characterized by sequences of the first (ITS-1), the 5.8S, and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA) genes and the mitochondrial Cytochrome c Oxidase I (COI) gene. Comparison of the sequences of the Mauritanian samples with sequences of Fasciola spp. from GenBank confirmed that all samples belong to the species F. gigantica. The nucleotide sequencing of ITS rDNA of F. gigantica showed no nucleotide variation in the ITS-1, 5.8S, and ITS-2 rDNA sequences among all samples examined and those from Burkina Faso, Kenya, Egypt and Iran. The phylogenetic trees based on the ITS-1 and ITS-2 sequences showed a close relationship of the Mauritanian samples with isolates of F. gigantica from different localities of Africa and Asia. The COI genotypes of the Mauritanian specimens of F. gigantica had a high level of diversity, and they belonged to the F. gigantica phylogenically distinguishable clade. The present study is the first molecular characterization of F. gigantica in sheep and cattle from Mauritania, allowing a reliable approach for the genetic differentiation of Fasciola spp. and providing basis for further studies on liver flukes in the African countries. Copyright © 2011 Elsevier Inc. All

  16. Unique mitochondrial localization of arginase 1 and 2 in hepatocytes of air-breathing walking catfish, Clarias batrachus and their differential expression patterns under hyper-ammonia stress.

    Science.gov (United States)

    Banerjee, Bodhisattwa; Koner, Debaprasad; Lal, Priyanka; Saha, Nirmalendu

    2017-07-30

    Arginase (ARG) catalyzes the final step of ornithine-urea cycle (OUC) leading to a conversion of L-arginine to L-ornithine and urea. Several isoforms of ARG have been reported in vertebrates, out of which the two predominant isoforms are the cytosolic ARG1 and the mitochondrial ARG2. The air-breathing walking catfish (Clarias batrachus) is frequently being challenged by different environmental insults such as hyper-ammonia, dehydration and osmotic stresses in their natural habitats throughout the year. The present study investigated the active presence of ARG1 and ARG2 isoforms in hepatocytes along with unique localization of both the isoforms inside the mitochondria, and also their specific expression patterns under hyper-ammonia stress (5mM NH 4 Cl) in isolated hepatocytes of walking catfish. Initially, full length sequences of both arg1 and arg2 genes were obtained by RACE-PCR. Studies on molecular characterization demonstrated the presence of all the conserved amino acids required for stability and activity of binuclear metal center in both the isoforms. Phylogenetic analysis of the amino acid sequences of ARG isoforms showed a differentiation of the ARG1 and ARG2 into two distinct clusters with their respective isoforms from other species. Most interestingly, both the isoforms of ARG in hepatocytes were found to be localized inside the mitochondria as evidenced by the presence of mitochondrial target peptide (mTP) in N-terminal of the derived amino acid sequences, and exclusive localization of ARG activity in the mitochondrial fraction. This was additionally confirmed by Western blot analysis of ARGs in mitochondrial and cytosolic fractions, and by immunocytochemical analysis in isolated hepatocytes. Although the possible reasons associated with the presence of both the isoforms of ARGs inside the mitochondria is not clearly understood, perhaps this mitochondrial localization of ARG is functionally advantageous in this catfish for the synthesis of N

  17. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    Science.gov (United States)

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID

  18. Mitochondrial mutations drive prostate cancer aggression

    DEFF Research Database (Denmark)

    Hopkins, Julia F.; Sabelnykova, Veronica Y.; Weischenfeldt, Joachim

    2017-01-01

    Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer...... in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer....

  19. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tong; Yu, Rong [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden); Jin, Shao-Bo [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Han, Liwei [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden); Lendahl, Urban [Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm (Sweden); Zhao, Jian, E-mail: Jian.Zhao@ki.se [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden); Nistér, Monica [Department of Oncology–Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital Solna, SE-171 76 Stockholm (Sweden)

    2013-11-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  20. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    International Nuclear Information System (INIS)

    Liu, Tong; Yu, Rong; Jin, Shao-Bo; Han, Liwei; Lendahl, Urban; Zhao, Jian; Nistér, Monica

    2013-01-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  1. Characterization of Human and Yeast Mitochondrial Glycine Carriers with Implications for Heme Biosynthesis and Anemia.

    Science.gov (United States)

    Lunetti, Paola; Damiano, Fabrizio; De Benedetto, Giuseppe; Siculella, Luisa; Pennetta, Antonio; Muto, Luigina; Paradies, Eleonora; Marobbio, Carlo Marya Thomas; Dolce, Vincenza; Capobianco, Loredana

    2016-09-16

    Heme is an essential molecule in many biological processes, such as transport and storage of oxygen and electron transfer as well as a structural component of hemoproteins. Defects of heme biosynthesis in developing erythroblasts have profound medical implications, as represented by sideroblastic anemia. The synthesis of heme requires the uptake of glycine into the mitochondrial matrix where glycine is condensed with succinyl coenzyme A to yield δ-aminolevulinic acid. Herein we describe the biochemical and molecular characterization of yeast Hem25p and human SLC25A38, providing evidence that they are mitochondrial carriers for glycine. In particular, the hem25Δ mutant manifests a defect in the biosynthesis of δ-aminolevulinic acid and displays reduced levels of downstream heme and mitochondrial cytochromes. The observed defects are rescued by complementation with yeast HEM25 or human SLC25A38 genes. Our results identify new proteins in the heme biosynthetic pathway and demonstrate that Hem25p and its human orthologue SLC25A38 are the main mitochondrial glycine transporters required for heme synthesis, providing definitive evidence of their previously proposed glycine transport function. Furthermore, our work may suggest new therapeutic approaches for the treatment of congenital sideroblastic anemia. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Characterization of Mitochondrial Injury after Cardiac Arrest (COMICA)

    Science.gov (United States)

    Donnino, Michael W.; Liu, Xiaowen; Andersen, Lars W.; Rittenberger, Jon C.; Abella, Benjamin S.; Gaieski, David F.; Ornato, Joseph P.; Gazmuri, Raúl J.; Grossestreur, Anne V.; Cocchi, Michaen N.; Abbate, Antonio; Uber, Amy; Clore, John; Peberdy, Mary Anne; Callaway, Clifton

    2017-01-01

    Introduction Mitochondrial injury post-cardiac arrest has been described in pre-clinical settings but the extent to which this injury occurs in humans remains largely unknown. We hypothesized that increased levels of mitochondrial biomarkers would be associated with mortality and neurological morbidity in post-cardiac arrest subjects. Methods We performed a prospective multicenter study of post-cardiac arrest subjects. Inclusion criteria were comatose adults who suffered an out-of-hospital cardiac arrest. Mitochondrial biomarkers were measured at 0, 12, 24, 36 and 48 hours after return of spontaneous circulation as well as in healthy controls. Results Out of 111 subjects enrolled, 102 had evaluable samples at 0 hours. Cardiac arrest subjects had higher baseline cytochrome c levels compared to controls (2.18 ng/mL [0.74, 7.74] vs. 0.16 ng/mL [0.03, 0.91], p<0.001), and subjects who died had higher 0 hours cytochrome c levels compared to survivors (3.66 ng/mL [1.40, 14.9] vs. 1.27 ng/mL [0.16, 2.37], p<0.001). There were significantly higher RNAase P (3.3 [1.2, 5.7] vs. 1.2 [0.8, 1.2], p<0.001) and B2M (12.0 [1.0, 22.9], vs. 0.6 [0.6, 1.3], p<0.001) levels in cardiac arrest subjects at baseline compared to the control subjects. There were no differences between survivors and non-survivors for mitochondrial DNA, nuclear DNA, or cell free DNA. Conclusions Cytochrome C was increased in post-cardiac arrest subjects compared to controls, and in post-cardiac arrest non-survivors compared to survivors. Nuclear DNA and cell free DNA was increased in plasma of post-cardiac arrest subjects. There were no differences in mitochondrial DNA, nuclear DNA, or cell free DNA between survivors and non-survivors. Mitochondrial injury markers showed mixed results in post-arrest period. Future research needs to investigate these differences. PMID:28126408

  3. Characterization of mitochondrial injury after cardiac arrest (COMICA).

    Science.gov (United States)

    Donnino, Michael W; Liu, Xiaowen; Andersen, Lars W; Rittenberger, Jon C; Abella, Benjamin S; Gaieski, David F; Ornato, Joseph P; Gazmuri, Raúl J; Grossestreuer, Anne V; Cocchi, Michael N; Abbate, Antonio; Uber, Amy; Clore, John; Peberdy, Mary Anne; Callaway, Clifton W

    2017-04-01

    Mitochondrial injury post-cardiac arrest has been described in pre-clinical settings but the extent to which this injury occurs in humans remains largely unknown. We hypothesized that increased levels of mitochondrial biomarkers would be associated with mortality and neurological morbidity in post-cardiac arrest subjects. We performed a prospective multicenter study of post-cardiac arrest subjects. Inclusion criteria were comatose adults who suffered an out-of-hospital cardiac arrest. Mitochondrial biomarkers were measured at 0, 12, 24, 36 and 48h after return of spontaneous circulation as well as in healthy controls. Out of 111 subjects enrolled, 102 had evaluable samples at 0h. Cardiac arrest subjects had higher baseline cytochrome c levels compared to controls (2.18ng/mL [0.74, 7.74] vs. 0.16ng/mL [0.03, 0.91], p<0.001), and subjects who died had higher 0h cytochrome c levels compared to survivors (3.66ng/mL [1.40, 14.9] vs. 1.27ng/mL [0.16, 2.37], p<0.001). There were significantly higher Ribonuclease P (RNaseP) (3.3 [1.2, 5.7] vs. 1.2 [0.8, 1.2], p<0.001) and Beta-2microglobulin (B2M) (12.0 [1.0, 22.9], vs. 0.6 [0.6, 1.3], p<0.001) levels in cardiac arrest subjects at baseline compared to the control subjects. There were no differences between survivors and non-survivors for mitochondrial DNA, nuclear DNA, or cell free DNA. Cytochrome c was increased in post- cardiac arrest subjects compared to controls, and in post-cardiac arrest non-survivors compared to survivors. Nuclear DNA and cell free DNA was increased in plasma of post-cardiac arrest subjects. There were no differences in mitochondrial DNA, nuclear DNA, or cell free DNA between survivors and non-survivors. Mitochondrial injury markers showed mixed results in the post-cardiac arrest period. Future research needs to investigate these differences. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons.

    Directory of Open Access Journals (Sweden)

    Agnès Petit-Paitel

    Full Text Available Aberrant mitochondrial function appears to play a central role in dopaminergic neuronal loss in Parkinson's disease (PD. 1-methyl-4-phenylpyridinium iodide (MPP(+, the active metabolite of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, is a selective inhibitor of mitochondrial complex I and is widely used in rodent and cell models to elicit neurochemical alterations associated with PD. Recent findings suggest that Glycogen Synthase Kinase-3beta (GSK-3beta, a critical activator of neuronal apoptosis, is involved in the dopaminergic cell death. In this study, the role of GSK-3beta in modulating MPP(+-induced mitochondrial dysfunction and neuronal death was examined in vivo, and in two neuronal cell models namely primary cultured and immortalized neurons. In both cell models, MPTP/MPP(+ treatment caused cell death associated with time- and concentration-dependent activation of GSK-3beta, evidenced by the increased level of the active form of the kinase, i.e. GSK-3beta phosphorylated at tyrosine 216 residue. Using immunocytochemistry and subcellular fractionation techniques, we showed that GSK-3beta partially localized within mitochondria in both neuronal cell models. Moreover, MPP(+ treatment induced a significant decrease of the specific phospho-Tyr216-GSK-3beta labeling in mitochondria concomitantly with an increase into the cytosol. Using two distinct fluorescent probes, we showed that MPP(+ induced cell death through the depolarization of mitochondrial membrane potential. Inhibition of GSK-3beta activity using well-characterized inhibitors, LiCl and kenpaullone, and RNA interference, prevented MPP(+-induced cell death by blocking mitochondrial membrane potential changes and subsequent caspase-9 and -3 activation. These results indicate that GSK-3beta is a critical mediator of MPTP/MPP(+-induced neurotoxicity through its ability to regulate mitochondrial functions. Inhibition of GSK-3beta activity might provide protection against

  5. Mitochondrial NUDIX hydrolases: A metabolic link between NAD catabolism, GTP and mitochondrial dynamics.

    Science.gov (United States)

    Long, Aaron; Klimova, Nina; Kristian, Tibor

    2017-10-01

    NAD + catabolism and mitochondrial dynamics are important parts of normal mitochondrial function and are both reported to be disrupted in aging, neurodegenerative diseases, and acute brain injury. While both processes have been extensively studied there has been little reported on how the mechanisms of these two processes are linked. This review focuses on how downstream NAD + catabolism via NUDIX hydrolases affects mitochondrial dynamics under pathologic conditions. Additionally, several potential targets in mitochondrial dysfunction and fragmentation are discussed, including the roles of mitochondrial poly(ADP-ribose) polymerase 1(mtPARP1), AMPK, AMP, and intra-mitochondrial GTP metabolism. Mitochondrial and cytosolic NUDIX hydrolases (NUDT9α and NUDT9β) can affect mitochondrial and cellular AMP levels by hydrolyzing ADP- ribose (ADPr) and subsequently altering the levels of GTP and ATP. Poly (ADP-ribose) polymerase 1 (PARP1) is activated after DNA damage, which depletes NAD + pools and results in the PARylation of nuclear and mitochondrial proteins. In the mitochondria, ADP-ribosyl hydrolase-3 (ARH3) hydrolyzes PAR to ADPr, while NUDT9α metabolizes ADPr to AMP. Elevated AMP levels have been reported to reduce mitochondrial ATP production by inhibiting the adenine nucleotide translocase (ANT), allosterically activating AMPK by altering the cellular AMP: ATP ratio, and by depleting mitochondrial GTP pools by being phosphorylated by adenylate kinase 3 (AK3), which uses GTP as a phosphate donor. Recently, activated AMPK was reported to phosphorylate mitochondria fission factor (MFF), which increases Drp1 localization to the mitochondria and promotes mitochondrial fission. Moreover, the increased AK3 activity could deplete mitochondrial GTP pools and possibly inhibit normal activity of GTP-dependent fusion enzymes, thus altering mitochondrial dynamics. Published by Elsevier Ltd.

  6. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+.

    Directory of Open Access Journals (Sweden)

    Paola eVenco

    2015-05-01

    Full Text Available Mutations in C19orf12 have been identified in patients affected by Neurodegeneration with Brain Iron Accumulation (NBIA, a clinical entity characterized by iron accumulation in the basal ganglia. By using western blot analysis with specific antibody and confocal studies, we showed that wild-type C19orf12 protein was not exclusively present in mitochondria, but also in the Endoplasmic Reticulum (ER and MAM (Mitochondria Associated Membrane, while mutant C19orf12 variants presented a different localization. Moreover, after induction of oxidative stress, a GFP-tagged C19orf12 wild-type protein was able to relocate to the cytosol. On the contrary, mutant isoforms were not able to respond to oxidative stress. High mitochondrial calcium concentration and increased H2O2 induced apoptosis were found in fibroblasts derived from one patient as compared to controls.C19orf12 protein is a 17kDa mitochondrial membrane-associated protein whose function is still unknown. Our in silico investigation suggests that, the glycine zipper motifs of C19orf12 form helical regions spanning the membrane. The N- and C-terminal regions with respect to the transmembrane portion, on the contrary, are predicted to rearrange in a structural domain, which is homologues to the N-terminal regulatory domain of the magnesium transporter MgtE, suggesting that C19orf12 may act as a regulatory protein for human MgtE transporters. The mutations here described affect respectively one glycine residue of the glycine zipper motifs, which are involved in dimerization of transmembrane helices and predicted to impair the correct localization of the protein into the membranes, and one residue present in the regulatory domain, which is important for protein-protein interaction.

  7. Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Sorensen, Martin M; Hvitby, Christina Poulsen

    2010-01-01

    in genomic maintenance and transcriptome regulation. By immunocytochemistry, mitochondrial fractionation, and Western blotting, we demonstrate that CSB localizes to mitochondria in different types of cells, with increased mitochondrial distribution following menadione-induced oxidative stress. Moreover, our...

  8. Mitochondrial and cytoplasmic isoleucyl-, glutamyl- and arginyl-tRNA synthetases of yeast are encoded by separate genes.

    Science.gov (United States)

    Tzagoloff, A; Shtanko, A

    1995-06-01

    Three complementation groups of a pet mutant collection have been found to be composed of respiratory-deficient deficient mutants with lesions in mitochondrial protein synthesis. Recombinant plasmids capable of restoring respiration were cloned by transformation of representatives of each complementation group with a yeast genomic library. The plasmids were used to characterize the complementing genes and to institute disruption of the chromosomal copies of each gene in respiratory-proficient yeast. The sequences of the cloned genes indicate that they code for isoleucyl-, arginyl- and glutamyl-tRNA synthetases. The properties of the mutants used to obtain the genes and of strains with the disrupted genes indicate that all three aminoacyl-tRNA synthetases function exclusively in mitochondrial proteins synthesis. The ISM1 gene for mitochondrial isoleucyl-tRNA synthetase has been localized to chromosome XVI next to UME5. The MSR1 gene for the arginyl-tRNA synthetase was previously located on yeast chromosome VIII. The third gene MSE1 for the mitochondrial glutamyl-tRNA synthetase has not been localized. The identification of three new genes coding for mitochondrial-specific aminoacyl-tRNA synthetases indicates that in Saccharomyces cerevisiae at least 11 members of this protein family are encoded by genes distinct from those coding for the homologous cytoplasmic enzymes.

  9. Mitochondria-localized phospholipase A2, AoPlaA, in Aspergillus oryzae displays phosphatidylethanolamine-specific activity and is involved in the maintenance of mitochondrial phospholipid composition.

    Science.gov (United States)

    Kotani, Shohei; Izawa, Sho; Komai, Noriyuki; Takayanagi, Ayumi; Arioka, Manabu

    2016-11-01

    In mammals, cytosolic phospholipases A 2 (cPLA 2 s) play important physiological roles by releasing arachidonic acid, a precursor for bioactive lipid mediators, from the biological membranes. In contrast, fungal cPLA 2 -like proteins are much less characterized and their roles have remained elusive. AoPlaA is a cPLA 2 -like protein in the filamentous fungus Aspergillus oryzae which, unlike mammalian cPLA 2 , localizes to mitochondria. In this study, we investigated the biochemical and physiological functions of AoPlaA. Recombinant AoPlaA produced in E. coli displayed Ca 2+ -independent lipolytic activity. Mass spectrometry analysis demonstrated that AoPlaA displayed PLA 2 activity to phosphatidylethanolamine (PE), but not to other phospholipids, and generated 1-acylated lysoPE. Catalytic site mutants of AoPlaA displayed almost no or largely reduced activity to PE. Consistent with PE-specific activity of AoPlaA, AoplaA-overexpressing strain showed decreased PE content in the mitochondrial fraction. In contrast, AoplaA-disruption strain displayed increased content of cardiolipin. AoplaA-overexpressing strain, but not its counterparts overexpressing the catalytic site mutants, exhibited retarded growth at low temperature, possibly because of the impairment of the mitochondrial function caused by excess degradation of PE. These results suggest that AoPlaA is a novel PE-specific PLA 2 that plays a regulatory role in the maintenance of mitochondrial phospholipid composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. A comprehensive characterization of rare mitochondrial DNA variants in neuroblastoma.

    Science.gov (United States)

    Calabrese, Francesco Maria; Clima, Rosanna; Pignataro, Piero; Lasorsa, Vito Alessandro; Hogarty, Michael D; Castellano, Aurora; Conte, Massimo; Tonini, Gian Paolo; Iolascon, Achille; Gasparre, Giuseppe; Capasso, Mario

    2016-08-02

    Neuroblastoma, a tumor of the developing sympathetic nervous system, is a common childhood neoplasm that is often lethal. Mitochondrial DNA (mtDNA) mutations have been found in most tumors including neuroblastoma. We extracted mtDNA data from a cohort of neuroblastoma samples that had undergone Whole Exome Sequencing (WES) and also used snap-frozen samples in which mtDNA was entirely sequenced by Sanger technology. We next undertook the challenge of determining those mutations that are relevant to, or arisen during tumor development. The bioinformatics pipeline used to extract mitochondrial variants from matched tumor/blood samples was enriched by a set of filters inclusive of heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. Our in silico multistep workflow applied both on WES and Sanger-sequenced neuroblastoma samples, allowed us to identify a limited burden of somatic and germline mitochondrial mutations with a potential pathogenic impact. The few singleton germline and somatic mitochondrial mutations emerged, according to our in silico analysis, do not appear to impact on the development of neuroblastoma. Our findings are consistent with the hypothesis that most mitochondrial somatic mutations can be considered as 'passengers' and consequently have no discernible effect in this type of cancer.

  11. Synthesis, characterization, and subcellular localization studies of amino acid-substituted porphyrinic pigments

    Science.gov (United States)

    van Diggelen, Lisa; Khin, Hnin; Conner, Kip; Shao, Jenny; Sweezy, Margaretta; Jung, Anna H.; Isaac, Meden; Simonis, Ursula

    2009-06-01

    Stopping cancer in its path occurs when photosensitizers (PSs) induce apoptotic cell death after their exposure to light and the subsequent formation of reactive oxygen species. In pursuit of our hypothesis that mitochondrial localizing PSs will enhance the efficacy of the photosensitizing process in photodynamic therapy, since they provoke cell death by inducing apoptosis, we synthesized and characterized tetraphenylporphyrins (TPPs) that are substituted at the paraphenyl positions by two amino acids and two fluoro or hydroxyl groups, respectively. They were prepared according to the Lindsey-modified Adler-Longo methodology using trifluoromethanesulfonylchloride (CF3SO2Cl) as a catalyst instead of trifluoroacetic acid. The use of CF3SO2Cl yielded cleaner products in significantly higher yields. During the synthesis, not only the yields and work-up procedure of the TPPs were improved by using CF3SO2Cl as a catalyst, but also a better means of synthesizing the precursor dipyrromethanes was tested by using indium(III) chloride. Column chromatography, HPLC, and NMR spectroscopy were used to separate and characterize the di-amino acid-dihydroxy, or difluoro-substituted porphyrins and to ascertain their purity before subcellular localization studies were carried out. Studies using androgen-sensitive human prostate adenocarcinoma cells LNCaP revealed that certain amino acid substituted porphyrins that are positively charged in the slightly acidic medium of cancer cells are very useful in shedding light on the targets of TPPs in subcellular organelles of cancer cells. Although some of these compounds have properties of promising photosensitizers by revealing increased water solubility, acidic properties, and innate ability to provoke cell death by apoptosis, the cell killing efficacy of these TPPs is low. This correlates with their subcellular localization. The di-amino acid, di-hydroxy substituted TPPs localize mainly to the lysosomes, whereas the di

  12. Mitochondrial Dynamics in Type 2 Diabetes and Cancer

    Directory of Open Access Journals (Sweden)

    Michelle Williams

    2018-04-01

    Full Text Available Mitochondria are bioenergetic, biosynthetic, and signaling organelles that control various aspects of cellular and organism homeostasis. Quality control mechanisms are in place to ensure maximal mitochondrial function and metabolic homeostasis at the cellular level. Dysregulation of these pathways is a common theme in human disease. In this mini-review, we discuss how alterations of the mitochondrial network influences mitochondrial function, focusing on the molecular regulators of mitochondrial dynamics (organelle’s shape and localization. We highlight similarities and critical differences in the mitochondrial network of cancer and type 2 diabetes, which may be relevant for treatment of these diseases.

  13. Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease.

    Science.gov (United States)

    Casari, G; De Fusco, M; Ciarmatori, S; Zeviani, M; Mora, M; Fernandez, P; De Michele, G; Filla, A; Cocozza, S; Marconi, R; Dürr, A; Fontaine, B; Ballabio, A

    1998-06-12

    Hereditary spastic paraplegia (HSP) is characterized by progressive weakness and spasticity of the lower limbs due to degeneration of corticospinal axons. We found that patients from a chromosome 16q24.3-linked HSP family are homozygous for a 9.5 kb deletion involving a gene encoding a novel protein, named Paraplegin. Two additional Paraplegin mutations, both resulting in a frameshift, were found in a complicated and in a pure form of HSP. Paraplegin is highly homologous to the yeast mitochondrial ATPases, AFG3, RCA1, and YME1, which have both proteolytic and chaperon-like activities at the inner mitochondrial membrane. Immunofluorescence analysis and import experiments showed that Paraplegin localizes to mitochondria. Analysis of muscle biopsies from two patients carrying Paraplegin mutations showed typical signs of mitochondrial OXPHOS defects, thus suggesting a mechanism for neurodegeneration in HSP-type disorders.

  14. Mpv17 in mitochondria protects podocytes against mitochondrial dysfunction and apoptosis in vivo and in vitro.

    Science.gov (United States)

    Casalena, Gabriela; Krick, Stefanie; Daehn, Ilse; Yu, Liping; Ju, Wenjun; Shi, Shaolin; Tsai, Su-yi; D'Agati, Vivette; Lindenmeyer, Maja; Cohen, Clemens D; Schlondorff, Detlef; Bottinger, Erwin P

    2014-06-01

    Mitochondrial dysfunction is increasingly recognized as contributing to glomerular diseases, including those secondary to mitochondrial DNA (mtDNA) mutations and deletions. Mitochondria maintain cellular redox and energy homeostasis and are a major source of intracellular reactive oxygen species (ROS) production. Mitochondrial ROS accumulation may contribute to stress-induced mitochondrial dysfunction and apoptosis and thereby to glomerulosclerosis. In mice, deletion of the gene encoding Mpv17 is associated with glomerulosclerosis, but the underlying mechanism remains poorly defined. Here we report that Mpv17 localizes to mitochondria of podocytes and its expression is reduced in several glomerular injury models and in human focal segmental glomerulosclerosis (FSGS) but not in minimal change disease. Using models of mild or severe nephrotoxic serum nephritis (NTSN) in Mpv17(+/+) wild-type (WT) and Mpv17(-/-) knockout mice, we found that Mpv17 deficiency resulted in increased proteinuria (mild NTSN) and renal insufficiency (severe NTSN) compared with WT. These lesions were associated with increased mitochondrial ROS generation and mitochondrial injury such as oxidative DNA damage. In vitro, podocytes with loss of Mpv17 function were characterized by increased susceptibility to apoptosis and ROS injury including decreased mitochondrial function, loss of mtDNA content, and change in mitochondrial configuration. In summary, the inner mitochondrial membrane protein Mpv17 in podocytes is essential for the maintenance of mitochondrial homeostasis and protects podocytes against oxidative stress-induced injury both in vitro and in vivo. Copyright © 2014 the American Physiological Society.

  15. Mitochondrial encephalomyopathy (MELAS) with mental disorder

    International Nuclear Information System (INIS)

    Suzuki, T.; Koizumi, J.; Shiraishi, H.; Ofuku, K.; Sasaki, M.; Hori, T.; Ishikawa, N.; Anno, I.; Ohkoshi, N.

    1990-01-01

    A case of mitochondrial encephalomyopathy (MELAS) with mental disorder is reported. The SPECT study using 123 I-iodoamphetamine (IMP) and MRI study revealed abnormality in the left parieto-occipital areas without abnormality in the brain CT or brain scintigram. These findings suggest a localized dysfunction of the brain capillary endothelium in association with the cerebral involvement of mitochondrial encephalomyopathy. (orig.)

  16. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    Science.gov (United States)

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  17. Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo.

    Science.gov (United States)

    Harms, Floor A; Voorbeijtel, Wilhelmina J; Bodmer, Sander I A; Raat, Nicolaas J H; Mik, Egbert G

    2013-09-01

    Progress in diagnosis and treatment of mitochondrial dysfunction in chronic and acute disease could greatly benefit from techniques for monitoring of mitochondrial function in vivo. In this study we demonstrate the feasibility of in vivo respirometry in skin. Mitochondrial oxygen measurements by means of oxygen-dependent delayed fluorescence of protoporphyrin IX are shown to provide a robust basis for measurement of local oxygen disappearance rate (ODR). The fundamental principles behind the technology are described, together with an analysis method for retrievel of respirometry data. The feasibility and reproducibility of this clinically useful approach are demonstrated in a series of rats. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Drp1-Dependent Mitochondrial Autophagy Plays a Protective Role Against Pressure Overload-Induced Mitochondrial Dysfunction and Heart Failure.

    Science.gov (United States)

    Shirakabe, Akihiro; Zhai, Peiyong; Ikeda, Yoshiyuki; Saito, Toshiro; Maejima, Yasuhiro; Hsu, Chiao-Po; Nomura, Masatoshi; Egashira, Kensuke; Levine, Beth; Sadoshima, Junichi

    2016-03-29

    Mitochondrial autophagy is an important mediator of mitochondrial quality control in cardiomyocytes. The occurrence of mitochondrial autophagy and its significance during cardiac hypertrophy are not well understood. Mice were subjected to transverse aortic constriction (TAC) and observed at multiple time points up to 30 days. Cardiac hypertrophy developed after 5 days, the ejection fraction was reduced after 14 days, and heart failure was observed 30 days after TAC. General autophagy was upregulated between 1 and 12 hours after TAC but was downregulated below physiological levels 5 days after TAC. Mitochondrial autophagy, evaluated by electron microscopy, mitochondrial content, and Keima with mitochondrial localization signal, was transiently activated at ≈3 to 7 days post-TAC, coinciding with mitochondrial translocation of Drp1. However, it was downregulated thereafter, followed by mitochondrial dysfunction. Haploinsufficiency of Drp1 abolished mitochondrial autophagy and exacerbated the development of both mitochondrial dysfunction and heart failure after TAC. Injection of Tat-Beclin 1, a potent inducer of autophagy, but not control peptide, on day 7 after TAC, partially rescued mitochondrial autophagy and attenuated mitochondrial dysfunction and heart failure induced by overload. Haploinsufficiency of either drp1 or beclin 1 prevented the rescue by Tat-Beclin 1, suggesting that its effect is mediated in part through autophagy, including mitochondrial autophagy. Mitochondrial autophagy is transiently activated and then downregulated in the mouse heart in response to pressure overload. Downregulation of mitochondrial autophagy plays an important role in mediating the development of mitochondrial dysfunction and heart failure, whereas restoration of mitochondrial autophagy attenuates dysfunction in the heart during pressure overload. © 2016 American Heart Association, Inc.

  19. Data supporting characterization of CLIC1, CLIC4, CLIC5 and DmCLIC antibodies and localization of CLICs in endoplasmic reticulum of cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Devasena Ponnalagu

    2016-06-01

    Full Text Available Chloride intracellular channel (CLICs proteins show 60–70% sequence identity to each other, and exclusively localize to the intracellular organelle membranes and cytosol. In support of our recent publication, “Molecular identity of cardiac mitochondrial chloride intracellular channel proteins” (Ponnalagu et al., 2016 [1], it was important to characterize the specificity of different CLIC paralogs/ortholog (CLIC1, CLIC4, CLIC5 and DmCLIC antibodies used to decipher their localization in cardiac cells. In addition, localization of CLICs in the other organelles such as endoplasmic reticulum (ER of cardiomyocytes was established. This article also provides data on the different primers used to show the relative abundance of CLIC paralogs in cardiac tissue and the specificity of the various CLIC antibodies used. We demonstrate that the predominant CLICs in the heart, namely CLIC1, CLIC4 and CLIC5, show differential distribution in endoplasmic reticulum. CLIC1 and CLIC4 both show co-localization to the endoplasmic reticulum whereas CLIC5 does not.

  20. Mitochondrial PKA mediates sperm motility.

    Science.gov (United States)

    Mizrahi, Rashel; Breitbart, Haim

    2014-12-01

    Mitochondria are the major source of ATP to power sperm motility. Phosphorylation of mitochondrial proteins has been proposed as a major regulatory mechanism for mitochondrial bioenergetics. Sperm motility was measured by a computer-assisted analyzer, protein detection by western blotting, membrane potential by tetramethylrhodamine, cellular ATP by luciferase assay and localization of PKA by immuno-electron microscopy. Bicarbonate is essential for the creation of mitochondrial electro-chemical gradient, ATP synthesis and sperm motility. Bicarbonate stimulates PKA-dependent phosphorylation of two 60kDa proteins identified as Tektin and glucose-6-phosphate isomerase. This phosphorylation was inhibited by respiration inhibition and phosphorylation could be restored by glucose in the presence of bicarbonate. However, this effect of glucose cannot be seen when the mitochondrial ATP/ADP exchanger was inhibited indicating that glycolytic-produced ATP is transported into the mitochondria and allows PKA-dependent protein phosphorylation inside the mitochondria. Bicarbonate activates mitochondrial soluble adenylyl cyclase (sAC) which catalyzes cAMP production leading to the activation of mitochondrial PKA. Glucose can overcome the lack of ATP in the absence of bicarbonate but it cannot affect the mitochondrial sAC/PKA system, therefore the PKA-dependent phosphorylation of the 60kDa proteins does not occur in the absence of bicarbonate. Production of CO2 in Krebs cycle, which is converted to bicarbonate is essential for sAC/PKA activation leading to mitochondrial membrane potential creation and ATP synthesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Bioinspired sensory systems for local flow characterization

    Science.gov (United States)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  2. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.

    Science.gov (United States)

    Clark, Ira E; Dodson, Mark W; Jiang, Changan; Cao, Joseph H; Huh, Jun R; Seol, Jae Hong; Yoo, Soon Ji; Hay, Bruce A; Guo, Ming

    2006-06-29

    Parkinson's disease is the second most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons in the substantia nigra. Mitochondrial dysfunction has been implicated as an important trigger for Parkinson's disease-like pathogenesis because exposure to environmental mitochondrial toxins leads to Parkinson's disease-like pathology. Recently, multiple genes mediating familial forms of Parkinson's disease have been identified, including PTEN-induced kinase 1 (PINK1; PARK6) and parkin (PARK2), which are also associated with sporadic forms of Parkinson's disease. PINK1 encodes a putative serine/threonine kinase with a mitochondrial targeting sequence. So far, no in vivo studies have been reported for pink1 in any model system. Here we show that removal of Drosophila PINK1 homologue (CG4523; hereafter called pink1) function results in male sterility, apoptotic muscle degeneration, defects in mitochondrial morphology and increased sensitivity to multiple stresses including oxidative stress. Pink1 localizes to mitochondria, and mitochondrial cristae are fragmented in pink1 mutants. Expression of human PINK1 in the Drosophila testes restores male fertility and normal mitochondrial morphology in a portion of pink1 mutants, demonstrating functional conservation between human and Drosophila Pink1. Loss of Drosophila parkin shows phenotypes similar to loss of pink1 function. Notably, overexpression of parkin rescues the male sterility and mitochondrial morphology defects of pink1 mutants, whereas double mutants removing both pink1 and parkin function show muscle phenotypes identical to those observed in either mutant alone. These observations suggest that pink1 and parkin function, at least in part, in the same pathway, with pink1 functioning upstream of parkin. The role of the pink1-parkin pathway in regulating mitochondrial function underscores the importance of mitochondrial dysfunction as a central mechanism of Parkinson's disease

  3. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  4. Mitochondrial DNA: A Blind Spot in Neuroepigenetics.

    Science.gov (United States)

    Manev, Hari; Dzitoyeva, Svetlana; Chen, Hu

    2012-04-01

    Neuroepigenetics, which includes nuclear DNA modifications such as 5-methylcytosine and 5-hydoxymethylcytosine and modifications of nuclear proteins such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear but equally important for physiological and pathological processes (including in the brain), mitochondrial DNA has for the most part not had a systematic epigenetic characterization. The importance of mitochondria and mitochondrial DNA (particularly its mutations) in central nervous system physiology and pathology has long been recognized. Only recently have mechanisms of mitochondrial DNA methylation and hydroxymethylation, including the discovery of mitochondrial DNA-methyltransferases and the presence and the functionality of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (e.g., in modifying the transcription of mitochondrial genome), been unequivocally recognized as a part of mammalian mitochondrial physiology. Here we summarize for the first time evidence supporting the existence of these mechanisms and we propose the term "mitochondrial epigenetics" to be used when referring to them. Currently, neuroepigenetics does not include mitochondrial epigenetics - a gap that we expect to close in the near future.

  5. Mitochondrial miRNA (MitomiR): a new player in cardiovascular health.

    Science.gov (United States)

    Srinivasan, Hemalatha; Das, Samarjit

    2015-10-01

    Cardiovascular disease is one of the major causes of human morbidity and mortality in the world. MicroRNAs (miRNAs) are small RNAs that regulate gene expression and are known to be involved in the pathogenesis of heart diseases, but the translocation phenomenon and the mode of action in mitochondria are largely unknown. Recent mitochondrial proteome analysis unveiled at least 2000 proteins, of which only 13 are made by the mitochondrial genome. There are numerous studies demonstrating the translocation of proteins into the mitochondria and also translocation of ribosomal RNA (viz., 5S rRNA) into mitochondria. Recent studies have suggested that miRNAs contain sequence elements that affect their subcellular localization, particularly nuclear localization. If there are sequence elements that direct miRNAs to the nucleus, it is also possible that similar sequence elements exist to direct miRNAs to the mitochondria. In this review we have summarized most of the miRNAs that have been shown to play an important role in mitochondrial function, either by regulating mitochondrial genes or by regulating nuclear genes that are known to influence mitochondrial function. While the focus of this review is cardiovascular diseases, we also illustrate the role of mitochondrial miRNA (MitomiR) in the initiation and progression of various diseases, including cardiovascular diseases, metabolic diseases, and cancer. Our goal here is to summarize the miRNAs that are localized to the mitochondrial fraction of cells, and how these miRNAs modulate cardiovascular health.

  6. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function

    Directory of Open Access Journals (Sweden)

    Abou-Rached Charbel

    2008-04-01

    Full Text Available Abstract Background StWhy1, a member of the plant-specific Whirly single-stranded DNA-binding protein family, was first characterized as a transcription factor involved in the activation of the nuclear PR-10a gene following defense-related stress in potato. In Arabidopsis thaliana, Whirlies have recently been shown to be primarily localized in organelles. Two representatives of the family, AtWhy1 and AtWhy3 are imported into plastids while AtWhy2 localizes to mitochondria. Their function in organelles is currently unknown. Results To understand the role of mitochondrial Whirlies in higher plants, we produced A. thaliana lines with altered expression of the atwhy2 gene. Organellar DNA immunoprecipitation experiments demonstrated that AtWhy2 binds to mitochondrial DNA. Overexpression of atwhy2 in plants perturbs mitochondrial function by causing a diminution in transcript levels and mtDNA content which translates into a low activity level of respiratory chain complexes containing mtDNA-encoded subunits. This lowered activity of mitochondria yielded plants that were reduced in size and had distorted leaves that exhibited accelerated senescence. Overexpression of atwhy2 also led to early accumulation of senescence marker transcripts in mature leaves. Inactivation of the atwhy2 gene did not affect plant development and had no detectable effect on mitochondrial morphology, activity of respiratory chain complexes, transcription or the amount of mtDNA present. This lack of phenotype upon abrogation of atwhy2 expression suggests the presence of functional homologues of the Whirlies or the activation of compensating mechanisms in mitochondria. Conclusion AtWhy2 is associated with mtDNA and its overexpression results in the production of dysfunctional mitochondria. This report constitutes the first evidence of a function for the Whirlies in organelles. We propose that they could play a role in the regulation of the gene expression machinery of organelles.

  7. LRPPRC is a mitochondrial matrix protein that is conserved in metazoans

    International Nuclear Information System (INIS)

    Sterky, Fredrik H.; Ruzzenente, Benedetta; Gustafsson, Claes M.; Samuelsson, Tore; Larsson, Nils-Goeran

    2010-01-01

    Research highlights: → LRPPRC orthologs are restricted to metazoans. → LRPPRC is imported to the mitochondrial matrix. → No evidence of nuclear isoform. -- Abstract: LRPPRC (also called LRP130) is an RNA-binding pentatricopeptide repeat protein. LRPPRC has been recognized as a mitochondrial protein, but has also been shown to regulate nuclear gene transcription and to bind specific RNA molecules in both the nucleus and the cytoplasm. We here present a bioinformatic analysis of the LRPPRC primary sequence, which reveals that orthologs to the LRPPRC gene are restricted to metazoan cells and that all of the corresponding proteins contain mitochondrial targeting signals. To address the subcellular localization further, we have carefully analyzed LRPPRC in mammalian cells and identified a single isoform that is exclusively localized to mitochondria. The LRPPRC protein is imported to the mitochondrial matrix and its mitochondrial targeting sequence is cleaved upon entry.

  8. Alkyladenine DNA glycosylase (AAG) localizes to mitochondria and interacts with mitochondrial single-stranded binding protein (mtSSB).

    Science.gov (United States)

    van Loon, Barbara; Samson, Leona D

    2013-03-01

    Due to a harsh environment mitochondrial genomes accumulate high levels of DNA damage, in particular oxidation, hydrolytic deamination, and alkylation adducts. While repair of alkylated bases in nuclear DNA has been explored in detail, much less is known about the repair of DNA alkylation damage in mitochondria. Alkyladenine DNA glycosylase (AAG) recognizes and removes numerous alkylated bases, but to date AAG has only been detected in the nucleus, even though mammalian mitochondria are known to repair DNA lesions that are specific substrates of AAG. Here we use immunofluorescence to show that AAG localizes to mitochondria, and we find that native AAG is present in purified human mitochondrial extracts, as well as that exposure to alkylating agent promotes AAG accumulation in the mitochondria. We identify mitochondrial single-stranded binding protein (mtSSB) as a novel interacting partner of AAG; interaction between mtSSB and AAG is direct and increases upon methyl methanesulfonate (MMS) treatment. The consequence of this interaction is specific inhibition of AAG glycosylase activity in the context of a single-stranded DNA (ssDNA), but not a double-stranded DNA (dsDNA) substrate. By inhibiting AAG-initiated processing of damaged bases, mtSSB potentially prevents formation of DNA breaks in ssDNA, ensuring that base removal primarily occurs in dsDNA. In summary, our findings suggest the existence of AAG-initiated BER in mitochondria and further support a role for mtSSB in DNA repair. Copyright © 2012. Published by Elsevier B.V.

  9. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential.

    Science.gov (United States)

    Chen, Ying-Bei; Aon, Miguel A; Hsu, Yi-Te; Soane, Lucian; Teng, Xinchen; McCaffery, J Michael; Cheng, Wen-Chih; Qi, Bing; Li, Hongmei; Alavian, Kambiz N; Dayhoff-Brannigan, Margaret; Zou, Shifa; Pineda, Fernando J; O'Rourke, Brian; Ko, Young H; Pedersen, Peter L; Kaczmarek, Leonard K; Jonas, Elizabeth A; Hardwick, J Marie

    2011-10-17

    Mammalian Bcl-x(L) protein localizes to the outer mitochondrial membrane, where it inhibits apoptosis by binding Bax and inhibiting Bax-induced outer membrane permeabilization. Contrary to expectation, we found by electron microscopy and biochemical approaches that endogenous Bcl-x(L) also localized to inner mitochondrial cristae. Two-photon microscopy of cultured neurons revealed large fluctuations in inner mitochondrial membrane potential when Bcl-x(L) was genetically deleted or pharmacologically inhibited, indicating increased total ion flux into and out of mitochondria. Computational, biochemical, and genetic evidence indicated that Bcl-x(L) reduces futile ion flux across the inner mitochondrial membrane to prevent a wasteful drain on cellular resources, thereby preventing an energetic crisis during stress. Given that F(1)F(O)-ATP synthase directly affects mitochondrial membrane potential and having identified the mitochondrial ATP synthase β subunit in a screen for Bcl-x(L)-binding partners, we tested and found that Bcl-x(L) failed to protect β subunit-deficient yeast. Thus, by bolstering mitochondrial energetic capacity, Bcl-x(L) may contribute importantly to cell survival independently of other Bcl-2 family proteins.

  10. Characterizing locally distinguishable orthogonal product states

    OpenAIRE

    Feng, Yuan; Shi, Yaoyun

    2007-01-01

    Bennett et al. \\cite{BDF+99} identified a set of orthogonal {\\em product} states in the $3\\otimes 3$ Hilbert space such that reliably distinguishing those states requires non-local quantum operations. While more examples have been found for this counter-intuitive ``nonlocality without entanglement'' phenomenon, a complete and computationally verifiable characterization for all such sets of states remains unknown. In this Letter, we give such a characterization for the $3\\otimes 3$ space.

  11. Characterization of mitochondrial thioredoxin reductase from C. elegans

    International Nuclear Information System (INIS)

    Lacey, Brian M.; Hondal, Robert J.

    2006-01-01

    Thioredoxin reductase catalyzes the NADPH-dependent reduction of the catalytic disulfide bond of thioredoxin. In mammals and other higher eukaryotes, thioredoxin reductases contain the rare amino acid selenocysteine at the active site. The mitochondrial enzyme from Caenorhabditis elegans, however, contains a cysteine residue in place of selenocysteine. The mitochondrial C. elegans thioredoxin reductase was cloned from an expressed sequence tag and then produced in Escherichia coli as an intein-fusion protein. The purified recombinant enzyme has a k cat of 610 min -1 and a K m of 610 μM using E. coli thioredoxin as substrate. The reported k cat is 25% of the k cat of the mammalian enzyme and is 43-fold higher than a cysteine mutant of mammalian thioredoxin reductase. The enzyme would reduce selenocysteine, but not hydrogen peroxide or insulin. The flanking glycine residues of the GCCG motif were mutated to serine. The mutants improved substrate binding, but decreased the catalytic rate

  12. Mitochondrial cAMP-PKA signaling: What do we really know?

    Science.gov (United States)

    Ould Amer, Yasmine; Hebert-Chatelain, Etienne

    2018-04-23

    Mitochondria are key organelles for cellular homeostasis. They generate the most part of ATP that is used by cells through oxidative phosphorylation. They also produce reactive oxygen species, neurotransmitters and other signaling molecules. They are important for calcium homeostasis and apoptosis. Considering the role of this organelle, it is not surprising that most mitochondrial dysfunctions are linked to the development of pathologies. Various mechanisms adjust mitochondrial activity according to physiological needs. The cAMP-PKA signaling emerged in recent years as a direct and powerful mean to regulate mitochondrial functions. Multiple evidence demonstrates that such pathway can be triggered from cytosol or directly within mitochondria. Notably, specific anchor proteins target PKA to mitochondria whereas enzymes necessary for generation and degradation of cAMP are found directly in these organelles. Mitochondrial PKA targets proteins localized in different compartments of mitochondria, and related to various functions. Alterations of mitochondrial cAMP-PKA signaling affect the development of several physiopathological conditions, including neurodegenerative diseases. It is however difficult to discriminate between the effects of cAMP-PKA signaling triggered from cytosol or directly in mitochondria. The specific roles of PKA localized in different mitochondrial compartments are also not completely understood. The aim of this work is to review the role of cAMP-PKA signaling in mitochondrial (patho)physiology. Copyright © 2018. Published by Elsevier B.V.

  13. Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Andersen, Kasper Røjkjær; Kjær, Karina Hansen

    2011-01-01

    . Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference...

  14. Neurodegenerative and Fatiguing Illnesses, Infections and Mitochondrial Dysfunction: Use of Natural Supplements to Improve Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Garth L. Nicolson

    2014-01-01

    Full Text Available Background: Many chronic diseases and illnesses are associated with one or more chronic infections, dysfunction of mitochondria and reduced production of ATP. This results in fatigue and other symptoms that occur in most if not all chronic conditions and diseases. Methods: This is a review of the published literature on chronic infections in neurodegenerative diseases and fatiguing illnesses that are also typified by mitochondrial dysfunction. This contribution also reviews the use of natural supplements to enhance mitochondrial function and reduce the effects of chronic infections to improve overall function in various chronic illnesses. Results: Mitochondrial function can be enhanced by the use of various natural supplements, notably Lipid Replacement Therapy (LRT using glyerolphospholipids and other mitochondrial supplements. In various chronic illnesses that are characterized by the presence of chronic infections, such as intracellular bacteria (Mycoplasma, Borrelia, Chlamydia and other infections and viruses, LRT has proven useful in multiple clinical trials. For example, in clinical studies on chronic fatigue syndrome, fibromyalgia syndrome and other chronic fatiguing illnesses where a large majority of patients have chronic infections, LRT significantly reduced fatigue by 35-43% in different clinical trials and increased mitochondrial function. In clinical trials on patients with multiple intracellular bacterial infections and intractable fatigue LRT plus other mitochondrial supplements significantly decreased fatigue and improved mood and cognition. Conclusions: LRT formulations designed to improve mitochondrial function appear to be useful as non-toxic dietary supplements for reducing fatigue and restoring mitochondrial and other cellular membrane functions in patients with chronic illnesses and multiple chronic infections.

  15. Lack of mitochondrial MutS homolog 1 in Toxoplasma gondii disrupts maintenance and fidelity of mitochondrial DNA and reveals metabolic plasticity.

    Directory of Open Access Journals (Sweden)

    Tamila Garbuz

    Full Text Available The importance of maintaining the fidelity of the mitochondrial genome is underscored by the presence of various repair pathways within this organelle. Presumably, the repair of mitochondrial DNA would be of particular importance in organisms that possess only a single mitochondrion, like the human pathogens Plasmodium falciparum and Toxoplasma gondii. Understanding the machinery that maintains mitochondrial DNA in these parasites is of particular relevance, as mitochondrial function is a validated and effective target for anti-parasitic drugs. We previously determined that the Toxoplasma MutS homolog TgMSH1 localizes to the mitochondrion. MutS homologs are key components of the nuclear mismatch repair system in mammalian cells, and both yeast and plants possess MutS homologs that localize to the mitochondria where they regulate DNA stability. Here we show that the lack of TgMSH1 results in accumulation of single nucleotide variations in mitochondrial DNA and a reduction in mitochondrial DNA content. Additionally, parasites lacking TgMSH1 function can survive treatment with the cytochrome b inhibitor atovaquone. While the Tgmsh1 knockout strain has several missense mutations in cytochrome b, none affect amino acids known to be determinants of atovaquone sensitivity and atovaquone is still able to inhibit electron transport in the Tgmsh1 mutants. Furthermore, culture of Tgmsh1 mutant in the presence atovaquone leads to parasites with enhanced atovaquone resistance and complete shutdown of respiration. Thus, parasites lacking TgMSH1 overcome the disruption of mitochondrial DNA by adapting their physiology allowing them to forgo the need for oxidative phosphorylation. Consistent with this idea, the Tgmsh1 mutant is resistant to mitochondrial inhibitors with diverse targets and exhibits reduced ability to grow in the absence of glucose. This work shows TgMSH1 as critical for the maintenance and fidelity of the mitochondrial DNA in Toxoplasma

  16. Targeting endoplasmic reticulum and/or mitochondrial Ca2+ fluxes as therapeutic strategy for HCV infection

    Science.gov (United States)

    Scrima, Rosella; Piccoli, Claudia; Moradpour, Darius; Capitanio, Nazzareno

    2018-03-01

    Chronic hepatitis C is characterized by metabolic disorders and by a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that can in the long term lead to liver cirrhosis and hepatocellular carcinoma. Several lines of evidence suggest that mitochondrial dysfunctions play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins also localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory and need to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems. In the past decade we have been proposing a temporal sequence of events in the HCV-infected cell whereby the primary alteration is localized at the mitochondria-associated ER membranes and causes release of Ca2+ from the ER, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen and nitrogen species and a progressive metabolic adaptive response consisting in decreased oxidative phosphorylation and enhanced aerobic glycolysis and lipogenesis. Here we resume the major results provided by our group in the context of HCV-mediated alterations of the cellular inter-compartmental calcium flux homeostasis and present new evidence suggesting targeting of ER and/or mitochondrial calcium transporters as a novel therapeutic strategy.

  17. Targeting Endoplasmic Reticulum and/or Mitochondrial Ca2+ Fluxes as Therapeutic Strategy for HCV Infection.

    Science.gov (United States)

    Scrima, Rosella; Piccoli, Claudia; Moradpour, Darius; Capitanio, Nazzareno

    2018-01-01

    Chronic hepatitis C is characterized by metabolic disorders and by a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that can in the long term lead to liver cirrhosis and hepatocellular carcinoma. Several lines of evidence suggest that mitochondrial dysfunctions play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins also localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory and need to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems. In the past decade we have been proposing a temporal sequence of events in the HCV-infected cell whereby the primary alteration is localized at the mitochondria-associated ER membranes and causes release of Ca 2+ from the ER, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen and nitrogen species and a progressive metabolic adaptive response consisting in decreased oxidative phosphorylation and enhanced aerobic glycolysis and lipogenesis. Here we resume the major results provided by our group in the context of HCV-mediated alterations of the cellular inter-compartmental calcium flux homeostasis and present new evidence suggesting targeting of ER and/or mitochondrial calcium transporters as a novel therapeutic strategy.

  18. The Mitochondrial Protein Atlas: A Database of Experimentally Verified Information on the Human Mitochondrial Proteome.

    Science.gov (United States)

    Godin, Noa; Eichler, Jerry

    2017-09-01

    Given its central role in various biological systems, as well as its involvement in numerous pathologies, the mitochondrion is one of the best-studied organelles. However, although the mitochondrial genome has been extensively investigated, protein-level information remains partial, and in many cases, hypothetical. The Mitochondrial Protein Atlas (MPA; URL: lifeserv.bgu.ac.il/wb/jeichler/MPA ) is a database that provides a complete, manually curated inventory of only experimentally validated human mitochondrial proteins. The MPA presently contains 911 unique protein entries, each of which is associated with at least one experimentally validated and referenced mitochondrial localization. The MPA also contains experimentally validated and referenced information defining function, structure, involvement in pathologies, interactions with other MPA proteins, as well as the method(s) of analysis used in each instance. Connections to relevant external data sources are offered for each entry, including links to NCBI Gene, PubMed, and Protein Data Bank. The MPA offers a prototype for other information sources that allow for a distinction between what has been confirmed and what remains to be verified experimentally.

