WorldWideScience

Sample records for characteristic raman spectra

  1. Insight into boron-doped diamond Raman spectra characteristic features

    Czech Academy of Sciences Publication Activity Database

    Mortet, Vincent; Vlčková Živcová, Zuzana; Taylor, Andrew; Frank, Otakar; Hubík, Pavel; Trémouilles, D.; Jomard, F.; Barjon, J.; Kavan, Ladislav

    2017-01-01

    Roč. 115, May (2017), s. 279-284 ISSN 0008-6223 R&D Projects: GA ČR GA13-31783S; GA MŠk 7AMB16FR004 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 ; RVO:61388955 Keywords : diamond * boron doping * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism; CG - Electrochemistry (UFCH-W) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) (UFCH-W) Impact factor: 6.337, year: 2016

  2. Raman spectra of graphene ribbons

    International Nuclear Information System (INIS)

    Saito, R; Furukawa, M; Dresselhaus, G; Dresselhaus, M S

    2010-01-01

    Raman spectra of graphene nanoribbons with zigzag and armchair edges are calculated within non-resonant Raman theory. Depending on the edge structure and polarization direction of the incident and scattered photon beam relative to the edge direction, a symmetry selection rule for the phonon type appears. These Raman selection rules will be useful for the identification of the edge structure of graphene nanoribbons.

  3. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  4. Raman Spectra from Pesticides on the Surface of Fruits

    International Nuclear Information System (INIS)

    Zhang, P X; Zhou Xiaofang; Cheng, Andrew Y S; Fang Yan

    2006-01-01

    Raman spectra of several vegetables and fruits were studied by micro-Raman spectrometer (514.5 nm) and Near-infrared Fourier Transform Raman spectrometer (FTRaman). It is shown that at 514.5 nm excitation, most of the spectra are from that of carotene with some very strong fluorescence in some cases. While at 1064 nm wavelength excitation, the spectra from the different samples demonstrate different characteristic Raman spectra without fluorescence. We discuss the spectroscopic difference by the two excitation wavelengths, and the application of Raman spectra for detection of pesticides left on the surface of vegetables and fruits. Raman spectra of fruits and pesticides were successfully recorded, and using the FT-Raman spectra the pesticides left on the surface of the fruits can be detected conveniently

  5. [Characteristics of Raman spectra of minerals in the veins of Wenchuan earthquake fault zone].

    Science.gov (United States)

    Xie, Chao; Zhou, Ben-gang; Liu, Lei; Zhou, Xiao-cheng; Yi, Li; Chen, Zhi; Cui, Yue-ju; Li, Jing; Chen, Zheng-wei; Du, Jian-guo

    2015-01-01

    Quartz in the veins at the Shenxigou section of Wenchuan earthquake fault zone was investigated by micro-Raman spectroscopic measurement, and the distribution of compressive stress in the fault zone was estimated by the frequency shifts of the 464 cm-1 vibrational mode of quartz grains in the veins. It was showed that the 464 cm-1 peak arising from the quartz grains in the veins near the fault plane shifts by 3. 29 cm-1 , and the corresponding compressive stress is 368. 63 MPa, which is significantly lower than the stress accumulation on both sides due to multi-stage events. Stress accumulation increased with moving away from the fault plane in the footwall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins increasing, which can reach 494. 77 MPa at a distance of 21 m with a high offset of 4. 40 cm-1 of the 464 cm-1 peak. The compressive stress gets the maximum value of 519.87 MPa at a distance of 10 m from the fault plane in the hanging wall with the offset of the 464 cm-1 peak arising from the quartz grains in the veins being 4. 62 cm-1, followed by a sudden drop in stress accumulation, and it drops to 359. 59 MPa at a distance of 17 m. Because of moving away from the foult plane at the edge of the foult zone, the stress drops to 359. 59 MPa with a small value of 464 cm-1 peak offset 3. 21 cm-1 at a distance of 27 m from the fault plane in the hanging wall due to the little effect by the fault activity. Therefore, the stress of Wenchuan earthquake fault zone is partially released, but the rest of the stress distribution is uneven, and there is also a high stress accumulation in somewhere in the fault zone, which reflects that the mechanical properties of the rocks in the fault zone have a characteristic of unevenness in space.

  6. Raman spectra studies of dipeptides

    International Nuclear Information System (INIS)

    Blanchard, Simone.

    1977-10-01

    This work deals with the homogenous and heterogeneous dipeptides derived from alanine and glycine, in the solid state or in aqueous solutions, in the zwitterions or chlorhydrates form. The Raman spectra comparative study of these various forms of hydrogenated or deuterated compounds allows to specify some of the attributions which are necessary in the conformational study of the like tripeptides. These compounds contain only one peptidic group; therefore there is no possibility of intramolecular hydrogen bond which caracterise vibrations of non bonded peptidic groups and end groups. Infrared spectra of solid dipeptides will be presented and discussed in the near future [fr

  7. Raman spectra of SDW superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C. [Condensed Matter Physics Group, Department of Physics, Government Science College, Chatrapur, Orissa 761 020 (India)]. E-mail: gcr@iopb.res.in; Bishoyi, K.C. [P.G. Department of Physics, F.M. College (Autonomous), Balasore, Orissa 756 001 (India); Behera, S.N. [Institute of Physics, Bhubaneswar 751 005 (India)

    2005-03-15

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations.

  8. Raman spectra of SDW superconductors

    International Nuclear Information System (INIS)

    Rout, G.C.; Bishoyi, K.C.; Behera, S.N.

    2005-01-01

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations

  9. Raman spectra of lignin model compounds

    Science.gov (United States)

    Umesh P. Agarwal; Richard S. Reiner; Ashok K. Pandey; Sally A. Ralph; Kolby C. Hirth; Rajai H. Atalla

    2005-01-01

    To fully exploit the value of Raman spectroscopy for analyzing lignins and lignin containing materials, a detailed understanding of lignins’ Raman spectra needs to be achieved. Although advances made thus far have led to significant growth in application of Raman techniques, further developments are needed to improve upon the existing knowledge. Considering that lignin...

  10. RAMAN-SPECTRA OF HUMAN DENTAL CALCULUS

    NARCIS (Netherlands)

    TSUDA, H; ARENDS, J

    1993-01-01

    Raman spectra of human dental calculus have been observed for the first time by use of micro-Raman spectroscopy. The spectral features of calculus were influenced easily by heating caused by laser irradiation. Therefore, the measurements were carried out at relatively low power (5 mW, 1-mu m spot

  11. Raman spectra of filled carbon nanotubes

    International Nuclear Information System (INIS)

    Bose, S.M.; Behera, S.N.; Sarangi, S.N.; Entel, P.

    2004-01-01

    The Raman spectra of a metallic carbon nanotube filled with atoms or molecules have been investigated theoretically. It is found that there will be a three way splitting of the main Raman lines due to the interaction of the nanotube phonon with the collective excitations (plasmons) of the conduction electrons of the nanotube as well as its coupling with the phonon of the filling material. The positions and relative strengths of these Raman peaks depend on the strength of the electron-phonon interaction, phonon frequency of the filling atom and the strength of interaction of the nanotube phonon and the phonon of the filling atoms. Careful experimental studies of the Raman spectra of filled nanotubes should show these three peaks. It is also shown that in a semiconducting nanotube the Raman line will split into two and should be observed experimentally

  12. [Micro-Raman and fluorescence spectra of several agrochemicals].

    Science.gov (United States)

    Xiao, Yi-lin; Zhang, Peng-xiang; Qian, Xiao-fan

    2004-05-01

    Raman and fluorescence spectra from several agrochemicals were measured, which are sold for the use in vegetables, fruits and grains. Characteristic vibration Raman peaks from some of the agrochemicals were recorded, hence the spectra can be used for their identification. Other marketed agrochemicals demonstrated strong fluorescence under 514.5 nm excitation. It was found that the fluorescence spectra of the agrochemicals are very different. According to these results one can detect the trace amount of agrochemicals left on the surface of fruits, vegetables and grains in situ and conveniently.

  13. Raman Optical Activity and Raman Spectra of Amphetamine Species

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Shim, Irene; White, Peter Cyril

    2012-01-01

    Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT-molecular orbi......Theoretical calculations and preliminary measurements of vibrational Raman optical activity (ROA) spectra of different species of amphetamine (amphetamine and amphetamine-H+) are reported for the first time. The quantum chemical calculations were carried out as hybrid ab initio DFT...... are employed for identification purposes. The DFT calculations show that the most stable conformations are those allowing for close contact between the aromatic ring and the amine hydrogen atoms. The internal rotational barrier within the same amphetamine enanti- omer has a considerable influence on the Raman...

  14. [Raman spectra of monkey cerebral cortex tissue].

    Science.gov (United States)

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  15. RAMPAC: a Program for Analysis of Complicated Raman Spectra

    NARCIS (Netherlands)

    de Mul, F.F.M.; Greve, Jan

    1993-01-01

    A computer program for the analysis of complicated (e.g. multi-line) Raman spectra is described. The program includes automatic peak search, various procedures for background determination, peak fit and spectrum deconvolution and extensive spectrum handling procedures.

  16. Raman spectra of human dentin mineral

    NARCIS (Netherlands)

    Tsuda, H; Ruben, J; Arends, J

    Human dentin mineral has been investigated by using micro-Raman spectroscopy. Fluorescence and thermal problems were largely avoided by preparing dentin samples by grinding and ultrasonic agitation in acetone. The Raman spectral features were consistent with those of impure hydroxyapatite containing

  17. Analytic calculations of hyper-Raman spectra from density functional theory hyperpolarizability gradients

    Energy Technology Data Exchange (ETDEWEB)

    Ringholm, Magnus; Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Bast, Radovan [Theoretical Chemistry and Biology, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, S-10691 Stockholm (Sweden); PDC Center for High Performance Computing, Royal Institute of Technology, S-10044 Stockholm (Sweden); Oggioni, Luca [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø – The Arctic University of Norway, 9037 Tromsø (Norway); Department of Physics G. Occhialini, University of Milano Bicocca, Piazza della scienza 3, 20126 Milan (Italy); Ekström, Ulf [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, 0315 Oslo (Norway)

    2014-10-07

    We present the first analytic calculations of the geometrical gradients of the first hyperpolarizability tensors at the density-functional theory (DFT) level. We use the analytically calculated hyperpolarizability gradients to explore the importance of electron correlation effects, as described by DFT, on hyper-Raman spectra. In particular, we calculate the hyper-Raman spectra of the all-trans and 11-cis isomers of retinal at the Hartree-Fock (HF) and density-functional levels of theory, also allowing us to explore the sensitivity of the hyper-Raman spectra on the geometrical characteristics of these structurally related molecules. We show that the HF results, using B3LYP-calculated vibrational frequencies and force fields, reproduce the experimental data for all-trans-retinal well, and that electron correlation effects are of minor importance for the hyper-Raman intensities.

  18. Raman spectra of thiolated arsenicals with biological importance.

    Science.gov (United States)

    Yang, Mingwei; Sun, Yuzhen; Zhang, Xiaobin; McCord, Bruce; McGoron, Anthony J; Mebel, Alexander; Cai, Yong

    2018-03-01

    Surface enhanced Raman scattering (SERS) has great potential as an alternative tool for arsenic speciation in biological matrices. SERS measurements have advantages over other techniques due to its ability to maintain the integrity of arsenic species and its minimal requirements for sample preparation. Up to now, very few Raman spectra of arsenic compounds have been reported. This is particularly true for thiolated arsenicals, which have recently been found to be widely present in humans. The lack of data for Raman spectra in arsenic speciation hampers the development of new tools using SERS. Herein, we report the results of a study combining the analysis of experimental Raman spectra with that obtained from density functional calculations for some important arsenic metabolites. The results were obtained with a hybrid functional B3LYP approach using different basis sets to calculate Raman spectra of the selected arsenicals. By comparing experimental and calculated spectra of dimethylarsinic acid (DMA V ), the basis set 6-311++G** was found to provide computational efficiency and precision in vibrational frequency prediction. The Raman frequencies for the rest of organoarsenicals were studied using this basis set, including monomethylarsonous acid (MMA III ), dimethylarsinous acid (DMA III ), dimethylmonothioarinic acid (DMMTA V ), dimethyldithioarsinic acid (DMDTA V ), S-(Dimethylarsenic) cysteine (DMA III (Cys)) and dimethylarsinous glutathione (DMA III GS). The results were compared with fingerprint Raman frequencies from As─O, As─C, and As─S obtained under different chemical environments. These fingerprint vibrational frequencies should prove useful in future measurements of different species of arsenic using SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Raman spectra of zirconium tetrachloride in molten and evaporational states

    International Nuclear Information System (INIS)

    Salyuev, A.B.; Kornyakova, I.D.

    1994-01-01

    For the first time raman spectra of ZrCl 4 are obtained in the temperature range of its existence in molten state as well as in vapors near the critical point. It is shown, that rupture of zigzag chains is taking place when ZrCl 4 is melting

  20. [A new peak detection algorithm of Raman spectra].

    Science.gov (United States)

    Jiang, Cheng-Zhi; Sun, Qiang; Liu, Ying; Liang, Jing-Qiu; An, Yan; Liu, Bing

    2014-01-01

    The authors proposed a new Raman peak recognition method named bi-scale correlation algorithm. The algorithm uses the combination of the correlation coefficient and the local signal-to-noise ratio under two scales to achieve Raman peak identification. We compared the performance of the proposed algorithm with that of the traditional continuous wavelet transform method through MATLAB, and then tested the algorithm with real Raman spectra. The results show that the average time for identifying a Raman spectrum is 0.51 s with the algorithm, while it is 0.71 s with the continuous wavelet transform. When the signal-to-noise ratio of Raman peak is greater than or equal to 6 (modern Raman spectrometers feature an excellent signal-to-noise ratio), the recognition accuracy with the algorithm is higher than 99%, while it is less than 84% with the continuous wavelet transform method. The mean and the standard deviations of the peak position identification error of the algorithm are both less than that of the continuous wavelet transform method. Simulation analysis and experimental verification prove that the new algorithm possesses the following advantages: no needs of human intervention, no needs of de-noising and background removal operation, higher recognition speed and higher recognition accuracy. The proposed algorithm is operable in Raman peak identification.

  1. Vibronic spectra of Gd3+ in metaphosphate glasses: Comparison with Raman and infrared spectra

    International Nuclear Information System (INIS)

    Hall, D.W.; Brawer, S.A.; Weber, M.J.

    1982-01-01

    Vibronic sidebands associated with the 6 P/sub 7/2/→ 8 S/sub 7/2/ transition of Gd 3+ -doped metaphosphate glasses are observed using line-narrowed fluorescence techniques. Glasses having metal cations of different mass and charge (La,Al,Mg,Ba) are examined. Vibronic spectra, which probe vibrations about the rare-earth element site, are compared with polarized Raman scattering data and the infrared dielectric constant obtained from near-normal reflectance measurements. Results indicate that in metaphosphate glasses vibronic selection rules are similar to HV (vertical height) Raman selection rules. The wavelengths and relative intensities of peaks in the high-frequency portion of the vibronic spectra change with respect to corresponding peaks in the Raman spectra when the mass and/or charge of Gd 3+ differs significantly from that of the metal cation

  2. Raman spectra of ruthenium and tantalum trimers in argon matrices

    Science.gov (United States)

    Fang, Li; Shen, Xiaole; Chen, Xiaoyu; Lombardi, John R.

    2000-12-01

    The resonance Raman spectra of ruthenium trimers (Ru 3) in argon matrices have been obtained. Three resonance Raman transitions were observed between 570 and 590 nm. Two of them (303.4 and 603.7 cm -1) are assigned to the totally symmetric vibrational progression, giving k e=1.86 mdyne/ Å. The line at 581.5 cm-1 is assigned as the origin of a low-lying electronic state. We also report on the observation of a resonance Raman spectrum of tantalum trimers (Ta 3). Observed lines include 251.2 and 501.9 cm-1 which we assign to the fundamental and the first overtone of the symmetric stretch in Ta 3. This gives k e=2.25 mdyne/ Å.

  3. Thermal characteristics, Raman spectra, optical and structural properties of TiO2-Bi2O3-B2O3-TeO2 glasses

    Science.gov (United States)

    Gupta, Nupur; Khanna, Atul; Gonzàlez, Fernando; Iordanova, Reni

    2017-05-01

    Tellurite and borotellurite glasses containing Bi2O3 and TiO2 were prepared and structure-property correlations were carried out by density measurements, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC), Raman and UV-visible spectroscopy. Titanium tellurite glasses require high melt-cooling rates and were fabricated by splat quenching. On adding B2O3, the glass forming ability (GFA) enhances, and glasses could be synthesized at lower quenching rates. The density of glasses shows a direct correlation with molecular mass of the constituents. UV-visible studies were used to determine the optical band gap and refractive index. Raman studies found that the co-ordination number of tellurium ions with oxygen (NTe-O) decreases with the increase in B2O3 as well as Bi2O3 content while, TiO2 produce only a small decrease in NTe-O, which explains the lower GFA of titanium tellurite glasses that do not contain Bi2O3 and B2O3. DSC studies show that the glass transition temperature (Tg) increases with B2O3 and TiO2 concentrations and that Tg correlates well with bond enthalpy of the metal oxides.

  4. Electronic Raman spectra in iron-based superconductors with two-orbital model

    International Nuclear Information System (INIS)

    Lu Hongyan; Wang Da; Chen San; Wang Wei; Gong Pifeng

    2011-01-01

    Electronic Raman spectra were calculated in orbital space in a microscopic theory. Both Raman spectra and spectra weight were presented. Raman spectra for the gap symmetries are different from each other. The results can help decide the gap symmetry by comparing with experiments. Electronic Raman spectra in iron-based superconductors with two-orbital model is discussed. In the orbital space, some possible pairing symmetries of the gap are selected. To further discriminate them, electronic Raman spectra and spectra weight at Fermi surface (FS) which helps understand the Raman spectra are calculated in each case. From the low energy threshold, the number of Raman peaks, and the low frequency power law behavior, we can judge whether it is full gap or nodal gap, and even one gap or multi-gaps. The results provide useful predictions for comparison with experiments.

  5. Raman spectra of Pm2O3, PmF3, PmCl3, PmBr3 and PmI3

    International Nuclear Information System (INIS)

    Wilmarth, W.R.; Peterson, J.R.

    1988-01-01

    Raman spectral data are presented for the sesquioxide and the trihalides (F, Cl, Br and I) of promethium. The Raman spectra of these lanthanide compounds are reported for the first time and are compared with those of the homologous lanthanide compounds. Tentative symmetry assignments have been made for the observed Raman-active bands based on factor group analysis of their respective crystal structures and comparisons with the assigned Raman spectra of other lanthanide compounds. The characteristic band patterns of the Raman phonon spectra have been found to be very useful in determining the crystal structure of the respective promethium compounds. (author)

  6. Boron-purity-dependent Raman spectra of CaB6

    International Nuclear Information System (INIS)

    Song, M.; Yang, I. S.; Kim, J. Y.; Cho, B. K.

    2006-01-01

    We report significant differences in the Raman spectra of two different kinds of CaB 6 single crystals grown from boron with a purity of 99.9 % (3N) or 99.9999 % (6N). Our Raman spectra of CaB 6 (3N) show peaks around 781 (T 2g ), 1141 (E g ), and 1283 cm -1 (A 1g ), and they are very similar to previous Raman spectra of CaB 6 . The E g mode shows a characteristic double-peak feature due to an additional weak broad peak centered around 1158 cm -1 . However, the Raman spectra of CaB 6 (6N) show sharp peaks around 771 (T 2g ), 1137 (E g ), and 1266 cm -1 (A 1g ). The peak frequencies are down shifted as much as ∼17 cm -1 . In addition, no additional peak feature is observed for the E g mode so that the mode is symmetric in the case of CaB 6 (6N). The X-ray powder diffraction patterns for both CaB 6 (3N) and CaB 6 (6N) show that the lattice parameters are essentially the same. The majority of the impurity in the 99.9 %-pure (3N) boron is C. Thus, we doped CaB 6 (6N) with C, making Ca(B 0.995 C 0.005 ) 6 , and looked for differences in the Raman spectra. The Raman spectra of Ca(B 0.995 C 0.005 ) 6 are nearly identical to those of CaB 6 (6N), indicating that the differences between the Raman spectra of CaB 6 (3N) and CaB 6 (6N) are not due to a C impurity. The Raman results show that the presence of impurities, not the amount of them, is enough to trigger local symmetry breaking in CaB 6 . The broadening of T 2g , the additional E g2 mode and the asymmetry of A 1g in CaB 6 (3N) can be understood in terms of the symmetry of the arrangements of the boron octahedra lowered by local symmetry breaking.

  7. Raman spectra of ordinary and deuterated liquid ammonias; Spectres Raman des ammoniacs ordinaire et deuteries liquides

    Energy Technology Data Exchange (ETDEWEB)

    Ceccaldi, M; Leicknam, J P [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, direction des materiaux et des combustibles nucleaires, departement de physico-chimie, service des isotopes stables, service de spectrometrie de masse

    1968-12-01

    The three deuterated ammonia molecules, as well as ordinary ammonia, have been examined in the liquid state by Raman spectroscopy using a high-pressure cell described elsewhere. This work thus completes the infrared spectrometry studies. We have examined the NH and ND valency absorption regions. The polarization measurements and isotope effect considerations make it possible to confirm most of the attributions recently proposed for interpreting the infrared spectra of the four isotopic molecules: the apparent disagreement between the NH{sub 3} and ND{sub 3} spectra obtained in this region by infrared and Raman spectroscopy is discussed: by the first technique the number of bands in the spectra corresponds well to the theoretically expected number, and the relative intensities conform more or less to expectations; the Raman spectra however have a strong supplementary band in the same region, produced by a Fermi resonance; it is possible to explain, from theoretical considerations, why this resonance appears so easily in the Raman spectrum, whereas it is detected in the infrared only by a very detailed analysis of the effects of solvents on the ammonia. (authors) [French] Les trois ammoniacs deuteries, ainsi que l'ammoniac ordinaire, sont examines a l'etat liquide par spectrometrie Raman, a l'aide d'une cuve haute pression decrite par ailleurs. Ce travail complete donc les etudes effectuees par spectrometrie infra-rouge. Nous avons examine les regions d'absorption de valence NH et ND. Les mesures de polarisation et des considerations sur les effets isotopiques permettent de confirmer la plupart des attributions proposees recemment pour interpreter les spectres infra-rouges des quatre molecules isotopiques: on discute egalement l'apparent desaccord entre les spectres de NH{sub 3} et de ND{sub 3} obtenus dans cette region par infra-rouge et Raman: par la premiere technique le nombre de bandes relevees sur les spectres correspond bien au nombre theoriquement attendu et

  8. Raman spectra of zinc phthalocyanine monolayers absorbed on glassy carbon and gold electrodes by application of a confocal Raman microspectrometer

    NARCIS (Netherlands)

    Palys-Staron, B.J.; Palys, B.J.; Puppels, G.J.; Puppels, G.J.; van den Ham, D.M.W.; van den Ham, D.M.W.; Feil, D.; Feil, D.

    1992-01-01

    Raman spectra of zinc phthalocyanine monolayers, adsorbed on gold and on glassy carbon surfaces (electrodes), are presented. These spectra have been recorded with the electrodes inside and outside an electrochemical cell filled with an aqueous electrolyte. A confocal Raman microspectrometer was

  9. [Ultrastructure and Raman Spectral Characteristics of Two Kinds of Acute Myeloid Leukemia Cells].

    Science.gov (United States)

    Liang, Hao-Yue; Cheng, Xue-Lian; Dong, Shu-Xu; Zhao, Shi-Xuan; Wang, Ying; Ru, Yong-Xin

    2018-02-01

    To investigate the Raman spectral characteristics of leukemia cells from 4 patients with acute promyelocytic leukemia (M 3 ) and 3 patients with acute monoblastic leukemia (M 5 ), establish a novel Raman label-free method to distinguish 2 kinds of acute myeloid leukemia cells so as to provide basis for clinical research. Leukemia cells were collected from bone marrow of above-mentioned patients. Raman spectra were acquired by Horiba Xplora Raman spectrometer and Raman spectra of 30-50 cells from each patient were recorded. The diagnostic model was established according to principle component analysis (PCA), discriminant function analysis (DFA) and cluster analysis, and the spectra of leukemia cells from 7 patients were analyzed and classified. Characteristics of Raman spectra were analyzed combining with ultrastructure of leukemia cells. There were significant differences between Raman spectra of 2 kinds of leukemia cells. Compared with acute monoblastic leukemia cells, the spectra of acute promyelocytic leukemia cells showed stronger peaks in 622, 643, 757, 852, 1003, 1033, 1117, 1157, 1173, 1208, 1340, 1551, 1581 cm -1 . The diagnostic models established by PCA-DFA and cluster analysis could successfully classify these Raman spectra of different samples with a high accuracy of 100% (233/233). The model was evaluated by "Leave-one-out" cross-validation and reached a high accuracy of 97% (226/233). The level of macromolecules of M 3 cells is higher than that of M 5 . The diagnostic models established by PCA-DFA can classify these Raman spectra of different cells with a high accuracy. Raman spectra shows consistent result with ultrastructure by TEM.

  10. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions

    Czech Academy of Sciences Publication Activity Database

    Daněček, Petr; Kapitán, Josef; Baumruk, V.; Bednárová, Lucie; Kopecký, V.; Bouř, Petr

    2007-01-01

    Roč. 126, č. 22 (2007), s. 224513-1 ISSN 0021-9606 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : IR * Raman * ROA spectra * Anharmonic effects Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.044, year: 2007

  11. Raman Spectra of Nanodiamonds: New Treatment Procedure Directed for Improved Raman Signal Marker Detection

    Directory of Open Access Journals (Sweden)

    Raoul R. Nigmatullin

    2013-01-01

    Full Text Available Detonation nanodiamonds (NDs have shown to be promising agents in several industries, ranging from electronic to biomedical applications. These NDs are characterized by small particle size ranging from 3 to 6 nm, while having a reactive surface and a stable inert core. Nanodiamonds can exhibit novel intrinsic properties such as fluorescence, high refractive index, and unique Raman signal making them very attractive imaging agents. In this work, we used several nanodiamond preparations for Raman spectroscopic studies. We exposed these nanodiamonds to increasing temperature treatments at constant heating rates (425–575°C aiding graphite release. We wanted to correlate changes in the nanodiamond surface and properties with Raman signal which could be used as a detection marker. These observations would hold potential utility in biomedical imaging applications. First, the procedure of optimal linear smoothing was applied successfully to eliminate the high-frequency fluctuations and to extract the smoothed Raman spectra. After that we applied the secondary Fourier transform as the fitting function based on some significant set of frequencies. The remnant noise was described in terms of the beta-distribution function. We expect this data treatment to provide better results in biomolecule tracking using nanodiamond base Raman labeling.

  12. Excited-state Raman spectroscopy with and without actinic excitation: S1 Raman spectra of trans-azobenzene

    International Nuclear Information System (INIS)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A.

    2014-01-01

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S 1 and S 0 spectra of trans-azobenzene in n-hexane. The S 1 spectra were also measured conventionally, upon nπ* (S 0 → S 1 ) actinic excitation. The results are discussed and compared to earlier reports

  13. Normal state Raman spectra of high-Tc cuprates

    International Nuclear Information System (INIS)

    Bishoyi, K.C.; Rout, G.C.; Behera, S.N.

    2003-01-01

    We present a microscopic theory to explain Raman spectra of high-T c cuprates R 2-x M x CuO 4 in the normal state. We used electronic Hamiltonian prescribed by Fulde in presence of anti-ferromagnetism. Phonon interaction to the hybridization between the conduction electrons of the system and the f-electrons has been incorporated in the calculation. The phonon spectral density is calculated by the Green function technique of Zubarev at zero wave vector and finite (room) temperature limit. Parameter dependence of Raman active phonon frequencies are studied by varying model parameters of the system i.e. the position of f-level (ε f ), the effective electron-phonon coupling strength (g), the staggered magnetic field (h 1 ), and the hybridization parameter (v). The four Raman active peaks (P 1 to P 4 ) represent the electronic states of the atomic sub-systems of the cuprate systems. They show up as phonon excitations due to the coupling of the phonon to the electrons and the anti-ferromagnetic gap. (author)

  14. [Raman, FTIR spectra and normal mode analysis of acetanilide].

    Science.gov (United States)

    Liang, Hui-Qin; Tao, Ya-Ping; Han, Li-Gang; Han, Yun-Xia; Mo, Yu-Jun

    2012-10-01

    The Raman and FTIR spectra of acetanilide (ACN) were measured experimentally in the regions of 3 500-50 and 3 500-600 cm(-1) respectively. The equilibrium geometry and vibration frequencies of ACN were calculated based on density functional theory (DFT) method (B3LYP/6-311G(d, p)). The results showed that the theoretical calculation of molecular structure parameters are in good agreement with previous report and better than the ones calculated based on 6-31G(d), and the calculated frequencies agree well with the experimental ones. Potential energy distribution of each frequency was worked out by normal mode analysis, and based on this, a detailed and accurate vibration frequency assignment of ACN was obtained.

  15. Laser Raman spectra of mono-, oligo- and polysaccharides in solution

    Science.gov (United States)

    Barrett, T. W.

    We examined the Raman spectra of thirteen sugars—seven monosaccharides, two disaccharides, one trisaccharide and three polysaccharides—in the wavelength range 200—1700 cm -1 and (i) varied the phosphate buffered solution from pH 6.0 to 8.5 at constant ionic strength of 0.1 and (ii) varied HCl solutions from pH 0.8 to 5.0. As is to be expected with molecules containing COH groupings, all the molecular spectra are distinct. Of the thirteen sugars examined, only D-fructose 1,6-diphosphate (FDP) demonstrated spectral changes for the pH range 6.0—8.5 in phosphate buffer; but all exhibited band intensity enhancement in HCl at the lower pHs, but not band wavenumber changes. The results indicate that: (i) changes in the pH of the major intracellular buffer, phosphate, toward acidity, are able to hydrolyze the 1-phosphate group of FDP and the relative concentration of fructose 1-phosphate to fructose 6-phosphate is indicated by the intensity ratio of the 982 and 1080 cm -1 bands; (ii) it appears that all phosphate groups of FDP are hydrolyzed at pH 0.8 in HCl; and (iii) although conditions of extreme acidity are able to hydrolyze other sugars examined, there is no major degradation.

  16. Transport properties and Raman spectra of impurity substituted MgB2

    International Nuclear Information System (INIS)

    Masui, T.

    2007-01-01

    Recent advances in the study of MgB 2 are reviewed, with focus on the transport properties and Raman scattering measurements for impurity substituted crystals. Carbon and Aluminium substitution change band filling, introduce intraband and interband scattering. These effects are seen in the temperature dependence of resistivity, Hall coefficients, and phonon peak of Raman spectra. Manganese substitution introduces magnetic scattering, that increases resistivity but gives little change in Raman spectra. The effect of disorder in neutron irradiated samples is also discussed

  17. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.

    Science.gov (United States)

    Danecek, Petr; Kapitán, Josef; Baumruk, Vladimír; Bednárová, Lucie; Kopecký, Vladimír; Bour, Petr

    2007-06-14

    The difference spectroscopy of the Raman optical activity (ROA) provides extended information about molecular structure. However, interpretation of the spectra is based on complex and often inaccurate simulations. Previously, the authors attempted to make the calculations more robust by including the solvent and exploring the role of molecular flexibility for alanine and proline zwitterions. In the current study, they analyze the IR, Raman, and ROA spectra of these molecules with the emphasis on the force field modeling. Vibrational harmonic frequencies obtained with 25 ab initio methods are compared to experimental band positions. The role of anharmonic terms in the potential and intensity tensors is also systematically explored using the vibrational self-consistent field, vibrational configuration interaction (VCI), and degeneracy-corrected perturbation calculations. The harmonic approach appeared satisfactory for most of the lower-wavelength (200-1800 cm(-1)) vibrations. Modern generalized gradient approximation and hybrid density functionals, such as the common B3LYP method, provided a very good statistical agreement with the experiment. Although the inclusion of the anharmonic corrections still did not lead to complete agreement between the simulations and the experiment, occasional enhancements were achieved across the entire region of wave numbers. Not only the transitional frequencies of the C-H stretching modes were significantly improved but also Raman and ROA spectral profiles including N-H and C-H lower-frequency bending modes were more realistic after application of the VCI correction. A limited Boltzmann averaging for the lowest-frequency modes that could not be included directly in the anharmonic calculus provided a realistic inhomogeneous band broadening. The anharmonic parts of the intensity tensors (second dipole and polarizability derivatives) were found less important for the entire spectral profiles than the force field anharmonicities (third

  18. Evaluation of Shifted Excitation Raman Difference Spectroscopy and Comparison to Computational Background Correction Methods Applied to Biochemical Raman Spectra.

    Science.gov (United States)

    Cordero, Eliana; Korinth, Florian; Stiebing, Clara; Krafft, Christoph; Schie, Iwan W; Popp, Jürgen

    2017-07-27

    Raman spectroscopy provides label-free biochemical information from tissue samples without complicated sample preparation. The clinical capability of Raman spectroscopy has been demonstrated in a wide range of in vitro and in vivo applications. However, a challenge for in vivo applications is the simultaneous excitation of auto-fluorescence in the majority of tissues of interest, such as liver, bladder, brain, and others. Raman bands are then superimposed on a fluorescence background, which can be several orders of magnitude larger than the Raman signal. To eliminate the disturbing fluorescence background, several approaches are available. Among instrumentational methods shifted excitation Raman difference spectroscopy (SERDS) has been widely applied and studied. Similarly, computational techniques, for instance extended multiplicative scatter correction (EMSC), have also been employed to remove undesired background contributions. Here, we present a theoretical and experimental evaluation and comparison of fluorescence background removal approaches for Raman spectra based on SERDS and EMSC.

  19. Raman Spectra of Nitrogen, Carbon Dioxide, and Hydrogen in a Methane Environment

    Science.gov (United States)

    Petrov, D. V.; Matrosov, I. I.; Sedinkin, D. O.; Zaripov, A. R.

    2018-01-01

    Changes in the Raman spectra of N2, H2, and CO2 are studied in the range of 200-3800 cm-1 depending on the concentration of surrounding CH4 molecules at a fixed medium pressure of 25 atm and temperature of 300 K. It has been found that changes in the spectral characteristics of purely rotational H2 lines in a CH4 medium are negligible, while the Q-branches of the v 1/2 v 2 Fermi dyad in CO2 become narrower and wavenumbers of its high-frequency component and v 1 band of N2 decrease. In addition, under these conditions, the ratio of intensities of the CO2 Fermi dyad Q-branch varies in proportion to the concentration of surrounding molecules of CH4. The obtained data will be used in diagnosing the composition of natural gas using Raman spectroscopy.

  20. Excited-state Raman spectroscopy with and without actinic excitation: S{sub 1} Raman spectra of trans-azobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Dobryakov, A. L.; Quick, M.; Ioffe, I. N.; Granovsky, A. A.; Ernsting, N. P.; Kovalenko, S. A. [Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, D-12489 Berlin (Germany)

    2014-05-14

    We show that femtosecond stimulated Raman spectroscopy can record excited-state spectra in the absence of actinic excitation, if the Raman pump is in resonance with an electronic transition. The approach is illustrated by recording S{sub 1} and S{sub 0} spectra of trans-azobenzene in n-hexane. The S{sub 1} spectra were also measured conventionally, upon nπ* (S{sub 0} → S{sub 1}) actinic excitation. The results are discussed and compared to earlier reports.

  1. Simulations and analysis of the Raman scattering and differential Raman scattering/Raman optical activity (ROA) spectra of amino acids, peptides and proteins in aqueous solution

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R. M.; Bohr, Jakob

    2000-01-01

    The Raman and Raman optical activity (ROA) spectra of amino acids and small peptides in aqueous solution have been simulated by density functional theory and restricted Hartree/Fock methods. The treatment of the aqueous environment in treated in two ways. The water molecules in the first hydratio...

  2. Raman spectra of iodine-derivatives of tyrosine and thyronine

    International Nuclear Information System (INIS)

    Loh, E.

    1974-01-01

    The Raman spectra of the iodine derivatives of tyrosine and thyronine in the form of compressed crystalline powders have been excited by 4880 A Argon laser on rotating samples at room temperature. The strong peaks in the low-frequency, -1 , region may be described by analogous vibrations of benzene as: I. the C-I out-of-plane bendings of E 1 sub(g) mode from 100 cm -1 to 180 cm -1 ; II. the C-I in-plane bendings of E 2 sub(g) and A 2 sub(g) mode from 190 cm -1 to 330 cm -1 and III. the C-I stretchings of E 2 sub(g) mode from 330 cm -1 to 400 cm -1 . In 3,3',5-triiodo-derivatives, the number of both the C-I in-plane bendings and C-I stretchings on the inner phenyl ring approximately doubles from thet of diiodo-derivatives. This doubling in number of peaks is presumably due to the modulation caused by the libration, which is associated with the C-I out-of-plane bending at position 3', of the outer phenyl ring

  3. Analysis of soda-lime glasses using non-negative matrix factor deconvolution of Raman spectra

    OpenAIRE

    Woelffel , William; Claireaux , Corinne; Toplis , Michael J.; Burov , Ekaterina; Barthel , Etienne; Shukla , Abhay; Biscaras , Johan; Chopinet , Marie-Hélène; Gouillart , Emmanuelle

    2015-01-01

    International audience; Novel statistical analysis and machine learning algorithms are proposed for the deconvolution and interpretation of Raman spectra of silicate glasses in the Na 2 O-CaO-SiO 2 system. Raman spectra are acquired along diffusion profiles of three pairs of glasses centered around an average composition of 69. 9 wt. % SiO 2 , 12. 7 wt. % CaO , 16. 8 wt. % Na 2 O. The shape changes of the Raman spectra across the compositional domain are analyzed using a combination of princi...

  4. Temperature Dependence of Polarized Low Wavenumber Raman Spectra of Aminopropylsilanetriol Polymer

    International Nuclear Information System (INIS)

    V, Volovsek; L, Bistrcic; K, Furic; V, Daanic; I, Movre Sapic

    2006-01-01

    Low wavenumber polarized Raman spectra of aminopropylsilanetriol (APST) polymer deposited on PVC substrate were measured in the temperature range from 300 K to 78 K. In the low wavenumber Raman spectra of these samples a very strong Bose band was observed. The best results in modeling the low wavenumber Raman spectra were achieved with the exponential correlation function of disorder G dis (ν) = exp(-r/R c )using three contributions: transversal and longitudinal acoustic phonons and molecular vibration. Results suggest medium range ordered ladder structure, stacked in layers with different orientations of ladders

  5. Effect of hormonal variation on in vivo high wavenumber Raman spectra improves cervical precancer detection

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J. H.; Ilancheran, A.; Huang, Zhiwei

    2012-03-01

    Raman spectroscopy is a unique analytical probe for molecular vibration and is capable of providing specific spectroscopic fingerprints of molecular compositions and structures of biological tissues. The aim of this study is to improve the classification accuracy of cervical precancer by characterizing the variations in the normal high wavenumber (HW - 2800-3700cm-1) Raman spectra arising from the menopausal status of the cervix. A rapidacquisition near-infrared (NIR) Raman spectroscopic system was used for in vivo tissue Raman measurements at 785 nm excitation. Individual HW Raman spectrum was measured with a 5s exposure time from both normal and precancer tissue sites of 15 patients recruited. The acquired Raman spectra were stratified based on the menopausal status of the cervix before the data analysis. Significant differences were noticed in Raman intensities of prominent band at 2924 cm-1 (CH3 stretching of proteins) and the broad water Raman band (in the 3100-3700 cm-1 range) with a peak at 3390 cm-1 in normal and dysplasia cervical tissue sites. Multivariate diagnostic decision algorithm based on principal component analysis (PCA) and linear discriminant analysis (LDA) was utilized to successfully differentiate the normal and precancer cervical tissue sites. By considering the variations in the Raman spectra of normal cervix due to the hormonal or menopausal status of women, the diagnostic accuracy was improved from 71 to 91%. By incorporating these variations prior to tissue classification, we can significantly improve the accuracy of cervical precancer detection using HW Raman spectroscopy.

  6. Raman Spectra of Methane, Ethylene, Ethane, Dimethyl ether, Formaldehyde and Propane for Combustion Applications

    KAUST Repository

    Magnotti, G.

    2015-05-09

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  7. Raman Spectra of Methane, Ethylene, Ethane, Dimethyl ether, Formaldehyde and Propane for Combustion Applications

    KAUST Repository

    Magnotti, G.; KC, Utsav; Varghese, P.L.; Barlow, R.S.

    2015-01-01

    Spontaneous Raman scattering measurements of temperature and major species concentration in hydrocarbon-air flames require detailed knowledge of the Raman spectra of the hydrocarbons present when fuels more complex than methane are used. Although hydrocarbon spectra have been extensively studied at room temperature, there are no data available at higher temperatures. Quantum mechanical calculations, when available are not sufficiently accurate for combustion applications. This work presents experimental measurements of spontaneous Stokes-Raman scattering spectra of methane, ethylene, ethane, dimethyl ether, formaldehyde and propane in the temperature range 300-860 K. Raman spectra from heated hydrocarbons jets have been collected with a higher resolution than is generally employed for Raman measurements in combustion applications. A set of synthetic spectra have been generated for each hydrocarbon, providing the basis for extrapolation to higher temperatures. The spectra provided here will enable simultaneous measurements of multiple hydrocarbons in flames. This capability will greatly extend the range of applicability of Raman measurements in combustion applications. In addition, the experimental spectra provide a validation dataset for quantum mechanical models.

  8. Estimating and suppressing background in Raman spectra with an artificial neural network

    DEFF Research Database (Denmark)

    Sigurdsson, Sigurdur; Larsen, Jan; Philipsen, Peter Alshede

    2003-01-01

    In this report we address the problem of skin fluorescence in feature extraction from Raman spectra of skin lesions. We apply a highly automated neural network method for suppressing skin fluorescence from Raman spectrum of skin lesions before dimension reduction with principal components analysi...

  9. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    Science.gov (United States)

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Phonon-induced anomalous Raman spectra in undoped high-Tc cuprates

    International Nuclear Information System (INIS)

    Lee, J.D.; Min, B.I.

    1997-01-01

    In order to describe a shoulder peak structure near 4J in the magnon Raman spectra of undoped high-T c cuprates, we have explored the phonon contribution to the Raman spectra. Incorporating the magnon-phonon Hamiltonian in the spin-wave theory, we have evaluated the two-magnon Raman spectral function originating from the lowest-order magnon-phonon-magnon scattering. It is found that phonons induce a shoulder peak near 4J besides the dominant two-magnon peak near 3J, in agreement with experiments. (orig.)

  11. Using a Spectrofluorometer for Resonance Raman Spectra of Organic Molecules

    Directory of Open Access Journals (Sweden)

    Vadivel Masilamani

    2017-01-01

    Full Text Available Scattering (Rayleigh and Raman and fluorescence are two common light signals that frequently occur together, confusing the researchers and graduate students experimenting in molecular spectroscopy laboratories. This report is a brief study presenting a clear discrimination between the two signals mentioned, employing a common spectrofluorometer such as the PerkinElmer LS 55. Even better, the resonance Raman signal of a molecule (e.g., acetone can be obtained elegantly using the same instrument.

  12. FT-Raman and FTIR spectra of photoactive aminobenzazole derivatives in the solid state: A combined experimental and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Rodrigo Martins [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil); Rodembusch, Fabiano Severo [Universidade Federal do Rio Grande do Sul, Grupo de Pesquisa em Fotoquímica Orgânica Aplicada, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS (Brazil); Habis, Charles [Northern Virginia Community College, Manassas, VA (United States); Moreira, Eduardo Ceretta, E-mail: eduardomoreira@unipampa.edu.br [Universidade Federal do Pampa, Campus Bagé, Grupo de Pesquisa em Espectroscopia de Materiais Fotônicos, 96400-970 Bagé, RS (Brazil)

    2014-12-15

    This study reports the experimental investigation of two photoactive aminobenzazole derivatives in the solid state by FT-Raman and Infrared Spectroscopies (FTIR) and its comparison with theoretical models. The optimized molecular structure, vibrational frequencies, and corresponding vibrational assignments of these compounds have been investigated experimentally and theoretically using Spanish Initiative for Electronic Simulations with Thousands of Atoms (SIESTA) and Gaussian03 Software Package. The FT-Raman and FTIR spectra were acquired with high resolution and emission frequencies identified by simulating the vibrational modes. The most intense peak observed in the FT-Raman spectra is the in-plane deformation vibrational of O–H bond that could be related to the vibrational region responsible for the stabilization of the enol conformer in the ground state which undergoes ESIPT to form a keto tautomer in the excited state. Additionally, the position of the amino group played an important role on the vibrational characteristics of the studied compounds. Also, the simulations proved to be a good approach in undertaking the FTIR and FT-Raman experiments. The use of graphic correlations helps us to determine the method and basis that best fit the experimental results. - Highlights: • Structural and vibrational properties of two aminobenzazoles were reported. • Comparison between experimental techniques and theoretical models. • The position of the amino group played an important role on the vibrational characteristics of the studied compounds.

  13. IR and Raman spectra of nitroanthracene isomers: substitional effects based on density functional theory study.

    Science.gov (United States)

    Alparone, Andrea; Librando, Vito

    2012-04-01

    Structure, IR and Raman spectra of 1-, 2- and 9-nitroanthracene isomers (1-NA, 2-NA and 9-NA) were calculated and analyzed through density functional theory computations using the B3LYP functional with the 6-311+G** basis set. Steric and π-conjugative effects determine the characteristic ONCC dihedral angles, which vary from 0° (2-NA) to 28-29° (1-NA) and 59° (9-NA), influencing the relative order of stability along the series 9-NA3000 cm(-1) and utility to discriminate the NA isomers. Structural and spectroscopic results suggest that the unknown mutagenic activity of 1-NA is expected to be between that of 9-NA and 2-NA. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Different level of fluorescence in Raman spectra of montmorillonites

    Czech Academy of Sciences Publication Activity Database

    Ritz, M.; Vaculíková, Lenka; Kupková, J.; Plevová, Eva; Bartoňová, L.

    2016-01-01

    Roč. 84, May 2016 (2016), s. 7-15 ISSN 0924-2031 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : Raman spectroscopy * fluorescence * montmorillonite Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.740, year: 2016

  15. Contrastive Analysis of the Raman Spectra of Polychlorinated Benzene: Hexachlorobenzene and Benzene

    Directory of Open Access Journals (Sweden)

    Zhengjun Zhang

    2011-12-01

    Full Text Available Detection of persistent pollutants such as polychlorinated benzene in environment in trace amounts is challenging, but important. It is more difficult to distinguish homologues and isomers of organic pollutantd when present in trace amounts because of their similar physical and chemical properties. In this work we simulate the Raman spectra of hexachlorobenzene and benzene, and figure out the vibration mode of each main peak. The effect on the Raman spectrum of changing substituents from H to Cl is analyzed to reveal the relations between the Raman spectra of homologues and isomers of polychlorinated benzene, which should be helpful for distinguishing one kind of polychlorinated benzene from its homologues and isomers by surface enhanced Raman scattering.

  16. Raman Spectra of Luminescent Graphene Oxide (GO-Phosphor Hybrid Nanoscrolls

    Directory of Open Access Journals (Sweden)

    Janardhanan. R. Rani

    2015-12-01

    Full Text Available Graphene oxide (GO-phosphor hybrid nanoscrolls were synthesized using a simple chemical method. The GO-phosphor ratio was varied to find the optimum ratio for enhanced optical characteristics of the hybrid. A scanning electron microscope analysis revealed that synthesized GO scrolls achieved a length of over 20 μm with interior cavities. The GO-phosphor hybrid is extensively analyzed using Raman spectroscopy, suggesting that various Raman combination modes are activated with the appearance of a low-frequency radial breathing-like mode (RBLM of the type observed in carbon nanotubes. All of the synthesized GO-phosphor hybrids exhibit an intense luminescent emission around 540 nm along with a broad emission at approximately 400 nm, with the intensity ratio varying with the GO-phosphor ratio. The photoluminescence emissions were gauged using Commission Internationale d'Eclairage (CIE coordinates and at an optimum ratio. The coordinates shift to the white region of the color spectra. Our study suggests that the GO-phosphor hybrid nanoscrolls are suitable candidates for light-emitting applications.

  17. FT-IR, FT-Raman and UV-visible spectra of potassium 3-furoyltrifluoroborate salt

    Science.gov (United States)

    Iramain, Maximiliano A.; Davies, Lilian; Brandán, Silvia Antonia

    2018-04-01

    The potassium 3-furoyltrifluoroborate salt has been experimentally characterized by means of FT-IR, FT-Raman and UV-Visible spectroscopies. Here, the predicted FT-IR, FT-Raman and UV-visible spectra by using theoretical B3LYP/6-31G* and 6-311++G** calculations show very good correlations with the corresponding experimental ones. The solvation energies were predicted by using both levels of calculations. The NBO analyses reveal the high stability of the salt by using the B3LYP/6-31G* level of theory while the AIM studies evidence the ionic characteristics of the salt in both media. The strong blue colour observed on the K atom by using the molecular electrostatic potential mapped suggests that this region act as typical electrophilic site. The gap values have revealed that the salt in gas phase is more reactive than in solution, as was reported in the literature while, the F13⋯H6 interaction together with the Ksbnd O bond observed by the studies of their charges could probably modulate the reactivities of this salt in aqueous solution. The force fields were computed with the SQMFF methodology and the Molvib program to perform the complete vibrational analysis. Then, the 39 vibration normal modes classified as 26 A'+ 13 A″ were completely assigned and their force constants are also reported.

  18. Atomic substitution in selected high-temperature superconductors: Elucidating the nature of Raman spectra excitations

    Science.gov (United States)

    Hewitt, Kevin Cecil

    2000-10-01

    In this thesis, the effects of atomic substitution on the vibrational and electronic excitations found in the Raman spectra of selected high-temperature superconductors (HTS) are studied. In particular, atomic and isotopic substitution methods have been used to determine the character of features observed in the Raman spectra of Bi2Sr2Ca n-1CunO2 n+4+delta (n = 1 - Bi2201, n = 2 - Bi2212) and YBa2Cu3O7-delta (Y123). In Bi2201, Pb substitution for Bi (and Sr) has led to the reduction and eventual removal of the structural modulation, characteristic of all members of the Bi-family of HTS. The high quality single crystals and our sensitive triple spectrometer enabled identification of a pair of low frequency modes. The modes are determined to arise from shear and compressional rigid-layer vibrations. The normal state of underdoped cuprates is characterized by a pseudogap of unknown origin. In crystals of underdoped Bi2212 a spectral peak found at 590 cm-1, previously attributed to the pairing of quasiparticles (above Tc) and hence to the formation of a normal state pseudogap, has been found to soften by 3.8% with oxygen isotope exchange. In addition, the feature is absent in fully oxygenated and yttrium underdoped crystals. In this study, the first of its kind on underdoped and isotope substituted Bi2212, the feature has been assigned to stretching vibrations of oxygen in the a-b plane. Bi2212 crystals with varying hole concentrations (0.07 Raman scattering experiments that sample the diagonal (B 2g) and principal axes (B1 g) of the BZ have led us to conclude that the superconducting gap possesses dx2-y2 symmetry, in the underdoped and overdoped regimes. It is found that the magnitude of the superconducting gap (Delta(k)) is sensitive to changes in p. Studies of the pair-breaking peak found in the B1g spectra allow us to conclude that the magnitude of the maximum gap (Deltamax) decreases monotonically with increasing hole doping, for p > 0.13. The pair

  19. Explicit versus Implicit Solvent Modeling of Raman Optical Activity Spectra

    Czech Academy of Sciences Publication Activity Database

    Hopmann, K. H.; Ruud, K.; Pecul, M.; Kudelski, A.; Dračínský, Martin; Bouř, Petr

    2011-01-01

    Roč. 115, č. 14 (2011), s. 4128-4137 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) LH11033; GA ČR GAP208/11/0105 Grant - others:AV ČR(CZ) M200550902 Institutional research plan: CEZ:AV0Z40550506 Keywords : raman optical activity * lactamide * solvent models Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  20. High-Resolution Infrared and Raman Spectra of the Polycrystalline Sinomenine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Liu Xiao-Dong

    2016-01-01

    Full Text Available High-resolution infrared and Raman spectra of the polycrystalline sinomenine (SM hydrochloride have been measured to work out its whole really existing vibrational spectral bands. Except for the hydroxyl stretching modes and IR active bands less than 400 cm−1, most normal modes (about 34 are both IR and Raman active. In addition, 8 Raman bands less than 400 cm−1 are tentatively assigned, for the first time to our knowledge, to stretching/bending modes of the aromatic-ring−methoxyls and (SMH+–Cl− ions, respectively.

  1. Study of high-temperature multiplex HCl coherent anti-Stokes Raman spectroscopy spectra.

    Science.gov (United States)

    Singh, J P; Yueh, F Y; Kao, W; Cook, R L

    1993-02-20

    A feasibility study of temperature measurement with multiplex HCl coherent anti-Stokes Raman spectroscopy (CARS) is investigated. The HCl CARS spectra of a 100% HCl gas sample are recorded in a quartz sample cell placed in a furnace at 1 atm pressure and at different temperatures. The nonlinear susceptibility of HCl (chi(nr)(HCl)), which is measured with the present CARS experimental setup, is reported. The experimental spectra are fit by using a library of simulated HCl CARS spectra with a least-squares-fitting program to infer the temperature. The inferred temperatures from HCl CARS spectra are in agreement with thermocouple temperatures.

  2. Raman spectra of hot-pressed boron suboxide

    CSIR Research Space (South Africa)

    Machaka, R

    2011-01-01

    Full Text Available on in- situ/online measurements (such as GIXRD, Raman Spectroscopy, FIB- Electron Microscopy) during (i) ion implantation, (ii) PLD growth of nanoparticles SW/MW-CNTs, oxide semiconductor multi-layer, metal/Si and metal/metal systems. Moreover, He...], aluminium magnesium boride ? AlMgB14 [8], and the newly synthesized boron subnitride ? B13N2 [9, 10]. With hardness values reported between 24 GPa and 45 GPa [7, 11, 12], B6O is sometimes considered to be the third hardest material only after diamond...

  3. The temporal evolution process from fluorescence bleaching to clean Raman spectra of single solid particles optically trapped in air

    Science.gov (United States)

    Gong, Zhiyong; Pan, Yong-Le; Videen, Gorden; Wang, Chuji

    2017-12-01

    We observe the entire temporal evolution process of fluorescence and Raman spectra of single solid particles optically trapped in air. The spectra initially contain strong fluorescence with weak Raman peaks, then the fluorescence was bleached within seconds, and finally only the clean Raman peaks remain. We construct an optical trap using two counter-propagating hollow beams, which is able to stably trap both absorbing and non-absorbing particles in air, for observing such temporal processes. This technique offers a new method to study dynamic changes in the fluorescence and Raman spectra from a single optically trapped particle in air.

  4. A Probabilistic Framework for Detection of Skin Cancer by Raman Spectra

    DEFF Research Database (Denmark)

    Sigurdsson, Sigurdur

    2003-01-01

    . These identified important features are shown to originate from molecular structure changes in lipids and proteins. While the theme of this dissertation is skin cancer diagnosis from Raman spectra, the dimension reduction and the neural network classifier can be applied in general to other types of pattern...... melanoma. The neural network classifier visualization showed that frequency bands, previously identified by visual inspection of Raman spectra by medical experts, were considered important for classification. Moreover, frequency band not previously used for skin lesion classification were identified...... brugt til diagnosering af hudkræft. Disse vigtige frekvensbånd stammer fra forskel i molekyle struktur i lipider og proteiner. Selv om temaet for denne afhandling er hudkræft diagnosering fra Raman spektra, kan dimensions reduceringen og det neurale netværk bruges til andre mønster genkendelses...