  19. Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin.

    Science.gov (United States)

    Paradies, Giuseppe; Paradies, Valeria; Ruggiero, Francesca M; Petrosillo, Giuseppe

    2017-11-01

    Aging is a biological process characterized by progressive decline in physiological functions, increased oxidative stress, reduced capacity to respond to stresses, and increased risk of contracting age-associated disorders. Mitochondria are referred to as the powerhouse of the cell through their role in the oxidative phosphorylation to generate ATP. These organelles contribute to the aging process, mainly through impairment of electron transport chain activity, opening of the mitochondrial permeability transition pore and increased oxidative stress. These events lead to damage to proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid of the inner mitochondrial membrane, plays a pivotal role in several mitochondrial bioenergetic processes as well as in mitochondrial-dependent steps of apoptosis and in mitochondrial membrane stability and dynamics. Cardiolipin alterations are associated with mitochondrial bienergetics decline in multiple tissues in a variety of physiopathological conditions, as well as in the aging process. Melatonin, the major product of the pineal gland, is considered an effective protector of mitochondrial bioenergetic function. Melatonin preserves mitochondrial function by preventing cardiolipin oxidation and this may explain, at least in part, the protective role of this compound in mitochondrial physiopathology and aging. Here, mechanisms through which melatonin exerts its protective role against mitochondrial dysfunction associated with aging and age-associated disorders are discussed.

  20. Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy.

    Science.gov (United States)

    Ajroud-Driss, Senda; Fecto, Faisal; Ajroud, Kaouther; Lalani, Irfan; Calvo, Sarah E; Mootha, Vamsi K; Deng, Han-Xiang; Siddique, Nailah; Tahmoush, Albert J; Heiman-Patterson, Terry D; Siddique, Teepu

    2015-01-01

    Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or nuclear genome. Only 5% of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of the previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established chromosome 22 open reading frame 16 (C22orf16) (later designated as CHCHD10) as the only high-scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double-missense mutation (R15S and G58R) in cis in CHCHD10 which encodes a coiled coil-helix-coiled coil-helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1,481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that the expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria.

  1. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNAVal mutation

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Kacem, Maha; Mkaouar-Rebai, Emna; Hadj Salem, Ikhlass; Kallel, Nozha; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We report a young Tunisian patient with clinical features of MELAS syndrome. → Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. → We described a novel m.1640A>G mutation in the tRNA Val gene which was absent in 150 controls. → Mitochondrial deletions and POLG1 gene mutations were absent. → The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA Val . This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  2. Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission.

    Science.gov (United States)

    Tsushima, Kensuke; Bugger, Heiko; Wende, Adam R; Soto, Jamie; Jenson, Gregory A; Tor, Austin R; McGlauflin, Rose; Kenny, Helena C; Zhang, Yuan; Souvenir, Rhonda; Hu, Xiao X; Sloan, Crystal L; Pereira, Renata O; Lira, Vitor A; Spitzer, Kenneth W; Sharp, Terry L; Shoghi, Kooresh I; Sparagna, Genevieve C; Rog-Zielinska, Eva A; Kohl, Peter; Khalimonchuk, Oleh; Schaffer, Jean E; Abel, E Dale

    2018-01-05

    Cardiac lipotoxicity, characterized by increased uptake, oxidation, and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes mellitus. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. Using a transgenic mouse model of cardiac lipotoxicity overexpressing ACSL1 (long-chain acyl-CoA synthetase 1) in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate-treated neonatal rat ventricular cardiomyocytes. Palmitate exposure to neonatal rat ventricular cardiomyocytes initially activates mitochondrial respiration, coupled with increased mitochondrial polarization and ATP synthesis. However, long-term exposure to palmitate (>8 hours) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of AKAP121 (A-kinase anchor protein 121) leading to reduced phosphorylation of DRP1 (dynamin-related protein 1) at Ser637 and altered proteolytic processing of OPA1 (optic atrophy 1). Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a

  3. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  4. Mitochondrial-nuclear genome interactions in nonalcoholic fatty liver disease in mice

    OpenAIRE

    Betancourt, Angela M.; King, Adrienne L.; Fetterman, Jessica L.; Millender-Swain, Telisha; Finley, Rachel D.; Oliva, Claudia R.; Crowe, David Ralph; Ballinger, Scott W.; Bailey, Shannon M.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation, and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. Herein, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, Mitochondrial-Nuclear eXchange (MNX) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6...

  5. Mitochondrial Disease

    OpenAIRE

    Bulent Kurt; Turgut Topal

    2013-01-01

    Mitochondria are the major energy source of cells. Mitochondrial disease occurs due to a defect in mitochondrial energy production. A valuable energy production in mitochondria depend a healthy interconnection between nuclear and mitochondrial DNA. A mutation in nuclear or mitochondrial DNA may cause abnormalities in ATP production and single or multiple organ dysfunctions, secondarily. In this review, we summarize mitochondrial physiology, mitochondrial genetics, and clinical expression and ...

  6. Ubiquitination of specific mitochondrial matrix proteins

    International Nuclear Information System (INIS)

    Lehmann, Gilad; Ziv, Tamar; Braten, Ori; Admon, Arie; Udasin, Ronald G.; Ciechanover, Aaron

    2016-01-01

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  7. Ubiquitination of specific mitochondrial matrix proteins

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, Gilad [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ziv, Tamar [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Braten, Ori [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Admon, Arie [The Smoler Proteomics Center, Faculty of Biology – Technion-Israel Institute of Technology, Haifa, 32000 (Israel); Udasin, Ronald G. [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel); Ciechanover, Aaron, E-mail: aaroncie@tx.technion.ac.il [The Janet and David Polak Tumor and Vascular Biology Research Center and the Technion Integrated Cancer Center (TICC), The Rappaport Faculty of Medicine and Research Institute, Haifa, 31096 (Israel)

    2016-06-17

    Several protein quality control systems in bacteria and/or mitochondrial matrix from lower eukaryotes are absent in higher eukaryotes. These are transfer-messenger RNA (tmRNA), The N-end rule ATP-dependent protease ClpAP, and two more ATP-dependent proteases, HslUV and ClpXP (in yeast). The lost proteases resemble the 26S proteasome and the role of tmRNA and the N-end rule in eukaryotic cytosol is performed by the ubiquitin proteasome system (UPS). Therefore, we hypothesized that the UPS might have substituted these systems – at least partially – in the mitochondrial matrix of higher eukaryotes. Using three independent experimental approaches, we demonstrated the presence of ubiquitinated proteins in the matrix of isolated yeast mitochondria. First, we show that isolated mitochondria contain ubiquitin (Ub) conjugates, which remained intact after trypsin digestion. Second, we demonstrate that the mitochondrial soluble fraction contains Ub-conjugates, several of which were identified by mass spectrometry and are localized to the matrix. Third, using immunoaffinity enrichment by specific antibodies recognizing digested ubiquitinated peptides, we identified a group of Ub-modified matrix proteins. The modification was further substantiated by separation on SDS-PAGE and immunoblots. Last, we attempted to identify the ubiquitin ligase(s) involved, and identified Dma1p as a trypsin-resistant protein in our mitochondrial preparations. Taken together, these data suggest a yet undefined role for the UPS in regulation of the mitochondrial matrix proteins. -- Highlights: •Mitochondrial matrix contains ubiquitinated proteins. •Ubiquitination occurs most probably in the matrix. •Dma1p is a ubiquitin ligase present in mitochondrial preparations.

  8. Characterization of apoptosis-related oxidoreductases from Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Patrícia Carneiro

    Full Text Available The genome from Neurospora crassa presented three open reading frames homologous to the genes coding for human AIF and AMID proteins, which are flavoproteins with oxidoreductase activities implicated in caspase-independent apoptosis. To investigate the role of these proteins, namely within the mitochondrial respiratory chain, we studied their cellular localization and characterized the respective null mutant strains. Efficiency of the respiratory chain was analyzed by oxygen consumption studies and supramolecular organization of the OXPHOS system was assessed through BN-PAGE analysis in the respective null mutant strains. The results demonstrate that, unlike in mammalian systems, disruption of AIF in Neurospora does not affect either complex I assembly or function. Furthermore, the mitochondrial respiratory chain complexes of the mutant strains display a similar supramolecular organization to that observed in the wild type strain. Further characterization revealed that N. crassa AIF appears localized to both the mitochondria and the cytoplasm, whereas AMID was found exclusively in the cytoplasm. AMID2 was detected in both mitochondria and cytoplasm of the amid mutant strain, but was barely discernible in wild type extracts, suggesting overlapping functions for the two proteins.

  9. Evidence of proteolipid domain formation in an inner mitochondrial membrane mimicking model

    DEFF Research Database (Denmark)

    Cheniour, Mouhedine; Brewer, Jonathan R.; Bagatolli, Luis

    2017-01-01

    Background Mitochondrial creatine kinase (mtCK) is highly abundant in mitochondria; its quantity is equimolecular to the Adenylic Nucleotide Translocator and represents 1% of the mitochondrial proteins. It is a multitask protein localized in the mitochondria intermembrane space where it binds...

  10. Nuclear-Encoded Mitochondrial mRNAs: A Powerful Force in Axonal Growth and Development.

    Science.gov (United States)

    Gale, Jenna R; Aschrafi, Armaz; Gioio, Anthony E; Kaplan, Barry B

    2018-04-01

    Axons, their growth cones, and synaptic nerve terminals are neuronal subcompartments that have high energetic needs. As such, they are enriched in mitochondria, which supply the ATP necessary to meet these demands. To date, a heterogeneous population of nuclear-encoded mitochondrial mRNAs has been identified in distal axons and growth cones. Accumulating evidence suggests that the local translation of these mRNAs is required for mitochondrial maintenance and axonal viability. Here, we review evidence that suggests a critical role for axonal translation of nuclear-encoded mitochondrial mRNAs in axonal growth and development. Additionally, we explore the role that site-specific translation at the mitochondria itself may play in this process. Finally, we briefly review the clinical implications of dysregulation of local translation of mitochondrial-related mRNAs in neurodevelopmental disorders.

  11. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S.; Maubaret, Cecilia; Pedersen-bjergaard, Ulrik

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P 

  12. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S.; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P 

  13. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    Science.gov (United States)

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Characterization of canine mitochondrial protein expression in natural and induced forms of idiopathic dilated cardiomyopathy.

    Science.gov (United States)

    Lopes, Rosana; Solter, Philip F; Sisson, D David; Oyama, Mark A; Prosek, Robert

    2006-06-01

    To map canine mitochondrial proteins and identify qualitative and quantitative differences in heart mitochondrial protein expression between healthy dogs and dogs with naturally occurring and induced dilated cardiomyopathy (DCM). Left ventricle samples were obtained from 7 healthy dogs, 7 Doberman Pinschers with naturally occurring DCM, and 7 dogs with induced DCM. Fresh and frozen mitochondrial fractions were isolated from the left ventricular free wall and analyzed by 2-dimensional electrophoresis. Protein spots that increased or decreased in density by >or= 2-fold between groups were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometry. Within narrow pH gradients of control canine heart mitochondrial samples, a total of 1,528 protein spots were revealed. Forty subunits of heart mitochondrial proteins that differ significantly from control tissues were altered in tissue specimens from dogs with naturally occurring and induced forms of DCM. The most affected heart mitochondrial proteins in both groups were those of oxidative phosphorylation (55%). Upregulation of manganese superoxide dismutase was suggestive of heart oxidative injury in tissue specimens from dogs with both forms of DCM. Evidence of apoptosis was associated with overexpression of the heart mitochondrial voltage-dependent anion channel-2 protein and endonuclease G in tissue specimens from dogs with induced DCM. Alterations of heart mitochondrial proteins related to oxidative phosphorylation dysfunction were more prevalent in tissue specimens from dogs with induced or naturally occurring DCM, compared with those of control dogs.

  15. The Drosophila mitochondrial translation elongation factor G1 contains a nuclear localization signal and inhibits growth and DPP signaling.

    Science.gov (United States)

    Trivigno, Catherine; Haerry, Theodor E

    2011-02-25

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low.

  16. A unique DNA found in post-mitochondrial fraction from Ehrlich ascites tumor cells

    International Nuclear Information System (INIS)

    Guimaraes, R.C.; Bloch, D.P.

    1982-01-01

    A DNA found in post-mitochondrial fractions from Ehrlich ascites cells, comprising 0.2% of the total cellular DNA, is partially characterized. It appears in cytoplasmic homogenates as a 14.6 S molecule, and is eluted from hydroxyapatite with 0.24 M sodium phosphate buffer. Its Cs 2 SO 4 buoyant density is lower than Erlich ascites tumor nuclear DNA and it has low dG+dC content, as determined by chromatography of hydrolysates of 32 P-labelled DNA. It is enriched in sequences which reassociate rapidly in the presence of excess nuclear DNA. It can be used as promoter for DNA synthesis by an endogenous DNA-dependent DNA polymerase found in association with the post-mitochondrial preparations. It is found to be associated with newly incorporated radioactivity following incubation in vitro with labelled UTP. Its localization in situ has not yet been attempled. It is thought to represent viral A-type particle associated, or plasma membrane associated DNA. (author) [pt

  17. [MELAS: Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes].

    Science.gov (United States)

    Murakami, Hidetomo; Ono, Kenjiro

    2017-02-01

    Mitochondrial disease is caused by a deficiency in the energy supply to cells due to mitochondrial dysfunction. Mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) is a mitochondrial disease that presents with stroke-like episodes such as acute onset of neurological deficits and characteristic imaging findings. Stroke-like episodes in MELAS have the following features: 1) neurological deficits due to localization of lesions in the brain, 2) episodes often accompany epilepsy, 3) lesions do not follow the vascular supply area, 4) lesions are more often seen in the posterior brain than in the anterior brain, 5) lesions spread to an adjacent area in the brain, and 6) neurological symptoms often disappear together with imaging findings, but later relapse. About 80% of patients with MELAS have an A-to-G transition mutation at the nucleotide pair 3243 in the dihydrouridine loop of mitochondrial tRNALeu(UUR), which causes the absence of posttranscriptional taurine modification at the wobble nucleotide of mitochondrial tRNALeu(UUR) and disrupts protein synthesis. However, the precise pathophysiology of stroke-like episodes is under investigation, with possible hypotheses for these episodes including mitochondrial angiopathy, mitochondrial cytopathy, and neuron-astrocyte uncoupling. With regard to treatment, L-arginine and taurine have recently been suggested for relief of clinical symptoms.

  18. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior. This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.

  19. Mitochondrial-targeted aryl hydrocarbon receptor and the impact of 2,3,7,8-tetrachlorodibenzo-p-dioxin on cellular respiration and the mitochondrial proteome

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Hye Jin [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States); Dornbos, Peter [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319 (United States); Steidemann, Michelle [Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319 (United States); Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824 (United States); Dunivin, Taylor K. [Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824 (United States); Rizzo, Mike [Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319 (United States); Cell and Molecular Biology Graduate Program, Michigan State University, East Lansing, MI 48824 (United States); LaPres, John J., E-mail: lapres@msu.edu [Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 (United States); Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824 (United States)

    2016-08-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor within the Per-Arnt-Sim (PAS) domain superfamily. Exposure to the most potent AHR ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), is associated with various pathological effects including metabolic syndrome. While research over the last several years has demonstrated a role for oxidative stress and metabolic dysfunction in AHR-dependent TCDD-induced toxicity, the role of the mitochondria in this process has not been fully explored. Our previous research suggested that a portion of the cellular pool of AHR could be found in the mitochondria (mitoAHR). Using a protease protection assay with digitonin extraction, we have now shown that this mitoAHR is localized to the inter-membrane space (IMS) of the organelle. TCDD exposure induced a degradation of mitoAHR similar to that of cytosolic AHR. Furthermore, siRNA-mediated knockdown revealed that translocase of outer-mitochondrial membrane 20 (TOMM20) was involved in the import of AHR into the mitochondria. In addition, TCDD altered cellular respiration in an AHR-dependent manner to maintain respiratory efficiency as measured by oxygen consumption rate (OCR). Stable isotope labeling by amino acids in cell culture (SILAC) identified a battery of proteins within the mitochondrial proteome influenced by TCDD in an AHR-dependent manner. Among these, 17 proteins with fold changes ≥ 2 are associated with various metabolic pathways, suggesting a role of mitochondrial retrograde signaling in TCDD-mediated pathologies. Collectively, these studies suggest that mitoAHR is localized to the IMS and AHR-dependent TCDD-induced toxicity, including metabolic dysfunction, wasting syndrome, and hepatic steatosis, involves mitochondrial dysfunction. - Highlights: • The mitoAHR is localized in the mitochondrial intermembrane space. • TOMM20 participates in mitoAHR translocation. • AHR contributes to the maintenance of respiratory control ratio following

  20. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: panderson@rics.bwh.harvard.edu [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  1. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    International Nuclear Information System (INIS)

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy; Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A.; Rhee, Kirsten; Tisdale, Sarah; Danial, Nika; Benarafa, Charaf; Orduna, Anonio; Anderson, Paul

    2010-01-01

    Research highlights: → Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. → The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. → Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  2. A whole mitochondrial genome screening in a MELAS patient: A novel mitochondrial tRNA{sup Val} mutation

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Kacem, Maha [Service de Medecine interne, C.H.U. Fattouma Bourguiba de Monastir (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Hadj Salem, Ikhlass [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha; Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-04-22

    Highlights: {yields} We report a young Tunisian patient with clinical features of MELAS syndrome. {yields} Reported mitochondrial mutations were absent after a mutational screening of the whole mtDNA. {yields} We described a novel m.1640A>G mutation in the tRNA{sup Val} gene which was absent in 150 controls. {yields} Mitochondrial deletions and POLG1 gene mutations were absent. {yields} The m.1640A>G mutation could be associated to MELAS syndrome. -- Abstract: Mitochondrial encephalopathy, lactic acidosis and strokelike episodes (MELAS) syndrome is a mitochondrial disorder characterized by a wide variety of clinical presentations and a multisystemic organ involvement. In this study, we report a Tunisian girl with clinical features of MELAS syndrome who was negative for the common m.3243A>G mutation, but also for the reported mitochondrial DNA (mtDNA) mutations and deletions. Screening of the entire mtDNA genome showed several known mitochondrial variants besides to a novel transition m.1640A>G affecting a wobble adenine in the anticodon stem region of the tRNA{sup Val}. This nucleotide was conserved and it was absent in 150 controls suggesting its pathogenicity. In addition, no mutations were found in the nuclear polymerase gamma-1 gene (POLG1). These results suggest further investigation nuclear genes encoding proteins responsible for stability and structural components of the mtDNA or to the oxidative phosphorylation machinery to explain the phenotypic variability in the studied family.

  3. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging

    Directory of Open Access Journals (Sweden)

    Lisa Staunton

    2011-01-01

    Full Text Available Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  4. Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria.

    Science.gov (United States)

    Ferramosca, Alessandra; Zara, Vincenzo

    2013-03-01

    Mitochondrial metabolite carriers are hydrophobic proteins which catalyze the flux of several charged or hydrophilic substrates across the inner membrane of mitochondria. These proteins, like most mitochondrial proteins, are nuclear encoded and after their synthesis in the cytosol are transported into the inner mitochondrial membrane. Most metabolite carriers, differently from other nuclear encoded mitochondrial proteins, are synthesized without a cleavable presequence and contain several, poorly characterized, internal targeting signals. However, an interesting aspect is the presence of a positively charged N-terminal presequence in a limited number of mitochondrial metabolite carriers. Over the last few years the molecular mechanisms of import of metabolite carrier proteins into mitochondria have been thoroughly investigated. This review summarizes the present knowledge and discusses recent advances on the import and sorting of mitochondrial metabolite carriers. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. GTP-binding-defective ARL4D alters mitochondrial morphology and membrane potential.

    Directory of Open Access Journals (Sweden)

    Chun-Chun Li

    Full Text Available ARL4D, ARL4A, and ARL4C are closely related members of the ADP-ribosylation factor/ARF-like protein (ARF/ARL family of GTPases. All three ARL4 proteins contain nuclear localization signals (NLSs at their C-termini and are primarily found at the plasma membrane, but they are also present in the nucleus and cytoplasm. ARF function and localization depends on their controlled binding and hydrolysis of GTP. Here we show that GTP-binding-defective ARL4D is targeted to the mitochondria, where it affects mitochondrial morphology and function. We found that a portion of endogenous ARL4D and the GTP-binding-defective ARL4D mutant ARL4D(T35N reside in the mitochondria. The N-terminal myristoylation of ARL4D(T35N was required for its localization to mitochondria. The localization of ARL4D(T35N to the mitochondria reduced the mitochondrial membrane potential (ΔΨm and caused mitochondrial fragmentation. Furthermore, the C-terminal NLS region of ARL4D(T35N was required for its effect on the mitochondria. This study is the first to demonstrate that the dysfunctional GTP-binding-defective ARL4D is targeted to mitochondria, where it subsequently alters mitochondrial morphology and membrane potential.

  6. Mitochondrial haplogroup H1 in north Africa: an early holocene arrival from Iberia.

    Directory of Open Access Journals (Sweden)

    Claudio Ottoni

    Full Text Available The Tuareg of the Fezzan region (Libya are characterized by an extremely high frequency (61% of haplogroup H1, a mitochondrial DNA (mtDNA haplogroup that is common in all Western European populations. To define how and when H1 spread from Europe to North Africa up to the Central Sahara, in Fezzan, we investigated the complete mitochondrial genomes of eleven Libyan Tuareg belonging to H1. Coalescence time estimates suggest an arrival of the European H1 mtDNAs at about 8,000-9,000 years ago, while phylogenetic analyses reveal three novel H1 branches, termed H1v, H1w and H1x, which appear to be specific for North African populations, but whose frequencies can be extremely different even in relatively close Tuareg villages. Overall, these findings support the scenario of an arrival of haplogroup H1 in North Africa from Iberia at the beginning of the Holocene, as a consequence of the improvement in climate conditions after the Younger Dryas cold snap, followed by in situ formation of local H1 sub-haplogroups. This process of autochthonous differentiation continues in the Libyan Tuareg who, probably due to isolation and recent founder events, are characterized by village-specific maternal mtDNA lineages.

  7. TSA protects H9c2 cells against thapsigargin-induced apoptosis related to endoplasmic reticulum stress-mediated mitochondrial injury.

    Science.gov (United States)

    Li, Zhiping; Liu, Yan; Dai, Xinlun; Zhou, Qiangqiang; Liu, Xueli; Li, Zeyu; Chen, Xia

    2017-05-01

    Endoplasmic reticulum stress (ERS) activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. Recently, TSA has shown protective effects on ERS and its mechanisms related to ER pathway has been previously characterized. However, whether TSA exerts its protective role via metabolic events remain largely undefined. Objectives : To explore the possible involvement of the metabolic changes during ERS and to better understand how TSA influence mitochondrial function to facilitate cellular adaptation. Results : TSA is an inhibitor of histone deacetylase which could significantly inhibit H9c2 cell apoptosis induced by Thapsigargin (TG). It also intervene the decrease of mitochondrial membrane potential. By immunofluorescence staining, we have shown that GRP78 was concentrated in the perinuclear region and co-localized with ER. However, treatments with TG and TSA could let it overlap with the mitochondrial marker MitoTracker. Cellular fractionation also confirmed the location of GRP78 in mitochondrion. TSA decreases ERS-induced cell apoptosis and mitochondrial injury may related to enhance the location of GRP78 in mitochondrion.

  8. Loss of Dendritic Complexity Precedes Neurodegeneration in a Mouse Model with Disrupted Mitochondrial Distribution in Mature Dendrites

    Directory of Open Access Journals (Sweden)

    Guillermo López-Doménech

    2016-10-01

    Full Text Available Correct mitochondrial distribution is critical for satisfying local energy demands and calcium buffering requirements and supporting key cellular processes. The mitochondrially targeted proteins Miro1 and Miro2 are important components of the mitochondrial transport machinery, but their specific roles in neuronal development, maintenance, and survival remain poorly understood. Using mouse knockout strategies, we demonstrate that Miro1, as opposed to Miro2, is the primary regulator of mitochondrial transport in both axons and dendrites. Miro1 deletion leads to depletion of mitochondria from distal dendrites but not axons, accompanied by a marked reduction in dendritic complexity. Disrupting postnatal mitochondrial distribution in vivo by deleting Miro1 in mature neurons causes a progressive loss of distal dendrites and compromises neuronal survival. Thus, the local availability of mitochondrial mass is critical for generating and sustaining dendritic arbors, and disruption of mitochondrial distribution in mature neurons is associated with neurodegeneration.

  9. Complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus).

    Science.gov (United States)

    Li, Linmiao; Li, Min; Wu, Zhengjun; Chen, Jinping

    2015-01-01

    We have characterized the complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus) and described its organization in this study. The total length of C. sphinx complete mitochondrial genome was 16,895 bp with the base composition of 32.54% A, 14.05% G, 25.82% T and 27.59% C. The complete mitochondrial genome included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA) and 1 control region (D-loop). The control region was 1435 bp long with the sequence CATACG repeat 64 times. Three protein-coding genes (ND1, COI and ND4) were ended with incomplete stop codon TA or T.

  10. Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes

    International Nuclear Information System (INIS)

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa; Peterson, Darrell L.; Berrueta, Lisbeth; Salmen, Siham

    2016-01-01

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. - Highlights: • The expression and subcellular distribution of Foxp3, is modulated by PMA and preS1/2. • PMA and preS1/2 increase Foxp3 expression on HepG2. • PMA and preS1/2 induce foxp3 enrichment at mitochondrial, microsomal and nuclear compartments. • Results suggest a non-canonical function of Foxp3 or a mitochondrial transcriptional activity.

  11. Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa [Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Peterson, Darrell L. [Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA (United States); Berrueta, Lisbeth, E-mail: lberruet@ula.ve [Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Division of Preventive Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Salmen, Siham, E-mail: sihamsa@ula.ve [Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of)

    2016-05-01

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. - Highlights: • The expression and subcellular distribution of Foxp3, is modulated by PMA and preS1/2. • PMA and preS1/2 increase Foxp3 expression on HepG2. • PMA and preS1/2 induce foxp3 enrichment at mitochondrial, microsomal and nuclear compartments. • Results suggest a non-canonical function of Foxp3 or a mitochondrial transcriptional activity.

  12. Characterization of PHB1 and its role in mitochondrial maturation and yolk platelet degradation during development of Artemia embryos.

    Directory of Open Access Journals (Sweden)

    Xiang Ye

    Full Text Available BACKGROUND: To cope with harsh environments, crustaceans such as Artemia produce diapause gastrula embryos (cysts with suppressed metabolism. Metabolism and development resume during post-diapause development, but the mechanism behind these cellular events remains largely unknown. PRINCIPAL FINDING: Our study investigated the role of prohibitin 1 (PHB1 in metabolic reinitiation during post-diapause development. We found that PHB1 was developmentally regulated via changes in phosphorylation status and localization. Results from RNA interference experiments demonstrated PHB1 to be critical for mitochondrial maturation and yolk degradation during development. In addition, PHB1 was present in yolk platelets, and it underwent ubiquitin-mediated degradation during the proteolysis of yolk protein. CONCLUSIONS/SIGNIFICANCE: PHB1 has an indispensable role in coordinating mitochondrial maturation and yolk platelet degradation during development in Artemia. This novel function of PHB1 provides new clues to comprehend the roles of PHB1 in metabolism and development.

  13. Mitochondrial myopathies.

    Science.gov (United States)

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  14. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  15. Involvement of the mitochondrial compartment in human NCL fibroblasts

    International Nuclear Information System (INIS)

    Pezzini, Francesco; Gismondi, Floriana; Tessa, Alessandra; Tonin, Paola; Carrozzo, Rosalba; Mole, Sara E.; Santorelli, Filippo M.; Simonati, Alessandro

    2011-01-01

    Highlights: ► Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. ► Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. ► Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  16. Bcl-xL knockout attenuates mitochondrial respiration and causes oxidative stress that is compensated by pentose phosphate pathway activity

    NARCIS (Netherlands)

    Pfeiffer, Annika; Schneider, Julia; Bueno, Diones; Dolga, Amalia; Voss, Timo-Daniel; Lewerenz, Jan; Wüllner, Verena; Methner, Axel

    2017-01-01

    Bcl-xL is an anti-apoptotic protein that localizes to the outer mitochondrial membrane and influences mitochondrial bioenergetics by controlling Ca2+ influx into mitochondria. Here, we analyzed the effect of mitochondrial Bcl-xL on mitochondrial shape and function in knockout (KO), wild type and

  17. The Drosophila mitochondrial translation elongation factor G1 contains a nuclear localization signal and inhibits growth and DPP signaling.

    Directory of Open Access Journals (Sweden)

    Catherine Trivigno

    2011-02-01

    Full Text Available Mutations in the human mitochondrial elongation factor G1 (EF-G1 are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico, which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low.

  18. "Stiff neonate" with mitochondrial DNA depletion and secondary neurotransmitter defects.

    LENUS (Irish Health Repository)

    Moran, Margaret M

    2011-12-01

    Mitochondrial disorders comprise a heterogenous group. A neonate who presented with episodes of severe truncal hypertonia and apnea progressed to a hypokinetic rigid syndrome characterized by hypokinesia, tremulousness, profound head lag, absent suck and gag reflexes, brisk deep tendon reflexes, ankle and jaw clonus, and evidence of autonomic dysfunction. Analysis of cerebrospinal fluid neurotransmitters from age 7 weeks demonstrated low levels of amine metabolites (homovanillic acid and 5-hydroxyindoleacetic acid), tetrahydrobiopterin, and pyridoxal phosphate. Mitochondrial DNA quantitative studies on muscle homogenate demonstrated a mitochondrial DNA depletion disorder. Respiratory chain enzymology demonstrated decreased complex IV activity. Screening for mitochondrial DNA rearrangement disorders and sequencing relevant mitochondrial genes produced negative results. No clinical or biochemical response to treatment with pyridoxal phosphate, tetrahydrobiopterin, or l-dopa occurred. The clinical course was progressive, and the patient died at age 19 months. Mitochondrial disorders causing secondary neurotransmitter diseases are usually severe, but are rarely reported. This diagnosis should be considered in neonates or infants who present with hypertonia, hypokinesia rigidity, and progressive neurodegeneration.

  19. Mitochondrial oxidative stress causes hyperphosphorylation of tau.

    Directory of Open Access Journals (Sweden)

    Simon Melov

    2007-06-01

    Full Text Available Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimer's disease (AD: tau phosphorylation, and beta-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2 die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576 with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Ass load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

  20. Mitochondrial cardiomyopathies

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab

    2016-07-01

    Full Text Available Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA while more than 99% of them are encoded by nuclear DNA (nDNA. Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs of various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular noncompaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain (ETC complexes subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal proteins, and translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  1. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Lee J. Martin

    2010-03-01

    Full Text Available Alzheimer’s disease (AD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.

  2. Complete mitochondrial DNA sequences of the Victoria tilapia (Oreochromis variabilis) and Redbelly Tilapia (Tilapia zilli): genome characterization and phylogeny analysis.

    Science.gov (United States)

    Kinaro, Zachary Omambia; Xue, Liangyi; Volatiana, Josies Ancella

    2016-07-01

    The Cichlid fishes have played an important role in evolutionary biology, population studies and aquaculture industry with East African species representing a model suited for studying adaptive radiation and speciation for cichlid genome projects in which closely related genomes are fast emerging presenting questions on phenotype-genotype relations. The complete mitochondrial genomes presented here are for two closely related but eco-morphologically distinct Lake Victoria basin cichlids, Oreochromis variabilis, an endangered native species and Tilapia zilli, an invasive species, both of which are important economic fishes in local areas. The complete mitochondrial genomes determined for O. variabilis and T. zilli are 16 626 and 16,619 bp, respectively. Both the mitogenomes contain 13 protein-coding genes, 22 tRNAs, 2 rRNAs and a non-coding control region, which are typical of vertebrate mitogenomes. Phylogenetic analyses of the two species revealed that though both lie within family Cichlidae, they are remotely related.

  3. Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore

    Science.gov (United States)

    Brian J. Knaus; Richard Cronn; Aaron Liston; Kristine Pilgrim; Michael K. Schwartz

    2011-01-01

    Science-based wildlife management relies on genetic information to infer population connectivity and identify conservation units. The most commonly used genetic marker for characterizing animal biodiversity and identifying maternal lineages is the mitochondrial genome. Mitochondrial genotyping figures prominently in conservation and management plans, with much of the...

  4. Evidence for site-specific occupancy of the mitochondrial genome by nuclear transcription factors.

    Directory of Open Access Journals (Sweden)

    Georgi K Marinov

    Full Text Available Mitochondria contain their own circular genome, with mitochondria-specific transcription and replication systems and corresponding regulatory proteins. All of these proteins are encoded in the nuclear genome and are post-translationally imported into mitochondria. In addition, several nuclear transcription factors have been reported to act in mitochondria, but there has been no comprehensive mapping of their occupancy patterns and it is not clear how many other factors may also be found in mitochondria. Here we address these questions by using ChIP-seq data from the ENCODE, mouseENCODE and modENCODE consortia for 151 human, 31 mouse and 35 C. elegans factors. We identified 8 human and 3 mouse transcription factors with strong localized enrichment over the mitochondrial genome that was usually associated with the corresponding recognition sequence motif. Notably, these sites of occupancy are often the sites with highest ChIP-seq signal intensity within both the nuclear and mitochondrial genomes and are thus best explained as true binding events to mitochondrial DNA, which exist in high copy number in each cell. We corroborated these findings by immunocytochemical staining evidence for mitochondrial localization. However, we were unable to find clear evidence for mitochondrial binding in ENCODE and other publicly available ChIP-seq data for most factors previously reported to localize there. As the first global analysis of nuclear transcription factors binding in mitochondria, this work opens the door to future studies that probe the functional significance of the phenomenon.

  5. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    Science.gov (United States)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  6. Mechanism of neuroprotective mitochondrial remodeling by PKA/AKAP1.

    Directory of Open Access Journals (Sweden)

    Ronald A Merrill

    2011-04-01

    Full Text Available Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM targeted form of the protein kinase A (PKA catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1 as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1, inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.

  7. MoDnm1 Dynamin Mediating Peroxisomal and Mitochondrial Fission in Complex with MoFis1 and MoMdv1 Is Important for Development of Functional Appressorium in Magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Kaili Zhong

    2016-08-01

    Full Text Available Dynamins are large superfamily GTPase proteins that are involved in various cellular processes including budding of transport vesicles, division of organelles, cytokinesis, and pathogen resistance. Here, we characterized several dynamin-related proteins from the rice blast fungus Magnaporthe oryzae and found that MoDnm1 is required for normal functions, including vegetative growth, conidiogenesis, and full pathogenicity. In addition, we found that MoDnm1 co-localizes with peroxisomes and mitochondria, which is consistent with the conserved role of dynamin proteins. Importantly, MoDnm1-dependent peroxisomal and mitochondrial fission involves functions of mitochondrial fission protein MoFis1 and WD-40 repeat protein MoMdv1. These two proteins display similar cellular functions and subcellular localizations as MoDnm1, and are also required for full pathogenicity. Further studies showed that MoDnm1, MoFis1 and MoMdv1 are in complex to regulate not only peroxisomal and mitochondrial fission, pexophagy and mitophagy progression, but also appressorium function and host penetration. In summary, our studies provide new insights into how MoDnm1 interacts with its partner proteins to mediate peroxisomal and mitochondrial functions and how such regulatory events may link to differentiation and pathogenicity in the rice blast fungus.

  8. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  9. Congenital sideroblastic anemia due to mutations in the mitochondrial HSP70 homologue HSPA9

    DEFF Research Database (Denmark)

    Schmitz-Abe, Klaus; Ciesielski, Szymon J.; Schmidt, Paul J.

    2015-01-01

    The congenital sideroblastic anemias (CSAs) are relatively uncommon diseases characterized by defects in mitochondrial heme synthesis, iron-sulfur (Fe-S) cluster biogenesis, or protein synthesis. Here we demonstrate that mutations in HSPA9, a mitochondrial HSP70 homolog located in the chromosome 5q...

  10. Efficient iris recognition by characterizing key local variations.

    Science.gov (United States)

    Ma, Li; Tan, Tieniu; Wang, Yunhong; Zhang, Dexin

    2004-06-01

    Unlike other biometrics such as fingerprints and face, the distinct aspect of iris comes from randomly distributed features. This leads to its high reliability for personal identification, and at the same time, the difficulty in effectively representing such details in an image. This paper describes an efficient algorithm for iris recognition by characterizing key local variations. The basic idea is that local sharp variation points, denoting the appearing or vanishing of an important image structure, are utilized to represent the characteristics of the iris. The whole procedure of feature extraction includes two steps: 1) a set of one-dimensional intensity signals is constructed to effectively characterize the most important information of the original two-dimensional image; 2) using a particular class of wavelets, a position sequence of local sharp variation points in such signals is recorded as features. We also present a fast matching scheme based on exclusive OR operation to compute the similarity between a pair of position sequences. Experimental results on 2255 iris images show that the performance of the proposed method is encouraging and comparable to the best iris recognition algorithm found in the current literature.

  11. After all, What variables Characterize the Existence of Local Productive Arrangements and Local Roduction Systems?

    Directory of Open Access Journals (Sweden)

    Rafael Mendes Lübeck

    2012-06-01

    Full Text Available In this paper we established a distinction between the various terms used to characterize clusters of firms. Once in the literature, we identified that the terms, Local Productive Arrangements (LPA and Local Production Systems (LPS are used interchangeably. However, these terminologies refer to different stages of development of territorial agglomerations of firms. In the same way, the agglomeration of businesses belonging to a same production chain in a particular region would not necessarily characterize an LPA or LPS. The aim of this paper was to demonstrate the need to combine methods and variables to draw a more accurate and comprehensive territorial productive situation allowing the classification of clusters according to their stage of development and institutional structure. For that purpose, the strength of cooperation between local professionals was considered as a major factor, which creates a competitive advantage that requires exogenous interests to make use of the endogenous capabilities strategically developed and cultivated.

  12. Integrative analysis of the mitochondrial proteome in yeast.

    Directory of Open Access Journals (Sweden)

    Holger Prokisch

    2004-06-01

    Full Text Available In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidate genes available for mapping Mendelian and complex mitochondrial disorders in humans.

  13. PINK1/Parkin-Dependent Mitochondrial Surveillance: From Pleiotropy to Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Olga Corti

    2017-05-01

    Full Text Available Parkinson's disease (PD is one of the most frequent neurodegenerative disease caused by the preferential, progressive degeneration of the dopaminergic (DA neurons of the substantia nigra (SN pars compacta. PD is characterized by a multifaceted pathological process involving protein misfolding, mitochondrial dysfunction, neuroinflammation and metabolism deregulation. The molecular mechanisms governing the complex interplay between the different facets of this process are still unknown. PARK2/Parkin and PARK6/PINK1, two genes responsible for familial forms of PD, act as a ubiquitous core signaling pathway, coupling mitochondrial stress to mitochondrial surveillance, by regulating mitochondrial dynamics, the removal of damaged mitochondrial components by mitochondria-derived vesicles, mitophagy, and mitochondrial biogenesis. Over the last decade, PINK1/Parkin-dependent mitochondrial quality control emerged as a pleiotropic regulatory pathway. Loss of its function impinges on a number of physiological processes suspected to contribute to PD pathogenesis. Its role in the regulation of innate immunity and inflammatory processes stands out, providing compelling support to the contribution of non-cell-autonomous immune mechanisms in PD. In this review, we illustrate the central role of this multifunctional pathway at the crossroads between mitochondrial stress, neuroinflammation and metabolism. We discuss how its dysfunction may contribute to PD pathogenesis and pinpoint major unresolved questions in the field.

  14. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  15. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase*

    Science.gov (United States)

    Bharti, Sanjay Kumar; Sommers, Joshua A.; Zhou, Jun; Kaplan, Daniel L.; Spelbrink, Johannes N.; Mergny, Jean-Louis; Brosh, Robert M.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase. PMID:25193669

  16. Mitochondrial genetic characterization of Gujar population living in the Northwest areas of Pakistan

    Directory of Open Access Journals (Sweden)

    Inam Ullah

    2017-05-01

    Full Text Available Background: Diversity of communities with specific cultural, ethnic, lingual and geographical backgrounds makes Pakistani society a suitable study subject to unravel the early human migrations, evolutionary history of population having about 18 ethnic groups. Gujars are mostly Indic-speaking nomadic herders with the claims of multiple origins in the sub-continent. Present study was aimed at the determination of maternal lineage of Gujars by mitochondrial DNA analysis. Methods: Total DNA from the human buccal cells was isolated using modified phenol chloroform method. Purified DNA was used for the PCR amplification of mitochondrial Hyper Variable Region 1 and 2 (HVR1 & 2. The nucleotide sequences of amplified PCR products were used to explore the maternal lineage of the Gujar population residing in Northern Pakistan. Results: Haplotypes, allele frequencies and population data of the mitochondrial control region was determined in 73 unrelated individuals belonging to Gujar ethnic group of Northwest areas of Pakistan. Total 46 diverse haplotypes were identified out of which 29 were found unique with (0.9223 genetic diversity and (0.9097 power of discrimination. Haplogroup R was the most frequent (48% followed by haplogroup M (45% and N (7%. Conclusion: We found that the Gujar population has multiple maternal gene pool comprising of South Asian, West Eurasian, East Eurasian, Southeast Asian and fractions of Eastern Asian, Eastern Europe and Northern Asian lineages. This study will contribute for the development of mitochondrial DNA database for Pakistani population.

  17. A Role for the Mitochondrial Protein Mrpl44 in Maintaining OXPHOS Capacity.

    Directory of Open Access Journals (Sweden)

    Janet H C Yeo

    Full Text Available We identified Mrpl44 in a search for mammalian proteins that contain RNase III domains. This protein was previously found in association with the mitochondrial ribosome of bovine liver extracts. However, the precise Mrpl44 localization had been unclear. Here, we show by immunofluorescence microscopy and subcellular fractionation that Mrpl44 is localized to the matrix of the mitochondria. We found that it can form multimers, and confirm that it is part of the large subunit of the mitochondrial ribosome. By manipulating its expression, we show that Mrpl44 may be important for regulating the expression of mtDNA-encoded genes. This was at the level of RNA expression and protein translation. This ultimately impacted ATP synthesis capability and respiratory capacity of cells. These findings indicate that Mrpl44 plays an important role in the regulation of the mitochondrial OXPHOS capacity.

  18. AKIP1 expression modulates mitochondrial function in rat neonatal cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Hongjuan Yu

    Full Text Available A kinase interacting protein 1 (AKIP1 is a molecular regulator of protein kinase A and nuclear factor kappa B signalling. Recent evidence suggests AKIP1 is increased in response to cardiac stress, modulates acute ischemic stress response, and is localized to mitochondria in cardiomyocytes. The mitochondrial function of AKIP1 is, however, still elusive. Here, we investigated the mitochondrial function of AKIP1 in a neonatal cardiomyocyte model of phenylephrine (PE-induced hypertrophy. Using a seahorse flux analyzer we show that PE stimulated the mitochondrial oxygen consumption rate (OCR in cardiomyocytes. This was partially dependent on PE mediated AKIP1 induction, since silencing of AKIP1 attenuated the increase in OCR. Interestingly, AKIP1 overexpression alone was sufficient to stimulate mitochondrial OCR and in particular ATP-linked OCR. This was also true when pyruvate was used as a substrate, indicating that it was independent of glycolytic flux. The increase in OCR was independent of mitochondrial biogenesis, changes in ETC density or altered mitochondrial membrane potential. In fact, the respiratory flux was elevated per amount of ETC, possibly through enhanced ETC coupling. Furthermore, overexpression of AKIP1 reduced and silencing of AKIP1 increased mitochondrial superoxide production, suggesting that AKIP1 modulates the efficiency of electron flux through the ETC. Together, this suggests that AKIP1 overexpression improves mitochondrial function to enhance respiration without excess superoxide generation, thereby implicating a role for AKIP1 in mitochondrial stress adaptation. Upregulation of AKIP1 during different forms of cardiac stress may therefore be an adaptive mechanism to protect the heart.

  19. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.

    Science.gov (United States)

    Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang

    2015-10-01

    Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.

  20. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    International Nuclear Information System (INIS)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh; Godbole, Madan M.

    2010-01-01

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1α, NRF-1α and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  1. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India); Godbole, Madan M., E-mail: madangodbole@yahoo.co.in [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India)

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  2. CoQ10 Deficiency May Indicate Mitochondrial Dysfunction in Cr(VI Toxicity

    Directory of Open Access Journals (Sweden)

    Xiali Zhong

    2017-04-01

    Full Text Available To investigate the toxic mechanism of hexavalent chromium Cr(VI and search for an antidote for Cr(VI-induced cytotoxicity, a study of mitochondrial dysfunction induced by Cr(VI and cell survival by recovering mitochondrial function was performed. In the present study, we found that the gene expression of electron transfer flavoprotein dehydrogenase (ETFDH was strongly downregulated by Cr(VI exposure. The levels of coenzyme 10 (CoQ10 and mitochondrial biogenesis presented by mitochondrial mass and mitochondrial DNA copy number were also significantly reduced after Cr(VI exposure. The subsequent, Cr(VI-induced mitochondrial damage and apoptosis were characterized by reactive oxygen species (ROS accumulation, caspase-3 and caspase-9 activation, decreased superoxide dismutase (SOD and ATP production, increased methane dicarboxylic aldehyde (MDA content, mitochondrial membrane depolarization and mitochondrial permeability transition pore (MPTP opening, increased Ca2+ levels, Cyt c release, decreased Bcl-2 expression, and significantly elevated Bax expression. The Cr(VI-induced deleterious changes were attenuated by pretreatment with CoQ10 in L-02 hepatocytes. These data suggest that Cr(VI induces CoQ10 deficiency in L-02 hepatocytes, indicating that this deficiency may be a biomarker of mitochondrial dysfunction in Cr(VI poisoning and that exogenous administration of CoQ10 may restore mitochondrial function and protect the liver from Cr(VI exposure.

  3. Interplay of mitochondrial metabolism and microRNAs

    DEFF Research Database (Denmark)

    Geiger, Julian; Dalgaard, Louise Torp

    2017-01-01

    or the nucleus, a subset of ~150 different miRNAs, called mitomiRs, has also been found localized to mitochondrial fractions of cells and tissues together with the subunits of the RNA-induced silencing complex (RISC); the protein complex through which miRNAs normally act to prevent translation of their m...

  4. Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease

    Directory of Open Access Journals (Sweden)

    Sandra Torres

    2017-11-01

    Full Text Available Lysosomal storage disorders (LSD are characterized by the accumulation of diverse lipid species in lysosomes. Niemann-Pick type A/B (NPA/B and type C diseases Niemann-Pick type C (NPC are progressive LSD caused by loss of function of distinct lysosomal-residing proteins, acid sphingomyelinase and NPC1, respectively. While the primary cause of these diseases differs, both share common biochemical features, including the accumulation of sphingolipids and cholesterol, predominantly in endolysosomes. Besides these alterations in lysosomal homeostasis and function due to accumulation of specific lipid species, the lysosomal functional defects can have far-reaching consequences, disrupting intracellular trafficking of sterols, lipids and calcium through membrane contact sites (MCS of apposed compartments. Although MCS between endoplasmic reticulum and mitochondria have been well studied and characterized in different contexts, emerging evidence indicates that lysosomes also exhibit close proximity with mitochondria, which translates in their mutual functional regulation. Indeed, as best illustrated in NPC disease, alterations in the lysosomal-mitochondrial liaisons underlie the secondary accumulation of specific lipids, such as cholesterol in mitochondria, resulting in mitochondrial dysfunction and defective antioxidant defense, which contribute to disease progression. Thus, a better understanding of the lysosomal and mitochondrial interactions and trafficking may identify novel targets for the treatment of Niemann-Pick disease.

  5. Problem-Solving Test: Submitochondrial Localization of Proteins

    Science.gov (United States)

    Szeberenyi, Jozsef

    2011-01-01

    Mitochondria are surrounded by two membranes (outer and inner mitochondrial membrane) that separate two mitochondrial compartments (intermembrane space and matrix). Hundreds of proteins are distributed among these submitochondrial components. A simple biochemical/immunological procedure is described in this test to determine the localization of…

  6. Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium.

    Science.gov (United States)

    Kamdar, O; Le, Wei; Zhang, J; Ghio, A J; Rosen, G D; Upadhyay, D

    2008-10-29

    We studied the effects of airborne particulate matters (PM) on cystic fibrosis (CF) epithelium. We noted that PM enhanced human CF bronchial epithelial apoptosis, activated caspase-9 and PARP-1; and reduced mitochondrial membrane potential. Mitochondrial inhibitors (4,4-diisothiocyanatostilbene-2,2'disulfonic acid, rotenone and thenoyltrifluoroacetone) blocked PM-induced generation of reactive oxygen species and apoptosis. PM upregulated pro-apoptotic Bad, Bax, p53 and p21; and enhanced mitochondrial localization of Bax. The anti-apoptotic Bcl-2, Bcl-xl, Mcl-1 and Xiap remained unchanged; however, overexpression of Bcl-xl blocked PM-induced apoptosis. Accordingly, we provide the evidence that PM enhances oxidative stress and mitochondrial signaling mediated apoptosis via the modulation of Bcl family proteins in CF.

  7. MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content

    Directory of Open Access Journals (Sweden)

    Elisa Balboa

    2017-08-01

    Full Text Available MLN64 is a late endosomal cholesterol-binding membrane protein that has been implicated in cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria, in toxin-induced resistance, and in mitochondrial dysfunction. Down-regulation of MLN64 in Niemann-Pick C1 deficient cells decreased mitochondrial cholesterol content, suggesting that MLN64 functions independently of NPC1. However, the role of MLN64 in the maintenance of endosomal cholesterol flow and intracellular cholesterol homeostasis remains unclear. We have previously described that hepatic MLN64 overexpression increases liver cholesterol content and induces liver damage. Here, we studied the function of MLN64 in normal and NPC1-deficient cells and we evaluated whether MLN64 overexpressing cells exhibit alterations in mitochondrial function. We used recombinant-adenovirus-mediated MLN64 gene transfer to overexpress MLN64 in mouse liver and hepatic cells; and RNA interference to down-regulate MLN64 in NPC1-deficient cells. In MLN64-overexpressing cells, we found increased mitochondrial cholesterol content and decreased glutathione (GSH levels and ATPase activity. Furthermore, we found decreased mitochondrial membrane potential and mitochondrial fragmentation and increased mitochondrial superoxide levels in MLN64-overexpressing cells and in NPC1-deficient cells. Consequently, MLN64 expression was increased in NPC1-deficient cells and reduction of its expression restore mitochondrial membrane potential and mitochondrial superoxide levels. Our findings suggest that MLN64 overexpression induces an increase in mitochondrial cholesterol content and consequently a decrease in mitochondrial GSH content leading to mitochondrial dysfunction. In addition, we demonstrate that MLN64 expression is increased in NPC cells and plays a key role in cholesterol transport into the mitochondria.

  8. Characterization of the complete mitochondrial genome of the king pigeon (Columba livia breed king).

    Science.gov (United States)

    Zhang, Rui-Hua; He, Wen-Xiao; Xu, Tong

    2015-06-01

    The king pigeon is a breed of pigeon developed over many years of selective breeding primarily as a utility breed. In the present work, we report the complete mitochondrial genome sequence of king pigeon for the first time. The total length of the mitogenome was 17,221 bp with the base composition of 30.14% for A, 24.05% for T, 31.82% for C, and 13.99% for G and an A-T (54.22 %)-rich feature was detected. It harbored 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, and one non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of king pigeon would serve as an important data set of the germplasm resources for further study.

  9. Co-ordinate control of synthesis of mitochondrial and non-mitochondrial hemoproteins: a binding site for the HAP1 (CYP1) protein in the UAS region of the yeast catalase T gene (CTT1).

    Science.gov (United States)

    Winkler, H; Adam, G; Mattes, E; Schanz, M; Hartig, A; Ruis, H

    1988-01-01

    Control of expression of the Saccharomyces cerevisiae CTT1 (catalase T) gene by the HAP1 (CYP1) gene, a mediator of heme control of mitochondrial cytochromes, was studied. Expression of a CTT1-lacZ fusion in a hap1 mutant showed that the CTT1 promoter is under HAP1 control. As demonstrated by a gel retardation assay, the HAP1 protein binds to a heme control region of the CTT1 gene. This binding in vitro is stimulated by hemin. The HAP1-binding sequence was localized by using DNA fragments spanning different regions, by DNase I footprinting and by methylation interference of DNA-protein binding. The binding site was compared to the HAP1-binding sequences previously characterized in detail (UAS1CYC1, UASCYC7). There is strikingly little similarity between the three sequences, which have only four of those 23 bp in common which are protected from DNase I digestion. However, the pattern of major and minor groove contacts in the complex is quite similar in all three cases. The results obtained show that there is true co-ordinate control of expression of mitochondrial cytochromes and at least some extra-mitochondrial hemoproteins. Heme acts as a metabolic signal in this coordination, which is mediated by the HAP1 protein. Images PMID:2844525

  10. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    Science.gov (United States)

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  11. In yeast redistribution of Sod1 to the mitochondrial intermembrane space provides protection against respiration derived oxidative stress.