  5. Infrared and Raman spectra, DFT-calculations and spectral assignments of germacyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Aleksa, V., E-mail: valdemaras.aleksa@ff.vu.lt; Ozerenskis, D.; Pucetaite, M.; Sablinskas, V. [Faculty of Physics, Vilnius University, Sauletekio av. 9, block 3, Vilnius, LT-10222 (Lithuania); Cotter, C.; Guirgis, G. A. [Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424 (United States)

    2015-03-30

    Raman spectra of germacyclohexane in liquid and solid states were recorded and depolarization data obtained. Infrared absorption spectra of the vapor and liquid have been studied. The wavenumbers of the vibrational modes were derived in the harmonic and anharmonic approximation in B3LYP/ccpVTZ calculations. According to the calculations, germacyclohexane exists in the stable chair conformation, whereas a possible twist form should have more than 15 kJ·mol{sup -1} higher enthalpy of formation what makes this conformer experimentally not observable. The 27 A' and 21 A'' fundamentals were assigned on the basis of the calculations and infrared and Raman band intensities, contours of gas phase infrared spectral bands and Raman depolarization measurements. An average discrepancy of ca. 0.77 % was found between the observed and the calculated anharmonic wavenumbers for the 48 modes. Substitution of carbon atom with Ge atom in the cyclohexane ring is reasoning flattening of the ring.

  6. Resonance Raman Spectra of the Transient Cl2 and Br2 Radical Anions

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, Niels-Henrik; Sillesen, Alfred Hegaard

    1984-01-01

    The resonance Raman spectra of the short-lived radical anions ClImage 2− and BrImage − in aqueous solution are reported. The observed wavenumbers of 279 cm−1 for ClImage − and 177 cm−1 for BrImage − are about 10% higher than those published for the corresponding species isolated in solid argon ma...

  7. Infrared and Raman spectra of uric acid and its 15N and D labelled compounds

    International Nuclear Information System (INIS)

    Majoube, Michel

    Infrared and Raman spectra of polycrystalline uric acid (2, 6, 8-trioxypurine) 1.3, 7 and 9- 15 N and deuterated analogues have been determined. Band shifts with 15 N substitution and with deuteration are discussed. An assignment of fundamental vibrations of uric acid is proposed from the comparison of the eight isotopically substituted analogues [fr

  8. Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra

    International Nuclear Information System (INIS)

    Hehlen, B

    2010-01-01

    Relative Raman scattering intensities are obtained in three samples of vitreous silica of increasing density. The variation of the intensity upon densification is very different for bending and stretching modes. For the former we find a Raman coupling-to-light coefficient C B ∝ω 2 . A comparative intensity and frequency dependence of the Raman spectral lines in the three glasses is performed. Provided the Raman spectra are normalized by C B , there exists a simple relation between the Si-O-Si bond angle and the frequency of all O-bending motions, including those of fourfold (n = 4) and threefold (n = 3) rings. For 20% densification we find a reduction of ∼5.7 deg. of the maximum of the network angle distribution, a value in very close agreement with previous NMR experiments. The threefold and fourfold rings are weakly perturbed by the densification, with a bond angle reduction of ∼0.5 deg. for the former.

  9. [Raman spectra of endospores of Bacillus subtilis by alkali stress].

    Science.gov (United States)

    Dong, Rong; Lu, Ming-qian; Li, Feng; Shi, Gui-yu; Huang, Shu-shi

    2013-09-01

    To research the lethal mechanism of spores stressed by alkali, laser tweezers Raman spectroscopy (LTRS) combined with principal components analysis (PCA) was used to study the physiological process of single spore with alkali stress. The results showed that both spores and germinated spores had tolerance with alkali in a certain range, but the ability of spores was obviously lower than that of spores due to the release of their Ca2+ -DPA which plays a key role in spores resistance as well as spores resistance to many stresses; A small amount of Ca2+ -DPA of spores was observed to release after alkali stress, however, the behavior of release was different with the normal Ca2+ -DPA release behavior induced by L-alanine; The data before and after alkali stress of the spores and g. spores with PCA reflected that alkali mainly injured the membrane of spores, and alkali could be easily enter into the inner structure of spores to damage the structure of protein backbone and injure the nucleic acid of spores. We show that the alkali could result in the small amount of Ca2+ -DPA released by destroying the member channel of spores.

  10. Studies of the Raman Spectra of Cyclic and Acyclic Molecules: Combination and Prediction Spectrum Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taijin; Assary, Rajeev S.; Marshall, Christopher L.; Gosztola, David J.; Curtiss, Larry A.; Stair, Peter C.

    2012-04-02

    A combination of Raman spectroscopy and density functional methods was employed to investigate the spectral features of selected molecules: furfural, 5-hydroxymethyl furfural (HMF), methanol, acetone, acetic acid, and levulinic acid. The computed spectra and measured spectra are in excellent agreement, consistent with previous studies. Using the combination and prediction spectrum method (CPSM), we were able to predict the important spectral features of two platform chemicals, HMF and levulinic acid.The results have shown that CPSM is a useful alternative method for predicting vibrational spectra of complex molecules in the biomass transformation process.

  11. Combined use of infrared and Raman spectra in the characterization of orthoclase under various hydrostatic pressures.

    Science.gov (United States)

    Liu, Rui; Wang, Zhi-Hua; Xu, Qiang; Yu, Na; Cao, Miao-Cong

    2014-02-01

    Colorless and pink orthoclase from Balikun granite body, East Zhunger in Xinjiang, served as the samples for the research on hydrostatic pressure experiment. The in-situ hydrostatic pressure test for orthoclases was conducted at the room temperature and pressures from 100 to 600 MPa using cubic zirconia anvil cell, with quartz as pressure gauge. The water located in the orthoclases for the conditions of different hydrostatic pressures was characterized through the methods of Fourier transform infrared (FTIR) and Raman spectra. The results showed that there was a linear correlation between the shifting of Raman bands and hydrostatic pressure applied to the feldspar. All of vibration peaks of M-O structural groups in orthoclases, the bending vibration peaks of Si(Al(IV))-O-Si bond and tetrahedron groups of [SiO4] in Raman spectra shifted toward the higher frequency regularly, the drift distance is 2, 2.19 and less than 2 cm(-1) respectively. The spectra of FTIR suggested that there was more water in colorless orthoclases than the pink one under certain conditions of hydrostatic pressure. The intensity and integral area centered at 3420 cm(-1) in FTIR spectra increased with the rising of hydrostatic pressure. The integral area for colorless and pink feldspar in FTIR spectra rose from 120, 1383 cm(-1) under normal pressure to 1570, 2001 cm(-1) at 600 MPa respectively. The experimental results might indicate that the water in the earth crust could enter the orthoclases in certain condition of the aqueous confining pressure.

  12. Calculated isotropic Raman spectra from interacting H2-rare-gas pairs

    International Nuclear Information System (INIS)

    Gustafsson, M; Głaz, W; Bancewicz, T; Godet, J-L; Maroulis, G; Haskapoulos, A

    2014-01-01

    We report on a theoretical study of the H 2 -He and H 2 -Ar pair trace-polarizability and the corresponding isotropic Raman spectra. The conventional quantum mechanical approach for calculations of interaction-induced spectra, which is based on an isotropic interaction potential, is employed. This is compared with a close-coupling approach, which allows for inclusion of the full, anisotropic potential. It is established that the anisotropy of the potential plays a minor role for these spectra. The computed isotropic collision-induced Raman intensity, which is due to dissimilar pairs in H 2 -He and H 2 -Ar gas mixtures, is comparable to the intensities due to similar pairs (H 2 -H 2 , He-He, and Ar-Ar), which have been studied previously

  13. Collective vibrational spectra of α- and γ-glycine studied by terahertz and Raman spectroscopy

    International Nuclear Information System (INIS)

    Shi Yulei; Wang Li

    2005-01-01

    Terahertz time-domain spectroscopy is used to investigate the absorption and dispersion of polycrystalline α- and γ-glycine in the spectral region 0.5-3.0 THz. The spectra exhibit distinct features in these two crystalline phases. The observed far-infrared responses are attributed to intermolecular vibrational modes mediated by hydrogen bonds. We also measure the Raman spectra of the polycrystalline and dissolved glycine in the frequency range 28-3900 cm -1 . The results show that all the vibrational modes below 200 cm -1 are nonlocalized but are of a collective (phonon-like) nature. Furthermore, the temperature dependence of the Raman spectra of α-glycine agrees with the anharmonicity mechanism of the vibrational potentials

  14. Raman Spectra and Intermolecular Hydrogen Bonds of Quinoline in Solutions

    International Nuclear Information System (INIS)

    Tukhvatullin, F.H.; Jumabayev, A.; Hushvaktov, H.; Absanov, A.; Hudoyberdiev, B.

    2012-01-01

    The half-widths of the 1014- and 1033-cm -1 bands of the Raman spectrum of quinoline at its dilution in neutral solvents (benzene, CCl 4 ) are narrowed by 1.3-1.5 times at high dilutions. This effect is associated with the increased time of the vibrational relaxation. For the 520-cm -1 band in pure liquid quinoline, the parallel polarized component at 20 o C is asymmetric in the high-frequency region. The shape of the perpendicular polarized component is complicated. A non-coincidence of the peak frequencies of the parallel and perpendicular polarized components is observed (∼ 2 cm -1 ). Quantum-chemical calculations showed that, in the region of 520 cm -1 for a monomer molecule, we should really have two near located lines with the wavenumbers 530 and 527 cm -1 (scaling factor 0.97), and with the depolarization ratios 0.61 and 0.26. In the solutions with propan-2-ol, the 1033.8-cm -1 band becomes of a doublet character. The resolution of the doublet becomes better by the dilution of a binary quinoline-alcohol solution with a large amount of a neutral solvent (benzene). The wavenumbers of bands in the triple mixture are 1033 cm -1 and 1039 cm -1 . The doublet nature of the band in the binary and triple mixtures is associated with the presence of monomer molecules and quinoline-propan-2-ol aggregates (the high-frequency line) in the liquid mixture. Quantum-chemical calculations showed that the hydrogen bonds with a length of 1.958 A and an energy gain of 22.0 kJ/mole can be formed between molecules of quinoline and alcohol. The formation of aggregates can be also detected in the 820-cm -1 band of propan-2-ol. A similar picture is observed for the 667-cm -1 band of chloroform in its solution with quinoline.

  15. Variation of Raman spectra of CdSe/ZnS quantum dots at the bioconjugation

    Energy Technology Data Exchange (ETDEWEB)

    Macotela, L.G.V.; Douda, J. [UPIITA - Instituto Politecnico Nacional, Mexico (Mexico); Torchynska, T.V. [ESFM - Instituto Politecnico Nacional, Mexico (Mexico); Sierra, R.P. [CINVESTAV del IPN, Mexico (Mexico)

    2010-04-15

    This paper presents the results of comparative analysis of Raman scattering spectra of CdSe/ZnS QDs covered by polymer with and without bio-conjugation to the mouse anti PSA (Prostate-Specific Antigen) antibodies (mab). Commercial CdSe/ZnS QDs used in the study are characterized by the color emission with the maximum at 565 nm (2.19 eV) at 300 K. Raman scattering spectra measured at room temperature demonstrate two groups of peaks: (i) related to the Si substrate at 230-460, 522, 610, 670, 940-1040 cm{sup -1} and (2) to polymer on the QD surface in the spectral range 1268-3310 cm{sup -1}. It is revealed that the QD bio-conjugation to the anti PSA mab is accompanied by the variation dramatically in the intensity of Raman lines of both types. The explanation of Raman peak stimulation in bio-conjugated QDs has been proposed on the base of surface enhanced Raman scattering (SERS) effect (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Anne Myers, E-mail: amkelley@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States); Dai, Quanqin; Jiang, Zhong-jie; Baker, Joshua A.; Kelley, David F. [Chemistry and Chemical Biology, School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343 (United States)

    2013-08-30

    Highlights: ► Very similar resonance Raman spectra of wurtzite and zincblende CdSe nanocrystals. ► First absolute resonance Raman cross-sections reported for CdSe nanocrystals. ► LO overtones suggest slightly stronger electron–phonon coupling in wurtzite form. - Abstract: Resonance Raman spectra and absolute differential Raman cross-sections have been measured for CdSe nanocrystals in both the wurtzite and zincblende crystal forms at four excitation wavelengths from 457.9 to 514.5 nm. The frequency and bandshape of the longitudinal optical (LO) phonon fundamental is essentially identical for both crystal forms at each excitation wavelength. The LO phonon overtone to fundamental intensity ratio appears to be slightly higher for the wurtzite form, which may suggest slightly stronger exciton–phonon coupling from the Fröhlich mechanism in the wurtzite form. The LO fundamental Raman cross-sections are very similar for both crystal forms at each excitation wavelength.

  17. Preliminary observations on differences in the Raman spectra of cancerous and noncancerous cells and connective tissue of human skin

    Science.gov (United States)

    Short, Michael A.; Lui, Harvey; McLean, David I.; Zeng, Haishan; Alajlan, Abdulmajeed; Chen, Michael X.

    2005-04-01

    A less invasive method of reliably detecting skin cancers is required. Raman spectroscopy is just one of several spectroscopic methods that look promising, but are not yet sufficiently reliable. More information is needed on how and why the Raman spectra of cancerous skin tissue is different from its normal counterpart. We have used confocal micro-Raman spectroscopy with a spatial resolution of about a micron to obtain spectra of unstained thin sections of human skin. We found that there were clear differences in the Raman spectra between cancerous and non-cancerous tissue both in cells and in the connective tissue. The DNA contribution to the spectra was generally stronger in malignant cells than normal ones. In regions of the dermis far away from the tumor one obtains the usual collagen spectra of normal skin, but adjacent to the tumor the spectra no longer appeared to be those of native collagen.

  18. Wavelet data analysis of micro-Raman spectra for follow-up monitoring in oral pathologies

    Science.gov (United States)

    Camerlingo, C.; Zenone, F.; Perna, G.; Capozzi, V.; Cirillo, N.; Gaeta, G. M.; Lepore, M.

    2008-02-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra from human biological samples. In particular, measurements have been performed on some samples of oral tissue and blood serum from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. The disease is characterized histologically by intradermal blisters and immunopathologically by the finding of tissue bound and circulating immunoglobulin G (IgG) antibody directed against the cell surface of keratinocytes. More than 150 spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. The results indicate that appropriate data processing can contribute to enlarge the medical applications of micro-Raman spectroscopy.

  19. Resonance Raman spectra of phthalocyanine monolayers on different supports. A normal mode analysis of zinc phthalocyanine by means of the MNDO method

    NARCIS (Netherlands)

    Palys, Barbara J.; van den Ham, Dirk M.W.; van den Ham, D.M.W.; Briels, Willem J.; Feil, D.; Feil, Dirk

    1995-01-01

    Resonance Raman spectra of monolayers of transition metal phthalocyanines reveal specific interaction with the support. To elucidate its mechanism, Raman spectra of zinc phthalocyanine monolayers were studied. The analysis was based largely on the results of MNDO calculations. Calculated wavenumbers

  20. First-principles simulation of Raman spectra and structural properties of quartz up to 5 GPa

    International Nuclear Information System (INIS)

    Liu Lei; Lv Chao-Jia; Yi Li; Liu Hong; Du Jian-Guo; Zhuang Chun-Qiang

    2015-01-01

    The crystal structure and Raman spectra of quartz are calculated by using first-principles method in a pressure range from 0 to 5 GPa. The results show that the lattice constants (a, c, and V) decrease with increasing pressure and the a-axis is more compressible than the c axis. The Si–O bond distance decreases with increasing pressure, which is in contrast to experimental results reported by Hazen et al. [Hazen R M, Finger L W, Hemley R J and Mao H K 1989 Solid State Communications 725 507–511], and Glinnemann et al. [Glinnemann J, King H E Jr, Schulz H, Hahn T, La Placa S J and Dacol F 1992 Z. Kristallogr. 198 177–212]. The most striking changes are of inter-tetrahedral O–O distances and Si–O–Si angles. The volume of the tetrahedron decreased by 0.9% (from 0 to 5 GPa), which suggests that it is relatively rigid. Vibrational models of the quartz modes are identified by visualizing the associated atomic motions. Raman vibrations are mainly controlled by the deformation of the tetrahedron and the changes in the Si–O–Si bonds. Vibrational directions and intensities of atoms in all Raman modes just show little deviations when pressure increases from 0 to 5 GPa. The pressure derivatives (dν i /dP) of the 12 Raman frequencies are obtained at 0 GPa–5 GPa. The calculated results show that first-principles methods can well describe the high-pressure structural properties and Raman spectra of quartz. The combination of first-principles simulations of the Raman frequencies of minerals and Raman spectroscopy experiments is a useful tool for exploring the stress conditions within the Earth. (paper)

  1. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    International Nuclear Information System (INIS)

    Kirillov, D.; Bozovic, I.; Geballe, T.H.; Kapitulnik, A.; Mitzi, D.B.

    1988-01-01

    Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi 2 Sr 2 CaCu 2 O 8 and YBa 2 Cu 3 O 7 was found

  2. Raman scattering spectra of superconducting Bi2Sr2CaCu2O8 single crystals

    Science.gov (United States)

    Kirillov, D.; Bozovic, I.; Geballe, T. H.; Kapitulnik, A.; Mitzi, D. B.

    1988-12-01

    Raman spectra of Bi2Sr2CaCu2O8 single crystals with superconducting phase-transition temperature of 90 K have been studied. The spectra contained phonon lines and electronic continuum. Phonon energies and polarization selection rules were measured. A gap in the electronic continuum spectrum was observed in a superconducting state. Noticeable similarity between Raman spectra of Bi2Sr2CaCu2O8 and YBa2Cu3O7 was found.

  3. Thermal dissociation of molten KHSO4: Temperature dependence of Raman spectra and thermodynamics

    DEFF Research Database (Denmark)

    Knudsen, Christian B.; Kalampounias, Angelos G.; Fehrmann, Rasmus

    2008-01-01

    Raman spectroscopy is used to study the thermal dissociation of molten KHSO4 at temperatures of 240-450 degrees C under static equilibrium conditions. Raman spectra obtained at 10 different temperatures for the molten phase and for the vapors thereof exhibit vibrational wavenumbers and relative...... process taking place to a significant extent in the temperature range of the investigation and for determining its enthalpy to be Delta H degrees = 64.9 +/- 2.9 kJ mol(-1). The importance of these findings for the understanding of the performance of the industrially important sulfuric acid catalyst. under...

  4. Effects of ion beam heating on Raman spectra of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Hulman, Martin; Skakalova, Viera; Krasheninnikov, A. V.; Roth, S.

    2009-01-01

    Free standing films of single-wall carbon nanotubes were irradiated with energetic N + and C 4+ ions. The observed changes in the Raman line shape of the radial breathing mode and the G band of the C 4+ irradiated samples were similar to those found for a thermally annealed sample. We ascribe these changes to thermal desorption of volatile dopants from the initially doped nanotubes. A simple geometry of the experiment allows us to estimate the temperature rise by one-dimensional heat conductance equation. The calculation indicates that irradiation-mediated increase in temperature may account for the observed Raman spectra changes

  5. Analytical Raman spectroscopic study for discriminant analysis of different animal-derived feedstuff: Understanding the high correlation between Raman spectroscopy and lipid characteristics.

    Science.gov (United States)

    Gao, Fei; Xu, Lingzhi; Zhang, Yuejing; Yang, Zengling; Han, Lujia; Liu, Xian

    2018-02-01

    The objectives of the current study were to explore the correlation between Raman spectroscopy and lipid characteristics and to assess the potential of Raman spectroscopic methods for distinguishing the different sources of animal-originated feed based on lipid characteristics. A total of 105 lipid samples derived from five animal species have been analyzed by gas chromatography (GC) and FT-Raman spectroscopy. High correlations (r 2 >0.94) were found between the characteristic peak ratio of the Raman spectra (1654/1748 and 1654/1445) and the degree of unsaturation of the animal lipids. The results of FT-Raman data combined with chemometrics showed that the fishmeal, poultry, porcine and ruminant (bovine and ovine) MBMs could be well separated based on their lipid spectral characteristics. This study demonstrated that FT-Raman spectroscopy can mostly exhibit the lipid structure specificity of different species of animal-originated feed and can be used to discriminate different animal-originated feed samples. Copyright © 2017. Published by Elsevier Ltd.

  6. Influence of annealing temperature on Raman and photoluminescence spectra of electron beam evaporated TiO₂ thin films.

    Science.gov (United States)

    Vishwas, M; Narasimha Rao, K; Chakradhar, R P S

    2012-12-01

    Titanium dioxide (TiO(2)) thin films were deposited on fused quartz substrates by electron beam evaporation method at room temperature. The films were annealed at different temperatures in ambient air. The surface morphology/roughness at different annealing temperatures were analyzed by atomic force microscopy (AFM). The crystallinity of the film has improved with the increase of annealing temperature. The effect of annealing temperature on optical, photoluminescence and Raman spectra of TiO(2) films were investigated. The refractive index of TiO(2) films were studied by envelope method and reflectance spectra and it is observed that the refractive index of the films was high. The photoluminescence intensity corresponding to green emission was enhanced with increase of annealing temperature. The peaks in Raman spectra depicts that the TiO(2) film is of anatase phase after annealing at 300°C and higher. The films show high refractive index, good optical quality and photoluminescence characteristics suggest that possible usage in opto-electronic and optical coating applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Determination of iron redox ratio in borosilicate glasses and melts from Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cochain, B. [SCDV-Laboratoire d' Etudes de Base sur les Verres, CEA Valrho, Centre de Marcoule, 30207 Bagnols-sur-ceze (France); Physique des Mineraux et des Magmas, CNRS-IPGP, 4 place Jussieu, 75252 Paris Cedex05 (France); Neuville, D.R.; Richet, P. [Physique des Mineraux et des Magmas, CNRS-IPGP, 4 place Jussieu, 75252 Paris Cedex05 (France); Henderson, G.S. [Dept of Geology, University of Toronto, 22 Russell Street, Toronto (Canada); Pinet, O. [SCDV-Laboratoire d' Etudes de Base sur les Verres, CEA Valrho, Centre de Marcoule, 30207 Bagnols-sur-ceze (France)

    2008-07-01

    A method is presented to determine the redox ratio of iron in borosilicate glasses and melts relevant to nuclear waste storage from an analysis of Raman spectra recorded at room or high temperature. The basis of this method is the strong variation of the spectral feature observed between 800 and 1200 cm{sup -1}, in which it is possible to assign a band to vibrational modes involving ferric iron in tetrahedral coordination whose intensity increases with iron content and iron oxidation. After baseline correction and normalization, fits to the Raman spectra made with Gaussian bands enable us to determine the proportion of ferric iron provided the redox ratio is known independently for at least two redox states for a given glass composition. This method is particularly useful for in situ determinations of the kinetics and mechanisms of redox reactions. (authors)

  8. Determination of iron redox ratio in borosilicate glasses and melts from Raman spectra

    International Nuclear Information System (INIS)

    Cochain, B.; Neuville, D.R.; Richet, P.; Henderson, G.S.; Pinet, O.

    2008-01-01

    A method is presented to determine the redox ratio of iron in borosilicate glasses and melts relevant to nuclear waste storage from an analysis of Raman spectra recorded at room or high temperature. The basis of this method is the strong variation of the spectral feature observed between 800 and 1200 cm -1 , in which it is possible to assign a band to vibrational modes involving ferric iron in tetrahedral coordination whose intensity increases with iron content and iron oxidation. After baseline correction and normalization, fits to the Raman spectra made with Gaussian bands enable us to determine the proportion of ferric iron provided the redox ratio is known independently for at least two redox states for a given glass composition. This method is particularly useful for in situ determinations of the kinetics and mechanisms of redox reactions. (authors)

  9. Raman vibrational spectra of thymol blue dyed polyvinyl alcohol (PVA) film dosimeters

    International Nuclear Information System (INIS)

    Lepit, A.; Saion, E.B.; Susilawati; Doyan, A.; Wan Yusoff, W.M.D.

    2002-01-01

    Radiation-sensitive dyed polyvinyl alcohol (PVA) film indicators containing chloral hydrate and acid-sensitive thymol blue dye have been studied for routine food irradiation dosimeters. The free standing dyed film dosimeters of different chloral hydrate concentrations (0.1, 0.5, 1.0, 2.0 and 2.5 g) were irradiated with the absorbed dose ranges from 1 kGy to 12 kGy using gamma rays from Co-60 teletherapy. Upon exposure the dosimeters undergo chemical change and become more acidic, resulting in colour change from yellow to red at the critical doses depending on the chloral hydrate concentrations. The radiation-induced change in colour was analysed using UV-Vis spectrometer that the absorption spectra produced two maximal of the visible bands peaking at 445 nm for low doses and 554 nm for high doses. Spectra of inelastic Raman scattering photons corresponding to Raman shift frequency of unirradiated and irradiated films were measured using a dispersive Raman spectrometer. The spectral intensity of C=C, C-0 and S-H molecular vibration peaks for their respective Raman shifts were studied which provide the dose response to the change of dye molecular structure of the dosimeters. (Author)

  10. Interpreting coherent anti-Stokes Raman spectra measured with multimode Nd:YAG pump lasers

    International Nuclear Information System (INIS)

    Farrow, R.L.; Rahn, L.A.

    1985-01-01

    We report comparisons of coherent anti-Stokes Raman spectroscopy (CARS) measurements using single-axial-and multiaxial-mode Nd:YAG lasers. Our results demonstrate the validity of a recently proposed convolution expression for unresolved CARS spectra. The results also support the use of a relative delay of several coherence lengths between pump-beam paths for reducing the effects of pump-field statistics on the CARS spectral profile

  11. Raman spectra of Au nanoparticles in polycrystalline LiF film

    International Nuclear Information System (INIS)

    Kurbatova, N.V.; Galyautdinov, M.F.; Stepanov, A.L.; Ivanov, N.A.; Kolesnikov, S.S.; Papernyj, V.L.

    2011-01-01

    The modification of the size of gold nanoparticles in LiF matrix during laser annealing was studied fort he first time by Raman spectroscopy. Laser annealing was carried out at the wavelength of the plasmon absorption of gold nanoparticles. The experimental spectra were compared with the calculated modes of in-phase bending vibrations in nanoparticles. The observed effects were discussed from the standpoint of the size quantization of acoustic vibrations in nanostructures. (authors)

  12. Time-dependent density functional methods for Raman spectra in open-shell systems.

    Science.gov (United States)

    Aquino, Fredy W; Schatz, George C

    2014-01-16

    We present an implementation of a time-dependent density functional theory (TD-DFT) linear response module in NWChem for unrestricted DFT calculations and apply it to the calculation of resonant Raman spectra in open-shell molecular systems using the short-time approximation. The new source code was validated and applied to simulate Raman spectra on several doublet organic radicals (e.g., benzyl, benzosemiquinone, TMPD, trans-stilbene anion and cation, and methyl viologen) and the metal complex copper phthalocyanine. We also introduce a divide-and-conquer approach for the evaluation of polarizabilities in relatively large systems (e.g., copper phthalocyanine). The implemented tool gives comparisons with experiment that are similar to what is commonly found for closed-shell systems, with good agreement for most features except for small frequency shifts, and occasionally large deviations for some modes that depend on the molecular system studied, experimental conditions not being accounted in the modeling such as solvation effects and extra solvent-based peaks, and approximations in the underlying theory. The approximations used in the quantum chemical modeling include (i) choice of exchange-correlation functional and basis set; (ii) harmonic approximation used in the frequency analysis to determine vibrational normal modes; and (iii) short-time approximation (omission of nuclear motion effects) used in calculating resonant Raman spectra.

  13. Manifestation of hydrogen bonds of aqueous ethanol solutions in the Raman scattering spectra

    International Nuclear Information System (INIS)

    Dolenko, T A; Burikov, S A; Patsaeva, S V; Yuzhakov, V I

    2011-01-01

    Spectra of Raman scattering of light by aqueous ethanol solutions in the range of concentrations from pure water to 96% alcohol are studied. For water, 25%, and 40% solutions of ethanol in water, as well as for 96% alcohol the Raman spectra are measured at temperatures from the freezing point to nearly the boiling point. The changes in the shape of the stretching OH band are interpreted in terms of strengthening or weakening of hydrogen bonds between the molecules in the solution. The strongest hydrogen bonding of hydroxyl groups is observed at the ethanol content from 20 to 25 volume percent, which is explained by formation of ethanol hydrates of a definite type at the mentioned concentrations of alcohol. This is confirmed by means of the method of multivariate curve resolution, used to analyse the Raman spectra of aqueous ethanol solutions. With growing temperature the weakening of hydrogen bonding occurs in all studied systems, which consists in reducing the number of OH groups, linked by strong hydrogen bonds. (laser applications and other problems in quantum electronics)

  14. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Nityananda; Gadre, Shridhar R., E-mail: gadre@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2016-03-21

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 3{sub 10}- and α-helix of acetyl(alanine){sub n}NH{sub 2} (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm{sup −1} is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine){sub 20} and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  15. Investigation of various factors influencing Raman spectra interpretation with the use of likelihood ratio approach.

    Science.gov (United States)

    Michalska, Aleksandra; Martyna, Agnieszka; Zadora, Grzegorz

    2018-01-01

    The main aim of this study was to verify whether selected analytical parameters may affect solving the comparison problem of Raman spectra with the use of the likelihood ratio (LR) approach. Firstly the LR methodologies developed for Raman spectra of blue automotive paints obtained with the use of 785nm laser source (results published by the authors previously) were implemented for good quality spectra recorded for these paints with the use of 514.5nm laser source. For LR models construction two types of variables were used i.e. areas under selected pigments bands and coefficients derived from discrete wavelet transform procedure (DWT). Few experiments were designed for 785nm and 514.5nm Raman spectra databases after constructing well performing LR models (low rates of false positive and false negative answers and acceptable results of empirical cross entropy approach). In order to verify whether objective magnification described by its numerical aperture affects spectra interpretation, three objective magnifications -20×(N.A.=0.4.), 50×(N.A.=0.75) and 100×(N.A.=0.85) within each of the applied laser sources (514.5nm and 785nm) were tested for a group of blue solid and metallic automotive paints having the same sets of pigments depending on the applied laser source. The findings obtained by two types of LR models indicate the importance of this parameter for solving the comparison problem of both solid and metallic automotive paints regardless of the laser source used for measuring Raman signal. Hence, the same objective magnification, preferably 50× (established based on the analysis of within- and between-samples variability and F-factor value), should be used when focusing the laser on samples during Raman measurements. Then the influence of parameters (laser power and time of irradiation) of one of the recommended fluorescence suppression techniques, namely photobleaching, was under investigation. Analysis performed on a group of solid automotive paint

  16. Improved Savitzky-Golay-method-based fluorescence subtraction algorithm for rapid recovery of Raman spectra.

    Science.gov (United States)

    Chen, Kun; Zhang, Hongyuan; Wei, Haoyun; Li, Yan

    2014-08-20

    In this paper, we propose an improved subtraction algorithm for rapid recovery of Raman spectra that can substantially reduce the computation time. This algorithm is based on an improved Savitzky-Golay (SG) iterative smoothing method, which involves two key novel approaches: (a) the use of the Gauss-Seidel method and (b) the introduction of a relaxation factor into the iterative procedure. By applying a novel successive relaxation (SG-SR) iterative method to the relaxation factor, additional improvement in the convergence speed over the standard Savitzky-Golay procedure is realized. The proposed improved algorithm (the RIA-SG-SR algorithm), which uses SG-SR-based iteration instead of Savitzky-Golay iteration, has been optimized and validated with a mathematically simulated Raman spectrum, as well as experimentally measured Raman spectra from non-biological and biological samples. The method results in a significant reduction in computing cost while yielding consistent rejection of fluorescence and noise for spectra with low signal-to-fluorescence ratios and varied baselines. In the simulation, RIA-SG-SR achieved 1 order of magnitude improvement in iteration number and 2 orders of magnitude improvement in computation time compared with the range-independent background-subtraction algorithm (RIA). Furthermore the computation time of the experimentally measured raw Raman spectrum processing from skin tissue decreased from 6.72 to 0.094 s. In general, the processing of the SG-SR method can be conducted within dozens of milliseconds, which can provide a real-time procedure in practical situations.

  17. Comparison of the Raman spectra of ion irradiated soot and collected extraterrestrial carbon

    Science.gov (United States)

    Brunetto, R.; Pino, T.; Dartois, E.; Cao, A.-T.; d'Hendecourt, L.; Strazzulla, G.; Bréchignac, Ph.

    2009-03-01

    We use a low pressure flame to produce soot by-products as possible analogues of the carbonaceous dust present in diverse astrophysical environments, such as circumstellar shells, diffuse interstellar medium, planetary disks, as well as in our own Solar System. Several soot samples, displaying an initial chemical diversity from aromatic to aliphatic dominated material, are irradiated with 200-400 keV H +, He +, and Ar ++ ions, with fluences comprised between 10 14 and 10 16 ions/cm 2, to simulate expected radiation induced modification on extraterrestrial carbon. The evolution of the samples is monitored using Raman spectroscopy, before, during, and after irradiation. A detailed analysis of the first- and second-order Raman spectra is performed, using a fitting combination of Lorentzian and/or Gaussian-shaped bands. Upon irradiation, the samples evolve toward an amorphous carbon phase. The results suggest that the observed variations are more related to vacancy formation than ionization processes. A comparison with Raman spectra of extraterrestrial organic matter and other irradiation experiments of astrophysically relevant carbonaceous materials is presented. The results are consistent with previous experiments showing mostly amorphization of various carbonaceous materials. Irradiated soots have Raman spectra similar to those of some meteorites, IDPs, and Comet Wild 2 grains collected by the Stardust mission. Since the early-Sun expected irradiation fluxes sufficient for amorphization are compatible with accretion timescales, our results support the idea that insoluble organic matter (IOM) observed in primitive meteorites has experienced irradiation-induced amorphization prior to the accretion of the parent bodies, emphasizing the important role played by early solar nebula processing.

  18. An Investigation on Micro-Raman Spectra and Wavelet Data Analysis for Pemphigus Vulgaris Follow-up Monitoring

    OpenAIRE

    Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria

    2008-01-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has...

  19. Discriminating model for diagnosis of basal cell carcinoma and melanoma in vitro based on the Raman spectra of selected biochemicals

    Science.gov (United States)

    Silveira, Landulfo; Silveira, Fabrício Luiz; Bodanese, Benito; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu T.

    2012-07-01

    Raman spectroscopy has been employed to identify differences in the biochemical constitution of malignant [basal cell carcinoma (BCC) and melanoma (MEL)] cells compared to normal skin tissues, with the goal of skin cancer diagnosis. We collected Raman spectra from compounds such as proteins, lipids, and nucleic acids, which are expected to be represented in human skin spectra, and developed a linear least-squares fitting model to estimate the contributions of these compounds to the tissue spectra. We used a set of 145 spectra from biopsy fragments of normal (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues, collected using a near-infrared Raman spectrometer (830 nm, 50 to 200 mW, and 20 s exposure time) coupled to a Raman probe. We applied the best-fitting model to the spectra of biochemicals and tissues, hypothesizing that the relative spectral contribution of each compound to the tissue Raman spectrum changes according to the disease. We verified that actin, collagen, elastin, and triolein were the most important biochemicals representing the spectral features of skin tissues. A classification model applied to the relative contribution of collagen III, elastin, and melanin using Euclidean distance as a discriminator could differentiate normal from BCC and MEL.

  20. Infrared and Raman Spectra of and Isotopomers: A DFT-PT2 Anharmonic Study

    Directory of Open Access Journals (Sweden)

    Andrea Alparone

    2013-01-01

    Full Text Available IR and Raman spectra of selenophene and of its perdeuterated isotopomer have been obtained in gas phase through density-functional theory (DFT computations. Vibrational wavenumbers have been calculated using harmonic and anharmonic second-order perturbation theory (PT2 procedures with the B3LYP method and the 6-311 basis set. Anharmonic overtones have been determined by means of the PT2 method. The introduction of anharmonic terms decreases the harmonic wavenumbers, giving a significantly better agreement with the experimental data. The most significant anharmonic effects occur for the C–H and C–D stretching modes, the observed H/D isotopic wavenumber redshifts being satisfactorily reproduced by the PT2 computations within 6–20 cm−1 (1–3%. In the spectral region between 500 cm−1 and 1500 cm−1, the IR spectra are dominated by the out-of-plane C–H (C–D bending transition, whereas the Raman spectra are mainly characterized by a strong peak mainly attributed to the C=C + C–C bonds stretching vibration with the contribution of the in-plane C–H (C–D bending deformation. The current results confirm that the PT2 approach combined with the B3LYP/6-311 level of calculation is a satisfactory choice for predicting vibrational spectra of cyclic molecules.

  1. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate

    Science.gov (United States)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by 1H and 13C NMR spectra. No detectable signal was observed during powder test for second harmonic generation.

  2. High-pressure Raman spectra and DFT calculations of L-tyrosine hydrochloride crystal

    Science.gov (United States)

    dos Santos, C. A. A. S. S.; Carvalho, J. O.; da Silva Filho, J. G.; Rodrigues, J. L.; Lima, R. J. C.; Pinheiro, G. S.; Freire, P. T. C.; Façanha Filho, P. F.

    2018-02-01

    High-pressure Raman spectra of L-tyrosine hydrochloride crystal were obtained from 1.0 atm to 7.0 GPa in the 90-1800 cm-1 spectral region. At atmospheric pressure, the Raman spectrum was obtained in the 50-3200 cm-1 spectral range and the assignment of the normal modes based on density functional theory calculations was provided. We found good correspondence between the calculated and the observed intramolecular geometry parameters. This confirms the correct assignment of the normal modes, since it was crucial to understand the meaning of the changes observed in particular Raman active modes. Here we show that bands associated with internal modes undergo slight modifications during compression. However, an inversion of the relative intensity of bands around 125 cm-1 as well as a change of slope dω/dP from 1.0 to 1.5 GPa was understood as a conformational change involving a torsion of the L-tyrosine molecule. As a consequence, it is possible to conclude that the crystal remained in the same monoclinic structure in the 1 atm-7.0 GPa interval, although conformational change of the molecule was verified. A comparison of our results with other selected studies provided insights about the role of the amino acid side chain on the arrangement of hydrogen bonds. Finally, when the pressure was released back to 1 atm, the Raman spectrum was recovered and no hysteresis was observed.

  3. Polytypism in n-fatty acids and low-frequency Raman spectra: Stearic acid B form

    Science.gov (United States)

    Kobayashi, Masamichi; Kobayashi, Tohru; Itoh, Yuzo; Sato, Kiyotaka

    1984-03-01

    Single crystals of single-layered (mon) and double-layered (orth II) polytypes of stearic acid B form were obtained and their structures were investigated by the x-ray diffraction and vibrational spectroscopic methods. Two polytypes exhibited quite different Raman spectra in the frequency range from 65 to 2 cm-1. The Raman bands appeared as singlets in mon, while they split into doublets with different polarization in orth II through the interlamellar interactions between two successive layers contained in the unit cell. The frequencies of the phonon modes in orth II were found to be lower than the corresponding ones in mon, indicating that orth II (or mon) was the high-temperature (low-temperature) stable form.

  4. Comparative study of human blood Raman spectra and biochemical analysis of patients with cancer

    Science.gov (United States)

    Shamina, Lyudmila A.; Bratchenko, Ivan A.; Artemyev, Dmitry N.; Myakinin, Oleg O.; Moryatov, Alexander A.; Orlov, Andrey E.; Kozlov, Sergey V.; Zakharov, Valery P.

    2018-04-01

    In this study we measured spectral features of blood by Raman spectroscopy. Correlation of the obtained spectral data and biochemical studies results is investigated. Analysis of specific spectra allows for identification of informative spectral bands proportional to components whose content is associated with body fluids homeostasis changes at various pathological conditions. Regression analysis of the obtained spectral data allows for discriminating the lung cancer from other tumors with a posteriori probability of 88.3%. The potentiality of applying surface-enhanced Raman spectroscopy with utilized experimental setup for further studies of the body fluids component composition was estimated. The greatest signal amplification was achieved for the gold substrate with a surface roughness of 1 μm. In general, the developed approach of body fluids analysis provides the basis of a useful and minimally invasive method of pathologies screening.

  5. Using Separable Nonnegative Matrix Factorization Techniques for the Analysis of Time-Resolved Raman Spectra

    Science.gov (United States)

    Luce, R.; Hildebrandt, P.; Kuhlmann, U.; Liesen, J.

    2016-09-01

    The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for non-negative matrix factorization which is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with vibrational bands of other species. The approach is applied to synthetic "experimental" spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.

  6. Side-by-side comparison of Raman spectra of anchored and suspended carbon nanomaterials

    International Nuclear Information System (INIS)

    Sidorov, Anton N; Pabba, Santosh; Cohn, Robert W; Sumanasekera, G U; Hewaparakrama, Kapila P

    2008-01-01

    Raman spectra of ordered carbon nanomaterials are quite sensitive to surface perturbations, including trace residues, structural defects and residual stress. This is demonstrated by a series of experiments with carbon nanotubes and graphene. Their spectra change due to subtle changes in preparation and attachment to the substrate and to each other. Differences are most clearly seen by forming a material into an air bridge and probing it in the air gap and at the anchor points. A monolayer graphene sheet, shows a larger disorder band at the anchor points than in the air gap. However, a bundle or rope of parallel-aligned single-wall nanotubes shows a larger disorder band in the gap than at the anchor points. For the graphene sheet the substrate surface deforms the graphene, leading to increases in the disorder band. For the rope, the close proximity of the nanotubes to each other appears to produce a larger stress than the rope resting on the substrate

  7. Comparison of Surface-enhanced Raman Scattering Spectra of Two Kinds of Silver Nanoplate Films

    Institute of Scientific and Technical Information of China (English)

    TAO Jin-long; TANG Bin; XU Shu-ping; PAN Ling-yun; XU Wei-qing

    2012-01-01

    Surface-enhanced Raman scattering(SERS) spectra of different silver nanoplate self-assembled films at different excitation wavelengths were fairly compared.Shape conversion from silver nanoprisms to nanodisks on slides was in situ carried out.The SERS spectra of 4-mercaptopyridine(4-MPY) on these anisotropic silver nanoparticle self-assembled films present that strong enhancement appeared when the excitation line and the surface plasmon resonance(SPR) band of silver substrate overlapped.In this model,the influence of the crystal planes of silver nanoplates on SERS enhancement could be ignored because the basal planes were nearly unchanged in two kinds of silver nanoplate self-assembled films.

  8. Theoretical study of NMR, infrared and Raman spectra on triple-decker phthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsushi; Oku, Takeo [Department of Materials Science, The University of Shiga Prefecture 2500 Hassaka, Hikone, Shiga, 522-8533 (Japan)

    2016-02-01

    Electronic structures and magnetic properties of multi-decker phthalocyanines were studied by theoretical calculation. Electronic structures, excited processes at multi-states, isotropic chemical shifts of {sup 13}C, {sup 14}N and {sup 1}H-nuclear magnetic resonance (NMR), principle V-tensor in electronic field gradient (EFG) tensor and asymmetry parameters (η), vibration mode in infrared (IR) and Raman spectra of triple-decker phthalocyanines were calculated by density functional theory (DFT) and time-dependent DFT using B3LYP as basis function. Electron density distribution was delocalized on the phthalocyanine rings with electron static potential. Considerable separation of chemical shifts in {sup 13}C, {sup 14}N and {sup 1}H-NMR was originated from nuclear spin interaction between nitrogen and carbon atoms, nuclear quadrupole interaction based on EFG and η of central metal under crystal field. Calculated optical absorption at multi-excited process was derived from overlapping π-orbital on the phthalocyanine rings. The vibration modes in IR and Raman spectra were based on in-plane deformation and stretching vibrations of metal-ligand coordination bond on the deformed structure.

  9. Interpretation of IR and Raman spectra of dopamine neurotransmitter and effect of hydrogen bond in HCl

    Science.gov (United States)

    Yadav, T.; Mukherjee, V.

    2018-05-01

    The potential energy scanning with respect to the different dihedral angles were performed to search possible numbers of dopamine (neutral) conformers and further, fifteen conformers of dopamine were identified on the basis of energy minima. Vibrational frequencies were calculated for all the conformers of dopamine. Density functional theory was employed to carry out all the computations. The exchange correlation functional B3LYP and the basis set 6-31++G(d,p) were included in DFT calculation. The FTIR and FT-Raman spectra of dopamine hydrochloride were also recorded in the spectral region 400-4000 cm-1 and 50-4000 cm-1 respectively. The normal coordinate analysis was also performed to scale DFT calculated force constants and to calculate potential energy distributions. The detailed vibrational spectral analysis and the assignments of the bands, done on the best-fit basis comparison of the experimentally obtained and theoretically calculated IR and Raman spectra, match quite well indicating DFT calculations as very accurate source of normal mode assignments. The interaction of the most stable conformer of dopamine with HCl was also studied to know the effect of hydrogen bond on its geometry and dynamics. The stability of the dopamine in isolated and protonated forms arising from hyperconjugative interactions was also analyzed by natural bond orbital analysis.

  10. Resonant Raman and FTIR spectra of carbon doped GaN

    Science.gov (United States)

    Ito, S.; Kobayashi, H.; Araki, K.; Suzuki, K.; Sawaki, N.; Yamashita, K.; Honda, Y.; Amano, H.

    2015-03-01

    Intentionally carbon (C) doped (0 0 0 1)GaN was grown using C2H2 on a sapphire substrate by metalorganic vapor phase epitaxy. Optical spectra of the heavily doped samples were investigated at room temperature. In Raman spectra excited by the 325 nm line of a He-Cd laser, multiple LO phonon scattering signals up to 7th order were observed, and the A1(LO) phonon energy was determined to be 737.5 cm-1 (91.45 meV). In infrared reflectance spectra, on the other hand, a local vibration mode was found at 777.5 cm-1, which is attributed to a Ga-C bond in the GaN matrix suggesting that the C sits on an N site (CN). In spite of the strong suggestion of CN, the samples did not show p-type conduction. Possible origin of the carrier compensation is discussed in relation to the enhancement of defect related yellow luminescence in the photoluminescence spectra.

  11. Vibrational analysis of various irotopes of L-alanyl-L-alanine in aqueous solution: Vibrational Absorption (VA), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) Spectra

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R.M.; Knapp-Mohammady, M.

    2003-01-01

    . DFT Becke3LYP/6-31G* theory has been used to determine the geometry, Hessian, atomic polar tensors (APT), and atomic axial tensors (AAT), and the electric dipole-electric dipole polarizability derivatives (EDEDPD), which are required for us to simulate the VA, VCD, and Raman spectra. The electric...

  12. The Raman and SERS spectra of indigo and indigo-Ag2 complex: DFT calculation and comparison with experiment.

    Science.gov (United States)

    Ricci, Marilena; Lofrumento, Cristiana; Becucci, Maurizio; Castellucci, Emilio M

    2018-01-05

    Using time-dependent density functional theory in conjunction with B3LYP functional and LANL2DZ/6-31+g(d,p) basis sets, static and pre-resonance Raman spectra of the indigo-Ag 2 complex have been calculated. Structure optimization, excitation energies and pre-resonance Raman spectra of the indigo molecule have been obtained at the same level of theory. The available experimental Raman spectra at 1064, 785 and 514nm and the SERS spectra at 785 and 514nm have been well reproduced by the calculation. Experimental SERS spectra are confronted with the calculated pre-resonance Raman spectra obtained for the indigo-Ag 2 complex. The Raman activities calculated under the infinite lifetime approximation show a strong dependence upon the proximity to the energy and the oscillator strength of the excitation electronic transition. The comparison of the integrated EFs for indigo and indigo-Ag 2 calculated Raman spectra, gave some hints as to the enhancement mechanisms acting for the different excitation wavelengths. Whereas for excitation at a wavelength corresponding to 785nm, the enhancement mechanism for the Raman spectrum of the metal complex seems the chemical one, the strong increment (ten times) of the integrated EF of the Raman spectra of the complex in the case of 514nm excitation, suggests the onset of other enhancement mechanisms. Assuming that intra-cluster transitions with high oscillator strength can be thought of as to mimic surface plasmons excitations, we suggest the onset of the electromagnetic mechanisms (EM) as the origin of the Raman spectrum enhancement. Nevertheless, other enhancement effects cannot be ruled out, as a new molecular transition gains strength in the proximity of the excitation wavelength, as a consequence of the symmetry lowering of the molecule in the complex. A large variation across vibrational modes, by a factor of at least 10 4 , was found for the EFs. This large variation in the EFs can indicate that B-term Herzberg-Teller scattering

  13. FT-Raman spectra of cellulose and lignocellulose materials : “self-absorption” phenomenon and its implications for quantitative work

    Science.gov (United States)

    Umesh Agarwal; Nancy Kawai

    2003-01-01

    The phenomenon of “self-absorption” was found to exist in the FT-Raman spectra of cellulose and thermomechanical pulp (TMP), but not in the spectrum of milled wood lignin. For cellulose and TMP, the effect was responsible for reducing the intensity of the Raman bands in the C-H stretch region. Several factors including sampling position, sample thickness, and moisture...

  14. Pressure-induced change in the Raman spectra of ionic liquid [DEME][BF4]-H2O mixtures

    International Nuclear Information System (INIS)

    Imai, Y; Abe, H; Goto, T; Miyashita, T; Yoshimura, Y

    2010-01-01

    We have measured Raman spectral changes of N,N,diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate, [DEME][BF 4 ]-H 2 O mixtures under high pressure. All the Raman spectra of mixtures of water concentrations below 50.0 mol% H 2 O changed at around 1 GPa at room temperature. The spectrum at high pressure is completely different from that obtained by cooling the sample at a normal pressure.

  15. The Utilization of Low Frequency Raman Spectra of Gases for the Study of Molecules with Large Amplitude Vibration

    Institute of Scientific and Technical Information of China (English)

    James R. Durig; Sarah Xiao-hua Zhou; Joshua Klaassen; Arindam Ganguly

    2009-01-01

    The utilization of the Raman spectra of the low frequency bending mode for three quasi-linear molecules, disiloxane, (SiH3)2 O; methylisocyanate, CH3NCO; and dimethy lisocyanate, (CH3)2SiHNCO for observing the low frequency anharmonic bending vibration is demonstrated which is superior to the corresponding far infrared spectra. From the observed frequencies from the Raman spectra the potential function governing the heavy atom motion to linearity has been obtained from which the barrier has been determined. These experimental values are compared to the ab ini-tio predicted values. Also low frequency Raman spectra of the ring puckering vibration of chlorocy-clobutane, c-C4H7Cl, bromocyclobutane, c-C4H7Br, and aminocyclobutane, c-C4H7NH2, have been utilized to obtain the potential function governing the ring inversion for these molecules. The deter-mined barriers to planarity are compared to those obtained from MP2 (full) ab initio and density functional theory B3LYP calculations by utilizing a variety of basis sets. For all of these studies it is shown that the Raman spectra are superior to the infrared spectra for determining the frequencies of the excited state transitions.

  16. FTIR and FT-Raman spectra and density functional computations of the vibrational spectra, molecular geometry and atomic charges of the biomolecule: 5-bromouracil

    Czech Academy of Sciences Publication Activity Database

    Rastogi, V.K.; Palafox, M. A.; Mittal, L.; Peica, N.; Keifer, W.; Lang, Kamil; Ojha, S.P.

    2007-01-01

    Roč. 38, č. 10 (2007), s. 1227-1241 ISSN 0377-0486 Institutional research plan: CEZ:AV0Z40320502 Keywords : FTIR and FT-Raman spectra * density functional computations * molecular geometry Subject RIV: CA - Inorganic Chemistry Impact factor: 3.514, year: 2007

  17. Temperature dependence of Raman spectra of Basub(0.25)Srsub(0.75)Nbsub(2)Osub(6) crystal

    International Nuclear Information System (INIS)

    Rustamov, Kh.Sh.; Gorelik, V.S.; Kuz'minov, Yu.S.; Peregudov, G.V.; Sushchinskij, M.M.

    1976-01-01

    The nature of the changes is studied in the Raman spectra in a crystal of Basub(x)Srsub(1-x)Nasub(2)Osub(6) (x=0.25) with the temperature range of 80 to 373 K. Normal procedure was applied with the use of an argon laser (Λ=4880 A) and a DFS-12 spectrometer. It has been established that at low temperatures the spectrum becomes more clear-cut; in the low-frequency range some sharp lines appear in the immediate vicinity of the exciting line. On heating of the crystal one observes a redistribution of the intensity in the Raman spectrum and a general displacement of the low-frequency Raman spectrum and a general displacement of the low-frequency Raman spectrum toward the exciting line. The nature of the frequency shifts some Raman maxima was investigated, and certain anomalies were observed in the vicinity of the phase transition point

  18. Kernel principal component analysis residual diagnosis (KPCARD): An automated method for cosmic ray artifact removal in Raman spectra

    International Nuclear Information System (INIS)

    Li, Boyan; Calvet, Amandine; Casamayou-Boucau, Yannick; Ryder, Alan G.

    2016-01-01

    A new, fully automated, rapid method, referred to as kernel principal component analysis residual diagnosis (KPCARD), is proposed for removing cosmic ray artifacts (CRAs) in Raman spectra, and in particular for large Raman imaging datasets. KPCARD identifies CRAs via a statistical analysis of the residuals obtained at each wavenumber in the spectra. The method utilizes the stochastic nature of CRAs; therefore, the most significant components in principal component analysis (PCA) of large numbers of Raman spectra should not contain any CRAs. The process worked by first implementing kernel PCA (kPCA) on all the Raman mapping data and second accurately estimating the inter- and intra-spectrum noise to generate two threshold values. CRA identification was then achieved by using the threshold values to evaluate the residuals for each spectrum and assess if a CRA was present. CRA correction was achieved by spectral replacement where, the nearest neighbor (NN) spectrum, most spectroscopically similar to the CRA contaminated spectrum and principal components (PCs) obtained by kPCA were both used to generate a robust, best curve fit to the CRA contaminated spectrum. This best fit spectrum then replaced the CRA contaminated spectrum in the dataset. KPCARD efficacy was demonstrated by using simulated data and real Raman spectra collected from solid-state materials. The results showed that KPCARD was fast ( 1 million) Raman datasets. - Highlights: • New rapid, automatable method for cosmic ray artifact correction of Raman spectra. • Uses combination of kernel PCA and noise estimation for artifact identification. • Implements a best fit spectrum replacement correction approach.

  19. Characteristics of laser irradiated Hg sub 0 ,835 Cd sub 0 ,165 Te analysed by resonant Raman spectroscopy

    International Nuclear Information System (INIS)

    Scepanovic, M.; Jevtic, M.

    1998-01-01

    The characteristics of Hg sub 0 ,835 Cd sub 0 ,165 Te sample irradiated by a nanosecond Nd: YAG laser pulse are investigated using a resonant Raman spectroscopy. The pulse energy density of 100 mJ/cm sup 2 is close to the energy threshold of material melting under the irradiated conditions. The presented Raman spectra of the unirradiated and irradiated sample parts point out that the laser irradiation induced a little concentration change in the surface sample layers without the essential structural changes (author)

  20. Second-order Raman spectra of LiHxD1-x crystals

    International Nuclear Information System (INIS)

    Plekhanov, V.G.

    1994-01-01

    High-resolution Raman spectra of LiH x D 1-x cubic crystals were measured for the first time in a wide concentration range (0≤x≤1) at room temperature. The results agree well with data on inelastic neutron scattering and direct calculations of the lattice dynamics for LiH and LiD crystals. This allows one to assign the observed spectral features to the phonon excitations in X-, W-, L-, and K-points of the Brillouin zone. Spectra of LiD exhibit the high-frequency maximum with a pronounced doubled structure. This fact and the dependence of the maximum intensity on the excitation laser frequency provide clear evidence that the maximum is due to excitation of LO(Γ)-phonons in pure or mixed crystals. In the x approx-lt 0.4 range, the LO-phonons manifest themselves in the spectra of both pure LiD and mixed LiH x D 1-x crystals, which demonstrates for the first time their two-mode character in this concentration range. This conclusion is in contradiction with predictions of the coherent potential model. In this paper, causes of this conflict are briefly discussed. 36 refs., 5 figs., 2 tabs

  1. Time resolved resonance Raman spectra of anilino radical and aniline radical cation

    International Nuclear Information System (INIS)

    Tripathi, G.N.R.; Schuler, R.H.

    1987-01-01

    We report, in this paper, submicrosecond time resolved resonance Raman spectra of anilino radical and its radical cation as observed in pulse radiolytic studies of the oxidation of aniline in aqueous solution. By excitation in resonance with the broad and weak electronic transition of anilino radical at 400 nm (ε--1250 M -1 cm -1 ) we have observed, for the first time, the vibrational features of this radical. The Wilson ν 8 /sub a/ ring stretching mode at 1560 cm -1 is most strongly resonance enhanced. The ν 7 /sub a/ CN stretching band at 1505 cm -1 , which is shifted to higher frequency by 231 cm -1 with respect to aniline, is also prominent. The frequency of this latter mode indicates that the CN bond in the radical has considerable double bond character. The Raman spectrum of aniline radical cation, excited in resonance with the --425 nm electronic absorption (ε--4000 M -1 cm -1 ), shows features which are similar to phenoxyl radical. Most of the observed frequencies of this radical in solution are in good agreement with vibrational energies determined by recent laser photoelectron spectroscopic studies in the vapor phase. The bands most strongly enhanced in the resonance Raman spectrum are, however, weak in the photoelectron spectrum. While the vibrational frequencies observed for anilino radical and its isoelectronic cation are quite similar, the resonance enhancement patterns are very different. In particular the ν 14 b 2 mode of anilino radical observed at 1324 cm -1 is highly resonance enhanced because of strong vibronic coupling between the 400 nm 2 A 2 -- 2 B 1 and the higher 2 B 1 -- 2 B 1 electronic transitions

  2. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film

    Energy Technology Data Exchange (ETDEWEB)

    Xia Minggang [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, 710049 (China); Center on Experimental Physics, School of Science, Xi' an Jiaotong University, 710049 (China); Su Zhidan; Zhang Shengli [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, 710049 (China); Department of Applied Physics, School of Science, Xi' an Jiaotong University, 710049 (China)

    2012-09-15

    The Raman spectra of bilayer graphene covered with poly(methyl methacrylate) (PMMA) were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  3. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate thin film

    Directory of Open Access Journals (Sweden)

    Minggang Xia

    2012-09-01

    Full Text Available The Raman spectra of bilayer graphene covered with poly(methyl methacrylate (PMMA were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  4. Raman spectra of the system TeCl4-SbCl5

    International Nuclear Information System (INIS)

    Brockner, W.; Demiray, A.F.

    1980-01-01

    Raman spectra of the solid and molten TeCl 4 . SbCl 5 addition compound and of some TeCl 4 -SbCl 5 mixtures have been recorded. Two modifications of the crystalline TeCl 4 -SbCl 5 compound have been found. The structure of the melt can be described by the equilibrium TeCl 3 + + SbCl 6 - reversible TeCl 4 + SbCl 5 lying on the left side. Mixtures with other stoichiometry contain the 1:1 adduct only and excess TeCl 4 or SbCl 5 , respectively. Such melts are built up by the ionic species TeCl 3 + and SbCl 6 - also and TeCl 4 or SbCl 5 according to stoichiometry. (author)

  5. Raman spectra of MgB2 at high pressure and topological electronic transition

    International Nuclear Information System (INIS)

    Meletov, K.P.; Kulakov, M.P.; Kolesnikov, N.N.; Arvanitidis, J.; Kourouklis, G.A.

    2002-01-01

    Raman spectra of the MgB 2 ceramic samples were measured as a function of pressure up to 32 GPa at room temperature. The spectrum at normal conditions contains a very broad peak at ∼ 590 cm -1 related to the E 2g phonon mode. The frequency of this mode exhibits a strong linear dependence in the pressure region from 5 to 18 GPa, whereas beyond this region the slope of the pressure-induced frequency shift is reduced by about a factor of two. The pressure dependence of the phonon mode up to ∼ 5 GPa exhibits a change in the slope as well as a hysteresis effect in the frequency vs. pressure behavior. These singularities in the E 2g mode behavior under pressure support the suggestion that MgB 2 may undergo a pressure-induced topological electronic transition [ru

  6. Infrared dispersion analysis and Raman scattering spectra of taurine single crystals

    Science.gov (United States)

    Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Dias, Anderson

    2018-01-01

    A comprehensive set of optical vibrational modes of monoclinic taurine crystals was determined by Raman scattering, and infrared reflectivity and transmission spectroscopies. By using appropriate scattering/reflection geometries, the vibrational modes were resolved by polarization and the most relevant modes of the crystal could be assigned. In particular, we were able to review the symmetry of the gerade modes and to resolve ambiguities in the literature. Owing to the non-orthogonal character of Bu modes in monoclinic crystals (lying on the optic axial plane), we carried out a generalized Lorentz dispersion analysis consisting of simultaneous adjust of infrared-reflectivity spectra at various light polarization angles. The Au modes (parallel to the C2-axis) were treated within the classical Lorentz model. The behavior of off-diagonal and diagonal terms of the complex dielectric tensors and the presence of anomalous dispersion were discussed as consequences of the low symmetry of the crystal.

  7. Raman spectra of TiO2 thin films deposited electrochemically and by spray pyrolysis

    International Nuclear Information System (INIS)

    Shishiyanu, S.; Vartic, V.; Shishiyanu, T.; Stratan, Gh.; Rusu, E.; Zarrelli, M.; Giordano, M.

    2013-01-01

    In this paper we present our experimental results concerning the fabrication of TiO 2 thin films by spray pyrolysis and electrochemical deposition method onto different substrates - Corning glass, Si and optical fibers. The surface morphology of the TiO 2 thin films have been investigated by Atomic Force Microscopy. Raman shift spectra measurements have been done for the optical characterization of the fabricated titania thin films. The post-growth rapid photothermal processing (RPP) at temperatures of 100-800 degrees Celsius for 1-3 min have been applied. Our experimental results prove that by the application of post-growth RPP is possible to essentially improve the crystallinity of the deposited TiO 2 films. (authors)

  8. Mid-infrared emission and Raman spectra analysis of Er(3+)-doped oxyfluorotellurite glasses.

    Science.gov (United States)

    Chen, Fangze; Xu, Shaoqiong; Wei, Tao; Wang, Fengchao; Cai, Muzhi; Tian, Ying; Xu, Shiqing

    2015-04-10

    This paper reports on the spectroscopic and structural properties in Er(3+)-doped oxyfluorotellurite glasses. The compositional variation accounts for the evolutions of Raman spectra, Judd-Ofelt parameters, radiative properties, and fluorescent emission. It is found that, when maximum phonon energy changes slightly, phonon density plays a crucial role in quenching the 2.7 μm emission generated by the Er(3+):(4)I11/2→(4)I13/2 transition. The comparative low phonon density contributes strong 2.7 μm emission intensity. The high branching ratio (18.63%) and large emission cross section (0.95×10(-20)  cm(2)) demonstrate that oxyfluorotellurite glass contained with 50 mol.% TeO2 has potential application in the mid-infrared region laser.

  9. Raman Spectra and Bulk Modulus of Nanodiamond in a Size Interval of 2-5 nm

    Science.gov (United States)

    Popov, Mikhail; Churkin, Valentin; Kirichenko, Alexey; Denisov, Viktor; Ovsyannikov, Danila; Kulnitskiy, Boris; Perezhogin, Igor; Aksenenkov, Viktor; Blank, Vladimir

    2017-10-01

    Nanodiamond in a 2-5-nm size interval (which is typical for an appearance of quantum confinement effect) show Raman spectra composed of 3 bands at 1325, 1600, and 1500 cm-1 (at the 458-nm laser excitation) which shifts to 1630 cm-1 at the 257-nm laser excitation. Contrary to sp2-bonded carbon, relative intensities of the bands do not depend on the 458- and 257-nm excitation wavelengths, and a halfwidth and the intensity of the 1600 cm-1 band does not change visibly under pressure at least up to 50 GPa. Bulk modulus of the 2-5-nm nanodiamond determined from the high-pressure study is around 560 GPa. Studied 2-5-nm nanodiamond was purified from contamination layers and dispersed in Si or NaCl.

  10. Resonance Raman spectra of the copper-sulfur chromophores in Achromobacter cycloclastes nitrite reductase.

    Science.gov (United States)

    Dooley, D M; Moog, R S; Liu, M Y; Payne, W J; LeGall, J

    1988-10-15

    Resonance Raman spectroscopy at ambient temperature and 77 K has been used to probe the structures of the copper sites in Achromobacter cycloclastes nitrite reductase. This enzyme contains three copper ions per protein molecule and has two principal electronic absorption bands with lambda max values of 458 and 585 nm. Comparisons between the resonance Raman spectra of nitrite reductase and blue copper proteins establish that both the 458 and 585 nm bands are associated with Cu(II)-S(Cys) chromophores. A histidine ligand probably is also present. Different sets of vibrational frequencies are observed with 457.9 nm (ambient) or 476.1 nm (77 K) excitation as compared with 590 nm (ambient) or 593 nm (77 K) excitation. Excitation profiles indicate that the 458 and 585 nm absorption bands are associated with separate [Cu(II)-S(Cys)N(His)] sites or with inequivalent and uncoupled cysteine ligands in the same site. The former possibility is considered to be more likely.

  11. Wavelet data processing of micro-Raman spectra of biological samples

    Science.gov (United States)

    Camerlingo, C.; Zenone, F.; Gaeta, G. M.; Riccio, R.; Lepore, M.

    2006-02-01

    A wavelet multi-component decomposition algorithm is proposed for processing data from micro-Raman spectroscopy (μ-RS) of biological tissue. The μ-RS has been recently recognized as a promising tool for the biopsy test and in vivo diagnosis of degenerative human tissue pathologies, due to the high chemical and structural information contents of this spectroscopic technique. However, measurements of biological tissues are usually hampered by typically low-level signals and by the presence of noise and background components caused by light diffusion or fluorescence processes. In order to overcome these problems, a numerical method based on discrete wavelet transform is used for the analysis of data from μ-RS measurements performed in vitro on animal (pig and chicken) tissue samples and, in a preliminary form, on human skin and oral tissue biopsy from normal subjects. Visible light μ-RS was performed using a He-Ne laser and a monochromator with a liquid nitrogen cooled charge coupled device equipped with a grating of 1800 grooves mm-1. The validity of the proposed data procedure has been tested on the well-characterized Raman spectra of reference acetylsalicylic acid samples.

  12. DFT study of IR and Raman spectra of phosphotrihydrazone dendrimer with terminal phenolic groups

    Science.gov (United States)

    Furer, V. L.; Vandyukov, A. E.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2017-09-01

    FT Raman and infrared spectra of phosphotrihydrazone (S)P[N(CH3)Ndbnd CHsbnd C6H4sbnd OH]3 (G0) were recorded. This compound is a zero generation phosphorus dendrimer with terminal phenolic groups. Optimal geometry and vibrational frequencies were calculated for G0 using the density functional theory (DFT). The molecule studied has C3 symmetry. In the molecule G0, each sbnd C6H4sbnd CHdbnd Nsbnd N(CH3)sbnd P arm is flat. Optimized geometric parameters correspond to experimental data. The core of the dendrimer manifests itself as a band at 647 cm-1 in the Raman spectrum of G0 related to Pdbnd S stretching. Phenolic end functions exhibit a well-defined band at 3374 cm-1 in the experimental IR spectrum of G0. The observed frequency of the OH stretching vibrations of the phenolic groups is lower than the theoretical value due to the intermolecular Osbnd H⋯O hydrogen bond. This hydrogen bond is also responsible for the higher intensity of this band in the experimental IR spectrum compared with the theoretical value. DFT calculations suggest full assignment of normal modes. Global and local descriptors characterize the reactivity of the core and end groups.

  13. Quantitative analysis of sugar composition in honey using 532-nm excitation Raman and Raman optical activity spectra

    Czech Academy of Sciences Publication Activity Database

    Šugar, Jan; Bouř, Petr

    2016-01-01

    Roč. 47, č. 11 (2016), s. 1298-1303 ISSN 0377-0486 R&D Projects: GA ČR GA15-09072S Institutional support: RVO:61388963 Keywords : honey * sugar mixtures * spectral decompositions * Raman spectroscopy * Raman optical activity Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.969, year: 2016

  14. Fraction of boroxol rings in vitreous boron oxide from a first-principles analysis of Raman and NMR spectra.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2005-09-23

    We determine the fraction f of B atoms belonging to boroxol rings in vitreous boron oxide through a first-principles analysis. After generating a model structure of vitreous B2O3 by first-principles molecular dynamics, we address a large set of properties, including the neutron structure factor, the neutron density of vibrational states, the infrared spectra, the Raman spectra, and the 11B NMR spectra, and find overall good agreement with corresponding experimental data. From the analysis of Raman and 11B NMR spectra, we yield consistently for both probes a fraction f of approximately 0.75. This result indicates that the structure of vitreous boron oxide is largely dominated by boroxol rings.

  15. Conformational states of N-acylalanine dithio esters: correlation of resonance Raman spectra with structures

    International Nuclear Information System (INIS)

    Lee, H.; Angus, R.H.; Storer, A.C.; Varughese, K.I.; Carey, P.R.

    1988-01-01

    The conformational states of N-acylalanine dithio esters, involving rotational isomers about the RC(=O)NH-CH(CH 3 ) and NHCH(CH 3 )-C(=S) bonds, are defined and compared to those of N-acylglycine dithio esters. The structure of N-(p-nitrobenzoyl)-DL-alanine ethyl dithio ester has been determined by X-ray crystallographic analysis; it is a B-type conformer with the amide N atom cis to the thiol sulfur. Raman and resonance Raman (RR) measurements on this compound and for the B conformers of solid N-benzoyl-DL-alanine ethyl dithio ester and N-(β-phenylpropionyl)-DL-alanine ethyl dithio ester and its NHCH(CD 3 )C(=S) and NHCH(CH 3 ) 13 C(=S) analogues are used to set up a library of RR data for alanine-based dithio esters in a B-conformer state. RR data for this solid material in its isotopically unsubstituted and CH(C-D 3 )C(=S) and CH(CH 3 ) 13 C(=S) forms provide information on the RR signatures of alanine dithio esters in A-like conformations. RR spectra are compared for the solid compounds, for N-(p-nitrobenzoyl)-DL-alanine, N-(β-phenylpropionyl)-DL-alanine, and (methyloxycarbonyl)-L-phenylalanyl-DL-alanine ethyl dithio ester, and for several 13 C=S- and CD 3 -substituted analogues in CCl 4 or aqueous solutions. The RR data demonstrate that the alanine-based dithio esters take up A, B, and C 5 conformations in solution. The RR spectra of these conformers are clearly distinguishable from those for the same conformers of N-acylglycine dithio esters. However, the crystallographic and spectroscopic results show that the results show that the conformational properties of N-acylglycine and N-acylalanine dithio esters are very similar

  16. Theoretical Study of Infrared and Raman Spectra of Hydrated Magnesium Sulfate Salts

    Science.gov (United States)

    Chaban, Galina M.; Huo, Winifred M.; Lee, Timothy J.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Harmonic and anharmonic vibrational frequencies, as well as infrared and Raman intensities, are calculated for MgSO4.nH20 (n=1-3). Electronic structure theory at the second order Moller-Plesset perturbation theory (MP2) level with a triple-zeta + polarization (TZP) basis set is used to determine the geometry, properties, and vibrational spectra of pure and hydrated MgSO4 salts. The direct vibrational self-consistent field (VSCF) method and its correlation corrected (CC-VSCF) extension are used to determine anharmonic corrections to vibrational frequencies and intensities for the pure MgSO4 and its complex with one water molecule. Very significant differences are found between vibrational of water molecules in complexes with MgSO4 and pure water. Some of the O-H stretching frequencies are shifted to the red very significantly (by up to 1500-2000/cm) upon complexation with magnesium sulfate. They should be observed between 1700 and 3000/cm in a region very different from the corresponding O-H stretch frequency region of pure water (3700-3800/cm). In addition, the SO2 stretching vibrations are found at lower frequency regions than the water vibrations. They can serve as unique identifiers for the presence of sulfate salts. The predicted infrared and Raman spectra should be of valuable help in the design of future missions and analysis of observed data from the ice surface of Jupiter's moon Europa that possibly contains hydrated MgSO4 salts.

  17. Surface-enhanced Raman scattering spectra revealing the inter-cultivar differences for Chinese ornamental Flos Chrysanthemum: a new promising method for plant taxonomy

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2017-10-01

    Full Text Available Abstract Background Flos Chrysanthemi, as a part of Chinese culture for a long history, is valuable for not only environmental decoration but also the medicine and food additive. Due to their voluminously various breeds and extensive distributions worldwide, it is burdensome to make recognition and classification among numerous cultivars with conventional methods which still rest on the level of morphologic observation and description. As a fingerprint spectrum for parsing molecular information, surface-enhanced Raman scattering (SERS could be a suitable candidate technique to characterize and distinguish the inter-cultivar differences at molecular level. Results SERS spectra were used to analyze the inter-cultivar differences among 26 cultivars of Chinese ornamental Flos Chrysanthemum. The characteristic peaks distribution patterns were abstracted from SERS spectra and varied from cultivars to cultivars. For the bands distributed in the pattern map, the similarities in general showed their commonality while in the finer scales, the deviations and especially the particular bands owned by few cultivars revealed their individualities. Since the Raman peaks could characterize specific chemical components, those diversity of patterns could indicate the inter-cultivar differences at the chemical level in fact. Conclusion In this paper, SERS technique is feasible for distinguishing the inter-cultivar differences among Flos Chrysanthemum. The Raman spectral library was built with SERS characteristic peak distribution patterns. A new method was proposed for Flos Chrysanthemum recognition and taxonomy.

  18. Temperature dependence of low-frequency polarized Raman scattering spectra in TlInS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Paucar, Raul; Wakita, Kazuki [Electronics and Computer Engineering, Chiba Institute of Technology, Chiba (Japan); Shim, YongGu; Mimura, Kojiro [Graduate School of Engineering, Osaka Prefecture University, Osaka (Japan); Alekperov, Oktay; Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2017-06-15

    In this work, we examined phase transitions in the layered ternary thallium chalcogenide TlInS{sub 2} by studying the temperature dependence of polarized Raman spectra with the aid of the Raman confocal microscope system. The Raman spectra were measured over the temperature range of 77-320 K (which includes the range of successive phase transitions) in the low-frequency region of 35-180 cm{sup -1}. The optical phonons that showed strong temperature dependence were identified as interlayer vibrations related to phase transitions, while the phonons that showed weak temperature dependence were identified as intralayer vibrations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Signal-to-Noise Contribution of Principal Component Loads in Reconstructed Near-Infrared Raman Tissue Spectra

    NARCIS (Netherlands)

    Grimbergen, M. C. M.; van Swol, C. F. P.; Kendall, C.; Verdaasdonk, R. M.; Stone, N.; Bosch, J. L. H. R.

    The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device

  20. An Investigation on Micro-Raman Spectra and Wavelet Data Analysis for Pemphigus Vulgaris Follow-up Monitoring.

    Science.gov (United States)

    Camerlingo, Carlo; Zenone, Flora; Perna, Giuseppe; Capozzi, Vito; Cirillo, Nicola; Gaeta, Giovanni Maria; Lepore, Maria

    2008-06-01

    A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications.

  1. An Investigation on Micro-Raman Spectra and Wavelet Data Analysis for Pemphigus Vulgaris Follow-up Monitoring.

    Directory of Open Access Journals (Sweden)

    Maria Lepore

    2008-06-01

    Full Text Available A wavelet multi-component decomposition algorithm has been used for data analysis of micro-Raman spectra of blood serum samples from patients affected by pemphigus vulgaris at different stages. Pemphigus is a chronic, autoimmune, blistering disease of the skin and mucous membranes with a potentially fatal outcome. Spectra were measured by means of a Raman confocal microspectrometer apparatus using the 632.8 nm line of a He-Ne laser source. A discrete wavelet transform decomposition method has been applied to the recorded Raman spectra in order to overcome problems related to low-level signals and the presence of noise and background components due to light scattering and fluorescence. This numerical data treatment can automatically extract quantitative information from the Raman spectra and makes more reliable the data comparison. Even if an exhaustive investigation has not been done in this work, the feasibility of the follow-up monitoring of pemphigus vulgaris pathology has been clearly proved with useful implications for the clinical applications.

  2. Raman spectra of long chain hydrocarbons: anharmonic calculations, experiment and implications for imaging of biomembranes.

    Science.gov (United States)

    Šebek, Jiří; Pele, Liat; Potma, Eric O; Gerber, R Benny

    2011-07-28

    First-principles anharmonic vibrational calculations are carried out for the Raman spectrum of the C-H stretching bands in dodecane, and for the C-D bands in the deuterated molecule. The calculations use the Vibrational Self-Consistent Field (VSCF) algorithm. The results are compared with liquid-state experiments, after smoothing the isolated-molecule sharp-line computed spectra. Very good agreement between the computed and experimental results is found for the two systems. The combined theoretical and experimental results provide insights into the spectrum, elucidating the roles of symmetric and asymmetric CH(3) and CH(2) hydrogenic stretches. This is expected to be very useful for the interpretation of spectra of long-chain hydrocarbons. The results show that anharmonic effects on the spectrum are large. On the other hand, vibrational degeneracy effects seem to be rather modest at the resolution of the experiments. The degeneracy effects may have more pronounced manifestations in higher-resolution experiments. The results show that first-principles anharmonic vibrational calculations for hydrocarbons are feasible, in good agreement with experiment, opening the way for applications to many similar systems. The results may be useful for the analysis of CARS imaging of lipids, for which dodecane is a representative molecule. It is suggested that first-principles vibrational calculations may be useful also for CARS imaging of other systems. This journal is © the Owner Societies 2011

  3. PCA-MLP SVM distinction of salivary Raman spectra of dengue fever infection.

    Science.gov (United States)

    Radzol, A R M; Lee, Khuan Y; Mansor, W; Wong, P S; Looi, I

    2017-07-01

    Dengue fever (DF) is a disease of major concern caused by flavivirus infection. Delayed diagnosis leads to severe stages, which could be deadly. Of recent, non-structural protein (NS1) has been acknowledged as a biomarker, alternative to immunoglobulins for early detection of dengue in blood. Further, non-invasive detection of NS1 in saliva makes the approach more appealing. However, since its concentration in saliva is less than blood, a sensitive and specific technique, Surface Enhanced Raman Spectroscopy (SERS), is employed. Our work here intends to define an optimal PCA-SVM (Principal Component Analysis-Support Vector Machine) with Multilayer Layer Perceptron (MLP) kernel model to distinct between positive and negative NS1 infected samples from salivary SERS spectra, which, to the best of our knowledge, has never been explored. Salivary samples of DF positive and negative subjects were collected, pre-processed and analyzed. PCA and SVM classifier were then used to differentiate the SERS analyzed spectra. Since performance of the model depends on the PCA criterion and MLP parameters, both are examined in tandem. Its performance is also compared to our previous works on simulated NS1 salivary samples. It is found that the best PCA-SVM (MLP) model can be defined by 95 PCs from CPV criterion with P1 and P2 values of 0.01 and -0.2 respectively. A classification performance of [76.88%, 85.92%, 67.83%] is achieved.

  4. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400 1400 cm 1

    Science.gov (United States)

    2015-11-24

    Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400...1400 cm‐1 R. L. Aggarwal, L. W. Farrar, S. Di Cecca, and T. H. Jeys MIT Lincoln Laboratory, Lexington, MA 02420‐9108 Raman spectra of...region 400‐1400 cm‐1. A relatively compact (< 2’x2’x2’), sensitive, 532 nm 10 W CW Raman system with double‐pass

  5. Raman Spectra and Cross Sections of Ammonia, Chlorine, Hydrogen Sulfide, Phosgene, and Sulfur Dioxide Toxic Gases in the Fingerprint Region 400-1400 cm-1

    Science.gov (United States)

    2015-12-14

    Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400...1400 cm‐1 R. L. Aggarwal, L. W. Farrar, S. Di Cecca, and T. H. Jeys MIT Lincoln Laboratory, Lexington, MA 02420‐9108 Raman spectra of...region 400‐1400 cm‐1. A relatively compact (< 2’x2’x2’), sensitive, 532 nm 10 W CW Raman system with double‐pass

  6. Extracting Optical Fiber Background from Surface-Enhanced Raman Spectroscopy Spectra Based on Bi-Objective Optimization Modeling.

    Science.gov (United States)

    Huang, Jie; Shi, Tielin; Tang, Zirong; Zhu, Wei; Liao, Guanglan; Li, Xiaoping; Gong, Bo; Zhou, Tengyuan

    2017-08-01

    We propose a bi-objective optimization model for extracting optical fiber background from the measured surface-enhanced Raman spectroscopy (SERS) spectrum of the target sample in the application of fiber optic SERS. The model is built using curve fitting to resolve the SERS spectrum into several individual bands, and simultaneously matching some resolved bands with the measured background spectrum. The Pearson correlation coefficient is selected as the similarity index and its maximum value is pursued during the spectral matching process. An algorithm is proposed, programmed, and demonstrated successfully in extracting optical fiber background or fluorescence background from the measured SERS spectra of rhodamine 6G (R6G) and crystal violet (CV). The proposed model not only can be applied to remove optical fiber background or fluorescence background for SERS spectra, but also can be transferred to conventional Raman spectra recorded using fiber optic instrumentation.

  7. Composition and Structure of Microalgae Indicated in Raman and Hyperspectral Spectra and Scanning Electron Microscopy: from Cyanobacteria to Isolates from Coal-bed Methane Water Ponds

    Science.gov (United States)

    Zhou, X.; Zhou, Z.; Apple, M. E.; Spangler, L.

    2017-12-01

    Microalgae can be used for many potential applications for human's benefits. These potential applications included biofuel production from microalgae, biofiltering to cleaning water, chemical extraction as nutrients, etc. However, exploration for such applications is still in the early stages. For instance, many species and strains of microalgae have been investigated for their lipid content and growing conditions for efficient productions of lipids, but no specific species have yet been chosen as a fuel source for commercial production because of the huge biodiversity and subsequently a wide range of species that can potentially be exploited for biodiesel production, the great variability between species in their fuel precursor producing capabilities. Numerous coal-bed methane water ponds were established in the world as a consequence of coal-bed methane production from deep coal seams. Microalgae were isolated from such ponds and potentially these ponds can be used as venues for algal production. In this study, we characterized chemical composition and structure of the Cyanobacteria Anabaena cylindrica (UTEX # 1611) and isolates from coal-bed methane ponds Nannochloropsis gaditana and PW95 using Laser Raman Spectroscopy (LRS), hyperspectral spectra, and Scanning Electron Microscope (SEM). The objective is to seek bio-indicators for potential applications of these microalgae species. For instance, indicator of rich content lips shows the great potential for biofuel production. Fig.1 shows an example of the Raman spectra of the three species in desiccated form. The spectral peaks were isolated and the corresponding composition was identified. The insert at the right hand of the Raman spectrum of each species is the micrograph of the cell morphology under a microscope. The Raman spectra of cells in aquatic solutions were also obtained and compared with the desiccated form. The hyperspectral reflectances of the three species show quite different characteristics and

  8. Experimental and theoretical study on Raman spectra of magnesium fluoride clusters and solids.

    Science.gov (United States)

    Neelamraju, S; Bach, A; Schön, J C; Fischer, D; Jansen, M

    2012-11-21

    In this study, the Raman and IR spectra of a large number of isomers of MgF(2) clusters and of possible bulk polymorphs of MgF(2) are calculated and compared with experimental data observed using a low-temperature atom beam deposition. The bulk polymorphs were taken from earlier work, while the cluster modifications for the neutral (MgF(2))(n) (n = 1-10) clusters and charged clusters (up to the trimer anion and cation, (Mg(3)F(7))(-) and (Mg(3)F(5))(+), respectively) are determined in the present work by global energy landscape explorations using simulated annealing. These theoretical calculations are complemented by an experimental study on both the vapor phase and the deposited films of MgF(2), which are generated in a low-temperature atom beam deposition setup for the synthesis of MgF(2) bulk phases. The MgF(2) vapor and film are characterized via Raman spectroscopy of the MgF(2) gas phase species embedded in an Ar-matrix and of the MgF(2)-films deposited onto a cooled substrate, respectively. We find that, in the vapor phase, there are monomers and dimers and charged species to be present in our experimental setup. Furthermore, the results suggest that in the amorphous bulk MgF(2), rutile-like domains are present and MgF(2) clusters similar to those in the matrix. Finally, peaks at about 800 cm(-1), which are in the same range as the A(g) modes of clusters with dangling fluorine atoms connected to three-coordinated Mg atoms, indicate that such dangling bonds are also present in amorphous MgF(2).

  9. Electronic Raman scattering with excitation between localized states observed in the zinc M{sub 2,3} soft x-ray spectra of ZnS

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.; Callcott, T.A.; Jia, J.J. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1997-04-01

    Zn M{sub 2,3} soft x-ray fluorescence (SXF) spectra of ZnS and ZnS{sub .5}Se{sub .5} excited near threshold show strong inelastic scattering effects that can be explained using a simple model and an inelastic scattering theory based on second order perturbation theory. This scattering is often called electronic resonance Raman scattering. Tulkki and Aberg have developed this theory in detail for atomic systems, but their treatment can be applied to solid systems by utilizing electronic states characteristic of solids rather than of atomic systems.

  10. Infrared and Raman Spectra of Magnesium Ammonium Phosphate Hexahydrate (Struvite) and its Isomorphous Analogues. VIII. Spectra of Protiated and Partially Deuterated Magnesium Rubidium Phosphate Hexahydrate and Magnesium Thallium Phosphate Hexahydrate.

    Science.gov (United States)

    Soptrajanov, Bojan; Cahil, Adnan; Najdoski, Metodija; Koleva, Violeta; Stefov, Viktor

    2011-09-01

    The infrared and Raman spectra of magnesium rubidium phosphate hexahydrate MgRbPO4 • 6H2O and magnesium thallium phosphate hexahydrate, MgTlPO4 • 6H2O were recorded at room temperature (RT) and the boiling temperature of liquid nitrogen (LNT). To facilitate their analysis, also recorded were the spectra of partially deuterated analogues with varying content of deuterium. The effects of deuteration and those of lowering the temperature were the basis of the conclusions drawn regarding the origin of the observed bands which were assigned to vibrations which are predominantly localized in the water molecules (four crystallographically different types of such molecules exist in the structures) and those with PO43- character. It was concluded that in some cases coupling of phosphate and water vibrations is likely to take place. The appearance of the infrared spectra in the O-H stretching regions of the infrared spectra is explained as being the result of an extensive overlap of bands due to components of the fundamental stretching modes of the H2O units with a possible participation of bands due to second-order transitions. A broad band reminiscent of the B band of the well-known ABC trio characteristic of spectra of substances containing strong hydrogen bonds in their structure was found around 2400 cm-1 in the infrared spectra of the two studied compounds.

  11. Measurement and Simulation of Spontaneous Raman Scattering Spectra in High-Pressure, Fuel-Rich H2-Air Flames

    Science.gov (United States)

    Kojima, Jun; Nguyen, Quang-Viet

    2003-01-01

    Rotational vibrational spontaneous Raman spectra (SRS) of H2, N2, and H2O have been measured in H2-air flames at pressures up to 30 atm as a first stem towards establishing a comprehensive Raman spectral database for temperatures and species in high-pressure combustion. A newly developed high-pressure burner facility provides steady, reproducible flames with a high degree of flow precision. We have obtained an initial set of measurements that indicate the spectra are of sufficient quality in terms of spectral resolution, wavelength coverage, and signal-to-noise ratio for use in future reference standards. The fully resolved Stokes and anti-Stokes shifted SRS spectra were collected in the visible wavelength range (400-700 nm) using pulse-stretched 532 nm excitation and a non-intensified CCD spectrograph with a high-speed shutter. Reasonable temperatures were determined via the intensity distribution of rotational H2 lines at stoichiometry and fuel-rich conditions. Theoretical Raman spectra of H2 were computed using a semi-classical harmonic-oscillator model with recent pressure broadening data and were compared with experimental results. The data and simulation indicated that high-J rotational lines of H2 might interfere with the N2 vibrational Q-branch lines, and this could lead to errors in N2-Raman thermometry based on the line-fitting method. From a comparison of N2 Q-branch spectra in lean H2 low-pressure (1.2 atm) and high-pressure (30 atm) flames, we found no significant line-narrowing or -broadening effects at the current spectrometer resolution of 0.04 nm.

  12. Hydrostatic pressure and temperature effect on the Raman spectra of the molecular crystal 2-amine-1,3,4-thiadiazole

    Science.gov (United States)

    de Toledo, T. A.; da Costa, R. C.; Bento, R. R. F.; Pizani, P. S.

    2018-03-01

    The structural, thermal and vibrational properties of the molecular crystal 2-amine-1,3,4-thiadiazole (ATD) were investigated combining X-ray diffraction, infrared spectroscopy, Raman scattering (in solid and in solution) and thermal analysis as experimental techniques and first principle calculations based on density functional theory using PZ, BLYP in condensed-phase and B3LYP/cc-pVTZ in isolated molecule methods. The structural stability and phonon anharmonicity were also studied using Raman spectroscopy at different temperatures and hydrostatic pressures. A reasonable agreement was obtained between calculated and experimental results. The main difference between experimental and computed structural and vibrational spectra occurred in the intermolecular bond distance Nsbnd H⋯N and stretching modes of NH2. The vibrational spectra were interpreted and assigned based on group theory and functional group analysis assisted by theoretical results, which led to a more comprehensive knowledge about external and internal modes at different thermodynamic conditions. As temperature increases, it was observed the line-width increases and red-shifts, indicating a phonon anharmonicity without a temperature-induced phase transition in the range 10-413 K. However, ATD crystal undergoes a phase transition in the temperature range 413-475 K, as indicated by thermal analysis curve and Raman spectra. Furthermore, increasing pressure from ambient to 3.1 GPa, it was observed the splitting of the external Raman bands centered at 122 cm-1 (at 0.2 GPa), 112 cm-1 (1.1 GPa), 93 cm-1 (2.4 GPa) in two components as well as the appearance of new band near 50 cm-1 at 1.1 GPa, indicating a possible phase-transition. The blue-shift of the Raman bands was associated to anharmonicity of the interatomic potential caused by unit cell contraction.

  13. DFT study of structure, IR and Raman spectra of the fluorescent "Janus" dendron built from cyclotriphosphazene core

    Science.gov (United States)

    Furer, V. L.; Vandyukova, I. I.; Vandyukov, A. E.; Fuchs, S.; Majoral, J. P.; Caminade, A. M.; Kovalenko, V. I.

    2011-11-01

    The FTIR and FT-Raman spectra of the zero generation dendron, possessing five fluorescent dansyl terminal groups, cyclotriphosphazene core, and one carbamate function G0v were studied. The structural optimization and normal mode analysis were performed for G0v dendron on the basis of the density functional theory (DFT). The calculated geometrical parameters and harmonic vibrational frequencies are predicted in a good agreement with the experimental data. It was found that dendron molecule G0v has a concave lens structure with slightly non-planar cyclotriphosphazene core. The experimental IR and Raman spectra of G0v dendron were interpreted by means of potential energy distributions. Relying on DFT calculations a complete vibrational assignment is proposed. The frequency of ν(N-H) band in the IR spectrum reveal the presence of H-bonds in the G0v dendron.

  14. Strong spin-phonon coupling in infrared and Raman spectra of SrMnO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Goian, Veronica; Skoromets, Volodymyr; Hejtmánek, Jiří; Bovtun, Viktor; Kempa, Martin; Borodavka, Fedir; Vaněk, Přemysl; Belik, A.A.; Lee, J.H.; Pacherová, Oliva; Rabe, K.M.

    2014-01-01

    Roč. 89, č. 6 (2014), "064308-1"-"064308-9" ISSN 1098-0121 R&D Projects: GA MŠk LH13048; GA ČR GAP204/12/1163; GA MŠk LD12026; GA ČR GP14-14122P Institutional support: RVO:68378271 Keywords : multiferroics * spin-phonon coupling * infrared and Raman spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  15. IR and Raman spectra of LaH(SeO3)2 and FeH(SeO3)2

    International Nuclear Information System (INIS)

    Ratheesh, R.; Suresh, G.; Nayar, V.U.; Morris, R.E.

    1995-01-01

    The infrared and Raman spectra of LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals are recorded and analysed. Bands confirm the coexistence of HSeO 3 - and SeO 3 2- ions in both LaH(SeO 3 ) 2 and FeH(SeO 3 ) 2 crystals. The Se-OH stretching vibrations are observed to be at lower wavenumbers in LaH(SeO 3 ) 2 than that in the iron compound in agreement with the short O-O distance in the former. Observed bands indicate that the SeO 3 2- ions are more angularly distorted in FeH(SeO 3 ) 2 crystal. ABC bands, characteristic of strong hydrogen bonded systems are observed in the infrared spectra of both the crystals. (author). 15 refs., 2 figs., 1 tab

  16. Reflectance variability of surface coatings reveals characteristic eigenvalue spectra

    Science.gov (United States)

    Medina, José M.; Díaz, José A.; Barros, Rui

    2012-10-01

    We have examined the trial-to-trial variability of the reflectance spectra of surface coatings containing effect pigments. Principal component analysis of reflectances was done at each detection angle separately. A method for classification of principal components is applied based on the eigenvalue spectra. It was found that the eigenvalue spectra follow characteristic power laws and depend on the detection angle. Three different subsets of principal components were examined to separate the relevant spectral features related to the pigments from other noise sources. Reconstruction of the reflectance spectra by taking only the first subset indicated that reflectance variability was higher at near-specular reflection, suggesting a correlation with the trial-to-trial deposition of effect pigments. Reconstruction by using the second subset indicates that variability was higher at short wavelengths. Finally, reconstruction by using only the third subset indicates that reflectance variability was not totally random as a function of the wavelength. The methods employed can be useful in the evaluation of color variability in industrial paint application processes.

  17. The electron–phonon coupling of fundamental, overtone, and combination modes and its effects on the resonance Raman spectra

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zhanlong; Wang, Shenghan; Gao, Shuqin [College of Physics, Jilin University, Changchun 130012 (China); Sun, Chenglin, E-mail: chenglin@jlu.edu.cn [State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012 (China); College of Physics, Jilin University, Changchun 130012 (China); Li, Zuowei [College of Physics, Jilin University, Changchun 130012 (China)

    2015-12-15

    Highlights: • The Huang–Rhys factors and electron–phonon coupling constants are calculated. • The changes of overtone mode are larger than those of fundamental mode. • The variation pattern of electron–phonon coupling well interprets the changes of spectra. - Abstract: External field plays a very important role in the interaction between the π-electron transition and atomic vibration of polyenes. It has significant effects on both the Huang–Rhys factor and the electron–phonon coupling. In this paper, the visible absorption and resonance Raman spectra of all-trans-β-carotene are measured in the 345–295 K temperature range and it is found that the changes of the 0–1 and 0–2 vibration bands of the absorption spectra with the temperature lead to the different electron–phonon coupling of fundamental, overtone, and combination modes. The electron-phonon coupling constants of all the modes are calculated and analyzed under different temperatures. The variation law of the electron–phonon coupling with the temperature well interprets the changes of the resonance Raman spectra, such as the shift, intensity and line width of the overtone and combination modes, which are all greater than those of the fundamental modes.

  18. Resonance Raman and surface-enhanced resonance Raman spectra of LH2 antenna complex from Rhodobacter sphaeroides and Ectothiorhodospira sp. excited in the Qx and Qy transitions.

    Science.gov (United States)

    Chumanov, G; Picorel, R; Ortiz de Zarate, I; Cotton, T M; Seibert, M

    2000-05-01

    Well-resolved vibrational spectra of LH2 complex isolated from two photosynthetic bacteria, Rhodobacter sphaeroides and Ectothiorhodospira sp., were obtained using surface-enhanced resonance Raman scattering (SERRS) exciting into the Qx and the Qy transitions of bacteriochlorophyll a. High-quality SERRS spectra in the Qy region were accessible because the strong fluorescence background was quenched near the roughened Ag surface. A comparison of the spectra obtained with 590 nm and 752 nm excitation in the mid- and low-frequency regions revealed spectral differences between the two LH2 complexes as well as between the LH2 complexes and isolated bacteriochlorophyll a. Because peripheral modes of pigments contribute mainly to the low-frequency spectral region, frequencies and intensities of many vibrational bands in this region are affected by interactions with the protein. The results demonstrate that the microenvironment surrounding the pigments within the two LH2 complexes is somewhat different, despite the fact that the complexes exhibit similar electronic absorption spectra. These differences are most probably due to specific pigment-pigment and pigment-protein interactions within the LH2 complexes, and the approach might be useful for addressing subtle static and dynamic structural variances between pigment-protein complexes from different sources or in complexes altered chemically or genetically.

  19. Structural characterization of tellurite glasses doped with transition metal oxides using Raman spectra and ab initio calculations.

    Science.gov (United States)

    Mohamed, Tarek A; Shaltout, I; Al Yahyaei, K M

    2006-05-01

    Systems of iron tellurite glasses were prepared by melt quenching with compositions of [85%TeO2+5%Fe2O3+10%TMO], where transition metal oxides (TMO) are TiO2, V2O5, MnO, CoO, NiO and CuO. Furthermore, the main structural units of these samples have been characterized by means of Raman spectra (150-1200 cm(-1)) as well as wavenumber predictions by means of Gaussian 98 ab initio calculations for the proposed site symmetries of TeO4(4-) triagonal bipyramid (C2v) and Te2O7(6-) bridged tetrahedra (Cs and C1). Aided by normal coordinate analysis, calculated vibrational frequencies, Raman scattering activities, force constants in internal coordinates and potential energy distributions (PEDs), revised vibrational assignments for the fundamental modes have been proposed. The main structural features are correlated to the dominant units of triagonal bipyramid (tbp) or bridged tetrahedral (TeO3+1 binds to TeO3 through TeOTe bridge; corner sharing). Moreover, the Raman spectra of the investigated tellurites reflect a structural change from tbp (coordination number is four) to triagonal pyramidal (coordination number is three).

  20. Discriminant analysis of Raman spectra for body fluid identification for forensic purposes.

    Science.gov (United States)

    Sikirzhytski, Vitali; Virkler, Kelly; Lednev, Igor K

    2010-01-01

    Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence.

  1. Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes

    Directory of Open Access Journals (Sweden)

    Vitali Sikirzhytski

    2010-03-01

    Full Text Available Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wavelength under controlled laboratory conditions. Results demonstrated the capability of Raman spectroscopy to identify an unknown substance to be semen, blood or saliva with high confidence.

  2. Preliminary investigation on the relationship of Raman spectra of sheep meat with shear force and cooking loss.

    Science.gov (United States)

    Schmidt, Heinar; Scheier, Rico; Hopkins, David L

    2013-01-01

    A prototype handheld Raman system was used as a rapid non-invasive optical device to measure raw sheep meat to estimate cooked meat tenderness and cooking loss. Raman measurements were conducted on m. longissimus thoracis et lumborum samples from two sheep flocks from two different origins which had been aged for five days at 3-4°C before deep freezing and further analysis. The Raman data of 140 samples were correlated with shear force and cooking loss data using PLS regression. Both sample origins could be discriminated and separate correlation models yielded better correlations than the joint correlation model. For shear force, R(2)=0.79 and R(2)=0.86 were obtained for the two sites. Results for cooking loss were comparable: separate models yielded R(2)=0.79 and R(2)=0.83 for the two sites. The results show the potential usefulness of Raman spectra which can be recorded during meat processing for the prediction of quality traits such as tenderness and cooking loss. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Digital dewaxing of Raman signals: discrimination between nevi and melanoma spectra obtained from paraffin-embedded skin biopsies.

    Science.gov (United States)

    Tfayli, Ali; Gobinet, Cyril; Vrabie, Valeriu; Huez, Regis; Manfait, Michel; Piot, Olivier

    2009-05-01

    Malignant melanoma (MM) is the most severe tumor affecting the skin and accounts for three quarters of all skin cancer deaths. Raman spectroscopy is a promising nondestructive tool that has been increasingly used for characterization of the molecular features of cancerous tissues. Different multivariate statistical analysis techniques are used in order to extract relevant information that can be considered as functional spectroscopic descriptors of a particular pathology. Paraffin embedding (waxing) is a highly efficient process used to conserve biopsies in tumor banks for several years. However, the use of non-dewaxed formalin-fixed paraffin-embedded tissues for Raman spectroscopic investigations remains very restricted, limiting the development of the technique as a routine analytical tool for biomedical purposes. This is due to the highly intense signal of paraffin, which masks important vibrations of the biological tissues. In addition to being time consuming and chemical intensive, chemical dewaxing methods are not efficient and they leave traces of the paraffin in tissues, which affects the Raman signal. In the present study, we use independent component analysis (ICA) on Raman spectral images collected on melanoma and nevus samples. The sources obtained from these images are then used to eliminate, using non-negativity constrained least squares (NCLS), the paraffin contribution from each individual spectrum of the spectral images of nevi and melanomas. Corrected spectra of both types of lesion are then compared and classified into dendrograms using hierarchical cluster analysis (HCA).

  4. FT-IR, FT-Raman spectra, density functional computations of the vibrational spectra and molecular conformational analysis of 2,5-di-tert-butyl-hydroquinone

    Science.gov (United States)

    Subramanian, N.; Sundaraganesan, N.; Dereli, Ö.; Türkkan, E.

    2011-12-01

    The purpose of finding conformer among six different possible conformers of 2,5-di-tert-butyl-hydroquinone (DTBHQ), its equilibrium geometry and harmonic wavenumbers were calculated by the B3LYP/6-31G(d,p) method. The infrared and Raman spectra of DTBHQ were recorded in the region 400-4000 cm -1 and 50-3500 cm -1, respectively. In addition, the IR spectra in CCl 4 at various concentrations of DTBHQ are also recorded. The computed vibrational wavenumbers were compared with the IR and Raman experimental data. Computational calculations at B3LYP level with two different basis sets 6-31G(d,p) and 6-311++G(d,p) are also employed in the study of the possible conformer of DTBHQ. The complete assignments were performed on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA 4 program. The general agreement between the observed and calculated frequencies was established.

  5. Characteristics of Jerk Response Spectra for Elastic and Inelastic Systems

    Directory of Open Access Journals (Sweden)

    Haoxiang He

    2015-01-01

    Full Text Available Jerk is the time rate of acceleration and mainly represents the nonstationary component in high frequency band of the earthquake wave. The study on jerk and its response spectra can enhance the recognition of the nonstationary ground motion. The mechanical meaning and research value of jerk are described. Jerk is recommended to be solved by establishing state-space equations and Runge-Kutta method. The solution method of elastic and inelastic jerk response spectra under ground motion is established, and the accurate jerk spectrum should be calculated directly according to numerical computing instead of pseudo-acceleration spectrum. The characteristics of jerk response spectra are studied according to the influencing factors, such as site condition, amplification factor, ductility factor, and reduction factor. The concept of impact reduction factor is presented. The statistical results show that the jerk spectrum has similar rules as the acceleration spectrum, and the amplitude is relative to the predominant period, especially for structures with short or medium period. If the ductility is improved, the effective jerk will reduce obviously, and the impact reduction factor will be enhanced. Different from the strength reduction factor, the impact reduction factor is nearly not relevant to the period.

  6. Raman spectra, electrochemical redox potentials and intramolucular reorganization due to ionization and excitation of benzodifuranone chromophore

    Czech Academy of Sciences Publication Activity Database

    Luňák, S. Jr.; Frumarová, Božena; Mikysek, T.; Vyňuchal, J.

    2013-01-01

    Roč. 570, 10 May (2013), s. 50-55 ISSN 0009-2614 Institutional support: RVO:61389013 Keywords : benzodifuranone * DFT calculations * Raman spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 1.991, year: 2013

  7. Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes

    OpenAIRE

    Sikirzhytski, Vitali; Virkler, Kelly; Lednev, Igor K.

    2010-01-01

    Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry traces of blood, semen and saliva obtained from multiple donors were probed using a confocal Raman microscope with a 785-nm excitation wave...

  8. Raman spectra of MgSiO3 . 10% Al2O3-perovskite at various pressures and temperatures

    International Nuclear Information System (INIS)

    Liu Lingun; Irifune, T.

    1995-01-01

    Variations of Raman spectra of MgSiO 3 . 10% Al 2 O 3 -perovskite were investigated up to about 270 kbar at room temperature and in the range 108-425 K at atmospheric pressure. Like MgSiO 3 -perovskite, the Raman frequencies of MgSiO 3 . 10% Al 2 O 3 -perovskite increase nonlinearly with increasing pressure and decrease linearly with increasing temperature within the experimental uncertainties and the range investigated. A comparison of these data with those of MgSiO 3 -perovskite suggests that MgSiO 3 . 10% Al 2 O 3 -perovskite is slightly more compressible than MgSiO 3 -perovskite, and that the volume thermal expansion for MgSiO 3 . 10% Al 2 O 3 -perovskite is also slightly greater than that for MgSiO 3 -perovskite. (orig.)

  9. Cathodoluminescence and Raman characteristics of CaSO{sub 4}:Tm{sup 3+}, Cu phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Ekdal, E. [Ege University, Institute of Nuclear Sciences, 35100 Bornova, İzmir (Turkey); Guinea, J. Garcia [MuseoNacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Kelemen, A. [Centre for Energy Research, Radiation Safety Laboratory, P.O. Box 49, H-1121 Budapest (Hungary); Ayvacikli, M. [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Canimoglu, A. [Nigde University, Faculty of Arts and Sciences, Department of Physics, Nigde (Turkey); Jorge, A. [MuseoNacional Ciencias Naturales, Jose Gutierrez Abascal 2, Madrid 28006 (Spain); Karali, T. [Ege University, Institute of Nuclear Sciences, 35100 Bornova, İzmir (Turkey); Can, N., E-mail: cannurdogan@yahoomail.com [Celal Bayar University, Faculty of Arts and Sciences, Department of Physics, Muradiye, Manisa (Turkey); Physics Department, Jazan University, P.O. Box 114, 45142 Jazan (Saudi Arabia)

    2015-05-15

    The physical characterization and phosphor emission spectra are presented for CaSO{sub 4} doped with Tm and Cu. All spectral wavelengths are related to electronic transitions of Tm{sup 3+} ions. The powder X-ray diffraction pattern showed that the compound exhibits orthorhombic structure and all reflections were indexed without any other secondary impurity phases. Chemical and structural properties of the samples have been characterized by means of Raman spectroscopy and environmental scanning electron microscope (ESEM) with an attached X-ray energy dispersive system (EDS). Group frequencies concept is essential point to the interpretation of the bands due to the main SO{sub 4} vibrational units and these displayed main characteristic intensive Raman bands including typical strong intensity at 1016 cm{sup −1} that corresponds to ν{sub 1}SO{sub 4} vibrational mode. From the spatially-resolved cathodoluminescence (CL) spectrum, main emission bands of Tm{sup 3+} centered at 346, 362, and 452 nm, due to the respective transitions of {sup 3}P{sub 0}→{sup 3}H{sub 4}, {sup 1}D{sub 2}→{sup 3}H{sub 6}, {sup 1}D{sub 2}→{sup 3}F{sub 4} were clearly identified. The study is novel as no such CL-ESEM data are available for this doped compound. - Highlights: • Characteristic and cathodoluminescence properties of CaSO{sub 4}:Tm{sup 3+}, Cu have been investigated. • Several sharp and strong CL emission bands due to rare earth ion were observed for rare earth doped sample. • The nature and limitation of the interaction between CaSO{sub 4} and the activator ions were discussed.

  10. The effect of nonlocal dielectric response on the surface-enhanced Raman and fluorescence spectra of molecular systems

    Science.gov (United States)

    Wei, Yong; Pei, Huan; Li, Li; Zhu, Yanying

    2018-06-01

    We present a theoretical study on the influence of the nonlocal dielectric response on surface-enhanced resonant Raman scattering (SERRS) and fluorescence (SEF) spectra of a model molecule confined in the center of a Ag nanoparticle (NP) dimer. In the simulations, the nonlocal dielectric response caused by the electron–hole pair generation in Ag NPs was computed with the d-parameter theory, and the scattering spectra of a model molecule representing the commonly used fluorescent dye rhodamine 6G (R6G) were obtained by density-matrix calculations. The influence of the separation between Ag NP dimers on the damping rate and scattering spectra with and without the nonlocal response were systematically analyzed. The results show that the nonlocal dielectric response is very sensitive to the gap distance of the NP dimers, and it undergoes much faster decay with the increase of the separation than the radiative and energy transfer rates. The Raman and fluorescence peaks as simulated with the nonlocal dielectric response are relative weaker than that without the nonlocal effect for smaller NP separations because the extra decay rates of the nonlocal effect could reduce both the population of the excited state and the interband coherence between the ground and excited states. Our result also indicates that the nonlocal effect is more prominent on the SEF process than the SERRS process.

  11. Integral characteristics of spectra of ions important for EUV lithography

    International Nuclear Information System (INIS)

    Karazija, R; Kucas, S; Momkauskaite, A

    2006-01-01

    The emission spectrum corresponding to the 4p 5 4d N+1 + 4p 6 4d N-1 4f → 4p 6 4d N transition array is concentrated in a narrow interval of wavelengths. That is due to the existence of an approximate selection rule and quenching of some lines by configuration mixing. Thus such emission of elements near Z = 50 is considered to be the main candidate for the EUV lithography source at λ = 13.5 nm. In the present work the regularities of these transition arrays are considered using their integral characteristics: average energy, total line strength, variance and interval of array containing some part of the total transition probability. Calculations for various ions of elements In, Sn, Sb, Te, I and Xe have been performed in a two-configuration pseudorelativistic approximation, which describes fairly well the main features of the spectra. The variation in the values of the main integral characteristics of the spectra with atomic number and ionization degree gives the possibility of comparing quantitatively the suitability of the emission of various ions for EUV lithography

  12. Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.

    Science.gov (United States)

    Grimbergen, M C M; van Swol, C F P; Kendall, C; Verdaasdonk, R M; Stone, N; Bosch, J L H R

    2010-01-01

    The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device requirements and short integration times required for (in vivo) clinical applications of Raman spectroscopy. Multivariate analytical methods, such as principal component analysis (PCA) and linear discriminant analysis (LDA), are routinely applied to Raman spectral datasets to develop classification models. Data compression is necessary prior to discriminant analysis to prevent or decrease the degree of over-fitting. The logical threshold for the selection of principal components (PCs) to be used in discriminant analysis is likely to be at a point before the PCs begin to introduce equivalent signal and noise and, hence, include no additional value. Assessment of the signal-to-noise ratio (SNR) at a certain peak or over a specific spectral region will depend on the sample measured. Therefore, the mean SNR over the whole spectral region (SNR(msr)) is determined in the original spectrum as well as for spectra reconstructed from an increasing number of principal components. This paper introduces a method of assessing the influence of signal and noise from individual PC loads and indicates a method of selection of PCs for LDA. To evaluate this method, two data sets with different SNRs were used. The sets were obtained with the same Raman system and the same measurement parameters on bladder tissue collected during white light cystoscopy (set A) and fluorescence-guided cystoscopy (set B). This method shows that the mean SNR over the spectral range in the original Raman spectra of these two data sets is related to the signal and noise contribution of principal component loads. The difference in mean SNR over the spectral range can also be appreciated since fewer principal components can

  13. Comparison of several chemometric methods of libraries and classifiers for the analysis of expired drugs based on Raman spectra.