    Science.gov (United States)

    Klöppel, Christine; Michels, Christine; Zimmer, Julia; Herrmann, Johannes M; Riemer, Jan

    2010-12-03

    The antioxidative enzyme copper-zinc superoxide dismutase (Sod1) is an important cellular defence system against reactive oxygen species (ROS). While the majority of this enzyme is localized to the cytosol, about 1% of the cellular Sod1 is present in the intermembrane space (IMS) of mitochondria. These amounts of mitochondrial Sod1 are increased for certain Sod1 mutants that are linked to the neurodegenerative disease amyotrophic lateral sclerosis (ALS). To date, only little is known about the physiological function of mitochondrial Sod1. Here, we use the model system Saccharomyces cerevisiae to generate cells in which Sod1 is exclusively localized to the IMS. We find that IMS-localized Sod1 can functionally substitute wild type Sod1 and that it even exceeds the protective capacity of wild type Sod1 under conditions of mitochondrial ROS stress. Moreover, we demonstrate that upon expression in yeast cells the common ALS-linked mutant Sod1(G93A) becomes enriched in the mitochondrial fraction and provides an increased protection of cells from mitochondrial oxidative stress. Such an effect cannot be observed for the catalytically inactive mutant Sod1(G85R). Our observations suggest that the targeting of Sod1 to the mitochondrial IMS provides an increased protection against respiration-derived ROS. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Localized Retroprocessing as a Model of Intron Loss in the Plant Mitochondrial Genome.

    Science.gov (United States)

    Cuenca, Argelia; Ross, T Gregory; Graham, Sean W; Barrett, Craig F; Davis, Jerrold I; Seberg, Ole; Petersen, Gitte

    2016-08-03

    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    Torsten Schröder

    2016-04-01

    Full Text Available Objective: Non-alcoholic fatty liver disease (NAFLD is the most common chronic liver disease and is associated with an enhanced risk for liver and cardiovascular diseases and mortality. NAFLD can progress from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH. However, the mechanisms predisposing to this progression remain undefined. Notably, hepatic mitochondrial dysfunction is a common finding in patients with NASH. Due to a lack of appropriate experimental animal models, it has not been evaluated whether this mitochondrial dysfunction plays a causative role for the development of NASH. Methods: To determine the effect of a well-defined mitochondrial dysfunction on liver physiology at baseline and during dietary challenge, C57BL/6J-mtFVB/N mice were employed. This conplastic inbred strain has been previously reported to exhibit decreased mitochondrial respiration likely linked to a non-synonymous gene variation (nt7778 G/T of the mitochondrial ATP synthase protein 8 (mt-ATP8. Results: At baseline conditions, C57BL/6J-mtFVB/N mice displayed hepatic mitochondrial dysfunction characterized by decreased ATP production and increased formation of reactive oxygen species (ROS. Moreover, genes affecting lipid metabolism were differentially expressed, hepatic triglyceride and cholesterol levels were changed in these animals, and various acyl-carnitines were altered, pointing towards an impaired mitochondrial carnitine shuttle. However, over a period of twelve months, no spontaneous hepatic steatosis or inflammation was observed. On the other hand, upon dietary challenge with either a methionine and choline deficient diet or a western-style diet, C57BL/6J-mtFVB/N mice developed aggravated steatohepatitis as characterized by lipid accumulation, ballooning of hepatocytes and infiltration of immune cells. Conclusions: We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial

  14. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae

    DEFF Research Database (Denmark)

    Hansson Petersen, Camilla A; Alikhani, Nyosha; Behbahani, Homira

    2008-01-01

    that extracellulary applied Abeta can be internalized by human neuroblastoma cells and can colocalize with mitochondrial markers. Together, these results provide further insight into the mitochondrial uptake of Abeta, a peptide considered to be of major significance in Alzheimer's disease....

  15. Characterization of mitochondrial DNA polymorphisms in the Han population in Liaoning Province, Northeast China.

    Science.gov (United States)

    Xu, Feng-Ling; Yao, Jun; Ding, Mei; Shi, Zhang-Sen; Wu, Xue; Zhang, Jing-Jing; Wang, Bao-Jie

    2018-03-01

    This study characterized the genetic variations of mitochondrial DNA (mtDNA) to elucidate the maternal genetic structure of Liaoning Han Chinese. A total of 317 blood samples of unrelated individuals were collected for analysis in Liaoning Province. The mtDNA samples were analyzed using two distinct methods: sequencing of the hypervariable sequences I and II (HVSI and HVSII), and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis of the coding region. The results indicated a high gene diversity value (0.9997 ± 0.0003), a high polymorphism information content (0.99668) and a random match probability (0.00332). These samples were classified into 305 haplotypes, with 9 shared haplotypes. The most common haplogroup was D4 (12.93%). The principal component analysis map, the phylogenetic tree map, and the genetic distance matrix all indicated that the genetic distance of the Liaoning Han population from the Tibetan group was distant, whereas that from the Miao group was relatively close.

  16. Landscape characterization integrating expert and local spatial knowledge of land and forest resources.

    Science.gov (United States)

    Fagerholm, Nora; Käyhkö, Niina; Van Eetvelde, Veerle

    2013-09-01

    In many developing countries, political documentation acknowledges the crucial elements of participation and spatiality for effective land use planning. However, operative approaches to spatial data inclusion and representation in participatory land management are often lacking. In this paper, we apply and develop an integrated landscape characterization approach to enhance spatial knowledge generation about the complex human-nature interactions in landscapes in the context of Zanzibar, Tanzania. We apply an integrated landscape conceptualization as a theoretical framework where the expert and local knowledge can meet in spatial context. The characterization is based on combining multiple data sources in GIS, and involves local communities and their local spatial knowledge since the beginning into the process. Focusing on the expected information needs for community forest management, our characterization integrates physical landscape features and retrospective landscape change data with place-specific community knowledge collected through participatory GIS techniques. The characterization is established in a map form consisting of four themes and their synthesis. The characterization maps are designed to support intuitive interpretation, express the inherently uncertain nature of the data, and accompanied by photographs to enhance communication. Visual interpretation of the characterization mediates information about the character of areas and places in the studied local landscape, depicting the role of forest resources as part of the landscape entity. We conclude that landscape characterization applied in GIS is a highly potential tool for participatory land and resource management, where spatial argumentation, stakeholder communication, and empowerment are critical issues.

  17. Recent Advances in the Composition and Heterogeneity of the Arabidopsis Mitochondrial Proteome

    Directory of Open Access Journals (Sweden)

    Chun Pong eLee

    2013-01-01

    Full Text Available Mitochondria are important organelles for providing the ATP and carbon skeletons required to sustain cell growth. While these organelles also participate in other key metabolic functions across species, they have a specialized role in plants of optimizing photosynthesis through participating in photorespiration. It is therefore critical to map the protein composition of mitochondria in plants to gain a better understanding of their regulation and define the uniqueness of their metabolic networks. To date, less than 30% of the predicted number of mitochondrial proteins has been verified experimentally by proteomics and/or GFP localization studies. In this mini-review, we will provide an overview of the advances in mitochondrial proteomics in the model plant Arabidopsis thaliana over the past five years. The ultimate goal of mapping the mitochondrial proteome in Arabidopsis is to discover novel mitochondrial components that are critical during development in plants as well as genes involved in developmental abnormalities, such as those implicated in mitochondrial-linked cytoplasmic male sterility.

  18. Role of polymerase η in mitochondrial mutagenesis of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Nimrat; Pabla, Ritu [Dept. of Cell Biology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States); Siede, Wolfram, E-mail: wolfram.siede@unthsc.edu [Dept. of Cell Biology and Anatomy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States)

    2013-02-08

    Highlights: ► DNA polymerase η is detectable in mitochondria of budding yeast. ► Pol η reduces UV-induced mitochondrial base pair substitutions and frameshifts. ► For UV-induced base pair substitutions, Pol η and Pol ζ interact epistatically. -- Abstract: DNA polymerase η mostly catalyzes an error-free bypass of the most frequent UV lesions, pyrimidine dimers of the cyclobutane-type. In addition to its nuclear localization, we show here for the first time its mitochondrial localization in budding yeast. In mitochondria, this polymerase improves bypass replication fidelity opposite UV damage as shown in base pair substitution and frameshift assays. For base pair substitutions, polymerase η appears to be related in function and epistatic to DNA polymerase ζ which, however, plays the opposite role in the nucleus.

  19. Akt phosphorylates Prohibitin 1 to mediate its mitochondrial localization and promote proliferation of bladder cancer cells

    Science.gov (United States)

    Jiang, L; Dong, P; Zhang, Z; Li, C; Li, Y; Liao, Y; Li, X; Wu, Z; Guo, S; Mai, S; Xie, D; Liu, Z; Zhou, F

    2015-01-01

    Bladder cancer (BC) is very common and associated with significant morbidity and mortality, though the molecular underpinnings of its origination and progression remain poorly understood. In this study, we demonstrate that Prohibitin 1 (PHB) was overexpressed in human BC tissues and that PHB upregulation was associated with poor prognosis. We also found that PHB was necessary and sufficient for BC cell proliferation. Interestingly, the overexpressed PHB was primarily found within mitochondria, and we provide the first direct evidence that phosphorylation by Akt at Thr258 of PHB induces this mitochondrial localization. Inhibiton of Akt reverses these effects and inhibited the proliferation of BC cells. Finally, the phosphorylation of PHB was required for BC cell proliferation, further implicating the importance of the Akt in BC. Taken together, these findings identify the Akt/PHB signaling cascade as a novel mechanism of cancer cell proliferation and provide the scientific basis for the establishment of PHB as a new prognostic marker and treatment target for BC. PMID:25719244

  20. Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  1. Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space.

    Science.gov (United States)

    Kawamata, Hibiki; Manfredi, Giovanni

    2010-11-01

    Cu, Zn, superoxide dismutase (SOD1) is a ubiquitous enzyme localized in multiple cellular compartments, including mitochondria, where it concentrates in the intermembrane space (IMS). Similar to other small IMS proteins, the import and retention of SOD1 in the IMS is linked to its folding and maturation, involving the formation of critical intra- and intermolecular disulfide bonds. Therefore, the cysteine residues of SOD1 play a fundamental role in its IMS localization. IMS import of SOD1 involves its copper chaperone, CCS, whose mitochondrial distribution is regulated by the Mia40/Erv1 disulfide relay system in a redox-dependent manner: CCS promotes SOD1 maturation and retention in the IMS. The function of SOD1 in the IMS is still unknown, but it is plausible that it serves to remove superoxide released from the mitochondrial respiratory chain. Mutations in SOD1 cause familial amyotrophic lateral sclerosis (ALS), whose pathologic features include mitochondrial bioenergetic dysfunction. Mutant SOD1 localization in the IMS is not dictated by oxygen concentration and the Mia40/Erv1 system, but is primarily dependent on aberrant protein folding and aggregation. Mutant SOD1 localization and aggregation in the IMS might cause the mitochondrial abnormalities observed in familial ALS and could play a significant role in disease pathogenesis.

  2. Mitochondrial Protein Synthesis, Import, and Assembly

    Science.gov (United States)

    Fox, Thomas D.

    2012-01-01

    The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes. PMID:23212899

  3. Characterization of the Respiration-Induced Yeast Mitochondrial Permeability Transition Pore

    OpenAIRE

    Bradshaw, Patrick C.; Pfeiffer, Douglas R.

    2013-01-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable throug...

  4. Reversible infantile mitochondrial diseases.

    Science.gov (United States)

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  5. Improvement of mitochondrial function and dynamics by the metabolic enhancer piracetam.

    Science.gov (United States)

    Stockburger, Carola; Kurz, Christopher; Koch, Konrad A; Eckert, Schamim H; Leuner, Kristina; Müller, Walter E

    2013-10-01

    The metabolic enhancer piracetam is used in many countries to treat cognitive impairment in aging, brain injuries, as well as dementia such as AD (Alzheimer's disease). As a specific feature of piracetam, beneficial effects are usually associated with mitochondrial dysfunction. In previous studies we were able to show that piracetam enhanced ATP production, mitochondrial membrane potential as well as neurite outgrowth in cell and animal models for aging and AD. To investigate further the effects of piracetam on mitochondrial function, especially mitochondrial fission and fusion events, we decided to assess mitochondrial morphology. Human neuroblastoma cells were treated with the drug under normal conditions and under conditions imitating aging and the occurrence of ROS (reactive oxygen species) as well as in stably transfected cells with the human wild-type APP (amyloid precursor protein) gene. This AD model is characterized by expressing only 2-fold more human Aβ (amyloid β-peptide) compared with control cells and therefore representing very early stages of AD when Aβ levels gradually increase over decades. Interestingly, these cells exhibit an impaired mitochondrial function and morphology under baseline conditions. Piracetam is able to restore this impairment and shifts mitochondrial morphology back to elongated forms, whereas there is no effect in control cells. After addition of a complex I inhibitor, mitochondrial morphology is distinctly shifted to punctate forms in both cell lines. Under these conditions piracetam is able to ameliorate morphology in cells suffering from the mild Aβ load, as well as mitochondrial dynamics in control cells.

  6. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.

    Science.gov (United States)

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-11-28

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3'-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.

  7. A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network.

    Directory of Open Access Journals (Sweden)

    Lufang Zhou

    2010-01-01

    Full Text Available Loss of mitochondrial function is a fundamental determinant of cell injury and death. In heart cells under metabolic stress, we have previously described how the abrupt collapse or oscillation of the mitochondrial energy state is synchronized across the mitochondrial network by local interactions dependent upon reactive oxygen species (ROS. Here, we develop a mathematical model of ROS-induced ROS release (RIRR based on reaction-diffusion (RD-RIRR in one- and two-dimensional mitochondrial networks. The nodes of the RD-RIRR network are comprised of models of individual mitochondria that include a mechanism of ROS-dependent oscillation based on the interplay between ROS production, transport, and scavenging; and incorporating the tricarboxylic acid (TCA cycle, oxidative phosphorylation, and Ca(2+ handling. Local mitochondrial interaction is mediated by superoxide (O2.- diffusion and the O2.(--dependent activation of an inner membrane anion channel (IMAC. In a 2D network composed of 500 mitochondria, model simulations reveal DeltaPsi(m depolarization waves similar to those observed when isolated guinea pig cardiomyocytes are subjected to a localized laser-flash or antioxidant depletion. The sensitivity of the propagation rate of the depolarization wave to O(2.- diffusion, production, and scavenging in the reaction-diffusion model is similar to that observed experimentally. In addition, we present novel experimental evidence, obtained in permeabilized cardiomyocytes, confirming that DeltaPsi(m depolarization is mediated specifically by O2.-. The present work demonstrates that the observed emergent macroscopic properties of the mitochondrial network can be reproduced in a reaction-diffusion model of RIRR. Moreover, the findings have uncovered a novel aspect of the synchronization mechanism, which is that clusters of mitochondria that are oscillating can entrain mitochondria that would otherwise display stable dynamics. The work identifies the

  8. The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome

    Science.gov (United States)

    Nedelcu, Aurora M.; Lee, Robert W.; Lemieux, Claude; Gray, Michael W.; Burger, Gertraud

    2000-01-01

    Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced–derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced–derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF204057.] PMID:10854413

  9. [Mitochondrial and microcirculatory distress syndrome in the critical patient. Therapeutic implications].

    Science.gov (United States)

    Navarrete, M L; Cerdeño, M C; Serra, M C; Conejero, R

    2013-10-01

    Mitochondrial and microcirculatory distress syndrome (MMDS) can occur during systemic inflammatory response syndrome (SIRS), and is characterized by cytopathic tissue hypoxia uncorrected by oxygen transport optimization, and associated with an acquired defect in the use of oxygen and energy production in mitochondria, leading to multiple organ dysfunction (MOD). We examine the pathogenesis of MMDS, new diagnostic methods, and recent therapeutic approaches adapted to each of the three phases in the evolution of the syndrome. In the initial phase, the aim is prevention and early reversal of mitochondrial dysfunction. Once the latter is established, the aim is to restore flow of the electron chain, mitochondrial respiration, and to avoid cellular energy collapse. Finally, in the third (resolution) stage, treatment should focus on stimulating mitochondrial biogenesis and the repair or replacement of damaged mitochondria. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  10. Adiponectin alleviates genioglossal mitochondrial dysfunction in rats exposed to intermittent hypoxia.

    Directory of Open Access Journals (Sweden)

    Hanpeng Huang

    Full Text Available Genioglossal dysfunction is involved in the pathophysiology of obstructive sleep apnea hypoxia syndrome (OSAHS characterized by nocturnal chronic intermittent hypoxia (CIH. The pathophysiology of genioglossal dysfunction and possible targeted pharmacotherapy for alleviation of genioglossal injury in CIH require further investigation.Rats in the control group were exposed to normal air, while rats in the CIH group and CIH+adiponectin (AD group were exposed to the same CIH condition (CIH 8 hr/day for 5 successive weeks. Furthermore, rats in CIH+AD group were administrated intravenous AD supplementation at the dosage of 10 µg, twice a week for 5 consecutive weeks. We found that CIH-induced genioglossus (GG injury was correlated with mitochondrial dysfunction, reduction in the numbers of mitochondrias, impaired mitochondrial ultrastructure, and a reduction in type I fibers. Compared with the CIH group, impaired mitochondrial structure and function was significantly improved and a percentage of type I fiber was elevated in the CIH+AD group. Moreover, compared with the control group, the rats' GG in the CIH group showed a significant decrease in phosphorylation of LKB1, AMPK, and PGC1-α, whereas there was significant rescue of such reduction in phosphorylation within the CIH+AD group.CIH exposure reduces mitochondrial biogenesis and impairs mitochondrial function in GG, while AD supplementation increases mitochondrial contents and alleviates CIH-induced mitochondrial dysfunction possibly through the AMPK pathway.

  11. Mitochondrial Dysfunction and β-Cell Failure in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Zhongmin Alex Ma

    2012-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM is the most common human endocrine disease and is characterized by peripheral insulin resistance and pancreatic islet β-cell failure. Accumulating evidence indicates that mitochondrial dysfunction is a central contributor to β-cell failure in the evolution of T2DM. As reviewed elsewhere, reactive oxygen species (ROS produced by β-cell mitochondria as a result of metabolic stress activate several stress-response pathways. This paper focuses on mechanisms whereby ROS affect mitochondrial structure and function and lead to β-cell failure. ROS activate UCP2, which results in proton leak across the mitochondrial inner membrane, and this leads to reduced β-cell ATP synthesis and content, which is a critical parameter in regulating glucose-stimulated insulin secretion. In addition, ROS oxidize polyunsaturated fatty acids in mitochondrial cardiolipin and other phospholipids, and this impairs membrane integrity and leads to cytochrome c release into cytosol and apoptosis. Group VIA phospholipase A2 (iPLA2β appears to be a component of a mechanism for repairing mitochondrial phospholipids that contain oxidized fatty acid substituents, and genetic or acquired iPLA2β-deficiency increases β-cell mitochondrial susceptibility to injury from ROS and predisposes to developing T2DM. Interventions that attenuate ROS effects on β-cell mitochondrial phospholipids might prevent or retard development of T2DM.

  12. Endoplasmic reticulum: ER stress regulates mitochondrial bioenergetics

    Science.gov (United States)

    Bravo, Roberto; Gutierrez, Tomás; Paredes, Felipe; Gatica, Damián; Rodriguez, Andrea E.; Pedrozo, Zully; Chiong, Mario; Parra, Valentina; Quest, Andrew F.G.; Rothermel, Beverly A.; Lavandero, Sergio

    2014-01-01

    Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER–mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. PMID:22064245

  13. Digital Imaging Analysis for the Study of Endotoxin-Induced Mitochondrial Ultrastructure Injury

    Directory of Open Access Journals (Sweden)

    Mandar S. Joshi

    2000-01-01

    Full Text Available Primary defects in mitochondrial function have been implicated in over 100 diverse diseases. In situ, mitochondria possess unique and well-defined morphology in normal healthy cells, but diseases linked to defective mitochondrial function are characterized by the presence of morphologically abnormal and swollen mitochondria with distorted cristae. In situ study of mitochondrial morphology is established as an indicator of mitochondrial health but thus far assessments have been via subjective evaluations by trained observers using discontinuous scoring systems. Here we investigated the value of digital imaging analysis to provide for unbiased, reproducible, and convenient evaluations of mitochondrial ultrastructure. Electron photomicrographs of ileal mucosal mitochondria were investigated using a scoring system previously described by us, and also analyzed digitally by using six digital parameters which define size, shape, and electron density characteristics of over 700 individual mitochondria. Statistically significant changes in mitochondrial morphology were detected in LPS treated animals relative to vehicle control using both the subjective scoring system and digital imaging parameters (p < 0:05. However, the imaging approach provided convenient and high throughput capabilities and was easily automated to remove investigator influences. These results illustrate significant changes in ileal mucosal mitochondrial ultrastructure during sepsis and demonstrate the value of digital imaging technology for routine assessments in this setting.

  14. The mitochondrial transcription factor A functions in mitochondrial base excision repair

    DEFF Research Database (Denmark)

    Canugovi, Chandrika; Maynard, Scott; Bayne, Anne-Cécile V

    2010-01-01

    Mitochondrial transcription factor A (TFAM) is an essential component of mitochondrial nucleoids. TFAM plays an important role in mitochondrial transcription and replication. TFAM has been previously reported to inhibit nucleotide excision repair (NER) in vitro but NER has not yet been detected i...

  15. Mitochondrial Epigenetic Changes Link to Increased Diabetes Risk and Early-Stage Prediabetes Indicator

    Science.gov (United States)

    Zheng, Louise D.; Linarelli, Leah E.; Brooke, Joseph; Smith, Cayleen; Wall, Sarah S.; Greenawald, Mark H.; Seidel, Richard W.; Estabrooks, Paul A.; Almeida, Fabio A.; Cheng, Zhiyong

    2016-01-01

    Type 2 diabetes (T2D) is characterized by mitochondrial derangement and oxidative stress. With no known cure for T2D, it is critical to identify mitochondrial biomarkers for early diagnosis of prediabetes and disease prevention. Here we examined 87 participants on the diagnosis power of fasting glucose (FG) and hemoglobin A1c levels and investigated their interactions with mitochondrial DNA methylation. FG and A1c led to discordant diagnostic results irrespective of increased body mass index (BMI), underscoring the need of new biomarkers for prediabetes diagnosis. Mitochondrial DNA methylation levels were not correlated with late-stage (impaired FG or A1c) but significantly with early-stage (impaired insulin sensitivity) events. Quartiles of BMI suggested that mitochondrial DNA methylation increased drastically from Q1 (20 40, morbidly obese). A significant change was also observed from Q1 to Q2 in HOMA insulin sensitivity but not in A1c or FG. Thus, mitochondrial epigenetic changes link to increased diabetes risk and the indicator of early-stage prediabetes. Further larger-scale studies to examine the potential of mitochondrial epigenetic marker in prediabetes diagnosis will be of critical importance for T2D prevention. PMID:27298712

  16. FAM49B, a novel regulator of mitochondrial function and integrity that suppresses tumor metastasis.

    Science.gov (United States)

    Chattaragada, M S; Riganti, C; Sassoe, M; Principe, M; Santamorena, M M; Roux, C; Curcio, C; Evangelista, A; Allavena, P; Salvia, R; Rusev, B; Scarpa, A; Cappello, P; Novelli, F

    2018-02-08

    Mitochondrial dysregulation plays a central role in cancers and drives reactive oxygen species (ROS)-dependent tumor progression. We investigated the pro-tumoral roles of mitochondrial dynamics and altered intracellular ROS levels in pancreatic ductal adenocarcinoma (PDAC). We identified 'family with sequence similarity 49 member B' (FAM49B) as a mitochondria-localized protein that regulates mitochondrial fission and cancer progression. Silencing FAM49B in PDAC cells resulted in increased fission and mitochondrial ROS generation, which enhanced PDAC cell proliferation and invasion. Notably, FAM49B expression levels in PDAC cells were downregulated by the tumor microenvironment. Overall, the results of this study show that FAM49B acts as a suppressor of cancer cell proliferation and invasion in PDAC by regulating tumor mitochondrial redox reactions and metabolism.

  17. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity

    Directory of Open Access Journals (Sweden)

    Karthi Shanmugam

    2018-01-01

    Full Text Available Acute myocardial infarction (AMI is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R injury (IRI using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3β (GSK3β, which was confirmed by a biochemical assay and molecular docking studies.

  18. Fisetin Confers Cardioprotection against Myocardial Ischemia Reperfusion Injury by Suppressing Mitochondrial Oxidative Stress and Mitochondrial Dysfunction and Inhibiting Glycogen Synthase Kinase 3β Activity.

    Science.gov (United States)

    Shanmugam, Karthi; Ravindran, Sriram; Kurian, Gino A; Rajesh, Mohanraj

    2018-01-01

    Acute myocardial infarction (AMI) is the leading cause of morbidity and mortality worldwide. Timely reperfusion is considered an optimal treatment for AMI. Paradoxically, the procedure of reperfusion can itself cause myocardial tissue injury. Therefore, a strategy to minimize the reperfusion-induced myocardial tissue injury is vital for salvaging the healthy myocardium. Herein, we investigated the cardioprotective effects of fisetin, a natural flavonoid, against ischemia/reperfusion (I/R) injury (IRI) using a Langendorff isolated heart perfusion system. I/R produced significant myocardial tissue injury, which was characterized by elevated levels of lactate dehydrogenase and creatine kinase in the perfusate and decreased indices of hemodynamic parameters. Furthermore, I/R resulted in elevated oxidative stress, uncoupling of the mitochondrial electron transport chain, increased mitochondrial swelling, a decrease of the mitochondrial membrane potential, and induction of apoptosis. Moreover, IRI was associated with a loss of the mitochondrial structure and decreased mitochondrial biogenesis. However, when the animals were pretreated with fisetin, it significantly attenuated the I/R-induced myocardial tissue injury, blunted the oxidative stress, and restored the structure and function of mitochondria. Mechanistically, the fisetin effects were found to be mediated via inhibition of glycogen synthase kinase 3 β (GSK3 β ), which was confirmed by a biochemical assay and molecular docking studies.

  19. Bcmimp1, a Botrytis cinerea gene transiently expressed in planta, encodes a mitochondrial protein

    Directory of Open Access Journals (Sweden)

    David eBenito-Pescador

    2016-02-01

    Full Text Available Botrytis cinerea is a widespread necrotrophic fungus which infects more than 200 plant species. In an attempt to characterize the physiological status of the fungus in planta and to identify genetic factors contributing to its ability to infect the host cells, a differential gene expression analysis during the interaction B. cinerea-tomato was carried out. Gene Bcmimp1 codes for a mRNA detected by differential display in the course of this analysis. During the interaction with the host, it shows a transient expression pattern with maximal expression levels during the colonization and maceration of the infected tissues. Bioinformatic analysis suggested that BCMIMP1 is an integral membrane protein located in the mitochondrial inner membrane. Co-localization experiments with a BCMIMP1-GFP fusion protein confirmed that the protein is targeted to the mitochondria. ΔBcmimp1 mutants do not show obvious phenotypic differences during saprophytic growth and their infection ability was unaltered as compared to the wild-type. Interestingly, the mutants produced increased levels of ROS, likely as a consequence of disturbed mitochondrial function. Although Bcmimp1 expression is enhanced in planta it cannot be considered a pathogenicity factor.

  20. Mitochondrial optic neuropathies – Disease mechanisms and therapeutic strategies

    Science.gov (United States)

    Yu-Wai-Man, Patrick; Griffiths, Philip G.; Chinnery, Patrick F.

    2011-01-01

    Leber hereditary optic neuropathy (LHON) and autosomal-dominant optic atrophy (DOA) are the two most common inherited optic neuropathies in the general population. Both disorders share striking pathological similarities, marked by the selective loss of retinal ganglion cells (RGCs) and the early involvement of the papillomacular bundle. Three mitochondrial DNA (mtDNA) point mutations; m.3460G>A, m.11778G>A, and m.14484T>C account for over 90% of LHON cases, and in DOA, the majority of affected families harbour mutations in the OPA1 gene, which codes for a mitochondrial inner membrane protein. Optic nerve degeneration in LHON and DOA is therefore due to disturbed mitochondrial function and a predominantly complex I respiratory chain defect has been identified using both in vitro and in vivo biochemical assays. However, the trigger for RGC loss is much more complex than a simple bioenergetic crisis and other important disease mechanisms have emerged relating to mitochondrial network dynamics, mtDNA maintenance, axonal transport, and the involvement of the cytoskeleton in maintaining a differential mitochondrial gradient at sites such as the lamina cribosa. The downstream consequences of these mitochondrial disturbances are likely to be influenced by the local cellular milieu. The vulnerability of RGCs in LHON and DOA could derive not only from tissue-specific, genetically-determined biological factors, but also from an increased susceptibility to exogenous influences such as light exposure, smoking, and pharmacological agents with putative mitochondrial toxic effects. Our concept of inherited mitochondrial optic neuropathies has evolved over the past decade, with the observation that patients with LHON and DOA can manifest a much broader phenotypic spectrum than pure optic nerve involvement. Interestingly, these phenotypes are sometimes clinically indistinguishable from other neurodegenerative disorders such as Charcot-Marie-Tooth disease, hereditary spastic

  1. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    International Nuclear Information System (INIS)

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-01-01

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations

  2. Chronic plus binge ethanol feeding induces myocardial oxidative stress, mitochondrial and cardiovascular dysfunction, and steatosis.

    Science.gov (United States)

    Matyas, Csaba; Varga, Zoltan V; Mukhopadhyay, Partha; Paloczi, Janos; Lajtos, Tamas; Erdelyi, Katalin; Nemeth, Balazs T; Nan, Mintong; Hasko, Gyorgy; Gao, Bin; Pacher, Pal

    2016-06-01

    Alcoholic cardiomyopathy in humans develops in response to chronic excessive alcohol consumption; however, good models of alcohol-induced cardiomyopathy in mice are lacking. Herein we describe mouse models of alcoholic cardiomyopathies induced by chronic and binge ethanol (EtOH) feeding and characterize detailed hemodynamic alterations, mitochondrial function, and redox signaling in these models. Mice were fed a liquid diet containing 5% EtOH for 10, 20, and 40 days (d) combined with single or multiple EtOH binges (5 g/kg body wt). Isocalorically pair-fed mice served as controls. Left ventricular (LV) function and morphology were assessed by invasive pressure-volume conductance approach and by echocardiography. Mitochondrial complex (I, II, IV) activities, 3-nitrotyrosine (3-NT) levels, gene expression of markers of oxidative stress (gp91phox, p47phox), mitochondrial biogenesis (PGC1α, peroxisome proliferator-activated receptor α), and fibrosis were examined. Cardiac steatosis and fibrosis were investigated by histological/immunohistochemical methods. Chronic and binge EtOH feeding (already in 10 days EtOH plus single binge group) was characterized by contractile dysfunction (decreased slope of end-systolic pressure-volume relationship and preload recruitable stroke work), impaired relaxation (decreased time constant of LV pressure decay and maximal slope of systolic pressure decrement), and vascular dysfunction (impaired arterial elastance and lower total peripheral resistance). This was accompanied by enhanced myocardial oxidative/nitrative stress (3-NT; gp91phox; p47phox; angiotensin II receptor, type 1a) and deterioration of mitochondrial complex I, II, IV activities and mitochondrial biogenesis, excessive cardiac steatosis, and higher mortality. Collectively, chronic plus binge EtOH feeding in mice leads to alcohol-induced cardiomyopathies (National Institute on Alcohol Abuse and Alcoholism models) characterized by increased myocardial oxidative

  3. The Aspergillus nidulans acuL gene encodes a mitochondrial carrier required for the utilization of carbon sources that are metabolized via the TCA cycle.

    Science.gov (United States)

    Flipphi, Michel; Oestreicher, Nathalie; Nicolas, Valérie; Guitton, Audrey; Vélot, Christian

    2014-07-01

    In Aspergillus nidulans, the utilization of acetate as sole carbon source requires several genes (acu). Most of them are also required for the utilization of fatty acids. This is the case for acuD and acuE, which encode the two glyoxylate cycle-specific enzymes, isocitrate lyase and malate synthase, respectively, but also for acuL that we have identified as AN7287, and characterized in this study. Deletion of acuL resulted in the same phenotype as the original acuL217 mutant. acuL encodes a 322-amino acid protein which displays all the structural features of a mitochondrial membrane carrier, and shares 60% identity with the Saccharomyces cerevisiae succinate/fumarate mitochondrial antiporter Sfc1p (also named Acr1p). Consistently, the AcuL protein was shown to localize in mitochondria, and partial cross-complementation was observed between the S. cerevisiae and A. nidulans homologues. Extensive phenotypic characterization suggested that the acuL gene is involved in the utilization of carbon sources that are catabolized via the TCA cycle, and therefore require gluconeogenesis. In addition, acuL proves to be co-regulated with acuD and acuE. Overall, our data suggest that AcuL could link the glyoxylate cycle to gluconeogenesis by exchanging cytoplasmic succinate for mitochondrial fumarate. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    Science.gov (United States)

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  5. Mitochondrial Nucleoid: Shield and Switch of the Mitochondrial Genome

    Science.gov (United States)

    2017-01-01

    Mitochondria preserve very complex and distinctively unique machinery to maintain and express the content of mitochondrial DNA (mtDNA). Similar to chromosomes, mtDNA is packaged into discrete mtDNA-protein complexes referred to as a nucleoid. In addition to its role as a mtDNA shield, over 50 nucleoid-associated proteins play roles in mtDNA maintenance and gene expression through either temporary or permanent association with mtDNA or other nucleoid-associated proteins. The number of mtDNA(s) contained within a single nucleoid is a fundamental question but remains a somewhat controversial issue. Disturbance in nucleoid components and mutations in mtDNA were identified as significant in various diseases, including carcinogenesis. Significant interest in the nucleoid structure and its regulation has been stimulated in relation to mitochondrial diseases, which encompass diseases in multicellular organisms and are associated with accumulation of numerous mutations in mtDNA. In this review, mitochondrial nucleoid structure, nucleoid-associated proteins, and their regulatory roles in mitochondrial metabolism are briefly addressed to provide an overview of the emerging research field involving mitochondrial biology. PMID:28680532

  6. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    Science.gov (United States)

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  7. Optimized Mitochondrial Targeting of Proteins Encoded by Modified mRNAs Rescues Cells Harboring Mutations in mtATP6

    Directory of Open Access Journals (Sweden)

    Randall Marcelo Chin

    2018-03-01

    Full Text Available Summary: Mitochondrial disease may be caused by mutations in the protein-coding genes of the mitochondrial genome. A promising strategy for treating such diseases is allotopic expression—the translation of wild-type copies of these proteins in the cytosol, with subsequent translocation into the mitochondria, resulting in rescue of mitochondrial function. In this paper, we develop an automated, quantitative, and unbiased screening platform to evaluate protein localization and mitochondrial morphology. This platform was used to compare 31 mitochondrial targeting sequences and 15 3′ UTRs in their ability to localize up to 9 allotopically expressed proteins to the mitochondria and their subsequent impact on mitochondrial morphology. Taking these two factors together, we synthesized chemically modified mRNAs that encode for an optimized allotopic expression construct for mtATP6. These mRNAs were able to functionally rescue a cell line harboring the 8993T > G point mutation in the mtATP6 gene. : Allotopic expression of proteins normally encoded by mtDNA is a promising therapy for mitochondrial disease. Chin et al. use an unbiased and high-content imaging-based screening platform to optimize allotopic expression. Modified mRNAs encoding for the optimized allotopic expression constructs rescued the respiration and growth of mtATP6-deficient cells. Keywords: mitochondria, mitochondrial disease, mRNA, modified mRNA, ATP6, allotopic expression, rare disease, gene therapy, screening, high content imaging

  8. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    Science.gov (United States)

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  9. Autism and Intellectual Disability Associated with Mitochondrial Disease and Hyperlactacidemia

    Directory of Open Access Journals (Sweden)

    José Guevara-Campos

    2015-02-01

    Full Text Available Autism spectrum disorder (ASD with intellectual disability (ID is a life-long debilitating condition, which is characterized by cognitive function impairment and other neurological signs. Children with ASD-ID typically attain motor skills with a significant delay. A sub-group of ASD-IDs has been linked to hyperlactacidemia and alterations in mitochondrial respiratory chain activity. The objective of this report is to describe the clinical features of patients with these comorbidities in order to shed light on difficult diagnostic and therapeutic approaches in such patients. We reported the different clinical features of children with ID associated with hyperlactacidemia and deficiencies in mitochondrial respiratory chain complex II–IV activity whose clinical presentations are commonly associated with the classic spectrum of mitochondrial diseases. We concluded that patients with ASD and ID presenting with persistent hyperlactacidemia should be evaluated for mitochondrial disorders. Administration of carnitine, coenzyme Q10, and folic acid is partially beneficial, although more studies are needed to assess the efficacy of this vitamin/cofactor treatment combination.

  10. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  11. Characterization of the complete mitochondrial genome of the Rhinolophus sinicus sinicus (Chiroptera: Rhinolophidae) from Central China.

    Science.gov (United States)

    Xie, Lifen; Sun, Keping; Feng, Jiang

    2016-07-01

    We present a complete mitochondrial genome sequence of Rhinolophus sinicus sinicus from Central China and provide its annotation, as well as showed the phylogenetic relationship and mitogenomic variation with other published mitochondrial genomes of congeneric bat species. Our results revealed a relatively high mitogenomic variation between two R. s. sinucus from Central and East China, which is similar to interspecific divergence level.

  12. Sugarcane genes related to mitochondrial function

    Directory of Open Access Journals (Sweden)

    Fonseca Ghislaine V.

    2001-01-01

    Full Text Available Mitochondria function as metabolic powerhouses by generating energy through oxidative phosphorylation and have become the focus of renewed interest due to progress in understanding the subtleties of their biogenesis and the discovery of the important roles which these organelles play in senescence, cell death and the assembly of iron-sulfur (Fe/S centers. Using proteins from the yeast Saccharomyces cerevisiae, Homo sapiens and Arabidopsis thaliana we searched the sugarcane expressed sequence tag (SUCEST database for the presence of expressed sequence tags (ESTs with similarity to nuclear genes related to mitochondrial functions. Starting with 869 protein sequences, we searched for sugarcane EST counterparts to these proteins using the basic local alignment search tool TBLASTN similarity searching program run against 260,781 sugarcane ESTs contained in 81,223 clusters. We were able to recover 367 clusters likely to represent sugarcane orthologues of the corresponding genes from S. cerevisiae, H. sapiens and A. thaliana with E-value <= 10-10. Gene products belonging to all functional categories related to mitochondrial functions were found and this allowed us to produce an overview of the nuclear genes required for sugarcane mitochondrial biogenesis and function as well as providing a starting point for detailed analysis of sugarcane gene structure and physiology.

  13. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J.

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  14. Nuclear microprobe local characterization of YBaCuO superconductors

    Science.gov (United States)

    Berger, P.; Berthier, B.; Revel, G.; Trocellier, P.

    1995-09-01

    Stoichiometric local characterizations of YBaCuO oxides have been performed using a 1.4 MeV deuteron microbeam. A beam with a size of 10 × 15 μm 2 allows the observation of variations of x = 0.2 in sintered YBa 2Cu 3O 7-x. Local variations of oxygen stoichiometry in a melt-textured sample, correlated with the microstructure, have been observed. In spite of the degradation of the sample under the beam, oxygen measurements seem to remain significant for doses above 10 18 ions/cm 2.

  15. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.

    Science.gov (United States)

    Das Banerjee, Tania; Dagda, Raul Y; Dagda, Marisela; Chu, Charleen T; Rice, Monica; Vazquez-Mayorga, Emmanuel; Dagda, Ruben K

    2017-08-01

    Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity. © 2017 International Society for Neurochemistry.

  16. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  17. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.

    Science.gov (United States)

    Pecorella, Shelly R H; Potter, Jennifer V F; Cherry, Anne D; Peacher, Dionne F; Welty-Wolf, Karen E; Moon, Richard E; Piantadosi, Claude A; Suliman, Hagir B

    2015-10-15

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. Copyright © 2015 the American Physiological Society.

  18. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  19. Mitochondrial DNA triplication and punctual mutations in patients with mitochondrial neuromuscular disorders

    Energy Technology Data Exchange (ETDEWEB)

    Mkaouar-Rebai, Emna, E-mail: emna.mkaouar@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Felhi, Rahma; Tabebi, Mouna [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Alila-Fersi, Olfa; Chamkha, Imen [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia); Maalej, Marwa; Ammar, Marwa [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Kammoun, Fatma [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Keskes, Leila [Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, Université de Sfax (Tunisia); Hachicha, Mongia [Service de pédiatrie, C.H.U. Hedi Chaker de Sfax (Tunisia); Fakhfakh, Faiza, E-mail: faiza.fakhfakh02@gmail.com [Département des Sciences de la Vie, Faculté des Sciences de Sfax, Université de Sfax (Tunisia)

    2016-04-29

    Mitochondrial diseases are a heterogeneous group of disorders caused by the impairment of the mitochondrial oxidative phosphorylation system which have been associated with various mutations of the mitochondrial DNA (mtDNA) and nuclear gene mutations. The clinical phenotypes are very diverse and the spectrum is still expanding. As brain and muscle are highly dependent on OXPHOS, consequently, neurological disorders and myopathy are common features of mtDNA mutations. Mutations in mtDNA can be classified into three categories: large-scale rearrangements, point mutations in tRNA or rRNA genes and point mutations in protein coding genes. In the present report, we screened mitochondrial genes of complex I, III, IV and V in 2 patients with mitochondrial neuromuscular disorders. The results showed the presence the pathogenic heteroplasmic m.9157G>A variation (A211T) in the MT-ATP6 gene in the first patient. We also reported the first case of triplication of 9 bp in the mitochondrial NC7 region in Africa and Tunisia, in association with the novel m.14924T>C in the MT-CYB gene in the second patient with mitochondrial neuromuscular disorder. - Highlights: • We reported 2 patients with mitochondrial neuromuscular disorders. • The heteroplasmic MT-ATP6 9157G>A variation was reported. • A triplication of 9 bp in the mitochondrial NC7 region was detected. • The m.14924T>C transition (S60P) in the MT-CYB gene was found.

  20. Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control

    Directory of Open Access Journals (Sweden)

    Daniela Strobbe

    2018-03-01

    Full Text Available The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson’s disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein–protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6. Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis.

  1. Assessment of mitochondrial functions in Daphnia pulex clones using high-resolution respirometry.

    Science.gov (United States)

    Kake-Guena, Sandrine A; Touisse, Kamal; Vergilino, Roland; Dufresne, France; Blier, Pierre U; Lemieux, Hélène

    2015-06-01

    The objectives of our study were to adapt a method to measure mitochondrial function in intact mitochondria from the small crustacean Daphnia pulex and to validate if this method was sensitive enough to characterize mitochondrial metabolism in clones of the pulex complex differing in ploidy levels, mitochondrial DNA haplotypes, and geographic origins. Daphnia clones belonging to the Daphnia pulex complex represent a powerful model to delineate the link between mitochondrial DNA evolution and mitochondrial phenotypes, as single genotypes with divergent mtDNA can be grown under various experimental conditions. Our study included two diploid clones from temperate environments and two triploid clones from subarctic environments. The whole animal permeabilization and measurement of respiration with high-resolution respirometry enabled the measurement of the functional capacity of specific mitochondrial complexes in four clones. When expressing the activity as ratios, our method detected significant interclonal variations. In the triploid subarctic clone from Kuujjurapik, a higher proportion of the maximal physiological oxidative phosphorylation (OXPHOS) capacity of mitochondria was supported by complex II, and a lower proportion by complex I. The triploid subarctic clone from Churchill (Manitoba) showed the lowest proportion of the maximal OXPHOS supported by complex II. Additional studies are required to determine if these differences in mitochondrial functions are related to differences in mitochondrial haplotypes or ploidy level and if they might be associated with fitness divergences and therefore selective value. © 2015 Wiley Periodicals, Inc.

  2. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Salem, Ikhlass Haj [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-07-29

    Highlights: {yields} We reported a patient with Wolfram syndrome and dilated cardiomyopathy. {yields} We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). {yields} Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. {yields} The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  3. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    International Nuclear Information System (INIS)

    Mezghani, Najla; Mnif, Mouna; Mkaouar-Rebai, Emna; Kallel, Nozha; Salem, Ikhlass Haj; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-01-01

    Highlights: → We reported a patient with Wolfram syndrome and dilated cardiomyopathy. → We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). → Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. → The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  4. ReseqChip: Automated integration of multiple local context probe data from the MitoChip array in mitochondrial DNA sequence assembly

    Directory of Open Access Journals (Sweden)

    Spang Rainer

    2009-12-01

    Full Text Available Abstract Background The Affymetrix MitoChip v2.0 is an oligonucleotide tiling array for the resequencing of the human mitochondrial (mt genome. For each of 16,569 nucleotide positions of the mt genome it holds two sets of four 25-mer probes each that match the heavy and the light strand of a reference mt genome and vary only at their central position to interrogate all four possible alleles. In addition, the MitoChip v2.0 carries alternative local context probes to account for known mtDNA variants. These probes have been neglected in most studies due to the lack of software for their automated analysis. Results We provide ReseqChip, a free software that automates the process of resequencing mtDNA using multiple local context probes on the MitoChip v2.0. ReseqChip significantly improves base call rate and sequence accuracy. ReseqChip is available at http://code.open-bio.org/svnweb/index.cgi/bioperl/browse/bioperl-live/trunk/Bio/Microarray/Tools/. Conclusions ReseqChip allows for the automated consolidation of base calls from alternative local mt genome context probes. It thereby improves the accuracy of resequencing, while reducing the number of non-called bases.

  5. Mitochondrial shaping cuts.

    Science.gov (United States)

    Escobar-Henriques, Mafalda; Langer, Thomas

    2006-01-01

    A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.

  6. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com; Yu, Ning; Liu, Jia

    2015-06-05

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed the expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.

  7. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    Directory of Open Access Journals (Sweden)

    Anthony L Luz

    Full Text Available Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors, carbonyl cyanide 4-(trifluoromethoxy phenylhydrazone (mitochondrial uncoupler and sodium azide (cytochrome c oxidase inhibitor, we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1-, fusion (fzo-1-, mitophagy (pdr-1, pink-1-, and electron transport chain complex III (isp-1-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  8. Basal Ganglia Calcification with Tetanic Seizure Suggest Mitochondrial Disorder.

    Science.gov (United States)

    Finsterer, Josef; Enzelsberger, Barbara; Bastowansky, Adam

    2017-04-09

    BACKGROUND Basal ganglia calcification (BGC) is a rare sporadic or hereditary central nervous system (CNS) abnormality, characterized by symmetric or asymmetric calcification of the basal ganglia. CASE REPORT We report the case of a 65-year-old Gypsy female who was admitted for a tetanic seizure, and who had a history of polyneuropathy, restless-leg syndrome, retinopathy, diabetes, hyperlipidemia, osteoporosis with consecutive hyperkyphosis, cervicalgia, lumbalgia, struma nodosa requiring thyroidectomy and consecutive hypothyroidism, adipositas, resection of a vocal chord polyp, arterial hypertension, coronary heart disease, atheromatosis of the aorta, peripheral artery disease, chronic obstructive pulmonary disease, steatosis hepatis, mild renal insufficiency, long-term hypocalcemia, hyperphosphatemia, impingement syndrome, spondylarthrosis of the lumbar spine, and hysterectomy. History and clinical presentation suggested a mitochondrial defect which also manifested as hypoparathyroidism or Fanconi syndrome resulting in BGC. After substitution of calcium, no further tetanic seizures occurred. CONCLUSIONS Patients with BGC should be investigated for a mitochondrial disorder. A mitochondrial disorder may also manifest as tetanic seizure.

  9. UBIAD1 mutation alters a mitochondrial prenyltransferase to cause Schnyder corneal dystrophy.

    Directory of Open Access Journals (Sweden)

    Michael L Nickerson

    2010-05-01

    Full Text Available Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD. SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure.We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules.Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly

  10. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  11. Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-knockdown mice.

    Directory of Open Access Journals (Sweden)

    Corey ePowers

    2013-04-01

    Full Text Available The phospholipid, cardiolipin, is essential for maintaining mitochondrial structure and optimal function. Cardiolipin-deficiency in humans, Barth syndrome, is characterized by exercise intolerance, dilated cardiomyopathy, neutropenia and 3-methyl-glutaconic aciduria. The causative gene is the mitochondrial acyl-transferase, tafazzin that is essential for remodeling acyl chains of cardiolipin. We sought to determine metabolic rates in tafazzin-deficient mice during resting and exercise, and investigate the impact of cardiolipin deficiency on mitochondrial respiratory chain activities. Tafazzin knockdown in mice markedly impaired oxygen consumption rates during an exercise, without any significant effect on resting metabolic rates. CL-deficiency resulted in significant reduction of mitochondrial respiratory reserve capacity in neonatal cardiomyocytes that is likely to be caused by diminished activity of complex-III, which requires CL for its assembly and optimal activity. Our results may provide mechanistic insights of Barth syndrome pathogenesis.

  12. The use of mitochondrial DNA (mtDNA-investigations in Forensic Sciences

    Directory of Open Access Journals (Sweden)

    S. Dawson

    1996-07-01

    Full Text Available A variety of methods was developed to characterize mtDNA. The initial aim of these techniques was to try and link diseases with specific mitochondrial defects. As a result of the maternal inheritance trait of mtDNA these techniques facilitate studies of the phylogenetic history and population structure of the human population. It has been shown that mitochondrial DNA typing can be of great value for human identification in forensic cases. The identification of victims of mass-disasters or mass-murders, where human remains can be recovered only after many years have passed, is one of the most challenging fields of forensic identification. By using automated DNA sequencing with fluorescent labels, mitochondrial DNA sequences can be generated rapidly and accurately. Computer software facilitates the rapid comparison of individual and reference sequences.

  13. Computed tomography and angiography in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes)

    International Nuclear Information System (INIS)

    Hasuo, K.; Tamura, S.; Yasumori, K.; Uchino, A.; Masuda, K.; Goda, S.; Ishimoto, S.; Kamikaseda, K.; Wakuta, Y.; Kishi, M.

    1987-01-01

    Among mitochondrial encephalomyopathies, MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes, Pavlakis et al., 1983) is recognized as a distinct syndrome characterized by generalized convulsions and recurrrent stroke-like episodes. The neuroradiological findings of three patients with MELAS are reported here. Retrospective review shows that MELAS should be included in the differential diagnosis of infarct-like lesions of the cerebrum. (orig.)

  14. Isolation and characterization of a Ca/sup 2 +/ carrier candidate from calf heart inner mitochondrial membrane

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, A.Y.

    1979-01-01

    A protein was isolated from calf heart inner mitochondrial membrane with the aid of an electron paramagnetic resonance assay based on the relative binding properties of Ca/sup 2 +/, Mn/sup 2 +/, and Mg/sup 2 +/ to the protein. Partial delipidation of the protein was performed by using either the organic solvent extraction procedure or the silicic acid column chromatography. Control experiments indicated that the Ca/sup 2 +/ transport properties of the isolated protein were not due to the contaminating phospholipids. A complete delipidation procedure was developd by using Sephadex LH-20 column chromatography. Further characterization of the physical and chemical properties of the delipidated protein showed that delipidated protein becomes more hydrophobic in the presence of Ca/sup 2 +/ and alkaline pH in the organic solvent extraction experiments. Two possible models of calciphorin-mediated Ca/sup 2 +/ transport in mitochondria are proposed. (PCS)

  15. The regulation of mitochondrial transcription factor A (Tfam) expression during skeletal muscle cell differentiation.

    Science.gov (United States)

    Collu-Marchese, Melania; Shuen, Michael; Pauly, Marion; Saleem, Ayesha; Hood, David A

    2015-05-19

    The ATP demand required for muscle development is accommodated by elevations in mitochondrial biogenesis, through the co-ordinated activities of the nuclear and mitochondrial genomes. The most important transcriptional activator of the mitochondrial genome is mitochondrial transcription factor A (Tfam); however, the regulation of Tfam expression during muscle differentiation is not known. Thus, we measured Tfam mRNA levels, mRNA stability, protein expression and localization and Tfam transcription during the progression of muscle differentiation. Parallel 2-fold increases in Tfam protein and mRNA were observed, corresponding with 2-3-fold increases in mitochondrial content. Transcriptional activity of a 2051 bp promoter increased during this differentiation period and this was accompanied by a 3-fold greater Tfam mRNA stabilization. Interestingly, truncations of the promoter at 1706 bp, 978 bp and 393 bp promoter all exhibited 2-3-fold higher transcriptional activity than the 2051 bp construct, indicating the presence of negative regulatory elements within the distal 350 bp of the promoter. Activation of AMP kinase augmented Tfam transcription within the proximal promoter, suggesting the presence of binding sites for transcription factors that are responsive to cellular energy state. During differentiation, the accumulating Tfam protein was progressively distributed to the mitochondrial matrix where it augmented the expression of mtDNA and COX (cytochrome c oxidase) subunit I, an mtDNA gene product. Our data suggest that, during muscle differentiation, Tfam protein levels are regulated by the availability of Tfam mRNA, which is controlled by both transcription and mRNA stability. Changes in energy state and Tfam localization also affect Tfam expression and action in differentiating myotubes. © 2015 Authors.