    Science.gov (United States)

    Gao, Qun; Liu, Yan; Li, Hao; Chen, Hui; Chai, Yifeng; Lu, Feng

    2014-06-01

    Some expired drugs are difficult to detect by conventional means. If they are repackaged and sold back into market, they will constitute a new public health challenge. For the detection of repackaged expired drugs within specification, paracetamol tablet from a manufacturer was used as a model drug in this study for comparison of Raman spectra-based library verification and classification methods. Raman spectra of different batches of paracetamol tablets were collected and a library including standard spectra of unexpired batches of tablets was established. The Raman spectrum of each sample was identified by cosine and correlation with the standard spectrum. The average HQI of the suspicious samples and the standard spectrum were calculated. The optimum threshold values were 0.997 and 0.998 respectively as a result of ROC and four evaluations, for which the accuracy was up to 97%. Three supervised classifiers, PLS-DA, SVM and k-NN, were chosen to establish two-class classification models and compared subsequently. They were used to establish a classification of expired batches and an unexpired batch, and predict the suspect samples. The average accuracy was 90.12%, 96.80% and 89.37% respectively. Different pre-processing techniques were tried to find that first derivative was optimal for methods of libraries and max-min normalization was optimal for that of classifiers. The results obtained from these studies indicated both libraries and classifier methods could detect the expired drugs effectively, and they should be used complementarily in the fast-screening. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Vibrational assignments for the Raman and the phosphorescence spectra of 9,10-anthraquinone and 9,10-anthraquinone-d81

    International Nuclear Information System (INIS)

    Lehmann, K.K.; Smolarek, J.; Khalil, O.S.; Goodman, L.

    1979-01-01

    The Raman spectra of 9,10-anthraquinone (AQ) and 9,10-anthraquinone-d/sub 8/ are examined. Raman band assignments are made from this data and from a published normal coordinate analysis. The Raman spectra of AQ at 5K is reported and vibrational assignments for the phosphorescence spectra of AQ in n-hexane at 4.2 K are reexamined in light of new 3 B 1 /sub g/ → 1 A/sub g/ phosphorescence data. Contrary to previous work from this laboratory, it is concluded that although higher order vibronic interactions may be operative between the two closely spaced 3 A/sub u/- 3 B 1 /sub g/ electronic states, these interactions are not manifested in the phosphorescence spectra of AQ in n-hexane at 4.2 K

  15. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  16. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder

    International Nuclear Information System (INIS)

    Martins Ferreira, E. H.; Stavale, F.; Moutinho, Marcus V. O.; Lucchese, M. M.; Capaz, Rodrigo B.; Achete, C. A.; Jorio, A.

    2010-01-01

    We report on the micro-Raman spectroscopy of monolayer, bilayer, trilayer, and many layers of graphene (graphite) bombarded by low-energy argon ions with different doses. The evolution of peak frequencies, intensities, linewidths, and areas of the main Raman bands of graphene is analyzed as function of the distance between defects and number of layers. We describe the disorder-induced frequency shifts and the increase in the linewidth of the Raman bands by means of a spatial-correlation model. Also, the evolution of the relative areas A D /A G , A D ' /A G , and A G ' /A G is described by a phenomenological model. The present results can be used to fully characterize disorder in graphene systems.

  17. Raman Spectral Determination of Chemical Reaction Rate Characteristics

    Science.gov (United States)

    Balakhnina, I. A.; Brandt, N. N.; Mankova, A. A.; Chikishev, A. Yu.; Shpachenko, I. G.

    2017-09-01

    The feasibility of using Raman spectroscopy to determine chemical reaction rates and activation energies has been demonstrated for the saponification of ethyl acetate. The temperature dependence of the reaction rate was found in the range from 15 to 45°C.

  18. Low-frequency Raman spectra of sub- and supercritical CO2: qualitative analysis of the diffusion coefficient behavior.

    Science.gov (United States)

    Idrissi, A; Longelin, S; Damay, P; Leclercq, F

    2005-09-01

    We report the results of the low-frequency Raman experiments on CO(2) which were carried out in a wide density range, along the liquid-gas coexistence curve in a temperature range of 293-303 K, and on the critical isochore of 94.4 cm(3) mol(-1) in a temperature range of 304-315 K. In our approach, the qualitative behavior of the diffusion coefficient D is predicted, assuming the following: first, that the low-frequency Raman spectra can be interpreted in terms of the translation rotation motions; second, that the random force could be replaced by the total force to calculate the friction coefficient; and finally, that the Einstein frequency is associated with the position of the maximum of the low-frequency Raman spectrum. The results show that the diffusion coefficient increases along the coexistence curve, and its values are almost constant on the critical isochore. The predicted values reproduce qualitatively those obtained by other techniques. The values of D were also calculated by molecular-dynamics simulation and they qualitatively reproduce the behavior of D.

  19. Thermal expansion, anharmonicity and temperature-dependent Raman spectra of single- and few-layer MoSe₂ and WSe₂.

    Science.gov (United States)

    Late, Dattatray J; Shirodkar, Sharmila N; Waghmare, Umesh V; Dravid, Vinayak P; Rao, C N R

    2014-06-06

    We report the temperature-dependent Raman spectra of single- and few-layer MoSe2 and WSe2 in the range 77-700 K. We observed linear variation in the peak positions and widths of the bands arising from contributions of anharmonicity and thermal expansion. After characterization using atomic force microscopy and high-resolution transmission electron microscopy, the temperature coefficients of the Raman modes were determined. Interestingly, the temperature coefficient of the A(2)(2u) mode is larger than that of the A(1g) mode, the latter being much smaller than the corresponding temperature coefficients of the same mode in single-layer MoS2 and of the G band of graphene. The temperature coefficients of the two modes in single-layer MoSe2 are larger than those of the same modes in single-layer WSe2. We have estimated thermal expansion coefficients and temperature dependence of the vibrational frequencies of MoS2 and MoSe2 within a quasi-harmonic approximation, with inputs from first-principles calculations based on density functional theory. We show that the contrasting temperature dependence of the Raman-active mode A(1g) in MoS2 and MoSe2 arises essentially from the difference in their strain-phonon coupling. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Raman Spectra of ZrS2 and ZrSe2 from Bulk to Atomically Thin Layers

    Directory of Open Access Journals (Sweden)

    Samuel Mañas-Valero

    2016-09-01

    Full Text Available In the race towards two-dimensional electronic and optoelectronic devices, semiconducting transition metal dichalcogenides (TMDCs from group VIB have been intensively studied in recent years due to the indirect to direct band-gap transition from bulk to the monolayer. However, new materials still need to be explored. For example, semiconducting TMDCs from group IVB have been predicted to have larger mobilities than their counterparts from group VIB in the monolayer limit. In this work we report the mechanical exfoliation of ZrX2 (X = S, Se from bulk down to the monolayer and we study the dimensionality dependence of the Raman spectra in ambient conditions. We observe Raman signal from bulk to few layers and no shift in the peak positions is found when decreasing the dimensionality. While a Raman signal can be observed from bulk to a bilayer for ZrS2, we could only detect signal down to five layers for flakes of ZrSe2. These results show the possibility of obtaining atomically thin layers of ZrX2 by mechanical exfoliation and represent one of the first steps towards the investigation of the properties of these materials, still unexplored in the two-dimensional limit.

  1. Microscopic theoretical study of Raman spectra in charge and spin ordered cuprate systems

    International Nuclear Information System (INIS)

    Raj, B.K.; Panda, S.K.; Rout, G.C.

    2013-01-01

    Highlights: • The model calculation treats CDW interaction as pseudogap for cuprates. • The interplay of Raman active CDW-SDW mixed modes are investigated. • Independent CDW and SDW gap values can be determined from experimental data. -- Abstract: Raman scattering is one of the most powerful methods to investigate the electron as well as the phonon excitations in the systems. In this communication, we present a theoretical study of Raman scattering in the normal state of the high-T C systems in the under-doped region displaying the interplay of the spin-density-wave (SDW) and charge-density-wave (CDW) interactions. The SDW order arises from the repulsive Coulomb interaction of electrons, while the CDW order arises due to strong electron–phonon interaction giving rise to Fermi surface instability. We calculate phonon response function in order to examine the possibility of observing the SDW excitation mode in presence of the CDW interaction present in the same conduction band. The Raman scattering intensity is calculated from the imaginary part of the phonon Green’s function assigning an arbitrary spectral width. The spectral density function displays two mixed modes of excitation peaks at energies 2(Δ c ± Δ s ). The evolution of excitation peaks are investigated by varying CDW coupling, SDW coupling and the phonon momentum transfer energy

  2. Microscopic theoretical study of Raman spectra in charge and spin ordered cuprate systems

    Energy Technology Data Exchange (ETDEWEB)

    Raj, B. K. [Dept. of Physics, Govt. Autonomous College, Angul, Orissa (India); Panda, S. K. [KD Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India); Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, PG Dept. of Applied Physics and Ballistics, FM University, Balasore 756 019 (India)

    2013-09-15

    Highlights: • The model calculation treats CDW interaction as pseudogap for cuprates. • The interplay of Raman active CDW-SDW mixed modes are investigated. • Independent CDW and SDW gap values can be determined from experimental data. -- Abstract: Raman scattering is one of the most powerful methods to investigate the electron as well as the phonon excitations in the systems. In this communication, we present a theoretical study of Raman scattering in the normal state of the high-T{sub C} systems in the under-doped region displaying the interplay of the spin-density-wave (SDW) and charge-density-wave (CDW) interactions. The SDW order arises from the repulsive Coulomb interaction of electrons, while the CDW order arises due to strong electron–phonon interaction giving rise to Fermi surface instability. We calculate phonon response function in order to examine the possibility of observing the SDW excitation mode in presence of the CDW interaction present in the same conduction band. The Raman scattering intensity is calculated from the imaginary part of the phonon Green’s function assigning an arbitrary spectral width. The spectral density function displays two mixed modes of excitation peaks at energies 2(Δ{sub c} ± Δ{sub s}). The evolution of excitation peaks are investigated by varying CDW coupling, SDW coupling and the phonon momentum transfer energy.

  3. Superconductive B-doped nanocrystalline diamond thin films: Electrical transport and Raman spectra

    Czech Academy of Sciences Publication Activity Database

    Nesládek, M.; Tromson, D.; Mer, Ch.; Bergonzo, P.; Hubík, Pavel; Mareš, Jiří J.

    2006-01-01

    Roč. 88, č. 23 (2006), 232111/1-232111/3 ISSN 0003-6951 R&D Projects: GA ČR(CZ) GA202/06/0040 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond * superconductivity * magnetoresistance * Raman spectroscopy * Fano resonance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.977, year: 2006

  4. Pressure effect on the Raman and photoluminescence spectra of Eu3+-doped Na2Ti6O13 nanorods

    Science.gov (United States)

    Zeng, Q. G.; Yang, G. T.; Chen, F.; Luo, J. Y.; Zhang, Z. M.; Leung, C. W.; Ding, Z. J.; Sheng, Y. Q.

    2013-12-01

    Eu3+-doped Na2Ti6O13 (Na2Ti6O13:Eu) nanorods with diameters of 30 nm and lengths 400 nm were synthesized by hydrothermal and heat treatment methods. Raman spectra at ambient conditions indicated a pure monoclinic phase (space group C2/m) of the nanorods. The relations between structural and optical properties of Na2Ti6O13:Eu nanorods under high pressures were obtained by photoluminescence and Raman spectra. Two structural transition points at 1.39 and 15.48 GPa were observed when the samples were pressurized. The first transition point was attributed to the crystalline structural distortion. The later transition point was the result of pressure-induced amorphization, and the high-density amorphous (HDA) phase formed after 15.48 GPa was structurally related to the monoclinic baddeleyite structured TiO2 (P21/c). However, the site symmetry of the local environment around the Eu3+ ions in Na2Ti6O13 increased with the rising pressure. These above results indicate the occurrence of short-range order for the local asymmetry around the Eu3+ ions and long-range disorder for the crystalline structure of Na2Ti6O13:Eu nanorods by applying pressure. After releasing the pressure from 22.74 GPa, the HDA phase is transformed to low-density amorphous form, which is attributed to be structurally related to the α-PbO2-type TiO2.

  5. [Influence of cations on the laser Raman spectra of silicate glasses].

    Science.gov (United States)

    Xiong, Yi; Zhao, Hong-xia; Gan, Fu-xi

    2012-04-01

    Na2O(K2O)-CaO(MgO)-SiO2, Na2O(K2O)-Al2O3-SiO2, Na2O(K2O)-B2O3-SiO2, Na2O(K2O)-PbO-SiO2 and PbO-BaO-SiO2 glass systems were investigated using laser Raman spectroscopic technique. The modification of short-range structure of glass caused by network modifier cations will influence Raman signature. Alkali and alkali-earth ions can weaken the bridging oxygen bond, thus lower the frequency of Si-O(b)-Si anti-symmetric stretching vibration. When coordina ted by oxygen ions, B3+ can form [BO4] tetrahedron and enter the silicon-oxygen network, but this effect had little impact on the frequency of Raman peaks located in the high-frequency region. Al3+ can also be coordinated by oxygen ions to form [AlO4] tetrahedron. [AlO4] will increase the disorder degree of network while entering network. Ba2+ can increase the density of electron cloud along the Si-O(nb) bond when it bonds with non-bridging oxygen, which will lead to a higher peak intensity of O-Si-O stretching vibration. The Raman peaks of alkli- and alkali-earth silicate glasses are mainly distributed in the region of 400 - 1 200 cm(-1), while in the spectrum of Na2O(K2O)-PbO-SiO2 glass system a 131 cm(-1) peak existed. The authors assigned it to the Pb-O symmetric stretching vibration. Some of the samples were produced in the laboratory according to the average compositions of ancient glasses, so this research is very significant to discriminating ancient silicate glasses of different systems by Laser Raman spectroscopic technique.

  6. A two-dimensionally coincident second difference cosmic ray spike removal method for the fully automated processing of Raman spectra.

    Science.gov (United States)

    Schulze, H Georg; Turner, Robin F B

    2014-01-01

    Charge-coupled device detectors are vulnerable to cosmic rays that can contaminate Raman spectra with positive going spikes. Because spikes can adversely affect spectral processing and data analyses, they must be removed. Although both hardware-based and software-based spike removal methods exist, they typically require parameter and threshold specification dependent on well-considered user input. Here, we present a fully automated spike removal algorithm that proceeds without requiring user input. It is minimally dependent on sample attributes, and those that are required (e.g., standard deviation of spectral noise) can be determined with other fully automated procedures. At the core of the method is the identification and location of spikes with coincident second derivatives along both the spectral and spatiotemporal dimensions of two-dimensional datasets. The method can be applied to spectra that are relatively inhomogeneous because it provides fairly effective and selective targeting of spikes resulting in minimal distortion of spectra. Relatively effective spike removal obtained with full automation could provide substantial benefits to users where large numbers of spectra must be processed.

  7. Independent component analysis-based algorithm for automatic identification of Raman spectra applied to artistic pigments and pigment mixtures.

    Science.gov (United States)

    González-Vidal, Juan José; Pérez-Pueyo, Rosanna; Soneira, María José; Ruiz-Moreno, Sergio

    2015-03-01

    A new method has been developed to automatically identify Raman spectra, whether they correspond to single- or multicomponent spectra. The method requires no user input or judgment. There are thus no parameters to be tweaked. Furthermore, it provides a reliability factor on the resulting identification, with the aim of becoming a useful support tool for the analyst in the decision-making process. The method relies on the multivariate techniques of principal component analysis (PCA) and independent component analysis (ICA), and on some metrics. It has been developed for the application of automated spectral analysis, where the analyzed spectrum is provided by a spectrometer that has no previous knowledge of the analyzed sample, meaning that the number of components in the sample is unknown. We describe the details of this method and demonstrate its efficiency by identifying both simulated spectra and real spectra. The method has been applied to artistic pigment identification. The reliable and consistent results that were obtained make the methodology a helpful tool suitable for the identification of pigments in artwork or in paint in general.

  8. Overview of the use of theory to understand infrared and Raman spectra and images of biomolecules: colorectal cancer as an example

    DEFF Research Database (Denmark)

    Piva, J. A. A. C.; Silva, J. L. R.; Raniero, L.

    2011-01-01

    In this work, we present the state of the art in the use of theory (first principles, molecular dynamics, and statistical methods) for interpreting and understanding the infrared (vibrational) absorption and Raman scattering spectra. It is discussed how they can be used in combination with purely...... of biomolecules are very sensitive to their environment and aggregation state, the combined use of infrared and Raman spectroscopy and imaging and theoretical simulations are clearly fields, which can benefit from their joint and mutual development....

  9. Ab initio modeling of fused silica, crystal quartz, and water Raman spectra

    Czech Academy of Sciences Publication Activity Database

    Dračínský, Martin; Benda, Ladislav; Bouř, Petr

    2011-01-01

    Roč. 512, č. 13 (2011), s. 54-59 ISSN 0009-2614 R&D Projects: GA ČR GAP208/11/0105; GA MŠk(CZ) LH11033 Grant - others:GA MŠk(CZ) 2B08021 Program:2B Institutional research plan: CEZ:AV0Z40550506 Keywords : fused silica * Raman spectroscopy * Car -Parrinello molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2011

  10. Raman spectra of terbium trichloride, phosphorus pentachloride and their molten mixtures

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Zakir'yanova, I.D.

    2008-01-01

    Raman spectroscopy was used to study in situ the behavior of individual terbium trichloride and phosphorus pentachloride in different aggregative states as a function of temperature, and of solutions of PCl 5 vapors in molten TbCl 3 . A conclusion is drawn about their structure and the nature of phase transformations and chemical reactions in wide ranges of temperature and saturated vapor pressures [ru

  11. Efficient "on-the-fly" calculation of Raman spectra from ab-initio molecular dynamics: Application to hydrophobic/hydrophilic solutes in bulk water.

    Science.gov (United States)

    Partovi-Azar, Pouya; Kühne, Thomas D

    2015-11-05

    We present a novel computational method to accurately calculate Raman spectra from first principles. Together with an extension of the second-generation Car-Parrinello method of Kühne et al. (Phys. Rev. Lett. 2007, 98, 066401) to propagate maximally localized Wannier functions together with the nuclei, a speed-up of one order of magnitude can be observed. This scheme thus allows to routinely calculate finite-temperature Raman spectra "on-the-fly" by means of ab-initio molecular dynamics simulations. To demonstrate the predictive power of this approach we investigate the effect of hydrophobic and hydrophilic solutes in water solution on the infrared and Raman spectra. © 2015 Wiley Periodicals, Inc.

  12. Spectra investigation on surface characteristics of graphene oxide nanosheets treated with tartaric, malic and oxalic acids.

    Science.gov (United States)

    Teng, Xiyao; Yan, Manqing; Bi, Hong

    2014-01-24

    The surface characteristics of graphene oxide nanosheets (GO) treated respectively with tartaric acid, malic acid and oxalic acid, have been investigated by mainly using optical spectroscopic methods including Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) absorption and Raman spectroscopy. Additionally, the electrochemical property of the products has also been studied. The data revealed that oxygen-containing groups such as OH, COOH and CO on the GO surface have been almost removed and thus reduced graphene oxide nanosheets (RGN) were obtained. Interestingly, the number of sp(2) domains of RGN increases as treated by tartaric acidspectra result of the tendency of surface conjugated degree alteration. We claim that the difference in both SH and IC among these acids is the main reason for the diverse surface characteristics as well as the improved Cs of the RGN. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Side Chain and Flexibility Contributions to the Raman Optical Activity Spectra of a Model Cyclic Hexapeptide

    Czech Academy of Sciences Publication Activity Database

    Hudecová, J.; Kapitán, Josef; Baumruk, V.; Hammer, R. P.; Keiderling, T. A.; Bouř, Petr

    2010-01-01

    Roč. 114, č. 28 (2010), s. 7642-7651 ISSN 1089-5639 R&D Projects: GA ČR GA203/06/0420; GA ČR GA202/07/0732; GA AV ČR IAA400550702 Grant - others:GA UK(CZ) 126310 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman optical activity * ab initio * side chain * flexibility * peptide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.732, year: 2010

  14. In Situ Raman Spectral Characteristics of Carbon Dioxide in a Deep-Sea Simulator of Extreme Environments Reaching 300 ℃ and 30 MPa.

    Science.gov (United States)

    Li, Lianfu; Du, Zengfeng; Zhang, Xin; Xi, Shichuan; Wang, Bing; Luan, Zhendong; Lian, Chao; Yan, Jun

    2018-01-01

    Deep-sea carbon dioxide (CO 2 ) plays a significant role in the global carbon cycle and directly affects the living environment of marine organisms. In situ Raman detection technology is an effective approach to study the behavior of deep-sea CO 2 . However, the Raman spectral characteristics of CO 2 can be affected by the environment, thus restricting the phase identification and quantitative analysis of CO 2 . In order to study the Raman spectral characteristics of CO 2 in extreme environments (up to 300 ℃ and 30 MPa), which cover most regions of hydrothermal vents and cold seeps around the world, a deep-sea extreme environment simulator was developed. The Raman spectra of CO 2 in different phases were obtained with Raman insertion probe (RiP) system, which was also used in in situ Raman detection in the deep sea carried by remotely operated vehicle (ROV) "Faxian". The Raman frequency shifts and bandwidths of gaseous, liquid, solid, and supercritical CO 2 and the CO 2 -H 2 O system were determined with the simulator. In our experiments (0-300 ℃ and 0-30 MPa), the peak positions of the symmetric stretching modes of gaseous CO 2, liquid CO 2 , and supercritical CO 2 shift approximately 0.6 cm -1 (1387.8-1388.4 cm -1 ), 0.7 cm -1 (1385.5-1386.2 cm -1 ), and 2.5 cm -1 (1385.7-1388.2 cm -1 ), and those of the bending modes shift about 1.0 cm -1 (1284.7-1285.7 cm -1 ), 1.9 cm -1 (1280.1-1282.0 cm -1 ), and 4.4 cm -1 (1281.0-1285.4 cm -1 ), respectively. The Raman spectral characteristics of the CO 2 -H 2 O system were also studied under the same conditions. The peak positions of dissolved CO 2 varied approximately 4.5 cm -1 (1282.5-1287.0 cm -1 ) and 2.4 cm -1 (1274.4-1276.8 cm -1 ) for each peak. In comparison with our experiment results, the phases of CO 2 in extreme conditions (0-3000 m and 0-300 ℃) can be identified with the Raman spectra collected in situ. This qualitative research on CO 2 can also support the

  15. Raman spectra, photoluminescence, magnetism and magnetoelectric coupling in pure and Fe doped BaTiO{sub 3} nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Kuldeep Chand, E-mail: kuldeep0309@yahoo.co.in [Akal School of Physics, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh 173 101 (India); Gupta, Vinay [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Kaur, Jaspreet [Akal School of Physics, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh 173 101 (India); Kotnala, R.K. [National Physical Laboratory, New Delhi 110 012 (India)

    2013-11-25

    Highlights: •Multiferroic nanostructures by surfactant free hydrothermal method. •Stoichiometric effect on nanostructures. •Raman spectroscopy and Photoluminescence. •Transmission electron microscopy. •Magnetoelectric coupling. -- Abstract: Structural, microstructural, Raman spectroscopy, photoluminescence, saturation magnetization and magnetoelectric (ME) measurement of BaTiO{sub 3} (BFT0) and BaFe{sub 0.01}Ti{sub 0.99}O{sub 3} (BFT1) nanostructures have been studied. BFT0 and BFT1 were prepared by a hydrothermal method of processing temperature 180 °C/48 h. The X-ray diffraction pattern shows the coexistence of cubic/tetragonal and hexagonal phases for BFT0 and cubic/tetragonal for BFT1. The Raman spectra confirm the coexistence of tetragonal and hexagonal phases in BFT0 and cubic in BFT1. Transmission electron microscopy images show nanorods of hexagonal shaped faces for BFT0 and cubic shaped nanowires for BFT1. The resulting mechanism of the formation of these nanostructures is discussed. The experimental and theoretical results by photoluminescence are related to the degree of disorder existing in both BFT0 and BFT1 and suggest the presence of localized states existing inside of the band gap which are directly affected for degree of order–disorder. A strong ferromagnetism in BFT1 and diamagnetism in BFT0 is observed by magnetic hysteresis. As BFT1 is ferromagnetic, the value of linear coefficient, α called Magnetoelectric (ME) coefficient is calculated as ∼16 mV/Oe cm at a fixed frequency of 850 Hz. This ME coefficient α corresponds to induction of polarization by a magnetic field or of magnetization by an electric field. The observed optimum dc bias field at which the maximum ME coupling occurs is ∼750 Oe.

  16. Raman spectra, photoluminescence, magnetism and magnetoelectric coupling in pure and Fe doped BaTiO3 nanostructures

    International Nuclear Information System (INIS)

    Verma, Kuldeep Chand; Gupta, Vinay; Kaur, Jaspreet; Kotnala, R.K.

    2013-01-01

    Highlights: •Multiferroic nanostructures by surfactant free hydrothermal method. •Stoichiometric effect on nanostructures. •Raman spectroscopy and Photoluminescence. •Transmission electron microscopy. •Magnetoelectric coupling. -- Abstract: Structural, microstructural, Raman spectroscopy, photoluminescence, saturation magnetization and magnetoelectric (ME) measurement of BaTiO 3 (BFT0) and BaFe 0.01 Ti 0.99 O 3 (BFT1) nanostructures have been studied. BFT0 and BFT1 were prepared by a hydrothermal method of processing temperature 180 °C/48 h. The X-ray diffraction pattern shows the coexistence of cubic/tetragonal and hexagonal phases for BFT0 and cubic/tetragonal for BFT1. The Raman spectra confirm the coexistence of tetragonal and hexagonal phases in BFT0 and cubic in BFT1. Transmission electron microscopy images show nanorods of hexagonal shaped faces for BFT0 and cubic shaped nanowires for BFT1. The resulting mechanism of the formation of these nanostructures is discussed. The experimental and theoretical results by photoluminescence are related to the degree of disorder existing in both BFT0 and BFT1 and suggest the presence of localized states existing inside of the band gap which are directly affected for degree of order–disorder. A strong ferromagnetism in BFT1 and diamagnetism in BFT0 is observed by magnetic hysteresis. As BFT1 is ferromagnetic, the value of linear coefficient, α called Magnetoelectric (ME) coefficient is calculated as ∼16 mV/Oe cm at a fixed frequency of 850 Hz. This ME coefficient α corresponds to induction of polarization by a magnetic field or of magnetization by an electric field. The observed optimum dc bias field at which the maximum ME coupling occurs is ∼750 Oe

  17. Temperature dependence of Raman scattering spectra of Basub(0.50)Srsub(0.50)Nbsub(2)Osub(6) crystal

    International Nuclear Information System (INIS)

    Gorelik, V.S.; Rustamov, Kh.Sh.; Kuz'minov, Yu.S.; Sushchinskij, M.M.

    1977-01-01

    The change of the Raman spectra in the crystal Basub(x)Srsub(1-x)Nbsub(2)Osub(6) (x=0.50) in the temperature range of 80-500 K has been studied. A conventional technique with the application of an argon laser (π=4880 A) and a diffraction spectrometer was used. It has been established that in the observed spectrum a number of low frequency lines are present caused by vibrations of the crystalline lattice. It is shown that the growth of dielectric permittivity near the ferroelectric transition correlates with the observed growth of the spectral intensity in the low frequency spectrum range at the approach to the Gurie temperature. It was found that for the considered crystal, both a ''single-mode'' and a ''two-mode'' behaviour of the phonon spectrum take place

  18. Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS)

    Science.gov (United States)

    Han, H. W.; Yan, X. L.; Dong, R. X.; Ban, G.; Li, K.

    2009-03-01

    In this paper, we show surface-enhanced Raman spectra (SERS) of serums from type II diabetes mellitus and diabetic complication (coronary disease, glaucoma and cerebral infarction), and analyze the SERS through the multivariate statistical methods of principal component analysis (PCA). In particular, we find that there exist many adenines in these serums, which maybe come from DNA (RNA) damage. The relative intensity of the band at 725±2 cm-1 assigned to adenine is higher for patients than for the healthy volunteers; therefore, it can be used as an important ‘fingerprint’ in order to diagnose these diseases. It is also shown that serums from type II diabetes mellitus group, diabetic complication group and healthy volunteers group can be discriminated by PCA.

  19. Manifestation of magnetoelastic interactions in Raman spectra of HoxNd1−xFe3(BO34 crystals

    Directory of Open Access Journals (Sweden)

    A. S. Krylov

    2018-04-01

    Full Text Available Raman spectra of Ho1−xNdxFe(BO34 (x=1, 0.75, 0.5, 0.25 have been studied in temperature range 10–400K. Two compositions (x=1, x=0.75 demonstrate structural phase transition with soft mode restoration. The addition of Nd atoms increases interatomic spacing and decreases the temperature of structural phase transition. The solid solutions (x=0.75, 0.5, 0.25 demonstrate the emergence of the peaks corresponding to magnetoelastic interaction below Néel temperature. The order parameter of the magnetic phase transition has been determined. The equal concentrations of holmium and neodymium atoms prevent magnon soft modes condensation caused by exchange interactions in Fe–O–Fe chains are observed. Calculations confirm the data obtained in the experiment.

  20. Optimized geometry, vibration (IR and Raman spectra and nonlinear optical activity of p-nitroanilinium perchlorate molecule: A theoretical study

    Directory of Open Access Journals (Sweden)

    Tamer Ömer

    2016-03-01

    Full Text Available The molecular modeling of p-nitroanilinium perchlorate molecule was carried out by using B3LYP and HSEH1PBE levels of density functional theory (DFT. The IR and Raman spectra were simulated and the assignments of vibrational modes were performed on the basis of relative contribution of various internal co-ordinates. NBO analysis was performed to demonstrate charge transfer, conjugative interactions and the formation of intramolecular hydrogen bonding interactions within PNAPC. Obtained large dipole moment values showed that PNAPC is a highly polarizable complex, and the charge transfer occurs within PNAPC. Hydrogen bonding and charge transfer interactions were also displayed by small HOMO-LUMO gap and molecular electrostatic potential (MEP surface. The strong evidences that the material can be used as an efficient nonlinear optical (NLO material of PNAPC were demonstrated by considerable polarizability and hyperpolarizability values obtained at DFT levels.

  1. Raman Spectra and Bulk Modulus of Nanodiamond in a Size Interval of 2-5 nm.

    Science.gov (United States)

    Popov, Mikhail; Churkin, Valentin; Kirichenko, Alexey; Denisov, Viktor; Ovsyannikov, Danila; Kulnitskiy, Boris; Perezhogin, Igor; Aksenenkov, Viktor; Blank, Vladimir

    2017-10-10

    Nanodiamond in a 2-5-nm size interval (which is typical for an appearance of quantum confinement effect) show Raman spectra composed of 3 bands at 1325, 1600, and 1500 cm -1 (at the 458-nm laser excitation) which shifts to 1630 cm -1 at the 257-nm laser excitation. Contrary to sp 2 -bonded carbon, relative intensities of the bands do not depend on the 458- and 257-nm excitation wavelengths, and a halfwidth and the intensity of the 1600 cm -1 band does not change visibly under pressure at least up to 50 GPa. Bulk modulus of the 2-5-nm nanodiamond determined from the high-pressure study is around 560 GPa. Studied 2-5-nm nanodiamond was purified from contamination layers and dispersed in Si or NaCl.

  2. Phonon stiffen and soften at zigzag- and armchair-dominated edges of exfoliated bilayer graphene ribbon presented by Raman spectra

    Science.gov (United States)

    Xia, Minggang; Zhou, Xiaohua; Xin, Duqiang; Xu, Qiang

    2018-01-01

    The Raman spectra at the edge of the exfoliated bilayer graphene ribbon (GR) were investigated in detail. Results show that both G and 2D phonons stiffen (wave number increases) at zigzag-dominated edge, while they soften at armchair-dominated edge compared with those at the middle position in the GR. Furthermore, the full widths at half maximum intensity of both G and 2D Raman peaks narrow at the zigzag-dominated edge, while they broaden at the armchair-dominated edge. The stiffness and softness are attributed to the C-C bonds at the edge. For zigzag-dominated edge, the stiffness may originate in the increase of the force constant induced by the shrinking of C-C bond. For armchair-dominated edge, the softness may be due to the decrease of the force constant induced by the unsaturated hanging bonds at edge, which is different from Kohn anomaly and charge doping. The analysis is in agreement well with others calculation results about C-C bonds and the edge energy. These results may be useful to understand physical properties at the bilayer graphene edge and for applications in the device by taking advantage of the edge states in bilayer graphene.

  3. High-pressure Raman study of vibrational spectra in crystalline acetanilide

    Science.gov (United States)

    Sakai, Masamichi; Kuroda, Noritaka; Nishina, Yuichiro

    1993-01-01

    We have studied the effect of pressure on the low-frequency lattice modes and the amide-I (N-CO stretching) vibrational modes in crystalline acetanilide (C6H5NHCOCH3) in the temperature range 80-300 K by means of Raman spectroscopy. The Raman intensity of the 1650-cm-1 band, which appears upon cooling, is enhanced by applying pressure. The energy difference between the amide-I phonon (Ag mode) and the 1650-cm-1 bands does not change appreciably under pressure up to at least 4 GPa. These results are analyzed in terms of the self-trapped model in which a single lattice mode couples with the amide-I excitation by taking into account the effect of pressure on the low-frequency lattice modes and on the dipole-dipole interactions associated with the amide-I vibration. A band is observed at 30 cm-1 below the amide-I phonon band at low temperatures with a pressure above ~2 GPa.

  4. The application of chemometrics on Infrared and Raman spectra as a tool for the forensic analysis of paints.

    Science.gov (United States)

    Muehlethaler, Cyril; Massonnet, Genevieve; Esseiva, Pierre

    2011-06-15

    The aim of this work is to evaluate the capabilities and limitations of chemometric methods and other mathematical treatments applied on spectroscopic data and more specifically on paint samples. The uniqueness of the spectroscopic data comes from the fact that they are multivariate - a few thousands variables - and highly correlated. Statistical methods are used to study and discriminate samples. A collection of 34 red paint samples was measured by Infrared and Raman spectroscopy. Data pretreatment and variable selection demonstrated that the use of Standard Normal Variate (SNV), together with removal of the noisy variables by a selection of the wavelengths from 650 to 1830 cm(-1) and 2730-3600 cm(-1), provided the optimal results for infrared analysis. Principal component analysis (PCA) and hierarchical clusters analysis (HCA) were then used as exploratory techniques to provide evidence of structure in the data, cluster, or detect outliers. With the FTIR spectra, the Principal Components (PCs) correspond to binder types and the presence/absence of calcium carbonate. 83% of the total variance is explained by the four first PCs. As for the Raman spectra, we observe six different clusters corresponding to the different pigment compositions when plotting the first two PCs, which account for 37% and 20% respectively of the total variance. In conclusion, the use of chemometrics for the forensic analysis of paints provides a valuable tool for objective decision-making, a reduction of the possible classification errors, and a better efficiency, having robust results with time saving data treatments. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Microwave, infrared and Raman spectra, adjusted r{sub 0} structural parameters, conformational stability, and vibrational assignment of cyclopropylfluorosilane

    Energy Technology Data Exchange (ETDEWEB)

    Panikar, Savitha S. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Guirgis, Gamil A.; Eddens, Matthew T.; Dukes, Horace W. [Department of Chemistry and Biochemistry, College of Charleston, Charleston, SC 29424 (United States); Conrad, Andrew R.; Tubergen, Michael J. [Department of Chemistry, Kent State University, Kent, OH 44242 (United States); Gounev, Todor K. [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Durig, James R., E-mail: durigj@umkc.edu [Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 (United States)

    2013-03-29

    Highlights: ► The most stable gauche conformer has been identified from microwave spectra. ► Enthalpy difference has been determined between the two forms. ► Adjusted r{sub 0} structures were obtained for the gauche form. ► Ab initio calculations were performed for the two conformers. - Abstract: FT-microwave, infrared spectra of gas and Raman spectra of liquid for cyclopropylfluorosilane, c-C{sub 3}H{sub 5}SiH{sub 2}F have been recorded. 51 transitions for the {sup 28}Si, {sup 29}Si, and {sup 30}Si isotopomers have been assigned for the gauche conformer. Enthalpy differences in xenon solution by variable temperature infrared spectra between the more stable gauche and lesser stable cis form gave 109 ± 9 cm{sup −1}. From the microwave rotational constants for the three isotopomers ({sup 28}Si, {sup 29}Si, {sup 30}Si) combined with structural parameters predicted from MP2(full)/6-311+G(d, p) calculations, adjusted r{sub 0} structural parameters were obtained for the gauche conformer. The heavy atom distances (Å): Si–C{sub 2} = 1.836(3); C{sub 2}–C{sub 4} = 1.525(3); C{sub 2}–C{sub 5} = 1.519(3); C{sub 4}–C{sub 5} = 1.494(3); Si–F = 1.594(3) and angles (°): ∠CSiF = 111.2(5); ∠SiC{sub 2}C{sub 4} = 117.5(5); ∠SiC{sub 2}C{sub 5} = 119.2(5). To support the vibrational assignments, MP2(full)/6-31G(d) calculations were carried out. Results are discussed and compared to the corresponding properties of some similar molecules.

  6. Raman spectra of Hg-based superconductors: Effect of oxygen defects

    International Nuclear Information System (INIS)

    Zhou, X.; Cardona, M.; Chu, C.W.; Lin, Q.M.; Loureiro, S.M.; Marezio, M.

    1996-01-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa 2 Ca n-1 Cu n O 2n+2+δ (n=1, 2, 3, 4, and 5) high-T c superconductor family. A systematic evolution of the spectrum, which mainly involves oxygen-related phonons around 590, 570, 540, and 470 cm -1 , with an increasing number of CuO 2 layers, has been observed. Local laser annealing measurements clearly demonstrate that all these phonons are closely related to interstitial oxygen in the HgO δ planes. The origin of the spectrum evolution with the number of CuO 2 layers lies in the variation of interstitial oxygen content. copyright 1996 The American Physical Society

  7. Raman spectra of Hg-based superconductors: Effect of oxygen defects

    Science.gov (United States)

    Zhou, Xingjiang; Cardona, M.; Chu, C. W.; Lin, Q. M.; Loureiro, S. M.; Marezio, M.

    1996-09-01

    Polarized micro-Raman scattering measurements have been performed on the five members of the HgBa2Can-1CunO2n+2+δ (n=1, 2, 3, 4, and 5) high-Tc superconductor family. A systematic evolution of the spectrum, which mainly involves oxygen-related phonons around 590, 570, 540, and 470 cm-1, with an increasing number of CuO2 layers, has been observed. Local laser annealing measurements clearly demonstrate that all these phonons are closely related to interstitial oxygen in the HgOδ planes. The origin of the spectrum evolution with the number of CuO2 layers lies in the variation of interstitial oxygen content.

  8. Raman spectra of amorphous silicon thin films deposited by glow discharge

    International Nuclear Information System (INIS)

    Bustarret, E.; Alvarez, F.; Brenzikofer, R.; Vilche Pena, A.; Chambouleyron, I.

    1983-01-01

    The local disorder present in films of a-Si:H and a-Si sub(x) N 1 - sub(x):H has been studied through first order Raman spectroscopy, using the 5145A line of an Argon laser in a backscattering geometry at room temperature. This allowed us to compare thin films deposited in two different reactors where the capacitively coupled glow-discharge was produced either in a 'cross field' or a 'parallel field' geometry. Gaseous mixtures of SiH 4 , N 2 , He and Ar have been used in both cases. The systematic variation of the preparation parameters leads to a whole class of 'alloys' including partially micro-crystallized films. (Author) [pt

  9. RAMAN spectra of amorphous silicon thin films deposited by glow discharges

    International Nuclear Information System (INIS)

    Bustarret, E.; Alvarez, F.; Brenzikofer, R.; Vilche Pena, A.; Chambouleyron, I.

    1983-01-01

    The local disorder present in films of a-Si:H and a-Si x N 1-x :H has been studied through first order Raman spectroscopy, using the 5145A line of an Argon laser in a backscattering geometry at room temperature. This allowed us to compare thin films deposited in two different reactors where the capacitively coupled glow-discharge was produced either in a ''cross field'' or a ''parallel field'' geometry. Gaseous mixtures of SiH 4 . N 2 , He and Ar have been used in both cases. The systematic variation of the preparation parameters leads to a whole class of ''alloys'' including partially micro-crysttalized films. (author) [pt

  10. Assignment of phantom bands in the solid-state infrared and Raman spectra of coronene: the importance of a minute out-of-plane distortion

    NARCIS (Netherlands)

    Todorov, P.D.; Jenneskens, L.W.; van Lenthe, J.H.

    2010-01-01

    The molecular geometry and the normal modes properties of coronene are investigated by means of DFT B3LYP and restricted/Hartree–Fock calculations utilizing basis sets of triple zeta +polarization quality. The interpretation of the infrared and Raman spectra of coronene, especially in solid state,

  11. Establishing the link between fibril formation and Raman optical activity spectra of insulin

    Czech Academy of Sciences Publication Activity Database

    Kessler, Jiří; Yamamoto, S.; Bouř, Petr

    2017-01-01

    Roč. 19, č. 21 (2017), s. 13614-13621 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA16-05935S; GA ČR GA15-09072S Grant - others:COST(XE) CA15214 Institutional support: RVO:61388963 Keywords : molecular dynamics clusters * absolute configuration * vibrational spectra Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  12. FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule.

    Science.gov (United States)

    Muthu, S; Elamurugu Porchelvi, E

    2013-11-01

    The Fourier Transform Infrared (FT-IR) and FT-Raman of N,N-diethyl-4-methylpiperazine-1-carboxamide (NND4MC) have been recorded and analyzed. The structure of the compound was optimized and the structural characteristics were determined by density functional theory (DFT) using B3LYP method with 6-31G(d,p) and 6-311G(d,p) basis sets. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. The theoretically predicted FT-IR and FT-Raman spectra of the title molecule have been constructed. The detailed interpretation of the vibrational spectra has been carried out with aid of normal coordinate analysis (NCA) following the scaled quantum mechanical force field methodology. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using natural bond orbital (NBO) analysis. The results show that electron density (ED) in the σ(*) and π(*) antibonding orbitals and second order delocalization energies (E2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The electronic dipole moment (μD) and the first hyperpolarizability (βtot) values of the investigated molecule were computed using Density Functional Theory (DFT/B3LYP) with 6-31G(d,p) and 6-311G(d,p) basis sets. The calculated results also show that the NND4MC molecule may have microscopy nonlinear optical (NLO) behavior with non zero values. Mulliken atomic charges of NND4MC were calculated. The (13)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results. The UV-Vis spectrum of the compound was recorded. The theoretical electronic absorption spectra have been calculated by using CIS, TD-DFT methods. A study on the electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MEP) were also performed. Copyright © 2013 Elsevier B

  13. FTIR, FT-Raman, UV-Visible spectra and quantum chemical calculations of allantoin molecule and its hydrogen bonded dimers.

    Science.gov (United States)

    Alam, Mohammad Jane; Ahmad, Shabbir

    2015-02-05

    FTIR, FT-Raman and electronic spectra of allantoin molecule are recorded and investigated using DFT and MP2 methods with 6-311++G(d,p) basis set. The molecular structure, anharmonic vibrational spectra, natural atomic charges, non-linear optical properties, etc. have been computed for the ground state of allantoin. The anharmonic vibrational frequencies are calculated using PT2 algorithm (Barone method) as well as VSCF and CC-VSCF methods. These methods yield results that are in remarkable agreement with the experiment. The coupling strengths between pairs of modes are also calculated using coupling integral based on 2MR-QFF approximation. The simulations on allantoin dimers have been also performed at B3LYP/6-311++G(d,p) level of theory to investigate the effect of the intermolecular interactions on the molecular structure and vibrational frequencies of the monomer. Vibrational assignments are made with the great accuracy using PED calculations and animated modes. The combination and overtone bands have been also identified in the FTIR spectrum with the help of anharmonic computations. The electronic spectra are simulated in gas and solution at TD-B3LYP/6-311++G(d,p) level of theory. The important global quantities such as electro-negativity, electronic chemical potential, electrophilicity index, chemical hardness and softness based on HOMO, LUMO energy eigenvalues are also computed. NBO analysis has been performed for monomer and dimers of allantoin at B3LYP/6-311++G(d,p) level of theory. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Global characteristics of atomic spectra and their use for the analysis of spectra. IV. Configuration interaction effects

    International Nuclear Information System (INIS)

    Kucas, S.; Jonauskas, V.; Karazija, R.

    1997-01-01

    For pt.III see ibid., vol.52, p.639, 1995. Changes of the moments of atomic spectrum due to configuration interaction (CI), the CI strength, the average shift of the energy of a level due to its interaction with all levels of distant configuration and other global characteristics of CI effects in atoms are systematised and their expressions presented. The results of the calculation of those characteristics for the energy level spectra of the 3s3p 3 + 3s 2 3p3d configurations in Si isoelectronic series, 3p 5 3d N + 3p 6 3d N-2 4p + 3p 6 3d N-2 4f (N = 5, 6, 7, 8) in Cr, Mn, Fe and Co isoelectronic series, ns 2 np N + np N+2 at n = 2 - 5 and N = 2 - 4 in neutral atoms as well as for the characteristic emission spectra corresponding to the 3p 5 3d 9 + 3d 7 4p → 3d 8 transitions as well as for the Auger M 4.3 N 1 N 2.3 spectra in Kr and N 4.5 O 1 O 2.3 in Xe are given and compared with the same characteristics of the more complete experimental spectra. (orig.)

  15. Chemometric study of Andalusian extra virgin olive oils Raman spectra: Qualitative and quantitative information.

    Science.gov (United States)

    Sánchez-López, E; Sánchez-Rodríguez, M I; Marinas, A; Marinas, J M; Urbano, F J; Caridad, J M; Moalem, M

    2016-08-15

    Authentication of extra virgin olive oil (EVOO) is an important topic for olive oil industry. The fraudulent practices in this sector are a major problem affecting both producers and consumers. This study analyzes the capability of FT-Raman combined with chemometric treatments of prediction of the fatty acid contents (quantitative information), using gas chromatography as the reference technique, and classification of diverse EVOOs as a function of the harvest year, olive variety, geographical origin and Andalusian PDO (qualitative information). The optimal number of PLS components that summarizes the spectral information was introduced progressively. For the estimation of the fatty acid composition, the lowest error (both in fitting and prediction) corresponded to MUFA, followed by SAFA and PUFA though such errors were close to zero in all cases. As regards the qualitative variables, discriminant analysis allowed a correct classification of 94.3%, 84.0%, 89.0% and 86.6% of samples for harvest year, olive variety, geographical origin and PDO, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. [Raman spectra study on radiation damage in EC9706 cells by 60Cogamma-rays].

    Science.gov (United States)

    Qi, Jian; Guo, Zheng-Yuan; Zhang, Guang-Shui; Wu, Dian-Yong; Tang, Wei-Yue

    2009-07-01

    Raman spectrum was used to study the structure and content of protein, nucleic acid and fat, while EC9706 cells irradiated by 60Co gamma-ray were cultivated for 24 h. The results showed that for spectrum intensity and frequency deviation, there were big differences between each exposure group and control group. For the 1 244 cm(-1) peak of amide III, beta folder changed to disordered conformations in the middle dose (4, 5Gy) groups. The 1 341 cm(-1) peak of v (the indole ring of Trp) was red-shifted in every dose group. There was a 2-3 cm(-1) red shift at the 782 cm(-1) peak in the big dose groups (7, 8Gy). It was showed that the non-hydrogenation of v(s)(PO2-) was strengthened due to big dose gamma-rays radiation. There was a 4 cm(-1) blue shift at the 1 446 cm(-1) peak of delta (CH2, CH3). It maybe resulted from 60Co gamma-rays' damage to the film of EC9706 cells. The preferable dose of 60Co gamma-rays may be found by analyzing the variety of the above-mentioned peaks in some dose groups.

  17. The effect of Mg doping on the Raman spectra of LiNbO3 crystals

    International Nuclear Information System (INIS)

    Lengyel, K.; Kovacs, L.; Peter, A.; Polgar, K.; Corradi, G.; Bourson, P.

    2007-01-01

    LiNbO 3 :Mg crystals doped with 0-8 mol% Mg with stoichiometric, intermediate and congruent compositions were systematically investigated by Raman spectroscopy in backscattering y(zx)y and y(zz)y geometries. The halfwidths of E(TO 3 ) - E(TO 9 ) and A 1 (TO 1 ) - A 1 (TO 4 ) bands, which have a significant composition dependence for undoped LiNbO 3 crystals, show only weak Mg-concentration dependence below the photorefractive threshold. This is a consequence of the counteracting effect of the decreasing amount of Nb ions at Li-ion sites (Nb Li ) and increasing amount of Mg ions at Li-ion sites (Mg Li ). The halfwidths of these bands, however, increase linearly with growing Mg content for samples above the threshold, irrespective of the Li/Nb ratio. The same effect was observed in the Mg dependence of the position and halfwidth of the two-phonon band at about 689 - 705 cm -1 . The change in the Mg concentration dependence of these parameters at a given Li/Nb ratio determines the same threshold value as that concluded from IR and UV spectroscopic measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. The use of UV, FT-IR and Raman spectra for the identification of the newest penem analogs: solutions based on mathematic procedure and the density functional theory.

    Science.gov (United States)

    Cielecka-Piontek, J; Lewandowska, K; Barszcz, B; Paczkowska, M

    2013-02-15

    The application of ultraviolet, FT-IR and Raman spectra was proposed for identification studies of the newest penem analogs (doripenem, biapenem and faropenem). An identification of the newest penem analogs based on their separation from related substances was achieved after the application of first derivative of direct spectra in ultraviolet which permitted elimination of overlapping effects. A combination of experimental and theoretical studies was performed for analyzing the structure and vibrational spectra (FT-IR and Raman spectra) of doripenem, biapenem and faropenem. The calculations were conducted using the density functional theory with the B3LYP hybrid functional and 6-31G(d,p) basis set. The confirmation of the applicability of the DFT methodology for interpretation of vibrational IR and Raman spectra of the newest penem analogs contributed to determination of changes of vibrations in the area of the most labile bonds. By employing the theoretical approach it was possible to eliminate necessity of using reference standards which - considering the instability of penem analogs - require that correction coefficients are factored in. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    International Nuclear Information System (INIS)

    Ye, ChuanXiang; Zhao, Yi; Liang, WanZhen

    2015-01-01

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT

  20. [Study on the Recognition of Liquor Age of Gujing Based on Raman Spectra and Support Vector Regression].

    Science.gov (United States)

    Wang, Guo-xiang; Wang, Hai-yan; Wang, Hu; Zhang, Zheng-yong; Liu, Jun

    2016-03-01

    It is an important and difficult research point to recognize the age of Chinese liquor rapidly and exactly in the field of liquor analyzing, which is also of great significance to the healthy development of the liquor industry and protection of the legitimate rights and interests of consumers. Spectroscopy together with the pattern recognition technology is a preferred method of achieving rapid identification of wine quality, in which the Raman Spectroscopy is promising because of its little affection of water and little or free of sample pretreatment. So, in this paper, Raman spectra and support vector regression (SVR) are used to recognize different ages and different storing time of the liquor of the same age. The innovation of this paper is mainly reflected in the following three aspects. First, the application of Raman in the area of liquor analysis is rarely reported till now. Second, the concentration of studying the recognition of wine age, while most studies focus on studying specific components of liquor and studies together with the pattern recognition method focus more on the identification of brands or different types of base wine. The third one is the application of regression analysis framework, which cannot be only used to identify different years of liquor, but also can be used to analyze different storing time, which has theoretical and practical significance to the research and quality control of liquor. Three kinds of experiments are conducted in this paper. Firstly, SVR is used to recognize different ages of 5, 8, 16 and 26 years of the Gujing Liquor; secondly, SVR is also used to classify the storing time of the 8-years liquor; thirdly, certain group of train data is deleted form the train set and put into the test set to simulate the actual situation of liquor age recognition. Results show that the SVR model has good train and predict performance in these experiments, and it has better performance than other non-liner regression method such

  1. Allergic reactions in red tattoos: Raman spectroscopy for 'fingerprint' detection of chemical risk spectra in tattooed skin and culprit tattoo inks.

    Science.gov (United States)

    Hutton Carlsen, K; Køcks, M; Sepehri, M; Serup, J

    2016-11-01

    The aim of this study was to assess the feasibility of Raman spectroscopy as a screening technique for chemical characterisation of tattoo pigments in pathologic reacting tattoos and tattoo ink stock products to depict unsafe pigments and metabolites of pigments. Twelve dermatome shave biopsies from allergic reactions in red tattoos were analysed with Raman spectroscopy (A 785-nm 300 mW diode laser). These were referenced to samples of 10 different standard tattoo ink stock products, three of these identified as the culprit inks used by the tattooist and thus by history the source of the allergy. Three primary aromatic amine (PAA) laboratory standards (aniline, o-anisidine and 3,3'-dichlorobenzidine) were also studied. Application of Raman spectroscopy to the shave biopsies was technically feasible. In addition, all ten inks and the three PAA standards could be discriminated. 10/12 shave biopsies provided clear fingerprint Raman signals which differed significantly from background skin, and Raman spectra from 8/12 biopsies perfectly matched spectra from the three culprit ink products. The spectrum of one red ink (a low cost product named 'Tattoo', claimed to originate from Taiwan, no other info on label) was identified in 5/12 biopsies. Strong indications of the inks 'Bright Red' and 'Crimson Red' were seen in three biopsies. The three PAA's could not be unambiguously identified. This study, although on a small-scale, demonstrated Raman spectroscopy to be feasible for chemical analysis of red pigments in allergic reactions. Raman spectroscopy has a major potential for fingerprint screening of problematic tattoo pigments in situ in skin, ex vivo in skin biopsies and in tattoo ink stock products, thus, to eliminate unsafe ink products from markets. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Ultra violet resonance Raman spectroscopy in lignin analysis: determination of characteristic vibrations of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures.

    Science.gov (United States)

    Saariaho, Anna-Maija; Jääskeläinen, Anna-Stiina; Nuopponen, Mari; Vuorinen, Tapani

    2003-01-01

    Raman spectroscopy of wood and lignin samples is preferably carried out in the near-infrared region because lignin produces an intense laser-induced fluorescence background at visible excitation wavelengths. However, excitation of aromatic and conjugated lignin structures with deep ultra violet (UV) light gives resonance-enhanced Raman signals while the overlapping fluorescence is eliminated. In this study, ultra violet resonance Raman (UVRR) spectroscopy was used to define characteristic vibration bands of model compounds of p-hydroxyphenyl, guaiacyl, and syringyl lignin structures at three excitation wavelengths (229, 244, and 257 nm). The intensities of each band, relative to the intensity of the aromatic vibration band at 1600 cm-1, were defined and the most suitable excitation wavelength was suggested for each structure. p-Hydroxyphenyl structures showed intensive characteristic bands at 1217-1214 and 1179-1167 cm-1 with excitation at 244 nm, whereas the bands of guaiacyl structures were more intensive with 257 nm excitation. Most intensive characteristic bands of guaiacyl structures were found at 1289-1279, 1187-1185, 1158-1155, and 791-704 cm-1. Syringyl structures had almost identical spectra with 244 and 257 nm excitations with characteristic bands at 1514-1506, 1333-1330, and 981-962 cm-1. The characteristic bands of the three structural units were also found from the compression wood, softwood, and hardwood samples, indicating that UVRR spectroscopy can be applied for the determination of chemical structures of lignin.

  3. Optimization of classification and regression analysis of four monoclonal antibodies from Raman spectra using collaborative machine learning approach.

    Science.gov (United States)

    Le, Laetitia Minh Maï; Kégl, Balázs; Gramfort, Alexandre; Marini, Camille; Nguyen, David; Cherti, Mehdi; Tfaili, Sana; Tfayli, Ali; Baillet-Guffroy, Arlette; Prognon, Patrice; Chaminade, Pierre; Caudron, Eric

    2018-07-01

    The use of monoclonal antibodies (mAbs) constitutes one of the most important strategies to treat patients suffering from cancers such as hematological malignancies and solid tumors. These antibodies are prescribed by the physician and prepared by hospital pharmacists. An analytical control enables the quality of the preparations to be ensured. The aim of this study was to explore the development of a rapid analytical method for quality control. The method used four mAbs (Infliximab, Bevacizumab, Rituximab and Ramucirumab) at various concentrations and was based on recording Raman data and coupling them to a traditional chemometric and machine learning approach for data analysis. Compared to conventional linear approach, prediction errors are reduced with a data-driven approach using statistical machine learning methods. In the latter, preprocessing and predictive models are jointly optimized. An additional original aspect of the work involved on submitting the problem to a collaborative data challenge platform called Rapid Analytics and Model Prototyping (RAMP). This allowed using solutions from about 300 data scientists in collaborative work. Using machine learning, the prediction of the four mAbs samples was considerably improved. The best predictive model showed a combined error of 2.4% versus 14.6% using linear approach. The concentration and classification errors were 5.8% and 0.7%, only three spectra were misclassified over the 429 spectra of the test set. This large improvement obtained with machine learning techniques was uniform for all molecules but maximal for Bevacizumab with an 88.3% reduction on combined errors (2.1% versus 17.9%). Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Phonon Raman spectra of colloidal CdTe nanocrystals: effect of size, non-stoichiometry and ligand exchange

    Directory of Open Access Journals (Sweden)

    Lokteva Irina

    2011-01-01

    Full Text Available Abstract Resonant Raman study reveals the noticeable effect of the ligand exchange on the nanocrystal (NC surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO phonon mode, as well as its intensity ratio to overtones. The broad shoulder above the LO peak frequency was enhanced and sharpened after pyridine treatment, as well as with decreasing NC size. The low-frequency mode around 100 cm-1 which is commonly related with the disorder-activated acoustical phonons appears in smaller NCs but is not enhanced after pyridine treatment. Surprisingly, the feature at low-frequency shoulder of the LO peak, commonly assigned to the surface optical phonon mode, was not sensitive to ligand exchange and concomitant close packing of the NCs. An increased structural disorder on the NC surface, strain and modified electron-phonon coupling is discussed as the possible reason of the observed changes in the phonon spectrum of ligand-exchanged CdTe NCs. PACS: 63.20.-e, 78.30.-j, 78.67.-n, 78.67.Bf

  5. Implementation of Deep Ultraviolet Raman Spectroscopy

    DEFF Research Database (Denmark)

    Liu, Chuan

    of the aromatics, Toluene and Naphthalene, in the gasoline. Chapter 6 shows examples of other applications of DUV Raman spectroscopy, for instance for the illegal red food additive: Sudan I. For this dye Raman spectra - useful to indicate an unwanted presence - could not be obtained with green or blue laser line...... Raman spectrometry was further applied to detect another illegal food additive, Melamine, in milk sample. It was shown that the DUV constitutes a more sensitive measurement method than traditional Raman spectrometry and realizes a direct detection in liquid milk. In another research field regarding...... spectra of the gasoline samples. It is virtually unimportant what the rest of the sample consisted of. The most intense characteristic band is located at 1381 cm-1. The Raman spectra of home-made artificial gasoline mixtures - with gradually increasing Naphthalene contents - can be used to determine...

  6. Study on the noncoincidence effect phenomenon using matrix isolated Raman spectra and the proposed structural organization model of acetone in condense phase

    Science.gov (United States)

    Xu, Wenwen; Wu, Fengqi; Zhao, Yanying; Zhou, Ran; Wang, Huigang; Zheng, Xuming; Ni, Bukuo

    2017-03-01

    The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature.

  7. On the use of spectra from portable Raman and ATR-IR instruments in synthesis route attribution of a chemical warfare agent by multivariate modeling.

    Science.gov (United States)

    Wiktelius, Daniel; Ahlinder, Linnea; Larsson, Andreas; Höjer Holmgren, Karin; Norlin, Rikard; Andersson, Per Ola

    2018-08-15

    Collecting data under field conditions for forensic investigations of chemical warfare agents calls for the use of portable instruments. In this study, a set of aged, crude preparations of sulfur mustard were characterized spectroscopically without any sample preparation using handheld Raman and portable IR instruments. The spectral data was used to construct Random Forest multivariate models for the attribution of test set samples to the synthetic method used for their production. Colored and fluorescent samples were included in the study, which made Raman spectroscopy challenging although fluorescence was diminished by using an excitation wavelength of 1064 nm. The predictive power of models constructed with IR or Raman data alone, as well as with combined data was investigated. Both techniques gave useful data for attribution. Model performance was enhanced when Raman and IR spectra were combined, allowing correct classification of 19/23 (83%) of test set spectra. The results demonstrate that data obtained with spectroscopy instruments amenable for field deployment can be useful in forensic studies of chemical warfare agents. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. An Anomalous Enhancement of the A(g)(2) Mode in the Resonance Raman Spectra of C-60 Embedded in Single-Walled Carbon Nanotubes during Anodic Charging

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Zólyomi, V.; Rusznyák, A.; Koltai, J.; Kürti, J.; Kavan, Ladislav

    2010-01-01

    Roč. 114, č. 6 (2010), 2505-2511 ISSN 1932-7447 R&D Projects: GA AV ČR IAA400400804; GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA ČR GC203/07/J067 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroelectrochemie * Raman spectra * SWNT Subject RIV: CG - Electrochemistry Impact factor: 4.520, year: 2010

  9. Development of program package for investigation and modeling of carbon nanostructures in diamond like carbon films with the help of Raman scattering and infrared absorption spectra line resolving

    Science.gov (United States)

    Hayrapetyan, David B.; Hovhannisyan, Levon; Mantashyan, Paytsar A.

    2013-04-01

    The analysis of complex spectra is an actual problem for modern science. The work is devoted to the creation of a software package, which analyzes spectrum in the different formats, possesses by dynamic knowledge database and self-study mechanism, performs automated analysis of the spectra compound based on knowledge database by application of certain algorithms. In the software package as searching systems, hyper-spherical random search algorithms, gradient algorithms and genetic searching algorithms were used. The analysis of Raman and IR spectrum of diamond-like carbon (DLC) samples were performed by elaborated program. After processing the data, the program immediately displays all the calculated parameters of DLC.

  10. A pseudo-Voigt component model for high-resolution recovery of constituent spectra in Raman spectroscopy

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Schmidt, Mikkel Nørgaard; Rindzevicius, Tomas

    2017-01-01

    Raman spectroscopy is a well-known analytical technique for identifying and analyzing chemical species. Since Raman scattering is a weak effect, surface-enhanced Raman spectroscopy (SERS) is often employed to amplify the signal. SERS signal surface mapping is a common method for detecting trace...... to directly and reliably identify the Raman modes, with overall performance similar to the state of the art non-negative matrix factorization approach. However, the model provides better interpretation and is a step towards enabling the use of SERS in detection of trace amounts of molecules in real-life...

  11. Neutron spectra characteristics for the intense neutron source, INS

    International Nuclear Information System (INIS)

    Battat, M.; Dierckx, R.; Emigh, C.R.

    1977-01-01

    The Intense Neutron Source, INS, facility is presently under construction at the Los Alamos Scientific Laboratory. Its purpose is to provide a broad base for research work related to the radiation effects produced by 14-MeV neutrons from a D-T burn of a fusion reactor. The INS facility produces a D-T burn-like reaction from the collision of an intense tritium-ion beam with a supersonic jet target of deuterium gas. The reaction produces a typical D-T 14-MeV neutron spectrum. By adding a fission blanket surrounding the D-T ''burn,'' the neutron spectral shape may be tailored to match almost perfectly the anticipated first-wall spectra from presently proposed fusion reactors. With a blanket in place, the total production of neutrons can be as large as 3 x 10 16 n/s and experimental volumes of the order of 1000 cm 3 can be available at flux levels greater than 0.6 x 10 14 n/cm 2 s

  12. Study on the man-operator characteristics in the peak identification problem in line spectra

    International Nuclear Information System (INIS)

    Gopych, P.M.; Sorokin, V.I.; Sotnikov, V.V.

    1992-01-01

    ATOS program complex (automatical test spectra processing) realizing all stages of investigation necessary to obtain qualitative characteristics of the man-operator in the peak identification problem is developed. Qualitative characteristics of identitication ion quality of peaks by operators searching for peaks in line spectra are determined due to simulation experiment. It is shown, that for trained operators reference possibility of false detection of peaks is equal to F=0.012±0.004, while for untrained ones - F≅0.3. Comparison of results with analogous data on on-line programs for identification of peaks in γ-spectra is conducted

  13. Clustering/anticlustering effects on the GeSi Raman spectra at moderate (Ge,Si) contents: Percolation scheme vs. ab initio calculations

    Science.gov (United States)

    Torres, V. J. B.; Hajj Hussein, R.; Pagès, O.; Rayson, M. J.

    2017-02-01

    We test a presumed ability behind the phenomenological percolation scheme used for the basic description of the multi-mode Raman spectra of mixed crystals at one dimension along the linear chain approximation, to determine, via the Raman intensities, the nature of the atom substitution, as to whether this is random or due to local clustering/anticlustering. For doing so, we focus on the model percolation-type GeySi1-y system characterized by six oscillators { 1 × ( G e - G e ) , 3 × ( G e - S i ) , 2 × ( S i - S i ) } and place the study around the critical compositions y ˜ (0.16, 0.71, and 0.84) corresponding to nearly matching of intensities between the like Raman modes from a given multiplet ( G e - S i triplet or S i - S i doublet). The interplay between the GeySi1-y Raman intensities predicted by the percolation scheme depending on a suitable order parameter κ of local clustering/anticlustering is found to be consistent with ab initio calculations of the GeySi1-y Raman spectra done with the Ab Initio Modeling PROgram code using large (64-, 216-, and 512-atoms) disordered cubic supercells matching the required ( y , κ ) values. The actual "percolation vs. ab initio" comparative insight at moderate/dilute-(Ge,Si) limits, with an emphasis on the κ -induced intra-bond transfer of oscillator strength, extends a pioneering one earlier achieved at an intermediate composition ( y ˜ 0.50) by using small (32-atom) supercells [O. Pagès et al., J. Appl. Phys. 114, 033513 (2013)], mainly concerned with the inter-bond transfer of oscillator strength, providing altogether a complete picture.

  14. FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid.

    Science.gov (United States)

    Karabacak, Mehmet; Cinar, Mehmet

    2012-02-01

    In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Influence of a photoexcited electron-hole plasma on the Raman scattering spectra of YBa2Cu3Ox single crystals

    International Nuclear Information System (INIS)

    Goncharov, A.F.; Denisov, V.N.; Mavrin, B.N.; Podobedov, V.B.

    1988-01-01

    The Raman spectra of tetragonal YBa 2 Cu 3 O x crystals in the region of ∼500 cm -1 were determined using different power densities I 0 of the exciting radiation of wavelengths 4,880, 5,145, 5,321, and 6,471 angstrom at temperatures 80-300 K. An increase in I 0 revealed changes in the spectra due to interference of the electron continuum with a 470 cm -1 phonon and also due to activation of 560-590 cm -1 dipole vibrations because of interaction of photocarriers with the crystal lattice. An analysis of the spectra yielded the electron-phonon interaction constant. The changes in the spectra were of resonant nature, but they were absent in the case of the excitation wavelengths 5,321 and 6,471 angstrom. A triple multichannel Raman spectrometer, developed by the authors, made it possible to record simultaneously a spectral interval of 500 cm -1 in the range ≥ 25 cm -1 on excitation with cw laser radiation

  16. Raman spectra from very concentrated aqueous NaOH and from wet and dry, solid, and anhydrous molten, LiOH, NaOH, and KOH.

    Science.gov (United States)

    Walrafen, George E; Douglas, Rudolph T W

    2006-03-21

    High-temperature, high-pressure Raman spectra were obtained from aqueous NaOH solutions up to 2NaOHH2O, with X(NaOH)=0.667 at 480 K. The spectra corresponding to the highest compositions, X(NaOH)> or =0.5, are dominated by H3O2-. An IR xi-function dispersion curve for aqueous NaOH, at 473 K and 1 kbar, calculated from the data of Franck and Charuel indicates that the OH- ion forms H3O2- by preferential H bonding with nonhydrogen-bonded OH groups. Raman spectra from wet to anhydrous, solid LiOH, NaOH, and KOH yield sharp, symmetric OH- stretching peaks at 3664, 3633, and 3596 cm(-1), respectively, plus water-related, i.e., H3O2-, peaks near LiOH, 3562 cm(-1), NaOH, 3596 cm(-1), and, KOH, 3500 cm(-1). Absence of H3O2- peaks from the solid assures that the corresponding melt is anhydrous. Raman spectra from the anhydrous melts yield OH- stretching peak frequencies: LiOH, 3614+/-4 cm(-1), 873 K; NaOH, 3610+/-2 cm(-1), 975 K; and, KOH, 3607+/-2 cm(-1), 773 K, but low-frequency asymmetry due to ion-pair interactions is present which is centered near 3550 cm(-1). The ion-pair-related asymmetry corresponds to the sole IR maximum near 3550 cm(-1) from anhydrous molten NaOH, at 623 K. Bose-Einstein correction of published low-frequency Raman data from molten LiOH revealed an acoustic phonon, near 205 cm(-1), related to restricted translation of OH- versus Li+, and an optical phonon, at 625 cm(-1) and tau approximately 0.05 ps, due to protonic precession and/or pendular motion. Strong H bonding between water and the O atom of OH- forms H3O2-, but the proton of OH- does not bond with H significantly. Large Raman bandwidths (aqueous solutions) are explained in terms of inhomogeneous broadening due to proton transfer in a double well. Vibrational assignments are presented for H3O2-.

  17. Shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowires

    Science.gov (United States)

    Wen, Feng; Dillen, David C.; Kim, Kyounghwan; Tutuc, Emanuel

    2017-06-01

    We investigate the shell morphology and Raman spectra of epitaxial Ge-SixGe1-x and Si-SixGe1-x core-shell nanowire heterostructures grown using a combination of a vapor-liquid-solid (VLS) growth mechanism for the core, followed by in-situ epitaxial shell growth using ultra-high vacuum chemical vapor deposition. Cross-sectional transmission electron microscopy reveals that the VLS growth yields cylindrical Ge, and Si nanowire cores grown along the ⟨111⟩, and ⟨110⟩ or ⟨112⟩ directions, respectively. A hexagonal cross-sectional morphology is observed for Ge-SixGe1-x core-shell nanowires terminated by six {112} facets. Two distinct morphologies are observed for Si-SixGe1-x core-shell nanowires that are either terminated by four {111} and two {100} planes associated with the ⟨110⟩ growth direction or four {113} and two {111} planes associated with the ⟨112⟩ growth direction. We show that the Raman spectra of Si- SixGe1-x are correlated with the shell morphology thanks to epitaxial growth-induced strain, with the core Si-Si mode showing a larger red shift in ⟨112⟩ core-shell nanowires compared to their ⟨110⟩ counterparts. We compare the Si-Si Raman mode value with calculations based on a continuum elasticity model coupled with the lattice dynamic theory.

  18. FT-Raman, FT-IR spectra and total energy distribution of 3-pentyl-2,6-diphenylpiperidin-4-one: DFT method.

    Science.gov (United States)

    Subashchandrabose, S; Saleem, H; Erdogdu, Y; Rajarajan, G; Thanikachalam, V

    2011-11-01

    FT-Raman and FT-IR spectra were recorded for 3-pentyl-2,6-diphenylpiperidin-4-one (PDPO) sample in solid state. The equilibrium geometries, harmonic vibrational frequencies, infrared and the Raman scattering intensities were computed using DFT/6-31G(d,p) level. Results obtained at this level of theory were used for a detailed interpretation of the infrared and Raman spectra, based on the total energy distribution (TED) of the normal modes. Molecular parameters such as bond lengths, bond angles and dihedral angles were calculated and compared with X-ray diffraction data. This comparison was good agreement. The intra-molecular charge transfer was calculated by means of natural bond orbital analysis (NBO). Hyperconjugative interaction energy was more during the π-π* transition. Energy gap of the molecule was found using HOMO and LUMO calculation, hence the less band gap, which seems to be more stable. Atomic charges of the carbon, nitrogen and oxygen were calculated using same level of calculation. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Carbon Nanotubes’ Effect on Mitochondrial Oxygen Flux Dynamics: Polarography Experimental Study and Machine Learning Models using Star Graph Trace Invariants of Raman Spectra

    Directory of Open Access Journals (Sweden)

    Michael González-Durruthy

    2017-11-01

    Full Text Available This study presents the impact of carbon nanotubes (CNTs on mitochondrial oxygen mass flux (Jm under three experimental conditions. New experimental results and a new methodology are reported for the first time and they are based on CNT Raman spectra star graph transform (spectral moments and perturbation theory. The experimental measures of Jm showed that no tested CNT family can inhibit the oxygen consumption profiles of mitochondria. The best model for the prediction of Jm for other CNTs was provided by random forest using eight features, obtaining test R-squared (R2 of 0.863 and test root-mean-square error (RMSE of 0.0461. The results demonstrate the capability of encoding CNT information into spectral moments of the Raman star graphs (SG transform with a potential applicability as predictive tools in nanotechnology and material risk assessments.

  20. Vibrational spectra (FT-IR, FT-Raman), frontier molecular orbital, first hyperpolarizability, NBO analysis and thermodynamics properties of Piroxicam by HF and DFT methods

    Science.gov (United States)

    Suresh, S.; Gunasekaran, S.; Srinivasan, S.

    2015-03-01

    The solid phase FT-IR and FT-Raman spectra of 4-Hydroxy-2-methyl-N-(2-pyridinyl)-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxide (Piroxicam) have been recorded in the region 4000-400 and 4000-100 cm-1 respectively. The molecular geometry, harmonic vibrational frequencies and bonding features of piroxicam in the ground state have been calculated by Hartree-Fock (HF) and density functional theory (DFT) methods using 6-311++G(d,p) basis set. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental obtained by FT-IR and FT-Raman spectra. A detailed interpretation of the vibrational spectra of the title compound has been made on the basis of the calculated potential energy distribution (PED). The electronic properties, such as HOMO and LUMO energies, molecular electrostatic potential (MESP) are also performed. The linear polarizability (α) and the first order hyper polarizability (β) values of the title compound have been computed. The molecular stability arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis.

  1. Raman and FTIR spectra of CeO{sub 2} and Gd{sub 2}O{sub 3} in iron phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Yuanming, E-mail: laiyuanming@ipm.com.cn [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China); State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liang, Xiaofeng; Yang, Shiyuan [State Key Laboratory Cultivation Base for Nonmetal Composite and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Liu, Pei; Zeng, Yiming; Hu, Changyi [State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2014-12-25

    Highlights: • The structure of the studied samples has been investigated by Raman and FTIR spectroscopy. • The structure for the all samples has similar features. • The structure consists of predominantly Q{sup 1} with a fraction of Q{sup 0} and Q{sup 2} units. • The Ce and Gd enters in the structure of studied glasses as a network modifier. - Abstract: In the present work, multicomponent oxide samples of composition x(CeO{sub 2} + Gd{sub 2}O{sub 3})–(40 − x)Fe{sub 2}O{sub 3}–60P{sub 2}O{sub 5} (0 ⩽ x ⩽ 8 mol%) were produced by conventional melting method. The samples were investigated to examine the effect of the CeO{sub 2} and Gd{sub 2}O{sub 3} composition on the structure of the iron phosphate glasses system. The X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM) for the x ⩽ 6 mol% samples show all the samples formed homogeneous glass, but for the x = 8 mol% samples show the presence of randomly distributed crystalline phase embedded in an amorphous matrix. The x(CeO{sub 2} + Gd{sub 2}O{sub 3})–(40 − x)Fe{sub 2}O{sub 3}–60P{sub 2}O{sub 5} glass containing 8 mol% CeO{sub 2} and Gd{sub 2}O{sub 3} partially crystallized during annealing and Ce/Gd-rich were identified by EDS in the crystalline phase. The structure of the studied samples has been investigated using Raman and Fourier transform infrared spectroscopy (FTIR). The Raman and FTIR spectra for the samples have analogous spectral features. The Raman and FTIR spectra suggest that the structure is mainly constituted by the pyrophosphate glass based structure, with a part proportion of metaphosphate and orthophosphate structure. Raman and FTIR spectra allowed us to identify the structural units which appear in the structural network of these phosphate glasses and also the network modifier role of cerium and gadolinium ions.

  2. Effects of Zn doping on crystal structure, Raman spectra and superconductivity of SmBa2Cu3O7−δ systems

    International Nuclear Information System (INIS)

    Xue, Renzhong; Dai, Haiyang; Chen, Zhenping; Li, Tao; Xue, Yuncai

    2013-01-01

    Highlights: ► Zn ions affect significantly the lattice parameter of the SmBa 2 Cu 3−x Zn x O 7−δ (SBCZO) ceramic. ► Raman spectra of SBCZO samples obviously change with increasing Zn doping content. ► The superconducting transition temperature decreases with increasing Zn content. ► Induced lattice disorder and local magnetic moment in CuO 2 planes are related to suppression of T c . -- Abstract: Polycrystalline SmBa 2 Cu 3−x Zn x O 7−δ (SBCZO) (x = 0.0–0.4) samples are prepared by the usual solid-state reaction technique. The effects of Zn doping on the structure, the grain morphology, Raman spectra and electronic transport properties of SBCZO systems have been investigated. The orthorhombic structure of the samples does not change remarkably. The samples become denser and grain boundary becomes unclear with the increase of Zn content. Raman spectra exhibit different features with increasing Zn content which shows that Zn ions act as strong scattering centers to the charge carriers in the CuO 2 planes, enhance the disorder of the CuO 2 planes and increase oxygen depletion in Cu-O chains. The measurements of the resistivity show that the superconducting transition temperature T c decreases rapidly and the superconducting transition width increases gradually with increasing Zn contents. Furthermore, the changes of the samples’ normal state resistivity from metallic to semi-conducting behavior show the increase of heterogeneities with increasing Zn content which causes inter-grain or intra-grain disorders. All the results suggest that lattice disorder in the CuO 2 planes, the oxygen content change in Cu-O chains and local weak superconductivity regions due to the substitution of Zn for Cu are related to the suppression of T c in the SBCZO systems

  3. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm−1

    Directory of Open Access Journals (Sweden)

    R. L. Aggarwal

    2016-02-01

    Full Text Available Raman spectra of ammonia (NH3, chlorine (Cl2, hydrogen sulfide (H2S, phosgene (COCl2, and sulfur dioxide (SO2 toxic gases have been measured in the fingerprint region 400-1400 cm−1. A relatively compact (<2′x2′x2′, sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm−1 in NH3. Three Raman modes are observed in Cl2 at 554, 547, and 539 cm−1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm−1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10−32 cm2/sr (3.68 ± 0.26x10−36 m2/sr, 1.37 ± 0.10x10−30 cm2/sr (1.37 ± 0.10x10−34 m2/sr, 3.25 ± 0.23x10−31 cm2/sr (3.25 ± 0.23x10−35 m2/sr, 1.63 ± 0.14x10−30 cm2/sr (1.63 ± 0.14x10−34 m2/sr, and 3.08 ± 0.22x10−30 cm2/sr (and 3.08 ± 0.22x10−34 m2/sr were determined for the differential Raman cross section of the 967 cm−1 mode of NH3, sum of the 554, 547, and 539 cm−1 modes of Cl2, 870 cm−1 mode of H2S, 570 cm−1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10−31 cm2/sr (3.56 ± 0.14x10−35 m2/sr for the 1285 cm−1 mode of CO2 as the reference.

  4. Analysis of phthalate ester content in poly(vinyl chloride) plastics by means of Fourier transform Raman spectroscopy

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.

    2004-01-01

    Fourier transform (FT) Raman spectroscopy is applied to a range of phthalate ester plasticizers in pure form as well as in poly(vinyl chloride) (PVC) samples. It is found that phthalate esters as a group can be identified by a set of six characteristic Raman bands. FT-Raman spectra of 22 phthalate...

  5. Chemometric evaluation of temperature-dependent surface-enhanced Raman spectra of riboflavin: What is the best multivariate approach to describe the effect of temperature?

    Science.gov (United States)

    Kokaislová, Alžběta; Kalhousová, Milena; Gráfová, Michaela; Matějka, Pavel

    2014-10-01

    Riboflavin is an essential nutrient involved in energetic metabolism. It is used as a pharmacologically active substance in treatment of several diseases. From analytical point of view, riboflavin can be used as an active part of sensors for substances with affinity to riboflavin molecules. In biological environment, metal substrates coated with riboflavin are exposed to temperatures that are different from room temperature. Hence, it is important to describe the influence of temperature on adsorbed molecules of riboflavin, especially on orientation of molecules towards the metal surface and on stability of adsorbed molecular layer. Surface-enhanced Raman scattering (SERS) spectroscopy is a useful tool for investigation of architecture of molecular layers adsorbed on metal surfaces because the spectral features in SERS spectra change with varying orientation of molecules towards the metal surface, as well as with changes in mutual interactions among adsorbed molecules. In this study, riboflavin was adsorbed on electrochemically prepared massive silver substrates that were exposed to temperature changes according to four different temperature programs. Raman spectra measured at different temperatures were compared considering positions of spectral bands, their intensities, bandwidths and variability of all these parameters. It was found out that increase of substrate temperature up to 50 °C does not lead to any observable decomposition of riboflavin molecules, but the changes of band intensity ratios within individual spectra are apparent. To distinguish sources of variability beside changes in band intensities and widths, Principal Component Analysis (PCA) was applied. Discriminant Analysis (DA) was used to explore if the SERS spectra can be separated according to temperature. The results of Partial Least Squares (PLS) regression demonstrate the possibility to predict the sample temperature using SERS spectral features. Results of all performed experiments and

  6. Fermi energy dependence of the G-band resonance Raman spectra of single-wall carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Park, J. S.; Sasaki, K.; Saito, R.; Izumida, W.; Kalbáč, Martin; Farhat, H.; Dresselhaus, G.; Dresselhaus, M. S.

    2009-01-01

    Roč. 80, č. 8 (2009), 081402-1-081402-4 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA MŠk ME09060 Institutional research plan: CEZ:AV0Z40400503 Keywords : Fermi energy dependence * Raman spectroscopy * single waled carbon nanotubes Subject RIV: CG - Electrochemistry Impact factor: 3.475, year: 2009

  7. Applications of Group Theory: Infrared and Raman Spectra of the Isomers of 1,2-Dichloroethylene: A Physical Experiment

    Science.gov (United States)

    Craig, Norman C.; Lacuesta, Nanette N.

    2004-01-01

    A study of the vibrational spectroscopy of the cis and trans isomers of 1,2-dichloroethylene provides an excellent opportunity to learn the applications group theory in laboratories. The necessity of using infrared (IR) spectroscopy and Raman spectroscopy in making full vibrational assignments is illustrated.

  8. Ionic conductivity and Raman spectra of Na--Li, K--Li, and K--Sn β-Al2O3

    International Nuclear Information System (INIS)

    Kaneda, T.; Bates, J.B.; Wang, J.C.; Engstrom, H.

    1979-01-01

    The ionic conductivity and Raman spectra of Na, Na--Li, K, K--Li, and K--Sn β-Al 2 O 3 were measured in order to understand the mechanisms of mixed-ion conduction. It was observed that at 300 0 K, for example, the conductivity of a crystal with composition Na 0 . 82 Li 0 . 18 β-Al 2 O 3 was about one-fifth that of pure Na cyrstals, while the conductivity of K 0 . 80 Li 0 . 20 β-Al 2 O 3 was more than three orders of magnitude lower than that of pure K compounds. The results of a model calculation indicated that the Li + ions are the main carrier species in the Na--Li and K--Li mixed compounds. Features observed in the Raman spectra were attributed to paired- and single-ion vibrations. It is concluded that the K + ions which contribute to a band at 69 cm -1 in K β-Al 2 O 3 are the effective carriers for conduction

  9. Development and integration of block operations for data invariant automation of digital preprocessing and analysis of biological and biomedical Raman spectra.

    Science.gov (United States)

    Schulze, H Georg; Turner, Robin F B

    2015-06-01

    High-throughput information extraction from large numbers of Raman spectra is becoming an increasingly taxing problem due to the proliferation of new applications enabled using advances in instrumentation. Fortunately, in many of these applications, the entire process can be automated, yielding reproducibly good results with significant time and cost savings. Information extraction consists of two stages, preprocessing and analysis. We focus here on the preprocessing stage, which typically involves several steps, such as calibration, background subtraction, baseline flattening, artifact removal, smoothing, and so on, before the resulting spectra can be further analyzed. Because the results of some of these steps can affect the performance of subsequent ones, attention must be given to the sequencing of steps, the compatibility of these sequences, and the propensity of each step to generate spectral distortions. We outline here important considerations to effect full automation of Raman spectral preprocessing: what is considered full automation; putative general principles to effect full automation; the proper sequencing of processing and analysis steps; conflicts and circularities arising from sequencing; and the need for, and approaches to, preprocessing quality control. These considerations are discussed and illustrated with biological and biomedical examples reflecting both successful and faulty preprocessing.

  10. The stability and Raman spectra of ikaite, CaCO3·6H2O, at high pressure and temperature

    Science.gov (United States)

    Shahar, Anat; Bassett, William A.; Mao, Ho-kwang; Chou, I-Ming; Mao, Wendy

    2005-01-01

    Raman analyses of single crystals of ikaite, CaCO3·6H2O, synthesized in a diamond-anvil cell at ambient temperature yield spectra from 0.14 to 4.08 GPa; the most intense peaks are at 228 and 1081 cm−1 corresponding to Eg(external) and A1g (internal) modes of vibrations in CO2− 3 ions, respectively. These are in good agreement with Raman spectra previously published for ikaite in powder form at ambient temperature and pressure. Visual observations of a sample consisting initially of a mixture of calcite + water in a hydrothermal diamond-anvil cell yielded a P-T phase diagram up to 2 GPa and 120 °C; the boundary for the reaction ikaite ↔ aragonite + water has a positive slope and is curved convexly toward the aragonite + water field similar to typical melt curves. This curvature can be explained in terms of the Clapeyron equation for a boundary between a solid phase and a more compressible liquid phase or largely liquid phase assemblage.

  11. Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Polf, J C; Peterson, S; Beddar, S [M D Anderson Cancer Center, Univeristy of Texas, Houston, TX 77030 (United States); McCleskey, M; Roeder, B T; Spiridon, A; Trache, L [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States)], E-mail: jcpolf@mdanderson.org

    2009-11-21

    In this paper, we present results of initial measurements and calculations of prompt gamma ray spectra (produced by proton-nucleus interactions) emitted from tissue equivalent phantoms during irradiations with proton beams. Measurements of prompt gamma ray spectra were made using a high-purity germanium detector shielded either with lead (passive shielding), or a Compton suppression system (active shielding). Calculations of the spectra were performed using a model of both the passive and active shielding experimental setups developed using the Geant4 Monte Carlo toolkit. From the measured spectra it was shown that it is possible to distinguish the characteristic emission lines from the major elemental constituent atoms (C, O, Ca) in the irradiated phantoms during delivery of proton doses similar to those delivered during patient treatment. Also, the Monte Carlo spectra were found to be in very good agreement with the measured spectra providing an initial validation of our model for use in further studies of prompt gamma ray emission during proton therapy. (note)

  12. Application of Raman spectroscopy to forensic fibre cases.

    Science.gov (United States)

    Lepot, L; De Wael, K; Gason, F; Gilbert, B

    2008-09-01

    Five forensic fibre cases in which Raman spectroscopy proved to be a good complementary method for microspectrophotometry (MSP) are described. Absorption spectra in the visible range are indeed sometimes characteristic ofa certain dye but this one can be subsequently identified unambiguously by Raman spectroscopy using a spectral library. In other cases the comparison of Raman spectra of reference fibres and suspect fibres led to an improvement of the discrimination power. The Raman measurements have been performed directly on mounted fibres and the spectra showed only little interference from the mounting resin and glass. Raman spectroscopy is therefore a powerful method that can be applied in routine fibre analysis following optical microscopy and MSP measurements.

  13. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang

    2014-07-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O\\' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O\\' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric

  14. Atomic-scale microstructures, Raman spectra and dielectric properties of cubic pyrochlore-typed Bi1.5MgNb1.5O7 dielectric ceramics

    KAUST Repository

    Li, Yangyang; Zhu, Xinhua; Al-Kassab, Talaat

    2014-01-01

    Single-phase cubic pyrochlore-typed Bi1.5MgNb 1.5O7 (BMN) dielectric ceramics were synthesized at temperatures of 1050-1200 °C by solid-state reaction method. Their atomic-scale microstructures and dielectric properties were investigated. X-ray diffraction patterns revealed that the BMN ceramics had an average cubic pyrochlore structure, whereas the Raman spectra indicated that they had an essentially cubic symmetry with small local deviations at the A and O' sites of the cubic pyrochlore structure. This was confirmed by selected electron area diffraction (SAED) patterns, where the reflections of {442} (not allowed in the cubic pyrochlore with Fd3̄m symmetry) were clearly observed. SEM and TEM images revealed that the average grain size was increased with the sintering temperature, and an un-homogeneous grain growth was observed at high temperatures. HRTEM images and SAED patterns revealed the single-crystalline nature of the BMN ceramic grains. Energy dispersive spectroscopy (EDS) elemental mapping studies indicated that the compositional distributions of Bi, Mg, Nb and O elements in the ceramic grains were homogenous, and no elemental precipitation was observed at the grain boundary. Quantitative EDS data on ceramic grains revealed the expected cationic stoichiometry based on the initial composition of Bi1.5MgNb1.5O7. Dielectric constants of all the BMN samples exhibited almost frequency independent characteristic in the frequency range of 102-106 Hz, and the highest value was 195 for the BMN ceramics sintered at sintered at 1150 °C with the highest bulk density. The dielectric losses were stable and less than 0.002 in the frequency range of 102-105 Hz. The high dielectric constants of the present BMN samples can be ascribed to the local atomic deviations at the A and O' sites from the ideal atomic positions of the pyrochlore structure, which affect the different polarization mechanisms in the BMN ceramics, and which in turn enhance the dielectric constants of

  15. Large Variations of the Raman Signal in the Spectra of Twisted Bilayer Graphene on a BN Substrate.

    Science.gov (United States)

    Kalbac, Martin; Frank, Otakar; Kong, Jing; Sanchez-Yamagishi, Javier; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; Dresselhaus, Mildred S

    2012-03-15

    We report an unusual enhancement of the Raman signal of the G mode in a twisted graphene bilayer (2-LG) on a hexagonal single-crystalline boron nitride substrate. We used an isotopically engineered 2-LG, where the top layer was composed of (13)C atoms and the bottom layer of (12)C atoms. Consequently, it was possible by Raman spectroscopy to distinguish between the enhancement coming from the top and bottom layers. The enhancement of the G mode was, however, found to be similar for the top and bottom layers, and this enhancement effect was observed only at certain locations on the substrate. The experiment with two different laser excitation energies showed that the location of the enhanced spots is dependent on the laser excitation energy. Therefore our results suggest that the enhancement comes from new states in the electronic structure, which are a consequence of a local specific rotation of the grains in graphene layers.

  16. L-Alanyl-L-alanine Conformational Changes Induced by pH As Monitored by the Raman Optical Activity Spectra

    Czech Academy of Sciences Publication Activity Database

    Šebek, Jiří; Kapitán, Josef; Šebestík, Jaroslav; Baumruk, V.; Bouř, Petr

    2009-01-01

    Roč. 113, č. 27 (2009), s. 7760-7768 ISSN 1089-5639 R&D Projects: GA ČR GA202/07/0732; GA ČR GA203/07/1517; GA AV ČR IAA400550702 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman optical activity * peptides * conformation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.899, year: 2009

  17. Interaction of zirconium and hafnium tetrachlorides with cesium, rubidium and potassium chlorides and Raman spectra of reaction products

    International Nuclear Information System (INIS)

    Salyulev, A.B.; Vovkotrub, Eh.G.; Strekalovskij, V.N.

    2008-01-01

    Raman spectroscopy was used to reveal the formation of novel complexes involving [Zr 2 Cl 9 ] - and [Hf 2 Cl 9 ] - anions in molten mixtures of ZrCl 4 and HfCl 4 with CsCl, RbCl, and KCl. A prediction is made about the presence of the above-mentioned complex anions in poorly investigated melts of the corresponding binary systems at high concentrations of ZrCl 4 or HfCl 4 [ru

  18. [In Vivo Study of Chitin in Fungal Hyphae Based on Confocal Raman Microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Zhou, Bin-xiong; Hu, Xiao-qian; Sun, Chan-jun; He, Yong

    2016-01-01

    Chitin is an important structural polysaccharide of fungal cell wall. In this paper, aerial hyphae of Colletotrichum camelliae Massee was first studied by confocal Raman microscopy in vivo. Firstly, the optimal experimental parameters of hyphae for collecting the Raman spectra were determined, and the typical Raman spectra of hyphae, chitin standard and background were acquired. By comparing analysis, characteristic peaks of chitin were found in hyphae. Then, a region of interesting on hyphae was selected for Raman scanning. Through principal component analysis, the Raman signal of hyphae and background in the scanning area can be separated clearly. Combined with loading weight plot, two main characteristic peaks of hyphae were obtained, 1 622 cm(-1) was belong to chitin and 1 368 cm(-1) was assigned to pectic polysaccharide. Finally, two and three dimension chemical images of fungal hyphae were realized based on Raman fingerprint spectra of chitin in a nondestructive way.

  19. [Monitoring of Crack Propagation in Repaired Structures Based on Characteristics of FBG Sensors Reflecting Spectra].

    Science.gov (United States)

    Yuan, Shen-fang; Jin, Xin; Qiu, Lei; Huang, Hong-mei

    2015-03-01

    In order to improve the security of aircraft repaired structures, a method of crack propagation monitoring in repaired structures is put forward basing on characteristics of Fiber Bragg Grating (FBG) reflecting spectra in this article. With the cyclic loading effecting on repaired structure, cracks propagate, while non-uniform strain field appears nearby the tip of crack which leads to the FBG sensors' reflecting spectra deformations. The crack propagating can be monitored by extracting the characteristics of FBG sensors' reflecting spectral deformations. A finite element model (FEM) of the specimen is established. Meanwhile, the distributions of strains which are under the action of cracks of different angles and lengths are obtained. The characteristics, such as main peak wavelength shift, area of reflecting spectra, second and third peak value and so on, are extracted from the FBGs' reflecting spectral which are calculated by transfer matrix algorithm. An artificial neural network is built to act as the model between the characteristics of the reflecting spectral and the propagation of crack. As a result, the crack propagation of repaired structures is monitored accurately and the error of crack length is less than 0.5 mm, the error of crack angle is less than 5 degree. The accurately monitoring problem of crack propagation of repaired structures is solved by taking use of this method. It has important significance in aircrafts safety improvement and maintenance cost reducing.

  20. Surface enhancement Raman scattering of tautomeric thiobarbituric acid. Natural bond orbitals and B3LYP/6-311+G (d, p) assignments of the Fourier Infrared and Fourier Raman Spectra.

    Science.gov (United States)

    Soto, C A Téllez; Ramos, J M; Costa Junior, A C; Vieira, Laís S; Rangel, João L; Raniero, L; Fávero, Priscila P; Lemma, Tibebe; Ondar, Grisset F; Versiane, Otavio; Martin, A A

    2013-10-01

    Surface enhancement Raman scattering (SERS) of two tautomer of thiobarbituric acid was obtained using silver and gold nanoparticles. Large band enhancement in the region of the ν(C=S), ν(C=C), δ(CH2), and δ(CNH) vibrational modes was found. Natural bond analysis of the tautomer species revealed expressive values of charge transfer, principally from lone pair electron orbitals of the S, N, and O atoms. Complete vibrational assignment was done for the two tautomers using the B3LYP/6-311+G (d, p) procedure, band deconvolution analysis, and from a rigorous interpretation of the normal modes matrix. The calculated spectra agree well with the experimental ones. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks

    Science.gov (United States)

    Kouketsu, Yui; Shimizu, Ichiko; Wang, Yu; Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko

    2017-03-01

    We analyzed micro-Raman spectra of carbonaceous materials (CM) in natural and experimentally deformed fault rocks from Longmenshan fault zone that caused the 2008 Wenchuan earthquake, to characterize degree of disordering of CM in a fault zone. Raman spectral parameters for 12 samples from a fault zone in Shenxigou, Sichuan, China, all show low-grade structures with no graphite. Low crystallinity and δ13C values (-24‰ to -25‰) suggest that CM in fault zone originated from host rocks (Late Triassic Xujiahe Formation). Full width at half maximum values of main spectral bands (D1 and D2), and relative intensities of two subbands (D3 and D4) of CM were variable with sample locations. However, Raman parameters of measured fault rocks fall on established trends of graphitization in sedimentary and metamorphic rocks. An empirical geothermometer gives temperatures of 160-230 °C for fault rocks in Shenxigou, and these temperatures were lower for highly sheared gouge than those for less deformed fault breccia at inner parts of the fault zone. The lower temperature and less crystallinity of CM in gouge might have been caused by the mechanical destruction of CM by severe shearing deformation, or may be due to mixing of host rocks on the footwall. CM in gouge deformed in high-velocity experiments exhibits slight changes towards graphitization characterized by reduction of D3 and D4 intensities. Thus low crystallinity of CM in natural gouge cannot be explained by our experimental results. Graphite formation during seismic fault motion is extremely local or did not occur in the study area, and the CM crystallinity from shallow to deep fault zones may be predicted as a first approximation from the graphitization trend in sedimentary and metamorphic rocks. If that case, graphite may lower the friction of shear zones at temperatures above 300 °C, deeper than the lower part of seismogenic zone.

  2. Quantum well effect in bulk PbI(2) crystals revealed by the anisotropy of photoluminescence and Raman spectra.

    Science.gov (United States)

    Baltog, I; Baibarac, M; Lefrant, S

    2009-01-14

    On subjecting a bulk 2H-PbI(2) crystal to vacuum annealing at 500 K followed by a sudden cooling at liquid nitrogen temperature stacking faults are generated that separate distinct layers of nanometric thickness in which different numbers of I-Pb-I atomic layers are bundled together. Such structures, containing two, three, four, five etc I-Pb-I atomic layers, behave as quantum wells of different widths. The signature of such a transformation is given by a shift towards higher energies of the fundamental absorption edge, which is experimentally revealed by specific anisotropies in the photoluminescence and Raman spectra. The quantum confining effect is made visible by specific variations of a wide extra-excitonic band (G) at 2.06 eV that originates in the radiative recombination of carriers (electrons and holes), trapped on the surface defects. The excitation spectrum of the G band, with p polarized exciting light, reveals a fine structure comprised of narrow bands at 2.75, 2.64, 2.59 and 2.56 eV, which are associated with the PbI(2) quantum wells formed from two, three, four and five I-Pb-I atomic layers of 0.7 nm thickness. Regardless of the polarization state of the laser exciting light of 514.5 nm (2.41 eV), which is close to the band gap energy of PbI(2) (2.52 eV), the Raman scattering on bulk as-grown PbI(2) crystals has the character of a resonant process. For p polarized exciting light, the Raman scattering process on vacuum annealed PbI(2) becomes non-resonant. This originates from the quantum well structures generated inside the crystal, whose band gap energies are higher than the energy of the exciting light.

  3. Raman spectra of Nd/Sn cosubstituted Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics

    Science.gov (United States)

    Wu, S. Y.; Li, Y.; Chen, X. M.

    2004-11-01

    The Raman spectra and dielectric properties of Nd /Sn cosubstituted Ba6-3xSm8+2xTi18O54 (x =2/3) microwave dielectric ceramics were discussed as the functions of composition and sintering time. The peaks in 753cm-1 were caused by the second order scatter. The peaks in 425 and 403cm-1 became sharper with prolonging sintering time, and this reflected the increased lattice defects. The shoulder peak near 292cm-1 was caused by the octahedral tilt when A site is Nd3+. The Raman shifts in 590, 520, 280, and 232cm-1 indicated no obvious change in position, but all peaks became sharper with prolonging sintering time. This indicated the increased ordering degree of A-site cations. With prolonging sintering time, the Qf factor (Q is the inverse of dielectric loss, tan δ, and f is the resonant frequency) increased, and the temperature coefficient of resonant frequency significantly decreased or became more negative, while the dielectric constant indicated no significant variation.

  4. Fourier transform infrared and FT-Raman spectra, assignment, ab initio, DFT and normal co-ordinate analysis of 2-chloro-4-methylaniline and 2-chloro-6-methylaniline.

    Science.gov (United States)

    Arjunan, V; Mohan, S

    2009-03-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 2-chloro-4-methylaniline and 2-chloro-6-methylaniline have been measured in the range 4000-400 and 4000-100cm(-1), respectively. Utilising the observed FTIR and FT-Raman data, a complete vibrational assignment and analysis of the fundamental modes of the compounds were carried out. The vibrational frequency which were determined experimentally are compared with those obtained theoretically from ab initio HF and DFT gradient calculations employing the HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods for optimised geometries. The geometries and normal modes of vibration obtained from the HF and DFT methods are in good agreement with the experimental data. The normal co-ordinate analysis was also carried out on the basis of ab initio force fields utilising Wilson's FG matrix method. The manifestations of NH-pi interactions and the influence of bulky chlorine and methyl group on the vibrational modes of the amino group are investigated.

  5. High resolution infrared and Raman spectra of 13C12CD2: The CD stretching fundamentals and associated combination and hot bands

    International Nuclear Information System (INIS)

    Di Lonardo, G.; Fusina, L.; Canè, E.; Tamassia, F.; Martínez, R. Z.; Bermejo, D.

    2015-01-01

    Infrared and Raman spectra of mono 13 C fully deuterated acetylene, 13 C 12 CD 2 , have been recorded and analysed to obtain detailed information on the C—D stretching fundamentals and associated combination, overtone, and hot bands. Infrared spectra were recorded at an instrumental resolution ranging between 0.006 and 0.01 cm −1 in the region 1800–7800 cm −1 . Sixty new bands involving the ν 1 and ν 3 C—D stretching modes also associated with the ν 4 and ν 5 bending vibrations have been observed and analysed. In total, 5881 transitions have been assigned in the investigated spectral region. In addition, the Q branch of the ν 1 fundamental was recorded using inverse Raman spectroscopy, with an instrumental resolution of about 0.003 cm −1 . The transitions relative to each stretching mode, i.e., the fundamental band, its first overtone, and associated hot and combination bands involving bending states with υ 4 + υ 5 up to 2 were fitted simultaneously. The usual Hamiltonian appropriate to a linear molecule, including vibration and rotation l-type and the Darling–Dennison interaction between υ 4 = 2 and υ 5 = 2 levels associated with the stretching states, was adopted for the analysis. The standard deviation for each global fit is ≤0.0004 cm −1 , of the same order of magnitude of the measurement precision. Slightly improved parameters for the bending and the ν 2 manifold have been also determined. Precise values of spectroscopic parameters deperturbed from the resonance interactions have been obtained. They provide quantitative information on the anharmonic character of the potential energy surface, which can be useful, in addition to those reported in the literature, for the determination of a general anharmonic force field for the molecule. Finally, the obtained values of the Darling–Dennison constants can be valuable for understanding energy flows between independent vibrations

  6. FT-IR, FT-Raman, NMR spectra, density functional computations of the vibrational assignments (for monomer and dimer) and molecular geometry of anticancer drug 7-amino-2-methylchromone

    Science.gov (United States)

    Mariappan, G.; Sundaraganesan, N.

    2014-04-01

    Vibrational assignments for the 7-amino-2-methylchromone (abbreviated as 7A2MC) molecule using a combination of experimental vibrational spectroscopic measurements and ab initio computational methods are reported. The optimized geometry, intermolecular hydrogen bonding, first order hyperpolarizability and harmonic vibrational wavenumbers of 7A2MC have been investigated with the help of B3LYP density functional theory method. The calculated molecular geometry parameters, the theoretically computed vibrational frequencies for monomer and dimer and relative peak intensities were compared with experimental data. DFT calculations using the B3LYP method and 6-31 + G(d,p) basis set were found to yield results that are very comparable to experimental IR and Raman spectra. Detailed vibrational assignments were performed with DFT calculations and the potential energy distribution (PED) obtained from the Vibrational Energy Distribution Analysis (VEDA) program. Natural Bond Orbital (NBO) study revealed the characteristics of the electronic delocalization of the molecular structure. 13C and 1H NMR spectra have been recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule have been calculated using the gauge independent atomic orbital (GIAO) method. Furthermore, All the possible calculated values are analyzed using correlation coefficients linear fitting equation and are shown strong correlation with the experimental data.

  7. Transformation of photoluminescence and Raman scattering spectra of Si-rich Al{sub 2}O{sub 3} films at thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Vergara Hernandez, E. [UPIITA-Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Torchynska, T.V., E-mail: ttorch@esfm.ipn.mx [ESFM-Instituto Politecnico Nacional, Mexico DF 07320 (Mexico); Jedrzejewski, J.; Balberg, I. [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel)

    2014-11-15

    The effect of thermal annealing on optical properties of Al{sub 2}O{sub 3} films with the different Si contents was investigated using the photoluminescence and Raman scattering methods. Si-rich Al{sub 2}O{sub 3} films were prepared by RF magnetron co-sputtering of Si and Al{sub 2}O{sub 3} targets on long quartz glass substrates. Photoluminescence (PL) spectra of as grown Si-rich Al{sub 2}O{sub 3} films are characterized by four PL bands with the peak positions at 2.90, 2.70, 2.30 and 1.45 eV. The small intensity Raman peaks related to the scattering in the amorphous Si phase has been detected in as grown films as well. Thermal annealing at 1150 °C for 90 min stimulates the formation of Si nanocrystals (NCs) in the film area with the Si content exceeded 50%. The Raman peak related to the scattering on optic phonons in Si NCs has been detected for this area. After thermal annealing the PL intensity of all mentioned PL bands decreases in the film area with smaller Si content (≤50%) and increases in the film area with higher Si content (≥50%). Simultaneously the new PL band with the peak position at 1.65 eV appears in the film area with higher Si content (≥50%). The new PL band (1.65 eV) is attributed to the exciton recombination inside of small size Si NCs (2.5–2.7 nm). In bigger size Si NCs (3.5–5.0 nm) the PL band at 1.65 eV has been not detected due to the impact, apparently, of elastic strain appeared at the Si/Al{sub 2}O{sub 3} interface. Temperature dependences of PL spectra for the Si-rich Al{sub 2}O{sub 3} films have been studied in the range of 10–300 K with the aim to reveal the mechanism of recombination transitions for the mentioned above PL bands 2.90, 2.70, 2.30 and 1.45 eV in as grown films. The thermal activation of PL intensity and permanent PL peak positions in the temperature range 10–300 K permit to assign these PL bands to defect related emission in Al{sub 2}O{sub 3} matrix.

  8. The characteristics of ESR and 3-D TL spectra of diamonds

    International Nuclear Information System (INIS)

    Liu Shunsheng; Lu Xu; Fu Huifang

    2003-01-01

    Electron Spin Resonance (ESR) and 3-dimensional Thermoluminescence (3-D TL) spectra of natural diamond, high temperature-high pressure artificial diamond and high temperature-low pressure chemical vapor deposited (CVD) diamond were determined. The characteristics of spectra have been studied. It is found that isolated nitrogen, nitrogen exchange pair and nitrogen atom pair (S=1) are main forms of electron spin resonance nitrogen in natural and high temperature-high pressure artificial diamonds. The spectrum of CVD diamond is sampler, and contains only one peak caused by suspended bond of unsaturated carbon ones. For 3-D TL spectra, natural diamond has two peaks (∼370 nm and ∼510 nm) in 100-200 degree C temperature range, high temperature-high pressure artificial diamond only has ∼370 nm peak, and CVD diamond only has ∼500 nm peak. These characteristics would be useful for the quality inspection and classification of diamonds, as well as for the study of geologic actions associated with natural diamond

  9. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d0 and Si-d3.

    Science.gov (United States)

    Durig, James R; Pan, Chunhua; Guirgis, Gamil A

    2003-03-15

    The infrared (3100-40 cm(-1)) and Raman (3100-20 cm(-1)) spectra of gaseous and solid n-propylsilane, CH(3)CH(2)CH(2)SiH(3) and the Si-d(3) isotopomer, CH(3)CH(2)CH(2)SiD(3), have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 degrees C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220+/-22 cm(-1) (2.63+/-0.26 kJ mol(-1)) with the anti conformer the more stable form. A similar value of 234+/-23 cm(-1) (2.80+/-0.28 kJ mol(-1)) was obtained for deltaH for the Si-d(3) isotopomer. At ambient temperature it is estimated that there is 30+/-2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm(-1) for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d(0) and Si-d(3) molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311 + G(d,p) and 6-311 + G(2

  10. Spectra and structure of silicon containing compounds. XXXII. Raman and infrared spectra, conformational stability, vibrational assignment and ab initio calculations of n-propylsilane-d 0 and Si-d 3

    Science.gov (United States)

    Durig, James R.; Pan, Chunhua; Guirgis, Gamil A.

    2003-03-01

    The infrared (3100-40 cm -1) and Raman (3100-20 cm -1) spectra of gaseous and solid n-propylsilane, CH 3CH 2CH 2SiH 3 and the Si-d 3 isotopomer, CH 3CH 2CH 2SiD 3, have been recorded. Additionally, the Raman spectra of the liquids have been recorded and qualitative depolarization values obtained. Both the anti and gauche conformers have been identified in the fluid phases but only the anti conformer remains in the solid. Variable temperature (-105 to -150 °C) studies of the infrared spectra of n-propylsilane dissolved in liquid krypton have been recorded and the enthalpy difference has been determined to be 220±22 cm -1 (2.63±0.26 kJ mol -1) with the anti conformer the more stable form. A similar value of 234±23 cm -1 (2.80±0.28 kJ mol -1) was obtained for Δ H for the Si-d 3 isotopomer. At ambient temperature it is estimated that there is 30±2% of the gauche conformer present. The potential function governing the conformation interchange has been estimated from the far infrared spectral data, the enthalpy difference, and the dihedral angle of the gauche conformer, which is compared to the one predicted from ab initio MP2/6-31G(d) calculations. The barriers to conformational interchange are: 942, 970 and 716 cm -1 for the anti to gauche, gauche to gauche, and gauche to anti conformers, respectively. Relatively complete vibrational assignments are proposed for both the n-propylsilane-d 0 and Si-d 3 molecules based on the relative infrared and Raman spectral intensities, infrared band contours, depolarization ratios, and normal coordinate calculations. The geometrical parameters, harmonic force constants, vibrational frequencies, infrared intensities, Raman activities and depolarization ratios, and energy differences have been obtained for the anti and gauche conformers from ab initio MP2/6-31G(d) calculations. Structural parameters and energy differences have also been obtained utilizing the larger 6-311+G(d,p) and 6-311+G(2d,2p) basis sets. From the isolated

  11. Improved assignments of the vibrational fundamental modes of ortho -, meta -, and para -xylene using gas- and liquid-phase infrared and Raman spectra combined with ab initio calculations: Quantitative gas-phase infrared spectra for detection

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmaier, Rodica; Scharko, Nicole K.; Tonkyn, Russell G.; Nguyen, Kiet T.; Williams, Stephen D.; Johnson, Timothy J.