  16. Autophagy capacity and sub-mitochondrial heterogeneity shape Bnip3-induced mitophagy regulation of apoptosis.

    Science.gov (United States)

    Choe, Sehyo Charley; Hamacher-Brady, Anne; Brady, Nathan Ryan

    2015-08-08

    Mitochondria are key regulators of apoptosis. In response to stress, BH3-only proteins activate pro-apoptotic Bcl2 family proteins Bax and Bak, which induce mitochondrial outer membrane permeabilization (MOMP). While the large-scale mitochondrial release of pro-apoptotic proteins activates caspase-dependent cell death, a limited release results in sub-lethal caspase activation which promotes tumorigenesis. Mitochondrial autophagy (mitophagy) targets dysfunctional mitochondria for degradation by lysosomes, and undergoes extensive crosstalk with apoptosis signaling, but its influence on apoptosis remains undetermined. The BH3-only protein Bnip3 integrates apoptosis and mitophagy signaling at different signaling domains. Bnip3 inhibits pro-survival Bcl2 members via its BH3 domain and activates mitophagy through its LC3 Interacting Region (LIR), which is responsible for binding to autophagosomes. Previously, we have shown that Bnip3-activated mitophagy prior to apoptosis induction can reduce mitochondrial activation of caspases, suggesting that a reduction to mitochondrial levels may be pro-survival. An outstanding question is whether organelle dynamics and/or recently discovered subcellular variations of protein levels responsible for both MOMP sensitivity and crosstalk between apoptosis and mitophagy can influence the cellular apoptosis decision event. To that end, here we undertook a systems biology analysis of mitophagy-apoptosis crosstalk at the level of cellular mitochondrial populations. Based on experimental findings, we developed a multi-scale, hybrid model with an individually adaptive mitochondrial population, whose actions are determined by protein levels, embedded in an agent-based model (ABM) for simulating subcellular dynamics and local feedback via reactive oxygen species signaling. Our model, supported by experimental evidence, identified an emergent regulatory structure within canonical apoptosis signaling. We show that the extent of mitophagy is

  17. Yeast as a Tool to Study Signaling Pathways in Mitochondrial Stress Response and Cytoprotection

    Directory of Open Access Journals (Sweden)

    Maša Ždralević

    2012-01-01

    Full Text Available Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways.

  18. Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy.

    Science.gov (United States)

    Lesage, Suzanne; Drouet, Valérie; Majounie, Elisa; Deramecourt, Vincent; Jacoupy, Maxime; Nicolas, Aude; Cormier-Dequaire, Florence; Hassoun, Sidi Mohamed; Pujol, Claire; Ciura, Sorana; Erpapazoglou, Zoi; Usenko, Tatiana; Maurage, Claude-Alain; Sahbatou, Mourad; Liebau, Stefan; Ding, Jinhui; Bilgic, Basar; Emre, Murat; Erginel-Unaltuna, Nihan; Guven, Gamze; Tison, François; Tranchant, Christine; Vidailhet, Marie; Corvol, Jean-Christophe; Krack, Paul; Leutenegger, Anne-Louise; Nalls, Michael A; Hernandez, Dena G; Heutink, Peter; Gibbs, J Raphael; Hardy, John; Wood, Nicholas W; Gasser, Thomas; Durr, Alexandra; Deleuze, Jean-François; Tazir, Meriem; Destée, Alain; Lohmann, Ebba; Kabashi, Edor; Singleton, Andrew; Corti, Olga; Brice, Alexis

    2016-03-03

    Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Cutaneous Respirometry as Novel Technique to Monitor Mitochondrial Function: A Feasibility Study in Healthy Volunteers

    Science.gov (United States)

    Stolker, Robert Jan; Mik, Egbert

    2016-01-01

    Background The protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) is proposed as a potential clinical non-invasive tool to monitor mitochondrial function. This technique has been evaluated in several animal studies. Mitochondrial respirometry allows measurement in vivo of mitochondrial oxygen tension (mitoPO2) and mitochondrial oxygen consumption (mitoVO2) in skin. This study describes the first use of a clinical prototype in skin of humans. Methods The clinical prototype was tested in 30 healthy volunteers. A self-adhesive patch containing 2 mg 5-aminolevulinic acid (ALA) was applied on the skin of the anterior chest wall (sternal) for induction of mitochondrial protoporphyrin IX and was protected from light for 5 h. MitoPO2 was measured by means of oxygen-dependent delayed fluorescence of protoporphyrin IX. MitoVO2 was determined by dynamic mitoPO2 measurements on the primed skin, while locally blocking oxygen supply by applying local pressure with the measurement probe. MitoPO2 was recorded before and during a 60-s period of compression of the microcirculation, at an interval of 1 Hz. Oxygen consumption (i.e. the local oxygen disappearance rate) was calculated from the decay of the mitoPO2 slope. Results Oxygen-dependent delayed fluorescence measurements were successfully performed in the skin of 27 volunteers. The average value (± SD) of mitoPO2 was 44 ± 17 mmHg and mean mitoVO2 values were 5.8 ± 2.3 and 6.1 ± 1.6 mmHg s-1 at a skin temperature of 34°C and 40°C, respectively. No major discomfort during measurement and no long-term dermatological abnormalities were reported in a survey performed 1 month after measurements. Conclusion These results show that the clinical prototype allows measurement of mitochondrial oxygenation and oxygen consumption in humans. The development of this clinically applicable device offers opportunities for further evaluation of the technique in humans and the start of first clinical studies. PMID:27455073

  20. Mitochondrial-nuclear genome interactions in nonalcoholic fatty liver disease in mice

    Science.gov (United States)

    Betancourt, Angela M.; King, Adrienne L.; Fetterman, Jessica L.; Millender-Swain, Telisha; Finley, Rachel D.; Oliva, Claudia R.; Crowe, David Ralph; Ballinger, Scott W.; Bailey, Shannon M.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation, and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. Herein, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, Mitochondrial-Nuclear eXchange (MNX) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared to wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation, and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD. PMID:24758559

  1. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L., E-mail: cmedin.uri@gmail.com

    2017-01-15

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  2. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    International Nuclear Information System (INIS)

    Barbier, Vincent; Lang, Diane; Valois, Sierra; Rothman, Alan L.; Medin, Carey L.

    2017-01-01

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.

  3. The mitochondrial genome of the ascalaphid owlfly Libelloides macaronius and comparative evolutionary mitochondriomics of neuropterid insects

    Science.gov (United States)

    2011-01-01

    Background The insect order Neuroptera encompasses more than 5,700 described species. To date, only three neuropteran mitochondrial genomes have been fully and one partly sequenced. Current knowledge on neuropteran mitochondrial genomes is limited, and new data are strongly required. In the present work, the mitochondrial genome of the ascalaphid owlfly Libelloides macaronius is described and compared with the known neuropterid mitochondrial genomes: Megaloptera, Neuroptera and Raphidioptera. These analyses are further extended to other endopterygotan orders. Results The mitochondrial genome of L. macaronius is a circular molecule 15,890 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. The gene order of this newly sequenced genome is unique among Neuroptera and differs from the ancestral type of insects in the translocation of trnC. The L. macaronius genome shows the lowest A+T content (74.50%) among known neuropterid genomes. Protein-coding genes possess the typical mitochondrial start codons, except for cox1, which has an unusual ACG. Comparisons among endopterygotan mitochondrial genomes showed that A+T content and AT/GC-skews exhibit a broad range of variation among 84 analyzed taxa. Comparative analyses showed that neuropterid mitochondrial protein-coding genes experienced complex evolutionary histories, involving features ranging from codon usage to rate of substitution, that make them potential markers for population genetics/phylogenetics studies at different taxonomic ranks. The 22 tRNAs show variable substitution patterns in Neuropterida, with higher sequence conservation in genes located on the α strand. Inferred secondary structures for neuropterid rrnS and rrnL genes largely agree with those known for other insects. For the first time, a model is provided for domain I of an insect rrnL. The control region in Neuropterida, as in other insects, is fast-evolving genomic region, characterized by AT

  4. Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.

    Directory of Open Access Journals (Sweden)

    Rehan M Baqri

    Full Text Available Mutations in mitochondrial DNA polymerase (pol gamma cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.

  5. Novel mitochondrial extensions provide evidence for a link between microtubule-directed movement and mitochondrial fission

    International Nuclear Information System (INIS)

    Bowes, Timothy; Gupta, Radhey S.

    2008-01-01

    Mitochondrial dynamics play an important role in a large number of cellular processes. Previously, we reported that treatment of mammalian cells with the cysteine-alkylators, N-ethylmaleimide and ethacrynic acid, induced rapid mitochondrial fusion forming a large reticulum approximately 30 min after treatment. Here, we further investigated this phenomenon using a number of techniques including live-cell confocal microscopy. In live cells, drug-induced fusion coincided with a cessation of fast mitochondrial movement which was dependent on microtubules. During this loss of movement, thin mitochondrial tubules extending from mitochondria were also observed, which we refer to as 'mitochondrial extensions'. The formation of these mitochondrial extensions, which were not observed in untreated cells, depended on microtubules and was abolished by pretreatment with nocodazole. In this study, we provide evidence that these extensions result from of a block in mitochondrial fission combined with continued application of motile force by microtubule-dependent motor complexes. Our observations strongly suggest the existence of a link between microtubule-based mitochondrial trafficking and mitochondrial fission

  6. Mitochondrial Dynamics Decrease Prior to Axon Degeneration Induced by Vincristine and are Partially Rescued by Overexpressed cytNmnat1.

    Directory of Open Access Journals (Sweden)

    Gregory Berbusse

    2016-07-01

    Full Text Available Axon degeneration is a prominent feature of various neurodegenerative diseases, such as Parkinson’s and Alzheimer’s, and is often characterized by aberrant mitochondrial dynamics. Mitochondrial fission, fusion, and motility have been shown to be particularly important in progressive neurodegeneration. Thus we investigated these imperative dynamics, as well as mitochondrial fragmentation in vincristine induced axon degradation in cultured DRG neurons. CytNmnat1 inhibits axon degeneration in various paradigms including vincristine toxicity. The mechanism of its protection is not yet fully understood; therefore, we also investigated the effect of cytNmnat1 on mitochondrial dynamics in vincristine treated neurons. We observed that vincristine treatment decreases the rate of mitochondrial fission, fusion and motility and induces mitochondrial fragmentation. These mitochondrial events precede visible axon degeneration. Overexpression of cytNmnat1 inhibits axon degeneration and preserves the normal mitochondrial dynamics and motility in vincristine treated neurons. We suggest the alterations in mitochondrial structure and dynamics are early events which lead to axon degeneration and cytNmnat1 blocks axon degeneration by halting the vincristine induced changes to mitochondrial structure and dynamics.

  7. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.

    Science.gov (United States)

    Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu

    2012-07-15

    Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that

  8. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies.

    Directory of Open Access Journals (Sweden)

    Masakazu Kohda

    2016-01-01

    Full Text Available Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4 as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3 and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21 as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder.

  9. Cyclopamine tartrate, an inhibitor of Hedgehog signaling, strongly interferes with mitochondrial function and suppresses aerobic respiration in lung cancer cells

    International Nuclear Information System (INIS)

    Alam, Md Maksudul; Sohoni, Sagar; Kalainayakan, Sarada Preeta; Garrossian, Massoud; Zhang, Li

    2016-01-01

    Aberrant Hedgehog (Hh) signaling is associated with the development of many cancers including prostate cancer, gastrointestinal cancer, lung cancer, pancreatic cancer, ovarian cancer, and basal cell carcinoma. The Hh signaling pathway has been one of the most intensely investigated targets for cancer therapy, and a number of compounds inhibiting Hh signaling are being tested clinically for treating many cancers. Lung cancer causes more deaths than the next three most common cancers (colon, breast, and prostate) combined. Cyclopamine was the first compound found to inhibit Hh signaling and has been invaluable for understanding the function of Hh signaling in development and cancer. To find novel strategies for combating lung cancer, we decided to characterize the effect of cyclopamine tartrate (CycT), an improved analogue of cyclopamine, on lung cancer cells and its mechanism of action. The effect of CycT on oxygen consumption and proliferation of non-small-cell lung cancer (NSCLC) cell lines was quantified by using an Oxygraph system and live cell counting, respectively. Apoptosis was detected by using Annexin V and Propidium Iodide staining. CycT’s impact on ROS generation, mitochondrial membrane potential, and mitochondrial morphology in NSCLC cells was monitored by using fluorometry and fluorescent microscopy. Western blotting and fluorescent microscopy were used to detect the levels and localization of Hh signaling targets, mitochondrial fission protein Drp1, and heme-related proteins in various NSCLC cells. Our findings identified a novel function of CycT, as well as another Hh inhibitor SANT1, to disrupt mitochondrial function and aerobic respiration. Our results showed that CycT, like glutamine depletion, caused a substantial decrease in oxygen consumption in a number of NSCLC cell lines, suppressed NSCLC cell proliferation, and induced apoptosis. Further, we found that CycT increased ROS generation, mitochondrial membrane hyperpolarization, and

  10. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy.

    Science.gov (United States)

    Mezghani, Najla; Mnif, Mouna; Mkaouar-Rebai, Emna; Kallel, Nozha; Salem, Ikhlass Haj; Charfi, Nadia; Abid, Mohamed; Fakhfakh, Faiza

    2011-07-29

    Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Palmitoylation of the immunity related GTPase, Irgm1: impact on membrane localization and ability to promote mitochondrial fission.

    Directory of Open Access Journals (Sweden)

    Stanley C Henry

    Full Text Available The Immunity-Related GTPases (IRG are a family of large GTPases that mediate innate immune responses. Irgm1 is particularly critical for immunity to bacteria and protozoa, and for inflammatory homeostasis in the intestine. Although precise functions for Irgm1 have not been identified, prior studies have suggested roles in autophagy/mitophagy, phagosome remodeling, cell motility, and regulating the activity of other IRG proteins. These functions ostensibly hinge on the ability of Irgm1 to localize to intracellular membranes, such as those of the Golgi apparatus and mitochondria. Previously, it has been shown that an amphipathic helix, the αK helix, in the C-terminal portion of the protein partially mediates membrane binding. However, in absence of αK, there is still substantial binding of Irgm1 to cellular membranes, suggesting the presence of other membrane binding motifs. In the current work, an additional membrane localization motif was found in the form of palmitoylation at a cluster of cysteines near the αK. An Irgm1 mutant possessing alanine to cysteine substitutions at these amino acids demonstrated little residual palmitoylation, yet it displayed only a small decrease in localization to the Golgi and mitochondria. In contrast, a mutant containing the palmitoylation mutations in combination with mutations disrupting the amphipathic character of the αK displayed a complete loss of apparent localization to the Golgi and mitochondria, as well as an overall loss of association with cellular membranes in general. Additionally, Irgm1 was found to promote mitochondrial fission, and this function was undermined in Irgm1 mutants lacking the palmitoylation domain, and to a greater extent in those lacking the αK, or the αK and palmitoylation domains combined. Our data suggest that palmitoylation together with the αK helix firmly anchor Irgm1 in the Golgi and mitochondria, thus facilitating function of the protein.

  12. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.

    Science.gov (United States)

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-03-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.

  13. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  14. Autism in the Son of a Woman with Mitochondrial Myopathy and Dysautonomia: A Case Report.

    Science.gov (United States)

    Brown, Bradley D; Rais, Theodore

    2015-01-01

    The relationship between autism spectrum disorders and mitochondrial dysfunction, including mitochondrial myopathies and other mitochondrial diseases, is an area of ongoing research. All autism spectrum disorders are known to be heritable, via genetic and/or epigenetic mechanisms, but specific modes of inheritance are not well characterized. Nevertheless, autism spectrum disorders have been linked to many specific genes associated with mitochondrial function, especially to genes involved in mitochondrial tRNA and the electron transport chain, both particularly vulnerable to point mutations, and clinical research also supports a relationship between the two pathologies. Although only a small minority of patients with autism have a mitochondrial disease, many patients with mitochondrial myopathies have autism spectrum disorder symptoms, and these symptoms may be the presenting symptoms, which presents a diagnostic challenge for clinicians. The authors report the case of a 15-year-old boy with a history of autism spectrum disorder and neurocardiogenic syncope, admitted to the inpatient unit for self-injury, whose young mother, age 35, was discovered to suffer from mitochondrial myopathy, dysautonomia, neurocardiogenic syncope, Ehler-Danlos syndrome, and other uncommon multisystem pathologies likely related to mitochondrial dysfunction. This case illustrates the need for a high index of suspicion for mitochondrial disease in patients with autism, as they have two orders of magnitude greater risk for such diseases than the general population. The literature shows that mitochondrial disease is underdiagnosed in autism spectrum disorder patients and should not be viewed as a "zebra" (i.e., an obscure diagnosis that is made when a more common explanation is more likely).

  15. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Jason A., E-mail: funkj@musc.edu [Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Schnellmann, Rick G., E-mail: schnell@musc.edu [Center for Cell Death, Injury, and Regeneration, Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Ralph H. Johnson VA Medical Center, Charleston, SC 29401 (United States)

    2013-12-01

    Kidney ischemia–reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5 mg/kg) starting 24 h after reperfusion until 72 h–144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R + vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even further augmented and nuclear localization was restored in the kidneys of rats after I/R + SRT1720 treatment (IRS). PGC-1α was elevated at 72 h–144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24 h–144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na{sup +},K{sup +}–ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. - Highlights: • We examined recovery of mitochondrial and renal function after ischemia–reperfusion. • SRT1720 treatment after I/R induced mitochondrial biogenesis via SIRT1/PGC-1α. • Recovery of mitochondrial function was

  16. Mitochondrial myopathy, encephalopathy, lactate acidosis with stroke-like episodes syndrome (MELAS: A case report

    Directory of Open Access Journals (Sweden)

    Petrović Igor N.

    2012-01-01

    Full Text Available Introduction. Mitochondrial encephalopathy, lactacidosis and stroke-like episodes (MELAS represent a multisystemic dysfunction due to various mutations in mitochondrial DNA. Here we report a patient with genetically confirmed MELAS. Case Outline. A patient is presented whose clinical features involved short stature, easy tendency to fatigue, recurrent seizures, progressive cognitive decline, myopathy, sensorineural deafness, diabetes mellitus as well as stroke-like episodes. The major clinical feature of migraine type headache was not present. Neuroimaging studies revealed signs of ischemic infarctions localized in the posterior regions of the brain cortex. Electron microscopy of the skeletal muscle biopsy showed subsarcolemmal accumulation of a large number of mitochondria with paracristal inclusions in the skeletal muscle cells. The diagnosis of MELAS was definitively confirmed by the detection of a specific point mutation A to G at nucleotide position 3243 of mitochondrial DNA. Conclusion. When a relatively young patient without common risk factors for ischemic stroke presents with signs of occipitally localized brain infarctions accompanied with multisystemic dysfunction, MELAS syndrome, it is necessary to conduct investigations in order to diagnose the disease.

  17. Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins

    NARCIS (Netherlands)

    Haas, Jan M. de; Hille, Jacques; Kors, Frank; Meer, Bert van der; Kool, Ad J.; Folkerts, Otto; Nijkamp, H. John J.

    1991-01-01

    Four Petunia hybrida mitochondrial (mt) DNA fragments have been isolated, sequenced, localized on the physical map and analyzed for their ability to initiate specific DNA synthesis. When all four mtDNA fragments were tested as templates in an in vitro DNA synthesizing lysate system, developed from

  18. Mitochondrial matters: Mitochondrial bottlenecks, self-assembling structures, and entrapment in the female germline

    Directory of Open Access Journals (Sweden)

    Florence L. Marlow

    2017-05-01

    Full Text Available Mitochondrial replacement therapy, a procedure to generate embryos with the nuclear genome of a donor mother and the healthy mitochondria of a recipient egg, has recently emerged as a promising strategy to prevent transmission of devastating mitochondrial DNA diseases and infertility. The procedure may produce an embryo that is free of diseased mitochondria. A recent study addresses important fundamental questions about the mechanisms underlying maternal inheritance and translational questions regarding the transgenerational effectiveness of this promising therapeutic strategy. This review considers recent advances in our understanding of maternal inheritance of mitochondria, implications for fertility and mitochondrial disease, and potential roles for the Balbiani body, an ancient oocyte structure, in mitochondrial selection in oocytes, with emphasis on therapies to remedy mitochondrial disorders.

  19. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Viitanen, Matti; Sundström, Erik; Baumann, Marc; Poyhonen, Minna; Tikka, Saara; Behbahani, Homira

    2013-01-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ m ) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  20. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Viitanen, Matti [Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Department of Geriatrics, Turku City Hospital and University of Turku, Turku (Finland); Sundström, Erik [Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Baumann, Marc [Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki (Finland); Poyhonen, Minna [Department of Clinical Genetics, Helsinki University Hospital, HUSLAB, Helsinki (Finland); Tikka, Saara [Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki (Finland); Behbahani, Homira, E-mail: homira.behbahani@ki.se [Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Karolinska Institutet Alzheimer' s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden)

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ{sub m}) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  1. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Matthew E Gegg

    Full Text Available Mitochondrial dysfunction has been implicated in the pathogenesis of Parkinson's disease (PD. Impairment of the mitochondrial electron transport chain (ETC and an increased frequency in deletions of mitochondrial DNA (mtDNA, which encodes some of the subunits of the ETC, have been reported in the substantia nigra of PD brains. The identification of mutations in the PINK1 gene, which cause an autosomal recessive form of PD, has supported mitochondrial involvement in PD. The PINK1 protein is a serine/threonine kinase localized in mitochondria and the cytosol. Its precise function is unknown, but it is involved in neuroprotection against a variety of stress signalling pathways.In this report we have investigated the effect of silencing PINK1 expression in human dopaminergic SH-SY5Y cells by siRNA on mtDNA synthesis and ETC function. Loss of PINK1 expression resulted in a decrease in mtDNA levels and mtDNA synthesis. We also report a concomitant loss of mitochondrial membrane potential and decreased mitochondrial ATP synthesis, with the activity of complex IV of the ETC most affected. This mitochondrial dysfunction resulted in increased markers of oxidative stress under basal conditions and increased cell death following treatment with the free radical generator paraquat.This report highlights a novel function of PINK1 in mitochondrial biogenesis and a role in maintaining mitochondrial ETC activity. Dysfunction of both has been implicated in sporadic forms of PD suggesting that these may be key pathways in the development of the disease.

  2. Genetically Determined Insulin Resistance is Characterized by Down-Regulation of Mitochondrial Oxidative Metabolism in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Kristensen, Jonas M; Skov, Vibe; Wojtaszewski, Jørgen

    2010-01-01

    Transcriptional profiling of skeletal muscle from patients with type 2 diabetes and high-risk individuals have demonstrated a co-ordinated down-regulation of oxidative phosphorylation (OxPhos) genes, suggesting a link between insulin resistance and mitochondrial dysfunction. However, whether...... mitochondrial dysfunction is a cause or consequence of insulin resistance remains to be clarified. In the present study, we tested the hypothesis that mitochondrial oxidative metabolism was down-regulated in skeletal muscle of patients with genetically determined insulin resistance. Skeletal muscle biopsies.......02), and complex V (ATP5B; p=0.005). Our data demonstrate that genetically determined insulin resistance is associated with a co-ordinated down-regulation of OxPhos components both at the transcriptional and translational level. These findings suggest that an impaired biological response to insulin in skeletal...

  3. Blood cell mitochondrial DNA content and premature ovarian aging.

    Directory of Open Access Journals (Sweden)

    Marco Bonomi

    Full Text Available Primary ovarian insufficiency (POI is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA content in a group of women undergoing ovarian hyperstimulation (OH, and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF and 42 poor responders (PR to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001 in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase γ (POLG gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction.

  4. Mitochondrial respiratory control is lost during growth factor deprivation.

    Science.gov (United States)

    Gottlieb, Eyal; Armour, Sean M; Thompson, Craig B

    2002-10-01

    The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-x(L), restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control.

  5. Legionella pneumophila secretes a mitochondrial carrier protein during infection.

    Directory of Open Access Journals (Sweden)

    Pavel Dolezal

    2012-01-01

    Full Text Available The Mitochondrial Carrier Family (MCF is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP, encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.

  6. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release

    Science.gov (United States)

    Zorov, Dmitry B.; Juhaszova, Magdalena; Sollott, Steven J.

    2014-01-01

    Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca2+, etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca2+). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo. PMID:24987008

  7. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    International Nuclear Information System (INIS)

    Palmeira, Carlos M.; Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-01-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes

  8. Effect of Simvastatin, Coenzyme Q10, Resveratrol, Acetylcysteine and Acetylcarnitine on Mitochondrial Respiration.

    Science.gov (United States)

    Fišar, Z; Hroudová, J; Singh, N; Kopřivová, A; Macečková, D

    2016-01-01

    Some therapeutic and/or adverse effects of drugs may be related to their effects on mitochondrial function. The effects of simvastatin, resveratrol, coenzyme Q10, acetylcysteine, and acetylcarnitine on Complex I-, Complex II-, or Complex IV-linked respiratory rate were determined in isolated brain mitochondria. The protective effects of these biologically active compounds on the calcium-induced decrease of the respiratory rate were also studied. We observed a significant inhibitory effect of simvastatin on mitochondrial respiration (IC50 = 24.0 μM for Complex I-linked respiration, IC50 = 31.3 μM for Complex II-linked respiration, and IC50 = 42.9 μM for Complex IV-linked respiration); the inhibitory effect of resveratrol was found at very high concentrations (IC50 = 162 μM for Complex I-linked respiration, IC50 = 564 μM for Complex II-linked respiration, and IC50 = 1454 μM for Complex IV-linked respiration). Concentrations required for effective simvastatin- or resveratrol-induced inhibition of mitochondrial respiration were found much higher than concentrations achieved under standard dosing of these drugs. Acetylcysteine and acetylcarnitine did not affect the oxygen consumption rate of mitochondria. Coenzyme Q10 induced an increase of Complex I-linked respiration. The increase of free calcium ions induced partial inhibition of the Complex I+II-linked mitochondrial respiration, and all tested drugs counteracted this inhibition. None of the tested drugs showed mitochondrial toxicity (characterized by respiratory rate inhibition) at drug concentrations achieved at therapeutic drug intake. Resveratrol, simvastatin, and acetylcarnitine had the greatest neuroprotective potential (characterized by protective effects against calcium-induced reduction of the respiratory rate).

  9. Elastocapillary Instability in Mitochondrial Fission

    Science.gov (United States)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  10. Characterization of the complete mitochondrial genome of Acanthoscelides obtectus (Coleoptera: Chrysomelidae: Bruchinae) with phylogenetic analysis.

    Science.gov (United States)

    Yao, Jie; Yang, Hong; Dai, Renhuai

    2017-10-01

    Acanthoscelides obtectus is a common species of the subfamily Bruchinae and a worldwide-distributed seed-feeding beetle. The complete mitochondrial genome of A. obtectus is 16,130 bp in length with an A + T content of 76.4%. It contains a positive AT skew and a negative GC skew. The mitogenome of A. obtectus contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes and a non-coding region (D-loop). All PCGs start with an ATN codon, and seven (ND3, ATP6, COIII, ND3, ND4L, ND6, and Cytb) of them terminate with TAA, while the remaining five (COI, COII, ND1, ND4, and ND5) terminate with a single T, ATP8 terminates with TGA. Except tRNA Ser , the secondary structures of 21 tRNAs that can be folded into a typical clover-leaf structure were identified. The secondary structures of lrRNA and srRNA were also predicted in this study. There are six domains with 48 helices in lrRNA and three domains with 32 helices in srRNA. The control region of A. obtectus is 1354 bp in size with the highest A + T content (83.5%) in a mitochondrial gene. Thirteen PCGs in 19 species have been used to infer their phylogenetic relationships. Our results show that A. obtectus belongs to the family Chrysomelidae (subfamily-Bruchinae). This is the first study on phylogenetic analyses involving the mitochondrial genes of A. obtectus and could provide basic data for future studies of mitochondrial genome diversities and the evolution of related insect lineages.

  11. An Unusual Prohibitin Regulates Malaria Parasite Mitochondrial Membrane Potential

    Directory of Open Access Journals (Sweden)

    Joachim Michael Matz

    2018-04-01

    Full Text Available Summary: Proteins of the stomatin/prohibitin/flotillin/HfIK/C (SPFH family are membrane-anchored and perform diverse cellular functions in different organelles. Here, we investigate the SPFH proteins of the murine malaria model parasite Plasmodium berghei, the conserved prohibitin 1, prohibitin 2, and stomatin-like protein and an unusual prohibitin-like protein (PHBL. The SPFH proteins localize to the parasite mitochondrion. While the conserved family members could not be deleted from the Plasmodium genome, PHBL was successfully ablated, resulting in impaired parasite fitness and attenuated virulence in the mammalian host. Strikingly, PHBL-deficient parasites fail to colonize the Anopheles vector because of complete arrest during ookinete development in vivo. We show that this arrest correlates with depolarization of the mitochondrial membrane potential (ΔΨmt. Our results underline the importance of SPFH proteins in the regulation of core mitochondrial functions and suggest that fine-tuning of ΔΨmt in malarial parasites is critical for colonization of the definitive host. : Matz et al. present an experimental genetics study of an unusual prohibitin-like protein in the malaria parasite and find that it regulates mitochondrial membrane polarity. Ablation of this protein causes almost complete mitochondrial depolarization in the mosquito vector, which, in turn, leads to a block in malaria parasite transmission. Keywords: Plasmodium berghei, malaria, SPFH, prohibitin, stomatin-like protein, mitochondrion, membrane potential, ookinete, transmission

  12. Mitochondrial-nuclear genome interactions in non-alcoholic fatty liver disease in mice.

    Science.gov (United States)

    Betancourt, Angela M; King, Adrienne L; Fetterman, Jessica L; Millender-Swain, Telisha; Finley, Rachel D; Oliva, Claudia R; Crowe, David R; Ballinger, Scott W; Bailey, Shannon M

    2014-07-15

    NAFLD (non-alcoholic fatty liver disease) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. In the present study, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, MNX (mitochondrial-nuclear exchange) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared with wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR (respiratory control ratio) when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD.

  13. Toxoplasma gondii Infection Is Associated with Mitochondrial Dysfunction in-Vitro

    Directory of Open Access Journals (Sweden)

    Genevieve Syn

    2017-12-01

    Full Text Available Upon invasion of host cells, the ubiquitous pathogen Toxoplasma gondii manipulates several host processes, including re-organization of host organelles, to create a replicative niche. Host mitochondrial association to T. gondii parasitophorous vacuoles is rapid and has roles in modulating host immune responses. Here gene expression profiling of T. gondii infected cells reveals enrichment of genes involved in oxidative phosphorylation (OXPHOS and mitochondrial dysfunction 6 h post-infection. We identified 11 hub genes (HIF-1α, CASP8, FN1, POU5F1, CD44, ISG15, HNRNPA1, MDM2, RPL35, VHL, and NUPR1 and 10 predicted upstream regulators, including 4 endogenous regulators RICTOR, KDM5A, RB1, and D-glucose. We characterized a number of mitochondrial parameters in T. gondii infected human foreskin fibroblast cells over a 36 h time-course. In addition to the usual rapid recruitment and apparent enlargement of mitochondria around the parasitophorous vacuole we observed fragmented host mitochondria in infected cells, not linked to cellular apoptosis, from 24 h post-infection. An increase in mitochondrial superoxide levels in T. gondii infected cells was observed that required active parasite invasion and peaked at 30 h post-infection. Measurement of OXPHOS proteins showed decreased expression of Complex IV in infected cells at 24 h post-infection, followed by decreased expression of Complexes I and II at 36 h post-infection. No change occurred in Complex V. No difference in host mitochondrial membrane potential between infected and mock-infected cells was observed at any time. Our results show perturbation of host mitochondrial function following T. gondii infection that likely impacts on pathogenesis of disease.

  14. Mitochondrial functions of THP-1 monocytes following the exposure to selected natural compounds.

    Science.gov (United States)

    Schultze, Nadin; Wanka, Heike; Zwicker, Paula; Lindequist, Ulrike; Haertel, Beate

    2017-02-15

    The immune system is an important target of various xenobiotics, which may lead to severe adverse effects including immunosuppression or inappropriate immunostimulation. Mitochondrial toxicity is one possibility by which xenobiotics exert their toxic effects in cells or organs. In this study, we investigated the impact of three natural compounds, cyclosporine A (CsA), deoxynivalenol (DON) and cannabidiol (CBD) on mitochondrial functions in the THP-1 monocytic cell line. The cells were exposed for 24h to two different concentrations (IC 10 and IC 50 determined by MTT) of each compound. The cells showed concentration-dependent elevated intracellular reactive oxygen species (iROS) and induction of apoptosis (except DON) in response to the three test compounds. Mitochondrial functions were characterized by using bioenergetics profiling experiments. In THP-1 monocytes, the IC 50 of CsA decreased basal and maximal respiration as well as ATP production with an impact on spare capacity indicating a mitochondrial dysfunction. Similar reaction patterns were observed following CBD exposure. The basal respiration level and ATP-production decreased in the THP-1 cells exposed to the IC 50 of DON with no major impact on mitochondrial function. In conclusion, impaired mitochondrial function was accompanied by elevated iROS and apoptosis level in a monocytic cell line exposed to CsA and CBD. Mitochondrial dysfunction may be one explanation for the cytotoxicity of CBD and CsA also in other in immune cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance : Transgenic TK2, mtDNA, and Antiretrovirals

    OpenAIRE

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK...

  16. Characterization of calcium, phosphate and peroxide interactions in activation of mitochondrial swelling using derivative of the swelling curves

    Czech Academy of Sciences Publication Activity Database

    Drahota, Zdeněk; Endlicher, R.; Staňková, P.; Rychtrmoc, D.; Milerová, Marie; Červinková, Z.

    2012-01-01

    Roč. 44, č. 3 (2012), s. 309-315 ISSN 0145-479X R&D Projects: GA MZd(CZ) NT12370 Grant - others:GA ČR(CZ) GP305/09/P145 Institutional support: RVO:67985823 Keywords : mitochondrial swelling * mitochondrial permeability transition pore * Calcium, phosphate and peroxide interactions Subject RIV: FG - Pediatrics Impact factor: 1.604, year: 2012

  17. Thymidine kinase 2 enzyme kinetics elucidate the mechanism of thymidine-induced mitochondrial DNA depletion.

    Science.gov (United States)

    Sun, Ren; Wang, Liya

    2014-10-07

    Mitochondrial thymidine kinase 2 (TK2) is a nuclear gene-encoded protein, synthesized in the cytosol and subsequently translocated into the mitochondrial matrix, where it catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC). The kinetics of dT phosphorylation exhibits negative cooperativity, but dC phosphorylation follows hyperbolic Michaelis-Menten kinetics. The two substrates compete with each other in that dT is a competitive inhibitor of dC phosphorylation, while dC acts as a noncompetitive inhibitor of dT phosphorylation. In addition, TK2 is feedback inhibited by dTTP and dCTP. TK2 also phosphorylates a number of pyrimidine nucleoside analogues used in antiviral and anticancer therapy and thus plays an important role in mitochondrial toxicities caused by nucleoside analogues. Deficiency in TK2 activity due to genetic alterations causes devastating mitochondrial diseases, which are characterized by mitochondrial DNA (mtDNA) depletion or multiple deletions in the affected tissues. Severe TK2 deficiency is associated with early-onset fatal mitochondrial DNA depletion syndrome, while less severe deficiencies result in late-onset phenotypes. In this review, studies of the enzyme kinetic behavior of TK2 enzyme variants are used to explain the mechanism of mtDNA depletion caused by TK2 mutations, thymidine overload due to thymidine phosphorylase deficiency, and mitochondrial toxicity caused by antiviral thymidine analogues.

  18. Mitochondrial functionality in female reproduction

    Directory of Open Access Journals (Sweden)

    Łukasz Gąsior

    2017-01-01

    Full Text Available In most animal species female germ cells are the source of mitochondrial genome for the whole body of individuals. As a source of mitochondrial DNA for future generations the mitochondria in the female germ line undergo dynamic quantitative and qualitative changes. In addition to maintaining the intact template of mitochondrial genome from one generation to another, mitochondrial role in oocytes is much more complex and pleiotropic. The quality of mitochondria determines the ability of meiotic divisions, fertilization ability, and activation after fertilization or sustaining development of a new embryo. The presence of normal number of functional mitochondria is also crucial for proper implantation and pregnancy maintaining. This article addresses issues of mitochondrial role and function in mammalian oocyte and presents new approaches in studies of mitochondrial function in female germ cells.

  19. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

    Science.gov (United States)

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K

    2016-03-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Characterization and evolution of the mitochondrial DNA control region in hornbills (Bucerotiformes).

    Science.gov (United States)

    Delport, Wayne; Ferguson, J Willem H; Bloomer, Paulette

    2002-06-01

    We determined the mitochondrial DNA control region sequences of six Bucerotiformes. Hornbills have the typical avian gene order and their control region is similar to other avian control regions in that it is partitioned into three domains: two variable domains that flank a central conserved domain. Two characteristics of the hornbill control region sequence differ from that of other birds. First, domain I is AT rich as opposed to AC rich, and second, the control region is approximately 500 bp longer than that of other birds. Both these deviations from typical avian control region sequence are explainable on the basis of repeat motifs in domain I of the hornbill control region. The repeat motifs probably originated from a duplication of CSB-1 as has been determined in chicken, quail, and snowgoose. Furthermore, the hornbill repeat motifs probably arose before the divergence of hornbills from each other but after the divergence of hornbills from other avian taxa. The mitochondrial control region of hornbills is suitable for both phylogenetic and population studies, with domains I and II probably more suited to population and phylogenetic analyses, respectively.

  1. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults.

    Directory of Open Access Journals (Sweden)

    Adeel Safdar

    Full Text Available The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; female symbol = male symbol. We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging.

  2. Response of mitochondrial function to hypothyroidism in normal and regenerated rat skeletal muscle.

    Science.gov (United States)

    Zoll, J; Ventura-Clapier, R; Serrurier, B; Bigard, A X

    2001-01-01

    Although thyroid hormones induce a well known decrease in muscle oxidative capacity, nothing is known concerning their effects on mitochondrial function and regulation in situ. Similarly, the influence of regeneration process is not completely understood. We investigated the effects of hypothyroidism on mitochondrial function in fast gastrocnemius (GS) and slow soleus (SOL) muscles either intact or having undergone a cycle of degeneration/regeneration (Rg SOL) following a local injection of myotoxin. Thyroid hormone deficiency was induced by thyroidectomy and propylthiouracyl via drinking water. Respiration was measured in muscle fibres permeabilised by saponin in order to assess the oxidative capacity of the muscles and the regulation of mitochondria in situ. Oxidative capacities were 8.9 in SOL, 8.5 in Rg SOL and 5.9 micromol O2/min/g dry weight in GS and decreased by 52, 42 and 39% respectively (P hypothyroid rats. Moreover, the Km of mitochondrial respiration for the phosphate acceptor ADP exhibited a two-fold decrease in Rg SOL and intact SOL by hypothyroidism (P hypothyroidism markedly altered the sensitivity of mitochondrial respiration to ADP but not to creatine in SOL muscles, suggesting that mitochondrial regulation could be partially controlled by thyroid hormones. On the other hand, mitochondrial function completely recovered following regeneration/degeneration, suggesting that thyroid hormones are not involved in the regeneration process per se.

  3. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage

    OpenAIRE

    Bachmann, Rosilla F.; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K.

    2009-01-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially media...

  4. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    International Nuclear Information System (INIS)

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-01-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ m ) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H 2 O 2 ), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ m depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H 2 O 2 -induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ m depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin-resistance. • Inhibition of DRP or ROS

  5. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  6. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    Science.gov (United States)

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  7. Yeast Mitochondrial Interactosome Model: Metabolon Membrane Proteins Complex Involved in the Channeling of ADP/ATP

    Directory of Open Access Journals (Sweden)

    Benjamin Clémençon

    2012-02-01

    Full Text Available The existence of a mitochondrial interactosome (MI has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp and inorganic phosphate (PiC carriers as well as the VDAC (or mitochondrial porin catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1 under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.

  8. Molecular basis for mitochondrial signaling

    CERN Document Server

    2017-01-01

    This book covers recent advances in the study of structure, function, and regulation of metabolite, protein and ion translocating channels, and transporters in mitochondria. A wide array of cutting-edge methods are covered, ranging from electrophysiology and cell biology to bioinformatics, as well as structural, systems, and computational biology. At last, the molecular identity of two important channels in the mitochondrial inner membrane, the mitochondrial calcium uniporter and the mitochondrial permeability transition pore have been established. After years of work on the physiology and structure of VDAC channels in the mitochondrial outer membrane, there have been multiple discoveries on VDAC permeation and regulation by cytosolic proteins. Recent breakthroughs in structural studies of the mitochondrial cholesterol translocator reveal a set of novel unexpected features and provide essential clues for defining therapeutic strategies. Molecular Basis for Mitochondrial Signaling covers these and many more re...

  9. Sirtuin signaling controls mitochondrial function in glycogen storage disease type Ia.

    Science.gov (United States)

    Cho, Jun-Ho; Kim, Goo-Young; Mansfield, Brian C; Chou, Janice Y

    2018-05-08

    Glycogen storage disease type Ia (GSD-Ia) deficient in glucose-6-phosphatase-α (G6Pase-α) is a metabolic disorder characterized by impaired glucose homeostasis and a long-term complication of hepatocellular adenoma/carcinoma (HCA/HCC). Mitochondrial dysfunction has been implicated in GSD-Ia but the underlying mechanism and its contribution to HCA/HCC development remain unclear. We have shown that hepatic G6Pase-α deficiency leads to downregulation of sirtuin 1 (SIRT1) signaling that underlies defective hepatic autophagy in GSD-Ia. SIRT1 is a NAD + -dependent deacetylase that can deacetylate and activate peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), a master regulator of mitochondrial integrity, biogenesis, and function. We hypothesized that downregulation of hepatic SIRT1 signaling in G6Pase-α-deficient livers impairs PGC-1α activity, leading to mitochondrial dysfunction. Here we show that the G6Pase-α-deficient livers display defective PGC-1α signaling, reduced numbers of functional mitochondria, and impaired oxidative phosphorylation. Overexpression of hepatic SIRT1 restores PGC-1α activity, normalizes the expression of electron transport chain components, and increases mitochondrial complex IV activity. We have previously shown that restoration of hepatic G6Pase-α expression normalized SIRT1 signaling. We now show that restoration of hepatic G6Pase-α expression also restores PGC-1α activity and mitochondrial function. Finally, we show that HCA/HCC lesions found in G6Pase-α-deficient livers contain marked mitochondrial and oxidative DNA damage. Taken together, our study shows that downregulation of hepatic SIRT1/PGC-1α signaling underlies mitochondrial dysfunction and that oxidative DNA damage incurred by damaged mitochondria may contribute to HCA/HCC development in GSD-Ia.

  10. Co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins in the lactation-induced mitochondrial hypotrophy of rat brown fat.

    Science.gov (United States)

    Martin, I; Giralt, M; Viñas, O; Iglesias, R; Mampel, T; Villarroya, F

    1995-01-01

    The relative abundance of the mitochondrial-encoded mRNAs for cytochrome c oxidase subunit II and NADH dehydrogenase subunit I was lower in brown adipose tissue (BAT) from lactating rats than in virgin controls. This decrease was in parallel with a significant decrease in mitochondrial 16 S rRNA levels and in the relative content of mitochondrial DNA in the tissue. BAT from lactating rats showed lowered mRNA expression of the nuclear-encoded genes for the mitochondrial uncoupling protein, subunit IV of cytochrome c oxidase and the adenine nucleotide translocase isoforms ANT1 and ANT2, whereas mRNA levels for the ATP synthase beta-subunit were unchanged. However, the relative content of this last protein was lower in BAT mitochondria from lactating rats than in virgin controls. It is concluded that lactation-induced mitochondrial hypotrophy in BAT is associated with a co-ordinate decrease in the expression of the mitochondrial genome and nuclear genes for mitochondrial proteins. This decrease is caused by regulatory events acting at different levels, including pre- and post-transcriptional regulation. BAT appears to be a useful model with which to investigate the molecular mechanisms involved in the co-ordination of the expression of the mitochondrial and nuclear genomes during mitochondrial biogenesis. Images Figure 1 Figure 2 PMID:8948428

  11. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake

    NARCIS (Netherlands)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    Mitochondrial calcium ([Ca(2+)]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner

  12. Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.

    Science.gov (United States)

    Ortiz, M Del Carmen; Lores-Arnaiz, Silvia; Albertoni Borghese, M Florencia; Balonga, Sabrina; Lavagna, Agustina; Filipuzzi, Ana Laura; Cicerchia, Daniela; Majowicz, Monica; Bustamante, Juanita

    2013-12-01

    Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of L-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. L-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of L-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered L-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.

  13. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    International Nuclear Information System (INIS)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik; Kim, Eung Yeop; Lee, Young-Mock; Lee, Joon Soo; Kim, Heung Dong

    2008-01-01

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  14. Neuroradiologic findings in children with mitochondrial disorder: correlation with mitochondrial respiratory chain defects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jinna; Lee, Seung-Koo; Kim, Dong Ik [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Seoul (Korea); Kim, Eung Yeop [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Brain Korea 21 Project for Medical Science, Seoul (Korea); Lee, Young-Mock; Lee, Joon Soo [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Kim, Heung Dong [Yonsei University College of Medicine, Department of Pediatrics, Pediatric Epilepsy Clinics, Severance Children' s Hospital, Brain Research Institute, Seoul (Korea); Yonsei University College of Medicine, Department of Pediatrics, Seoul (Korea)

    2008-08-15

    Mitochondrial disorders are a heterogeneous group of disorders affecting energy metabolism that can present at any age with a wide variety of clinical symptoms. We investigated brain magnetic resonance (MR) findings in 40 children with defects of the mitochondrial respiratory chain (MRC) complex and correlated them with the type of MRC defects. Enrolled were 40 children with MRC defects in biochemical enzyme assay of the muscle specimen. Twenty-one children were found to have classical syndromes of mitochondrial disorders and 19 children presented nonspecific mitochondrial encephalomyopathies. Their brain MR imaging findings were retrospectively reviewed and correlated with the biochemical defect in the MRC complex. Children with MRC defects showed various neuroradiologic features on brain MR imaging that resulted from a complex genetic background and a heterogeneous phenotype. Rapid progression of atrophy involving all structures of the brain with variable involvement of deep gray and white matter are the most frequent MR findings in children with MRC defects in both classical syndromes of mitochondrial disorder and nonspecific mitochondrial encephalomyopathies. The type of biochemical defect in the MRC complex enzyme did not correlate with brain MR findings in child patients. (orig.)

  15. Genetics of mitochondrial dysfunction and infertility.

    Science.gov (United States)

    Demain, L A M; Conway, G S; Newman, W G

    2017-02-01

    Increasingly, mitochondria are being recognized as having an important role in fertility. Indeed in assisted reproductive technologies mitochondrial function is a key indicator of sperm and oocyte quality. Here, we review the literature regarding mitochondrial genetics and infertility. In many multisystem disorders caused by mitochondrial dysfunction death occurs prior to sexual maturity, or the clinical features are so severe that infertility may be underreported. Interestingly, many of the genes linked to mitochondrial dysfunction and infertility have roles in the maintenance of mitochondrial DNA or in mitochondrial translation. Studies on populations with genetically uncharacterized infertility have highlighted an association with mitochondrial DNA deletions, whether this is causative or indicative of poor functioning mitochondria requires further examination. Studies on the impact of mitochondrial DNA variants present conflicting data but highlight POLG as a particularly interesting candidate gene for both male and female infertility. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells

    Czech Academy of Sciences Publication Activity Database

    Tauber, Jan; Dlasková, Andrea; Šantorová, Jitka; Smolková, Katarína; Alán, Lukáš; Špaček, Tomáš; Plecitá-Hlavatá, Lydie; Ježek, Petr

    2013-01-01

    Roč. 45, č. 3 (2013), s. 593-603 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204; GA ČR(CZ) GAP305/12/1247 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : mitochondrial DNA nucleoids * mitochondrial fission * mitochondrial network fragmentation * mitochondrial network reintegration Subject RIV: ED - Physiology Impact factor: 4.240, year: 2013

  17. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle.

    Science.gov (United States)

    Mannen, H; Kohno, M; Nagata, Y; Tsuji, S; Bradley, D G; Yeo, J S; Nyamsamba, D; Zagdsuren, Y; Yokohama, M; Nomura, K; Amano, T

    2004-08-01

    In order to clarify the origin and genetic diversity of cattle in North Eastern Asia, this study examined mitochondrial displacement loop sequence variation and frequencies of Bos taurus and Bos indicus Y chromosome haplotypes in Japanese, Mongolian, and Korean native cattle. In mitochondrial analyses, 20% of Mongolian cattle carried B. indicus mitochondrial haplotypes, but Japanese and Korean cattle carried only B. taurus haplotypes. In contrast, all samples revealed B. taurus Y chromosome haplotypes. This may be due to the import of zebu and other cattle during the Mongol Empire era with subsequent crossing with native taurine cattle. B. taurus mtDNA sequences fall into several geographically distributed haplogroups and one of these, termed here T4, is described in each of the test samples, but has not been observed in Near Eastern, European or African cattle. This may have been locally domesticated from an East Eurasian strain of Bos primigenius.

  18. Mitochondrial phylogenomics of modern and ancient equids.

    Science.gov (United States)

    Vilstrup, Julia T; Seguin-Orlando, Andaine; Stiller, Mathias; Ginolhac, Aurelien; Raghavan, Maanasa; Nielsen, Sandra C A; Weinstock, Jacobo; Froese, Duane; Vasiliev, Sergei K; Ovodov, Nikolai D; Clary, Joel; Helgen, Kristofer M; Fleischer, Robert C; Cooper, Alan; Shapiro, Beth; Orlando, Ludovic

    2013-01-01

    The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy's zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya).

  19. Mitochondrial Phylogenomics of Modern and Ancient Equids

    Science.gov (United States)

    Vilstrup, Julia T.; Seguin-Orlando, Andaine; Stiller, Mathias; Ginolhac, Aurelien; Raghavan, Maanasa; Nielsen, Sandra C. A.; Weinstock, Jacobo; Froese, Duane; Vasiliev, Sergei K.; Ovodov, Nikolai D.; Clary, Joel; Helgen, Kristofer M.; Fleischer, Robert C.; Cooper, Alan; Shapiro, Beth; Orlando, Ludovic

    2013-01-01

    The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy’s zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga). Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs) were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya). PMID:23437078

  20. Mitochondrial phylogenomics of modern and ancient equids.

    Directory of Open Access Journals (Sweden)

    Julia T Vilstrup

    Full Text Available The genus Equus is richly represented in the fossil record, yet our understanding of taxonomic relationships within this genus remains limited. To estimate the phylogenetic relationships among modern horses, zebras, asses and donkeys, we generated the first data set including complete mitochondrial sequences from all seven extant lineages within the genus Equus. Bayesian and Maximum Likelihood phylogenetic inference confirms that zebras are monophyletic within the genus, and the Plains and Grevy's zebras form a well-supported monophyletic group. Using ancient DNA techniques, we further characterize the complete mitochondrial genomes of three extinct equid lineages (the New World stilt-legged horses, NWSLH; the subgenus Sussemionus; and the Quagga, Equus quagga quagga. Comparisons with extant taxa confirm the NWSLH as being part of the caballines, and the Quagga and Plains zebras as being conspecific. However, the evolutionary relationships among the non-caballine lineages, including the now-extinct subgenus Sussemionus, remain unresolved, most likely due to extremely rapid radiation within this group. The closest living outgroups (rhinos and tapirs were found to be too phylogenetically distant to calibrate reliable molecular clocks. Additional mitochondrial genome sequence data, including radiocarbon dated ancient equids, will be required before revisiting the exact timing of the lineage radiation leading up to modern equids, which for now were found to have possibly shared a common ancestor as far as up to 4 Million years ago (Mya.

  1. Habitual physical activity in mitochondrial disease.

    Science.gov (United States)

    Apabhai, Shehnaz; Gorman, Grainne S; Sutton, Laura; Elson, Joanna L; Plötz, Thomas; Turnbull, Douglass M; Trenell, Michael I

    2011-01-01

    Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype. Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI. Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001). 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001) and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001). After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s) = -0.49; 95% CI -0.33, -0.63, Pphysical activity between different genotypes mitochondrial disease. These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  2. Understanding mitochondrial myopathies: a review

    Directory of Open Access Journals (Sweden)

    Abhimanyu S. Ahuja

    2018-05-01

    Full Text Available Mitochondria are small, energy-producing structures vital to the energy needs of the body. Genetic mutations cause mitochondria to fail to produce the energy needed by cells and organs which can cause severe disease and death. These genetic mutations are likely to be in the mitochondrial DNA (mtDNA, or possibly in the nuclear DNA (nDNA. The goal of this review is to assess the current understanding of mitochondrial diseases. This review focuses on the pathology, causes, risk factors, symptoms, prevalence data, symptomatic treatments, and new research aimed at possible preventions and/or treatments of mitochondrial diseases. Mitochondrial myopathies are mitochondrial diseases that cause prominent muscular symptoms such as muscle weakness and usually present with a multitude of symptoms and can affect virtually all organ systems. There is no cure for these diseases as of today. Treatment is generally supportive and emphasizes symptom management. Mitochondrial diseases occur infrequently and hence research funding levels tend to be low in comparison with more common diseases. On the positive side, quite a few genetic defects responsible for mitochondrial diseases have been identified, which are in turn being used to investigate potential treatments. Speech therapy, physical therapy, and respiratory therapy have been used in mitochondrial diseases with variable results. These therapies are not curative and at best help with maintaining a patient’s current abilities to move and function.

  3. The characterization of weighted local hardy spaces on domains and its application.

    Science.gov (United States)

    Wang, Heng-geng; Yang, Xiao-ming

    2004-09-01

    In this paper, we give the four equivalent characterizations for the weighted local hardy spaces on Lipschitz domains. Also, we give their application for the harmonic function defined in bounded Lipschitz domains.

  4. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  5. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity

    Directory of Open Access Journals (Sweden)

    William Dott

    2014-01-01

    Full Text Available Mitochondrial toxicity is increasingly being implicated as a contributing factor to many xenobiotic-induced organ toxicities, including skeletal muscle toxicity. This has necessitated the need for predictive in vitro models that are able to sensitively detect mitochondrial toxicity of chemical entities early in the research and development process. One such cell model involves substituting galactose for glucose in the culture media. Since cells cultured in galactose are unable to generate sufficient ATP from glycolysis they are forced to rely on mitochondrial oxidative phosphorylation for ATP generation and consequently are more sensitive to mitochondrial perturbation than cells grown in glucose. The aim of this study was to characterise cellular growth, bioenergetics and mitochondrial toxicity of the L6 rat skeletal muscle cell line cultured in either high glucose or galactose media. L6 myoblasts proliferated more slowly when cultured in galactose media, although they maintained similar levels of ATP. Galactose cultured L6 cells were significantly more sensitive to classical mitochondrial toxicants than glucose-cultured cells, confirming the cells had adapted to galactose media. Analysis of bioenergetic function with the XF Seahorse extracellular flux analyser demonstrated that oxygen consumption rate (OCR was significantly increased whereas extracellular acidification rate (ECAR, a measure of glycolysis, was decreased in cells grown in galactose. Mitochondria operated closer to state 3 respiration and had a lower mitochondrial membrane potential and basal mitochondrial O2·– level compared to cells in the glucose model. An antimycin A (AA dose response revealed that there was no difference in the sensitivity of OCR to AA inhibition between glucose and galactose cells. Importantly, cells in glucose were able to up-regulate glycolysis, while galactose cells were not. These results confirm that L6 cells are able to adapt to growth in a

  6. The effect of neoadjuvant chemoradiotherapy on whole-body physical fitness and skeletal muscle mitochondrial oxidative phosphorylation in vivo in locally advanced rectal cancer patients--an observational pilot study.

    Directory of Open Access Journals (Sweden)

    Malcolm A West

    Full Text Available In the United Kingdom, patients with locally advanced rectal cancer routinely receive neoadjuvant chemoradiotherapy. However, the effects of this on physical fitness are unclear. This pilot study is aimed to investigate the effect of neoadjuvant chemoradiotherapy on objectively measured in vivo muscle mitochondrial function and whole-body physical fitness.We prospectively studied 12 patients with rectal cancer who completed standardized neoadjuvant chemoradiotherapy, recruited from a large tertiary cancer centre, between October 2012 and July 2013. All patients underwent a cardiopulmonary exercise test and a phosphorus magnetic resonance spectroscopy quadriceps muscle exercise-recovery study before and after neoadjuvant chemoradiotherapy. Data were analysed and reported blind to patient identity and clinical course. Primary variables of interest were the two physical fitness measures; oxygen uptake at estimated anaerobic threshold and oxygen uptake at Peak exercise (ml.kg-1.min-1, and the post-exercise phosphocreatine recovery rate constant (min-1, a measure of muscle mitochondrial capacity in vivo.Median age was 67 years (IQR 64-75. Differences (95%CI in all three primary variables were significantly negative post-NACRT: Oxygen uptake at estimated anaerobic threshold -2.4 ml.kg-1.min-1 (-3.8, -0.9, p = 0.004; Oxygen uptake at Peak -4.0 ml.kg-1.min-1 (-6.8, -1.1, p = 0.011; and post-exercise phosphocreatine recovery rate constant -0.34 min-1 (-0.51, -0.17, p<0.001.The significant decrease in both whole-body physical fitness and in vivo muscle mitochondrial function raises the possibility that muscle mitochondrial mechanisms, no doubt multifactorial, may be important in deterioration of physical fitness following neoadjuvant chemoradiotherapy. This may have implications for targeted interventions to improve physical fitness pre-surgery.Clinicaltrials.gov registration NCT01859442.

  7. Defects in mitochondrial fission protein dynamin-related protein 1 are linked to apoptotic resistance and autophagy in a lung cancer model.

    Directory of Open Access Journals (Sweden)

    Kelly Jean Thomas

    Full Text Available Evasion of apoptosis is implicated in almost all aspects of cancer progression, as well as treatment resistance. In this study, resistance to apoptosis was identified in tumorigenic lung epithelial (A549 cells as a consequence of defects in mitochondrial and autophagic function. Mitochondrial function is determined in part by mitochondrial morphology, a process regulated by mitochondrial dynamics whereby the joining of two mitochondria, fusion, inhibits apoptosis while fission, the division of a mitochondrion, initiates apoptosis. Mitochondrial morphology of A549 cells displayed an elongated phenotype-mimicking cells deficient in mitochondrial fission protein, Dynamin-related protein 1 (Drp1. A549 cells had impaired Drp1 mitochondrial recruitment and decreased Drp1-dependent fission. Cytochrome c release and caspase-3 and PARP cleavage were impaired both basally and with apoptotic stimuli in A549 cells. Increased mitochondrial mass was observed in A549 cells, suggesting defects in mitophagy (mitochondrial selective autophagy. A549 cells had decreased LC3-II lipidation and lysosomal inhibition suggesting defects in autophagy occur upstream of lysosomal degradation. Immunostaining indicated mitochondrial localized LC3 punctae in A549 cells increased after mitochondrial uncoupling or with a combination of mitochondrial depolarization and ectopic Drp1 expression. Increased inhibition of apoptosis in A549 cells is correlated with impeded mitochondrial fission and mitophagy. We suggest mitochondrial fission defects contribute to apoptotic resistance in A549 cells.

  8. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...... myopathies. We investigated regeneration in muscle biopsies from 61 genetically well-defined patients affected by mitochondrial myopathy. Our results show that the perturbed energy metabolism in mitochondrial myopathies causes ongoing muscle regeneration in a majority of patients, and some were even affected...

  9. Mitochondrial signaling in health and disease

    National Research Council Canada - National Science Library

    Orrenius, Sten; Packer, Lester; Cadenas, Enrique

    2012-01-01

    .... The text covers themes essential for the maintenance of mitochondrial activity, including electron transport and energy production, mitochondrial biogenesis and dynamics, mitochondrial signaling...

  10. Mutations in C12orf65 in patients with encephalomyopathy and a mitochondrial translation defect

    DEFF Research Database (Denmark)

    Antonicka, Hana; Østergaard, Elsebet; Sasarman, Florin

    2010-01-01

    We investigated the genetic basis for a global and uniform decrease in mitochondrial translation in fibroblasts from patients in two unrelated pedigrees who developed Leigh syndrome, optic atrophy, and ophthalmoplegia. Analysis of the assembly of the oxidative phosphorylation complexes showed...... severe decreases of complexes I, IV, and V and a smaller decrease in complex III. The steady-state levels of mitochondrial mRNAs, tRNAs, and rRNAs were not reduced, nor were those of the mitochondrial translation elongation factors or the protein components of the mitochondrial ribosome. Using...... includes mtRF1a, mtRF1, and Ict1, all characterized by the presence of a GGQ motif at the active site. However, C12orf65 does not exhibit peptidyl-tRNA hydrolase activity in an in vitro assay with bacterial ribosomes. We suggest that it might play a role in recycling abortive peptidyl-tRNA species...

  11. Morphological characterization of local landraces of rapeseed (Brassica campestris L. var toria of Nepal

    Directory of Open Access Journals (Sweden)

    Salik Ram Gupta

    2015-12-01

    Full Text Available Rapeseed (Brassica campestris L. var toria is the main source of edible oil for Nepalese people. 54 rapeseed lines were collected from different hilly district of Nepal ranging from 987 m to 2550 m altitude. These lines were planted in augmented design for its traits characterization in Khumaltar 2013. Different traits of local rapeseed were characterized, and evaluated. NGRC 02778 performed better followed by SR-02 than local checks Morang-2, Chitwan Local and Unnati in terms of yield, days to maturity and pest infestation. Similarly, genotype SR-18 was late and SR-16 was earlier in terms of days to maturity. In conclusion, SR-02 was found better genotype based on different characteristics measured among all local rapeseeds planted in Khumaltar 2013. Thus SR-2 can be used as parents in crossing material for further breeding purposes and it can also be tested in further trial.

  12. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  13. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    International Nuclear Information System (INIS)

    Yasuzaki, Yukari; Yamada, Yuma; Harashima, Hideyoshi

    2010-01-01

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we provide a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.

  14. Non-cytochrome mediated mitochondrial ATP production in bloodstream form Trypanosoma brucei brucei

    NARCIS (Netherlands)

    Bienen, E. J.; Maturi, R. K.; Pollakis, G.; Clarkson, A. B.

    1993-01-01

    The life cycle of Trypanosoma brucei brucei involves a series of differentiation steps characterized by marked changes in mitochondrial development and function. The bloodstream forms of this parasite completely lack cytochromes and have not been considered to have any Krebs cycle function. It has

  15. Synaptic vesicle exocytosis in hippocampal synaptosomes correlates directly with total mitochondrial volume

    Science.gov (United States)

    Ivannikov, Maxim V.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.

    2012-01-01

    Synaptic plasticity in many regions of the central nervous system leads to the continuous adjustment of synaptic strength, which is essential for learning and memory. In this study, we show by visualizing synaptic vesicle release in mouse hippocampal synaptosomes that presynaptic mitochondria and specifically, their capacities for ATP production are essential determinants of synaptic vesicle exocytosis and its magnitude. Total internal reflection microscopy of FM1-43 loaded hippocampal synaptosomes showed that inhibition of mitochondrial oxidative phosphorylation reduces evoked synaptic release. This reduction was accompanied by a substantial drop in synaptosomal ATP levels. However, cytosolic calcium influx was not affected. Structural characterization of stimulated hippocampal synaptosomes revealed that higher total presynaptic mitochondrial volumes were consistently associated with higher levels of exocytosis. Thus, synaptic vesicle release is linked to the presynaptic ability to regenerate ATP, which itself is a utility of mitochondrial density and activity. PMID:22772899

  16. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS mediated cardiomyocyte hypertrophy

    NARCIS (Netherlands)

    Tigchelaar, Wardit; Yu, Hongjuan; De Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Sillje, Herman H W

    2015-01-01

    Recently, a genetic variant in the mitochondrial exo/endo nuclease EXOG, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and

  17. Magnetic microscopy for characterization of local critical current in iron-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Higashikawa, K.; Yamamoto, A.; Kiss, T.; Ye, S.; Matsumoto, A.; Kumakura, H.

    2014-01-01

    Highlights: • We developed a characterization method of local critical current in MgB 2 wires. • Local homogeneity was visualized by the scanning Hall-probe microscopy (SHPM). • Local critical current value was quantified with the aid of the finite element method (FEM). • MgB 2 wire still has inhomogeneous distribution in local critical current. • Higher potential than that estimated by the four-probe transport method was suggested. - Abstract: We have developed a characterization method of local critical current in iron-sheathed MgB 2 wires. Local homogeneity was visualized by the scanning Hall-probe microscopy (SHPM). The value of local critical current was quantified with the aid of the finite element method (FEM) considering the ferromagnetic properties of the iron sheath. The results suggested that MgB 2 wires fabricated by internal Mg diffusion processes still have large longitudinal inhomogeneity and much higher potential than that estimated by the four-probe transport method. This will be very important information for making a correct strategy for further development of MgB 2 wires

  18. Slow mitochondrial repair of 5'-AMP renders mtDNA susceptible to damage in APTX deficient cells

    DEFF Research Database (Denmark)

    Akbari, Mansour; Sykora, Peter; Bohr, Vilhelm A

    2015-01-01

    deficient cells. Moreover, the removal of 5'-AMP from DNA was significantly slower in the mitochondrial extracts from human cell lines and mouse tissues compared with their corresponding nuclear extracts. These results suggest that, contrary to nuclear DNA repair, mitochondrial DNA repair is not able...... elucidated. Here, we monitored the repair of 5'-AMP DNA damage in nuclear and mitochondrial extracts from human APTX(+/+) and APTX(-/-) cells. The efficiency of repair of 5'-AMP DNA was much lower in mitochondrial than in nuclear protein extracts, and resulted in persistent DNA repair intermediates in APTX......Aborted DNA ligation events in eukaryotic cells can generate 5'-adenylated (5'-AMP) DNA termini that can be removed from DNA by aprataxin (APTX). Mutations in APTX cause an inherited human disease syndrome characterized by early-onset progressive ataxia with ocular motor apraxia (AOA1). APTX...

  19. Habitual physical activity in mitochondrial disease.

    Directory of Open Access Journals (Sweden)

    Shehnaz Apabhai

    Full Text Available Mitochondrial disease is the most common neuromuscular disease and has a profound impact upon daily life, disease and longevity. Exercise therapy has been shown to improve mitochondrial function in patients with mitochondrial disease. However, no information exists about the level of habitual physical activity of people with mitochondrial disease and its relationship with clinical phenotype.Habitual physical activity, genotype and clinical presentations were assessed in 100 patients with mitochondrial disease. Comparisons were made with a control group individually matched by age, gender and BMI.Patients with mitochondrial disease had significantly lower levels of physical activity in comparison to matched people without mitochondrial disease (steps/day; 6883±3944 vs. 9924±4088, p = 0.001. 78% of the mitochondrial disease cohort did not achieve 10,000 steps per day and 48% were classified as overweight or obese. Mitochondrial disease was associated with less breaks in sedentary activity (Sedentary to Active Transitions, % per day; 13±0.03 vs. 14±0.03, p = 0.001 and an increase in sedentary bout duration (bout lengths/fraction of total sedentary time; 0.206±0.044 vs. 0.187±0.026, p = 0.001. After adjusting for covariates, higher physical activity was moderately associated with lower clinical disease burden (steps/day; r(s = -0.49; 95% CI -0.33, -0.63, P<0.01. There were no systematic differences in physical activity between different genotypes mitochondrial disease.These results demonstrate for the first time that low levels of physical activity are prominent in mitochondrial disease. Combined with a high prevalence of obesity, physical activity may constitute a significant and potentially modifiable risk factor in mitochondrial disease.

  20. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity.

    Science.gov (United States)

    Lindinger, Peter W; Christe, Martine; Eberle, Alex N; Kern, Beatrice; Peterli, Ralph; Peters, Thomas; Jayawardene, Kamburapola J I; Fearnley, Ian M; Walker, John E

    2015-09-01

    Obesity is associated with impaired mitochondrial function. This study compares mitochondrial protein expression in omental fat in obese and non-obese humans. Omental adipose tissue was obtained by surgical biopsy, adipocytes were purified and mitochondria isolated. Using anion-exchange chromatography, SDS-PAGE and mass-spectrometry, 128 proteins with potentially different abundances in patient groups were identified, 62 of the 128 proteins are mainly localized in the mitochondria. Further quantification of 12 of these 62 proteins by immune dot blot analysis revealed four proteins citrate synthase, HADHA, LETM1 and mitofilin being inversely associated with BMI, and mitofilin being inversely correlated with gender.

  1. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  2. Characterization of the complete mitochondrial genome of Ortleppascaris sinensis (Nematoda: Heterocheilidae) and comparative mitogenomic analysis of eighteen Ascaridida nematodes.

    Science.gov (United States)

    Zhao, J H; Tu, G J; Wu, X B; Li, C P

    2018-05-01

    Ortleppascaris sinensis (Nematoda: Ascaridida) is a dominant intestinal nematode of the captive Chinese alligator. However, the epidemiology, molecular ecology and population genetics of this parasite remain largely unexplored. In this study, the complete mitochondrial (mt) genome sequence of O. sinensis was first determined using a polymerase chain reaction (PCR)-based primer-walking strategy, and this is also the first sequencing of the complete mitochondrial genome of a member of the genus Ortleppascaris. The circular mitochondrial genome (13,828 bp) of O. sinensis contained 12 protein-coding, 22 transfer RNA and 2 ribosomal RNA genes, but lacked the ATP synthetase subunit 8 gene. Finally, phylogenetic analysis of mtDNAs indicated that the genus Ortleppascaris should be attributed to the family Heterocheilidae. It is necessary to sequence more mtNDAs of Ortleppascaris nematodes in the future to test and confirm our conclusion. The complete mitochondrial genome sequence of O. sinensis reported here should contribute to molecular diagnosis, epidemiological investigations and ecological studies of O. sinensis and other related Ascaridida nematodes.

  3. Basal Ganglia Calcification with Tetanic Seizure Suggest Mitochondrial Disorder

    OpenAIRE

    Finsterer, Josef; Enzelsberger, Barbara; Bastowansky, Adam

    2017-01-01

    Patient: Female, 65 Final Diagnosis: Mitochondrial disorder Symptoms: Headache ? tetanic seizure Medication: Diazepam Clinical Procedure: Admission Specialty: Neurology Objective: Challenging differential diagnosis Background: Basal ganglia calcification (BGC) is a rare sporadic or hereditary central nervous system (CNS) abnormality, characterized by symmetric or asymmetric calcification of the basal ganglia. Case Report: We report the case of a 65-year-old Gypsy female who was admitted for a...

  4. Preliminary Characterization of Mitochondrial Genome of Melipona scutellaris, a Brazilian Stingless Bee

    OpenAIRE

    Silverio, Manuella Souza; Rodovalho, Vinícius de Rezende; Bonetti, Ana Maria; de Oliveira, Guilherme Corrêa; Cuadros-Orellana, Sara; Ueira-Vieira, Carlos; Rodrigues dos Santos, Anderson

    2014-01-01

    Bees are manufacturers of relevant economical products and have a pollinator role fundamental to ecosystems. Traditionally, studies focused on the genus Melipona have been mostly based on behavioral, and social organization and ecological aspects. Only recently the evolutionary history of this genus has been assessed using molecular markers, including mitochondrial genes. Even though these studies have shed light on the evolutionary history of the Melipona genus, a more accurate picture may e...

  5. Mitochondrial defects associated with β-alanine toxicity: relevance to hyper-beta-alaninemia

    Science.gov (United States)

    Shetewy, Aza; Shimada-Takaura, Kayoko; Warner, Danielle; Jong, Chian Ju; Mehdi, Abu-Bakr Al; Alexeyev, Mikhail; Takahashi, Kyoko; Schaffer, Stephen W.

    2016-01-01

    Hyper-beta-alaninemia is a rare metabolic condition that results in elevated plasma and urinary β-alanine levels and is characterized by neurotoxicity, hypotonia, and respiratory distress. It has been proposed that at least some of the symptoms are caused by oxidative stress; however, only limited information is available on the mechanism of reactive oxygen species generation. The present study examines the hypothesis that β-alanine reduces cellular levels of taurine, which are required for normal respiratory chain function; cellular taurine depletion is known to reduce respiratory function and elevate mitochondrial superoxide generation. To test the taurine hypothesis, isolated neonatal rat cardiomyocytes and mouse embryonic fibroblasts were incubated with medium lacking or containing β-alanine. β-alanine treatment led to mitochondrial superoxide accumulation in conjunction with a decrease in oxygen consumption. The defect in β-alanine-mediated respiratory function was detected in permeabilized cells exposed to glutamate/malate but not in cells utilizing succinate, suggesting that β-alanine leads to impaired complex I activity. Taurine treatment limited mitochondrial superoxide generation, supporting a role for taurine in maintaining complex I activity. Also affected by taurine is mitochondrial morphology, as β-alanine-treated fibroblasts undergo fragmentation, a sign of unhealthy mitochondria that is reversed by taurine treatment. If left unaltered, β-alanine-treated fibroblasts also undergo mitochondrial apoptosis, as evidenced by activation of caspases 3 and 9 and the initiation of the mitochondrial permeability transition. Together, these data show that β-alanine mediates changes that reduce ATP generation and enhance oxidative stress, factors that contribute to heart failure. PMID:27023909

  6. Multifunctional Mitochondrial AAA Proteases.

    Science.gov (United States)

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  7. Transcription profiles of mitochondrial genes correlate with mitochondrial DNA haplotypes in a natural population of Silene vulgaris

    Directory of Open Access Journals (Sweden)

    Olson Matthew S

    2010-01-01

    Full Text Available Abstract Background Although rapid changes in copy number and gene order are common within plant mitochondrial genomes, associated patterns of gene transcription are underinvestigated. Previous studies have shown that the gynodioecious plant species Silene vulgaris exhibits high mitochondrial diversity and occasional paternal inheritance of mitochondrial markers. Here we address whether variation in DNA molecular markers is correlated with variation in transcription of mitochondrial genes in S. vulgaris collected from natural populations. Results We analyzed RFLP variation in two mitochondrial genes, cox1 and atp1, in offspring of ten plants from a natural population of S. vulgaris in Central Europe. We also investigated transcription profiles of the atp1 and cox1 genes. Most DNA haplotypes and transcription profiles were maternally inherited; for these, transcription profiles were associated with specific mitochondrial DNA haplotypes. One individual exhibited a pattern consistent with paternal inheritance of mitochondrial DNA; this individual exhibited a transcription profile suggestive of paternal but inconsistent with maternal inheritance. We found no associations between gender and transcript profiles. Conclusions Specific transcription profiles of mitochondrial genes were associated with specific mitochondrial DNA haplotypes in a natural population of a gynodioecious species S. vulgaris. Our findings suggest the potential for a causal association between rearrangements in the plant mt genome and transcription product variation.

  8. Molecular characterization of Taenia multiceps isolates from Gansu Province, China by sequencing of mitochondrial cytochrome C oxidase subunit 1.

    Science.gov (United States)

    Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu; Fu, Bao Quan

    2013-04-01

    A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.

  9. Complete mitochondrial genome of the big-eared horseshoe bat Rhinolophus macrotis (Chiroptera, Rhinolophidae).

    Science.gov (United States)

    Zhang, Lin; Sun, Keping; Feng, Jiang

    2016-11-01

    We sequenced and characterized the complete mitochondrial genome of the big-eared horseshoe bat, Rhinolophus macrotis. Total length of the mitogenome is 16,848 bp, with a base composition of 31.2% A, 25.3% T, 28.8% C and 14.7% G. The mitogenome consists of 13 protein-coding genes, 2 rRNA (12S and 16S rRNA) genes, 22 tRNA genes and 1 control region. It has the same gene arrangement pattern as those of typical vertebrate mitochondrial genome. The results will contribute to our understanding of the taxonomic status and evolution in the genus Rhinolophus bats.

  10. Characterizing genetic diversity of contemporary pacific chickens using mitochondrial DNA analyses.

    Directory of Open Access Journals (Sweden)

    Kelsey Needham Dancause

    Full Text Available BACKGROUND: Mitochondrial DNA (mtDNA hypervariable region (HVR sequences of prehistoric Polynesian chicken samples reflect dispersal of two haplogroups--D and E--by the settlers of the Pacific. The distribution of these chicken haplogroups has been used as an indicator of human movement. Recent analyses suggested similarities between prehistoric Pacific and South American chicken samples, perhaps reflecting prehistoric Polynesian introduction of the chicken into South America. These analyses have been heavily debated. The current distribution of the D and E lineages among contemporary chicken populations in the Western Pacific is unclear, but might ultimately help to inform debates about the movements of humans that carried them. OBJECTIVES: We sought to characterize contemporary mtDNA diversity among chickens in two of the earliest settled archipelagos of Remote Oceania, the Marianas and Vanuatu. METHODS: We generated HVR sequences for 43 chickens from four islands in Vanuatu, and for 5 chickens from Guam in the Marianas. RESULTS: Forty samples from Vanuatu and three from Guam were assigned to haplogroup D, supporting this as a Pacific chicken haplogroup that persists in the Western Pacific. Two haplogroup E lineages were observed in Guam and two in Vanuatu. Of the E lineages in Vanuatu, one was identical to prehistoric Vanuatu and Polynesian samples and the other differed by one polymorphism. Contrary to our expectations, we observed few globally distributed domesticate lineages not associated with Pacific chicken dispersal. This might suggest less European introgression of chickens into Vanuatu than expected. If so, the E lineages might represent lineages maintained from ancient Pacific chicken introductions. The Vanuatu sample might thus provide an opportunity to distinguish between maintained ancestral Pacific chicken lineages and replacement by global domesticates through genomic analyses, which could resolve questions of contemporary

  11. Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells

    Directory of Open Access Journals (Sweden)

    Zahra Ghanian

    2018-01-01

    Full Text Available Reactive oxygen species (ROS play a vital role in cell signaling and redox regulation, but when present in excess, lead to numerous pathologies. Detailed quantitative characterization of mitochondrial superoxide anion (O2•− production in fetal pulmonary artery endothelia cells (PAECs has never been reported. The aim of this study is to assess mitochondrial O2•− production in cultured PAECs over time using a novel quantitative optical approach. The rate, the sources, and the dynamics of O2•− production were assessed using targeted metabolic modulators of the mitochondrial electron transport chain (ETC complexes, specifically an uncoupler and inhibitors of the various ETC complexes, and inhibitors of extra-mitochondrial sources of O2•−. After stabilization, the cells were loaded with nanomolar mitochondrial-targeted hydroethidine (Mito-HE, MitoSOX online during the experiment without washout of the residual dye. Time-lapse fluorescence microscopy was used to monitor the dynamic changes in O2•− fluorescence intensity over time in PAECs. The transient behaviors of the fluorescence time course showed exponential increases in the rate of O2•− production in the presence of the ETC uncoupler or inhibitors. The most dramatic and the fastest increase in O2•− production was observed when the cells were treated with the uncoupling agent, PCP. We also showed that only the complex IV inhibitor, KCN, attenuated the marked surge in O2•− production induced by PCP. The results showed that mitochondrial respiratory complexes I, III and IV are sources of O2•− production in PAECs, and a new observation that ROS production during uncoupling of mitochondrial respiration is mediated in part via complex IV. This novel method can be applied in other studies that examine ROS production under stress condition and during ROS-mediated injuries in vitro.

  12. Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function

    International Nuclear Information System (INIS)

    Dement, Gregory A.; Maloney, Scott C.; Reeves, Raymond

    2007-01-01

    We have previously demonstrated that HMGA1 proteins translocate from the nucleus to mitochondria and bind to mitochondrial DNA (mtDNA) at the D-loop control region [G.A. Dement, N.R. Treff, N.S. Magnuson, V. Franceschi, R. Reeves, Dynamic mitochondrial localization of nuclear transcription factor HMGA1, Exp. Cell Res. 307 (2005) 388-401.] [11]. To elucidate possible physiological roles for such binding, we employed methods to analyze mtDNA transcription, mitochondrial maintenance, and other organelle functions in transgenic human MCF-7 cells (HA7C) induced to over-express an HA-tagged HMGA1 protein and control (parental) MCF-7 cells. Quantitative real-time (RT) PCR analyses demonstrated that mtDNA levels were reduced approximately 2-fold in HMGA1 over-expressing HA7C cells and flow cytometric analyses further revealed that mitochondrial mass was significantly reduced in these cells. Cellular ATP levels were also reduced in HA7C cells and survival studies showed an increased sensitivity to killing by 2-deoxy-D-glucose, a glycolysis-specific inhibitor. Flow cytometric analyses revealed additional mitochondrial abnormalities in HA7C cells that are consistent with a cancerous phenotype: namely, increased reactive oxygen species (ROS) and increased mitochondrial membrane potential (ΔΨ m ). Additional RT-PCR analyses demonstrated that gene transcripts from both the heavy (ND2, COXI, ATP6) and light (ND6) strands of mtDNA were up-regulated approximately 3-fold in HA7C cells. Together, these mitochondrial changes are consistent with many previous reports and reveal several possible mechanisms by which HMGA1 over-expression, a common feature of naturally occurring cancers, may affect tumor progression

  13. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+

    DEFF Research Database (Denmark)

    Venco, Paola; Bonora, Massimo; Giorgi, Carlotta

    2015-01-01

    19orf12 protein was not exclusively present in mitochondria, but also in the Endoplasmic Reticulum (ER) and MAM (Mitochondria Associated Membrane), while mutant C19orf12 variants presented a different localization. Moreover, after induction of oxidative stress, a GFP-tagged C19orf12 wild-type protein...... was able to relocate to the cytosol. On the contrary, mutant isoforms were not able to respond to oxidative stress. High mitochondrial calcium concentration and increased H2O2 induced apoptosis were found in fibroblasts derived from one patient as compared to controls. C19orf12 protein is a 17 k...... to rearrange in a structural domain, which is homologs to the N-terminal regulatory domain of the magnesium transporter MgtE, suggesting that C19orf12 may act as a regulatory protein for human MgtE transporters. The mutations here described affect respectively one glycine residue of the glycine zipper motifs...

  14. Characterization of a Dairy Gyr herd with respect to its mitochondrial DNA (mt DNA origin

    Directory of Open Access Journals (Sweden)

    Anibal Eugênio Vercesi Filho

    2010-01-01

    Full Text Available The Zebu breeds were introduced in Brazil mainly in the last century by imports from the Indian subcontinent. When the Zebu cattle arrived, the national herd suffered a significative change by backcrossing the national cows of taurine origin with Zebu sires. These processes created a polymorphism in the mitochondrial DNA (mtDNA in the Zebu animals with are in a major part derived from backcrossing and sharing mtDNA of taurine origin. To verify the maternal origin of cows belonging to the Dairy Gyr herd of APTA, Mococa 60 females were analyzed and 33 presented mtDNA from Bos taurus origin and 27 presented mtDNA from Bos indicus origin. None of these animals presented patterns of both mtDNA origins, indicating absence of heteroplasmy for these mitochondrial genotypes.

  15. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Chong-Chong Xu

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA, characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1 gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this study, we examined the role of SMN in mitochondrial axonal transport and morphology in human motor neurons by generating SMA type 1 patient-specific induced pluripotent stem cells (iPSCs and differentiating these cells into spinal motor neurons. The initial specification of spinal motor neurons was not affected, but these SMA spinal motor neurons specifically degenerated following long-term culture. Moreover, at an early stage in SMA spinal motor neurons, but not in SMA forebrain neurons, the number of mitochondria, mitochondrial area and mitochondrial transport were significantly reduced in axons. Knocking down of SMN expression led to similar mitochondrial defects in spinal motor neurons derived from human embryonic stem cells, confirming that SMN deficiency results in impaired mitochondrial dynamics. Finally, the application of N-acetylcysteine (NAC mitigated the impairment in mitochondrial transport and morphology and rescued motor neuron degeneration in SMA long-term cultures. Furthermore, NAC ameliorated the reduction in mitochondrial membrane potential in SMA spinal motor neurons, suggesting that NAC might rescue apoptosis and motor neuron degeneration by improving mitochondrial health. Overall, our data demonstrate that SMN deficiency results in abnormal mitochondrial transport and morphology and a subsequent reduction in mitochondrial health, which are implicated in the specific degeneration of spinal motor neurons in SMA.

  16. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1.

    Directory of Open Access Journals (Sweden)

    Dmitriy Zamarin

    2005-09-01

    Full Text Available The influenza virus PB1-F2 is an 87-amino acid mitochondrial protein that previously has been shown to induce cell death, although the mechanism of apoptosis induction has remained unclear. In the process of characterizing its mechanism of action we found that the viral PB1-F2 protein sensitizes cells to apoptotic stimuli such as tumor necrosis factor alpha, as demonstrated by increased cleavage of caspase 3 substrates in PB1-F2-expressing cells. Moreover, treatment of purified mouse liver mitochondria with recombinant PB1-F2 protein resulted in cytochrome c release, loss of the mitochondrial membrane potential, and enhancement of tBid-induced mitochondrial permeabilization, suggesting a possible mechanism for the observed cellular sensitization to apoptosis. Using glutathione-S-transferase pulldowns with subsequent mass spectrometric analysis, we identified the mitochondrial interactors of the PB1-F2 protein and showed that the viral protein uniquely interacts with the inner mitochondrial membrane adenine nucleotide translocator 3 and the outer mitochondrial membrane voltage-dependent anion channel 1, both of which are implicated in the mitochondrial permeability transition during apoptosis. Consistent with this interaction, blockers of the permeability transition pore complex (PTPC inhibited PB1-F2-induced mitochondrial permeabilization. Based on our findings, we propose a model whereby the proapoptotic PB1-F2 protein acts through the mitochondrial PTPC and may play a role in the down-regulation of the host immune response to infection.

  17. Mitochondrial quality control in cardiac diseases.

    Directory of Open Access Journals (Sweden)

    Juliane Campos

    2016-10-01

    Full Text Available Disruption of mitochondrial homeostasis is a hallmark of cardiac diseases. Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for cardiomyocyte survival. In this review, we discuss the most recent findings on the central role of mitochondrial quality control processes including regulation of mitochondrial redox balance, aldehyde metabolism, proteostasis, dynamics and clearance in cardiac diseases, highlighting their potential as therapeutic targets.

  18. Mitochondrial Energy and Redox Signaling in Plants

    Science.gov (United States)

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  19. Mitochondrial nucleoid clusters protect newly synthesized mtDNA during Doxorubicin- and Ethidium Bromide-induced mitochondrial stress

    Energy Technology Data Exchange (ETDEWEB)

    Alán, Lukáš, E-mail: lukas.alan@fgu.cas.cz; Špaček, Tomáš; Pajuelo Reguera, David; Jabůrek, Martin; Ježek, Petr

    2016-07-01

    Mitochondrial DNA (mtDNA) is compacted in ribonucleoprotein complexes called nucleoids, which can divide or move within the mitochondrial network. Mitochondrial nucleoids are able to aggregate into clusters upon reaction with intercalators such as the mtDNA depletion agent Ethidium Bromide (EB) or anticancer drug Doxorobicin (DXR). However, the exact mechanism of nucleoid clusters formation remains unknown. Resolving these processes may help to elucidate the mechanisms of DXR-induced cardiotoxicity. Therefore, we addressed the role of two key nucleoid proteins; mitochondrial transcription factor A (TFAM) and mitochondrial single-stranded binding protein (mtSSB); in the formation of mitochondrial nucleoid clusters during the action of intercalators. We found that both intercalators cause numerous aberrations due to perturbing their native status. By blocking mtDNA replication, both agents also prevented mtDNA association with TFAM, consequently causing nucleoid aggregation into large nucleoid clusters enriched with TFAM, co-existing with the normal nucleoid population. In the later stages of intercalation (> 48 h), TFAM levels were reduced to 25%. In contrast, mtSSB was released from mtDNA and freely distributed within the mitochondrial network. Nucleoid clusters mostly contained nucleoids with newly replicated mtDNA, however the nucleoid population which was not in replication mode remained outside the clusters. Moreover, the nucleoid clusters were enriched with p53, an anti-oncogenic gatekeeper. We suggest that mitochondrial nucleoid clustering is a mechanism for protecting nucleoids with newly replicated DNA against intercalators mediating genotoxic stress. These results provide new insight into the common mitochondrial response to mtDNA stress and can be implied also on DXR-induced mitochondrial cytotoxicity. - Highlights: • The mechanism for mitochondrial nucleoid clustering is proposed. • DNA intercalators (Doxorubicin or Ethidium Bromide) prevent TFAM

  20. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    Directory of Open Access Journals (Sweden)

    Rui Guo

    2010-01-01

    Full Text Available Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH.ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p. for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways were examined.Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2 (*-. Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF.Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  1. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    Science.gov (United States)

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  2. Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro.

    Science.gov (United States)

    Conrad, Taylor; Landry, Greg M; Aw, Tak Yee; Nichols, Royce; McMartin, Kenneth E

    2016-07-01

    Diethylene glycol (DEG) has caused many cases of acute kidney injury and deaths worldwide. Diglycolic acid (DGA) is the metabolite responsible for the renal toxicity, but its toxic mechanism remains unclear. To characterize the mitochondrial dysfunction produced from DGA by examining several mitochondrial processes potentially contributing to renal cell toxicity. The effect of DGA on mitochondrial membrane potential was examined in normal human proximal tubule (HPT) cells. Isolated rat kidney mitochondria were used to assess the effects of DGA on mitochondrial function, including respiratory parameters (States 3 and 4), electron transport chain complex activities and calcium-induced opening of the mitochondrial permeability transition pore. DGA was compared with ethylene glycol tetraacetic acid (EGTA) to determine calcium chelating ability. DGA cytotoxicity was assessed using lactate dehydrogenase leakage from cultured proximal tubule cells. DGA decreased the mitochondrial membrane potential in HPT cells. In rat kidney mitochondria, DGA decreased State 3 respiration, but did not affect State 4 respiration or the ADP/O ratio. DGA reduced glutamate/malate respiration at lower DGA concentrations (0.5 mmol/L) than succinate respiration (100 mmol/L). DGA inhibited Complex II activity without altering Complex I, III or IV activities. DGA blocked calcium-induced mitochondrial swelling, indicating inhibition of the calcium-dependent mitochondrial permeability transition. DGA and EGTA reduced the free calcium concentration in solution in an equimolar manner. DGA toxicity and mitochondrial dysfunction occurred as similar concentrations. DGA inhibited mitochondrial respiration, but without uncoupling oxidative phosphorylation. The more potent effect of DGA on glutamate/malate respiration and the inhibition of mitochondrial swelling was likely due to its chelation of calcium. These results indicate that DGA produces mitochondrial dysfunction by chelating calcium to

  3. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.

    Science.gov (United States)

    Schroeder, Elizabeth A; Shadel, Gerald S

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    International Nuclear Information System (INIS)

    Yan Qingfeng; Bykhovskaya, Yelena; Li Ronghua; Mengesha, Emebet; Shohat, Mordechai; Estivill, Xavier; Fischel-Ghodsian, Nathan; Guan Minxin

    2006-01-01

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations

  5. Arthropod phylogenetics in light of three novel millipede (myriapoda: diplopoda mitochondrial genomes with comments on the appropriateness of mitochondrial genome sequence data for inferring deep level relationships.

    Directory of Open Access Journals (Sweden)

    Michael S Brewer

    Full Text Available BACKGROUND: Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. RESULTS: The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly. As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. CONCLUSIONS: The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic

  6. Arthropod phylogenetics in light of three novel millipede (myriapoda: diplopoda) mitochondrial genomes with comments on the appropriateness of mitochondrial genome sequence data for inferring deep level relationships.

    Science.gov (United States)

    Brewer, Michael S; Swafford, Lynn; Spruill, Chad L; Bond, Jason E

    2013-01-01

    Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect

  7. Mitochondrial-dependent Autoimmunity in Membranous Nephropathy of IgG4-related Disease

    Science.gov (United States)

    Buelli, Simona; Perico, Luca; Galbusera, Miriam; Abbate, Mauro; Morigi, Marina; Novelli, Rubina; Gagliardini, Elena; Tentori, Chiara; Rottoli, Daniela; Sabadini, Ettore; Saito, Takao; Kawano, Mitsuhiro; Saeki, Takako; Zoja, Carlamaria; Remuzzi, Giuseppe; Benigni, Ariela

    2015-01-01

    The pathophysiology of glomerular lesions of membranous nephropathy (MN), including seldom-reported IgG4-related disease, is still elusive. Unlike in idiopathic MN where IgG4 prevails, in this patient IgG3 was predominant in glomerular deposits in the absence of circulating anti-phospholipase A2 receptor antibodies, suggesting a distinct pathologic process. Here we documented that IgG4 retrieved from the serum of our propositus reacted against carbonic anhydrase II (CAII) at the podocyte surface. In patient's biopsy, glomerular CAII staining increased and co-localized with subepithelial IgG4 deposits along the capillary walls. Patient's IgG4 caused a drop in cell pH followed by mitochondrial dysfunction, excessive ROS production and cytoskeletal reorganization in cultured podocytes. These events promoted mitochondrial superoxide-dismutase-2 (SOD2) externalization on the plasma membrane, becoming recognizable by complement-binding IgG3 anti-SOD2. Among patients with IgG4-related disease only sera of those with IgG4 anti-CAII antibodies caused low intracellular pH and mitochondrial alterations underlying SOD2 externalization. Circulating IgG4 anti-CAII can cause podocyte injury through processes of intracellular acidification, mitochondrial oxidative stress and neoantigen induction in patients with IgG4 related disease. The onset of MN in a subset of patients could be due to IgG4 antibodies recognizing CAII with consequent exposure of mitochondrial neoantigen in the context of multifactorial pathogenesis of disease. PMID:26137589

  8. Oxidative stress and mitochondrial dysfunction in infected pregnant

    Directory of Open Access Journals (Sweden)

    Нана Мерабівна Пасієшвілі

    2015-04-01

    Full Text Available The infected pregnant women have been various perinatal complications. The aim of the work was to clarify the role of oxidative stress and mitochondrial dysfunction in the development of perinatal complications in infected pregnant.Methods. The study included 68 pregnant women with signs of maternal-fetal infection (MFI and 30 pregnant women who were found infected (control group. Later pregnant with MFI were divided into 2 groups: the first included 30 women who received traditional antibacterial and antiviral therapy, the second group consisted of 28 women who were additionally given an immunomodulator in combination with ozone therapy.Results. During pregnancy with MFI it is characterized the thrombophilic disorders, break immune homeostasis pregnant, endothelial dysfunction, which adversely affects perinatal indicators.Conclusions. The use of immunomodulators and ozone therapy in the complex treatment of MFI is pathogenetically substantiated effective treatment of oxidative stress and mitochondrial toxicity in the prevention of perinatal complications in infected women

  9. Deconstructing Mitochondrial Dysfunction in Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Vega García-Escudero

    2013-01-01

    Full Text Available There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.

  10. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  11. RECG maintains plastid and mitochondrial genome stability by suppressing extensive recombination between short dispersed repeats.

    Directory of Open Access Journals (Sweden)

    Masaki Odahara

    2015-03-01

    Full Text Available Maintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P. patens homolog of bacterial RecG helicase, RECG, some of which is localized in both plastid and mitochondrial nucleoids. RECG partially complements recG deficiency in Escherichia coli cells. A knockout (KO mutation of RECG caused characteristic phenotypes including growth delay and developmental and mitochondrial defects, which are similar to those of the RECA1 KO mutant. The RECG KO cells showed heterogeneity in these phenotypes. Analyses of RECG KO plants showed that mitochondrial genome was destabilized due to a recombination between 8-79 bp repeats and the pattern of the recombination partly differed from that observed in the RECA1 KO mutants. The mitochondrial DNA (mtDNA instability was greater in severe phenotypic RECG KO cells than that in mild phenotypic ones. This result suggests that mitochondrial genomic instability is responsible for the defective phenotypes of RECG KO plants. Some of the induced recombination caused efficient genomic rearrangements in RECG KO mitochondria. Such loci were sometimes associated with a decrease in the levels of normal mtDNA and significant decrease in the number of transcripts derived from the loci. In addition, the RECG KO mutation caused remarkable plastid abnormalities and induced recombination between short repeats (12-63 bp in the plastid DNA. These results suggest that RECG plays a role in the maintenance of both plastid and mitochondrial genome stability by suppressing aberrant recombination between dispersed short repeats; this role is crucial for plastid and mitochondrial functions.

  12. Mitochondrial Stress Signaling Promotes Cellular Adaptations

    Directory of Open Access Journals (Sweden)

    Jayne Alexandra Barbour

    2014-01-01

    Full Text Available Mitochondrial dysfunction has been implicated in the aetiology of many complex diseases, as well as the ageing process. Much of the research on mitochondrial dysfunction has focused on how mitochondrial damage may potentiate pathological phenotypes. The purpose of this review is to draw attention to the less well-studied mechanisms by which the cell adapts to mitochondrial perturbations. This involves communication of stress to the cell and successful induction of quality control responses, which include mitophagy, unfolded protein response, upregulation of antioxidant and DNA repair enzymes, morphological changes, and if all else fails apoptosis. The mitochondrion is an inherently stressful environment and we speculate that dysregulation of stress signaling or an inability to switch on these adaptations during times of mitochondrial stress may underpin mitochondrial dysfunction and hence amount to pathological states over time.

  13. Mitochondrial protection by the mixed muscarinic/σ1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Aβ25-35 peptide-injected mice, a nontransgenic Alzheimer's disease model.

    Science.gov (United States)

    Lahmy, Valentine; Long, Romain; Morin, Didier; Villard, Vanessa; Maurice, Tangui

    2014-01-01

    Alzheimer's disease (AD), the most prevalent dementia in the elderly, is characterized by progressive synaptic and neuronal loss. Mitochondrial dysfunctions have been consistently reported as an early event in AD and appear before Aβ deposition and memory decline. In order to define a new neuroprotectant strategy in AD targeting mitochondrial alterations, we develop tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine (ANAVEX2-73, AE37), a mixed muscarinic receptor ligand and a sigma-1 receptor (σ1R) agonist. We previously reported that ANAVEX2-73 shows anti-amnesic and neuroprotective activities in mice injected intracerebroventricular (ICV) with oligomeric amyloid-β25-35 peptide (Aβ25-35). The σ1R is present at mitochondria-associated endoplasmic reticulum (ER) membranes, where it acts as a sensor/modulator of ER stress responses and local Ca(2+) exchanges with the mitochondria. We therefore evaluated the effect of ANAVEX2-73 and PRE-084, a reference σ1R agonist, on preservation of mitochondrial integrity in Aβ25-35-injected mice. In isolated mitochondria from hippocampus preparations of Aβ25-35 injected animals, we measured respiration rates, complex activities, lipid peroxidation, Bax/Bcl-2 ratios and cytochrome c release into the cytosol. Five days after Aβ25-35 injection, mitochondrial respiration in mouse hippocampus was altered. ANAVEX2-73 (0.01-1 mg/kg IP) restored normal respiration and PRE-084 (0.5-1 mg/kg IP) increased respiration rates. Both compounds prevented Aβ25-35-induced increases in lipid peroxidation levels, Bax/Bcl-2 ratio and cytochrome c release into the cytosol, all indicators of increased toxicity. ANAVEX2-73 and PRE-084 efficiently prevented the mitochondrial respiratory dysfunction and resulting oxidative stress and apoptosis. The σ1R, targeted selectively or non-selectively, therefore appears as a valuable target for protection against mitochondrial damages in AD.

  14. Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions.

    Directory of Open Access Journals (Sweden)

    Bodi Zhang

    Full Text Available Mast cells are hematopoietically-derived tissue immune cells that participate in acquired and innate immunity, as well as in inflammation through release of many chemokines and cytokines, especially in response to the pro-inflammatory peptide substance P (SP. Inflammation is critical in the pathogenesis of many diseases, but the trigger(s is often unknown. We investigated if mast cell stimulation leads to secretion of mitochondrial components and whether these could elicit autocrine and/or paracrine inflammatory effects. Here we show that human LAD2 mast cells stimulated by IgE/anti-IgE or by the SP led to secretion of mitochondrial particles, mitochondrial (mt mtDNA and ATP without cell death. Mitochondria purified from LAD2 cells and, when mitochondria added to mast cells trigger degranulation and release of histamine, PGD(2, IL-8, TNF, and IL-1β. This stimulatory effect is partially inhibited by an ATP receptor antagonist and by DNAse. These results suggest that the mitochondrial protein fraction may also contribute. Purified mitochondria also stimulate IL-8 and vascular endothelial growth factor (VEGF release from cultured human keratinocytes, and VEGF release from primary human microvascular endothelial cells. In order to investigate if mitochondrial components could be secreted in vivo, we injected rats intraperiotoneally (ip with compound 48/80, which mimicks the action of SP. Peritoneal mast cells degranulated and mitochondrial particles were documented by transimission electron microscopy outside the cells. We also wished to investigate if mitochondrial components secreted locally could reach the systemic circulation. Administration ip of mtDNA isolated from LAD2 cells in rats was detected in their serum within 4 hr, indicating that extravascular mtDNA could enter the systemic circulation. Secretion of mitochondrial components from stimulated live mast cells may act as "autopathogens" contributing to the pathogenesis of inflammatory

  15. Melatonin and human mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    Reza Sharafati-Chaleshtori

    2017-01-01

    Full Text Available Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function.

  16. Mitochondrial Metabolism in Aging Heart

    Science.gov (United States)

    Lesnefsky, Edward J.; Chen, Qun; Hoppel, Charles L.

    2016-01-01

    Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area there is an approximate 50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952

  17. Mitochondrial Dysfunction in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    P. C. Keane

    2011-01-01

    Full Text Available Parkinson's disease (PD is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD. This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc of PD patients and to highlight the important need for further research in this area.

  18. Endocrine disorders in mitochondrial disease.

    Science.gov (United States)

    Schaefer, Andrew M; Walker, Mark; Turnbull, Douglass M; Taylor, Robert W

    2013-10-15

    Endocrine dysfunction in mitochondrial disease is commonplace, but predominantly restricted to disease of the endocrine pancreas resulting in diabetes mellitus. Other endocrine manifestations occur, but are relatively rare by comparison. In mitochondrial disease, neuromuscular symptoms often dominate the clinical phenotype, but it is of paramount importance to appreciate the multi-system nature of the disease, of which endocrine dysfunction may be a part. The numerous phenotypes attributable to pathogenic mutations in both the mitochondrial (mtDNA) and nuclear DNA creates a complex and heterogeneous catalogue of disease which can be difficult to navigate for novices and experts alike. In this article we provide an overview of the endocrine disorders associated with mitochondrial disease, the way in which the underlying mitochondrial disorder influences the clinical presentation, and how these factors influence subsequent management. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  19. Intermediate Filaments as Organizers of Cellular Space: How They Affect Mitochondrial Structure and Function.

    Science.gov (United States)

    Schwarz, Nicole; Leube, Rudolf E

    2016-07-05

    Intermediate filaments together with actin filaments and microtubules form the cytoskeleton, which is a complex and highly dynamic 3D network. Intermediate filaments are the major mechanical stress protectors but also affect cell growth, differentiation, signal transduction, and migration. Using intermediate filament-mitochondrial crosstalk as a prominent example, this review emphasizes the importance of intermediate filaments as crucial organizers of cytoplasmic space to support these functions. We summarize observations in different mammalian cell types which demonstrate how intermediate filaments influence mitochondrial morphology, subcellular localization, and function through direct and indirect interactions and how perturbations of these interactions may lead to human diseases.

  20. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity

    Directory of Open Access Journals (Sweden)

    Peter W. Lindinger

    2015-09-01

    Full Text Available Obesity is associated with impaired mitochondrial function. This study compares mitochondrial protein expression in omental fat in obese and non-obese humans. Omental adipose tissue was obtained by surgical biopsy, adipocytes were purified and mitochondria isolated. Using anion-exchange chromatography, SDS-PAGE and mass-spectrometry, 128 proteins with potentially different abundances in patient groups were identified, 62 of the 128 proteins are mainly localized in the mitochondria. Further quantification of 12 of these 62 proteins by immune dot blot analysis revealed four proteins citrate synthase, HADHA, LETM1 and mitofilin being inversely associated with BMI, and mitofilin being inversely correlated with gender.

  1. Insulin resistance and increased muscle cytokine levels in patients with mitochondrial myopathy.

    Science.gov (United States)

    Rue, Nana; Vissing, John; Galbo, Henrik

    2014-10-01

    Mitochondrial dysfunction has been proposed to cause insulin resistance and that might stimulate cytokine production. The objective of the study was to elucidate the association between mitochondrial myopathy, insulin sensitivity, and cytokine levels in muscle. This was an experimental, controlled study in outpatients. Eight overnight-fasted patients (P) with various inherited mitochondrial myopathies and eight healthy subjects (C) matched for sex, age, weight, height, and physical activity participated in the study. The intervention included a 120-minute hyperinsulinemic, euglycemic clamp. Another morning, microdialysis of both vastus lateralis muscles for 4 hours, including one-legged, knee extension exercise for 30 minutes, was performed. Glucose infusion rate during 90-120 minutes of insulin infusion was measured. Cytokine concentrations in dialysate were also measured. Muscle strength, percentage fat mass, and creatine kinase in plasma did not differ between groups. The maximal oxygen uptake was 21 ± 3 (SE) (P) and 36 ± 3(C) mL/kg·min (2P fatty acids and glycerol at 120 minutes were higher in P vs C (2P myopathies, insulin sensitivity of muscle, adipose tissue, and pancreatic A cells is reduced, supporting that mitochondrial function influences insulin action. Furthermore, a local, low-grade inflammation of potential clinical importance exists in the muscle of these patients.

  2. Subcellular localization of human neutral ceramidase expressed in HEK293 cells

    International Nuclear Information System (INIS)

    Hwang, Young-ha; Tani, Motohiro; Nakagawa, Tetsuto; Okino, Nozomu; Ito, Makoto

    2005-01-01

    We previously reported that rat and mouse neutral ceramidases were mainly localized to plasma membranes as a type II integral membrane protein and partly detached from the cells via processing of the N-terminal/anchor sequence when expressed in HEK293 cells [M. Tani, H. Iida, M. Ito, O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein, J. Biol. Chem. 278 (2003) 10523-10530]. In contrast, the human homologue was exclusively detected in mitochondria when expressed in HEK293 and MCF7 cells as a fusion protein with green fluorescent protein at the N-terminal of the enzyme [S.E. Bawab, P. Roddy, T. Quian, A. Bielawska, J.J. Lemasters, Y.A. Hannun, Molecular cloning and characterization of a human mitochondrial ceramidase, J. Biol. Chem. 275 (2000) 21508-21513]. Given this discrepancy, we decided to clone the neutral ceramidase from human kidney cDNA and re-examine the intracellular localization of the enzyme when expressed in HEK293 cells. The putative amino acid sequence of the newly cloned enzyme was identical to that reported for human neutral ceramidase except at the N-terminal; the new protein was 19 amino acids longer at the N-terminal. We found that the putative full-length human neutral ceramidase was transported to plasma membranes, but not to mitochondria, possibly via a classical ER/Golgi pathway and localized mainly in plasma membranes when expressed in HEK293 cells. The N-terminal-truncated mutant, previously reported as a human mitochondrial ceramidase, was also weakly expressed in HEK293 cells but mainly released into the medium possibly due to the insufficient signal/anchor sequence

  3. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications

    Directory of Open Access Journals (Sweden)

    Susana Rovira-Llopis

    2017-04-01

    Full Text Available Mitochondria play a key role in maintaining cellular metabolic homeostasis. These organelles have a high plasticity and are involved in dynamic processes such as mitochondrial fusion and fission, mitophagy and mitochondrial biogenesis. Type 2 diabetes is characterised by mitochondrial dysfunction, high production of reactive oxygen species (ROS and low levels of ATP. Mitochondrial fusion is modulated by different proteins, including mitofusin-1 (MFN1, mitofusin-2 (MFN2 and optic atrophy (OPA-1, while fission is controlled by mitochondrial fission 1 (FIS1, dynamin-related protein 1 (DRP1 and mitochondrial fission factor (MFF. PARKIN and (PTEN-induced putative kinase 1 (PINK1 participate in the process of mitophagy, for which mitochondrial fission is necessary. In this review, we discuss the molecular pathways of mitochondrial dynamics, their impairment under type 2 diabetes, and pharmaceutical approaches for targeting mitochondrial dynamics, such as mitochondrial division inhibitor-1 (mdivi-1, dynasore, P110 and 15-oxospiramilactone. Furthermore, we discuss the pathophysiological implications of impaired mitochondrial dynamics, especially in type 2 diabetes.