    2017-07-25

    Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm-1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C2v symmetry for ortho-xylene, and two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have Cs and C2 symmetry, and for para-xylene these conformers have C2v or C2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the Cs conformer for meta-xylene and the C2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.

  12. Dose characteristics and LET spectra on and inside the spherical phantom onboard of ISS

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Brabcova, K.; Mrazova, Z.; Spurny, F.; Shurshakov, V.A.; Kartsev, I.S.; Tolochek, R.V.

    2010-01-01

    To estimate the radiation risk of spacecraft crew during the mission, it is necessary to measure dose distribution at various compartments, on and inside the human body that can be simulated using various phantoms. Due to some convenient characteristics (especially small weight and dimensions), passive detectors are used to measure dosimetric quantities onboard spacecraft. This contribution deals with the measurement of dosimetric characteristics and spectra of linear energy transfer (LET) onboard the International Space Station (ISS) during two experiments with tissue-equivalent spherical Russian phantom MATROSHKA-R realized in years 2006 and 2008. To obtain LET spectra, total absorbed doses, and dose equivalents, we used combination of plastic nuclear track detectors and thermoluminescence detectors. The detectors were placed at various locations on the surface of the MATROSHKA-R phantom; some detectors were also inserted inside this phantom. The variation of dosimetric quantities obtained during both missions is discussed. The dose characteristics vary with the position of the detectors on or inside the phantom; the absorbed dose and dose equivalent can differ almost twice.

  13. Characteristic vector analysis of inflection ratio spectra: New technique for analysis of ocean color data

    Science.gov (United States)

    Grew, G. W.

    1985-01-01

    Characteristic vector analysis applied to inflection ratio spectra is a new approach to analyzing spectral data. The technique applied to remote data collected with the multichannel ocean color sensor (MOCS), a passive sensor, simultaneously maps the distribution of two different phytopigments, chlorophyll alpha and phycoerythrin, the ocean. The data set presented is from a series of warm core ring missions conducted during 1982. The data compare favorably with a theoretical model and with data collected on the same mission by an active sensor, the airborne oceanographic lidar (AOL).

  14. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Analysis of the structure and the FT-IR and Raman spectra of 2-(4-nitrophenyl)-4H-3,1-benzoxazin-4-one. Comparisons with the chlorinated and methylated derivatives

    Science.gov (United States)

    Castillo, María V.; Rudyk, Roxana A.; Davies, Lilian; Brandán, Silvia Antonia

    2017-07-01

    In this work, the structural, topological and vibrational properties of the monomer and three dimers of the 2-(4-nitrophenyl)-4H-3,1-benzoxazin-4-one (NPB) derivative were studied combining the experimental FTIR and FT-Raman spectra in the solid phase with DFT calculations. Here, Natural Bond Orbital (NBO), Atoms in Molecules (AIM) and HOMO and LUMO calculations were performed by using the hybrid B3LYP/6-31G*and B3LYP/6-311++G** methods in order to compute those properties and to predict their reactivities. The comparisons with the properties reported for the chlorinated (Cl-PB) and methylated (CH3-PB) derivatives at the same levels of theory can be clearly justified by the activating (CH3) and deactivating (NO2 and Cl) characteristics of the different groups linked to oxaxin rings. The NBO and AIM studies evidence the following stability orders: Cl-PB > NO2-PB > CH3-PB in very good concordance with the f(νC23-X26) force constants values. The frontier orbitals analyses reveal that the Cl-PB and NO2-PB derivatives have good stabilities and high chemical hardness while CH3-PB has a higher chemical reactivity. On the other hand, the complete vibrational assignments for monomer and dimers species of NPB were presented. The presence of the IR bands at 1574 and 1037 cm-1 and, of the Raman bands at 1571 and 1038 cm-1 support clearly the presence of the different dimeric species proposed for NPB.

  16. Characteristic electron energy loss spectra in SiC buried layers formed by C+ implantation into crystalline silicon

    International Nuclear Information System (INIS)

    Yan Hui; Chen Guanghua; Kwok, R.W.M.

    1998-01-01

    SiC buried layers were synthesized by a metal vapor vacuum arc ion source, with C + ions implanted into crystalline Si substrates. According to X-ray photoelectron spectroscopy, the characteristic electron energy loss spectra of the SiC buried layers were studied. It was found that the characteristic electron energy loss spectra depend on the profiles of the carbon content, and correlate well with the order of the buried layers

  17. Effect of a continuum current in Raman spectra of two magnons in Bi2Sr2Ca1Cu1Cu2O8+Δ

    International Nuclear Information System (INIS)

    Massa, N.E.; Etchegoin, P.G.; Fainstein, C.

    1990-01-01

    It is a known fact, that high temperature superconducting oxides show antiferromagnetic order of the CuO 2 plains as their main characteristic. This allows the use of techniques, which are common to Raman spectroscopy, for the detection of inelastic scattering of magnon pairs represented by a wide band centered around 2500 cm -1 . This communication presents the results of preliminary measurements of such excitations in Bi-2212 tablets which are nominally pure, semiconducting, and doped with Fe under a DC current at temperatures lower than T c . Under these circumstances we find an increase in the full width half maximum of the approximately symmetrical band of two magnons in the tablet and a significantly higher intensity on the high frequency side. These measurements suggest that the carriers involved in the direct current might affect the exchange interaction by means of an electro-magnon interaction. (Author). 5 refs., 2 figs

  18. Specific behavior of the p-aminothiophenol--silver sol system in their Ultra-Violet-Visible (UV-Visible) and Surface Enhanced Raman (SERS) spectra.

    Science.gov (United States)

    Firkala, Tamás; Tálas, Emília; Mihály, Judith; Imre, Tímea; Kristyán, Sándor

    2013-11-15

    The UV-Visible and Surface Enhanced Raman Spectroscopy (SERS) behavior of silver sol (a typical SERS agent) were studied in the presence of different bifunctional thiols such as p-aminothiophenol, p-mercaptobenzoic acid, p-nitrothiophenol, p-aminothiophenol hydrochloride, and 2-mercaptoethylamine hydrochloride in diluted aqueous solution. Our results confirm that the p-aminothiophenol induced aggregation of citrate stabilized silver colloid originates from its electrostatic nature, as well as the azo-bridge formation cannot be the reason of the observed time dependent UV-Visible spectra. Based on our parallel SERS and electrospray ionization mass spectrometry measurements, we have concluded that certain amount of oxidized form of the probe molecule has to be present for the so-called b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Our findings seem to support the idea that the azo-bridge formation is responsible for the b2-mode enhancement in the SERS spectrum of p-aminothiophenol. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Raman microprobe study of heat-treated pitches

    Energy Technology Data Exchange (ETDEWEB)

    Cottinet, D.; Couderc, P.; Saint Romain, J.L.; Dhamelincourt, P.

    1988-01-01

    A series of heat-treated pitches from the same coal-tar precursor is investigated by means of a Raman microprobe. Separated Raman spectra are obtained for the isotropic phase and the mesophase. The evolutions observed are characteristic of the structural rearrangement change in the two phases. They correlate well with the observations reported in literature and obtained by using different methods of structural investigations.

  20. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  1. Photoinduced intermolecular electron transfer and off-resonance Raman characteristics of Rhodamine 101/N,N-diethylaniline

    International Nuclear Information System (INIS)

    Jiang, Li-lin; Liu, Wei-long; Song, Yun-fei; He, Xing; Wang, Yang; Wang, Chang; Wu, Hong-lin; Yang, Fang; Yang, Yan-qiang

    2014-01-01

    Highlights: • Mechanism of PIET reaction process for the Rh101 + /DEA system is investigated. • The significant geometrical changes of the charge–transfer complex are explained. • Forward Electron transfer from DEA to Rh101 +∗ occurs with lifetime of 425–560 fs. • Backward electron transfer occurs with a time constant of 46.16–51.40 ps. • Intramolecular vibrational relaxation occurs with lifetime of 2.77–5.39 ps. - Abstract: The ultrafast photoinduced intermolecular electron transfer (PIET) reaction of Rhodamine 101 (Rh101 + ) in N,N-diethylaniline (DEA) was investigated using off-resonance Raman, femtosecond time-resolved multiplex transient grating (TG) and transient absorption (TA) spectroscopies. The Raman spectra indicate that the C=C stretching vibration of the chromophore aromatic ring is more sensitive to ET compared with the C-C stretching mode. The ultrafast photoinduced intermolecular forward ET (FET) from DEA to Rh101 +∗ occurs on a time scale of τ FET = 425–560 fs. The backward ET (BET) occurs in the inverted region with a time constant of τ BET = 46.16–51.40 ps. The intramolecular vibrational relaxation (IVR) process occurs on the excited state potential energy surface with the time constant of τ IVR = 2.77–5.39 ps

  2. Photoinduced intermolecular electron transfer and off-resonance Raman characteristics of Rhodamine 101/N,N-diethylaniline

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Li-lin [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); School of Mechanical and Electronic Engineering, Hezhou University, Hezhou 542800 (China); Liu, Wei-long; Song, Yun-fei; He, Xing; Wang, Yang; Wang, Chang; Wu, Hong-lin [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Yang, Fang [National Key Laboratory of Science and Technology on Tunable Laser, Department of Optoelectronics Information Science Technology, Harbin Institute of Technology, Harbin 150001 (China); Yang, Yan-qiang, E-mail: yqyang@hit.edu.cn [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, Sichuan (China)

    2014-01-31

    Highlights: • Mechanism of PIET reaction process for the Rh101{sup +}/DEA system is investigated. • The significant geometrical changes of the charge–transfer complex are explained. • Forward Electron transfer from DEA to Rh101{sup +∗} occurs with lifetime of 425–560 fs. • Backward electron transfer occurs with a time constant of 46.16–51.40 ps. • Intramolecular vibrational relaxation occurs with lifetime of 2.77–5.39 ps. - Abstract: The ultrafast photoinduced intermolecular electron transfer (PIET) reaction of Rhodamine 101 (Rh101{sup +}) in N,N-diethylaniline (DEA) was investigated using off-resonance Raman, femtosecond time-resolved multiplex transient grating (TG) and transient absorption (TA) spectroscopies. The Raman spectra indicate that the C=C stretching vibration of the chromophore aromatic ring is more sensitive to ET compared with the C-C stretching mode. The ultrafast photoinduced intermolecular forward ET (FET) from DEA to Rh101{sup +∗} occurs on a time scale of τ{sub FET} = 425–560 fs. The backward ET (BET) occurs in the inverted region with a time constant of τ{sub BET} = 46.16–51.40 ps. The intramolecular vibrational relaxation (IVR) process occurs on the excited state potential energy surface with the time constant of τ{sub IVR} = 2.77–5.39 ps.

  3. Application of Raman spectroscopy and chemometric techniques to assess sensory characteristics of young dairy bull beef.

    Science.gov (United States)

    Zhao, Ming; Nian, Yingqun; Allen, Paul; Downey, Gerard; Kerry, Joseph P; O'Donnell, Colm P

    2018-05-01

    This work aims to develop a rapid analytical technique to predict beef sensory attributes using Raman spectroscopy (RS) and to investigate correlations between sensory attributes using chemometric analysis. Beef samples (n = 72) were obtained from young dairy bulls (Holstein-Friesian and Jersey×Holstein-Friesian) slaughtered at 15 and 19 months old. Trained sensory panel evaluation and Raman spectral data acquisition were both carried out on the same longissimus thoracis muscles after ageing for 21 days. The best prediction results were obtained using a Raman frequency range of 1300-2800 cm -1 . Prediction performance of partial least squares regression (PLSR) models developed using all samples were moderate to high for all sensory attributes (R 2 CV values of 0.50-0.84 and RMSECV values of 1.31-9.07) and were particularly high for desirable flavour attributes (R 2 CVs of 0.80-0.84, RMSECVs of 4.21-4.65). For PLSR models developed on subsets of beef samples i.e. beef of an identical age or breed type, significant improvements on prediction performances were achieved for overall sensory attributes (R 2 CVs of 0.63-0.89 and RMSECVs of 0.38-6.88 for each breed type; R 2 CVs of 0.52-0.89 and RMSECVs of 0.96-6.36 for each age group). Chemometric analysis revealed strong correlations between sensory attributes. Raman spectroscopy combined with chemometric analysis was demonstrated to have high potential as a rapid and non-destructive technique to predict the sensory quality traits of young dairy bull beef. Copyright © 2018. Published by Elsevier Ltd.

  4. Raman spectroscopy and imaging: applications in human breast cancer diagnosis.

    Science.gov (United States)

    Brozek-Pluska, Beata; Musial, Jacek; Kordek, Radzislaw; Bailo, Elena; Dieing, Thomas; Abramczyk, Halina

    2012-08-21

    The applications of spectroscopic methods in cancer detection open new possibilities in early stage diagnostics. Raman spectroscopy and Raman imaging represent novel and rapidly developing tools in cancer diagnosis. In the study described in this paper Raman spectroscopy has been employed to examine noncancerous and cancerous human breast tissues of the same patient. The most significant differences between noncancerous and cancerous tissues were found in regions characteristic for the vibrations of carotenoids, lipids and proteins. Particular attention was paid to the role played by unsaturated fatty acids in the differentiation between the noncancerous and the cancerous tissues. Comparison of Raman spectra of the noncancerous and the cancerous tissues with the spectra of oleic, linoleic, α-linolenic, γ-linolenic, docosahexaenoic and eicosapentaenoic acids has been presented. The role of sample preparation in the determination of cancer markers is also discussed in this study.

  5. Utilizing Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy to investigate healthy and cancerous colon samples

    International Nuclear Information System (INIS)

    Barzegar, A.; Rezaei, H.; Malekfar, R.

    2012-01-01

    In this study, spontaneous Raman scattering and surface-enhanced Raman scattering, Surface-Enhanced Raman Spectroscopy spectra have been investigated. The samples which were kept in the formalin solution selected from the human's healthy and cancerous colon tissues. The Surface-Enhanced Raman Spectroscopy spectra were collected by adding colloidal solution contained silver nanoparticles to the top of the samples. The recorded spectra were compared for the spontaneous Raman spectra of healthy and cancerous colon samples. The spontaneous and surface enhanced Raman scattering data were also collected and compared for both healthy and damaged samples.

  6. Medium-range structural properties of vitreous germania obtained through first-principles analysis of vibrational spectra.

    Science.gov (United States)

    Giacomazzi, Luigi; Umari, P; Pasquarello, Alfredo

    2005-08-12

    We analyze the principal vibrational spectra of vitreous GeO(2) and derive therefrom structural properties referring to length scales beyond the basic tetrahedral unit. We generate a model structure that yields a neutron structure factor in accord with experiment. The inelastic-neutron, the infrared, and the Raman spectra, calculated within a density-functional approach, also agree with respective experimental spectra. The accord for the Raman spectrum supports a Ge-O-Ge angle distribution centered at 135 degrees. The Raman feature X(2) is found to result from vibrations in three-membered rings, and therefore constitutes a distinctive characteristic of the medium-range structure.

  7. Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra

    Science.gov (United States)

    Medina, José M.; Pereira, Luís M.; Correia, Hélder T.; Nascimento, Sérgio M. C.

    2011-07-01

    We report a hyperspectral imaging system to measure the reflectance spectra of real human irises with high spatial resolution. A set of ocular prosthesis was used as the control condition. Reflectance data were decorrelated by the principal-component analysis. The main conclusion is that spectral complexity of the human iris is considerable: between 9 and 11 principal components are necessary to account for 99% of the cumulative variance in human irises. Correcting image misalignments associated with spontaneous ocular movements did not influence this result. The data also suggests a correlation between the first principal component and different levels of melanin present in the irises. It was also found that although the spectral characteristics of the first five principal components were not affected by the radial and angular position of the selected iridal areas, they affect the higher-order ones, suggesting a possible influence of the iris texture. The results show that hyperspectral imaging in the iris, together with adequate spectroscopic analyses provide more information than conventional colorimetric methods, making hyperspectral imaging suitable for the characterization of melanin and the noninvasive diagnosis of ocular diseases and iris color.

  8. Production of high temperature superconductors and characteristics by infrared and Raman spectroscopy

    International Nuclear Information System (INIS)

    Thomsen, C.

    1991-01-01

    This final report, which is partly kept short, is concerned with electron/phonon interaction and the determination of the band gap in high temperature superconductors (YBa 2 Cu 3 O 7 ). The final report is divided into four parts, which reflect the individual working groups: 1. Raman spectroscopy, 2. IR spectroscopy (reflection measurements, isotope effect, superconducting energy gap, behaviour of infrared active phonons), 3. Magnetic field measurements, and 4. Theory (initial calculation of the metal/isolator transfer in BaBiO 3 ). (MM) [de

  9. The characteristics of the IR emission features in the spectra of Herbig Ae stars : evidence for chemical evolution

    NARCIS (Netherlands)

    Boersma, C.; Bouwman, J.; Lahuis, F.; van Kerckhoven, C.; Tielens, A. G. G. M.; Waters, L. B. F. M.; Henning, T.

    Context. Infrared ( IR) spectra provide a prime tool to study the characteristics of polycyclic aromatic hydrocarbon ( PAH) molecules in regions of star formation. Herbig Ae/Be stars are a class of young pre-main sequence stellar objects of intermediate mass. They are known to have varying amounts

  10. Raman spectra of the solid-solution between Rb sub 2 La sub 2 Ti sub 3 O sub 1 sub 0 and RbCa sub 2 Nb sub 3 O sub 1 sub 0

    CERN Document Server

    Kim, H J; Yun, H S

    2001-01-01

    A site preference of niobium atom in Rb sub 2 sub - sub x La sub 2 Ti sub 3 sub - sub x Nb sub x O sub 1 sub 0 (0.0<=x<=1.0) and RbLa sub 2 sub - sub x Ca sub x Ti sub 2 sub - sub x Nb sub 1 sub + sub x O sub 1 sub 0 (0.0<=x<= 2.0), which are the solid-solutions between Rb sub 2 La sub 2 Ti sub 3 O sub 1 sub 0 are RbCa sub 2 Nb sub 3 O sub 1 sub 0 , has been investigated by Raman spectroscopy. The Raman spectra of Rb sub 2 sub - sub x La sub 2 Ti sub 3 sub - sub x Nb sub x O sub 1 sub 0 (0.0<=x<=1.0) gave an evidence that niobium atoms substituted for titanium atoms preferably occupy the highly distorted outer octahedral sites rather than the central ones in triple-octahedral perovskite layers. In contrast, the Raman spectra of RbLa sub 2 sub - sub x Ca sub x Ti sub 2 sub - sub x Nb sub 1 sub + sub x O sub 1 sub 0 (0.0<=x<= 2.0) showed no clear information for the cationic arrangement in perovskite slabs. This difference indicated that a site preference of niobium atoms is observed onl...

  11. Pulsed cathodoluminescence and Raman spectra of MoS{sub 2} and WS{sub 2} nanocrystals and their combination MoS{sub 2}/WS{sub 2} produced by self-propagating high-temperature synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bozheyev, Farabi, E-mail: farabi.bozheyev@gmail.com [Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk (Russian Federation); National Nanolaboratory, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050000 Almaty (Kazakhstan); Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., 010000 Astana (Kazakhstan); Valiev, Damir [Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk (Russian Federation); Nemkayeva, Renata [National Nanolaboratory, al-Farabi Kazakh National University, 71 al-Farabi Ave., 050000 Almaty (Kazakhstan)

    2016-02-29

    Molybdenum and tungsten disulfide nanoplates were produced by self-propagating high-temperature synthesis in argon atmosphere. This method provides an easy way to produce MoS{sub 2} and WS{sub 2} from nanoplates up to single- and several layers. The Raman peak intensities corresponding to in-plane E{sup 1}{sub 2g} and out-of-plane A{sub 1g} vibration modes and their shifts strongly depend on the thicknesses of the MoS{sub 2} and WS{sub 2} platelets indicating size-dependent scaling laws and properties. An electron beam irradiation of MoS{sub 2} and WS{sub 2} powders leads to an occurrence of pulsed cathodoluminescence (PCL) spectra at 575 nm (2.15 eV) and 550 nm (2.25 eV) characteristic to their intrinsic band gaps. For the combination of MoS{sub 2} and WS{sub 2} nanopowders, a PCL shoulder at 430 nm (2.88 eV) was observed, which is explained by the radiative electron-hole recombination at the MoS{sub 2}/WS{sub 2} grain boundaries. The luminescence decay kinetics of the MoS{sub 2}/WS{sub 2} nanoplates appears to be slower than for individual MoS{sub 2} and WS{sub 2} platelets due to a spatial separation of electrons and holes at MoS{sub 2}/WS{sub 2} junction resulting in extension of recombination time.

  12. FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 7-chloro-5-(2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one.

    Science.gov (United States)

    Muthu, S; Prasath, M; Paulraj, E Isac; Balaji, R Arun

    2014-01-01

    The Fourier Transform infrared and Fourier Transform Raman spectra of 7-chloro-5 (2-chlorophenyl)-3-hydroxy-2,3-dihydro-1H-1,4-benzodiazepin-2-one (7C3D4B) were recorded in the regions 4000-400 and 4000-100 cm(-1), respectively. The appropriate theoretical spectrograms for the IR and Raman spectra of the title molecule were also constructed. The calculated results show that the predicted geometry can well reproduce the structural parameters. Predicted vibrational frequencies have been assigned and compared with experimental IR spectra and they supported each other. Stability of the molecule arising from hyperconjugative interactions, charge delocalization and intramolecular hydrogen bond-like weak interaction has been analyzed using natural bond orbital (NBO) analysis by using B3LYP/6-31G(d,p) method. The results show that electron density (ED) in the σ* and π* antibonding orbitals and second-order delocalization energies E(2) confirm the occurrence of intramolecular charge transfer (ICT) within the molecule. The first order hyperpolarizability (βtotal) of this molecular system and related properties (β, μ, and Δα) are calculated using HF/6-31G(d,p) and B3LYP/6-31G(d,p) methods based on the finite-field approach. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Nanodiamonds and silicate minerals in ordinary chondrites as determined by micro-Raman spectroscopy

    Science.gov (United States)

    Saikia, Bhaskar J.; Parthasarathy, Gopalakrishnarao; Borah, Rashmi R.

    2017-06-01

    We present here the Raman spectroscopic study of silicate and carbonaceous minerals in three ordinary chondrites with the aim to improve our understanding the impact process including the peak metamorphic pressures present in carbon-bearing ordinary chondites. The characteristic Raman vibrational peaks of olivines, pyroxenes, and plagioclase have been determined on three ordinary chondrites from India, Dergaon (H5), Mahadevpur (H4/5), and Kamargaon (L6). The Raman spectra of these meteorite samples show the presence of nanodiamonds at 1334-1345 cm-1 and 1591-1619 cm-1. The full-width at half maximum (FWHM) of Raman peaks for Mahadevpur and Dergaon reflect the nature of shock metamorphism in these meteorites. The frequency shift in Raman spectra might be because of shock effects during the formation of the diamond/graphite grains.

  14. Orographic precipitation and vertical velocity characteristics from drop size and fall velocity spectra observed by disdrometers

    Science.gov (United States)

    Lee, Dong-In; Kim, Dong-Kyun; Kim, Ji-Hyeon; Kang, Yunhee; Kim, Hyeonjoon

    2017-04-01

    larger than the downward w percentages. At the leeward side, the downward w percentages were larger than the upward at D4. Importantly, this suggests that rainfall with R >10 mm hr-1 at the leeward side was more associated by negative w-components of winds. Therefore, we confirmed the possibility of w (up/down draft) estimation by DSD observation using disdrometers and quantitative contribution of w in orographic precipitation, roughly. In addition, the rainrates (R) of precipitation, radar reflectivities (Z) and vertical velocities (w) characteristics are related to the size and fall velocity spectra distributions by disdrometer. The vertical velocities contributed to the orographic precipitation development and dissipation and they clearly showed different values between windward side and leeward side with R variation. Acknowledgement This work was funded by the Korea Meteorological Industry Promotion Agency under Grants KMIPA 2015-5060 and KMIPA 2015-1050.

  15. Blood analysis by Raman spectroscopy.

    Science.gov (United States)

    Enejder, Annika M K; Koo, Tae-Woong; Oh, Jeankun; Hunter, Martin; Sasic, Slobodan; Feld, Michael S; Horowitz, Gary L

    2002-11-15

    Concentrations of multiple analytes were simultaneously measured in whole blood with clinical accuracy, without sample processing, using near-infrared Raman spectroscopy. Spectra were acquired with an instrument employing nonimaging optics, designed using Monte Carlo simulations of the influence of light-scattering-absorbing blood cells on the excitation and emission of Raman light in turbid medium. Raman spectra were collected from whole blood drawn from 31 individuals. Quantitative predictions of glucose, urea, total protein, albumin, triglycerides, hematocrit, and hemoglobin were made by means of partial least-squares (PLS) analysis with clinically relevant precision (r(2) values >0.93). The similarity of the features of the PLS calibration spectra to those of the respective analyte spectra illustrates that the predictions are based on molecular information carried by the Raman light. This demonstrates the feasibility of using Raman spectroscopy for quantitative measurements of biomolecular contents in highly light-scattering and absorbing media.

  16. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga)

    Science.gov (United States)

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang

    2015-05-01

    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations.

  17. Characterization of Y1-xCaxBa2Cu4O8 (x=0.0˜ 0.1) with Double Cu-O Chains by Raman Spectra

    Science.gov (United States)

    Kodama, Yasuharu; Tanemura, Sakae; Ikeda, Teruki

    1991-08-01

    Raman spectra of Y1-xCaxBa2Cu4O8 (x=0.0, 0.02, 0.05 and 0.1) ceramic samples synthesized under high oxygen pressure were investigated. Seven clear peaks assigned to Ag modes were observed for the sample with x=0. With increasing x, the peaks at 238 cm-1, 332 cm-1, 430 cm-1 and 590 cm-1 were broadened. The origin of the broadening of the peaks at 238 cm-1 and 590 cm-1 is considered to be the destruction of the double Cu-O chains due to the substitution of Ca for Y.

  18. Performance Characteristics of Bio-Inspired Metal Nanostructures as Surface-Enhanced Raman Scattered (SERS) Substrates.

    Science.gov (United States)

    Areizaga-Martinez, Hector I; Kravchenko, Ivan; Lavrik, Nickolay V; Sepaniak, Michael J; Hernández-Rivera, Samuel P; De Jesús, Marco A

    2016-09-01

    The fabrication of high-performance plasmonic nanomaterials for bio-sensing and trace chemical detection is a field of intense theoretical and experimental research. The use of metal-silicon nanopillar arrays as analytical sensors has been reported with reasonable results in recent years. The use of bio-inspired nanocomposite structures that follow the Fibonacci numerical architecture offers the opportunity to develop nanostructures with theoretically higher and more reproducible plasmonic fields over extended areas. The work presented here describes the nanofabrication process for a series of 40 µm × 40 µm bio-inspired arrays classified as asymmetric fractals (sunflower seeds and romanesco broccoli), bilaterally symmetric (acacia leaves and honeycombs), and radially symmetric (such as orchids and lily flowers) using electron beam lithography. In addition, analytical capabilities were evaluated using surface-enhanced Raman scattering (SERS). The substrate characterization and SERS performance of the developed substrates as the strategies to assess the design performance are presented and discussed. © The Author(s) 2016.

  19. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Science.gov (United States)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-02-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  20. FT-IR and FT-Raman spectra of 5-chlorocytosine: Solid state simulation and tautomerism. Effect of the chlorine substitution in the Watson-Crick base pair 5-chlorodeoxycytidine-deoxyguanosine

    Science.gov (United States)

    Alcolea Palafox, M.; Rastogi, V. K.; Singh, S. P.

    2018-01-01

    The laser Raman and IR spectra of 5-chlorocytosine have been recorded and accurately assigned in the solid state using Density functional calculations (DFT) together with the linear scaling equation procedure (LSE) and the solid state simulation of the crystal unit cell through a tetramer form. These results remarkably improve those reported previously by other authors. Several new scaling equations were proposed to be used in related molecules. The six main tautomers of the biomolecule 5-chlorocytosine were determined and optimized at the MP2 and CCSD levels, using different basis sets. The relative stabilities were compared with those obtained in cytosine and their 5-halo derivatives. Several relationships between energies, geometric parameters and NBO atomic charges were established. The effect of the chlorine substitution in the fifth position was evaluated through the stability of the Watson-Crick (WC) base pair of 5-chlorodeoxycytidine with deoxyguanosine, and through their vibrational spectra.

  1. Raman Imaging Techniques and Applications

    CERN Document Server

    2012-01-01

    Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

  2. Instant detection and identification of concealed explosive-related compounds: Induced Stokes Raman versus infrared.

    Science.gov (United States)

    Elbasuney, Sherif; El-Sherif, Ashraf F

    2017-01-01

    The instant detection of explosives and explosive-related compounds has become an urgent priority in recent years for homeland security and counter-terrorism applications. Modern techniques should offer enhancement in selectivity, sensitivity, and standoff distances. Miniaturisation, portability, and field-ruggedisation are crucial requirements. This study reports on instant and standoff identification of concealed explosive-related compounds using customized Raman technique. Stokes Raman spectra of common explosive-related compounds were generated and spectrally resolved to create characteristic finger print spectra. The scattered Raman emissions over the band 400:2000cm -1 were compared to infrared absorption using FTIR. It has been demonstrated that the two vibrational spectroscopic techniques were opposite and completing each other. Molecular vibrations with strong absorption in infrared (those involve strong change in dipole moments) induced weak signals in Raman and vice versa. The tailored Raman offered instant detection, high sensitivity, and standoff detection capabilities. Raman demonstrated characteristic fingerprint spectra with stable baseline and sharp intense peaks. Complete correlations of absorption/scattered signals to certain molecular vibrations were conducted to generate an entire spectroscopic profile of explosive-related compounds. This manuscript shades the light on Raman as one of the prevailing technologies for instantaneous detection of explosive-related compounds. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Optical band gap and Raman spectra in AxB0.2-x(TeO2)0.8 glasses

    Czech Academy of Sciences Publication Activity Database

    Ožďanová, J.; Tichá, H.; Tichý, Ladislav

    2010-01-01

    Roč. 12, č. 5 (2010), s. 1024-1029 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z40500505 Keywords : telluride glasses * optical band gap * Raman scattering Subject RIV: CA - Inorganic Chemistry Impact factor: 0.412, year: 2010 http://joam.inoe.ro/index.php?option=magazine&op=view&idu=2453&catid=50

  4. Raman spectroscopy of individual monocytes reveals that single-beam optical trapping of mononuclear cells occurs by their nucleus

    International Nuclear Information System (INIS)

    Fore, Samantha; Chan, James; Taylor, Douglas; Huser, Thomas

    2011-01-01

    We show that laser tweezers Raman spectroscopy of eukaryotic cells with a significantly larger diameter than the tight focus of a single-beam laser trap leads to optical trapping of the cell by its optically densest part, i.e. typically the cell's nucleus. Raman spectra of individual optically trapped monocytes are compared with location-specific Raman spectra of monocytes adhered to a substrate. When the cell's nucleus is stained with a fluorescent live cell stain, the Raman spectrum of the DNA-specific stain is observed only in the nucleus of individual monocytes. Optically trapped monocytes display the same behavior. We also show that the Raman spectra of individual monocytes exhibit the characteristic Raman signature of cells that have not yet fully differentiated and that individual primary monocytes can be distinguished from transformed monocytes based on their Raman spectra. This work provides further evidence that laser tweezers Raman spectroscopy of individual cells provides meaningful biochemical information in an entirely non-destructive fashion that permits discerning differences between cell types and cellular activity

  5. Study on coordination characteristics of neptunium and uranium ions in calcium nitrate hydrate melt by Raman spectrometry and UV/Vis/NIR spectrometry

    International Nuclear Information System (INIS)

    Fujii, T; Okude, G; Uehara, A; Yamana, H

    2010-01-01

    Extraction behavior of neptunium (Np) by tri-n-butyl phosphate from calcium nitrate hydrate melt was investigated. Distribution ratio of Np was found to increase with the decrease of water content. Adding nitric acid into the system resulted in an increase of the distribution ratio. In order to understand the extraction trends, Np species in the hydrate melt were analyzed by Raman spectrometry and UV/Vis/NIR spectrometry. Major fraction was assigned to be NpO 2 2+ of Np(VI) and small fraction to be NpO 2 + of Np(V). A shift of the v 1 symmetric vibrational frequency of NpO 2 2+ in nitrate media was found in Raman spectra. This suggests a coordination circumstance change of NpO 2 2+ .

  6. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  7. Characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-11-01

    We report here the detailed characteristics of 1.9 μm laser emission from hydrogen-filled hollow-core fiber by stimulated Raman scattering. A 6.5 m hydrogen-filled Ice-cream negative curvature hollow-core fiber is pumped with a high peak power, narrow linewidth, liner polarized subnanosecond pulsed 1064 nm microchip laser, generating pulsed 1908.5 nm vibrational Stokes wave. The linewidth of the pump laser and the vibrational Stokes wave is about 1 GHz and 2 GHz respectively. And the maximum Raman conversion quantum efficiency is about 48%. We also studied the pulse shapes of the pump laser and the vibrational Stokes wave. The polarization dependence of the vibrational and the rotational stimulated Raman scattering is also investigated. In addition, the beam profile of vibrational Stokes wave shows good quality, which may be taken advantage of in many applications.

  8. Condition Assessment of Kevlar Composite Materials Using Raman Spectroscopy

    Science.gov (United States)

    Washer, Glenn; Brooks, Thomas; Saulsberry, Regor

    2007-01-01

    This viewgraph presentation includes the following main concepts. Goal: To evaluate Raman spectroscopy as a potential NDE tool for the detection of stress rupture in Kevlar. Objective: Test a series of strand samples that have been aged under various conditions and evaluate differences and trends in the Raman response. Hypothesis: Reduction in strength associated with stress rupture may manifest from changes in the polymer at a molecular level. If so, than these changes may effect the vibrational characteristics of the material, and consequently the Raman spectra produced from the material. Problem Statement: Kevlar composite over-wrapped pressure vessels (COPVs) on the space shuttles are greater than 25 years old. Stress rupture phenomena is not well understood for COPVs. Other COPVs are planned for hydrogen-fueled vehicles using Carbon composite material. Raman spectroscopy is being explored as an non-destructive evaluation (NDE) technique to predict the onset of stress rupture in Kevlar composite materials. Test aged Kevlar strands to discover trends in the Raman response. Strength reduction in Kevlar polymer will manifest itself on the Raman spectra. Conclusions: Raman spectroscopy has shown relative changes in the intensity and FWHM of the 1613 cm(exp -1) peak. Reduction in relative intensity for creep, fleet leader, and SIM specimens compared to the virgin strands. Increase in FWHM has been observed for the creep and fleet leader specimens compared to the virgin strands. Changes in the Raman spectra may result from redistributing loads within the material due to the disruption of hydrogen bonding between crystallites or defects in the crystallites from aging the Kevlar strands. Peak shifting has not been observed to date. Analysis is ongoing. Stress measurements may provide a tool in the short term.

  9. Vibrational investigation on FT-IR and FT-Raman spectra, IR intensity, Raman activity, peak resemblance, ideal estimation, standard deviation of computed frequencies analyses and electronic structure on 3-methyl-1,2-butadiene using HF and DFT (LSDA/B3LYP/B3PW91) calculations.

    Science.gov (United States)

    Ramalingam, S; Jayaprakash, A; Mohan, S; Karabacak, M

    2011-11-01

    FT-IR and FT-Raman (4000-100 cm(-1)) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H). Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  10. Spectral characteristics of caries-related autofluorescence spectra and their use for diagnosis of caries stage

    Science.gov (United States)

    Son, Sung-Ae; Jung, Kyeong-Hoon; Ko, Ching-Chang; Kwon, Yong Hoon

    2016-01-01

    The purpose of the present study was to identify factors useful for diagnosis of the caries stage from laser-induced autofluorescence (AF) spectra. Affected teeth were accurately staged and allocated to four groups: sound, stage II, stage III, or stage IV. A 405-nm laser was used to produce AF spectra. The spectrum factors analyzed were spectrum slope at 550 to 600 nm, spectral area from 500 and 590 nm, and intensity ratio of peaks 625 and 667 nm (625/667 nm). DIAGNOdent was used as control measurement. AF spectra of sound teeth had a peak near 500 nm followed by a smooth decline to 800 nm. As caries progressed, some specimens in stages II to IV showed one or two peak(s) near 625 and 667 nm. Slopes at 550 to 600 nm and areas under the curve at 500 to 590 nm were significantly different (p<0.001) for each stage. Two-peak ratios were also significantly different (p<0.001) except for stage III and stage IV. DIAGNOdent readings for sound and stage II and stage III and IV were not significantly different. Among the studied factors, the spectrum slope at 550 to 600 nm and area under curve at 500 to 590 nm could be useful treatment decision-making tools for carious lesions.

  11. Difference Raman spectroscopy of DNA molecules

    International Nuclear Information System (INIS)

    Anokhin, Andrey S; Yuzyuk, Yury I; Gorelik, Vladimir S; Dovbeshko, Galina I; Pyatyshev, Alexander Yu

    2015-01-01

    In this paper the micro-Raman spectra of calf DNA for different points of DNA sample have been recorded. The Raman spectra were made with help of difference Raman spectroscopy technique. Raman spectra were recorded with high spatial resolution from different points of the wet and dry samples in different spectral range (100÷4000cm −1 ) using two lasers: argon (514.5 nm) and helium -neon (632.8 nm). The significant differences in the Raman spectra for dry and wet DNA and for different points of DNA molecules were observed. The obtained data on difference Raman scattering spectra of DNA molecules may be used for identification of DNA types and for analysis of genetic information associated with the molecular structure of this molecule

  12. Phase transformation in multiferroic Bi5Ti3FeO15 ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    International Nuclear Information System (INIS)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.

    2014-01-01

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi 5 Ti 3 FeO 15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property

  13. Raman spectra of terbium trichloride, phosphorus pentachloride and their molten mixtures; Spektry kombinatsionnogo rasseyaniya sveta trikhlorida terbiya, pentakhlorida fosfora i ikh rasplavlennykh smesej

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Zakir' yanova, I D [UrO RAN, Inst. Vysokotemperaturnoj Ehlektrokhimii, Ekaterinburg (Russian Federation)

    2008-03-15

    Raman spectroscopy was used to study in situ the behavior of individual terbium trichloride and phosphorus pentachloride in different aggregative states as a function of temperature, and of solutions of PCl{sub 5} vapors in molten TbCl{sub 3}. A conclusion is drawn about their structure and the nature of phase transformations and chemical reactions in wide ranges of temperature and saturated vapor pressures.

  14. Structured optical vortices with broadband comb-like optical spectra in Yb:Y3Al5O12/YVO4 Raman microchip laser

    Science.gov (United States)

    Dong, Jun; Wang, Xiaolei; Zhang, Mingming; Wang, Xiaojie; He, Hongsen

    2018-04-01

    Structured optical vortices with 4 phase singularities have been generated in a laser diode pumped continuous-wave Yb:Y3Al5O12/YVO4 (Yb:YAG/YVO4) Raman microchip laser. The broadband comb-like first order Stokes laser emitting spectrum including 30 longitudinal modes covers from 1072.49 nm to 1080.13 nm with a bandwidth of 7.64 nm, which is generated with the Raman shift 259 cm-1 of the c-cut YVO4 crystal converted from the fundamental laser around 1.05 μm. Pump power dependent optical vortex beams are attributed to overlap of the Stokes laser field with the fundamental laser field caused by dynamically changing the coupling losses of the fundamental laser field. The maximum output power is 1.16 W, and the optical-to-optical efficiency is 18.4%. This work provides a method for generating structured optical vortices with an optical frequency comb in solid-state Raman microchip lasers, which have potential applications in quantum computations, micro-machining, and information processing.

  15. Raman spectroscopy in graphene

    International Nuclear Information System (INIS)

    Malard, L.M.; Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.

    2009-01-01

    Recent Raman scattering studies in different types of graphene samples are reviewed here. We first discuss the first-order and the double resonance Raman scattering mechanisms in graphene, which give rise to the most prominent Raman features. The determination of the number of layers in few-layer graphene is discussed, giving special emphasis to the possibility of using Raman spectroscopy to distinguish a monolayer from few-layer graphene stacked in the Bernal (AB) configuration. Different types of graphene samples produced both by exfoliation and using epitaxial methods are described and their Raman spectra are compared with those of 3D crystalline graphite and turbostratic graphite, in which the layers are stacked with rotational disorder. We show that Resonance Raman studies, where the energy of the excitation laser line can be tuned continuously, can be used to probe electrons and phonons near the Dirac point of graphene and, in particular allowing a determination to be made of the tight-binding parameters for bilayer graphene. The special process of electron-phonon interaction that renormalizes the phonon energy giving rise to the Kohn anomaly is discussed, and is illustrated by gated experiments where the position of the Fermi level can be changed experimentally. Finally, we discuss the ability of distinguishing armchair and zig-zag edges by Raman spectroscopy and studies in graphene nanoribbons in which the Raman signal is enhanced due to resonance with singularities in the density of electronic states.

  16. Micro-Raman spectroscopy of chromosomes

    NARCIS (Netherlands)

    de Mul, F.F.M.; van Welle, A.G.M.; Otto, Cornelis; Greve, Jan

    1984-01-01

    Raman spectra of intact chromosomes (Chinese hamster), recorded with a microspectrometer, are reported. The spectra could be assigned to protein and DNA contributions. Protein and DNA conformations and the ratio of base pairs in DNA were determined.

  17. [Research Progress of Raman Spectroscopy on Dyestuff Identification of Ancient Relics and Artifacts].

    Science.gov (United States)

    He, Qiu-ju; Wang, Li-qin

    2016-02-01

    As the birthplace of Silk Road, China has a long dyeing history. The valuable information about the production time, the source of dyeing material, dyeing process and preservation status were existed in organic dyestuff deriving from cultural relics and artifacts. However, because of the low contents, complex compositions and easily degraded of dyestuff, it is always a challenging task to identify the dyestuff in relics analyzing field. As a finger-print spectrum, Raman spectroscopy owns unique superiorities in dyestuff identification. Thus, the principle, characteristic, limitation, progress and development direction of micro-Raman spectroscopy (MRS/µ-Raman), near infrared reflection and Fourier transform Raman spectroscopy (NIR-FT-Raman), surface-enhanced Raman spectroscopy (SERS) and resonance raman spectroscopy (RRS) have been introduced in this paper. Furthermore, the features of Raman spectra of gardenia, curcumin and other natural dyestuffs were classified by MRS technology, and then the fluorescence phenomena of purpurin excitated with different wavelength laser was compared and analyzed. At last, gray green silver colloidal particles were made as the base, then the colorant of madder was identified combining with thin layer chromatography (TLC) separation technology and SERS, the result showed that the surface enhancement effect of silver colloidal particles could significantly reduce fluorescence background of the Raman spectra. It is pointed out that Raman spectroscopy is a rapid and convenient molecular structure qualitative methodology, which has broad application prospect in dyestuff analysis of cultural relics and artifacts. We propose that the combination of multi-Raman spectroscopy, separation technology and long distance transmission technology are the development trends of Raman spectroscopy.

  18. In situ Raman spectra of the discharge products of calcium and lithium-anoded thionyl chloride cells — sulphur dioxide generation in oxyhalide systems

    Science.gov (United States)

    Hagan, W. P.; Sargeant, D. G.

    A cell has been constructed that allows a calcium or lithium-anoded oxyhalide cell of conventional composition to be analysed for catholyte-soluble discharge products using laser Raman spectroscopy. Both cells showed the presence of sulphur dioxide solvated by thionyl chloride. Species of the type M(SOCl 2)(SO 2) n+ (AlCl 4) n- could only be detected in cells having calcium or lithium anodes with LiAlCl 4 as the supporting electrolyte in thionyl chloride. Vapour pressure measurements of discharging cells confirmed that Ca(AlCl 4) 2 was less likely to form a complex with sulphur dioxide than the analogous lithium salt.

  19. Measurement of characteristic to total spectrum ratio of tungsten X-ray spectra for the validation of the modified Tbc model

    International Nuclear Information System (INIS)

    Lopez G, A. H.; Costa, P. R.; Tomal, A.

    2014-08-01

    Primary X-ray spectra were measured in the range of 80 to 150 kV in order to validate a computer program based on a semiempirical model for X-ray spectra evaluation(tbc and mod). The ratio between the characteristic lines and total spectrum was considered for comparing the simulated results and experimental data. The raw spectra measured by the Cd Te detector were corrected by the detector efficiency, Compton effects and characteristic Cd and Te X-rays escape peaks, using a software specifically developed. The software Origin 8.5.1 was used to calculate the spectra and characteristic peaks areas. The obtained result shows that the experimental spectra have higher effective energy than the simulated spectra computed with tbc and mod software. The behavior of the ratio between the characteristic lines and total spectrum for simulated data presents discrepancy with the experimental result. Computed results are in good agreement with theoretical data published by Green, for spectra obtained with 3.04 mm of additional aluminum filtration. The difference of characteristic to total spectrum ratio between experimental and simulated data increases with the tube voltage. (Author)

  20. Measurement of characteristic to total spectrum ratio of tungsten X-ray spectra for the validation of the modified Tbc model

    Energy Technology Data Exchange (ETDEWEB)

    Lopez G, A. H.; Costa, P. R. [University of Sao Paulo, Institute of Physics, Laboratory of Radiation Dosimetry and Medical Physics, Matao Street, alley R, 187, 66318 Sao Paulo (Brazil); Tomal, A., E-mail: ahlopezg@usp.br [Universidade Federal de Goias, Physics Institute, Campus Samambaia, 131 Goiania, Goias (Brazil)

    2014-08-15

    Primary X-ray spectra were measured in the range of 80 to 150 kV in order to validate a computer program based on a semiempirical model for X-ray spectra evaluation(tbc and mod). The ratio between the characteristic lines and total spectrum was considered for comparing the simulated results and experimental data. The raw spectra measured by the Cd Te detector were corrected by the detector efficiency, Compton effects and characteristic Cd and Te X-rays escape peaks, using a software specifically developed. The software Origin 8.5.1 was used to calculate the spectra and characteristic peaks areas. The obtained result shows that the experimental spectra have higher effective energy than the simulated spectra computed with tbc and mod software. The behavior of the ratio between the characteristic lines and total spectrum for simulated data presents discrepancy with the experimental result. Computed results are in good agreement with theoretical data published by Green, for spectra obtained with 3.04 mm of additional aluminum filtration. The difference of characteristic to total spectrum ratio between experimental and simulated data increases with the tube voltage. (Author)

  1. Phase discrimination in CdSe structures by means of Raman scattering

    International Nuclear Information System (INIS)

    Cusco, R.; Artus, L.; Consonni, V.; Bellet-Amalric, E.; Andre, R.

    2017-01-01

    Raman spectra of epitaxial layers of CdSe grown by molecular beam epitaxy have been measured for the cubic (zincblende) and hexagonal (wurtzite) phases. The Raman spectra are examined in the light of density functional calculations for these two highly similar structures. Characteristic Raman frequencies and spectral features associated with the different symmetry are discussed and reliable criteria for phase discrimination based on Raman spectroscopy are proposed. Although LO frequencies are virtually identical in both structures and may be affected by size effects, the observation of a low energy E 2 mode at 33 cm -1 unambiguously identifies the wurtzite structure and can be used as a specific fingerprint to distinguish between these two phases in CdSe-based nanostructures. The slightly lower LO frequency measured in the zincblende epitaxial layer is ascribed to residual tensile strain. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Resonance Raman and UV-visible spectroscopy of black dyes on textiles.

    Science.gov (United States)

    Abbott, Laurence C; Batchelor, Stephen N; Smith, John R Lindsay; Moore, John N

    2010-10-10

    Resonance Raman and UV-visible diffuse reflectance spectra were recorded from samples of cotton, viscose, polyester, nylon, and acrylic textile swatches dyed black with one of seven single dyes, a mixture of two dyes, or one of seven mixtures of three dyes. The samples generally gave characteristic Raman spectra of the dyes, demonstrating that the technique is applicable for the forensic analysis of dyed black textiles. Survey studies of the widely used dye Reactive Black 5 show that essentially the same Raman spectrum is obtained on bulk sampling from the dye in solution, on viscose, on cotton at different uptakes, and on microscope sampling from the dye in cotton threads and single fibres. The effects of laser irradiation on the Raman bands and emission backgrounds from textile samples with and without dye are also reported. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Phase discrimination in CdSe structures by means of Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cusco, R.; Artus, L. [Institut Jaume Almera (ICTJA-CSIC), Consejo Superior de Investigaciones Cientificas, Lluis Sole i Sabaris s.n., 08028 Barcelona (Spain); Consonni, V. [Universite Grenoble Alpes and CNRS, LMGP, 38016 Grenoble (France); Bellet-Amalric, E. [Universite Grenoble Alpes and CEA, INAC-PHEILQS, Nanophysique et Semiconducteurs Group, 38000 Grenoble (France); Andre, R. [Universite Grenoble Alpes and CNRS, Institut Neel, Nanophysique et Semiconducteurs Group, 38000 Grenoble (France)

    2017-05-15

    Raman spectra of epitaxial layers of CdSe grown by molecular beam epitaxy have been measured for the cubic (zincblende) and hexagonal (wurtzite) phases. The Raman spectra are examined in the light of density functional calculations for these two highly similar structures. Characteristic Raman frequencies and spectral features associated with the different symmetry are discussed and reliable criteria for phase discrimination based on Raman spectroscopy are proposed. Although LO frequencies are virtually identical in both structures and may be affected by size effects, the observation of a low energy E{sub 2} mode at 33 cm{sup -1} unambiguously identifies the wurtzite structure and can be used as a specific fingerprint to distinguish between these two phases in CdSe-based nanostructures. The slightly lower LO frequency measured in the zincblende epitaxial layer is ascribed to residual tensile strain. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Formation of an Ion-Pair Molecule with a Single NH+...Cl- Hydrogen Bond: Raman spectra of 1,1,3,3-Tetramethylguanidinium chloride in the solid state, in solution and in the vapor phase

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Riisager, Anders; Fehrmann, Rasmus

    2008-01-01

    Some ionic compounds (salts) form liquids when heated to temperatures in the range of 200-300 °C. They may be referred to as moderate temperature ionic liquids. An example of such a compound is the 1,1,3,3- tetramethylguanidinium chloride, [TMGH]Cl, melting at ∼212 °C. The chemistry of this compo......Some ionic compounds (salts) form liquids when heated to temperatures in the range of 200-300 °C. They may be referred to as moderate temperature ionic liquids. An example of such a compound is the 1,1,3,3- tetramethylguanidinium chloride, [TMGH]Cl, melting at ∼212 °C. The chemistry...... and the dimeric chloride ion-pair salt converged to give geometries near the established crystal structure of [TMGH]Cl. The structures and their binding energies are given as well as calculated vibrational harmonic normal modes (IR and Raman band wavenumbers and intensities). Experimentally obtained Raman...... scattering spectra are presented and assigned, by comparing to the quantum mechanical calculations. It is concluded that dimeric molecular ion pairs with four N-H+ · · · Cl- hydrogen bonds probably exist in the solutions and are responsible for the relatively high solubility of the “salt” in ethanol...

  5. Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea

    Science.gov (United States)

    Oh, Young-Suk; Takele Kenea, S.; Goo, Tae-Young; Chung, Kyu-Sun; Rhee, Jae-Sang; Ou, Mi-Lim; Byun, Young-Hwa; Wennberg, Paul O.; Kiel, Matthäus; DiGangi, Joshua P.; Diskin, Glenn S.; Velazco, Voltaire A.; Griffith, David W. T.

    2018-04-01

    Since the late 1990s, the meteorological observatory established in Anmyeondo (36.5382° N, 126.3311° E, and 30 m above mean sea level) has been monitoring several greenhouse gases such as CO2, CH4, N2O, CFCs, and SF6 as a part of the Global Atmosphere Watch (GAW) Program. A high resolution ground-based (g-b) Fourier transform spectrometer (FTS) was installed at this observation site in 2013 and has been operated within the frame work of the Total Carbon Column Observing Network (TCCON) since August 2014. The solar spectra recorded by the g-b FTS cover the spectral range 3800 to 16 000 cm-1 at a resolution of 0.02 cm-1. In this work, the GGG2014 version of the TCCON standard retrieval algorithm was used to retrieve total column average CO2 and CH4 dry mole fractions (XCO2, XCH4) and from the FTS spectra. Spectral bands of CO2 (at 6220.0 and 6339.5 cm-1 center wavenumbers, CH4 at 6002 cm-1 wavenumber, and O2 near 7880 cm-1 ) were used to derive the XCO2 and XCH4. In this paper, we provide comparisons of XCO2 and XCH4 between the aircraft observations and g-b FTS over Anmyeondo station. A comparison of 13 coincident observations of XCO2 between g-b FTS and OCO-2 (Orbiting Carbon Observatory) satellite measurements are also presented for the measurement period between February 2014 and November 2017. OCO-2 observations are highly correlated with the g-b FTS measurements (r2 = 0.884) and exhibited a small positive bias (0.189 ppm). Both data set capture seasonal variations of the target species with maximum and minimum values in spring and late summer, respectively. In the future, it is planned to further utilize the FTS measurements for the evaluation of satellite observations such as Greenhouse Gases Observing Satellite (GOSAT, GOSAT-2). This is the first report of the g-b FTS observations of XCO2 species over the Anmyeondo station.

  6. Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea

    Directory of Open Access Journals (Sweden)

    Y.-S. Oh

    2018-04-01

    Full Text Available Since the late 1990s, the meteorological observatory established in Anmyeondo (36.5382° N, 126.3311° E, and 30 m above mean sea level has been monitoring several greenhouse gases such as CO2, CH4, N2O, CFCs, and SF6 as a part of the Global Atmosphere Watch (GAW Program. A high resolution ground-based (g-b Fourier transform spectrometer (FTS was installed at this observation site in 2013 and has been operated within the frame work of the Total Carbon Column Observing Network (TCCON since August 2014. The solar spectra recorded by the g-b FTS cover the spectral range 3800 to 16 000 cm−1 at a resolution of 0.02 cm−1. In this work, the GGG2014 version of the TCCON standard retrieval algorithm was used to retrieve total column average CO2 and CH4 dry mole fractions (XCO2, XCH4 and from the FTS spectra. Spectral bands of CO2 (at 6220.0 and 6339.5 cm−1 center wavenumbers, CH4 at 6002 cm−1 wavenumber, and O2 near 7880 cm−1 were used to derive the XCO2 and XCH4. In this paper, we provide comparisons of XCO2 and XCH4 between the aircraft observations and g-b FTS over Anmyeondo station. A comparison of 13 coincident observations of XCO2 between g-b FTS and OCO-2 (Orbiting Carbon Observatory satellite measurements are also presented for the measurement period between February 2014 and November 2017. OCO-2 observations are highly correlated with the g-b FTS measurements (r2 = 0.884 and exhibited a small positive bias (0.189 ppm. Both data set capture seasonal variations of the target species with maximum and minimum values in spring and late summer, respectively. In the future, it is planned to further utilize the FTS measurements for the evaluation of satellite observations such as Greenhouse Gases Observing Satellite (GOSAT, GOSAT-2. This is the first report of the g-b FTS observations of XCO2 species over the Anmyeondo station.