  4. Mgm101p is a novel component of the mitochondrial nucleoid that binds DNA and is required for the repair of oxidatively damaged mitochondrial DNA

    International Nuclear Information System (INIS)

    Meeusen, S.; Tieu, Q.; Wong, E.; Weiss, E.; Schieltz, D.; Yates, J.R.; Nunnari, J.

    1999-01-01

    Maintenance of mitochondrial DNA (mtDNA) during cell division is required for progeny to be respiratory competent. Maintenance involves the replication, repair, assembly, segregation, and partitioning of the mitochondrial nucleoid. MGM101 has been identified as a gene essential for mtDNA maintenance in S. cerevisiae, but its role is unknown. Using liquid chromatography coupled with tandem mass spectrometry, we identified Mgm101p as a component of highly enriched nucleoids, suggesting that it plays a nucleoid-specific role in maintenance. Subcellular fractionation, indirect immunofluorescence and GFP tagging show that Mgm101p is exclusively associated with the mitochondrial nucleoid structure in cells. Furthermore, DNA affinity chromatography of nucleoid extracts indicates that Mgm101p binds to DNA, suggesting that its nucleoid localization is in part due to this activity. Phenotypic analysis of cells containing a temperature sensitive mgm101 allele suggests that Mgm101p is not involved in mtDNA packaging, segregation, partitioning or required for ongoing mtDNA replication. We examined Mgm101p's role in mtDNA repair. As compared with wild-type cells, mgm101 cells were more sensitive to mtDNA damage induced by UV irradiation and were hypersensitive to mtDNA damage induced by gamma rays and H2O2 treatment. Thus, we propose that Mgm101p performs an essential function in the repair of oxidatively damaged mtDNA that is required for the maintenance of the mitochondrial genome. (author)

  5. Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Shane L Rea

    2007-10-01

    Full Text Available Prior studies have shown that disruption of mitochondrial electron transport chain (ETC function in the nematode Caenorhabditis elegans can result in life extension. Counter to these findings, many mutations that disrupt ETC function in humans are known to be pathologically life-shortening. In this study, we have undertaken the first formal investigation of the role of partial mitochondrial ETC inhibition and its contribution to the life-extension phenotype of C. elegans. We have developed a novel RNA interference (RNAi dilution strategy to incrementally reduce the expression level of five genes encoding mitochondrial proteins in C. elegans: atp-3, nuo-2, isp-1, cco-1, and frataxin (frh-1. We observed that each RNAi treatment led to marked alterations in multiple ETC components. Using this dilution technique, we observed a consistent, three-phase lifespan response to increasingly greater inhibition by RNAi: at low levels of inhibition, there was no response, then as inhibition increased, lifespan responded by monotonically lengthening. Finally, at the highest levels of RNAi inhibition, lifespan began to shorten. Indirect measurements of whole-animal oxidative stress showed no correlation with life extension. Instead, larval development, fertility, and adult size all became coordinately affected at the same point at which lifespan began to increase. We show that a specific signal, initiated during the L3/L4 larval stage of development, is sufficient for initiating mitochondrial dysfunction-dependent life extension in C. elegans. This stage of development is characterized by the last somatic cell divisions normally undertaken by C. elegans and also by massive mitochondrial DNA expansion. The coordinate effects of mitochondrial dysfunction on several cell cycle-dependent phenotypes, coupled with recent findings directly linking cell cycle progression with mitochondrial activity in C. elegans, lead us to propose that cell cycle checkpoint control

  6. A Mitochondrial Genome of Rhyparochromidae (Hemiptera: Heteroptera) and a Comparative Analysis of Related Mitochondrial Genomes.

    Science.gov (United States)

    Li, Teng; Yang, Jie; Li, Yinwan; Cui, Ying; Xie, Qiang; Bu, Wenjun; Hillis, David M

    2016-10-19

    The Rhyparochromidae, the largest family of Lygaeoidea, encompasses more than 1,850 described species, but no mitochondrial genome has been sequenced to date. Here we describe the first mitochondrial genome for Rhyparochromidae: a complete mitochondrial genome of Panaorus albomaculatus (Scott, 1874). This mitochondrial genome is comprised of 16,345 bp, and contains the expected 37 genes and control region. The majority of the control region is made up of a large tandem-repeat region, which has a novel pattern not previously observed in other insects. The tandem-repeats region of P. albomaculatus consists of 53 tandem duplications (including one partial repeat), which is the largest number of tandem repeats among all the known insect mitochondrial genomes. Slipped-strand mispairing during replication is likely to have generated this novel pattern of tandem repeats. Comparative analysis of tRNA gene families in sequenced Pentatomomorpha and Lygaeoidea species shows that the pattern of nucleotide conservation is markedly higher on the J-strand. Phylogenetic reconstruction based on mitochondrial genomes suggests that Rhyparochromidae is not the sister group to all the remaining Lygaeoidea, and supports the monophyly of Lygaeoidea.

  7. Epilepsy and Mitochondrial Dysfunction

    Directory of Open Access Journals (Sweden)

    Russell P. Saneto DO, PhD

    2017-10-01

    Full Text Available Epilepsy is a common manifestation of mitochondrial disease. In a large cohort of children and adolescents with mitochondrial disease (n = 180, over 48% of patients developed seizures. The majority (68% of patients were younger than 3 years and medically intractable (90%. The electroencephalographic pattern of multiregional epileptiform discharges over the left and right hemisphere with background slowing occurred in 62%. The epilepsy syndrome, infantile spasms, was seen in 17%. Polymerase γ mutations were the most common genetic etiology of seizures, representing Alpers-Huttenlocher syndrome (14%. The severity of disease in those patients with epilepsy was significant, as 13% of patients experienced early death. Simply the loss of energy production cannot explain the development of seizures or all patients with mitochondrial dysfunction would have epilepsy. Until the various aspects of mitochondrial physiology that are involved in proper brain development are understood, epilepsy and its treatment will remain unsatisfactory.

  8. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs?

    Science.gov (United States)

    Smith, David Roy

    2016-01-01

    The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank-an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission. © The Author 2015. Published by Oxford University Press.

  9. Aspirin increases mitochondrial fatty acid oxidation

    International Nuclear Information System (INIS)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2017-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.

  10. Desmin common mutation is associated with multi-systemic disease manifestations and depletion of mitochondria and mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Elizabeth eMcCormick

    2015-06-01

    Full Text Available Desmin (DES is a major muscle scaffolding protein that also functions to anchor mitochondria. Pathogenic DES mutations, however, have not previously been recognized as a cause of multi-systemic mitochondrial disease. Here, we describe a 45-year-old man who presented to The Children’s Hospital of Philadelphia Mitochondrial-Genetics Diagnostic Clinic for evaluation of progressive cardiac, neuromuscular, gastrointestinal, and mood disorders. Muscle biopsy at age 45 was remarkable for cytoplasmic bodies, as well as ragged red fibers and SDH positive/COX negative fibers that were suggestive of a mitochondrial myopathy. Muscle also showed significant reductions in mitochondrial content (16% of control mean for citrate synthase activity and mitochondrial DNA (35% of control mean. His family history was significant for cardiac conduction defects and myopathy in multiple maternal relatives. Multiple single gene and panel-based sequencing studies were unrevealing. Whole exome sequencing identified a known pathogenic p.S13F mutation in DES that had previously been associated with desmin-related myopathy. Desmin-related myopathy is an autosomal dominant disorder characterized by right ventricular hypertrophic cardiomyopathy, myopathy, and arrhythmias. However, neuropathy, gastrointestinal dysfunction, and depletion of both mitochondria and mitochondrial DNA have not previously been widely recognized in this disorder. Recognition that mitochondrial dysfunction occurs in desmin-related myopathy clarifies the basis for the multi-systemic manifestations, as are typical of primary mitochondrial disorders. Understanding the mitochondrial pathophysiology of desmin-related myopathy highlights the possibility of new therapies for the otherwise untreatable and often fatal class of disease. We postulate that drug treatments aimed at improving mitochondrial biogenesis or reducing oxidative stress may be effective therapies to ameliorate the effects of desmin

  11. Ecto-nucleoside triphosphate diphosphohydrolase 3 in the ventral and lateral hypothalamic area of female rats: morphological characterization and functional implications

    Directory of Open Access Journals (Sweden)

    Kiss David S

    2009-04-01

    Full Text Available Abstract Background Based on its distribution in the brain, ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3 may play a role in the hypothalamic regulation of homeostatic systems, including feeding, sleep-wake behavior and reproduction. To further characterize the morphological attributes of NTPDase3-immunoreactive (IR hypothalamic structures in the rat brain, here we investigated: 1. The cellular and subcellular localization of NTPDase3; 2. The effects of 17β-estradiol on the expression level of hypothalamic NTPDase3; and 3. The effects of NTPDase inhibition in hypothalamic synaptosomal preparations. Methods Combined light- and electron microscopic analyses were carried out to characterize the cellular and subcellular localization of NTPDase3-immunoreactivity. The effects of estrogen on hypothalamic NTPDase3 expression was studied by western blot technique. Finally, the effects of NTPDase inhibition on mitochondrial respiration were investigated using a Clark-type oxygen electrode. Results Combined light- and electron microscopic analysis of immunostained hypothalamic slices revealed that NTPDase3-IR is linked to ribosomes and mitochondria, is predominantly present in excitatory axon terminals and in distinct segments of the perikaryal plasma membrane. Immunohistochemical labeling of NTPDase3 and glutamic acid decarboxylase (GAD indicated that γ-amino-butyric-acid- (GABA ergic hypothalamic neurons do not express NTPDase3, further suggesting that in the hypothalamus, NTPDase3 is predominantly present in excitatory neurons. We also investigated whether estrogen influences the expression level of NTPDase3 in the ventrobasal and lateral hypothalamus. A single subcutaneous injection of estrogen differentially increased NTPDase3 expression in the medial and lateral parts of the hypothalamus, indicating that this enzyme likely plays region-specific roles in estrogen-dependent hypothalamic regulatory mechanisms. Determination of

  12. Mitochondrial DNA repair and aging

    Energy Technology Data Exchange (ETDEWEB)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-11-30

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis.

  13. Mitochondrial DNA repair and aging

    International Nuclear Information System (INIS)

    Mandavilli, Bhaskar S.; Santos, Janine H.; Van Houten, Bennett

    2002-01-01

    The mitochondrial electron transport chain plays an important role in energy production in aerobic organisms and is also a significant source of reactive oxygen species that damage DNA, RNA and proteins in the cell. Oxidative damage to the mitochondrial DNA is implicated in various degenerative diseases, cancer and aging. The importance of mitochondrial ROS in age-related degenerative diseases is further strengthened by studies using animal models, Caenorhabditis elegans, Drosophila and yeast. Research in the last several years shows that mitochondrial DNA is more susceptible to various carcinogens and ROS when compared to nuclear DNA. DNA damage in mammalian mitochondria is repaired by base excision repair (BER). Studies have shown that mitochondria contain all the enzymes required for BER. Mitochondrial DNA damage, if not repaired, leads to disruption of electron transport chain and production of more ROS. This vicious cycle of ROS production and mtDNA damage ultimately leads to energy depletion in the cell and apoptosis

  14. A Novel Non-Apoptotic Role of Procaspase-3 in the Regulation of Mitochondrial Biogenesis Activators.

    Science.gov (United States)

    Kim, Ji-Soo; Ha, Ji-Young; Yang, Sol-Ji; Son, Jin H

    2018-01-01

    The executioner caspase-3 has been proposed as a pharmacological intervention target to preserve degenerating dopaminergic (DA) neurons because apoptotic mechanisms involving caspase-3 contribute, at least in part, to the loss of DA neurons in patients and experimental models of Parkinson's disease (PD). Here, we determined that genetic intervention of caspase-3 was sufficient to prevent cell death against oxidative stress (OS), accompanied by unexpected severe mitochondrial dysfunction. Specifically, as we expected, caspase-3-deficient DA neuronal cells were very significantly resistant to OS-induced cell death, while the activation of the initiator caspase-9 by OS was preserved. Moreover, detailed phenotypic characterization of caspase-3-deficient DA cells revealed severe mitochondrial dysfunction, including an accumulation of damaged mitochondria with a characteristic swollen structure and broken cristae, reduced membrane potential, increased levels of reactive oxygen species (ROS), and deficits in mitochondrial oxidative phosphorylation (OXPHOS) enzymes. Of great interest, we found that mitochondrial biogenesis was dramatically decreased in caspase-3-deficient DA cells, whereas their capability of mitophagy was normal. In accordance with this observation, caspase-3 gene knock down (KD) resulted in dramatically decreased expression of the key transcriptional activators of mitochondrial biogenesis, such as Tfam and Nrf-1, implicating a non-apoptotic role of procaspase-3 in mitochondrial biogenesis. Therefore, a prolonged anti-apoptotic intervention targeting caspase-3 should be considered with caution due to the potential adverse effects in mitochondria dynamics resulting from a novel potential functional role of procaspase-3 in mitochondrial biogenesis via regulating the expression of mitochondrial biogenesis activators. J. Cell. Biochem. 119: 347-357, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  16. Mitochondrial dysfunction and organophosphorus compounds

    International Nuclear Information System (INIS)

    Karami-Mohajeri, Somayyeh; Abdollahi, Mohammad

    2013-01-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP

  17. Mitochondrial dysfunction in obesity.

    Science.gov (United States)

    de Mello, Aline Haas; Costa, Ana Beatriz; Engel, Jéssica Della Giustina; Rezin, Gislaine Tezza

    2018-01-01

    Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The expanding phenotype of mitochondrial myopathy.

    Science.gov (United States)

    DiMauro, Salvatore; Gurgel-Giannetti, Juliana

    2005-10-01

    Our understanding of mitochondrial diseases (defined restrictively as defects in the mitochondrial respiratory chain) continues to progress apace. In this review we provide an update of information regarding disorders that predominantly or exclusively affect skeletal muscle. Most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency, and mutations in genes that control mitochondrial DNA (mtDNA) abundance and structure such as POLG and TK2. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with altered lipid composition of the inner mitochondrial membrane, but a putative secondary impairment of the respiratory chain remains to be documented. Concerning the 'other genome', the role played by mutations in protein encoding genes of mtDNA in causing isolated myopathies has been confirmed. It has also been confirmed that mutations in tRNA genes of mtDNA can cause predominantly myopathic syndromes and - contrary to conventional wisdom - these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, myalgia, cramps, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  19. Decidual cell polyploidization necessitates mitochondrial activity.

    Directory of Open Access Journals (Sweden)

    Xinghong Ma

    Full Text Available Cellular polyploidy has been widely reported in nature, yet its developmental mechanism and function remain poorly understood. In the present study, to better define the aspects of decidual cell polyploidy, we isolated pure polyploid and non-polyploid decidual cell populations from the in vivo decidual bed. Three independent RNA pools prepared for each population were then subjected to the Affymetrix gene chip analysis for the whole mouse genome transcripts. Our data revealed up-regulation of 1015 genes and down-regulation of 1207 genes in the polyploid populations, as compared to the non-polyploid group. Comparative RT-PCR and in situ hybridization results indeed confirmed differential expressional regulation of several genes between the two populations. Based on functional enrichment analyses, up-regulated polyploidy genes appeared to implicate several functions, which primarily include cell/nuclear division, ATP binding, metabolic process, and mitochondrial activity, whereas that of down-regulated genes primarily included apoptosis and immune processes. Further analyses of genes that are related to mitochondria and bi-nucleation showed differential and regional expression within the decidual bed, consistent with the pattern of polyploidy. Consistently, studies revealed a marked induction of mitochondrial mass and ATP production in polyploid cells. The inhibition of mitochondrial activity by various pharmacological inhibitors, as well as by gene-specific targeting using siRNA-mediated technology showed a dramatic attenuation of polyploidy and bi-nucleation development during in vitro stromal cell decidualization, suggesting mitochondria play a major role in positive regulation of decidual cell polyploidization. Collectively, analyses of unique polyploidy markers and molecular signaling networks may be useful to further characterize functional aspects of decidual cell polyploidy at the site of implantation.

  20. Mitochondrial alterations and oxidative stress in an acute transient mouse model of muscle degeneration: implications for muscular dystrophy and related muscle pathologies.

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Srinivas Bharath, Muchukunte Mukunda

    2014-01-03

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases.

  1. Mitochondrial DNA analysis suggests a Chibchan migration into Colombia

    OpenAIRE

    Noguera-Santamaría, Maria Claudia; Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana. Grupo de Genética Humana, Facultad de Medicina, Universidad de La Sabana. Facultad de Ciencias de la Salud. Grupo Gisafaco. Corporación Universitaria Remington; Anderson, Carl Edlund; Department of Foreign Languages & Cultures, Universidad de La Sabana; Uricoechea, Daniel; Grupo de Genética Humana, Facultad de Medicina, Universidad de La Sabana; Durán, Clemencia; Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana.; Briceño-Balcázar, Ignacio; Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana Grupo de Genética Humana, Facultad de Medicina, Universidad de La Sabana; Bernal-Villegas, Jaime; Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana Universidad Tecnológica de Bolívar

    2015-01-01

    The characterization of mitochondrial DNA (mtDNA) allows the establishment of genetic structures and phylogenetic relationships in human populations, tracing lineages far back in time. We analysed samples of mtDNA from twenty (20) Native American populations (700 individuals) dispersed throughout Colombian territory. Samples were collected during 1989-1993 in the context of the program Expedición Humana (“Human Expedition”) and stored in the Biological Repository of the Institute of Human Gen...

  2. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  3. Role of cardiolipins in the inner mitochondrial membrane: insight gained through atom-scale simulations

    DEFF Research Database (Denmark)

    Róg, Tomasz; Martinez-Seara, Hector; Munck, Nana

    2009-01-01

    , the exceptional nature of cardiolipins is characterized by their small charged head group connected to typically four hydrocarbon chains. In this work, we present atomic-scale molecular dynamics simulations of the inner mitochondrial membrane modeled as a mixture of cardiolipins (CLs), phosphatidylcholines (PCs...

  4. Targeting mitochondria by Zn(II)N-alkylpyridylporphyrins: the impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy.

    Science.gov (United States)

    Odeh, Ahmad M; Craik, James D; Ezzeddine, Rima; Tovmasyan, Artak; Batinic-Haberle, Ines; Benov, Ludmil T

    2014-01-01

    Mitochondria play a key role in aerobic ATP production and redox control. They harness crucial metabolic pathways and control cell death mechanisms, properties that make these organelles essential for survival of most eukaryotic cells. Cancer cells have altered cell death pathways and typically show a shift towards anaerobic glycolysis for energy production, factors which point to mitochondria as potential culprits in cancer development. Targeting mitochondria is an attractive approach to tumor control, but design of pharmaceutical agents based on rational approaches is still not well established. The aim of this study was to investigate which structural features of specially designed Zn(II)N-alkylpyridylporphyrins would direct them to mitochondria and to particular mitochondrial targets. Since Zn(II)N-alkylpyridylporphyrins can act as highly efficient photosensitizers, their localization can be confirmed by photodamage to particular mitochondrial components. Using cultured LS174T adenocarcinoma cells, we found that subcellular distribution of Zn-porphyrins is directed by the nature of the substituents attached to the meso pyridyl nitrogens at the porphyrin ring. Increasing the length of the aliphatic chain from one carbon (methyl) to six carbons (hexyl) increased mitochondrial uptake of the compounds. Such modifications also affected sub-mitochondrial distribution of the Zn-porphyrins. The amphiphilic hexyl derivative (ZnTnHex-2-PyP) localized in the vicinity of cytochrome c oxidase complex, causing its inactivation during illumination. Photoinactivation of critical cellular targets explains the superior efficiency of the hexyl derivative in causing mitochondrial photodamage, and suppressing cellular respiration and survival. Design of potent photosensitizers and redox-active scavengers of free radicals should take into consideration not only selective organelle uptake and localization, but also selective targeting of critical macromolecular structures.

  5. Sex-Specific Skeletal Muscle Fatigability and Decreased Mitochondrial Oxidative Capacity in Adult Rats Exposed to Postnatal Hyperoxia

    Directory of Open Access Journals (Sweden)

    Laura H. Tetri

    2018-03-01

    Full Text Available Premature birth affects more than 10% of live births, and is characterized by relative hyperoxia exposure in an immature host. Long-term consequences of preterm birth include decreased aerobic capacity, decreased muscular strength and endurance, and increased prevalence of metabolic diseases such as type 2 diabetes mellitus. Postnatal hyperoxia exposure in rodents is a well-established model of chronic lung disease of prematurity, and also recapitulates the pulmonary vascular, cardiovascular, and renal phenotype of premature birth. The objective of this study was to evaluate whether postnatal hyperoxia exposure in rats could recapitulate the skeletal and metabolic phenotype of premature birth, and to characterize the subcellular metabolic changes associated with postnatal hyperoxia exposure, with a secondary aim to evaluate sex differences in this model. Compared to control rats, male rats exposed to 14 days of postnatal hyperoxia then aged to 1 year demonstrated higher skeletal muscle fatigability, lower muscle mitochondrial oxidative capacity, more mitochondrial damage, and higher glycolytic enzyme expression. These differences were not present in female rats with the same postnatal hyperoxia exposure. This study demonstrates detrimental mitochondrial and muscular outcomes in the adult male rat exposed to postnatal hyperoxia. Given that young adults born premature also demonstrate skeletal muscle dysfunction, future studies are merited to determine whether this dysfunction as well as reduced aerobic capacity is due to reduced mitochondrial oxidative capacity and metabolic dysfunction.

  6. MPV17-related mitochondrial DNA maintenance defect: New cases and review of clinical, biochemical, and molecular aspects.

    Science.gov (United States)

    El-Hattab, Ayman W; Wang, Julia; Dai, Hongzheng; Almannai, Mohammed; Staufner, Christian; Alfadhel, Majid; Gambello, Michael J; Prasun, Pankaj; Raza, Saleem; Lyons, Hernando J; Afqi, Manal; Saleh, Mohammed A M; Faqeih, Eissa A; Alzaidan, Hamad I; Alshenqiti, Abduljabbar; Flore, Leigh Anne; Hertecant, Jozef; Sacharow, Stephanie; Barbouth, Deborah S; Murayama, Kei; Shah, Amit A; Lin, Henry C; Wong, Lee-Jun C

    2018-04-01

    Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis. © 2017 Wiley Periodicals, Inc.

  7. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    Directory of Open Access Journals (Sweden)

    Khushbu Jain

    2015-01-01

    Full Text Available Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH. The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult.

  8. Mitochondrial genome diversity and population structure of the giant squid Architeuthis

    DEFF Research Database (Denmark)

    Winkelmann, Inger Eleanor Hall; Campos, Paula; Strugnell, Jan

    2013-01-01

    techniques, considerable controversy exists with regard to topics as varied as their taxonomy, biology and even behaviour. In this study, we have characterized the mitochondrial genome (mitogenome) diversity of 43 Architeuthis samples collected from across the range of the species, in order to use genetic...... a recent population expansion or selective sweep, which may explain the low level of genetic diversity....

  9. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN

    Directory of Open Access Journals (Sweden)

    Annalisa Canta

    2015-06-01

    Full Text Available The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN. This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy.

  10. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN)

    Science.gov (United States)

    Canta, Annalisa; Pozzi, Eleonora; Carozzi, Valentina Alda

    2015-01-01

    The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy. PMID:29056658

  11. Lipophilic triphenylphosphonium cations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak.

    Directory of Open Access Journals (Sweden)

    Jan Trnka

    Full Text Available The lipophilic positively charged moiety of triphenylphosphonium (TPP+ has been used to target a range of biologically active compounds including antioxidants, spin-traps and other probes into mitochondria. The moiety itself, while often considered biologically inert, appears to influence mitochondrial metabolism.We used the Seahorse XF flux analyzer to measure the effect of a range of alkylTPP+ on cellular respiration and further analyzed their effect on mitochondrial membrane potential and the activity of respiratory complexes. We found that the ability of alkylTPP+ to inhibit the respiratory chain and decrease the mitochondrial membrane potential increases with the length of the alkyl chain suggesting that hydrophobicity is an important determinant of toxicity.More hydrophobic TPP+ derivatives can be expected to have a negative impact on mitochondrial membrane potential and respiratory chain activity in addition to the effect of the biologically active moiety attached to them. Using shorter linker chains or adding hydrophilic functional groups may provide a means to decrease this negative effect.

  12. TAC102 Is a Novel Component of the Mitochondrial Genome Segregation Machinery in Trypanosomes.

    Directory of Open Access Journals (Sweden)

    Roman Trikin

    2016-05-01

    Full Text Available Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA. While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC, linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization.

  13. Contribution of liver mitochondrial membrane-bound glutathione transferase to mitochondrial permeability transition pores

    International Nuclear Information System (INIS)

    Hossain, Quazi Sohel; Ulziikhishig, Enkhbaatar; Lee, Kang Kwang; Yamamoto, Hideyuki; Aniya, Yoko

    2009-01-01

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated with GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca 2+ -mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1

  14. Evolution of gastropod mitochondrial genome arrangements

    Directory of Open Access Journals (Sweden)

    Zardoya Rafael

    2008-02-01

    Full Text Available Abstract Background Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary comparative analysis requires a robust phylogenetic framework of the group under study, which has been elusive so far for gastropods in spite of the efforts carried out during the last two decades. Here, we report the complete nucleotide sequence of five mitochondrial genomes of gastropods (Pyramidella dolabrata, Ascobulla fragilis, Siphonaria pectinata, Onchidella celtica, and Myosotella myosotis, and we analyze them together with another ten complete mitochondrial genomes of gastropods currently available in molecular databases in order to reconstruct the phylogenetic relationships among the main lineages of gastropods. Results Comparative analyses with other mollusk mitochondrial genomes allowed us to describe molecular features and general trends in the evolution of mitochondrial genome organization in gastropods. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (ME, MP, ML, BI arrived at a single topology, which was used to reconstruct the evolution of mitochondrial gene rearrangements in the group. Conclusion Four main lineages were identified within gastropods: Caenogastropoda, Vetigastropoda, Patellogastropoda, and Heterobranchia. Caenogastropoda and Vetigastropoda are sister taxa, as well as, Patellogastropoda and Heterobranchia. This result rejects the validity of the derived clade Apogastropoda (Caenogastropoda + Heterobranchia. The position of Patellogastropoda remains unclear likely due to long-branch attraction biases. Within Heterobranchia, the most heterogeneous group of gastropods, neither Euthyneura (because of the inclusion of P

  15. Effects of microirradiation of heart cells in culture at the mitochondrial level

    International Nuclear Information System (INIS)

    Salet, Christian; Moreno, Giuliana; Lampidis, T.J.

    1980-01-01

    The technique of micro-irradiation has been applied in irradiating the nucleus or the mitochondria of heart cells in tissue culture. Using classical or stimulated (laser) sources, variations in the beating rate have been utilized as an endpoint in assaying effects of micro-irradiation on the function of cardiac cells. The most important target for the stimulation of the beating rate of heart cells in vitro is the mitochondrion. When the mitochondrial oxidative system is perturbed with either KCN, ATP or adriamycin this stimulating effect is inhibited. Consequently, this combination of micro-irradiation and beating heart cells in culture is a powerful tool in determining the localization and investigating the mechanism of action of various drugs at the mitochondrial level

  16. Loss of Mitochondrial Function Impairs Lysosomes.

    Science.gov (United States)

    Demers-Lamarche, Julie; Guillebaud, Gérald; Tlili, Mouna; Todkar, Kiran; Bélanger, Noémie; Grondin, Martine; Nguyen, Angela P; Michel, Jennifer; Germain, Marc

    2016-05-06

    Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Mitochondrial dynamics in mammalian health and disease.

    Science.gov (United States)

    Liesa, Marc; Palacín, Manuel; Zorzano, Antonio

    2009-07-01

    The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.

  18. Characterizing Time Irreversibility in Disordered Fermionic Systems by the Effect of Local Perturbations

    Science.gov (United States)

    Vardhan, Shreya; De Tomasi, Giuseppe; Heyl, Markus; Heller, Eric J.; Pollmann, Frank

    2017-07-01

    We study the effects of local perturbations on the dynamics of disordered fermionic systems in order to characterize time irreversibility. We focus on three different systems: the noninteracting Anderson and Aubry-André-Harper (AAH) models and the interacting spinless disordered t -V chain. First, we consider the effect on the full many-body wave functions by measuring the Loschmidt echo (LE). We show that in the extended or ergodic phase the LE decays exponentially fast with time, while in the localized phase the decay is algebraic. We demonstrate that the exponent of the decay of the LE in the localized phase diverges proportionally to the single-particle localization length as we approach the metal-insulator transition in the AAH model. Second, we probe different phases of disordered systems by studying the time expectation value of local observables evolved with two Hamiltonians that differ by a spatially local perturbation. Remarkably, we find that many-body localized systems could lose memory of the initial state in the long-time limit, in contrast to the noninteracting localized phase where some memory is always preserved.

  19. Pathological mechanisms underlying single large‐scale mitochondrial DNA deletions

    Science.gov (United States)

    Rocha, Mariana C.; Rosa, Hannah S.; Grady, John P.; Blakely, Emma L.; He, Langping; Romain, Nadine; Haller, Ronald G.; Newman, Jane; McFarland, Robert; Ng, Yi Shiau; Gorman, Grainne S.; Schaefer, Andrew M.; Tuppen, Helen A.; Taylor, Robert W.

    2018-01-01

    Objective Single, large‐scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large‐scale mtDNA deletions in skeletal muscle. Methods We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large‐scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. Results We have defined 3 “classes” of single, large‐scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. Interpretation Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex‐specific protein‐encoding genes. Furthermore, removal of mt‐tRNA genes impacts specific complexes only at high deletion levels, when complex‐specific protein‐encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115–130 PMID:29283441

  20. Role of polyhydroxybutyrate in mitochondrial calcium uptake

    Science.gov (United States)

    Smithen, Matthew; Elustondo, Pia A.; Winkfein, Robert; Zakharian, Eleonora; Abramov, Andrey Y.; Pavlov, Evgeny

    2013-01-01

    Polyhydroxybutyrate (PHB) is a biological polymer which belongs to the class of polyesters and is ubiquitously present in all living organisms. Mammalian mitochondrial membranes contain PHB consisting of up to 120 hydroxybutyrate residues. Roles played by PHB in mammalian mitochondria remain obscure. It was previously demonstrated that PHB of the size similar to one found in mitochondria mediates calcium transport in lipid bilayer membranes. We hypothesized that the presence of PHB in mitochondrial membrane might play a significant role in mitochondrial calcium transport. To test this, we investigated how the induction of PHB hydrolysis affects mitochondrial calcium transport. Mitochondrial PHB was altered enzymatically by targeted expression of bacterial PHB hydrolyzing enzyme (PhaZ7) in mitochondria of mammalian cultured cells. The expression of PhaZ7 induced changes in mitochondrial metabolism resulting in decreased mitochondrial membrane potential in HepG2 but not in U87 and HeLa cells. Furthermore, it significantly inhibited mitochondrial calcium uptake in intact HepG2, U87 and HeLa cells stimulated by the ATP or by the application of increased concentrations of calcium to the digitonin permeabilized cells. Calcium uptake in PhaZ7 expressing cells was restored by mimicking calcium uniporter properties with natural electrogenic calcium ionophore - ferutinin. We propose that PHB is a previously unrecognized important component of the mitochondrial calcium uptake system. PMID:23702223

  1. Purification, crystallization and preliminary X-ray characterization of a human mitochondrial phenylalanyl-tRNA synthetase

    International Nuclear Information System (INIS)

    Levin, Inna; Kessler, Naama; Moor, Nina; Klipcan, Liron; Koc, Emine; Templeton, Paul; Spremulli, Linda; Safro, Mark

    2007-01-01

    The expression, purification and crystallization of recombinant human mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) are reported. Diffraction data were collected to 2.2 Å resolution and the mitPheRS structure was solved using the molecular-replacement method. Human monomeric mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) is an enzyme that catalyzes the charging of tRNA with the cognate amino acid phenylalanine. Human mitPheRS is a chimera of the bacterial α-subunit of PheRS and the B8 domain of its β-subunit. Together, the α-subunit and the ‘RNP-domain’ (B8 domain) at the C-terminus form the minimal structural set to construct an enzyme with phenylalanylation activity. The recombinant human mitPheRS was purified to homogeneity and crystallized in complex with phenylalanine and ATP. The crystals diffracted to 2.2 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 55, b = 90, c = 96 Å

  2. Effect of cryopreservation on mitochondrial activity in buffalo sperm Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    O. Kandil

    2010-02-01

    Full Text Available Sperm mitochondrial activity is investigated and used as “in vitro” spermatozoa vitality indicator and about quality effectiveness of different sperm diluents. It was studied the cytochemically activity of NADPH-diaphorase and LDH-C4 in cryopreserved buffalo sperm. Low intensity of the enzyme reaction was established in all examined sperm samples in both enzymes, regardless from the used cryoprotectors. The main part of the enzyme reaction was localized in mitochondrial sheath and in a very small degree in the head base of spermatozoa. No increase of the enzymes activities or the spermatozoa motility has been found after the incubating with Sp-TALP medium although the established caffeine stimulating effect on the glycolysis and fresh spermatozoa motility. Established by us low sperm motility after cryopreservation may be due to low LDH and NADPH-diaphorase activity due to glycolisis disturbances and ATP synthesis. This method allows to estimate quality of buffalo semen and to find some different disturbances in mitochondrial sheath, which could not be found by routine morphological studies and could be used in practice ejaculates with high number of metabolic active sperm cells.

  3. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  4. Complete mitochondrial genome of the free-living earwig, Challia fletcheri (Dermaptera: Pygidicranidae and phylogeny of Polyneoptera.

    Directory of Open Access Journals (Sweden)

    Xinlong Wan

    Full Text Available The insect order Dermaptera, belonging to Polyneoptera, includes ∼2,000 extant species, but no dermapteran mitochondrial genome has been sequenced. We sequenced the complete mitochondrial genome of the free-living earwig, Challia fletcheri, compared its genomic features to other available mitochondrial sequences from polyneopterous insects. In addition, the Dermaptera, together with the other known polyneopteran mitochondrial genome sequences (protein coding, ribosomal RNA, and transfer RNA genes, were employed to understand the phylogeny of Polyneoptera, one of the least resolved insect phylogenies, with emphasis on the placement of Dermaptera. The complete mitochondrial genome of C. fletcheri presents the following several unusual features: the longest size in insects is 20,456 bp; it harbors the largest tandem repeat units (TRU among insects; it displays T- and G-skewness on the major strand and A- and C-skewness on the minor strand, which is a reversal of the general pattern found in most insect mitochondrial genomes, and it possesses a unique gene arrangement characterized by a series of gene translocations and/or inversions. The reversal pattern of skewness is explained in terms of inversion of replication origin. All phylogenetic analyses consistently placed Dermaptera as the sister to Plecoptera, leaving them as the most basal lineage of Polyneoptera or sister to Ephemeroptera, and placed Odonata consistently as the most basal lineage of the Pterygota.

  5. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis

    International Nuclear Information System (INIS)

    Wu, C.-W.; Ping, Y.-H.; Yen, J.-C.; Chang, C.-Y.; Wang, S.-F.; Yeh, C.-L.; Chi, C.-W.; Lee, H.-C.

    2007-01-01

    Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive decline in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects

  6. Targeted impairment of thymidine kinase 2 expression in cells induces mitochondrial DNA depletion and reveals molecular mechanisms of compensation of mitochondrial respiratory activity

    International Nuclear Information System (INIS)

    Villarroya, Joan; Lara, Mari-Carmen; Dorado, Beatriz; Garrido, Marta; Garcia-Arumi, Elena; Meseguer, Anna; Hirano, Michio; Vila, Maya R.

    2011-01-01

    Highlights: → We impaired TK2 expression in Ost TK1 - cells via siRNA-mediated interference (TK2 - ). → TK2 impairment caused severe mitochondrial DNA (mtDNA) depletion in quiescent cells. → Despite mtDNA depletion, TK2 - cells show high cytochrome oxidase activity. → Depletion of mtDNA occurs without imbalance in the mitochondrial dNTP pool. → Nuclear-encoded ENT1, DNA-pol γ, TFAM and TP gene expression is lowered in TK2 - cells. -- Abstract: The mitochondrial DNA (mtDNA) depletion syndrome comprises a clinically heterogeneous group of diseases characterized by reductions of the mtDNA abundance, without associated point mutations or rearrangements. We have developed the first in vitro model to study of mtDNA depletion due to reduced mitochondrial thymidine kinase 2 gene (TK2) expression in order to understand the molecular mechanisms involved in mtDNA depletion syndrome due to TK2 mutations. Small interfering RNA targeting TK2 mRNA was used to decrease TK2 expression in Ost TK1 - cells, a cell line devoid of endogenous thymidine kinase 1 (TK1). Stable TK2-deficient cell lines showed a reduction of TK2 levels close to 80%. In quiescent conditions, TK2-deficient cells showed severe mtDNA depletion, also close to 80% the control levels. However, TK2-deficient clones showed increased cytochrome c oxidase activity, higher cytochrome c oxidase subunit I transcript levels and higher subunit II protein expression respect to control cells. No alterations of the deoxynucleotide pools were found, whereas a reduction in the expression of genes involved in nucleoside/nucleotide homeostasis (human equilibrative nucleoside transporter 1, thymidine phosphorylase) and mtDNA maintenance (DNA-polymerase γ, mitochondrial transcription factor A) was observed. Our findings highlight the importance of cellular compensatory mechanisms that enhance the expression of respiratory components to ensure respiratory activity despite profound depletion in mtDNA levels.

  7. Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression.

    Science.gov (United States)

    Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2017-08-01

    Mitochondria have their own gene expression system that is independent of the nuclear system, and control cellular functions in cooperation with the nucleus. While a number of useful technologies for achieving nuclear transgene expression have been reported, only a few have focused on mitochondria. In this study, we validated the utility of an artificial mitochondrial DNA vector with a virus promoter on mitochondrial transgene expression. We designed and constructed pCMV-mtLuc (CGG) that contains a CMV promotor derived from Cytomegalovirus and an artificial mitochondrial genome with a NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. Nluc luciferase activity measurements showed that the pCMV-mtLuc (CGG) efficiently produced the Nluc luciferase protein in human HeLa cells. Moreover, we optimized the mitochondrial transfection of pCMV-mtLuc (CGG) using a MITO-Porter system, a liposome-based carrier for mitochondrial delivery via membrane fusion. As a result, we found that transfection of pCMV-mtLuc (CGG) by MITO-Porter modified with the KALA peptide (cationic amphipathic cell-penetrating peptide) showed a high mitochondrial transgene expression. The developed mitochondrial transgene expression system represents a potentially useful tool for the fields of nanoscience and nanotechnology for controlling the intracellular microenvironment via the regulation of mitochondrial function and promises to open additional innovative research fields of study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cathepsin E promotes pulmonary emphysema via mitochondrial fission.

    Science.gov (United States)

    Zhang, Xuchen; Shan, Peiying; Homer, Robert; Zhang, Yi; Petrache, Irina; Mannam, Praveen; Lee, Patty J

    2014-10-01

    Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease.

    Science.gov (United States)

    Boczonadi, Veronika; King, Martin S; Smith, Anthony C; Olahova, Monika; Bansagi, Boglarka; Roos, Andreas; Eyassu, Filmon; Borchers, Christoph; Ramesh, Venkateswaran; Lochmüller, Hanns; Polvikoski, Tuomo; Whittaker, Roger G; Pyle, Angela; Griffin, Helen; Taylor, Robert W; Chinnery, Patrick F; Robinson, Alan J; Kunji, Edmund R S; Horvath, Rita

    2018-03-08

    PurposeTo understand the role of the mitochondrial oxodicarboxylate carrier (SLC25A21) in the development of spinal muscular atrophy-like disease.MethodsWe identified a novel pathogenic variant in a patient by whole-exome sequencing. The pathogenicity of the mutation was studied by transport assays, computer modeling, followed by targeted metabolic testing and in vitro studies in human fibroblasts and neurons.ResultsThe patient carries a homozygous pathogenic variant c.695A>G; p.(Lys232Arg) in the SLC25A21 gene, encoding the mitochondrial oxodicarboxylate carrier, and developed spinal muscular atrophy and mitochondrial myopathy. Transport assays show that the mutation renders SLC25A21 dysfunctional and 2-oxoadipate cannot be imported into the mitochondrial matrix. Computer models of central metabolism predicted that impaired transport of oxodicarboxylate disrupts the pathways of lysine and tryptophan degradation, and causes accumulation of 2-oxoadipate, pipecolic acid, and quinolinic acid, which was confirmed in the patient's urine by targeted metabolomics. Exposure to 2-oxoadipate and quinolinic acid decreased the level of mitochondrial complexes in neuronal cells (SH-SY5Y) and induced apoptosis.ConclusionMitochondrial oxodicarboxylate carrier deficiency leads to mitochondrial dysfunction and the accumulation of oxoadipate and quinolinic acid, which in turn cause toxicity in spinal motor neurons leading to spinal muscular atrophy-like disease.GENETICS in MEDICINE advance online publication, 8 March 2018; doi:10.1038/gim.2017.251.

  10. Cold acclimation increases mitochondrial oxidative capacity without inducing mitochondrial uncoupling in goldfish white skeletal muscle

    Directory of Open Access Journals (Sweden)

    Reinaldo Sousa Dos Santos

    2012-11-01

    Goldfish have been used for cold acclimation studies, which have focused on changes in glycolytic and oxidative enzymes or alterations in lipid composition in skeletal muscle. Here we examine the effects of cold acclimation on the functional properties of isolated mitochondria and permeabilized fibers from goldfish white skeletal muscle, focusing on understanding the types of changes that occur in the mitochondrial respiratory states. We observed that cold acclimation promoted a significant increase in the mitochondrial oxygen consumption rates. Western blot analysis showed that UCP3 was raised by ∼1.5-fold in cold-acclimated muscle mitochondria. Similarly, we also evidenced a rise in the adenine nucleotide translocase content in cold-acclimated muscle mitochondria compared to warm-acclimated mitochondria (0.96±0.05 vs 0.68±0.02 nmol carboxyatractyloside mg−1 protein. This was followed by a 2-fold increment in the citrate synthase activity, which suggests a higher mitochondrial content in cold-acclimated goldfish. Even with higher levels of UCP3 and ANT, the effects of activator (palmitate and inhibitors (carboxyatractyloside and GDP on mitochondrial parameters were similar in both warm- and cold-acclimated goldfish. Thus, we propose that cold acclimation in goldfish promotes an increase in functional oxidative capacity, with higher mitochondrial content without changes in the mitochondrial uncoupling pathways.

  11. Impaired mitochondrial function in HepG2 cells treated with hydroxy-cobalamin[c-lactam]: A cell model for idiosyncratic toxicity

    International Nuclear Information System (INIS)

    Haegler, Patrizia; Grünig, David; Berger, Benjamin; Krähenbühl, Stephan; Bouitbir, Jamal

    2015-01-01

    The vitamin B12 analog hydroxy-cobalamin[c-lactam] (HCCL) impairs mitochondrial protein synthesis and the function of the electron transport chain. Our goal was to establish an in vitro model for mitochondrial dysfunction in human hepatoma cells (HepG2), which can be used to investigate hepatotoxicity of idiosyncratic mitochondrial toxicants. For that, HepG2 cells were treated with HCCL, which inhibits the function of methylmalonyl-CoA mutase and impairs mitochondrial protein synthesis. Secondary, cells were incubated with propionate that served as source of propionyl-CoA, a percursor of methylmalonyl-CoA. Dose-finding experiments were conducted to evaluate the optimal dose and treatment time of HCCL and propionate for experiments on mitochondrial function. 50 μM HCCL was cytotoxic after exposure of HepG2 cells for 2 d and 10 and 50 μM HCCL enhanced the cytotoxicity of 100 or 1000 μM propionate. Co-treatment with HCCL (10 μM) and propionate (1000 μM) dissipated the mitochondrial membrane potential and impaired the activity of enzyme complex IV of the electron transport chain. Treatment with HCCL decreased the mRNA content of mitochondrially encoded proteins, whereas the mtDNA content remained unchanged. We observed mitochondrial ROS accumulation and decreased mitochondrial SOD2 expression. Moreover, electron microscopy showed mitochondrial swelling. Finally, HepG2 cells pretreated with a non-cytotoxic combination of HCCL (10 μM) and propionate (100 μM) were more sensitive to the mitochondrial toxicants dronedarone, benzbromarone, and ketoconazole than untreated cells. In conclusion, we established and characterized a cell model, which could be used for testing drugs with idiosyncratic mitochondrial toxicity

  12. Formation of S-(carboxymethyl)-cysteine in rat liver mitochondrial proteins: effects of caloric and methionine restriction.

    Science.gov (United States)

    Naudí, Alba; Jové, Mariona; Cacabelos, Daniel; Ayala, Victoria; Cabre, Rosanna; Caro, Pilar; Gomez, José; Portero-Otín, Manuel; Barja, Gustavo; Pamplona, Reinald

    2013-02-01

    Maillard reaction contributes to the chemical modification and cross-linking of proteins. This process plays a significant role in the aging process and determination of animal longevity. Oxidative conditions promote the Maillard reaction. Mitochondria are the primary site of oxidants due to the reactive molecular species production. Mitochondrial proteome cysteine residues are targets of oxidative attack due to their specific chemistry and localization. Their chemical, non-enzymatic modification leads to dysfunctional proteins, which entail cellular senescence and organismal aging. Previous studies have consistently shown that caloric and methionine restrictions, nutritional interventions that increase longevity, decrease the rate of mitochondrial oxidant production and the physiological steady-state levels of markers of oxidative damage to macromolecules. In this scenario, we have detected S-(carboxymethyl)-cysteine (CMC) as a new irreversible chemical modification in mitochondrial proteins. CMC content in mitochondrial proteins significantly correlated with that of the lysine-derived analog N (ε)-(carboxymethyl)-lysine. The concentration of CMC is, however, one order of magnitude lower compared with CML likely due in part to the lower content of cysteine with respect to lysine of the mitochondrial proteome. CMC concentrations decreases in liver mitochondrial proteins of rats subjected to 8.5 and 25 % caloric restriction, as well as in 40 and 80 % methionine restriction. This is associated with a concomitant and significant increase in the protein content of sulfhydryl groups. Data presented here evidence that CMC, a marker of Cys-AGE formation, could be candidate as a biomarker of mitochondrial damage during aging.

  13. Molecular and clinical characterization of the myopathic form of mitochondrial DNA depletion syndrome caused by mutations in the thymidine kinase (TK2) gene.

    Science.gov (United States)

    Chanprasert, Sirisak; Wang, Jing; Weng, Shao-Wen; Enns, Gregory M; Boué, Daniel R; Wong, Brenda L; Mendell, Jerry R; Perry, Deborah A; Sahenk, Zarife; Craigen, William J; Alcala, Francisco J Climent; Pascual, Juan M; Melancon, Serge; Zhang, Victor Wei; Scaglia, Fernando; Wong, Lee-Jun C

    2013-01-01

    Mitochondrial DNA (mtDNA) depletion syndromes (MDSs) are a clinically and molecularly heterogeneous group of mitochondrial cytopathies characterized by severe mtDNA copy number reduction in affected tissues. Clinically, MDSs are mainly categorized as myopathic, encephalomyopathic, hepatocerebral, or multi-systemic forms. To date, the myopathic form of MDS is mainly caused by mutations in the TK2 gene, which encodes thymidine kinase 2, the first and rate limiting step enzyme in the phosphorylation of pyrimidine nucleosides. We analyzed 9 unrelated families with 11 affected subjects exhibiting the myopathic form of MDS, by sequencing the TK2 gene. Twelve mutations including 4 novel mutations were detected in 9 families. Skeletal muscle specimens were available from 7 out of 11 subjects. Respiratory chain enzymatic activities in skeletal muscle were measured in 6 subjects, and enzymatic activities were reduced in 3 subjects. Quantitative analysis of mtDNA content in skeletal muscle was performed in 5 subjects, and marked mtDNA content reduction was observed in each. In addition, we outline the molecular and clinical characteristics of this syndrome in a total of 52 patients including those previously reported, and a total of 36 TK2 mutations are summarized. Clinically, hypotonia and proximal muscle weakness are the major phenotypes present in all subjects. In summary, our study expands the molecular and clinical spectrum associated with TK2 deficiency. © 2013.

  14. A novel paradigm links mitochondrial dysfunction with muscle stem cell impairment in sepsis.

    Science.gov (United States)

    Chatre, Laurent; Verdonk, Franck; Rocheteau, Pierre; Crochemore, Clément; Chrétien, Fabrice; Ricchetti, Miria

    2017-10-01

    Sepsis is an acute systemic inflammatory response of the body to microbial infection and a life threatening condition associated with multiple organ failure. Survivors may display long-term disability with muscle weakness that remains poorly understood. Recent data suggest that long-term myopathy in sepsis survivors is due to failure of skeletal muscle stem cells (satellite cells) to regenerate the muscle. Satellite cells impairment in the acute phase of sepsis is linked to unusual mitochondrial dysfunctions, characterized by a dramatic reduction of the mitochondrial mass and hyperactivity of residual organelles. Survivors maintain the impairment of satellite cells, including alterations of the mitochondrial DNA (mtDNA), in the long-term. This condition can be rescued by treatment with mesenchymal stem cells (MSCs) that restore mtDNA alterations and mitochondrial function in satellite cells, and in fine their regenerative potential. Injection of MSCs in turn increases the force of isolated muscle fibers and of the whole animal, and improves the survival rate. These effects occur in the context of reduced inflammation markers that also raised during sepsis. Targeting muscle stem cells mitochondria, in a context of reduced inflammation, may represent a valuable strategy to reduce morbidity and long-term impairment of the muscle upon sepsis. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Onukwufor, John O.; Kibenge, Fred; Stevens, Don; Kamunde, Collins

    2015-01-01

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q 10 values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and intensifying

  16. Modulation of cadmium-induced mitochondrial dysfunction and volume changes by temperature in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Onukwufor, John O. [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3 (Canada)

    2015-01-15

    Highlights: • Interactions of Cd and temperature exacerbate mitochondrial dysfunction and enhance Cd accumulation. • Cd uptake by mitochondria occurs through the Ca uniporter. • Temperature exacerbates Cd-induced mitochondrial volume changes. • Low concentrations of Cd inhibit mitochondrial swelling. - Abstract: We investigated how temperature modulates cadmium (Cd)-induced mitochondrial bioenergetic disturbances, metal accumulation and volume changes in rainbow trout (Oncorhynchus mykiss). In the first set of experiments, rainbow trout liver mitochondrial function and Cd content were measured in the presence of complex I substrates, malate and glutamate, following exposure to Cd (0–100 μM) at three (5, 13 and 25 °C) temperatures. The second set of experiments assessed the effect of temperature on Cd-induced mitochondrial volume changes, including the underlying mechanisms, at 15 and 25 °C. Although temperature stimulated both state 3 and 4 rates of respiration, the coupling efficiency was reduced at temperature extremes due to greater inhibition of state 3 at low temperature and greater stimulation of state 4 at the high temperature. Cadmium exposure reduced the stimulatory effect of temperature on state 3 respiration but increased that on state 4, consequently exacerbating mitochondrial uncoupling. The interaction of Cd and temperature yielded different responses on thermal sensitivity of state 3 and 4 respiration; the Q{sub 10} values for state 3 respiration increased at low temperature (5–13 °C) while those for state 4 increased at high temperature (13–25 °C). Importantly, the mitochondria accumulated more Cd at high temperature suggesting that the observed greater impairment of oxidative phosphorylation with temperature was due, at least in part, to a higher metal burden. Cadmium-induced mitochondrial volume changes were characterized by an early phase of contraction followed by swelling, with temperature changing the kinetics and

  17. Mitochondrial damage and cholesterol storage in human hepatocellular carcinoma cells with silencing of UBIAD1 gene expression

    Directory of Open Access Journals (Sweden)

    Carlos R. Morales

    2014-01-01

    Full Text Available Heterozygous mutations in the UBIAD1 gene cause Schnyder corneal dystrophy characterized by abnormal cholesterol and phospholipid deposits in the cornea. Ubiad1 protein was recently identified as Golgi prenyltransferase responsible for biosynthesis of vitamin K2 and CoQ10, a key protein in the mitochondrial electron transport chain. Our study shows that silencing UBIAD1 in cultured human hepatocellular carcinoma cells causes dramatic morphological changes and cholesterol storage in the mitochondria, emphasizing an important role of UBIAD1 in mitochondrial function.