  7. Influence of piezoelectric strain on the Raman spectra of BiFeO{sub 3} films deposited on PMN-PT substrates

    Energy Technology Data Exchange (ETDEWEB)

    Himcinschi, Cameliu, E-mail: himcinsc@physik.tu-freiberg.de; Talkenberger, Andreas; Kortus, Jens [TU Bergakademie Freiberg, Institute of Theoretical Physics, 09596 Freiberg (Germany); Guo, Er-Jia [Institute of Physics, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Germany); Institute for Metallic Materials, IFW Dresden, 01069 Dresden (Germany); Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Dörr, Kathrin [Institute of Physics, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Germany); Institute for Metallic Materials, IFW Dresden, 01069 Dresden (Germany)

    2016-01-25

    BiFeO{sub 3} epitaxial thin films were deposited on piezoelectric 0.72Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.28PbTiO{sub 3} (PMN-PT) substrates with a conductive buffer layer (La{sub 0.7}Sr{sub 0.3}MnO{sub 3} or SrRuO{sub 3}) using pulsed laser deposition. The calibration of the strain values induced by the electric field applied on the piezoelectric PMN-PT substrates was realised using X-Ray diffraction measurements. The method of piezoelectrically induced strain allows one to directly obtain a quantitative correlation between the strain and the shift of the Raman-active phonons. This is a prerequisite for making Raman scattering a strong tool to probe the strain coupling in multiferroic nanostructures. Using the Poisson's number for BiFeO{sub 3}, one can determine the volume change induced by strain, and therefore the Grüneisen parameters for specific phonon modes.

  8. Raman spectra of Cu{sub 2}B{sup II}C{sup IV}X{sub 4}{sup VI} magnetic quaternary semiconductor compounds with tetragonal stannite type structure

    Energy Technology Data Exchange (ETDEWEB)

    Rincón, C., E-mail: crincon@ula.ve; Quintero, M.; Power, Ch.; Moreno, E.; Quintero, E.; Morocoima, M. [Centro de Estudios de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Henao, J. A.; Macías, M. A. [Grupo de Investigación en Química Estructural, Facultad de Ciencias, Escuela de Química, Universidad Industrial de Santander, Apartado Aéreo 678, Bucaramanga (Colombia)

    2015-05-28

    A comparative study of the Raman spectra of Cu{sub 2}B{sup II}C{sup IV}S{sub 4}{sup VI} and Cu{sub 2}B{sup II}C{sup IV}Se{sub 4}{sup VI}(where B = Mn or Fe) magnetic quaternary semiconductor compounds with stannite-type structure (I4{sup ¯}2m) has been done. Most of the fourteen Raman lines expected for these materials were observed in the spectra. The two strongest lines observed have been assigned to the IR inactive A{sub 1}{sup 1} and A{sub 1}{sup 2} stannite modes that originated from the motion of the S or Se anion around the Cu and C{sup IV} cations remaining at rest. The shift in the frequency of these two lines of about 150 cm{sup −1} to lower energies observed in Cu{sub 2}B{sup II}C{sup IV}Se{sub 4}{sup VI} compounds as compared to those in Cu{sub 2}B{sup II}C{sup IV}S{sub 4}{sup VI} ones, can then be explained as due to the anion mass effect. Based on the fact that values of these frequencies depend mainly on anion mass and bond-stretching forces between nearest-neighbor atoms, the vibrational frequencies v{sup ¯}(A{sub 1}{sup 2}) and v{sup ¯}(A{sub 1}{sup 2}) of both modes for several Cu{sub 2}B{sup II}C{sup IV}X{sub 4}{sup VI} stannite compounds (where X = S, Se, or Te) very close to the experimental data reported for these materials were calculated from a simple model that relates these stretching forces to the anion-cation bond-distances.

  9. Characteristic Investigation of Unfolded Neutron Spectra with Different Priori Information and Gamma Radiation Interference

    International Nuclear Information System (INIS)

    Kim, Bong Hwan

    2006-01-01

    Neutron field spectrometry using multi spheres such as Bonner Spheres (BS) has been almost essential in radiation protection dosimetry for a long time at workplace in spite of poor energy resolution because it is not asking the fine energy resolution but requiring easy operation and measurement performance over a wide range of energy interested. KAERI has developed and used extended BS system based on a LiI(Eu) scintillator as the representative neutron spectrometry system for workplace monitoring as well as for the quantification of neutron calibration fields such as those recommended by ISO 8529. Major topics in using BS are how close the unfolded spectra is the real one and to minimize the interference of gamma radiation in neutron/gamma mixed fields in case of active instrument such as a BS with a LiI(Eu) scintillator. The former is related with choosing a priori information when unfolding the measured data and the latter is depend on how to discriminate it in intense gamma radiation fields. Influence of a priori information in unfolding and effect of counting loss due to pile-up of signals for the KAERI BS system were investigated analyzing the spectral measurement results of Scattered Neutron Calibration Fields (SNCF)

  10. Characterization of Materials by Raman Scattering

    Science.gov (United States)

    Kozielski, M.

    2007-03-01

    The paper reports on the use of phonon spectra obtained with the Raman spectroscopy for characterization of different materials. The Raman scattering spectra obtained for zinc selenide crystals, mixed crystals zinc selenide admixtured with magnesium or beryllium, oxide crystals including strontium lanthanum gallate, molecular crystals of triammonium hydrogen diseleniate and a homologous series of polyoxyethylene glycols are analysed.

  11. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Esam M.A. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)], E-mail: h.g.m.edwards@bradford.ac.uk; Hargreaves, Michael D.; Scowen, Ian J. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)

    2008-05-12

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 {mu}m. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.

  12. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    International Nuclear Information System (INIS)

    Ali, Esam M.A.; Edwards, Howell G.M.; Hargreaves, Michael D.; Scowen, Ian J.

    2008-01-01

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 μm. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material

  13. Characterization of Surface-Enhanced Raman Scattering of Nicotine Utilizing Plasmonic Nanometals for the Applications of Medical and Chemical Sensing

    Science.gov (United States)

    Jackson, Ashley; Rigo, Maria; Seo, Jaetae; HU Team

    2011-05-01

    Raman spectroscopy has received a great deal of interest for its applications in biological sensing and cell imaging due to the ease with which it can be used to extract significant data from tissue and cells. This study has focused on the application of SERS for nicotine detection. Liquid nicotine was diluted and combined with Au nanoparticles (NPs). The nicotine-gold solution was analyzed by acquiring Raman spectra data using a Delta Nu Spectrometer. Absorption data shows the characteristic peak of Au NPs at ~528 nm while showing successful aggregation of the nicotine particles. Data taken from Raman spectra shows characteristic Raman shifts of nicotine at ~1030 cm-1 and ~1590 cm-1. Currently work is being done to optimize the SERS signal for nicotine in the 1590-1600 region using higher concentrations of nicotine and various sizes of Au NPs. This work at Hampton University was supported by the National Science Foundation (HRD-0734635 and HRD-063037).

  14. Temperature-dependent Raman spectra and electrical properties of 0.69Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.31PbTiO{sub 3} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Bijun [Changzhou University, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou (China); Liu, Xing [Changzhou University, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou (China); Chinese Academy of Sciences, Key Laboratory of Inorganic Function Material and Device, Shanghai (China); Li, Xiaobing; Zhao, Xiangyong; Luo, Haosu [Chinese Academy of Sciences, Key Laboratory of Inorganic Function Material and Device, Shanghai (China); Ding, Jianning [Changzhou University, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou (China); Jiangsu University, School of Material Science and Engineering, Zhenjiang (China)

    2016-09-15

    The temperature-dependent Raman spectra and electrical properties of the 0.69Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.31PbTiO{sub 3} (0.69PMN-0.31PT) single crystals were investigated. Based on the group theory, the poled 0.69PMN-0.31PT single crystals belong to the monoclinic crystal system, which was confirmed by the room-temperature Raman spectra. The 0.69PMN-0.31PT single crystals experience successive structural phase transitions, i.e., a monoclinic-tetragonal (FE{sub M}-FE{sub T}) phase transition at T{sub M-T} and a tetragonal-cubic (FE{sub T}-P{sub C}) phase transition at T{sub m} determined by the dielectric measurement. Due to the enhancement of long-range order, their FE{sub M}-FE{sub T} phase transition becomes more obvious after the poling process. The wavenumbers and line widths of the 271, 502, 575, 795 cm{sup -1} Raman modes, and the intensity ratios of I{sub 271cm}{sup {sub -}{sub 1}}/I{sub 795cm}{sup {sub -}{sub 1}} and I{sub 502cm}{sup {sub -}{sub 1}}/I{sub 575cm}{sup {sub -}{sub 1}} exhibit obvious anomalies around T{sub M-T} and T{sub m}, which are closely related to the FE{sub M}-FE{sub T} and FE{sub T}-P{sub C} phase transitions. The temperature and electric field (E)-induced phase transitions are observed in the unipolar strain-E (S-E) curves. The converse piezoelectric constant (d{sub 33}), maximum strain value (S{sub max}%) and longitudinal electrostrictive coefficient (Q) increase considerably around the ferroelectric phase transition temperature T{sub M-T}. (orig.)

  15. Effects of Sm3+/Yb3+ co-doping and temperature on the Raman, IR spectra and structure of [TeO2-GeO2-K2O-Sm2O3/Yb2O3] glasses

    International Nuclear Information System (INIS)

    Shaltout, I.; Badr, Y.

    2006-01-01

    Effects of Sm 3+ /Yb 3+ co-doping on Raman scattering, IR absorption, temperature dependence of the Raman spectra up to 210 o C and the structure of two glass systems of the composition (80TeO 2 -10GeO 2 -8K 2 O-2Sm 2 O 3 /Yb 2 O 3 ) is discussed. It was found that the addition of Yb 3+ to the glass very strongly enhances the intensities of the antistokes' Raman bands at 155, 375, 557 and 828 cm -1 and quenches both the intensities of the stokes' vibration modes of the TeO 4 units in the range of 120-770 cm -1 and the intensities of the OH - stretching vibration modes in the range of 2600-3300 cm -1 . Sm 2 O 3 /Yb 2 O 3 rare earth co-doping has a great influence on removing and/or changing the nature of the OH - groups. The appearance and splitting of the stretching vibration modes of the OH - groups at lower frequencies (2770, 2970 cm -1 ) for the Sm +3 singly doped glass sample, compared to the band at ∼3200 cm -1 for the Sm 3+ /Yb 3+ co-doped glass sample, suggested that the OH - groups are more strongly bonded and incorporated with the glass matrix for the singly doped glass. Heating the sample up continuously weakens the hydrogen bonding of the OH - groups to the glass matrix leading to creation of NBO and breakdown of the connectivity of the OH - groups to the TeO 4 , TeO 3+1 and TeO 3 structural units. Raman bands at 286, 477, 666 and 769 cm -1 were assigned to its respective vibrations of Te 2 O 7 , TeO 4 -4 species, the (Te-O-Te) bending vibrations of the TeO 4 triagonal bipyramids (tbps), the axial symmetric stretching vibration modes (Te ax -O) s with bridging oxygen BO atoms and to the (Te-O) nbo non-bridging stretching vibration modes of the TeO 3+1 and/or TeO 3 pyramids

  16. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm(-1)). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  17. Preparation, infrared, raman and nmr spectra of N,N'-diethylthiourea complexes with zinc(II), cadmium(II) and mercury(II) halides

    Energy Technology Data Exchange (ETDEWEB)

    Marcotrigiano, G [Bari Univ. (Italy). Cattedra di Chimica, Facolta di Medicina-Veterinaria

    1976-05-01

    Several complexes of N,N'-diethylthiourea (Dietu) with zinc(II), cadmium(II) and mercury(II) halides were prepared and characterized by i.r. (4000-60 cm/sup -1/), raman (400-60 cm/sup -1/), in the solid state and n.m.r. and conductometric methods in solution. The complexes Zn(Dietu)/sub 2/X/sub 2/, Cd(Dietu)/sub 2/X/sub 2/ (X=Cl, Br, I) and Hg(Dietu)/sub 2/X/sub 2/ (X=Br, I) are tetrahedral species in which intramolecular -NH...X interactions have been observed. The 1:1 mercury(II) complexes, Hg(Dietu)X/sub 2/ (X=Cl, Br), appear to have a dimeric tetrahedral halide-bridged structure in the solid state. In all these complexes N,N'-diethylthiourea is sulphur-bonded to the metal.

  18. The effect of Nd and Mg doping on the micro-Raman spectra of LiNbO3 single-crystals

    International Nuclear Information System (INIS)

    Quispe-Siccha, R; Villagran-Muniz, M; MejIa-Uriarte, E V; Jaque, D; GarcIa Sole, J; Jaque, F; Sato-Berru, R Y; Camarillo, E; Hernandez A, J; Murrieta S, H

    2009-01-01

    The LiNbO 3 congruent crystals doped with small Nd concentrations, 1 (TO 1 ) and A 1 (TO 2 ) modes, the half-width composition and the area ratio of the A 1 (TO 4 ) and E(TO 8 ) bands, we reached several conclusions about the incorporation mechanism of the Nd and Mg ions into the LiNbO 3 lattice. Likewise the Raman shift and half-width of the E(TO 1 ) and E(TO 7 ) modes were investigated in the Z direction. Results indicate that Mg and Nd ions are located in the Li site for low doping concentrations and for larger concentrations there is a replacement in both Li and Nb ion sites.

  19. Vibrational spectroscopy at very high pressures. Part 28. Raman and far-infrared spectra of some complex chlorides A2MCl6 under hydrostatic pressure

    DEFF Research Database (Denmark)

    Adams, David M.; Berg, Rolf W.; Williams, Alan D.

    1981-01-01

    Raman and far-IR mode frequency shifts with pressure have been observed under hydrostatic conditions in a gasketed diamond anvil cell (d.a.c.). Using compressibilities calculated from unit cell constants and lattice energies, Grüneisen parameters gammai have been obtained for all observed modes...... pressure curves for K2SnCl6 and [(CH3)4N]2MCl6 (M=Sn, Te, Pt) are discussed in relation to their structures. Shifts of nu-tilde i with temperature for K2ReCl6 and K2PtCl6 are analyzed into explicit and implicit anharmonic contributions. The Journal of Chemical Physics is copyrighted by The American...

  20. Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy

    International Nuclear Information System (INIS)

    Silva, Jose E. Pereira da; Temperini, Marcia L.A.; Torresi, Susana I. Cordoba de

    2005-01-01

    Raman and optical microscopy were used to investigate possible interactions between polyaniline (PANI) and different insulating polymers in conducting blends. Resonance Raman and optical micrographs were used to study the physical interaction in materials. Analysis Raman spectra was done investigating the relative intensity of bands at 574 and 607 cm -1 . A relationship between Raman bands and conductivity was also proposed. (author)

  1. Conformation of the azo bond and its influence on the molecular and crystal structures, IR and Raman spectra, and electron properties of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine - Quantum chemical DFT calculations

    Science.gov (United States)

    Michalski, J.; Bryndal, I.; Lorenc, J.; Hermanowicz, K.; Janczak, J.; Hanuza, J.

    2018-02-01

    The crystal and molecular structures of 6-methyl-3,5-dinitro-2-[(E)-phenyldiazenyl]pyridine have been determined by X-ray diffraction and quantum chemical DFT calculations. The crystal is monoclinic, space group Cc (No. 9) with Z = 4 with the unit cell parameters: a = 12.083(7), b = 12.881(6), c = 8.134(3) Å and β = 97.09(5)°. The azo-bridge appears in the trans conformation in which C2-N2-N2‧-C1‧ torsion angle takes a value - 178.6(3)°, whereas the dihedral angle between the planes of the phenyl and pyridine rings is 3.5(2)°. The IR and Raman spectra measured in the temperature range 80-350 K and quantum chemical calculations with the use of B3LYP/6-311G(2d,2p) approach confirmed the trans configuration of the azo-bridge as the most stable energetically and allowed determination of the energy other virtual structures. The observed effects were used in the discussion of vibrational dynamics of the studied compound. The energy gap between cis and trans conformers equals to 1.054 eV (0.03873 Hartree). The electron absorption and emission spectra have been measured and analyzed on the basis of DFT calculations. The life time of the excited state is 12 μs and the Stokes shift is close to 5470 cm- 1.

  2. Resonance Raman study of benzyl radical

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Bajdor, K.; Wilbrandt, R.

    1992-01-01

    Time-resolved resonance Raman spectra are obtained of benzyl radicals created by laser flash photolysis of benzylchloride and diphenylacetone in solution. The spectra are obtained in resonance with the intense 2 2A2-1 B-2(2) transition of benzyl. The strong Raman bands are assigned to totally...... symmetric a1 modes. The remaining observed bands are tentatively assigned to fundamental modes of b1, a2, and b2 symmetry, and to overtones and combinations. The resonance Raman spectra are found to be quite different from previous fluorescence spectra of benzyl, and the origins of these differences...

  3. Interpretation of the Raman spectra of the glassy states of SixS1−x and SixSe1−x

    International Nuclear Information System (INIS)

    Devi, V. Radhika; Zabidi, Noriza Ahmad; Shrivastava, Keshav N.

    2013-01-01

    We use the density-functional theory to make models of Si x S y and Si x Se y for the values of x,y = 1–6. The vibrational frequencies are calculated for each model. The stable clusters are selected on the basis of positive vibrational frequencies. In the case of Si x S 1−x , the values of the vibrational frequencies calculated from the first principles for Si 2 S(triangular)cluster of atoms, 364.1 cm −1 and 380.8 cm −1 , agree with the experimentally measured values of 367 cm −1 and 381 cm −1 , indicating that Si 2 S clusters occur in the glassy state of SiS. The calculated values of the vibrational frequencies of SiSe 4 (pyramidal) which agree with the experimental Raman frequencies of glassy Si x Se 1−x are 114, 166 and 361 cm −1 . The calculated values for Si 2 Se 4 (bipyramidal) which agree with the experimental data of Si x Se 1−x are 166 and 464 cm −1 . In Si 4 Se (pyramidal) the values 246 and 304 cm −1 agree with the measured values. In Si 4 Se 2 (bipyramidal), the calculated values 162, 196 and 304 cm −1 agree with the measured values. The calculated values of 473 cm −1 for Si 6 Se 2 (bipyramidal) also agree with the experimentally measured values. We thus find that pyramidal structures are present in the amorphous Si x Se 1−x glassy state. - Highlights: • A first principles calculation is performed to calculate the vibrational frequencies. • The calculated frequencies of clusters agree with measured Raman values. • The structures, bond lengths and symmetries are determined. • The importance of Jahn–Teller effect in SiS and in SiSe is clearly seen. • The clusters of SiS and SiSe are found to stabilize in different symmetries

  4. Raman spectroscopy

    Science.gov (United States)

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  5. Ab initio and DFT study of hydrogen bond interactions between ascorbic acid and dimethylsulfoxide based on FT-IR and FT-Raman spectra

    Science.gov (United States)

    Niazazari, Naser; Zatikyan, Ashkhen L.; Markarian, Shiraz A.

    2013-06-01

    The hydrogen bonding of 1:1 complexes formed between L-ascorbic acid (LAA) and dimethylsulfoxide (DMSO) has been studied by means of ab initio and density functional theory (DFT) calculations. Solutions of L-ascorbic acid (AA) in dimethylsulfoxide (DMSO) have been studied by means of both FT-IR (4000-220 cm-1) and FT-Raman spectroscopy. Ab initio Hartree-Fock (HF) and DFT methods have been used to determine the structure and energies of stable conformers of various types of L-AA/DMSO complexes in gas phase and solution. The basis sets 6-31++G∗∗ and 6-311+G∗ were used to describe the structure, energy, charges and vibrational frequencies of interacting complexes in the gas phase. The optimized geometric parameters and interaction energies for various complexes at different theories have been estimated. Binding energies have been corrected for basis set superposition error (BSSE) and harmonic vibrational frequencies of the structures have been calculated to obtain the stable forms of the complexes. The self-consistent reaction field (SCRF) has been used to calculate the effect of DMSO as the solvent on the geometry, energy and charges of complexes. The solvent effect has been studied using the Onsager models. It is shown that the polarity of the solvent plays an important role on the structures and relative stabilities of different complexes. The results obtained show that there is a satisfactory correlation between experimental and theoretical predictions.

  6. Crystal and molecular structure and Raman and 127I Moessbauer spectra of iodine(III) bis(fluorosulfate) iodide, I(OSO2F)2I

    International Nuclear Information System (INIS)

    Birchall, T.; Denes, G.; Faggiani, R.; Frampton, C.S.; Gillespie, R.J.; Kapoor, R.; Vekris, J.E.

    1990-01-01

    Iodine is oxidized by peroxodisulfuryl difluoride, S 2 O 6 F 2 , to give I(OSO 2 F) 2 I. The crystal structure of the orthorhombic type crystal is reported. The structure was solved by means of Patterson functions and refined by least squares to final agreement indices of R 1 = 0.0353 and R 2 = 0.0374 for 1,600 independent reflections. There are three primary bonds to the central iodine, I(1), (I(1)-OSO 2 F = 2.086 (7) and 2.258 (7) angstrom; I(1)-I(2) = 2.676 (1) angstrom), which create a distorted T=shaped AX 3 E 2 geometry. The second iodine, I(2), has a primary bond to I(1) and a strong intermolecular secondary I(2)-O bond of length 2.655 (8) angstrom to one of the fluorosulfate groups that is colinear with the primary bond, giving an AXYE 3 geometry about I(2). The Raman spectrum of the solid and the 127 I Moessbauer spectrum are in full agreement with the structure found. 30 refs., 3 figs., 4 tabs

  7. Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography

    International Nuclear Information System (INIS)

    Yin Jun; Yu Ling-Yao; Liu Xing; Wan Hui; Lin Zi-Yang; Niu Han-Ben

    2011-01-01

    In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Raman spectrum of natural and synthetic stishovite

    Science.gov (United States)

    Hemley, R.J.; Mao, Ho-kwang; Chao, E.C.T.

    1986-01-01

    Raman spectra of natural and synthetic samples of stishovite have been measured with a micro-optical spectrometer system. These spectra have a pattern that is characteristic of rutile-structured oxides. The spectrum of synthetic stishovite is characterized by well-resolved bands at 231, 589, 753, and 967 cm-1, which are assigned as the B1g, Eg, A1g, and B2g fundamentals, respectively, of the first-order Raman spectrum of the ideal, ordered structure. Natural stishovite obtained from Meteor Crater, Arizona has a first-order Raman spectrum that is fully consistent with that of the synthetic material. The observed spectrum of the natural sample, however, is weaker and has bands in addition to those identified as fundamentals in the spectrum of the synthetic material. A broad band at ???475 cm-1 may be indicative of glass or contaminants derived from the extraction procedure. Alternatively, this band may arise from multiphonon scattering that is enhanced by poor crystallinity or structural disorder in the natural shocked sample. ?? 1986 Springer-Verlag.

  9. Diagnosing breast cancer by using Raman spectroscopy

    Science.gov (United States)

    Haka, Abigail S.; Shafer-Peltier, Karen E.; Fitzmaurice, Maryann; Crowe, Joseph; Dasari, Ramachandra R.; Feld, Michael S.

    2005-08-01

    We employ Raman spectroscopy to diagnose benign and malignant lesions in human breast tissue based on chemical composition. In this study, 130 Raman spectra are acquired from ex vivo samples of human breast tissue (normal, fibrocystic change, fibroadenoma, and infiltrating carcinoma) from 58 patients. Data are fit by using a linear combination model in which nine basis spectra represent the morphologic and chemical features of breast tissue. The resulting fit coefficients provide insight into the chemical/morphological makeup of the tissue and are used to develop diagnostic algorithms. The fit coefficients for fat and collagen are the key parameters in the resulting diagnostic algorithm, which classifies samples according to their specific pathological diagnoses, attaining 94% sensitivity and 96% specificity for distinguishing cancerous tissues from normal and benign tissues. The excellent results demonstrate that Raman spectroscopy has the potential to be applied in vivo to accurately classify breast lesions, thereby reducing the number of excisional breast biopsies that are performed. Author contributions: M.F., J.C., R.R.D., and M.S.F. designed research; A.S.H. and K.E.S.-P. performed research; A.S.H. and M.F. analyzed data; and A.S.H. wrote the paper.This paper was submitted directly (Track II) to the PNAS office.Abbreviations: DEH, ductal epithelial hyperplasia; ROC, receiver operating characteristic; N/C, nuclear-to-cytoplasm.

  10. Axially perpendicular offset Raman scheme for reproducible measurement of housed samples in a noncircular container under variation of container orientation.

    Science.gov (United States)

    Duy, Pham K; Chang, Kyeol; Sriphong, Lawan; Chung, Hoeil

    2015-03-17

    An axially perpendicular offset (APO) scheme that is able to directly acquire reproducible Raman spectra of samples contained in an oval container under variation of container orientation has been demonstrated. This scheme utilized an axially perpendicular geometry between the laser illumination and the Raman photon detection, namely, irradiation through a sidewall of the container and gathering of the Raman photon just beneath the container. In the case of either backscattering or transmission measurements, Raman sampling volumes for an internal sample vary when the orientation of an oval container changes; therefore, the Raman intensities of acquired spectra are inconsistent. The generated Raman photons traverse the same bottom of the container in the APO scheme; the Raman sampling volumes can be relatively more consistent under the same situation. For evaluation, the backscattering, transmission, and APO schemes were simultaneously employed to measure alcohol gel samples contained in an oval polypropylene container at five different orientations and then the accuracies of the determination of the alcohol concentrations were compared. The APO scheme provided the most reproducible spectra, yielding the best accuracy when the axial offset distance was 10 mm. Monte Carlo simulations were performed to study the characteristics of photon propagation in the APO scheme and to explain the origin of the optimal offset distance that was observed. In addition, the utility of the APO scheme was further demonstrated by analyzing samples in a circular glass container.

  11. The effects of machine parameters on residual stress determined using micro-Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Enloe, W.S.; Paesler, M.A.

    1988-12-01

    The effects of machine parameters on residual stresses in single point diamond turned silicon and germanium have been investigated using micro-Raman spectroscopy. Residual stresses were sampled across ductile feed cuts in < 100 > silicon and germanium which were single point diamond turned using a variety of feed rates, rake angles and clearance angles. High spatial resolution micro-Raman spectra (1{mu}m spot) were obtained in regions of ductile cutting where no visible surface damage was present. The use of both 514-5nm and 488.0nm excitation wavelengths, by virtue of their differing characteristic penetration depths in the materials, allowed determinations of stress profiles as a function of depth into the sample. Previous discussions have demonstrated that such Raman spectra will exhibit asymmetrically broadened peaks which are characteristic of the superposition of a continuum of Raman scatterers from the various depths probed. Depth profiles of residual stress were obtained using computer deconvolution of the resulting asymmetrically broadened raman spectra.

  12. Spontaneous confocal Raman microscopy--a tool to study the uptake of nanoparticles and carbon nanotubes into cells

    Science.gov (United States)

    Romero, Gabriela; Rojas, Elena; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio Enrique

    2011-06-01

    Confocal Raman microscopy as a label-free technique was applied to study the uptake and internalization of poly(lactide- co-glycolide) (PLGA) nanoparticles (NPs) and carbon nanotubes (CNTs) into hepatocarcinoma human HepG2 cells. Spontaneous confocal Raman spectra was recorded from the cells exposed to oxidized CNTs and to PLGA NPs. The Raman spectra showed bands arising from the cellular environment: lipids, proteins, nucleic acids, as well as bands characteristic for either PLGA NPs or CNTs. The simultaneous generation of Raman bands from the cell and nanomaterials from the same spot proves internalization, and also indicates the cellular region, where the nanomaterial is located. For PLGA NPs, it was found that they preferentially co-localized with lipid bodies, while the oxidized CNTs are located in the cytoplasm.

  13. Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers

    Directory of Open Access Journals (Sweden)

    Jingxin Zou

    2016-11-01

    Full Text Available The aging of oil-paper insulation in power transformers may cause serious power failures. Thus, effective monitoring of the condition of the transformer insulation is the key to prevent major accidents. The purpose of this study was to explore the feasibility of confocal laser Raman spectroscopy (CLRS for assessing the aging condition of oil-paper insulation. Oil-paper insulation samples were subjected to thermal accelerated ageing at 120 °C for up to 160 days according to the procedure described in the IEEE Guide. Meanwhile, the dimension of the Raman spectrum of the insulation oil was reduced by principal component analysis (PCA. The 160 oil-paper insulation samples were divided into five aging stages as training samples by clustering analysis and with the use of the degree of polymerization of the insulating papers. In addition, the features of the Raman spectrum were used as the inputs of a multi-classification support vector machine. Finally, 105 oil-paper insulation testing samples aged at a temperature of 130 °C were used to further test the diagnostic capability and universality of the established algorithm. Results demonstrated that CLRS in conjunction with the PCA-SVM technique provides a new way for aging stage assessment of oil-paper insulation equipment in the field.

  14. A Raman spectroscopic study of barium copper oxide

    International Nuclear Information System (INIS)

    Loo, B.H.; burns, D.H.; Roloin, T.D.

    1989-01-01

    Various physical treatments of BaCuO 2 samples result in irreversible changes in its Raman spectrum. The prominent peaks at 576 and 628 cm -1 in the spectra of sintered pellets of BaCuO 2 disappear upon further annealing in air or oxygen or upon mere regrinding of the pellets. Further annealing in air, oxygen, or vacuum does not restore these peaks. Similar but less intense peaks reappear upon exposure of pellets to laboratory environment for several weeks, but these broaden and disappear upon further exposure. These spectral characteristics contrast with those observed in Y123 Raman spectrum. It is concluded that the peaks at 582 cm -1 and 636 cm -1 in the spectra of sintered pellets of Y123 are not due to the presence of BaCuO 2

  15. Effects of anisotropic interaction-induced properties of hydrogen-rare gas compounds on rototranslational Raman scattering spectra: Comprehensive theoretical and numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Głaz, Waldemar, E-mail: glaz@kielich.amu.edu.pl; Bancewicz, Tadeusz [Nonlinear Optics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland); Godet, Jean-Luc [Laboratoire de Photonique d’Angers, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers (France); Gustafsson, Magnus [Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-97187 Luleå (Sweden); Haskopoulos, Anastasios; Maroulis, George [Department of Chemistry, University of Patras, GR-26500 Patras (Greece)

    2016-07-21

    A comprehensive study is presented of many aspects of the depolarized anisotropic collision induced (CI) component of light scattered by weakly bound compounds composed of a dihydrogen molecule and a rare gas (Rg) atom, H{sub 2}–Rg. The work continues a series of earlier projects marking the revival of interest in linear light scattering following the development of new highly advanced tools of quantum chemistry and other theoretical, computational, and experimental means of spectral analyses. Sophisticated ab initio computing procedures are applied in order to obtain the anisotropic polarizability component’s dependence on the H{sub 2}–Rg geometry. These data are then used to evaluate the CI spectral lines for all types of Rg atoms ranging from He to Xe (Rn excluded). Evolution of the properties of CI spectra with growing polarizability/masses of the complexes studied is observed. Special attention is given to the heaviest, Kr and Xe based, scatterers. The influence of specific factors shaping the spectral lines (e.g., bound and metastable contribution, potential anisotropy) is discussed. Also the share of pressure broadened allowed rotational transitions in the overall spectral profile is taken into account and the extent to which it is separable from the pure CI contribution is discussed. We finish with a brief comparison between the obtained results and available experimental data.

  16. Raman spectroscopy combined with principal component analysis and k nearest neighbour analysis for non-invasive detection of colon cancer

    Science.gov (United States)

    Li, Xiaozhou; Yang, Tianyue; Li, Siqi; Wang, Deli; Song, Youtao; Zhang, Su

    2016-03-01

    This paper attempts to investigate the feasibility of using Raman spectroscopy for the diagnosis of colon cancer. Serum taken from 75 healthy volunteers, 65 colon cancer patients and 60 post-operation colon cancer patients was measured in this experiment. In the Raman spectra of all three groups, the Raman peaks at 750, 1083, 1165, 1321, 1629 and 1779 cm-1 assigned to nucleic acids, amino acids and chromophores were consistently observed. All of these six Raman peaks were observed to have statistically significant differences between groups. For quantitative analysis, the multivariate statistical techniques of principal component analysis (PCA) and k nearest neighbour analysis (KNN) were utilized to develop diagnostic algorithms for classification. In PCA, several peaks in the principal component (PC) loadings spectra were identified as the major contributors to the PC scores. Some of the peaks in the PC loadings spectra were also reported as characteristic peaks for colon tissues, which implies correlation between peaks in PC loadings spectra and those in the original Raman spectra. KNN was also performed on the obtained PCs, and a diagnostic accuracy of 91.0% and a specificity of 92.6% were achieved.

  17. Raman spectroscopy combined with principal component analysis and k nearest neighbour analysis for non-invasive detection of colon cancer

    International Nuclear Information System (INIS)

    Li, Xiaozhou; Yang, Tianyue; Wang, Deli; Li, Siqi; Song, Youtao; Zhang, Su

    2016-01-01

    This paper attempts to investigate the feasibility of using Raman spectroscopy for the diagnosis of colon cancer. Serum taken from 75 healthy volunteers, 65 colon cancer patients and 60 post-operation colon cancer patients was measured in this experiment. In the Raman spectra of all three groups, the Raman peaks at 750, 1083, 1165, 1321, 1629 and 1779 cm −1 assigned to nucleic acids, amino acids and chromophores were consistently observed. All of these six Raman peaks were observed to have statistically significant differences between groups. For quantitative analysis, the multivariate statistical techniques of principal component analysis (PCA) and k nearest neighbour analysis (KNN) were utilized to develop diagnostic algorithms for classification. In PCA, several peaks in the principal component (PC) loadings spectra were identified as the major contributors to the PC scores. Some of the peaks in the PC loadings spectra were also reported as characteristic peaks for colon tissues, which implies correlation between peaks in PC loadings spectra and those in the original Raman spectra. KNN was also performed on the obtained PCs, and a diagnostic accuracy of 91.0% and a specificity of 92.6% were achieved. (paper)

  18. Adsorption characteristics of Au nanoparticles onto poly(4-vinylpyridine) surface revealed by QCM, AFM, UV/vis, and Raman scattering spectroscopy.

    Science.gov (United States)

    Kim, Kwan; Ryoo, Hyunwoo; Lee, Yoon Mi; Shin, Kuan Soo

    2010-02-15

    In this work, we report that the adsorption and aggregation processes of Au nanoparticles on a polymer surface can be monitored by means of surface-enhanced Raman scattering (SERS) spectroscopy. Specifically, we were able to analyze the adsorption process of citrate-stabilized Au nanoparticles onto a film of poly(4-vinylpyridine) (P4VP) by taking a series of SERS spectra, during the self-assembly of Au nanoparticles onto the polymer film. In order to better analyze the SERS spectra, we separately conducted quartz crystal microbalance (QCM), UV/vis spectroscopy, and atomic force microscope (AFM) measurements. The adsorption kinetics revealed by QCM under the in situ conditions was in fair agreement with that determined by the ex situ AFM measurement. The number of Au nanoparticles adsorbed on P4VP increased almost linearly with time: 265 Au nanoparticles per 1microm(2) were adsorbed on the P4VP film after 6h of immersion. The SERS signal measured in the ex situ condition showed a more rapid increase than that of QCM; however, its increasing pattern was quite similar to that of UV/vis absorbance at longer wavelengths, suggesting that Au nanoparticles actually became agglomerated on P4VP. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Raman study of ? crystals

    Science.gov (United States)

    Pimenta, M. A.; Oliveira, M. A. S.; Bourson, P.; Crettez, J. M.

    1997-09-01

    In this work we present a polarized Raman study of 0953-8984/9/37/020/img7 single crystals for several values of the concentration 0953-8984/9/37/020/img8 made using different scattering geometries. The Raman spectra, composed of broad bands, have been fitted in accordance with a symmetry analysis which allowed us to assign the vibrational modes, and determine their frequencies and damping constants. The results are compatible with an average hexagonal symmetry for the solid solutions with x in the range 0953-8984/9/37/020/img9. In each of the spectra we found two bands at about 590 and 0953-8984/9/37/020/img10, probably associated with the existence of 0953-8984/9/37/020/img11 structures in the solid solutions.

  20. Resonant Impulsive Stimulated Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A; Chesnoy, J

    1988-03-15

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.

  1. Resonant Impulsive Stimulated Raman Scattering

    International Nuclear Information System (INIS)

    Mokhtari, A.; Chesnoy, J.

    1988-01-01

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution

  2. Synthesis, single-crystal structure determination and Raman spectra of the tricyanomelaminates NaA{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O (A = Rb, Cs)

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.; Schulz, Armin [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Transparent colorless crystals of NaA{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O (A = Rb, Cs) were obtained by blending aqueous solutions of Na{sub 3}[C{sub 6}N{sub 9}] and RbF or CsF, respectively, and subsequent evaporation of the water under ambient conditions. Both compounds crystallize in the space group P2{sub 1}/m (no. 11) with the cell parameters a = 815.56(16), b = 1637.7(4) and c = 1036.4(3) pm, and β = 110.738(12) for NaRb{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O and a = 843.32(6), b = 1708.47(11) and c = 1052.42(7) pm, and β = 112.034(2) for NaCs{sub 5}[C{sub 6}N{sub 9}]{sub 2} . 4 H{sub 2}O, respectively. Raman spectra of the title compounds complement our results.

  3. Infrared and Raman spectroscopy: principles and spectral interpretation

    National Research Council Canada - National Science Library

    Larkin, Peter

    2011-01-01

    .... The book reviews basic principles, instrumentation, sampling methods, quantitative analysis, origin of group frequencies and qualitative interpretation using generalized Infrared (IR) and Raman spectra...

  4. Raman facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raman scattering is a powerful light scattering technique used to diagnose the internal structure of molecules and crystals. In a light scattering experiment, light...

  5. Vibrational spectra of aminoacetonitrile

    International Nuclear Information System (INIS)

    Bak, B.; Hansen, E.L.; Nicolaisen, F.M.; Nielsen, O.F.

    1975-01-01

    The preparation of pure, stable aminoacetonitrile(1-amino, 1'-cyanomethane)CH 2 NH 2 CN (1) is described. The Raman spectrum, now complete, and a novel infrared spectrum extending over the 50-3600 cm -1 region are reported. A tentative normal vibration analysis is presented and supported by Raman and infrared data from the spectra of CH 2 NHDCN (2) and CH 2 ND 2 CN (3). The predominance of the trans rotamer may be attributed to intramolecular hydrogen bonding but this is too unimportant to influence the vibrational frequencies of gaseous 1, 2, and 3. However, large gas/liquid frequency shifts occur. (author)

  6. Detection of single bacteria - causative agents of meningitis using raman microscopy

    Science.gov (United States)

    Baikova, T. V.; Minaeva, S. A.; Sundukov, A. V.; Svistunova, T. S.; Bagratashvili, V. N.; Alushin, M. V.; Gonchukov, S. A.

    2015-03-01

    Early diagnostics of meningitis is a very topical problem as it is a fulminant disease with a high level of mortality. The progress of this disease is, as a rule, accompanied by the appearance of bacteria in the cerebrospinal fluid (CSF) composition. The examination of the CSF is well known to be the only reliable approach to the identification of meningitis. However, the traditional biochemical analyses are time consuming and not always reliable, simple, and inexpensive, whereas the optical methods are poorly developed. This work is devoted to the study of Raman spectra of several bacterial cultures which are mainly present during meningitis. Raman microscopy is a prompt and noninvasive technique capable of providing reliable information about molecular-level alterations of biological objects at their minimal quantity and size. It was shown that there are characteristic lines in Raman spectra which can be the reliable markers for determination of bacterial form of meningitis at a level of a single bacterium.

  7. Detection of single bacteria – causative agents of meningitis using Raman microscopy

    International Nuclear Information System (INIS)

    Baikova, T V; Alushin, M V; Gonchukov, S A; Minaeva, S A; Bagratashvili, V N; Sundukov, A V; Svistunova, T S

    2015-01-01

    Early diagnostics of meningitis is a very topical problem as it is a fulminant disease with a high level of mortality. The progress of this disease is, as a rule, accompanied by the appearance of bacteria in the cerebrospinal fluid (CSF) composition. The examination of the CSF is well known to be the only reliable approach to the identification of meningitis. However, the traditional biochemical analyses are time consuming and not always reliable, simple, and inexpensive, whereas the optical methods are poorly developed. This work is devoted to the study of Raman spectra of several bacterial cultures which are mainly present during meningitis. Raman microscopy is a prompt and noninvasive technique capable of providing reliable information about molecular-level alterations of biological objects at their minimal quantity and size. It was shown that there are characteristic lines in Raman spectra which can be the reliable markers for determination of bacterial form of meningitis at a level of a single bacterium

  8. Raman spectral properties of squamous cell carcinoma of oral tissues and cells

    Science.gov (United States)

    Su, L.; Sun, Y. F.; Chen, Y.; Chen, P.; Shen, A. G.; Wang, X. H.; Jia, J.; Zhao, Y. F.; Zhou, X. D.; Hu, J. M.

    2012-01-01

    Early diagnosis is the key of the improved survival rates of oral cancer. Raman spectroscopy is sensitive to the early changes of molecular composition and structure that occur in benign lesion during carcinogenesis. In this study, in situ Raman analysis provided distinct spectra that can be used to discriminate between normal and malignant tissues, as well as normal and cancer cells. The biochemical variations between different groups were analyzed by the characteristic bands by comparing the normalized mean spectra. Spectral profiles of normal, malignant conditions show pronounced differences between one another, and multiple Raman markers associated with DNA and protein vibrational modes have been identified that exhibit excellent discrimination power for cancer sample identification. Statistical analyses of the Raman data and classification using principal component analysis (PCA) are shown to be effective for the Raman spectral diagnosis of oral mucosal diseases. The results indicate that the biomolecular differences between normal and malignant conditions are more obviously at the cellular level. This technique could provide a research foundation for the Raman spectral diagnosis of oral mucosal diseases.

  9. Aerosol characteristics in Phimai, Thailand determined by continuous observation with a polarization sensitive Mie–Raman lidar and a sky radiometer

    International Nuclear Information System (INIS)

    Sugimoto, Nobuo; Shimizu, Atsushi; Nishizawa, Tomoaki; Matsui, Ichiro; Jin, Yoshitaka; Khatri, Pradeep; Irie, Hitoshi; Takamura, Tamio; Aoki, Kazuma; Thana, Boossarasiri

    2015-01-01

    Distributions and optical characteristics of aerosols were continuously observed with a polarization-sensitive (532 nm), Mie-scattering (532 and 1064 nm) and Raman-scattering (607 nm) lidar and a sky radiometer in Phimai, Thailand. Polarization lidar measurements indicated that high concentration plumes of spherical aerosols considered as biomass burning smoke were often observed in the dry season. Plumes of non-spherical aerosols considered as long-range transported soil dust from Africa, the Middle East, or Northeast Asia were occasionally observed. Furthermore, low-concentration non-spherical aerosols were almost always observed in the atmospheric mixing layer. Extinction coefficient profiles of spherical aerosols and non-spherical dust exhibited different diurnal variations, and spherical aerosols including smoke were distributed in higher altitudes in the mixing layer and residual layer. The difference can be explained by hygroscopic growth of smoke particles and buoyancy of the smoke. Analysis of seasonal variations of optical properties derived from the Raman lidar and the sky radiometer confirmed that the lidar ratio, aerosol optical depth, and Angstrom exponent were higher in the dry season (October–May) and lower in the wet season (June–September). The single scattering albedo was lower in the dry season. These seasonal variations are explained by frequent biomass burning in the dry season consistent with previous studies in Southeast Asian region. At the same time, the present work confirmed that soil dust was a major aerosol component in Phimai, Thailand. (letter)

  10. INFRARED AND RAMAN SPECTROSCOPIC STUDY OF ION ...

    African Journals Online (AJOL)

    Infrared and Raman spectroscopy techniques have been used to study the ionic interactions of strontium(II) and barium(II) with thiocyanate ion in liquid ammonia. A number of bands were observed in both n (CN) and n (CS) regions of infrared and Raman spectra and these were assigned to 1:1 contact ion pair, ...

  11. Infrared and NIR Raman spectroscopy in medical microbiology

    Science.gov (United States)

    Naumann, Dieter

    1998-04-01

    FTIR and FT-NIR Raman spectra of intact microbial cells are highly specific, fingerprint-like signatures which can be used to (i) discriminate between diverse microbial species and strains, (ii) detect in situ intracellular components or structures such as inclusion bodies, storage materials or endospores, (iii) detect and quantify metabolically released CO2 in response to various different substrate, and (iv) characterize growth-dependent phenomena and cell-drug interactions. The characteristic information is extracted from the spectral contours by applying resolution enhancement techniques, difference spectroscopy, and pattern recognition methods such as factor-, cluster-, linear discriminant analysis, and artificial neural networks. Particularly interesting applications arise by means of a light microscope coupled to the spectrometer. FTIR spectra of micro-colonies containing less than 103 cells can be obtained from colony replica by a stamping technique that transfers micro-colonies growing on culture plates to a special IR-sample holder. Using a computer controlled x, y- stage together with mapping and video techniques, the fundamental tasks of microbiological analysis, namely detection, enumeration, and differentiation of micro- organisms can be integrated in one single apparatus. FTIR and NIR-FT-Raman spectroscopy can also be used in tandem to characterize medically important microorganisms. Currently novel methodologies are tested to take advantage of the complementary information of IR and Raman spectra. Representative examples on medically important microorganisms will be given that highlight the new possibilities of vibrational spectroscopies.

  12. Bilayers of phosphatidyldiacylglycerol and phosphatidylcholesterol give 31P-NMR spectra characteristic for hexagonal and isotropic phases

    NARCIS (Netherlands)

    Noggle, J.H.; Marecek, J.F.; Mandal, S.B.; Venetie, R. van; Rogers, J.; Jain, M.K.; Ramirez, F.

    1982-01-01

    Aqueous dispersions of phosphatidyldiacylglycerol and phosphatidylcholesterol are shown to form bilayers by differential scanning calorimetry, diphenylhexatriene fluorescence polarization, and electron microscopy; however, 31P-nuclear magnetic resonance spectra of these dispersions are

  13. Investigations of different doping concentration of phosphorus and boron into silicon substrate on the variable temperature Raman characteristics

    Science.gov (United States)

    Li, Xiaoli; Ding, Kai; Liu, Jian; Gao, Junxuan; Zhang, Weifeng

    2018-01-01

    Different doped silicon substrates have different device applications and have been used to fabricate solar panels and large scale integrated circuits. The thermal transport in silicon substrates are dominated by lattice vibrations, doping type, and doping concentration. In this paper, a variable-temperature Raman spectroscopic system is applied to record the frequency and linewidth changes of the silicon peak at 520 cm-1 in five chips of silicon substrate with different doping concentration of phosphorus and boron at the 83K to 1473K temperature range. The doping has better heat sensitive to temperature on the frequency shift over the low temperature range from 83K to 300K but on FWHM in high temperature range from 300K to 1473K. The results will be helpful for fundamental study and practical applications of silicon substrates.

  14. Raman spectroscopic study of reaction dynamics

    Science.gov (United States)

    MacPhail, R. A.

    1990-12-01

    The Raman spectra of reacting molecules in liquids can yield information about various aspects of the reaction dynamics. The author discusses the analysis of Raman spectra for three prototypical unimolecular reactions, the rotational isomerization of n-butane and 1,2-difluoroethane, and the barrierless exchange of axial and equatorial hydrogens in cyclopentane via pseudorotation. In the first two cases the spectra are sensitive to torsional oscillations of the gauche conformer, and yield estimates of the torsional solvent friction. In the case of cyclopentane, the spectra can be used to discriminate between different stochastic models of the pseudorotation dynamics, and to determine the relevant friction coefficients.

  15. Development of Femtosecond Stimulated Raman Spectroscopy: Stimulated Raman Gain via Elimination of Cross Phase Modulation

    International Nuclear Information System (INIS)

    Jin, Seung Min; Lee, Young Jong; Yu, Jong Wan; Kim, Seong Keun

    2004-01-01

    We have developed a new femtosecond probe technique by using stimulated Raman spectroscopy. The cross phase modulation in femtosecond time scale associated with off-resonant interaction was shown to be eliminated by integrating the transient gain/loss signal over the time delay between the Raman pump pulse and the continuum pulse. The stimulated Raman gain of neat cyclohexane was obtained to demonstrate the feasibility of the technique. Spectral and temporal widths of stimulated Raman spectra were controlled by using a narrow band pass filter. Femtosecond stimulated Raman spectroscopy was proposed as a highly useful probe in time-resolved vibrational spectroscopy

  16. Properties of Energy Spectra of Molecular Crystals Investigated by Nonlinear Theory

    Science.gov (United States)

    Pang, Xiao-Feng; Zhang, Huai-Wu

    We calculate the quantum energy spectra of molecular crystals, such as acetanilide, by using discrete nonlinear Schrodinger equation, containing various interactions, appropriate to the systems. The energy spectra consist of many energy bands, in each energy band there are a lot of energy levels including some higher excited states. The result of energy spectrum is basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide and can also explain some experimental results obtained by Careri et al. Finally, we further discuss the influences of variously characteristic parameters on the energy spectra of the systems.

  17. 1/f 2 Characteristics and isotropy in the fourier power spectra of visual art, cartoons, comics, mangas, and different categories of photographs.

    Science.gov (United States)

    Koch, Michael; Denzler, Joachim; Redies, Christoph

    2010-08-19

    Art images and natural scenes have in common that their radially averaged (1D) Fourier spectral power falls according to a power-law with increasing spatial frequency (1/f(2) characteristics), which implies that the power spectra have scale-invariant properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics and mangas), have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of natural scenes, objects, faces and plants and scientific illustrations), we analyzed their 2D power spectra by principal component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the different image categories. The differences between the image categories were studied in more detail by analyzing whether the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with no systematic difference between the two types of images. However, the slope of the power gradients showed a lower degree of mean variability across spectral orientations (i.e., more isotropy) in art images, cartoons and graphic novels than in photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic novels possess relatively uniform 1/f(2) characteristics across all orientations. In conclusion, the man-made stimuli studied, which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or sufficient to induce aesthetic perception remains

  18. Real-time in vivo diagnosis of laryngeal carcinoma with rapid fiber-optic Raman spectroscopy

    Science.gov (United States)

    Lin, Kan; Zheng, Wei; Lim, Chwee Ming; Huang, Zhiwei

    2016-01-01

    We assess the clinical utility of a unique simultaneous fingerprint (FP) (i.e., 800-1800 cm−1) and high-wavenumber (HW) (i.e., 2800-3600 cm−1) fiber-optic Raman spectroscopy for in vivo diagnosis of laryngeal cancer at endoscopy. A total of 2124 high-quality in vivo FP/HW Raman spectra (normal = 1321; cancer = 581) were acquired from 101 tissue sites (normal = 71; cancer = 30) of 60 patients (normal = 44; cancer = 16) undergoing routine endoscopic examination. FP/HW Raman spectra differ significantly between normal and cancerous laryngeal tissue that could be attributed to changes of proteins, lipids, nucleic acids, and the bound water content in the larynx. Partial least squares-discriminant analysis and leave-one tissue site-out, cross-validation were employed on the in vivo FP/HW tissue Raman spectra acquired, yielding a diagnostic accuracy of 91.1% (sensitivity: 93.3% (28/30); specificity: 90.1% (64/71)) for laryngeal cancer identification, which is superior to using either FP (accuracy: 86.1%; sensitivity: 86.7% (26/30); specificity: 85.9% (61/71)) or HW (accuracy: 84.2%; sensitivity: 76.7% (23/30); specificity: 87.3% (62/71)) Raman technique alone. Further receiver operating characteristic analysis reconfirms the best performance of the simultaneous FP/HW Raman technique for laryngeal cancer diagnosis. We demonstrate for the first time that the simultaneous FP/HW Raman spectroscopy technique can be used for improving real-time in vivo diagnosis of laryngeal carcinoma during endoscopic examination. PMID:27699131

  19. Raman spectroscopy of white wines.

    Science.gov (United States)

    Martin, Coralie; Bruneel, Jean-Luc; Guyon, François; Médina, Bernard; Jourdes, Michael; Teissedre, Pierre-Louis; Guillaume, François

    2015-08-15

    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV-visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm(-1). This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Sensitivity of Raman spectroscopy to normal patient variability

    Science.gov (United States)

    Vargis, Elizabeth; Byrd, Teresa; Logan, Quinisha; Khabele, Dineo; Mahadevan-Jansen, Anita

    2011-11-01

    Many groups have used Raman spectroscopy for diagnosing cervical dysplasia; however, there have been few studies looking at the effect of normal physiological variations on Raman spectra. We assess four patient variables that may affect normal Raman spectra: Race/ethnicity, body mass index (BMI), parity, and socioeconomic status. Raman spectra were acquired from a diverse population of 75 patients undergoing routine screening for cervical dysplasia. Classification of Raman spectra from patients with a normal cervix is performed using sparse multinomial logistic regression (SMLR) to determine if any of these variables has a significant effect. Results suggest that BMI and parity have the greatest impact, whereas race/ethnicity and socioeconomic status have a limited effect. Incorporating BMI and obstetric history into classification algorithms may increase sensitivity and specificity rates of disease classification using Raman spectroscopy. Studies are underway to assess the effect of these variables on disease.

  1. Surface-enhanced Raman spectra on graphene

    Czech Academy of Sciences Publication Activity Database

    Ek Weis, Johan; Vejpravová, Jana; Verhagen, Timotheus; Melníková Komínková, Zuzana; da Costa, Sara; Kalbáč, Martin

    2018-01-01

    Roč. 49, č. 1 (2018), s. 168-173 ISSN 0377-0486 R&D Projects: GA MŠk LL1301; GA ČR(CZ) GA15-01953S; GA MŠk(CZ) LM2015073 Grant - others:GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : charge transfer * graphene * graphene-plasmon interaction Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.969, year: 2016

  2. Raman band intensities of tellurite glasses.

    Science.gov (United States)

    Plotnichenko, V G; Sokolov, V O; Koltashev, V V; Dianov, E M; Grishin, I A; Churbanov, M F

    2005-05-15

    Raman spectra of TeO2-based glasses doped with WO3, ZnO, GeO2, TiO2, MoO3, and Sb2O3 are measured. The intensity of bands in the Raman spectra of MoO3-TeO2 and MoO3-WO3-TeO2 glasses is shown to be 80-95 times higher than that for silica glass. It is shown that these glasses can be considered as one of the most promising materials for Raman fiber amplifiers.

  3. Rapid in situ detection of street samples of drugs of abuse on textile substrates using microRaman spectroscopy

    Science.gov (United States)

    Ali, Esam M. A.; Edwards, Howell G. M.; Scowen, Ian J.

    2011-10-01

    Trace amounts of street samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine (MDMA) on natural and synthetic textiles were successfully detected in situ using confocal Raman microscopy. The presence of some excipient bands in the spectra of the drugs did not prevent the unambiguous identification of the drugs. Raman spectra of the drugs were readily obtained without significant interference from the fibre substrates. Interfering bands arising from the fibre natural or synthetic polymer structure and/or dye molecules did not overlap with the characteristic Raman bands of the drugs. If needed, interfering bands could be successfully removed by spectral subtraction. Also, Raman spectra could be acquired from drug particles trapped between the fibres of highly fluorescent textile specimens. The total acquisition time of the spectra of the drug particles was 90 s accomplished non-destructively and without detachment from their substrates. Sample preparation was not required and spectra of the drugs could be obtained non-invasively preserving the integrity of the evidential material for further analysis.