  18. Soluble Fms-Like Tyrosine Kinase-1 Alters Cellular Metabolism and Mitochondrial Bioenergetics in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Lissette C. Sánchez-Aranguren

    2018-03-01

    Full Text Available Preeclampsia is a maternal hypertensive disorder that affects up to 1 out of 12 pregnancies worldwide. It is characterized by proteinuria, endothelial dysfunction, and elevated levels of the soluble form of the vascular endothelial growth factor receptor-1 (VEGFR-1, known as sFlt-1. sFlt-1 effects are mediated in part by decreasing VEGF signaling. The direct effects of sFlt-1 on cellular metabolism and bioenergetics in preeclampsia, have not been established. The goal of this study was to evaluate whether sFlt-1 causes mitochondrial dysfunction leading to disruption of normal functioning in endothelial and placental cells in preeclampsia. Endothelial cells (ECs and first-trimester trophoblast (HTR-8/SVneo were treated with serum from preeclamptic women rich in sFlt-1 or with the recombinant protein. sFlt-1, dose-dependently inhibited ECs respiration and acidification rates indicating a metabolic phenotype switch enhancing glycolytic flux. HTR-8/SVneo displayed a strong basal glycolytic metabolism, remaining less sensitive to sFlt-1-induced mitochondrial impairment. Moreover, results obtained in ECs exposed to serum from preeclamptic subjects demonstrated that increased sFlt-1 leads to metabolic perturbations accountable for mitochondrial dysfunction observed in preeclampsia. sFlt-1 exacerbated mitochondrial reactive oxygen species (ROS formation and mitochondrial membrane potential dissipation in ECs and trophoblasts exposed to serum from preeclamptic women. Forcing oxidative metabolism by culturing cells in galactose media, further sensitized cells to sFlt-1. This approach let us establish that sFlt-1 targets mitochondrial function in ECs. Effects of sFlt-1 on HTR-8/SVneo cells metabolism were amplified in galactose, demonstrating that sFlt-1 only target cells that rely mainly on oxidative metabolism. Together, our results establish the early metabolic perturbations induced by sFlt-1 and the resulting endothelial and mitochondrial dysfunction

  19. Bioenergetics of lung tumors: alteration of mitochondrial biogenesis and respiratory capacity.

    Science.gov (United States)

    Bellance, N; Benard, G; Furt, F; Begueret, H; Smolková, K; Passerieux, E; Delage, J P; Baste, J M; Moreau, P; Rossignol, R

    2009-12-01

    Little is known on the metabolic profile of lung tumors and the reminiscence of embryonic features. Herein, we determined the bioenergetic profiles of human fibroblasts taken from lung epidermoid carcinoma (HLF-a) and fetal lung (MRC5). We also analysed human lung tumors and their surrounding healthy tissue from four patients with adenocarcinoma. On these different models, we measured functional parameters (cell growth rates in oxidative and glycolytic media, respiration, ATP synthesis and PDH activity) as well as compositional features (expression level of various energy proteins and upstream transcription factors). The results demonstrate that both the lung fetal and cancer cell lines produced their ATP predominantly by glycolysis, while oxidative phosphorylation was only capable of poor ATP delivery. This was explained by a decreased mitochondrial biogenesis caused by a lowered expression of PGC1alpha (as shown by RT-PCR and Western blot) and mtTFA. Consequently, the relative expression of glycolytic versus OXPHOS markers was high in these cells. Moreover, the re-activation of mitochondrial biogenesis with resveratrol induced cell death specifically in cancer cells. A consistent reduction of mitochondrial biogenesis and the subsequent alteration of respiratory capacity was also observed in lung tumors, associated with a lower expression level of bcl2. Our data give a better characterization of lung cancer cells' metabolic alterations which are essential for growth and survival. They designate mitochondrial biogenesis as a possible target for anti-cancer therapy.

  20. Induced pluripotent stem cells with a pathological mitochondrial DNA deletion

    Science.gov (United States)

    Cherry, Anne B. C.; Gagne, Katelyn E.; McLoughlin, Erin M.; Baccei, Anna; Gorman, Bryan; Hartung, Odelya; Miller, Justine D.; Zhang, Jin; Zon, Rebecca L.; Ince, Tan A.; Neufeld, Ellis J.; Lerou, Paul H.; Fleming, Mark D.; Daley, George Q.; Agarwal, Suneet

    2013-01-01

    In congenital mitochondrial DNA (mtDNA) disorders, a mixture of normal and mutated mtDNA (termed heteroplasmy) exists at varying levels in different tissues, which determines the severity and phenotypic expression of disease. Pearson marrow pancreas syndrome (PS) is a congenital bone marrow failure disorder caused by heteroplasmic deletions in mtDNA. The cause of the hematopoietic failure in PS is unknown, and adequate cellular and animal models are lacking. Induced pluripotent stem (iPS) cells are particularly amenable for studying mtDNA disorders, as cytoplasmic genetic material is retained during direct reprogramming. Here we derive and characterize iPS cells from a patient with PS. Taking advantage of the tendency for heteroplasmy to change with cell passage, we isolated isogenic PS-iPS cells without detectable levels of deleted mtDNA. We found that PS-iPS cells carrying a high burden of deleted mtDNA displayed differences in growth, mitochondrial function, and hematopoietic phenotype when differentiated in vitro, compared to isogenic iPS cells without deleted mtDNA. Our results demonstrate that reprogramming somatic cells from patients with mtDNA disorders can yield pluripotent stem cells with varying burdens of heteroplasmy that might be useful in the study and treatment of mitochondrial diseases. PMID:23400930

  1. Sleep disorders associated with primary mitochondrial diseases.

    Science.gov (United States)

    Ramezani, Ryan J; Stacpoole, Peter W

    2014-11-15

    Primary mitochondrial diseases are caused by heritable or spontaneous mutations in nuclear DNA or mitochondrial DNA. Such pathological mutations are relatively common in humans and may lead to neurological and neuromuscular complication that could compromise normal sleep behavior. To gain insight into the potential impact of primary mitochondrial disease and sleep pathology, we reviewed the relevant English language literature in which abnormal sleep was reported in association with a mitochondrial disease. We examined publication reported in Web of Science and PubMed from February 1976 through January 2014, and identified 54 patients with a proven or suspected primary mitochondrial disorder who were evaluated for sleep disturbances. Both nuclear DNA and mitochondrial DNA mutations were associated with abnormal sleep patterns. Most subjects who underwent polysomnography had central sleep apnea, and only 5 patients had obstructive sleep apnea. Twenty-four patients showed decreased ventilatory drive in response to hypoxia and/ or hyperapnea that was not considered due to weakness of the intrinsic muscles of respiration. Sleep pathology may be an underreported complication of primary mitochondrial diseases. The probable underlying mechanism is cellular energy failure causing both central neurological and peripheral neuromuscular degenerative changes that commonly present as central sleep apnea and poor ventilatory response to hyperapnea. Increased recognition of the genetics and clinical manifestations of mitochondrial diseases by sleep researchers and clinicians is important in the evaluation and treatment of all patients with sleep disturbances. Prospective population-based studies are required to determine the true prevalence of mitochondrial energy failure in subjects with sleep disorders, and conversely, of individuals with primary mitochondrial diseases and sleep pathology. © 2014 American Academy of Sleep Medicine.

  2. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    Science.gov (United States)

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte

  3. The cyclophilin D/Drp1 axis regulates mitochondrial fission contributing to oxidative stress-induced mitochondrial dysfunctions in SH-SY5Y cells

    International Nuclear Information System (INIS)

    Xiao, Anqi; Gan, Xueqi; Chen, Ruiqi; Ren, Yanming; Yu, Haiyang; You, Chao

    2017-01-01

    Oxidative stress plays a central role in the pathogenesis of various neurodegenerative diseases. Increasing evidences have demonstrated that structural abnormalities in mitochondria are involved in oxidative stress related nerve cell damage. And Drp1 plays a critical role in mitochondrial dynamic imbalance insulted by oxidative stress-derived mitochondria. However, the status of mitochondrial fusion and fission pathway and its relationship with mitochondrial properties such as mitochondrial membrane permeability transition pore (mPTP) have not been fully elucidated. Here, we demonstrated for the first time the role of Cyclophilin D (CypD), a crucial component for mPTP formation, in the regulation of mitochondrial dynamics in oxidative stress treated nerve cell. We observed that CypD-mediated phosphorylation of Drp1 and subsequently augmented Drp1 recruitment to mitochondria and shifts mitochondrial dynamics toward excessive fission, which contributes to the mitochondrial structural and functional dysfunctions in oxidative stress-treated nerve cells. CypD depletion or over expression accompanies mitochondrial dynamics/functions recovery or aggravation separately. We also demonstrated first time the link between the CypD to mitochondrial dynamics. Our data offer new insights into the mechanism of mitochondrial dynamics which contribute to the mitochondrial dysfunctions, specifically the role of CypD in Drp1-mediated mitochondrial fission. The protective effect of CsA, or other molecules affecting the function of CypD hold promise as a potential novel therapeutic strategy for governing oxidative stress pathology via mitochondrial pathways. - Highlights: • Demonstrated first time the link between the mPTP to mitochondrial dynamics. • The role of Cyclophilin D in the regulation of Drp1-mediated mitochondrial fission. • CsA as a potential target for governing oxidative stress related neuropathology.

  4. Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts.

    Science.gov (United States)

    Barja, Gustavo

    2013-10-20

    An updated version of the mitochondrial free radical theory of aging (MFRTA) and longevity is reviewed. Key aspects of the theory are emphasized. Another main focus concerns common misconceptions that can mislead investigators from other specialties, even to wrongly discard the theory. Those different issues include (i) the main reactive oxygen species (ROS)-generating site in the respiratory chain in relation to aging and longevity: complex I; (ii) the close vicinity or even contact between that site and the mitochondrial DNA, in relation to the lack of local efficacy of antioxidants and to sub-cellular compartmentation; (iii) the relationship between mitochondrial ROS production and oxygen consumption; (iv) recent criticisms on the MFRTA; (v) the widespread assumption that ROS are simple "by-products" of the mitochondrial respiratory chain; (vi) the unnecessary postulation of "vicious cycle" hypotheses of mitochondrial ROS generation which are not central to the free radical theory of aging; and (vii) the role of DNA repair concerning endogenous versus exogenous damage. After considering the large body of data already available, two general characteristics responsible for the high maintenance degree of long-lived animals emerge: (i) a low generation rate of endogenous damage: and (ii) the possession of tissue macromolecules that are highly resistant to oxidative modification.

  5. CaMKII determines mitochondrial stress responses in heart

    Science.gov (United States)

    Joiner, Mei-ling A.; Koval, Olha M.; Jingdong, Li; He, B. Julie; Allamargot, Chantal; Gao, Zhan; Luczak, Elizabeth D.; Hall, Duane D.; Fink, Brian D.; Chen, Biyi; Yang, Jinying; Moore, Steven A.; Scholz, Thomas D.; Strack, Stefan; Mohler, Peter J.; Sivitz, William I.; Song, Long-Sheng; Anderson, Mark E.

    2012-01-01

    Myocardial cell death is initiated by excessive mitochondrial Ca2+ entry, causing Ca2+ overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (ΔΨm)1,2. However, the signaling pathways that control mitochondrial Ca2+ entry through the inner membrane mitochondrial Ca2+ uniporter (MCU)3–5 are not known. The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is activated in ischemia reperfusion (I/R), myocardial infarction (MI) and neurohumoral injury, common causes of myocardial death and heart failure, suggesting CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (IMCU). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A (CsA), an mPTP antagonist with clinical efficacy in I/R injury6, equivalently prevent mPTP opening, ΔΨm deterioration and diminish mitochondrial disruption and programmed cell death in response to I/R injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition are resistant to I/R injury, MI and neurohumoral injury, suggesting pathological actions of CaMKII are substantially mediated by increasing IMCU. Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca2+ entry and suggest mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure dysfunction in response to common experimental forms of pathophysiological stress. PMID:23051746

  6. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.

    Directory of Open Access Journals (Sweden)

    R R Poznanski

    Full Text Available A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage' have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by

  7. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    International Nuclear Information System (INIS)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi

    2012-01-01

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  8. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi, E-mail: harasima@pharm.hokudai.ac.jp [Hokkaido University, Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences (Japan)

    2012-08-15

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  9. Malnutrition-associated liver steatosis and ATP depletion is caused by peroxisomal and mitochondrial dysfunction.

    Science.gov (United States)

    van Zutphen, Tim; Ciapaite, Jolita; Bloks, Vincent W; Ackereley, Cameron; Gerding, Albert; Jurdzinski, Angelika; de Moraes, Roberta Allgayer; Zhang, Ling; Wolters, Justina C; Bischoff, Rainer; Wanders, Ronald J; Houten, Sander M; Bronte-Tinkew, Dana; Shatseva, Tatiana; Lewis, Gary F; Groen, Albert K; Reijngoud, Dirk-Jan; Bakker, Barbara M; Jonker, Johan W; Kim, Peter K; Bandsma, Robert H J

    2016-12-01

    Severe malnutrition in young children is associated with signs of hepatic dysfunction such as steatosis and hypoalbuminemia, but its etiology is unknown. Peroxisomes and mitochondria play key roles in various hepatic metabolic functions including lipid metabolism and energy production. To investigate the involvement of these organelles in the mechanisms underlying malnutrition-induced hepatic dysfunction we developed a rat model of malnutrition. Weanling rats were placed on a low protein or control diet (5% or 20% of calories from protein, respectively) for four weeks. Peroxisomal and mitochondrial structural features were characterized using immunofluorescence and electron microscopy. Mitochondrial function was assessed using high-resolution respirometry. A novel targeted quantitative proteomics method was applied to analyze 47 mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle and fatty acid β-oxidation pathways. Low protein diet-fed rats developed hypoalbuminemia and hepatic steatosis, consistent with the human phenotype. Hepatic peroxisome content was decreased and metabolomic analysis indicated peroxisomal dysfunction. This was followed by changes in mitochondrial ultrastructure and increased mitochondrial content. Mitochondrial function was impaired due to multiple defects affecting respiratory chain complex I and IV, pyruvate uptake and several β-oxidation enzymes, leading to strongly reduced hepatic ATP levels. Fenofibrate supplementation restored hepatic peroxisome abundance and increased mitochondrial β-oxidation capacity, resulting in reduced steatosis and normalization of ATP and plasma albumin levels. Malnutrition leads to severe impairments in hepatic peroxisomal and mitochondrial function, and hepatic metabolic dysfunction. We discuss the potential future implications of our findings for the clinical management of malnourished children. Severe malnutrition in children is associated with metabolic disturbances

  10. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  11. Effects of vildagliptin versus sitagliptin, on cardiac function, heart rate variability and mitochondrial function in obese insulin-resistant rats

    Science.gov (United States)

    Apaijai, Nattayaporn; Pintana, Hiranya; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2013-01-01

    Background and Purpose Long-term high-fat diet (HFD) consumption has been shown to cause insulin resistance, which is characterized by hyperinsulinaemia with metabolic inflexibility. Insulin resistance is associated with cardiac sympathovagal imbalance, cardiac dysfunction and cardiac mitochondrial dysfunction. Dipeptidyl peptidase-4 (DPP-4) inhibitors, vildagliptin and sitagliptin, are oral anti-diabetic drugs often prescribed in patients with cardiovascular disease. Therefore, in this study, we sought to determine the effects of vildagliptin and sitagliptin in a murine model of insulin resistance. Experimental Approach Male Wistar rats weighing 180–200 g, were fed either a normal diet (20% energy from fat) or a HFD (59% energy from fat) for 12 weeks. These rats were then divided into three subgroups to receive vildagliptin (3 mg·kg−1·day−1), sitagliptin (30 mg·kg−1·day−1) or vehicle for another 21 days. Metabolic parameters, oxidative stress, heart rate variability (HRV), cardiac function and cardiac mitochondrial function were determined. Key Results Rats that received HFD developed insulin resistance characterized by increased body weight, plasma insulin, total cholesterol and oxidative stress levels along with a decreased high-density lipoprotein (HDL) level. Moreover, cardiac dysfunction, depressed HRV, cardiac mitochondrial dysfunction and cardiac mitochondrial morphology changes were observed in HFD rats. Both vildagliptin and sitagliptin decreased plasma insulin, total cholesterol and oxidative stress as well as increased HDL level. Furthermore, vildagliptin and sitagliptin attenuated cardiac dysfunction, prevented cardiac mitochondrial dysfunction and completely restored HRV. Conclusions and Implications Both vildagliptin and sitagliptin share similar efficacy in cardioprotection in obese insulin-resistant rats. PMID:23488656

  12. MicroRNA as biomarkers of mitochondrial toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Baumgart, Bethany R., E-mail: bethany.baumgart@bms.com [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Gray, Katherine L. [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Woicke, Jochen [Department of Pathology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Bunch, Roderick T.; Sanderson, Thomas P. [Department of Toxicology, Drug Safety Evaluation, Bristol-Myers Squibb, 4401 Highway 62 East, Mount Vernon, IN 47620 (United States); Van Vleet, Terry R. [Department of Investigative Toxicology and Pathology, Abbvie, 1 N. Waukegan Rd., North Chicago, IL 60064-6123, USA. (United States)

    2016-12-01

    Mitochondrial toxicity can be difficult to detect as most cells can tolerate reduced activity as long as minimal capacity for function is maintained. However, once minimal capacity is lost, apoptosis or necrosis occurs quickly. Identification of more sensitive, early markers of mitochondrial toxicity was the objective of this work. Rotenone, a mitochondrial complex I inhibitor, and 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, were administered daily to male Sprague–Dawley rats at subcutaneous doses of 0.1 or 0.3 mg/kg/day and intraperitoneal doses of 5 or 10 mg/kg/day, respectively, for 1 week. Samples of kidney, skeletal muscle (quadriceps femoris), and serum were collected for analysis of mitochondrial DNA (mtDNA) copy number and microRNA (miRNA) expression patterns. MtDNA was significantly decreased with administration of rotenone at 0.3 mg/kg/day and 3-NP at 5 and 10 mg/kg/day in the quadriceps femoris and with 3-NP at 10 mg/kg/day in the kidney. Additionally, rotenone and 3-NP treatment produced changes to miRNA expression that were similar in direction (i.e. upregulation, downregulation) to those previously linked to mitochondrial functions, such as mitochondrial damage and biogenesis (miR-122, miR-202-3p); regulation of ATP synthesis, abolished oxidative phosphorylation, and loss of membrane potential due to increased reactive oxygen species (ROS) production (miR-338-5p, miR-546, miR-34c); and mitochondrial DNA damage and depletion (miR-546). These results suggest that miRNAs may be sensitive biomarkers for early detection of mitochondrial toxicity. - Highlights: • MtDNA decreased after treatment with respiratory chain inhibitors rotenone and 3-NP. • Decrease in mtDNA is generally dose-related and indicative of mitochondrial toxicity. • Altered miRNA has reported roles in regulating mitochondrial function. • Induction of miR-338-5p in kidney and serum suggests potential as renal biomarker. • Induction of miR-122 implies

  13. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Brad eKincaid

    2013-09-01

    Full Text Available Caloric restriction, fasting, and exercise have long been recognized for their neuroprotective and lifespan-extending properties; however, the underlying mechanisms of these phenomena remain elusive. Such extraordinary benefits might be linked to the activation of sirtuins. In mammals, the sirtuin family has seven members (SIRT1-7, which diverge in tissue distribution, subcellular localization, enzymatic activity and targets. SIRT1, SIRT2, and SIRT3 have deacetylase activity. Their dependence on NAD+ directly links their activity to the metabolic status of the cell. High NAD+ levels convey neuroprotective effects, possibly via activation of sirtuin family members. Mitochondrial sirtuin 3 (SIRT3 has received much attention for its role in metabolism and aging. Specific small nucleotide polymorphisms (SNPs in Sirt3 are linked to increased human lifespan. SIRT3 mediates the adaptation of increased energy demand during caloric restriction, fasting and exercise to increased production of energy equivalents. SIRT3 deacetylates and activates mitochondrial enzymes involved in fatty acid β-oxidation, amino acid metabolism, the electron transport chain, and antioxidant defenses. As a result, the mitochondrial energy metabolism increases. In addition, SIRT3 prevents apoptosis by lowering reactive oxygen species (ROS and inhibiting components of the mitochondrial permeability transition pore. Mitochondrial deficits associated with aging and neurodegeneration might therefore be slowed or even prevented by SIRT3 activation. In addition, upregulating SIRT3 activity by dietary supplementation of sirtuin activating compounds might promote the beneficial effects of this enzyme. The goal of this review is to summarize emerging data supporting a neuroprotective action of SIRT3 against Alzheimer’s disease (AD, Huntington’s disease (HD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS.

  14. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury.

    Science.gov (United States)

    Jia, Zhi-Qiang; Li, San-Qiang; Qiao, Wei-Qiang; Xu, Wen-Zhong; Xing, Jian-Wu; Liu, Jian-Tao; Song, Hui; Gao, Zhong-Yang; Xing, Bing-Wen; He, Xi-Jing

    2018-05-04

    Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na + -K + -ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Milbury Coren A

    2010-09-01

    Full Text Available Abstract Background Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters. Results In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes. Conclusions Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.

  16. Hybrid male sterility in Mimulus (Phrymaceae) is associated with a geographically restricted mitochondrial rearrangement.

    Science.gov (United States)

    Case, Andrea L; Willis, John H

    2008-05-01

    Cytoplasmic male sterility (CMS) and nuclear fertility restoration (Rf) involves intergenomic coevolution. Although male-sterile phenotypes are rarely expressed in natural populations of angiosperms, CMS genes are thought to be common. The evolutionary dynamics of CMS/Rf systems are poorly understood, leaving gaps in our understanding of mechanisms and consequences of cytonuclear interactions. We characterized the molecular basis and geographic distribution of a CMS gene in Mimulus guttatus. We used outcrossing M. guttatus (with CMS and Rf) to self-fertilizing M. nasutus (lacking CMS and Rf) to generate hybrids segregating for CMS. Mitochondrial transcripts containing an essential gene (nad6) were perfectly associated with male sterility. The CMS mitotype was completely absent in M. nasutus, present in all genotypes collected from the original collection site, but in only two individuals from 34 other M. guttatus populations. This pattern suggests that the CMS likely originated at a single locality, spread to fixation within the population, but has not spread to other populations, indicating possible ecological or genetic constraints on dispersal of this CMS mitotype between populations. Extreme localization may be characteristic of CMS in hermaphroditic species, in contrast to geographically widespread mitotypes commonly found in gynodioecious species, and could directly contribute to hybrid incompatibilities in nature.

  17. Polypeptide Translocation Through the Mitochondrial TOM Channel: Temperature-Dependent Rates at the Single-Molecule Level.

    Science.gov (United States)

    Mahendran, Kozhinjampara R; Lamichhane, Usha; Romero-Ruiz, Mercedes; Nussberger, Stephan; Winterhalter, Mathias

    2013-01-03

    The TOM protein complex facilitates the transfer of nearly all mitochondrial preproteins across outer mitochondrial membranes. Here we characterized the effect of temperature on facilitated translocation of a mitochondrial presequence peptide pF1β. Ion current fluctuations analysis through single TOM channels revealed thermodynamic and kinetic parameters of substrate binding and allowed determining the energy profile of peptide translocation. The activation energy for the on-rate and off-rate of the presequence peptide into the TOM complex was symmetric with respect to the electric field and estimated to be about 15 and 22 kT per peptide. These values are above that expected for free diffusion of ions in water (6 kT) and reflect the stronger interaction in the channel. Both values are in the range for typical enzyme kinetics and suggest one process without involving large conformational changes within the channel protein.

  18. Parkin suppresses Drp1-independent mitochondrial division

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Madhuparna, E-mail: mroy17@jhmi.edu; Itoh, Kie, E-mail: kito5@jhmi.edu; Iijima, Miho, E-mail: miijima@jhmi.edu; Sesaki, Hiromi, E-mail: hsesaki@jhmi.edu

    2016-07-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson’s disease-associated protein—parkin, which biochemically and genetically interacts with Drp1—in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. -- Highlights: •A Drp1-mediated mechanism accounts for ∼95% of mitochondrial division. •Parkin controls the connectivity of mitochondria via a mechanism that is independent of Drp1. •In the absence of Drp1, connected mitochondria transiently depolarize. •The transient depolarization is independent of calcium signaling and uncoupling protein 2.

  19. Parkin suppresses Drp1-independent mitochondrial division

    International Nuclear Information System (INIS)

    Roy, Madhuparna; Itoh, Kie; Iijima, Miho; Sesaki, Hiromi

    2016-01-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson’s disease-associated protein—parkin, which biochemically and genetically interacts with Drp1—in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. -- Highlights: •A Drp1-mediated mechanism accounts for ∼95% of mitochondrial division. •Parkin controls the connectivity of mitochondria via a mechanism that is independent of Drp1. •In the absence of Drp1, connected mitochondria transiently depolarize. •The transient depolarization is independent of calcium signaling and uncoupling protein 2.

  20. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  1. High-throughput respirometric assay identifies predictive toxicophore of mitochondrial injury

    Energy Technology Data Exchange (ETDEWEB)

    Wills, Lauren P. [MitoHealth Inc., Charleston, SC 29403 (United States); Beeson, Gyda C.; Trager, Richard E.; Lindsey, Christopher C. [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Beeson, Craig C. [MitoHealth Inc., Charleston, SC 29403 (United States); Peterson, Yuri K. [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Schnellmann, Rick G., E-mail: schnell@musc.edu [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425 (United States); Ralph H. Johnson VA Medical Center, Charleston, SC 29401 (United States)

    2013-10-15

    Many environmental chemicals and drugs negatively affect human health through deleterious effects on mitochondrial function. Currently there is no chemical library of mitochondrial toxicants, and no reliable methods for predicting mitochondrial toxicity. We hypothesized that discrete toxicophores defined by distinct chemical entities can identify previously unidentified mitochondrial toxicants. We used a respirometric assay to screen 1760 compounds (5 μM) from the LOPAC and ChemBridge DIVERSet libraries. Thirty-one of the assayed compounds decreased uncoupled respiration, a stress test for mitochondrial dysfunction, prior to a decrease in cell viability and reduced the oxygen consumption rate in isolated mitochondria. The mitochondrial toxicants were grouped by chemical similarity and two clusters containing four compounds each were identified. Cheminformatic analysis of one of the clusters identified previously uncharacterized mitochondrial toxicants from the ChemBridge DIVERSet. This approach will enable the identification of mitochondrial toxicants and advance the prediction of mitochondrial toxicity for both drug discovery and risk assessment. - Highlights: • Respirometric assay conducted in RPTC to create mitochondrial toxicant database. • Chemically similar mitochondrial toxicants aligned as mitochondrial toxicophores • Mitochondrial toxicophore identifies five novel mitochondrial toxicants.

  2. High-throughput respirometric assay identifies predictive toxicophore of mitochondrial injury

    International Nuclear Information System (INIS)

    Wills, Lauren P.; Beeson, Gyda C.; Trager, Richard E.; Lindsey, Christopher C.; Beeson, Craig C.; Peterson, Yuri K.; Schnellmann, Rick G.

    2013-01-01

    Many environmental chemicals and drugs negatively affect human health through deleterious effects on mitochondrial function. Currently there is no chemical library of mitochondrial toxicants, and no reliable methods for predicting mitochondrial toxicity. We hypothesized that discrete toxicophores defined by distinct chemical entities can identify previously unidentified mitochondrial toxicants. We used a respirometric assay to screen 1760 compounds (5 μM) from the LOPAC and ChemBridge DIVERSet libraries. Thirty-one of the assayed compounds decreased uncoupled respiration, a stress test for mitochondrial dysfunction, prior to a decrease in cell viability and reduced the oxygen consumption rate in isolated mitochondria. The mitochondrial toxicants were grouped by chemical similarity and two clusters containing four compounds each were identified. Cheminformatic analysis of one of the clusters identified previously uncharacterized mitochondrial toxicants from the ChemBridge DIVERSet. This approach will enable the identification of mitochondrial toxicants and advance the prediction of mitochondrial toxicity for both drug discovery and risk assessment. - Highlights: • Respirometric assay conducted in RPTC to create mitochondrial toxicant database. • Chemically similar mitochondrial toxicants aligned as mitochondrial toxicophores • Mitochondrial toxicophore identifies five novel mitochondrial toxicants

  3. Peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands

    International Nuclear Information System (INIS)

    Snyder, S.H.; Verma, A.; Trifiletti, R.R.

    1987-01-01

    The peripheral-type benzodiazepine receptor is a site identified by its nanomolar affinity for [ 3 H]diazepam, similar to the affinity of diazepam for the central-type benzodiazepine receptor in the brain. The peripheral type benzodiazepine receptor occurs in many peripheral tissues but has discrete localizations as indicated by autoradiographic studies showing uniquely high densities of the receptors in the adrenal cortex and in Leydig cells of the testes. Subcellular localization studies reveal a selective association of the receptors with the outer membrane of mitochondria. Photoaffinity labeling of the mitochondrial receptor with [ 3 H]flunitrazepam reveals two discrete labeled protein bands of 30 and 35 kDa, respectively. The 35-kDa band appears to be identical with the voltage-dependent anion channel protein porin. Fractionation of numerous peripheral tissues reveals a single principal endogenous ligand for the receptor, consisting of porphyrins, which display nanomolar affinity. Interactions of porphyrins with the mitochondrial receptor may clarify its physiological role and account for many pharmacological actions of benzodiazepines

  4. Return of the mitochondrial DNA : Case study of mitochondrial genome evolution in the genus Fusarium

    NARCIS (Netherlands)

    Brankovics, Balázs

    2018-01-01

    Mitochondrial DNA played a prominent role in the fields of population genetics, systematics and evolutionary biology, due to its favorable characteristics, such as, uniparental inheritance, fast evolution and easy accessibility. However, the mitochondrial sequences have been mostly neglected in

  5. Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance

    OpenAIRE

    Akman, Hasan O.; Dorado, Beatriz; López, Luis C.; García-Cazorla, Ángeles; Vilà, Maya R.; Tanabe, Lauren M.; Dauer, William T.; Bonilla, Eduardo; Tanji, Kurenai; Hirano, Michio

    2008-01-01

    Mitochondrial DNA (mtDNA) depletion syndrome (MDS), an autosomal recessive condition, is characterized by variable organ involvement with decreased mtDNA copy number and activities of respiratory chain enzymes in affected tissues. MtDNA depletion has been associated with mutations in nine autosomal genes, including thymidine kinase (TK2), which encodes a ubiquitous mitochondrial protein. To study the pathogenesis of TK2-deficiency, we generated mice harboring an H126N Tk2 mutation. Homozygous...

  6. First description of a novel mitochondrial mutation in the MT-TI gene associated with multiple mitochondrial DNA deletion and depletion in family with severe dilated mitochondrial cardiomyopathy.

    Science.gov (United States)

    Alila-Fersi, Olfa; Tabebi, Mouna; Maalej, Marwa; Belguith, Neila; Keskes, Leila; Mkaouar-Rebai, Emna; Fakhfakh, Faiza

    2018-03-18

    Mitochondria are essential for early cardiac development and impaired mitochondrial function was described associated with heart diseases such as hypertrophic or dilated mitochondrial cardiomyopathy. In this study, we report a family including two individuals with severe dilated mitochondrial cardiomyopathy. The whole mitochondrial genome screening showed the presence of several variations and a novel homoplasmic mutation m.4318-4322delC in the MT-TI gene shared by the two patients and their mother and leading to a disruption of the tRNA Ile secondary structure. In addition, a mitochondrial depletion was present in blood leucocyte of the two affected brother whereas a de novo heteroplasmic multiple deletion in the major arc of mtDNA was present in blood leucocyte and mucosa of only one of them. These deletions in the major arc of the mtDNA resulted to the loss of several protein-encoding genes and also some tRNA genes. The mtDNA deletion and depletion could result to an impairment of the oxidative phosphorylation and energy metabolism in the respiratory chain in the studied patients. Our report is the first description of a family with severe lethal dilated mitochondrial cardiomyopathy and presenting several mtDNA abnormalities including punctual mutation, deletion and depletion. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Intact initiation of autophagy and mitochondrial fission by acute exercise in skeletal muscle of patientswith type 2 diabetes

    DEFF Research Database (Denmark)

    Kruse Sørensen, Rikke; Pedersen, Andreas James Thestrup; Kristensen, Jonas Møller

    2017-01-01

    AIMS: Type 2 diabetes (T2D) is characterized by insulin resistance, mitochondrial dysregulation, and, in some studies, exercise resistance in skeletal muscle. Regulation of autophagy and mitochondrial dynamics during exercise and recovery is important for skeletal muscle homeostasis......, and these responses may be altered in T2D. MATERIALS AND METHODS: We examined the effect of acute exercise on markers of autophagy and mitochondrial fusion and fission in skeletal muscle biopsies from patients with T2D (n=13) and weight-matched controls (n=14) before, immediately after and 3h after an acute bout...... of exercise. RESULTS: While mRNA levels of most markers of autophagy ( PIK3C, MAP1LC3B, SQSTM1, BNIP3, BNIP3L ) and mitochondrial dynamics ( OPA1, FIS1 ) remained unchanged, some either increased during and after exercise (GABARAPL1 ), decreased in the recovery period ( BECN1, ATG7, DNM1L ), or both ( MFN2...

  8. Aprataxin localizes to mitochondria and preserves mitochondrial function

    DEFF Research Database (Denmark)

    Sykora, Peter; Croteau, Deborah L; Bohr, Vilhelm A

    2011-01-01

    aborted ligation reactions. We report herein that aprataxin localizes to mitochondria in human cells and we identify an N-terminal amino acid sequence that targets certain isoforms of the protein to this intracellular compartment. We also show that transcripts encoding this unique N-terminal stretch...

  9. Purification, crystallization and preliminary X-ray characterization of a human mitochondrial phenylalanyl-tRNA synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Inna; Kessler, Naama [Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot (Israel); Moor, Nina [Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk (Russian Federation); Klipcan, Liron [Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot (Israel); Koc, Emine [Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 (United States); Templeton, Paul [Department Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215 (United States); Spremulli, Linda [Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290 (United States); Safro, Mark, E-mail: mark.safro@weizmann.ac.il [Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2007-09-01

    The expression, purification and crystallization of recombinant human mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) are reported. Diffraction data were collected to 2.2 Å resolution and the mitPheRS structure was solved using the molecular-replacement method. Human monomeric mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) is an enzyme that catalyzes the charging of tRNA with the cognate amino acid phenylalanine. Human mitPheRS is a chimera of the bacterial α-subunit of PheRS and the B8 domain of its β-subunit. Together, the α-subunit and the ‘RNP-domain’ (B8 domain) at the C-terminus form the minimal structural set to construct an enzyme with phenylalanylation activity. The recombinant human mitPheRS was purified to homogeneity and crystallized in complex with phenylalanine and ATP. The crystals diffracted to 2.2 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55, b = 90, c = 96 Å.

  10. Increased Oxidative Stress and Mitochondrial Dysfunction in Zucker Diabetic Rat Liver and Brain

    Directory of Open Access Journals (Sweden)

    Haider Raza

    2015-02-01

    Full Text Available Background/Aims: The Zucker diabetic fatty (ZDF, FA/FA rat is a genetic model of type 2 diabetes, characterized by insulin resistance with progressive metabolic syndrome. We have previously demonstrated mitochondrial dysfunction and oxidative stress in the heart, kidneys and pancreas of ZDF rats. However, the precise molecular mechanism of disease progression is not clear. Our aim in the present study was to investigate oxidative stress and mitochondrial dysfunction in the liver and brain of ZDF rats. Methods: In this study, we have measured mitochondrial oxidative stress, bioenergetics and redox homeostasis in the liver and brain of ZDF rats. Results: Our results showed increased reactive oxygen species (ROS production in the ZDF rat brain compared to the liver, while nitric oxide (NO production was markedly increased both in the brain and liver. High levels of lipid and protein peroxidation were also observed in these tissues. Glutathione metabolism and mitochondrial respiratory functions were adversely affected in ZDF rats when compared to Zucker lean (ZL, +/FA control rats. Reduced ATP synthesis was also observed in the liver and brain of ZDF rats. Western blot analysis confirmed altered expression of cytochrome P450 2E1, iNOS, p-JNK, and IκB-a confirming an increase in oxidative and metabolic stress in ZDF rat tissues. Conclusions: Our data shows that, like other tissues, ZDF rat liver and brain develop complications associated with redox homeostasis and mitochondrial dysfunction. These results, thus, might have implications in understanding the etiology and pathophysiology of diabesity which in turn, would help in managing the disease associated complications.

  11. Mitochondrial Carriers Link the Catabolism of Hydroxyaromatic Compounds to the Central Metabolism in Candida parapsilosis

    Directory of Open Access Journals (Sweden)

    Igor Zeman

    2016-12-01

    Full Text Available The pathogenic yeast Candida parapsilosis metabolizes hydroxyderivatives of benzene and benzoic acid to compounds channeled into central metabolism, including the mitochondrially localized tricarboxylic acid cycle, via the 3-oxoadipate and gentisate pathways. The orchestration of both catabolic pathways with mitochondrial metabolism as well as their evolutionary origin is not fully understood. Our results show that the enzymes involved in these two pathways operate in the cytoplasm with the exception of the mitochondrially targeted 3-oxoadipate CoA-transferase (Osc1p and 3-oxoadipyl-CoA thiolase (Oct1p catalyzing the last two reactions of the 3-oxoadipate pathway. The cellular localization of the enzymes indicates that degradation of hydroxyaromatic compounds requires a shuttling of intermediates, cofactors, and products of the corresponding biochemical reactions between cytosol and mitochondria. Indeed, we found that yeast cells assimilating hydroxybenzoates increase the expression of genes SFC1, LEU5, YHM2, and MPC1 coding for succinate/fumarate carrier, coenzyme A carrier, oxoglutarate/citrate carrier, and the subunit of pyruvate carrier, respectively. A phylogenetic analysis uncovered distinct evolutionary trajectories for sparsely distributed gene clusters coding for enzymes of both pathways. Whereas the 3-oxoadipate pathway appears to have evolved by vertical descent combined with multiple losses, the gentisate pathway shows a striking pattern suggestive of horizontal gene transfer to the evolutionarily distant Mucorales.

  12. Sequencing and characterization of the complete mitochondrial genome of Japanese Swellshark (Cephalloscyllium umbratile)

    OpenAIRE

    Zhu, Ke-Cheng; Liang, Yin-Yin; Wu, Na; Guo, Hua-Yang; Zhang, Nan; Jiang, Shi-Gui; Zhang, Dian-Chang

    2017-01-01

    To further comprehend the genome features of Cephalloscyllium umbratile (Carcharhiniformes), an endangered species, the complete mitochondrial DNA (mtDNA) was firstly sequenced and annotated. The full-length mtDNA of C. umbratile was 16,697 bp and contained ribosomal RNA (rRNA) genes, 13 protein-coding genes (PCGs), 23 transfer RNA (tRNA) genes, and a major non-coding control region. Each PCG was initiated by an authoritative ATN codon, except for COX1 initiated by a GTG codon. Seven of 13 PC...

  13. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Science.gov (United States)

    Warren, Emily Booth; Aicher, Aidan Edward; Fessel, Joshua Patrick; Konradi, Christine

    2017-01-01

    Mitochondrial DNA (mtDNA), the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD) patients who had developed L-DOPA Induced Dyskinesia (LID), compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr) treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  14. Mitochondrial DNA depletion by ethidium bromide decreases neuronal mitochondrial creatine kinase: Implications for striatal energy metabolism.

    Directory of Open Access Journals (Sweden)

    Emily Booth Warren

    Full Text Available Mitochondrial DNA (mtDNA, the discrete genome which encodes subunits of the mitochondrial respiratory chain, is present at highly variable copy numbers across cell types. Though severe mtDNA depletion dramatically reduces mitochondrial function, the impact of tissue-specific mtDNA reduction remains debated. Previously, our lab identified reduced mtDNA quantity in the putamen of Parkinson's Disease (PD patients who had developed L-DOPA Induced Dyskinesia (LID, compared to PD patients who had not developed LID and healthy subjects. Here, we present the consequences of mtDNA depletion by ethidium bromide (EtBr treatment on the bioenergetic function of primary cultured neurons, astrocytes and neuron-enriched cocultures from rat striatum. We report that EtBr inhibition of mtDNA replication and transcription consistently reduces mitochondrial oxygen consumption, and that neurons are significantly more sensitive to EtBr than astrocytes. EtBr also increases glycolytic activity in astrocytes, whereas in neurons it reduces the expression of mitochondrial creatine kinase mRNA and levels of phosphocreatine. Further, we show that mitochondrial creatine kinase mRNA is similarly downregulated in dyskinetic PD patients, compared to both non-dyskinetic PD patients and healthy subjects. Our data support a hypothesis that reduced striatal mtDNA contributes to energetic dysregulation in the dyskinetic striatum by destabilizing the energy buffering system of the phosphocreatine/creatine shuttle.

  15. Complete mitochondrial genome of the aluminum-tolerant fungus Rhodotorula taiwanensis RS1 and comparative analysis of Basidiomycota mitochondrial genomes.

    Science.gov (United States)

    Zhao, Xue Qiang; Aizawa, Tomoko; Schneider, Jessica; Wang, Chao; Shen, Ren Fang; Sunairi, Michio

    2013-04-01

    The complete mitochondrial genome of Rhodotorula taiwanensis RS1, an aluminum-tolerant Basidiomycota fungus, was determined and compared with the known mitochondrial genomes of 12 Basidiomycota species. The mitochondrial genome of R. taiwanensis RS1 is a circular DNA molecule of 40,392 bp and encodes the typical 15 mitochondrial proteins, 23 tRNAs, and small and large rRNAs as well as 10 intronic open reading frames. These genes are apparently transcribed in two directions and do not show syntenies in gene order with other investigated Basidiomycota species. The average G+C content (41%) of the mitochondrial genome of R. taiwanensis RS1 is the highest among the Basidiomycota species. Two introns were detected in the sequence of the atp9 gene of R. taiwanensis RS1, but not in that of other Basidiomycota species. Rhodotorula taiwanensis is the first species of the genus Rhodotorula whose full mitochondrial genome has been sequenced; and the data presented here supply valuable information for understanding the evolution of fungal mitochondrial genomes and researching the mechanism of aluminum tolerance in microorganisms. © 2013 The Authors. Published by Blackwell Publishing Ltd.

  16. Mitochondrial Protection by Exogenous Otx2 in Mouse Retinal Neurons

    Directory of Open Access Journals (Sweden)

    Hyoung-Tai Kim

    2015-11-01

    Full Text Available OTX2 (orthodenticle homeobox 2 haplodeficiency causes diverse defects in mammalian visual systems ranging from retinal dysfunction to anophthalmia. We find that the retinal dystrophy of Otx2+/GFP heterozygous knockin mice is mainly due to the loss of bipolar cells and consequent deficits in retinal activity. Among bipolar cell types, OFF-cone bipolar subsets, which lack autonomous Otx2 gene expression but receive Otx2 proteins from photoreceptors, degenerate most rapidly in Otx2+/GFP mouse retinas, suggesting a neuroprotective effect of the imported Otx2 protein. In support of this hypothesis, retinal dystrophy in Otx2+/GFP mice is prevented by intraocular injection of Otx2 protein, which localizes to the mitochondria of bipolar cells and facilitates ATP synthesis as a part of mitochondrial ATP synthase complex. Taken together, our findings demonstrate a mitochondrial function for Otx2 and suggest a potential therapeutic application of OTX2 protein delivery in human retinal dystrophy.

  17. Analysis of regional brain mitochondrial bioenergetics and susceptibility to mitochondrial inhibition utilizing a microplate based system

    Science.gov (United States)

    Sauerbeck, Andrew; Pandya, Jignesh; Singh, Indrapal; Bittman, Kevin; Readnower, Ryan; Bing, Guoying; Sullivan, Patrick

    2012-01-01

    The analysis of mitochondrial bioenergetic function typically has required 50–100 μg of protein per sample and at least 15 min per run when utilizing a Clark-type oxygen electrode. In the present work we describe a method utilizing the Seahorse Biosciences XF24 Flux Analyzer for measuring mitochondrial oxygen consumption simultaneously from multiple samples and utilizing only 5 μg of protein per sample. Utilizing this method we have investigated whether regionally based differences exist in mitochondria isolated from the cortex, striatum, hippocampus, and cerebellum. Analysis of basal mitochondrial bioenergetics revealed that minimal differences exist between the cortex, striatum, and hippocampus. However, the cerebellum exhibited significantly slower basal rates of Complex I and Complex II dependent oxygen consumption (p < 0.05). Mitochondrial inhibitors affected enzyme activity proportionally across all samples tested and only small differences existed in the effect of inhibitors on oxygen consumption. Investigation of the effect of rotenone administration on Complex I dependent oxygen consumption revealed that exposure to 10 pM rotenone led to a clear time dependent decrease in oxygen consumption beginning 12 min after administration (p < 0.05). These studies show that the utilization of this microplate based method for analysis of mitochondrial bioenergetics is effective at quantifying oxygen consumption simultaneously from multiple samples. Additionally, these studies indicate that minimal regional differences exist in mitochondria isolated from the cortex, striatum, or hippocampus. Furthermore, utilization of the mitochondrial inhibitors suggests that previous work indicating regionally specific deficits following systemic mitochondrial toxin exposure may not be the result of differences in the individual mitochondria from the affected regions. PMID:21402103

  18. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  19. Protein Carbonylation and Adipocyte Mitochondrial Function*

    Science.gov (United States)

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  20. Protein carbonylation and adipocyte mitochondrial function.

    Science.gov (United States)

    Curtis, Jessica M; Hahn, Wendy S; Stone, Matthew D; Inda, Jacob J; Droullard, David J; Kuzmicic, Jovan P; Donoghue, Margaret A; Long, Eric K; Armien, Anibal G; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J; Bernlohr, David A

    2012-09-21

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte.

  1. Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload.

    Science.gov (United States)

    Crestanello, Juan A; Doliba, Nicolai M; Babsky, Andriy M; Doliba, Natalia M; Niibori, Koki; Whitman, Glenn J R; Osbakken, Mary D

    2002-04-01

    Ca(2+) overload leads to mitochondrial uncoupling, decreased ATP synthesis, and myocardial dysfunction. Pharmacologically opening of mitochondrial K(ATP) channels decreases mitochondrial Ca(2+) uptake, improving mitochondrial function during Ca(2+) overload. Ischemic preconditioning (IPC), by activating mitochondrial K(ATP) channels, may attenuate mitochondrial Ca(2+) overload and improve mitochondrial function during reperfusion. The purpose of these experiments was to study the effect of IPC (1) on mitochondrial function and (2) on mitochondrial tolerance to experimental Ca(2+) overload. Rat hearts (n = 6/group) were subjected to (a) 30 min of equilibration, 25 min of ischemia, and 30 min of reperfusion (Control) or (b) two 5-min episodes of ischemic preconditioning, 25 min of ischemia, and 30 min of reperfusion (IPC). Developed pressure (DP) was measured. Heart mitochondria were isolated at end-Equilibration (end-EQ) and at end-Reperfusion (end-RP). Mitochondrial respiratory function (state 2, oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI, state 3/state 4); rate of oxidative phosphorylation (ADP/Deltat), and ADP:O ratio) was measured with polarography using alpha-ketoglutarate as a substrate in the presence of different Ca(2+) concentrations (0 to 5 x 10(-7) M) to simulate Ca(2+) overload. IPC improved DP at end-RP. IPC did not improve preischemic mitochondrial respiratory function or preischemic mitochondrial response to Ca(2+) loading. IPC improved state 3, ADP/Deltat, and RCI during RP. Low Ca(2+) levels (0.5 and 1 x 10(-7) M) stimulated mitochondrial function in both groups predominantly in IPC. The Control group showed evidence of mitochondrial uncoupling at lower Ca(2+) concentrations (1 x 10(-7) M). IPC preserved state 3 at high Ca(2+) concentrations. The cardioprotective effect of IPC results, in part, from

  2. Repression of mitochondrial translation, respiration and a metabolic cycle-regulated gene, SLF1, by the yeast Pumilio-family protein Puf3p.

    Directory of Open Access Journals (Sweden)

    Marc Chatenay-Lapointe

    Full Text Available Synthesis and assembly of the mitochondrial oxidative phosphorylation (OXPHOS system requires genes located both in the nuclear and mitochondrial genomes, but how gene expression is coordinated between these two compartments is not fully understood. One level of control is through regulated expression mitochondrial ribosomal proteins and other factors required for mitochondrial translation and OXPHOS assembly, which are all products of nuclear genes that are subsequently imported into mitochondria. Interestingly, this cadre of genes in budding yeast has in common a 3'-UTR element that is bound by the Pumilio family protein, Puf3p, and is coordinately regulated under many conditions, including during the yeast metabolic cycle. Multiple functions have been assigned to Puf3p, including promoting mRNA degradation, localizing nucleus-encoded mitochondrial transcripts to the outer mitochondrial membrane, and facilitating mitochondria-cytoskeletal interactions and motility. Here we show that Puf3p has a general repressive effect on mitochondrial OXPHOS abundance, translation, and respiration that does not involve changes in overall mitochondrial biogenesis and largely independent of TORC1-mitochondrial signaling. We also identified the cytoplasmic translation factor Slf1p as yeast metabolic cycle-regulated gene that is repressed by Puf3p at the post-transcriptional level and promotes respiration and extension of yeast chronological life span when over-expressed. Altogether, these results should facilitate future studies on which of the many functions of Puf3p is most relevant for regulating mitochondrial gene expression and the role of nuclear-mitochondrial communication in aging and longevity.

  3. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae).

    Science.gov (United States)

    Alverson, Andrew J; Wei, XiaoXin; Rice, Danny W; Stern, David B; Barry, Kerrie; Palmer, Jeffrey D

    2010-06-01

    The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.

  4. Novel localization of OCTN1, an organic cation/carnitine transporter, to mammalian mitochondria

    International Nuclear Information System (INIS)

    Lamhonwah, Anne-Marie; Tein, Ingrid

    2006-01-01

    Carnitine is a zwitterion essential for the β-oxidation of fatty acids. We report novel localization of the organic cation/carnitine transporter, OCTN1, to mitochondria. We made GFP- and RFP-human OCTN1 cDNA constructs and showed expression of hOCTN1 in several transfected mammalian cell lines. Immunostaining of GFP-hOCTN1 transfected cells with different intracellular markers and confocal fluorescent microscopy demonstrated mitochondrial expression of OCTN1. There was striking co-localization of an RFP-hOCTN1 fusion protein and a mitochondrial-GFP marker construct in transfected MEF-3T3 and no co-localization of GFP-hOCTN1 in transfected human skin fibroblasts with other intracellular markers. L-[ 3 H]Carnitine uptake in freshly isolated mitochondria of GFP-hOCTN1 transfected HepG2 demonstrated a K m of 422 μM and Western blot with an anti-GFP antibody identified the expected GFP-hOCTN1 fusion protein (90 kDa). We showed endogenous expression of native OCTN1 in HepG2 mitochondria with anti-GST-hOCTN1 antibody. Further, we definitively confirmed intact L-[ 3 H]carnitine uptake (K m 1324 μM), solely attributable to OCTN1, in isolated mitochondria of mutant human skin fibroblasts having <1% of carnitine acylcarnitine translocase activity (alternate mitochondrial carnitine transporter). This mitochondrial localization was confirmed by TEM of murine heart incubated with highly specific rabbit anti-GST-hOCTN1 antibody and immunogold labeled goat anti-rabbit antibody. This suggests an important yet different role for OCTN1 from other OCTN family members in intracellular carnitine homeostasis

  5. Mitochondrial quality control pathways as determinants of metabolic health

    NARCIS (Netherlands)

    Held, Ntsiki M.; Houtkooper, Riekelt H.

    2015-01-01

    Mitochondrial function is key for maintaining cellular health, while mitochondrial failure is associated with various pathologies, including inherited metabolic disorders and age-related diseases. In order to maintain mitochondrial quality, several pathways of mitochondrial quality control have

  6. Mitochondrial impairment observed in fibroblasts from South African Parkinson’s disease patients with parkin mutations

    Energy Technology Data Exchange (ETDEWEB)

    Merwe, Celia van der, E-mail: celiavdm@sun.ac.za [Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town (South Africa); Loos, Ben [Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch (South Africa); Swart, Chrisna [Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town (South Africa); Kinnear, Craig [Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town (South Africa); MRC Centre for Molecular and Cellular Biology and the DST/NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Cape Town (South Africa); Henning, Franclo [Division of Neurology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town (South Africa); Merwe, Lize van der [Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town (South Africa); Department of Statistics, University of the Western Cape, Cape Town (South Africa); Pillay, Komala [National Health Laboratory Services (NHLS) Histopathology Laboratory, Red Cross Children’s Hospital, Cape Town (South Africa); Muller, Nolan [Division of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town (South Africa); Zaharie, Dan [Neuropathology Unit, Division of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town (South Africa); Engelbrecht, Lize [Cell Imaging Unit, Central Analytical Facility, Stellenbosch University, Cape Town (South Africa); Carr, Jonathan [Division of Neurology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town (South Africa); and others

    2014-05-02

    Highlights: • Mitochondrial dysfunction observed in patients with parkin-null mutations. • Mitochondrial ATP levels were decreased. • Electron-dense vacuoles were observed in the patients. • Mitochondria from muscle biopsies appeared within normal limits. • One patient did not show these defects possibly due to compensatory mechanisms. - Abstract: Parkinson’s disease (PD), defined as a neurodegenerative disorder, is characterized by the loss of dopaminergic neurons in the substantia nigra in the midbrain. Loss-of-function mutations in the parkin gene are a major cause of autosomal recessive, early-onset PD. Parkin has been implicated in the maintenance of healthy mitochondria, although previous studies show conflicting findings regarding mitochondrial abnormalities in fibroblasts from patients harboring parkin-null mutations. The aim of the present study was to determine whether South African PD patients with parkin mutations exhibit evidence for mitochondrial dysfunction. Fibroblasts were cultured from skin biopsies obtained from three patients with homozygous parkin-null mutations, two heterozygous mutation carriers and two wild-type controls. Muscle biopsies were obtained from two of the patients. The muscle fibers showed subtle abnormalities such as slightly swollen mitochondria in focal areas of the fibers and some folding of the sarcolemma. Although no differences in the degree of mitochondrial network branching were found in the fibroblasts, ultrastructural abnormalities were observed including the presence of electron-dense vacuoles. Moreover, decreased ATP levels which are consistent with mitochondrial dysfunction were observed in the patients’ fibroblasts compared to controls. Remarkably, these defects did not manifest in one patient, which may be due to possible compensatory mechanisms. These results suggest that parkin-null patients exhibit features of mitochondrial dysfunction. Involvement of mitochondria as a key role player in PD

  7. Mitochondrial impairment observed in fibroblasts from South African Parkinson’s disease patients with parkin mutations

    International Nuclear Information System (INIS)

    Merwe, Celia van der; Loos, Ben; Swart, Chrisna; Kinnear, Craig; Henning, Franclo; Merwe, Lize van der; Pillay, Komala; Muller, Nolan; Zaharie, Dan; Engelbrecht, Lize; Carr, Jonathan

    2014-01-01

    Highlights: • Mitochondrial dysfunction observed in patients with parkin-null mutations. • Mitochondrial ATP levels were decreased. • Electron-dense vacuoles were observed in the patients. • Mitochondria from muscle biopsies appeared within normal limits. • One patient did not show these defects possibly due to compensatory mechanisms. - Abstract: Parkinson’s disease (PD), defined as a neurodegenerative disorder, is characterized by the loss of dopaminergic neurons in the substantia nigra in the midbrain. Loss-of-function mutations in the parkin gene are a major cause of autosomal recessive, early-onset PD. Parkin has been implicated in the maintenance of healthy mitochondria, although previous studies show conflicting findings regarding mitochondrial abnormalities in fibroblasts from patients harboring parkin-null mutations. The aim of the present study was to determine whether South African PD patients with parkin mutations exhibit evidence for mitochondrial dysfunction. Fibroblasts were cultured from skin biopsies obtained from three patients with homozygous parkin-null mutations, two heterozygous mutation carriers and two wild-type controls. Muscle biopsies were obtained from two of the patients. The muscle fibers showed subtle abnormalities such as slightly swollen mitochondria in focal areas of the fibers and some folding of the sarcolemma. Although no differences in the degree of mitochondrial network branching were found in the fibroblasts, ultrastructural abnormalities were observed including the presence of electron-dense vacuoles. Moreover, decreased ATP levels which are consistent with mitochondrial dysfunction were observed in the patients’ fibroblasts compared to controls. Remarkably, these defects did not manifest in one patient, which may be due to possible compensatory mechanisms. These results suggest that parkin-null patients exhibit features of mitochondrial dysfunction. Involvement of mitochondria as a key role player in PD

  8. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction.

    Science.gov (United States)

    Resseguie, Emily A; Staversky, Rhonda J; Brookes, Paul S; O'Reilly, Michael A

    2015-08-01

    High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Insulin Resistance and Mitochondrial Dysfunction.

    Science.gov (United States)

    Gonzalez-Franquesa, Alba; Patti, Mary-Elizabeth

    2017-01-01

    Insulin resistance precedes and predicts the onset of type 2 diabetes (T2D) in susceptible humans, underscoring its important role in the complex pathogenesis of this disease. Insulin resistance contributes to multiple tissue defects characteristic of T2D, including reduced insulin-stimulated glucose uptake in insulin-sensitive tissues, increased hepatic glucose production, increased lipolysis in adipose tissue, and altered insulin secretion. Studies of individuals with insulin resistance, both with established T2D and high-risk individuals, have consistently demonstrated a diverse array of defects in mitochondrial function (i.e., bioenergetics, biogenesis and dynamics). However, it remains uncertain whether mitochondrial dysfunction is primary (critical initiating defect) or secondary to the subtle derangements in glucose metabolism, insulin resistance, and defective insulin secretion present early in the course of disease development. In this chapter, we will present the evidence linking mitochondrial dysfunction and insulin resistance, and review the potential for mitochondrial targets as a therapeutic approach for T2D.

  11. Why translation counts for mitochondria - retrograde signalling links mitochondrial protein synthesis to mitochondrial biogenesis and cell proliferation.

    Science.gov (United States)

    Battersby, Brendan J; Richter, Uwe

    2013-10-01

    Organelle biosynthesis is a key requirement for cell growth and division. The regulation of mitochondrial biosynthesis exhibits additional layers of complexity compared with that of other organelles because they contain their own genome and dedicated ribosomes. Maintaining these components requires gene expression to be coordinated between the nucleo-cytoplasmic compartment and mitochondria in order to monitor organelle homeostasis and to integrate the responses to the physiological and developmental demands of the cell. Surprisingly, the parameters that are used to monitor or count mitochondrial abundance are not known, nor are the signalling pathways. Inhibiting the translation on mito-ribosomes genetically or with antibiotics can impair cell proliferation and has been attributed to defects in aerobic energy metabolism, even though proliferating cells rely primarily on glycolysis to fuel their metabolic demands. However, a recent study indicates that mitochondrial translational stress and the rescue mechanisms that relieve this stress cause the defect in cell proliferation and occur before any impairment of oxidative phosphorylation. Therefore, the process of mitochondrial translation in itself appears to be an important checkpoint for the monitoring of mitochondrial homeostasis and might have a role in establishing mitochondrial abundance within a cell. This hypothesis article will explore the evidence supporting a role for mito-ribosomes and translation in a mitochondria-counting mechanism.

  12. The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore.

    Science.gov (United States)

    Rottenberg, Hagai; Hoek, Jan B

    2017-10-01

    Excessive production of mitochondrial reactive oxygen species (mROS) is strongly associated with mitochondrial and cellular oxidative damage, aging, and degenerative diseases. However, mROS also induces pathways of protection of mitochondria that slow aging, inhibit cell death, and increase lifespan. Recent studies show that the activation of the mitochondrial permeability transition pore (mPTP), which is triggered by mROS and mitochondrial calcium overloading, is enhanced in aged animals and humans and in aging-related degenerative diseases. mPTP opening initiates further production and release of mROS that damage both mitochondrial and nuclear DNA, proteins, and phospholipids, and also releases matrix NAD that is hydrolyzed in the intermembrane space, thus contributing to the depletion of cellular NAD that accelerates aging. Oxidative damage to calcium transporters leads to calcium overload and more frequent opening of mPTP. Because aging enhances the opening of the mPTP and mPTP opening accelerates aging, we suggest that mPTP opening drives the progression of aging. Activation of the mPTP is regulated, directly and indirectly, not only by the mitochondrial protection pathways that are induced by mROS, but also by pro-apoptotic signals that are induced by DNA damage. We suggest that the integration of these contrasting signals by the mPTP largely determines the rate of cell aging and the initiation of cell death, and thus animal lifespan. The suggestion that the control of mPTP activation is critical for the progression of aging can explain the conflicting and confusing evidence regarding the beneficial and deleterious effects of mROS on health and lifespan. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Peripheral neuropathy is a common manifestation of mitochondrial diseases: a single-centre experience.

    Science.gov (United States)

    Luigetti, M; Sauchelli, D; Primiano, G; Cuccagna, C; Bernardo, D; Lo Monaco, M; Servidei, S

    2016-06-01

    Peripheral neuropathy in mitochondrial diseases (MDs) may vary from a subclinical finding in a multisystem syndrome to a severe, even isolated, manifestation in some patients. To investigate the involvement of the peripheral nervous system in MDs extensive electrophysiological studies were performed in 109 patients with morphological, biochemical and genetic diagnosis of MD [12 A3243G progressive external ophthalmoplegia (PEO)/mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), 16 myoclonic epilepsy with ragged-red fibres (MERRF), four mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), 67 PEO with single or multiple deletions of mitochondrial DNA, 10 others]. A neuropathy was found in 49 patients (45%). The incidence was very high in MNGIE (100%), MELAS (92%) and MERRF (69%), whilst 28% of PEO patients had evidence of peripheral involvement. The most frequent abnormality was a sensory axonal neuropathy found in 32/49 patients (65%). A sensory-motor axonal neuropathy was instead detected in 16% of the patients and sensory-motor axonal demyelinating neuropathy in 16%. Finally one Leigh patient had a motor axonal neuropathy. It is interesting to note that the great majority had preserved tendon reflexes and no sensory disturbances. In conclusion, peripheral involvement in MD is frequent even if often mild or asymptomatic. The correct identification and characterization of peripheral neuropathy through electrophysiological studies represents another tile in the challenge of MD diagnosis. © 2016 EAN.

  14. Mitochondrial DNA depletion, mitochondrial mutations and high TFAM expression in hepatocellular carcinoma

    OpenAIRE

    Qiao, Lihua; Ru, Guoqing; Mao, Zhuochao; Wang, Chenghui; Nie, Zhipeng; Li, Qiang; Huang-yang, Yiyi; Zhu, Ling; Liang, Xiaoyang; Yu, Jialing; Jiang, Pingping

    2017-01-01

    We investigated the role of mitochondrial genetic alterations in hepatocellular carcinoma by directly comparing the mitochondrial genomes of 86 matched pairs of HCC and non-tumor liver samples. Substitutions in 637 mtDNA sites were detected, comprising 89.80% transitions and 6.60% transversions. Forty-six somatic variants, including 15 novel mutations, were identified in 40.70% of tumor tissues. Of those, 21 were located in the non-coding region and 25 in the protein-coding region. Twenty-two...

  15. Antimicrobial agent triclosan disrupts mitochondrial structure, revealed by super-resolution microscopy, and inhibits mast cell signaling via calcium modulation.

    Science.gov (United States)

    Weatherly, Lisa M; Nelson, Andrew J; Shim, Juyoung; Riitano, Abigail M; Gerson, Erik D; Hart, Andrew J; de Juan-Sanz, Jaime; Ryan, Timothy A; Sher, Roger; Hess, Samuel T; Gosse, Julie A

    2018-06-15

    The antimicrobial agent triclosan (TCS) is used in products such as toothpaste and surgical soaps and is readily absorbed into oral mucosa and human skin. These and many other tissues contain mast cells, which are involved in numerous physiologies and diseases. Mast cells release chemical mediators through a process termed degranulation, which is inhibited by TCS. Investigation into the underlying mechanisms led to the finding that TCS is a mitochondrial uncoupler at non-cytotoxic, low-micromolar doses in several cell types and live zebrafish. Our aim was to determine the mechanisms underlying TCS disruption of mitochondrial function and of mast cell signaling. We combined super-resolution (fluorescence photoactivation localization) microscopy and multiple fluorescence-based assays to detail triclosan's effects in living mast cells, fibroblasts, and primary human keratinocytes. TCS disrupts mitochondrial nanostructure, causing mitochondria to undergo fission and to form a toroidal, "donut" shape. TCS increases reactive oxygen species production, decreases mitochondrial membrane potential, and disrupts ER and mitochondrial Ca 2+ levels, processes that cause mitochondrial fission. TCS is 60 × more potent than the banned uncoupler 2,4-dinitrophenol. TCS inhibits mast cell degranulation by decreasing mitochondrial membrane potential, disrupting microtubule polymerization, and inhibiting mitochondrial translocation, which reduces Ca 2+ influx into the cell. Our findings provide mechanisms for both triclosan's inhibition of mast cell signaling and its universal disruption of mitochondria. These mechanisms provide partial explanations for triclosan's adverse effects on human reproduction, immunology, and development. This study is the first to utilize super-resolution microscopy in the field of toxicology. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Mitochondrial DAMPs induce endotoxin tolerance in human monocytes: an observation in patients with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Irene Fernández-Ruiz

    Full Text Available Monocyte exposure to mitochondrial Danger Associated Molecular Patterns (DAMPs, including mitochondrial DNA (mtDNA, induces a transient state in which these cells are refractory to further endotoxin stimulation. In this context, IRAK-M up-regulation and impaired p65 activity were observed. This phenomenon, termed endotoxin tolerance (ET, is characterized by decreased production of cytokines in response to the pro-inflammatory stimulus. We also show that monocytes isolated from patients with myocardial infarction (MI exhibited high levels of circulating mtDNA, which correlated with ET status. Moreover, a significant incidence of infection was observed in those patients with a strong tolerant phenotype. The present data extend our current understanding of the implications of endotoxin tolerance. Furthermore, our data suggest that the levels of mitochondrial antigens in plasma, such as plasma mtDNA, should be useful as a marker of increased risk of susceptibility to nosocomial infections in MI and in other pathologies involving tissue damage.

  17. Mitochondrial replacement techniques: egg donation, genealogy and eugenics.

    Science.gov (United States)

    Palacios-González, César

    2016-03-01

    Several objections against the morality of researching or employing mitochondrial replacement techniques have been advanced recently. In this paper, I examine three of these objections and show that they are found wanting. First I examine whether mitochondrial replacement techniques, research and clinical practice, should not be carried out because of possible harms to egg donors. Next I assess whether mitochondrial replacement techniques should be banned because they could affect the study of genealogical ancestry. Finally, I examine the claim that mitochondrial replacement techniques are not transferring mitochondrial DNA but nuclear DNA, and that this should be prohibited on ethical grounds.

  18. Characterizations of locally C*-algebras

    International Nuclear Information System (INIS)

    Mohammad, N.; Somasundaram, S.

    1991-08-01

    We seek the generalization of the Gelfand-Naimark theorems for locally C*-algebras. Precisely, if A is a unital commutative locally C*-algebra, then it is shown that A is *-isomorphic (topologically and algebraically) to C(Δ). Further, if A is any locally C*-algebra, then it is realized as a closed *-subalgebra of some L(H) up to a topological algebraic *-isomorphism. Also, a brief exposition of the Gelfand-Naimark-Segal construction is given and some of its consequences are discussed. (author). 16 refs

  19. GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction.

    Directory of Open Access Journals (Sweden)

    Raquel Montero

    Full Text Available We previously described increased levels of growth and differentiation factor 15 (GDF-15 in skeletal muscle and serum of patients with mitochondrial diseases. Here we evaluated GDF-15 as a biomarker for mitochondrial diseases affecting children and compared it to fibroblast-growth factor 21 (FGF-21. To investigate the mechanism of GDF-15 induction in these pathologies we measured its expression and secretion in response to mitochondrial dysfunction.We analysed 59 serum samples from 48 children with mitochondrial disease, 19 samples from children with other neuromuscular diseases and 33 samples from aged-matched healthy children. GDF-15 and FGF-21 circulating levels were determined by ELISA.Our results showed that in children with mitochondrial diseases GDF-15 levels were on average increased by 11-fold (mean 4046pg/ml, 1492 SEM relative to healthy (350, 21 and myopathic (350, 32 controls. The area under the curve for the receiver-operating-characteristic curve for GDF-15 was 0.82 indicating that it has a good discriminatory power. The overall sensitivity and specificity of GDF-15 for a cut-off value of 550pg/mL was 67.8% (54.4%-79.4% and 92.3% (81.5%-97.9%, respectively. We found that elevated levels of GDF-15 and or FGF-21 correctly identified a larger proportion of patients than elevated levels of GDF-15 or FGF-21 alone. GDF-15, as well as FGF-21, mRNA expression and protein secretion, were significantly induced after treatment of myotubes with oligomycin and that levels of expression of both factors significantly correlated.Our data indicate that GDF-15 is a valuable serum quantitative biomarker for the diagnosis of mitochondrial diseases in children and that measurement of both GDF-15 and FGF-21 improves the disease detection ability of either factor separately. Finally, we demonstrate for the first time that GDF-15 is produced by skeletal muscle cells in response to mitochondrial dysfunction and that its levels correlate in vitro with FGF

  20. Pharmacologic modeling of primary mitochondrial respiratory chain dysfunction in zebrafish.

    Science.gov (United States)

    Byrnes, James; Ganetzky, Rebecca; Lightfoot, Richard; Tzeng, Michael; Nakamaru-Ogiso, Eiko; Seiler, Christoph; Falk, Marni J

    2017-07-18

    Mitochondrial respiratory chain (RC) disease is a heterogeneous and highly morbid group of energy deficiency disorders for which no proven effective therapies exist. Robust vertebrate animal models of primary RC dysfunction are needed to explore the effects of variation in RC disease subtypes, tissue-specific manifestations, and major pathogenic factors contributing to each disorder, as well as their pre-clinical response to therapeutic candidates. We have developed a series of zebrafish (Danio rerio) models that inhibit, to variable degrees, distinct aspects of RC function, and enable quantification of animal development, survival, behaviors, and organ-level treatment effects as well as effects on mitochondrial biochemistry and physiology. Here, we characterize four pharmacologic inhibitor models of mitochondrial RC dysfunction in early larval zebrafish, including rotenone (complex I inhibitor), azide (complex IV inhibitor), oligomycin (complex V inhibitor), and chloramphenicol (mitochondrial translation inhibitor that leads to multiple RC complex dysfunction). A range of concentrations and exposure times of each RC inhibitor were systematically evaluated on early larval development, animal survival, integrated behaviors (touch and startle responses), organ physiology (brain death, neurologic tone, heart rate), and fluorescence-based analyses of mitochondrial physiology in zebrafish skeletal muscle. Pharmacologic RC inhibitor effects were validated by spectrophotometric analysis of Complex I, II and IV enzyme activities, or relative quantitation of ATP levels in larvae. Outcomes were prioritized that utilize in vivo animal imaging and quantitative behavioral assessments, as may optimally inform the translational potential of pre-clinical drug screens for future clinical study in human mitochondrial disease subjects. The RC complex inhibitors each delayed early embryo development, with short-term exposures of these three agents or chloramphenicol from 5 to 7 days

  1. Three dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization

    DEFF Research Database (Denmark)

    Dahl, Rannvá; Larsen, Steen; Dohlmann, Tine L

    2015-01-01

    a method to visualize mitochondrial networks in high resolution and assess mitochondrial volume. Methods: Confocal fluorescence microscopy imaging of mitochondrial network stains in human vastus lateralis single muscle fibers and, focused ion beam scanning electron microscopy (FIB/SEM) imaging, combined...... mitochondrial dynamics in response to life-style interventions and/or in certain pathologies. Our results question the classification of mitochondria into subsarcolemmal and intermyofibrillar pools, since they are physically interconnected. This article is protected by copyright. All rights reserved....

  2. Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health.

    Science.gov (United States)

    Jokinen, Riikka; Pirnes-Karhu, Sini; Pietiläinen, Kirsi H; Pirinen, Eija

    2017-08-01

    Obesity, a chronic state of energy overload, is characterized by adipose tissue dysfunction that is considered to be the major driver for obesity associated metabolic complications. The reasons for adipose tissue dysfunction are incompletely understood, but one potential contributing factor is adipose tissue mitochondrial dysfunction. Derangements of adipose tissue mitochondrial biogenesis and pathways associate with obesity and metabolic diseases. Mitochondria are central organelles in energy metabolism through their role in energy derivation through catabolic oxidative reactions. The mitochondrial processes are dependent on the proper NAD + /NADH redox balance and NAD + is essential for reactions catalyzed by the key regulators of mitochondrial metabolism, sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs). Notably, obesity is associated with disturbed adipose tissue NAD + homeostasis and the balance of SIRT and PARP activities. In this review we aim to summarize existing literature on the maintenance of intracellular NAD + pools and the function of SIRTs and PARPs in adipose tissue during normal and obese conditions, with the purpose of comprehending their potential role in mitochondrial derangements and obesity associated metabolic complications. Understanding the molecular mechanisms that are the root cause of the adipose tissue mitochondrial derangements is crucial for developing new effective strategies to reverse obesity associated metabolic complications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Population structure of the African savannah elephant inferred from mitochondrial control region sequences and nuclear microsatellite loci

    DEFF Research Database (Denmark)

    Nyakaana, S; Arctander, P; Siegismund, H R

    2002-01-01

    Two hundred and thirty-six mitochondrial DNA nucleotide sequences were used in combination with polymorphism at four nuclear microsatellite loci to assess the amount and distribution of genetic variation within and between African savannah elephants. They were sampled from 11 localities in easter...

  4. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  5. How do yeast sense mitochondrial dysfunction?

    Directory of Open Access Journals (Sweden)

    Dmitry A. Knorre

    2016-09-01

    Full Text Available Apart from energy transformation, mitochondria play important signaling roles. In yeast, mitochondrial signaling relies on several molecular cascades. However, it is not clear how a cell detects a particular mitochondrial malfunction. The problem is that there are many possible manifestations of mitochondrial dysfunction. For example, exposure to the specific antibiotics can either decrease (inhibitors of respiratory chain or increase (inhibitors of ATP-synthase mitochondrial transmembrane potential. Moreover, even in the absence of the dysfunctions, a cell needs feedback from mitochondria to coordinate mitochondrial biogenesis and/or removal by mitophagy during the division cycle. To cope with the complexity, only a limited set of compounds is monitored by yeast cells to estimate mitochondrial functionality. The known examples of such compounds are ATP, reactive oxygen species, intermediates of amino acids synthesis, short peptides, Fe-S clusters and heme, and also the precursor proteins which fail to be imported by mitochondria. On one hand, the levels of these molecules depend not only on mitochondria. On the other hand, these substances are recognized by the cytosolic sensors which transmit the signals to the nucleus leading to general, as opposed to mitochondria-specific, transcriptional response. Therefore, we argue that both ways of mitochondria-to-nucleus communication in yeast are mostly (if not completely unspecific, are mediated by the cytosolic signaling machinery and strongly depend on cellular metabolic state.

  6. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Directory of Open Access Journals (Sweden)

    Tara Diane Fischer

    2016-03-01

    Full Text Available Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS, and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1, which translocates to the mitochondrial outer membrane to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 hours post-injury, followed by a significant decrease in length at 72 hours. Post-TBI administration of Mdivi-1, a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved

  7. Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis.

    Science.gov (United States)

    Renault, Thibaud T; Floros, Konstantinos V; Elkholi, Rana; Corrigan, Kelly-Ann; Kushnareva, Yulia; Wieder, Shira Y; Lindtner, Claudia; Serasinghe, Madhavika N; Asciolla, James J; Buettner, Christoph; Newmeyer, Donald D; Chipuk, Jerry E

    2015-01-08

    Proapoptotic BCL-2 proteins converge upon the outer mitochondrial membrane (OMM) to promote mitochondrial outer membrane permeabilization (MOMP) and apoptosis. Here we investigated the mechanistic relationship between mitochondrial shape and MOMP and provide evidence that BAX requires a distinct mitochondrial size to induce MOMP. We utilized the terminal unfolded protein response pathway to systematically define proapoptotic BCL-2 protein composition after stress and then directly interrogated their requirement for a productive mitochondrial size. Complementary biochemical, cellular, in vivo, and ex vivo studies reveal that Mfn1, a GTPase involved in mitochondrial fusion, establishes a mitochondrial size that is permissive for proapoptotic BCL-2 family function. Cells with hyperfragmented mitochondria, along with size-restricted OMM model systems, fail to support BAX-dependent membrane association and permeabilization due to an inability to stabilize BAXα9·membrane interactions. This work identifies a mechanistic contribution of mitochondrial size in dictating BAX activation, MOMP, and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effects of short-term tocopherol (T) feeding on structure-localized protein tyrosine nitration (pTN) patterns of mitochondrial ATPase following endotoxin (LPS) challenge in beef calves.

    Science.gov (United States)

    Mitochondrial ATPase/Complex-V (MCV) is an electron transport chain (ETC) component needed for ATP synthesis. The ETC, exquisitely sensitive to proinflammatory mediators (PIM), generates oxynitrogen reactants leading to pTN formation as mitochondrial membrane leakage occurs. Immunohistochemical loca...

  9. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny

    Science.gov (United States)

    Marr, Henry S.; Tarigo, Jaime L.; Cohn, Leah A.; Bird, David M.; Scholl, Elizabeth H.; Levy, Michael G.; Wiegmann, Brian M.; Birkenheuer, Adam J.

    2016-01-01

    The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the

  10. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny.

    Directory of Open Access Journals (Sweden)

    Megan E Schreeg

    Full Text Available The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward

  11. Oxygen Glucose Deprivation in Rat Hippocampal Slice Cultures Results in Alterations in Carnitine Homeostasis and Mitochondrial Dysfunction

    Science.gov (United States)

    Rau, Thomas F.; Lu, Qing; Sharma, Shruti; Sun, Xutong; Leary, Gregory; Beckman, Matthew L.; Hou, Yali; Wainwright, Mark S.; Kavanaugh, Michael; Poulsen, David J.; Black, Stephen M.

    2012-01-01

    Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR) supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD) decreased the levels of free carnitines (FC) and increased the acylcarnitine (AC): FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT) 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD. PMID:22984394

  12. The (in)complete organelle genome: exploring the use and nonuse of available technologies for characterizing mitochondrial and plastid chromosomes.

    Science.gov (United States)

    Sanitá Lima, Matheus; Woods, Laura C; Cartwright, Matthew W; Smith, David Roy

    2016-11-01

    Not long ago, scientists paid dearly in time, money and skill for every nucleotide that they sequenced. Today, DNA sequencing technologies epitomize the slogan 'faster, easier, cheaper and more', and in many ways, sequencing an entire genome has become routine, even for the smallest laboratory groups. This is especially true for mitochondrial and plastid genomes. Given their relatively small sizes and high copy numbers per cell, organelle DNAs are currently among the most highly sequenced kind of chromosome. But accurately characterizing an organelle genome and the information it encodes can require much more than DNA sequencing and bioinformatics analyses. Organelle genomes can be surprisingly complex and can exhibit convoluted and unconventional modes of gene expression. Unravelling this complexity can demand a wide assortment of experiments, from pulsed-field gel electrophoresis to Southern and Northern blots to RNA analyses. Here, we show that it is exactly these types of 'complementary' analyses that are often lacking from contemporary organelle genome papers, particularly short 'genome announcement' articles. Consequently, crucial and interesting features of organelle chromosomes are going undescribed, which could ultimately lead to a poor understanding and even a misrepresentation of these genomes and the genes they express. High-throughput sequencing and bioinformatics have made it easy to sequence and assemble entire chromosomes, but they should not be used as a substitute for or at the expense of other types of genomic characterization methods. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  13. Nucleotide sequence preservation of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Monnat, R.J. Jr.; Loeb, L.A.

    1985-01-01

    Recombinant DNA techniques have been used to quantitate the amount of nucleotide sequence divergence in the mitochondrial DNA population of individual normal humans. Mitochondrial DNA was isolated from the peripheral blood lymphocytes of five normal humans and cloned in M13 mp11; 49 kilobases of nucleotide sequence information was obtained from 248 independently isolated clones from the five normal donors. Both between- and within-individual differences were identified. Between-individual differences were identified in approximately = to 1/200 nucleotides. In contrast, only one within-individual difference was identified in 49 kilobases of nucleotide sequence information. This high degree of mitochondrial nucleotide sequence homogeneity in human somatic cells is in marked contrast to the rapid evolutionary divergence of human mitochondrial DNA and suggests the existence of mechanisms for the concerted preservation of mammalian mitochondrial DNA sequences in single organisms

  14. Characterizing structural transitions using localized free energy landscape analysis.

    Directory of Open Access Journals (Sweden)

    Nilesh K Banavali

    Full Text Available Structural changes in molecules are frequently observed during biological processes like replication, transcription and translation. These structural changes can usually be traced to specific distortions in the backbones of the macromolecules involved. Quantitative energetic characterization of such distortions can greatly advance the atomic-level understanding of the dynamic character of these biological processes.Molecular dynamics simulations combined with a variation of the Weighted Histogram Analysis Method for potential of mean force determination are applied to characterize localized structural changes for the test case of cytosine (underlined base flipping in a GTCAGCGCATGG DNA duplex. Free energy landscapes for backbone torsion and sugar pucker degrees of freedom in the DNA are used to understand their behavior in response to the base flipping perturbation. By simplifying the base flipping structural change into a two-state model, a free energy difference of upto 14 kcal/mol can be attributed to the flipped state relative to the stacked Watson-Crick base paired state. This two-state classification allows precise evaluation of the effect of base flipping on local backbone degrees of freedom.The calculated free energy landscapes of individual backbone and sugar degrees of freedom expectedly show the greatest change in the vicinity of the flipping base itself, but specific delocalized effects can be discerned upto four nucleotide positions away in both 5' and 3' directions. Free energy landscape analysis thus provides a quantitative method to pinpoint the determinants of structural change on the atomic scale and also delineate the extent of propagation of the perturbation along the molecule. In addition to nucleic acids, this methodology is anticipated to be useful for studying conformational changes in all macromolecules, including carbohydrates, lipids, and proteins.

  15. Chaperone-protease networks in mitochondrial protein homeostasis.

    Science.gov (United States)

    Voos, Wolfgang

    2013-02-01

    As essential organelles, mitochondria are intimately integrated into the metabolism of a eukaryotic cell. The maintenance of the functional integrity of the mitochondrial proteome, also termed protein homeostasis, is facing many challenges both under normal and pathological conditions. First, since mitochondria are derived from bacterial ancestor cells, the proteins in this endosymbiotic organelle have a mixed origin. Only a few proteins are encoded on the mitochondrial genome, most genes for mitochondrial proteins reside in the nuclear genome of the host cell. This distribution requires a complex biogenesis of mitochondrial proteins, which are mostly synthesized in the cytosol and need to be imported into the organelle. Mitochondrial protein biogenesis usually therefore comprises complex folding and assembly processes to reach an enzymatically active state. In addition, specific protein quality control (PQC) processes avoid an accumulation of damaged or surplus polypeptides. Mitochondrial protein homeostasis is based on endogenous enzymatic components comprising a diverse set of chaperones and proteases that form an interconnected functional network. This review describes the different types of mitochondrial proteins with chaperone functions and covers the current knowledge of their roles in protein biogenesis, folding, proteolytic removal and prevention of aggregation, the principal reactions of protein homeostasis. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Reactive Oxygen Species-Mediated Control of Mitochondrial Biogenesis

    Directory of Open Access Journals (Sweden)

    Edgar D. Yoboue

    2012-01-01

    Full Text Available Mitochondrial biogenesis is a complex process. It necessitates the contribution of both the nuclear and the mitochondrial genomes and therefore crosstalk between the nucleus and mitochondria. It is now well established that cellular mitochondrial content can vary according to a number of stimuli and physiological states in eukaryotes. The knowledge of the actors and signals regulating the mitochondrial biogenesis is thus of high importance. The cellular redox state has been considered for a long time as a key element in the regulation of various processes. In this paper, we report the involvement of the oxidative stress in the regulation of some actors of mitochondrial biogenesis.

  17. Mitochondrial DNA and Cancer Epidemiology Workshop

    Science.gov (United States)

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  18. Measurement of Oxidative Stress: Mitochondrial Function Using the Seahorse System.

    Science.gov (United States)

    Leung, Dilys T H; Chu, Simon

    2018-01-01

    The Seahorse XFp Analyzer is a powerful tool for the assessment of various parameters of cellular respiration. Here we describe the process of the Seahorse Cell Phenotype Test using the Seahorse XFp Analyzer to characterize the metabolic phenotype of live cells. The Seahorse XFp Analyzer can also be coupled with other assays to measure cellular energetics. Given that mitochondrial dysfunction is implicated in preeclampsia, the Seahorse XFp Analyzer will serve as a useful tool for the understanding of pathological metabolism in this disorder.

  19. Mitochondrial-Targeted Antioxidant Maintains Blood Flow, Mitochondrial Function, and Redox Balance in Old Mice Following Prolonged Limb Ischemia

    Directory of Open Access Journals (Sweden)

    Shunsuke Miura

    2017-09-01

    Full Text Available Aging is a major factor in the decline of limb blood flow with ischemia. However, the underlying mechanism remains unclear. We investigated the role of mitochondrial reactive oxygen species (ROS with regard to limb perfusion recovery in aging during ischemia. We performed femoral artery ligation in young and old mice with or without treatment with a scavenger of mitochondrial superoxide, MitoTEMPO (180 μg/kg/day, from pre-operative day 7 to post-operative day (POD 21 infusion using an implanted mini-pump. The recoveries of cutaneous blood flow in the ischemic hind limb were lower in old mice than in young mice but were improved in MitoTEMPO-treated old mice. Mitochondrial DNA damage appeared in ischemic aged muscles but was eliminated by MitoTEMPO treatment. For POD 2, MitoTEMPO treatment suppressed the expression of p53 and the ratio of Bax/Bcl2 and upregulated the expression of hypoxia-inducible factor-1α (HIF-1α and vascular endothelial growth factor (VEGF in ischemic aged skeletal muscles. For POD 21, MitoTEMPO treatment preserved the expression of PGC-1α in ischemic aged skeletal muscle. The ischemic soleus of old mice showed a lower mitochondrial respiratory control ratio in POD 21 compared to young mice, which was recovered in MitoTEMPO-treated old mice. Scavenging of mitochondrial superoxide attenuated mitochondrial DNA damage and preserved the mitochondrial respiration, in addition to suppression of the expression of p53 and preservation of the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α in ischemic skeletal muscles with aging. Resolution of excessive mitochondrial superoxide could be an effective therapy to recover blood flow of skeletal muscle during ischemia in senescence.

  20. Characterization of fieldstone for a provenance study of local building stones and artifacts

    Science.gov (United States)

    Goossens, M.; De Kock, T.; Dewanckele, J.; Boone, M.; De Boever, W.; Brabant, L.; Louwye, S.; De Ceukelaire, M.; Vanhaecke, F.; Cnudde, V.

    2012-04-01

    Fieldstone is a Belgian silicified sandstone speckled with glauconite. The hardness varies with the degree of silicification and its colour, which is usually greenish, can differ from bluish gray to orange depending on the degree of oxidation of the glauconite. Although recently discovered in the clayey interlayers, fieldstone mainly appears in the sandy units of the Eocene in Western Flanders (Belgium). It occurs as lenses and banks parallel to the stratification. From Roman times onwards, these were locally intensely cultivated as local building stones. Furthermore archeological evidence points out fieldstone was used in prehistoric times to make various artifacts like scrapers and jacks. The purpose of our study is to characterize fieldstone from the different known geographical and stratigraphical localities. Ambiguous stratigraphical classifications of fieldstone outcrops in the past have complicated previous studies of fieldstone. Therefore, we aim to provide clarity over its stratigraphical occurrence and deliver additional information about its formation. The ultimate goal is to trace back the origin of the fieldstone used in buildings and for archeological artifacts to a distinct locality. For the characterization of the fieldstone different techniques were used. Thin sections were examined by petrographical microscopy in order to study grain size, porosity, mineralogy, degree of silicification and in some samples microfossil content like silicified foraminifers. Porosity was determined with volumetric analysis and high resolution X-ray computer tomography. Attention towards the dinoflagellate content was given. This can provide information about the age and depositional environment of the silicified sands. In addition, it can act as a distinct feature that is characteristic for one locality or stratigraphic layer. A selected amount of samples were chemically analysed with Laser Ablation Inductively Coupled Plasma Mass Spectrometer in order to check if

  1. Drp-1 dependent mitochondrial fragmentation and protective autophagy in dopaminergic SH-SY5Y cells overexpressing alpha-synuclein.

    Science.gov (United States)

    Martinez, Jimena Hebe; Alaimo, Agustina; Gorojod, Roxana Mayra; Porte Alcon, Soledad; Fuentes, Federico; Coluccio Leskow, Federico; Kotler, Mónica Lidia

    2018-04-01

    Parkinson's disease is a neurodegenerative movement disorder caused by the loss of dopaminergic neurons from substantia nigra. It is characterized by the accumulation of aggregated α-synuclein as the major component of the Lewy bodies. Additional common features of this disease are the mitochondrial dysfunction and the activation/inhibition of autophagy both events associated to the intracellular accumulation of α-synuclein. The mechanism by which these events contribute to neural degeneration remains unknown. In the present work we investigated the effect of α-synuclein on mitochondrial dynamics and autophagy/mitophagy in SH-SY5Y cells, an in vitro model of Parkinson disease. We demonstrated that overexpression of wild type α-synuclein causes moderated toxicity, ROS generation and mitochondrial dysfunction. In addition, α-synuclein induces the mitochondrial fragmentation on a Drp-1-dependent fashion. Overexpression of the fusion protein Opa-1 prevented both mitochondrial fragmentation and cytotoxicity. On the other hand, cells expressing α-synuclein showed activated autophagy and particularly mitophagy. Employing a genetic strategy we demonstrated that autophagy is triggered in order to protect cells from α-synuclein-induced cell death. Our results clarify the role of Opa-1 and Drp-1 in mitochondrial dynamics and cell survival, a controversial α-synuclein research issue. The findings presented point to the relevance of mitochondrial homeostasis and autophagy in the pathogenesis of PD. Better understanding of the molecular interaction between these processes could give rise to novel therapeutic methods for PD prevention and amelioration. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Mitochondrial Myopathies

    Science.gov (United States)

    ... noting “soft signs” in unaffected relatives. These include deaf- ness, short stature, migraine headaches and PEO. Muscle ... mitochondrial defects and provide valuable information for family planning. Perhaps most important, knowing the genetic defects that ...

  3. Piracetam improves mitochondrial dysfunction following oxidative stress

    Science.gov (United States)

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  4. Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants

    OpenAIRE

    Zhao, Guang-Hui; Jia, Yan-Qing; Cheng, Wen-Yu; Zhao, Wen; Bian, Qing-Qing; Liu, Guo-Hua

    2014-01-01

    Background Nematodirus spp. are among the most common nematodes of ruminants worldwide. N. oiratianus and N. spathiger are distributed worldwide as highly prevalent gastrointestinal nematodes, which cause emerging health problems and economic losses. Accurate identification of Nematodirus species is essential to develop effective control strategies for Nematodirus infection in ruminants. Mitochondrial DNA (mtDNA) could provide powerful genetic markers for identifying these closely related spe...

  5. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.

    Science.gov (United States)

    Zampieri, Sandra; Mammucari, Cristina; Romanello, Vanina; Barberi, Laura; Pietrangelo, Laura; Fusella, Aurora; Mosole, Simone; Gherardi, Gaia; Höfer, Christian; Löfler, Stefan; Sarabon, Nejc; Cvecka, Jan; Krenn, Matthias; Carraro, Ugo; Kern, Helmut; Protasi, Feliciano; Musarò, Antonio; Sandri, Marco; Rizzuto, Rosario

    2016-12-01

    Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca 2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU-dependent mitochondrial Ca 2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70-year-old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES-trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES-dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial-related proteins involved in Ca 2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria-related proteins as potential pharmacological targets to counteract age-related muscle loss. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Three genes for mitochondrial proteins suppress null-mutations in both Afg3 and Rca1 when over-expressed.

    Science.gov (United States)

    Rep, M; Nooy, J; Guélin, E; Grivell, L A

    1996-08-01

    The AFG3 gene of Saccharomyces cerevisiae encodes a mitochondrial inner membrane protein with ATP-dependent protease activity. To gain more insight into the function of this protein, multi-copy suppressors of an afg3-null mutation were isolated. Three genes were found that restored partial growth on non-fermentable carbon sources, all of which affect the biogenesis of respiratory competent mitochondria: PIM1(LON) encodes a matrix-localized ATP-dependent protease involved in the turnover of matrix proteins; OXA1(PET1402) encodes a putative mitochondrial inner membrane protein involved in the biogenesis of the respiratory chain; and MBA1 encodes a mitochondrial protein required for optimal respiratory growth. All three genes also suppressed a null mutation in a related gene, RCA1, as well as in the combination of afg3- and rca1-null.

  7. Piracetam improves mitochondrial dysfunction following oxidative stress

    OpenAIRE

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging.Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction fol...

  8. Mitochondrial Dynamics in Cardiovascular Health and Disease

    OpenAIRE

    Ong, Sang-Bing; Hall, Andrew R.; Hausenloy, Derek J.

    2013-01-01

    Significance: Mitochondria are dynamic organelles capable of changing their shape and distribution by undergoing either fission or fusion. Changes in mitochondrial dynamics, which is under the control of specific mitochondrial fission and fusion proteins, have been implicated in cell division, embryonic development, apoptosis, autophagy, and metabolism. Although the machinery for modulating mitochondrial dynamics is present in the cardiovascular system, its function there has only recently be...

  9. Leber's hereditary optic neuropathy is associated with mitochondrial ND1 T3394C mutation

    International Nuclear Information System (INIS)

    Liang, Min; Guan, Minqiang; Zhao, Fuxing; Zhou, Xiangtian; Yuan, Meixia; Tong, Yi; Yang, Li; Wei, Qi-Ping; Sun, Yan-Hong; Lu, Fan; Qu, Jia

    2009-01-01

    We report here the clinical, genetic and molecular characterization of four Chinese families with Leber's hereditary optic neuropathy (LHON). There were variable severity and age-of-onset in visual impairment among these families. Strikingly, there were extremely low penetrances of visual impairment in these Chinese families. Sequence analysis of complete mitochondrial genomes in these pedigrees showed the homoplasmic T3394C (Y30H) mutation, which localized at a highly conserved tyrosine at position 30 of ND1, and distinct sets of mtDNA polymorphisms belonging to haplogroups D4b and M9a. The occurrence of T3394C mutation in these several genetically unrelated subjects affected by visual impairment strongly indicates that this mutation is involved in the pathogenesis of visual impairment. However, there was the absence of functionally significant mtDNA mutations in these four Chinese pedigrees carrying the T3394C mutation. Therefore, nuclear modifier gene(s) or environmental factor(s) may play a role in the phenotypic expression of the LHON-associated T3394C mutation.

  10. Betaine is a positive regulator of mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

  11. Amla Enhances Mitochondrial Spare Respiratory Capacity by Increasing Mitochondrial Biogenesis and Antioxidant Systems in a Murine Skeletal Muscle Cell Line

    Directory of Open Access Journals (Sweden)

    Hirotaka Yamamoto

    2016-01-01

    Full Text Available Amla is one of the most important plants in Indian traditional medicine and has been shown to improve various age-related disorders while decreasing oxidative stress. Mitochondrial dysfunction is a proposed cause of aging through elevated oxidative stress. In this study, we investigated the effects of Amla on mitochondrial function in C2C12 myotubes, a murine skeletal muscle cell model with abundant mitochondria. Based on cell flux analysis, treatment with an extract of Amla fruit enhanced mitochondrial spare respiratory capacity, which enables cells to overcome various stresses. To further explore the mechanisms underlying these effects on mitochondrial function, we analyzed mitochondrial biogenesis and antioxidant systems, both proposed regulators of mitochondrial spare respiratory capacity. We found that Amla treatment stimulated both systems accompanied by AMPK and Nrf2 activation. Furthermore, we found that Amla treatment exhibited cytoprotective effects and lowered reactive oxygen species (ROS levels in cells subjected to t-BHP-induced oxidative stress. These effects were accompanied by increased oxygen consumption, suggesting that Amla protected cells against oxidative stress by using enhanced spare respiratory capacity to produce more energy. Thus we identified protective effects of Amla, involving activation of mitochondrial function, which potentially explain its various effects on age-related disorders.

  12. Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants.

    Science.gov (United States)

    Verma, Manish; Callio, Jason; Otero, P Anthony; Sekler, Israel; Wills, Zachary P; Chu, Charleen T

    2017-11-15

    Mutations in leucine-rich repeat kinase 2 (LRRK2) contribute to development of late-onset familial Parkinson's disease (PD), with clinical features of motor and cognitive dysfunction indistinguishable from sporadic PD. Calcium dysregulation plays an important role in PD pathogenesis, but the mechanisms of neurodegeneration remain unclear. Recent reports indicate enhanced excitatory neurotransmission in cortical neurons expressing mutant LRRK2, which occurs before the well-characterized phenotype of dendritic shortening. As mitochondria play a major role in the rapid buffering of cytosolic calcium, we hypothesized that altered mitochondrial calcium handling contributes to dendritic retraction elicited by the LRRK2-G2019S and -R1441C mutations. In primary mouse cortical neurons, we observed increased depolarization-induced mitochondrial calcium uptake. We found that expression of mutant LRRK2 elicited transcriptional upregulation of the mitochondrial calcium uniporter (MCU) and the mitochondrial calcium uptake 1 protein (MICU1) with no change in levels of the mitochondrial calcium antiporter NCLX. Elevated MCU and MICU1 were also observed in LRRK2-mutated patient fibroblasts, along with increased mitochondrial calcium uptake, and in postmortem brains of sporadic PD/PDD patients of both sexes. Transcriptional upregulation of MCU and MICU1 was caused by activation of the ERK1/2 (MAPK3/1) pathway. Inhibiting ERK1/2 conferred protection against mutant LRRK2-induced neurite shortening. Pharmacological inhibitors or RNAi knockdown of MCU attenuated mitochondrial calcium uptake and dendritic/neuritic shortening elicited by mutant LRRK2, whereas expression of a constitutively active mutant of NCLX that enhances calcium export from mitochondria was neuroprotective. These data suggest that an increased susceptibility to mitochondrial calcium dysregulation contributes to dendritic injury in mutant LRRK2 pathogenesis. SIGNIFICANCE STATEMENT Cognitive dysfunction and dementia are

  13. Prospects for therapeutic mitochondrial transplantation.

    Science.gov (United States)

    Gollihue, Jenna L; Rabchevsky, Alexander G

    2017-07-01

    Mitochondrial dysfunction has been implicated in a multitude of diseases and pathological conditions- the organelles that are essential for life can also be major players in contributing to cell death and disease. Because mitochondria are so well established in our existence, being present in all cell types except for red blood cells and having the responsibility of providing most of our energy needs for survival, then dysfunctional mitochondria can elicit devastating cellular pathologies that can be widespread across the entire organism. As such, the field of "mitochondrial medicine" is emerging in which disease states are being targeted therapeutically at the level of the mitochondrion, including specific antioxidants, bioenergetic substrate additions, and membrane uncoupling agents. New and compelling research investigating novel techniques for mitochondrial transplantation to replace damaged or dysfunctional mitochondria with exogenous healthy mitochondria has shown promising results, including tissue sparing accompanied by increased energy production and decreased oxidative damage. Various experimental techniques have been attempted and each has been challenged to accomplish successful transplantation. The purpose of this review is to present the history of mitochondrial transplantation, the different techniques used for both in vitro and in vivo delivery, along with caveats and pitfalls that have been discovered along the way. Results from such pioneering studies are promising and could be the next big wave of "mitochondrial medicine" once technical hurdles are overcome. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  14. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo

    International Nuclear Information System (INIS)

    Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T.

    1988-01-01

    DNA repair is essential for maintaining the integrity of the genetic material, and a number of DNA repair mechanisms have been fairly well characterized for the nuclear DNA of eukaryotic cells as well as prokaryotes. However, little is know about DNA repair in mitochondria. Using highly sensitive immunoanalytical methods to detect specific DNA alkylation products, the authors found active removal of O 6 -ethyl-2'-deoxyguanosine (O 6 -EtdGuo) from rat liver mitochondrial DNA after pulse-exposure to N-ethyl-N-nitrosourea in vivo. In the kidney, O 6 -EtdGuo was removed from mitochondrial DNA with moderate efficiency, but nearly no removal was observed from the DNA of brain mitochondria. Among the rat tissues examined, the kinetics of O 6 -EtdGuo elimination from mitochondrial DNA was very similar to the kinetics of removal from nuclear DNA. O 4 -Ethyl-2'-deoxythymidine, another premutagenic DNA ethylation product, was stable in both mitochondrial and nuclear DNA of rat liver

  15. mCSF1, a nucleus-encoded CRM protein required for the processing of many mitochondrial introns, is involved in the biogenesis of respiratory complexes I and IV in Arabidopsis.

    Science.gov (United States)

    Zmudjak, Michal; Colas des Francs-Small, Catherine; Keren, Ido; Shaya, Felix; Belausov, Eduard; Small, Ian; Ostersetzer-Biran, Oren

    2013-07-01

    The coding regions of many mitochondrial genes in plants are interrupted by intervening sequences that are classified as group II introns. Their splicing is essential for the expression of the genes they interrupt and hence for respiratory function, and is facilitated by various protein cofactors. Despite the importance of these cofactors, only a few of them have been characterized. CRS1-YhbY domain (CRM) is a recently recognized RNA-binding domain that is present in several characterized splicing factors in plant chloroplasts. The Arabidopsis genome encodes 16 CRM proteins, but these are largely uncharacterized. Here, we analyzed the intracellular location of one of these hypothetical proteins in Arabidopsis, mitochondrial CAF-like splicing factor 1 (mCSF1; At4 g31010), and analyzed the growth phenotypes and organellar activities associated with mcsf1 mutants in plants. Our data indicated that mCSF1 resides within mitochondria and its functions are essential during embryogenesis. Mutant plants with reduced mCSF1 displayed inhibited germination and retarded growth phenotypes that were tightly associated with reduced complex I and IV activities. Analogously to the functions of plastid-localized CRM proteins, analysis of the RNA profiles in wildtype and mcsf1 plants showed that mCSF1 acts in the splicing of many of the group II intron RNAs in Arabidopsis mitochondria. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease.

    Science.gov (United States)

    Sverdlov, Aaron L; Elezaby, Aly; Qin, Fuzhong; Behring, Jessica B; Luptak, Ivan; Calamaras, Timothy D; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Bachschmid, Markus M; Colucci, Wilson S

    2016-01-11

    Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. Mitochondrial ADP/ATP exchange inhibition: a novel off-target mechanism underlying ibipinabant-induced myotoxicity.

    Science.gov (United States)

    Schirris, Tom J J; Ritschel, Tina; Herma Renkema, G; Willems, Peter H G M; Smeitink, Jan A M; Russel, Frans G M

    2015-09-29

    Cannabinoid receptor 1 (CB1R) antagonists appear to be promising drugs for the treatment of obesity, however, serious side effects have hampered their clinical application. Rimonabant, the first in class CB1R antagonist, was withdrawn from the market because of psychiatric side effects. This has led to the search for more peripherally restricted CB1R antagonists, one of which is ibipinabant. However, this 3,4-diarylpyrazoline derivative showed muscle toxicity in a pre-clinical dog study with mitochondrial dysfunction. Here, we studied the molecular mechanism by which ibipinabant induces mitochondrial toxicity. We observed a strong cytotoxic potency of ibipinabant in C2C12 myoblasts. Functional characterization of mitochondria revealed increased cellular reactive oxygen species generation and a decreased ATP production capacity, without effects on the catalytic activities of mitochondrial enzyme complexes I-V or the complex specific-driven oxygen consumption. Using in silico off-target prediction modelling, combined with in vitro validation in isolated mitochondria and mitoplasts, we identified adenine nucleotide translocase (ANT)-dependent mitochondrial ADP/ATP exchange as a novel molecular mechanism underlying ibipinabant-induced toxicity. Minor structural modification of ibipinabant could abolish ANT inhibition leading to a decreased cytotoxic potency, as observed with the ibipinabant derivative CB23. Our results will be instrumental in the development of new types of safer CB1R antagonists.

  18. Identification of two products of mitochondrial protein synthesis associated with mitochondrial adenosine triphosphatase from Neurospora crassa

    International Nuclear Information System (INIS)

    Jackl, G.; Sebald, W.

    1975-01-01

    Soluble mitochondrial ATPase (F 1 ) isolated from Neurospora crassa is resolved by dodecyl-sulfate-gel electrophoresis into five polypeptide bands with apparent molecular weights of 59,000, 55,000, 36,000, 15,000 and 12,000. At least nine further polypeptides remain associated with ATPase after disintegration of mitochondria with Triton X-100 as shown by the analysis of an immunoprecipitate obtained with antiserum to F 1 ATPase. Two of the associated polypeptides with apparent molecular weights of 19,000 and 11,000 are translated on mitochondrial ribosomes, as demonstrated by incorporation in vivo of radioactive leucine in the presence of specific inhibitors of mitochondrial (chloramphenicol) and extramitochondrial (cycloheximide) protein synthesis. The appearance of mitochondrial translation products in the immunoprecipitated ATPase complex is inhibited by cycloheximide. The same applies for some of the extramitochondrial translation products in the presence of chloramphenicol. This suggests that both types of polypeptides are necessary for the assembly of the ATPase complex. (orig.) [de

  19. Mitochondrial Dysfunction: Different Routes to Alzheimer’s Disease Therapy

    Directory of Open Access Journals (Sweden)

    Pasquale Picone

    2014-01-01

    Full Text Available Mitochondria are dynamic ATP-generating organelle which contribute to many cellular functions including bioenergetics processes, intracellular calcium regulation, alteration of reduction-oxidation potential of cells, free radical scavenging, and activation of caspase mediated cell death. Mitochondrial functions can be negatively affected by amyloid β peptide (Aβ, an important component in Alzheimer’s disease (AD pathogenesis, and Aβ can interact with mitochondria and cause mitochondrial dysfunction. One of the most accepted hypotheses for AD onset implicates that mitochondrial dysfunction and oxidative stress are one of the primary events in the insurgence of the pathology. Here, we examine structural and functional mitochondrial changes in presence of Aβ. In particular we review data concerning Aβ import into mitochondrion and its involvement in mitochondrial oxidative stress, bioenergetics, biogenesis, trafficking, mitochondrial permeability transition pore (mPTP formation, and mitochondrial protein interaction. Moreover, the development of AD therapy targeting mitochondria is also discussed.

  20. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats.

    Directory of Open Access Journals (Sweden)

    Andrew J Alverson

    2011-01-01

    Full Text Available The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean, and show that despite its unexceptional size (401,262 nt, the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.