  4. Mineralogical composition of the meteorite El Pozo (Mexico): a Raman, infrared and XRD study.

    Science.gov (United States)

    Ostrooumov, Mikhail; Hernández-Bernal, Maria del Sol

    2011-12-01

    The Raman (RMP), infrared (IR) and XRD analysis have been applied to the examination of mineralogical composition of El Pozo meteorite (an ordinary chondrite L5 type; village Valle of Allende, founded in State of Chihuahua, Mexico: 26°56'N and 105°24'W, 1998). RMP measurements in the range of 100-3500 cm(-1) revealed principal characteristic bands of the major minerals: olivine, two polymorph modifications of pyroxene (OPx and CPx) and plagioclase. Some bands of the minor minerals (hematite and goethite) were also identified. All these minerals were clearly distinguished using IR and XRD techniques. XRD technique has shown the presence of some metallic phases such as kamacite and taenite as well as troilite and chromite. These minerals do not have characteristic Raman spectra because Fe-Ni metals have no active modes for Raman spectroscopy and troilite is a weak Raman scatterer. Raman mapping microspectroscopy was a key part in the investigation of El Pozo meteorite's spatial distribution of the main minerals because these samples are structurally and chemically complex and heterogeneous. The mineral mapping by Raman spectroscopy has provided information for a certain spatial region on which a spatial distribution coexists of the three typical mineral assemblages: olivine; olivine+orthopyroxene; and orthopyroxene. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Sparse-sampling with time-encoded (TICO) stimulated Raman scattering for fast image acquisition

    Science.gov (United States)

    Hakert, Hubertus; Eibl, Matthias; Karpf, Sebastian; Huber, Robert

    2017-07-01

    Modern biomedical imaging modalities aim to provide researchers a multimodal contrast for a deeper insight into a specimen under investigation. A very promising technique is stimulated Raman scattering (SRS) microscopy, which can unveil the chemical composition of a sample with a very high specificity. Although the signal intensities are enhanced manifold to achieve a faster acquisition of images if compared to standard Raman microscopy, there is a trade-off between specificity and acquisition speed. Commonly used SRS concepts either probe only very few Raman transitions as the tuning of the applied laser sources is complicated or record whole spectra with a spectrometer based setup. While the first approach is fast, it reduces the specificity and the spectrometer approach records whole spectra -with energy differences where no Raman information is present-, which limits the acquisition speed. Therefore, we present a new approach based on the TICO-Raman concept, which we call sparse-sampling. The TICO-sparse-sampling setup is fully electronically controllable and allows probing of only the characteristic peaks of a Raman spectrum instead of always acquiring a whole spectrum. By reducing the spectral points to the relevant peaks, the acquisition time can be greatly reduced compared to a uniformly, equidistantly sampled Raman spectrum while the specificity and the signal to noise ratio (SNR) are maintained. Furthermore, all laser sources are completely fiber based. The synchronized detection enables a full resolution of the Raman signal, whereas the analogue and digital balancing allows shot noise limited detection. First imaging results with polystyrene (PS) and polymethylmethacrylate (PMMA) beads confirm the advantages of TICO sparse-sampling. We achieved a pixel dwell time as low as 35 μs for an image differentiating both species. The mechanical properties of the applied voice coil stage for scanning the sample currently limits even faster acquisition.

  6. Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots

    Directory of Open Access Journals (Sweden)

    Hideki Gotoh

    2014-10-01

    Full Text Available Optical nonlinear effects are examined using a two-color micro-photoluminescence (micro-PL method in a coherently coupled exciton-biexciton system in a single quantum dot (QD. PL and photoluminescence excitation spectroscopy (PLE are employed to measure the absorption spectra of the exciton and biexciton states. PLE for Stokes and anti-Stokes PL enables us to clarify the nonlinear optical absorption properties in the lowest exciton and biexciton states. The nonlinear absorption spectra for excitons exhibit asymmetric shapes with peak and dip structures, and provide a distinct contrast to the symmetric dip structures of conventional nonlinear spectra. Theoretical analyses with a density matrix method indicate that the nonlinear spectra are caused not by a simple coherent interaction between the exciton and biexciton states but by coupling effects among exciton, biexciton and continuum states. These results indicate that Fano quantum interference effects appear in exciton-biexciton systems at QDs and offer important insights into their physics.

  7. A Monte Carlo study of the energy spectra and transmission characteristics of scattered radiation from x-ray computed tomography.

    Science.gov (United States)

    Platten, David John

    2014-06-01

    Existing data used to calculate the barrier transmission of scattered radiation from computed tomography (CT) are based on primary beam CT energy spectra. This study uses the EGSnrc Monte Carlo system and Epp user code to determine the energy spectra of CT scatter from four different primary CT beams passing through an ICRP 110 male reference phantom. Each scatter spectrum was used as a broad-beam x-ray source in transmission simulations through seventeen thicknesses of lead (0.00-3.50 mm). A fit of transmission data to lead thickness was performed to obtain α, β and γ parameters for each spectrum. The mean energy of the scatter spectra were up to 12.3 keV lower than that of the primary spectrum. For 120 kVp scatter beams the transmission through lead was at least 50% less than predicted by existing data for thicknesses of 1.5 mm and greater; at least 30% less transmission was seen for 140 kVp scatter beams. This work has shown that the mean energy and half-value layer of CT scatter spectra are lower than those of the corresponding primary beam. The transmission of CT scatter radiation through lead is lower than that calculated with currently available data. Using the data from this work will result in less lead shielding being required for CT scanner installations.

  8. Study of the structural characteristics of a group of natural silicates by means of their Kβ emission spectra

    International Nuclear Information System (INIS)

    Torres Deluigi, Maria Torres; Strasser, Edgardo N.; Vasconcellos, Marcos A.Z.; Riveros, Jose A.

    2006-01-01

    In this work, the Si Kβ and Al Kβ emission spectra of a group of natural silicates typical of a region in San Luis (Argentina) are described qualitatively within the frame of the Molecular Orbital (MO) theory. Since these spectra come from electron transitions from valence orbitals, they offer information on the chemical bonds that are present and on the molecular orbitals involved. The spectra were obtained by means of an electron microprobe. The energies, intensities and full-width at half-maximum (FWHM) of the lines that conform the silicon and aluminium Kβ spectra were quantified. It was observed that an increase in the number of oxygen ions shared by the tetrahedra (SiO 4 ) 4- caused a lineal increase in the FWHM of the Si Kβ 1,3 and Al Kβ 1,3 lines. This behavior is caused by the increase of the covalent character of the Si-O and Al-O bonds with the quantity of oxygen ions shared by the adjacent tetrahedra

  9. Surface enhanced raman spectroscopy on chip

    DEFF Research Database (Denmark)

    Hübner, Jörg; Anhøj, Thomas Aarøe; Zauner, Dan

    2007-01-01

    In this paper we report low resolution surface enhanced Raman spectra (SERS) conducted with a chip based spectrometer. The flat field spectrometer presented here is fabricated in SU-8 on silicon, showing a resolution of around 3 nm and a free spectral range of around 100 nm. The output facet...... is projected onto a CCD element and visualized by a computer. To enhance the otherwise rather weak Raman signal, a nanosurface is prepared and a sample solutions is impregnated on this surface. The surface enhanced Raman signal is picked up using a Raman probe and coupled into the spectrometer via an optical...... fiber. The obtained spectra show that chip based spectrometer together with the SERS active surface can be used as Raman sensor....

  10. Raman scattering of Cisplatin near silver nanoparticles

    Science.gov (United States)

    Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.

    2018-03-01

    The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.

  11. Condensing Raman spectrum for single-cell phenotype analysis

    KAUST Repository

    Sun, Shiwei

    2015-12-09

    Background In recent years, high throughput and non-invasive Raman spectrometry technique has matured as an effective approach to identification of individual cells by species, even in complex, mixed populations. Raman profiling is an appealing optical microscopic method to achieve this. To fully utilize Raman proling for single-cell analysis, an extensive understanding of Raman spectra is necessary to answer questions such as which filtering methodologies are effective for pre-processing of Raman spectra, what strains can be distinguished by Raman spectra, and what features serve best as Raman-based biomarkers for single-cells, etc. Results In this work, we have proposed an approach called rDisc to discretize the original Raman spectrum into only a few (usually less than 20) representative peaks (Raman shifts). The approach has advantages in removing noises, and condensing the original spectrum. In particular, effective signal processing procedures were designed to eliminate noise, utilising wavelet transform denoising, baseline correction, and signal normalization. In the discretizing process, representative peaks were selected to signicantly decrease the Raman data size. More importantly, the selected peaks are chosen as suitable to serve as key biological markers to differentiate species and other cellular features. Additionally, the classication performance of discretized spectra was found to be comparable to full spectrum having more than 1000 Raman shifts. Overall, the discretized spectrum needs about 5storage space of a full spectrum and the processing speed is considerably faster. This makes rDisc clearly superior to other methods for single-cell classication.

  12. A UV multifunctional Raman lidar system for the observation and analysis of atmospheric temperature, humidity, aerosols and their conveying characteristics over Xi'an

    Science.gov (United States)

    Yufeng, Wang; Qiang, Fu; Meina, Zhao; Fei, Gao; Huige, Di; Yuehui, Song; Dengxin, Hua

    2018-01-01

    To monitor the variability and the correlation of multiple atmospheric parameters in the whole troposphere and the lower stratosphere, a ground-based ultraviolet multifunctional Raman lidar system was established to simultaneously measure the atmospheric parameters in Xi'an (34.233°N, 108.911°E). A set of dichroic mirrors (DMs) and narrow-band interference filters (IFs) with narrow angles of incidence were utilized to construct a high-efficiency 5-channel polychromator. A series of high-quality data obtained from October 2013 to December 2015 under different weather conditions were used to investigate the functionality of the Raman lidar system and to study the variability of multiple atmospheric parameters in the whole stratosphere. Their conveying characteristics are also investigated using back trajectories with a hybrid single-particle Lagrangian integrated trajectory model (HYSPLIT). The lidar system can be operated efficiently under weather conditions with a cloud backscattering ratio of less than 18 and an atmospheric visibility of 3 km. We observed an obvious temperature inversion phenomenon at the tropopause height of 17-18 km and occasional temperature inversion layers below the boundary layer. The rapidly changing atmospheric water vapor is mostly concentrated at the lower troposphere, below ∼4-5 km, accounting for ∼90% of the total water vapor content at 0.5-10 km. The back trajectory analysis shows that the air flow from the northwest and the west mainly contributes to the transport of aerosols and water vapor over Xi'an. The simultaneous continuous observational results demonstrate the variability and correlation among the multiple atmospheric parameters, and the accumulated water vapor density in the bottom layer causes an increase in the aerosol extinction coefficient and enhances the relative humidity in the early morning. The long-term observations provide a large amount of reliable atmospheric data below the lower stratosphere, and can be

  13. Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2012-07-17

    Raman spectroscopy is a vibrational spectroscopic technique capable of nondestructively probing endogenous biomolecules and their changes associated with dysplastic transformation in the tissue. The main objectives of this study are (i) to develop a simultaneous fingerprint (FP) and high-wavenumber (HW) confocal Raman spectroscopy and (ii) to investigate its diagnostic utility for improving in vivo diagnosis of cervical precancer (dysplasia). We have successfully developed an integrated FP/HW confocal Raman diagnostic system with a ball-lens Raman probe for simultaneous acquistion of FP/HW Raman signals of the cervix in vivo within 1 s. A total of 476 in vivo FP/HW Raman spectra (356 normal and 120 precancer) are acquired from 44 patients at clinical colposcopy. The distinctive Raman spectral differences between normal and dysplastic cervical tissue are observed at ~854, 937, 1001, 1095, 1253, 1313, 1445, 1654, 2946, and 3400 cm(-1) mainly related to proteins, lipids, glycogen, nucleic acids and water content in tissue. Multivariate diagnostic algorithms developed based on partial least-squares-discriminant analysis (PLS-DA) together with the leave-one-patient-out, cross-validation yield the diagnostic sensitivities of 84.2%, 76.7%, and 85.0%, respectively; specificities of 78.9%, 73.3%, and 81.7%, respectively; and overall diagnostic accuracies of 80.3%, 74.2%, and 82.6%, respectively, using FP, HW, and integrated FP/HW Raman spectroscopic techniques for in vivo diagnosis of cervical precancer. Receiver operating characteristic (ROC) analysis further confirms the best performance of the integrated FP/HW confocal Raman technique, compared to FP or HW Raman spectroscopy alone. This work demonstrates, for the first time, that the simultaneous FP/HW confocal Raman spectroscopy has the potential to be a clinically powerful tool for improving early diagnosis and detection of cervical precancer in vivo during clinical colposcopic examination.

  14. Resonance Raman Optical Activity and Surface Enhanced Resonance Raman Optical Activity analysis of Cytochrome C

    DEFF Research Database (Denmark)

    Johannessen, Christian; Abdali, Salim; White, Peter C.

    2007-01-01

    High quality Resonance Raman (RR) and resonance Raman Optical Activity (ROA) spectra of cytochrome c were obtained in order to perform full assignment of spectral features of the resonance ROA spectrum. The resonance ROA spectrum of cytochrome c revealed a distinct spectral signature pattern due...... to resonance enhanced skeletal porphyrin vibrations, more pronounced than any contribution from the protein back-bone. Combining the intrinsic resonance enhancement of cytochrome c with surface plasmon enhancement by colloidal silver particles, the Surface Enhanced Resonance Raman Scattering (SERRS) and Chiral...... Enhanced Raman Spectroscopy (ChERS) spectra of the protein were successfully obtained at very low concentration (as low as 1 µM). The assignment of spectral features was based on the information obtained from the RR and resonance ROA spectra. Excellent agreement between RR and SERRS spectra is reported...

  15. Reflectance spectra characteristics from an SPR grating fabricated by nano-imprint lithography technique for biochemical nanosensor applications

    Science.gov (United States)

    Setiya Pradana, Jalu; Hidayat, Rahmat

    2018-04-01

    In this paper, we report our research work on developing a Surface Plasmon Resonance (SPR) element with sub-micron (hundreds of nanometers) periodicity grating structure. This grating structure was fabricated by using a simple nano-imprint lithography technique from an organically siloxane polymers, which was then covered by nanometer thin gold layer. The formed grating structure was a very well defined square-shaped periodic structure. The measured reflectance spectra indicate the SPR wave excitation on this grating structure. For comparison, the simulations of reflectance spectra have been also carried out by using Rigorous Coupled-Wave Analysis (RCWA) method. The experimental results are in very good agreement with the simulation results.

  16. Use of Raman spectroscopy in the analysis of nickel allergy

    Science.gov (United States)

    Alda, Javier; Castillo-Martinez, Claudio; Valdes-Rodriguez, Rodrigo; Hernández-Blanco, Diana; Moncada, Benjamin; González, Francisco J.

    2013-06-01

    Raman spectra of the skin of subjects with nickel allergy are analyzed and compared to the spectra of healthy subjects to detect possible biochemical differences in the structure of the skin that could help diagnose metal allergies in a noninvasive manner. Results show differences between the two groups of Raman spectra. These spectral differences can be classified using principal component analysis. Based on these findings, a novel computational technique to make a fast evaluation and classification of the Raman spectra of the skin is presented and proposed as a noninvasive technique for the detection of nickel allergy.

  17. Dual Raman-Brillouin spectroscopic investigation of plant stress response and development

    Science.gov (United States)

    Coker, Zachary; Troyanova-Wood, Maria; Marble, Kassie; Yakovlev, Vladislav

    2018-03-01

    Raman and Brillouin spectroscopy are powerful tools for non-invasive and non-destructive investigations of material chemical and mechanical properties. In this study, we use a newly developed custom-built dual Raman-Brillouin microspectroscopy instrument to build on previous works studying in-vivo stress response of live plants using only a Raman spectroscopy system. This dual Raman-Brillouin spectroscopy system is capable of fast simultaneous spectra acquisition from single-point locations. Shifts and changes in a samples Brillouin spectrum indicate a change in the physical characteristics of the sample, namely mechano-elasticity; in measuring this change, we can establish a relationship between the mechanical properties of a sample and known stress response agents, such as reactive oxygen species and other chemical constituents as indicated by peaks in the Raman spectra of the same acquisition point. Simultaneous application of these spectroscopic techniques offers great promise for future development and applications in agricultural and biological studies and can help to improve our understanding of mechanochemical changes of plants and other biological samples in response to environmental and chemically induced stresses at microscopic or cellular level.

  18. Upgrade of an old Raman Spectrometer

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.; Stenby, Erling Halfdan

    2004-01-01

    Improvement of a conventional Jeol Raman spectrometer with a single channel photo multiplier detector is described. New optical components (fibres, mirror, lens and CCD detector) have been chosen to design a high quality and easy-to-use instrument. Tests have shown that with this modified...... spectrometer Raman spectra can be acquired of a quality comparable to the spectra obtained previously, but the time needed to obtain a spectrum is markedly reduced. Selected test spectra and a simple calibration procedure to obtain the wavenumber values from the band CCD pixel position are presented....

  19. Raman spectroscopy: a structural probe of glycosaminoglycans

    International Nuclear Information System (INIS)

    Bansil, R.; Stanley, H.E.; Yannas, I.V.

    1978-01-01

    The authors report the first Raman spectroscopic study of the glycosaminoglycans chondroitin 4-sulfate, chondroitin 6-sulfate and hyaluronic acid, both in solution and in the solid state. To aid in spectral identification, infrared spectra were also recorded from films of these samples. Vibrational frequencies for important functional groups like the sulfate groups, glycosidic linkages, C-OH and the N-acetyl group can be identified from the Raman spectra. Certain differences in the spectra of the different glycosaminoglycans can be interpreted in terms of the geometry of the various substituents, while other differences can be related to differences in chemical composition. (Auth.)

  20. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy.

    Science.gov (United States)

    Oßmann, Barbara E; Sarau, George; Schmitt, Sebastian W; Holtmannspötter, Heinrich; Christiansen, Silke H; Dicke, Wilhelm

    2017-06-01

    When analysing microplastics in food, due to toxicological reasons it is important to achieve clear identification of particles down to a size of at least 1 μm. One reliable, optical analytical technique allowing this is micro-Raman spectroscopy. After isolation of particles via filtration, analysis is typically performed directly on the filter surface. In order to obtain high qualitative Raman spectra, the material of the membrane filters should not show any interference in terms of background and Raman signals during spectrum acquisition. To facilitate the usage of automatic particle detection, membrane filters should also show specific optical properties. In this work, beside eight different, commercially available membrane filters, three newly designed metal-coated polycarbonate membrane filters were tested to fulfil these requirements. We found that aluminium-coated polycarbonate membrane filters had ideal characteristics as a substrate for micro-Raman spectroscopy. Its spectrum shows no or minimal interference with particle spectra, depending on the laser wavelength. Furthermore, automatic particle detection can be applied when analysing the filter surface under dark-field illumination. With this new membrane filter, analytics free of interference of microplastics down to a size of 1 μm becomes possible. Thus, an important size class of these contaminants can now be visualized and spectrally identified. Graphical abstract A newly developed aluminium coated polycarbonate membrane filter enables automatic particle detection and generation of high qualitative Raman spectra allowing identification of small microplastics.

  1. Raman spectroscopy: in vivo quick response code of skin physiological status

    Science.gov (United States)

    Vyumvuhore, Raoul; Tfayli, Ali; Piot, Olivier; Le Guillou, Maud; Guichard, Nathalie; Manfait, Michel; Baillet-Guffroy, Arlette

    2014-11-01

    Dermatologists need to combine different clinically relevant characteristics for a better understanding of skin health. These characteristics are usually measured by different techniques, and some of them are highly time consuming. Therefore, a predicting model based on Raman spectroscopy and partial least square (PLS) regression was developed as a rapid multiparametric method. The Raman spectra collected from the five uppermost micrometers of 11 healthy volunteers were fitted to different skin characteristics measured by independent appropriate methods (transepidermal water loss, hydration, pH, relative amount of ceramides, fatty acids, and cholesterol). For each parameter, the obtained PLS model presented correlation coefficients higher than R2=0.9. This model enables us to obtain all the aforementioned parameters directly from the unique Raman signature. In addition to that, in-depth Raman analyses down to 20 μm showed different balances between partially bound water and unbound water with depth. In parallel, the increase of depth was followed by an unfolding process of the proteins. The combinations of all these information led to a multiparametric investigation, which better characterizes the skin status. Raman signal can thus be used as a quick response code (QR code). This could help dermatologic diagnosis of physiological variations and presents a possible extension to pathological characterization.

  2. Understanding of local structure-function relationships of zeolites used in industry through polarized raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, O. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Lascola, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fessler, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Achey, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hunter, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-26

    The overall objective of this project is to optics procurement and instrumental setup completed in Robert Lascola’s laboratory. An Ondax THz-Raman probe was installed in order to obtain Raman terahertz spectra of commercially available Zeolites.

  3. Raman/LIBS Data Fusion via Two-Way Variational Autoencoders

    Science.gov (United States)

    Parente, M.; Gemp, I.

    2018-04-01

    We propose an original solution to extracting mineral abundances from Raman spectra by combining Raman data with LIBS using a novel deep learning model based on variational autoencoders and data fusion, which outperforms the current state of the art.

  4. CV Raman

    Indian Academy of Sciences (India)

    formatted to take advantage of the changes in publishing methods in the past thirty ..... This work would not have been possible without the support and en- couragement of ..... in which Raman made his decision, have a deeper significance than .... Light in Water and the Colour of the Sea within a month of his return to India ...

  5. Raman Chandrasekar

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Raman Chandrasekar. Articles written in Resonance – Journal of Science Education. Volume 13 Issue 5 May 2008 pp 430-439 General Article. How Children Learn to Use Language - An Overview of R. Narasimhan's Ideas on Child Language Acquisition.

  6. Raman scattering and luminescence of high-Tc superconducting oxides

    International Nuclear Information System (INIS)

    Eremenko, V.V.; Gnezdilov, V.P.; Fomin, V.I.; Fugol', I.Ya.; Samovarov, V.N.

    1989-01-01

    Raman and luminescence spectra of high-T c superconducting oxides are summarized, mainly YBa 2 Cu 3 O 7-σ and partly La 2-x Ba x CuO 4-σ . In raman spectra we succeeded to distinguish electron scattering to define the energy gap Δ in the superconducting state. The luminescence spectra are due to the emission of oxygen and interaction with conduction electrons. 70 refs.; 13 figs

  7. Monitoring and trace detection of hazardous waste and toxic chemicals using resonance Raman spectroscopy

    International Nuclear Information System (INIS)

    Sedlacek, A.J. III; Dougherty, D.R.; Chen, C.L.

    1993-01-01

    Raman scattering is a coherent, inelastic, two-photon process, which shifts the frequency of an outgoing photon according to the vibrational structure of the irradiated species, thereby providing a unique fingerprint of the molecule. When involving an allowed electronic transition (resonance Raman), this scattering cross section can be enhanced by 10 4 to 10 6 and provides the basis for a viable technique that can monitor and detect trace quantities of hazardous wastes and toxic chemicals. Resonance Raman spectroscopy (RRS) possesses many of the ideal characteristics for monitoring and detecting of hazardous waste and toxic chemicals. Some of these traits are: (1) very high selectivity (chemical specific fingerprints); (2) independence from the excitation wavelength (ability to monitor in the solar blind region); (3) chemical mixture fingerprints are the sum of its individual components (no spectral cross-talk); (4) near independence of the Raman fingerprint to its physical state (very similar spectra for gas, liquid, solid and solutions -- either bulk or aerosols); and (5) insensitivity of the Raman signature to environmental conditions (no quenching). Data from a few chemicals will be presented which illustrate these features. In cases where background fluorescence accompanies the Raman signals, an effective frequency modulation technique has been developed, which can completely eliminate this interference

  8. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.

    Science.gov (United States)

    Lamsal, Nirmal; Angel, S Michael

    2017-06-01

    In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.

  9. Combined experimental and theoretical study on the Raman and Raman optical activity signatures of pentamethylundecane diastereoisomers.

    Science.gov (United States)

    Drooghaag, Xavier; Marchand-Brynaert, Jacqueline; Champagne, Benoît; Liégeois, Vincent

    2010-09-16

    The synthesis and the separation of the four stereoisomers of 2,4,6,8,10-pentamethylundecane (PMU) are described together with their characterization by Raman spectroscopy. In parallel, theoretical calculations of the Raman and vibrational Raman optical activity (VROA) spectra are reported and analyzed in relation with the recorded spectra. A very good agreement is found between the experimental and theoretical spectra. The Raman spectra are also shown to be less affected by the change of configuration than the VROA spectra. Nevertheless, by studying the overlap between the theoretical Raman spectra, we show clear relationships between the spectral fingerprints and the structures displaying a mixture of the TGTGTGTG conformation of the (4R,6s,8S)-PMU (isotactic compound) with the TTTTTTTT conformation of the (4R,6r,8S)-PMU (syndiotactic compound). Then, the fingerprints of the VROA spectra of the five conformers of the (4R,8R)-PMU have been related to the fingerprints of the regular (TG)(N) isotactic compound as a function of the torsion angles. Since the (TT)(N) syndiotactic compound has no VROA signatures, the VROA spectroscopy is very sensitive to the helical structures, as demonstrated here.

  10. Sulfates on Mars: A systematic Raman spectroscopic study of hydration states of magnesium sulfates

    Science.gov (United States)

    Wang, A.; Freeman, J.J.; Jolliff, B.L.; Chou, I.-Ming

    2006-01-01

    The martian orbital and landed surface missions, OMEGA on Mar Express and the two Mars Explorations Rovers, respectively, have yielded evidence pointing to the presence of magnesium sulfates on the martian surface. In situ identification of the hydration states of magnesium sulfates, as well as the hydration states of other Ca- and Fe- sulfates, will be crucial in future landed missions on Mars in order to advance our knowledge of the hydrologic history of Mars as well as the potential for hosting life on Mars. Raman spectroscopy is a technique well-suited for landed missions on the martian surface. In this paper, we report a systematic study of the Raman spectra of the hydrates of magnesium sulfate. Characteristic and distinct Raman spectral patterns were observed for each of the 11 distinct hydrates of magnesium sulfates, crystalline and non-crystalline. The unique Raman spectral features along with the general tendency of the shift of the position of the sulfate ??1 band towards higher wavenumbers with a decrease in the degree of hydration allow in situ identification of these hydrated magnesium sulfates from the raw Raman spectra of mixtures. Using these Raman spectral features, we have started the study of the stability field of hydrated magnesium sulfates and the pathways of their transformations at various temperature and relative humidity conditions. In particular we report on the Raman spectrum of an amorphous hydrate of magnesium sulfate (MgSO4??2H2O) that may have specific relevance for the martian surface. ?? 2006 Elsevier Inc. All rights reserved.

  11. Time evolution of the characteristic electron energy losses spectra of the electrons scattered on polycrystal samples of Al mechanically cleaned in vacuum

    International Nuclear Information System (INIS)

    Szczesny, R.; Baranowski, A.; Beliczynski, J.

    1982-01-01

    Measurements by the reflection technique of characteristic electron energy losses (CEEL) with a primary electron beam of energy E 0 =1 keV have been carried out on polycrystal samples of Al. The sample surfaces have been mechanically cleaned in a dinamical vacuum of the order 10 -6 Tr before each measurement. The CEEL spectra have been corrected for the resolving power of the apparatus by the deconvolution method. We have ascertained that the measuring technique and elaboration data method are useful for quickly obtaining the plasmon energy loss spectrum for an investigated material. (author)

  12. Characteristics of 1.9-μm laser emission from hydrogen-filled hollow-core fiber by vibrational stimulated Raman scattering

    Science.gov (United States)

    Gu, Bo; Chen, Yubin; Wang, Zefeng

    2016-12-01

    We report here the characteristics of 1.9-μm laser emission from a gas-filled hollow-core fiber by stimulated Raman scattering (SRS). A 6.5-m hydrogen-filled ice-cream negative curvature hollow-core fiber is pumped with a high peak-power, narrow linewidth, linearly polarized subnanosecond pulsed 1064-nm microchip laser, generating a pulsed vibrational Stokes wave at 1908.5 nm. The maximum quantum efficiency of about 48% is obtained, which is mainly limited by the mode mismatch between the pump laser beam and the Stokes wave in the hollow-core fiber. The linewidths of the pump laser and the first-order vibrational Stokes wave are measured to be about 1 and 2 GHz, respectively, by a scanning Fabry-Perot interferometer. The pressure selection phenomenon of the vibrational anti-Stokes waves is also investigated. The pulse duration of the vibrational Stokes wave is recorded to be narrower than that of the pump laser. The polarization properties of the hollow-core fiber and the polarization dependence of the vibrational and the rotational SRS are also studied. The beam profile of the vibrational Stokes wave shows good quality.

  13. Handheld Raman Spectroscopy for the Distinction of Essential Oils Used in the Cosmetics Industry

    Directory of Open Access Journals (Sweden)

    Paul Vargas Jentzsch

    2015-05-01

    Full Text Available Essential oils are highly appreciated by the cosmetics industry because they have antimicrobial and antioxidant properties, among others. Since essential oils are natural products, their inclusion in cosmetic formulations is a common practice. Currently, low-quality and/or adulterated essential oils can be found on the market; therefore, analytical methods for control are required. Raman spectroscopy is a versatile technique that can be used for quality control tasks; the portability of modern devices expand the analytical possibilities also to in situ measurements. Fifteen essential oils of interest for the cosmetics industry were measured using a handheld Raman spectrometer, and the assignment of the main bands observed in their average spectra was proposed. In most cases, it is possible to distinguish the essential oils by a simple visual inspection of their characteristic Raman bands. However, for essential oils extracted from closely-related vegetable species and containing the same main component in a very high proportion, the visual inspection of the spectra may be not enough, and the application of chemometric methods is suggested. Characteristic Raman bands for each essential oil can be used to both identify the essential oils and detect adulterations.

  14. STUDY OF POLYMORPHISM OF BOROVANADATE GLASS OF SODIUM BY RAMAN SPECTROSCOPY LOW FREQUENCIES

    Directory of Open Access Journals (Sweden)

    M. K. Rabia

    2015-07-01

    Full Text Available Sodium tetraborate (100 – x(Na2B4O7.10H2O­­ ­­­­­– xV2O5, (x = 0 to 20 mole % has been elaborated by splat cooling technique. Raman Measurements on the doped and non polish samples reveal the presence of the of α-NaVO3 crystal on the superficial layer. After polishing, Raman spectra characteristic of glasses are obtained with two main bands located at 555 and 1097 cm-1 in the undoped glass and four bands at 241, 381, 776 and 938 cm-1 for the vanadium oxyde doped glasses. The volume devitrification of these glasses occurs at 750° C and the β-NaVO3 crystalline phase is identified by Raman scattering.

  15. Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms

    Science.gov (United States)

    Li, Shaoxin; Li, Linfang; Zeng, Qiuyao; Zhang, Yanjiao; Guo, Zhouyi; Liu, Zhiming; Jin, Mei; Su, Chengkang; Lin, Lin; Xu, Junfa; Liu, Songhao

    2015-05-01

    This study aims to characterize and classify serum surface-enhanced Raman spectroscopy (SERS) spectra between bladder cancer patients and normal volunteers by genetic algorithms (GAs) combined with linear discriminate analysis (LDA). Two group serum SERS spectra excited with nanoparticles are collected from healthy volunteers (n = 36) and bladder cancer patients (n = 55). Six diagnostic Raman bands in the regions of 481-486, 682-687, 1018-1034, 1313-1323, 1450-1459 and 1582-1587 cm-1 related to proteins, nucleic acids and lipids are picked out with the GAs and LDA. By the diagnostic models built with the identified six Raman bands, the improved diagnostic sensitivity of 90.9% and specificity of 100% were acquired for classifying bladder cancer patients from normal serum SERS spectra. The results are superior to the sensitivity of 74.6% and specificity of 97.2% obtained with principal component analysis by the same serum SERS spectra dataset. Receiver operating characteristic (ROC) curves further confirmed the efficiency of diagnostic algorithm based on GA-LDA technique. This exploratory work demonstrates that the serum SERS associated with GA-LDA technique has enormous potential to characterize and non-invasively detect bladder cancer through peripheral blood.

  16. Theory of Graphene Raman Scattering.

    Science.gov (United States)

    Heller, Eric J; Yang, Yuan; Kocia, Lucas; Chen, Wei; Fang, Shiang; Borunda, Mario; Kaxiras, Efthimios

    2016-02-23

    Raman scattering plays a key role in unraveling the quantum dynamics of graphene, perhaps the most promising material of recent times. It is crucial to correctly interpret the meaning of the spectra. It is therefore very surprising that the widely accepted understanding of Raman scattering, i.e., Kramers-Heisenberg-Dirac theory, has never been applied to graphene. Doing so here, a remarkable mechanism we term"transition sliding" is uncovered, explaining the uncommon brightness of overtones in graphene. Graphene's dispersive and fixed Raman bands, missing bands, defect density and laser frequency dependence of band intensities, widths of overtone bands, Stokes, anti-Stokes anomalies, and other known properties emerge simply and directly.

  17. STRUCTURAL ANALYSIS OF WOOD-LEATHER PANELS BY RAMAN SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Tilman Grünewald,

    2012-02-01

    Full Text Available Besides other ligno-cellulosic materials such as straw, rice husks, or bagasse, wet blue particles from leather production are a promising new raw material stock for wood-based panels, as they offer not only a high availability, but increase the properties of the panel with regard to fire resistance or mechanical characteristics. A panel with a mixture of 42.5% wood fibers, 42.5% wet blue leather particles, and 15% lignin adhesive was produced, and an inhomogeneous sample was prepared. An area of 9 x 10 mm was rasterized and scanned by means of Raman Spectroscopy. Furthermore, the reference spectra of the constituents, i.e. wood fiber, wet blue leather particle, and lignin powder were recorded. The obtained data were treated and analyzed using chemometric methods (principal components analysis PCA and cluster analysis. An important finding was that the reference data were not directly represented in the panels’ spectra, and the correlation matrix of the PCA was not applicable to the panel data. This indicated that chemical changes might take place during the pressing. After processing the panel Raman spectra with the help of PCA and cluster analysis, three distinctive clusters were obtained, discriminating wood, leather, and mixed regions. With the assigned spectral information, it was possible to create a spectral image of the surface.

  18. Theoretical investigation on the molecular structure, Infrared, Raman and NMR spectra of para-halogen benzenesulfonamides, 4-X-C 6H 4SO 2NH 2 (X = Cl, Br or F)

    Science.gov (United States)

    Karabacak, Mehmet; Çınar, Mehmet; Çoruh, Ali; Kurt, Mustafa

    2009-02-01

    In the present study, the structural properties of para-halogen benzenesulfonamides, 4-XC 6H 4SO 2NH 2 (4-chlorobenzenesulfonamide (I), 4-bromobenzenesulfonamide (II) and 4-fluorobenzenesulfonamide (III)) have been studied extensively utilizing ab initio Hartree-Fock (HF) and density functional theory (DFT) employing B3LYP exchange correlation. The vibrational frequencies were calculated and scaled values were compared with experimental values. The complete assignments were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The effects of the halogen substituent on the characteristic benzenesulfonamides bands in the spectra are discussed. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecules were calculated using the Gauge-Invariant Atomic Orbital (GIAO) method. Finally, geometric parameters, vibrational bands and chemical shifts were compared with available experimental data of the molecules. The fully optimized geometries of the molecules were found to be consistent with the X-ray crystal structures. The observed and calculated frequencies and chemical shifts were found to be in very good agreement.

  19. Phonon populations by nanosecond-pulsed Raman scattering in Si

    International Nuclear Information System (INIS)

    Compaan, A.; Lee, M.C.; Trott, G.J.

    1985-01-01

    Since the first time-resolved Raman studies of phonon populations under pulsed-laser-annealing conditions, a number of cw Raman studies have been performed which provide a much improved basis for interpreting the pulsed Raman data. Here we present new pulsed Raman results and interpret them with reference to temperature-dependent resonance effects, high-carrier-density effects, phonon anharmonicity, and laser-induced strain effects. The pulsed Raman data: Stokes to anti-Stokes ratios, shift and shape of the first-order peak, and second-order spectra: indicate the existence of a phase in which the Raman signal disappears followed by a rapidly cooling solid which begins within 300 K of the 1685 K normal melting temperature of Si. We identify a major difficulty in pulsed Raman studies in Si to be the decrease in Raman intensity at high temperatures

  20. Study on structure, vibrational analysis and molecular characteristics of some halogen substituted azido-phenylethanones using FTIR spectra and DFT

    Science.gov (United States)

    Prashanth, J.; Reddy, Byru Venkatram

    2018-03-01

    The Fourier transform infrared (FTIR) spectra of organic compounds 4-fluoro-2-azido-1-phenylethanone (FAP), 4-chloro-2-azido-1-phenylethanone (CAP) and 4-bromo-2-azido-1-phenylethanone (BAP) have been recorded in the region 4000-400 cm-1. The optimized molecular structure for global minimum energy of the titled molecules is determined by evaluating torsional potentials as a function of rotation angle about free rotation bonds among the substituent groups subjecting them to DFT employing B3LYP functional with 6-311++G (d,p) basis set. The vibrational frequencies along with infrared intensities are computed by SQM procedure. The rms error between observed and calculated frequencies is found to be 9.27, 8.17 and 7.95 cm-1 for FAP, CAP and BAP, respectively which shows good agreement between experimental and scaled values of calculated frequencies obtained by DFT. The vibrational assignments of all the fundamental bands of each molecule are made unambiguously using PED and eigen vectors obtained in the computations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the titled molecules exhibit NLO behaviour and hence may be considered for potential applicants for the development of NLO materials. HOMO and LUMO energies evaluated in the study demonstrate chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyper conjugative interactions and charge delocalization. The molecular electrostatic surface potential (MESP) and thermodynamic parameters are also evaluated.

  1. Multivariate reference technique for quantitative analysis of fiber-optic tissue Raman spectroscopy.

    Science.gov (United States)

    Bergholt, Mads Sylvest; Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei

    2013-12-03

    We report a novel method making use of multivariate reference signals of fused silica and sapphire Raman signals generated from a ball-lens fiber-optic Raman probe for quantitative analysis of in vivo tissue Raman measurements in real time. Partial least-squares (PLS) regression modeling is applied to extract the characteristic internal reference Raman signals (e.g., shoulder of the prominent fused silica boson peak (~130 cm(-1)); distinct sapphire ball-lens peaks (380, 417, 646, and 751 cm(-1))) from the ball-lens fiber-optic Raman probe for quantitative analysis of fiber-optic Raman spectroscopy. To evaluate the analytical value of this novel multivariate reference technique, a rapid Raman spectroscopy system coupled with a ball-lens fiber-optic Raman probe is used for in vivo oral tissue Raman measurements (n = 25 subjects) under 785 nm laser excitation powers ranging from 5 to 65 mW. An accurate linear relationship (R(2) = 0.981) with a root-mean-square error of cross validation (RMSECV) of 2.5 mW can be obtained for predicting the laser excitation power changes based on a leave-one-subject-out cross-validation, which is superior to the normal univariate reference method (RMSE = 6.2 mW). A root-mean-square error of prediction (RMSEP) of 2.4 mW (R(2) = 0.985) can also be achieved for laser power prediction in real time when we applied the multivariate method independently on the five new subjects (n = 166 spectra). We further apply the multivariate reference technique for quantitative analysis of gelatin tissue phantoms that gives rise to an RMSEP of ~2.0% (R(2) = 0.998) independent of laser excitation power variations. This work demonstrates that multivariate reference technique can be advantageously used to monitor and correct the variations of laser excitation power and fiber coupling efficiency in situ for standardizing the tissue Raman intensity to realize quantitative analysis of tissue Raman measurements in vivo, which is particularly appealing in

  2. Charge polarization effects and hole spectra characteristics in AlxGa1-xN/GaN superlattices

    International Nuclear Information System (INIS)

    Assaoui, Fatna; Pereyra, Pedro

    2001-10-01

    We study the effects of charge polarization on the extended physical properties of superlattices, such as transmission coefficients and valence band structure. We consider both linear and parabolic modulation of the band edge. Based on the theory of finite periodic systems (TFPS), analytic expressions and high precision calculations of the relevant physical quantities for n-cell systems are obtained. New and also well-known features of these systems are identified. Besides the well-known energy bandstructure, we also have the field bandstructure, with interesting characteristics. Wider field gaps at stronger internal electric fields and higher density of field bands for larger layer widths are some of these characteristics. Well defined level density asymmetries identify the minibands induced by charge polarization or the so-called Quantum Confining Stark Effect. We present the n-cell transmission amplitudes, transmission coefficients and miniband structures for different values of the relevant parameters. (author)

  3. Visualizing cell state transition using Raman spectroscopy.

    Directory of Open Access Journals (Sweden)

    Taro Ichimura

    Full Text Available System level understanding of the cell requires detailed description of the cell state, which is often characterized by the expression levels of proteins. However, understanding the cell state requires comprehensive information of the cell, which is usually obtained from a large number of cells and their disruption. In this study, we used Raman spectroscopy, which can report changes in the cell state without introducing any label, as a non-invasive method with single cell capability. Significant differences in Raman spectra were observed at the levels of both the cytosol and nucleus in different cell-lines from mouse, indicating that Raman spectra reflect differences in the cell state. Difference in cell state was observed before and after the induction of differentiation in neuroblastoma and adipocytes, showing that Raman spectra can detect subtle changes in the cell state. Cell state transitions during embryonic stem cell (ESC differentiation were visualized when Raman spectroscopy was coupled with principal component analysis (PCA, which showed gradual transition in the cell states during differentiation. Detailed analysis showed that the diversity between cells are large in undifferentiated ESC and in mesenchymal stem cells compared with terminally differentiated cells, implying that the cell state in stem cells stochastically fluctuates during the self-renewal process. The present study strongly indicates that Raman spectral morphology, in combination with PCA, can be used to establish cells' fingerprints, which can be useful for distinguishing and identifying different cellular states.

  4. New characteristics of submicron aerosols and factor analysis of combined organic and inorganic aerosol mass spectra during winter in Beijing

    Science.gov (United States)

    Zhang, J. K.; Ji, D. S.; Liu, Z. R.; Hu, B.; Wang, L. L.; Huang, X. J.; Wang, Y. S.

    2015-07-01

    In recent years, an increasing amount of attention has been paid to heavy haze pollution in Beijing, China. In addition to Beijing's population of approximately 20 million and its 5 million vehicles, nearby cities and provinces are host to hundreds of heavily polluting industries. In this study, a comparison between observations in January 2013 and January 2014 showed that non-refractory PM1 (NR-PM1) pollution was weaker in January 2014, which was primarily caused by variations in meteorological conditions. For the first time, positive matrix factorization (PMF) was applied to the merged high-resolution mass spectra of organic and inorganic aerosols from aerosol mass spectrometer measurements in Beijing, and the sources and evolution of NR-PM1 in January 2014 were investigated. The two factors, NO3-OA1 and NO3-OA2, were primarily composed of ammonium nitrate, and each showed a different degree of oxidation and diurnal variation. The organic fraction of SO4-OA showed the highest degree of oxidation of all PMF factors. The hydrocarbon-like organic aerosol (OA) and cooking OA factors contained negligible amounts of inorganic species. The coal combustion OA factor contained a high contribution from chloride in its mass spectrum. The NR-PM1 composition showed significant variations in January 2014, in which the contribution of nitrate clearly increased during heavy pollution events. The most effective way to control fine particle pollution in Beijing is through joint prevention and control measures at the regional level, rather than a focus on an individual city, especially for severe haze events.

  5. Raman overtone intensities measured for H2

    International Nuclear Information System (INIS)

    Shelton, D.P.

    1990-01-01

    The Raman spectra of the vibrational fundamental, first overtone and second overtone transitions of the H 2 molecule were recorded using visible and ultraviolet argon--ion laser excitation. The ratios of transition polarizability matrix elements, α 01,21 /α 01,11 and α 01,31 /α 01,11 , were determined from the measured intensities of the Q(1) Raman lines v,J=0,1→v',1 for v'=1,2,3. The experimentally determined value of the Raman first overtone matrix element is in good agreement with the value from the best ab initio calculation

  6. Laser-Raman spectroscopy of living cells

    International Nuclear Information System (INIS)

    Webb, S.J.

    1980-01-01

    Investigations into the laser-Raman shift spectra of bacterial and mammalian cells have revealed that many Raman lines observed at 4-6 K, do not appear in the spectra of cells held at 300 K. At 300 K, Raman activity, at set frequencies, is observed only when the cells are metabolically active; however, the actual live cell spectrum, between 0 and 3400 cm -1 , has been found to alter in a specific way with time as the cells' progress through their life cycles. Lines above 300 cm -1 , from in vivo Raman active states, appear to shift to higher wave numbers whereas those below 300 cm -1 seem to shift to lower ones. The transient nature of many shift lines observed and the intensity of them when present in the spectrum indicates that, in, vivo, a metabolically induced condensation of closely related states occurs at a set time in the life of a living cell. In addition, the calculated ratio between the intensities of Stokes and anti-Stokes lines observed suggests that the metabolically induced 'collective' Raman active states are produced, in vivo, by non thermal means. It appears, therefore, that the energetics of the well established cell 'time clock' may be studied by laser-Raman spectroscopy; moreover, Raman spectroscopy may yield a new type of information regarding the physics of such biological phenomena as nutrition, virus infection and oncogenesis. (orig.)

  7. Effect of Laser Irradiation on Cell Function and Its Implications in Raman Spectroscopy.

    Science.gov (United States)

    Yuan, Xiaofei; Song, Yanqing; Song, Yizhi; Xu, Jiabao; Wu, Yinhu; Glidle, Andrew; Cusack, Maggie; Ijaz, Umer Z; Cooper, Jonathan M; Huang, Wei E; Yin, Huabing

    2018-04-15

    Lasers are instrumental in advanced bioimaging and Raman spectroscopy. However, they are also well known for their destructive effects on living organisms, leading to concerns about the adverse effects of laser technologies. To implement Raman spectroscopy for cell analysis and manipulation, such as Raman-activated cell sorting, it is crucial to identify nondestructive conditions for living cells. Here, we evaluated quantitatively the effect of 532-nm laser irradiation on bacterial cell fate and growth at the single-cell level. Using a purpose-built microfluidic platform, we were able to quantify the growth characteristics, i.e., specific growth rates and lag times of individual cells, as well as the survival rate of a population in conjunction with Raman spectroscopy. Representative Gram-negative and Gram-positive species show similar trends in response to a laser irradiation dose. Laser irradiation could compromise the physiological function of cells, and the degree of destruction is both dose and strain dependent, ranging from reduced cell growth to a complete loss of cell metabolic activity and finally to physical disintegration. Gram-positive bacterial cells are more susceptible than Gram-negative bacterial strains to irradiation-induced damage. By directly correlating Raman acquisition with single-cell growth characteristics, we provide evidence of nondestructive characteristics of Raman spectroscopy on individual bacterial cells. However, while strong Raman signals can be obtained without causing cell death, the variety of responses from different strains and from individual cells justifies careful evaluation of Raman acquisition conditions if cell viability is critical. IMPORTANCE In Raman spectroscopy, the use of powerful monochromatic light in laser-based systems facilitates the detection of inherently weak signals. This allows environmentally and clinically relevant microorganisms to be measured at the single-cell level. The significance of being able to

  8. Mathematical methods in the problem of reconstruction of hadron interaction characteristics and primary cosmic ray spectra at superhigh energies

    International Nuclear Information System (INIS)

    Astaf'ev, V.A.

    1985-01-01

    The paper reviews the mathematical methods used for analyzing the experimental data obtained in investigations of cosmic rays of superhigh energies (10 14 -10 19 eV). The analysis is carried out on the basis of the direct problem solution, i.e. calculation of the characteristics of nuclear-electromagnetic cascade showers developed in the atmosphere with regard to the specific features of experimental devices. The analytical and numerical metods for solving equations describing shower development, as well as simulation of cascade processes by the Monte Carlo method are applied herein

  9. Raman spectroscopy for the characterization of different fractions of hemp essential oil extracted at 130 °C using steam distillation method

    Science.gov (United States)

    Hanif, Muhammad Asif; Nawaz, Haq; Naz, Saima; Mukhtar, Rubina; Rashid, Nosheen; Bhatti, Ijaz Ahmad; Saleem, Muhammad

    2017-07-01

    In this study, Raman spectroscopy along with Principal Component Analysis (PCA) is used for the characterization of pure essential oil (pure EO) isolated from the leaves of the Hemp (Cannabis sativa L.,) as well as its different fractions obtained by fractional distillation process. Raman spectra of pure Hemp essential oil and its different fractions show characteristic key bands of main volatile terpenes and terpenoids, which significantly differentiate them from each other. These bands provide information about the chemical composition of sample under investigation and hence can be used as Raman spectral markers for the qualitative monitoring of the pure EO and different fractions containing different active compounds. PCA differentiates the Raman spectral data into different clusters and loadings of the PCA further confirm the biological origin of the different fractions of the essential oil.

  10. Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages.

    Science.gov (United States)

    Gouvinhas, Irene; Machado, Nelson; Carvalho, Teresa; de Almeida, José M M M; Barros, Ana I R N A

    2015-01-01

    Extra virgin olive oils produced from three cultivars on different maturation stages were characterized using Raman spectroscopy. Chemometric methods (principal component analysis, discriminant analysis, principal component regression and partial least squares regression) applied to Raman spectral data were utilized to evaluate and quantify the statistical differences between cultivars and their ripening process. The models for predicting the peroxide value and free acidity of olive oils showed good calibration and prediction values and presented high coefficients of determination (>0.933). Both the R(2), and the correlation equations between the measured chemical parameters, and the values predicted by each approach are presented; these comprehend both PCR and PLS, used to assess SNV normalized Raman data, as well as first and second derivative of the spectra. This study demonstrates that a combination of Raman spectroscopy with multivariate analysis methods can be useful to predict rapidly olive oil chemical characteristics during the maturation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Phase transformation in multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15} ceramics by temperature-dependent ellipsometric and Raman spectra: An interband electronic transition evidence

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G., E-mail: zghu@ee.ecnu.edu.cn; Chu, J. H. [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China)

    2014-02-28

    Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi{sub 5}Ti{sub 3}FeO{sub 15} ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200–873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.

  12. Exploring type II microcalcifications in benign and premalignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS)

    Science.gov (United States)

    Liang, Lijia; Zheng, Chao; Zhang, Haipeng; Xu, Shuping; Zhang, Zhe; Hu, Chengxu; Bi, Lirong; Fan, Zhimin; Han, Bing; Xu, Weiqing

    2014-11-01

    The characteristics of type II microcalcifications in fibroadenoma (FB), atypical ductal hyperplasia (ADH), and ductal carcinoma in situ (DCIS) breast tissues has been analyzed by the fingerprint features of Raman spectroscopy. Fresh breast tissues were first handled to frozen sections and then they were measured by normal Raman spectroscopy. Due to inherently low sensitivity of Raman scattering, Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technique was utilized. A total number of 71 Raman spectra and 70 SHINERS spectra were obtained from the microcalcifications in benign and premalignant breast tissues. Principal component analysis (PCA) was used to distinguish the type II microcalcifications between these tissues. This is the first time to detect type II microcalcifications in premalignant (ADH and DCIS) breast tissue frozen sections, and also the first time SHINERS has been utilized for breast cancer detection. Conclusions demonstrated in this paper confirm that SHINERS has great potentials to be applied to the identification of breast lesions as an auxiliary method to mammography in the early diagnosis of breast cancer.

  13. Characterization of excited electronic states of naphthalene by resonance Raman and hyper-Raman scattering

    International Nuclear Information System (INIS)

    Bonang, C.C.; Cameron, S.M.

    1992-01-01

    The first resonance Raman and hyper-Raman scattering from naphthalene are reported. Fourth harmonic of a mode-locked Nd:YAG laser is used to resonantly excite the 1 B 1u + transition, producing Raman spectra that confirm the dominance of the vibronically active ν 28 (b 3g ) mode and the Franck--Condon active a g modes, ν 5 and ν 3 . A synchronously pumped stilbene dye laser and its second harmonic are employed as the excitation sources for hyper-Raman and Raman scattering from the overlapping 1 B 2 u + and 1 A g - states. The Raman spectra indicate that the equilibrium geometry of naphthalene is distorted primarily along ν 5 , ν 8 , and ν 7 normal coordinates upon excitation to 1 B 2 u + . The hyper-Raman spectrum shows that ν 25 (b 2u ) is the mode principally responsible for vibronic coupling between the 1 A g - and 1 B 2u + states. The results demonstrate the advantageous features of resonance hyper-Raman scattering for the case of overlapping one- and two-photon allowed transitions. Calculations based on simple molecular orbital configurations are shown to qualitatively agree with the experimental results

  14. Investigation into structure and dehydration dynamic of gallic acid monohydrate: A Raman spectroscopic study.

    Science.gov (United States)

    Cai, Qiang; Xue, Jiadan; Wang, Qiqi; Du, Yong

    2018-05-02

    The dehydration process of gallic acid monohydrate was carried out by heating method and characterized using Raman spectroscopic technique. Density functional theory calculation with B3LYP function is applied to simulate optimized structures and vibrational frequencies of anhydrous gallic acid and its corresponding monohydrated form. Different vibrational modes are assigned by comparison between experimental and theoretical Raman spectra of above two polymorphs. Raman spectra show that vibrational modes of the monohydrate are distinctively different from those of anhydrous one. Meanwhile, the dynamic information about dehydration process of gallic acid monohydrate could also be observed and monitored directly with the help of Raman spectral analysis. The decay rate of the characteristic band from gallic acid monohydrate and the growth rate of anhydrous one are pretty consistent with each other. It indicates that there is no intermediate present during the dehydration process of gallic acid monohydrate. The results could offer us benchmark works for identifying both anhydrous and hydrated pharmaceutical compounds, characterizing their corresponding molecular conformation within various crystalline forms, and also providing useful information about the process of dehydration dynamic at the microscopic molecular level. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Silver Nanoparticle-Enhanced Resonance Raman Sensor of Chromium(III) in Seawater Samples.

    Science.gov (United States)

    Ly, Nguyễn Hoàng; Joo, Sang-Woo

    2015-04-29

    Tris(hydroxymethyl)aminomethane ethylenediaminetetraacetic acid (Tris-EDTA), upon binding Cr(III) in aqueous solutions at pH 8.0 on silver nanoparticles (AgNPs), was found to provide a sensitive and selective Raman marker band at ~563 cm-1, which can be ascribed to the metal-N band. UV-Vis absorption spectra also supported the aggregation and structural change of EDTA upon binding Cr(III). Only for Cr(III) concentrations above 500 nM, the band at ~563 cm-1 become strongly intensified in the surface-enhanced Raman scattering spectra. This band, due to the metal-EDTA complex, was not observed in the case of 50 mM of K+, Cd2+, Mg2+, Ca2+, Mn2+, Co2+, Na+, Cu2+, NH4+, Hg2+, Ni2+, Fe3+, Pb2+, Fe2+, and Zn2+ ions. Seawater samples containing K, Mg, Ca, and Na ion concentrations higher than 8 mM also showed the characteristic Raman band at ~563 cm-1 above 500 nM, validating our method. Our approach may be useful in detecting real water samples by means of AgNPs and Raman spectroscopy.

  16. Real-time Raman spectroscopy for in vivo, online gastric cancer diagnosis during clinical endoscopic examination

    Science.gov (United States)

    Duraipandian, Shiyamala; Sylvest Bergholt, Mads; Zheng, Wei; Yu Ho, Khek; Teh, Ming; Guan Yeoh, Khay; Bok Yan So, Jimmy; Shabbir, Asim; Huang, Zhiwei

    2012-08-01

    Optical spectroscopic techniques including reflectance, fluorescence and Raman spectroscopy have shown promising potential for in vivo precancer and cancer diagnostics in a variety of organs. However, data-analysis has mostly been limited to post-processing and off-line algorithm development. In this work, we develop a fully automated on-line Raman spectral diagnostics framework integrated with a multimodal image-guided Raman technique for real-time in vivo cancer detection at endoscopy. A total of 2748 in vivo gastric tissue spectra (2465 normal and 283 cancer) were acquired from 305 patients recruited to construct a spectral database for diagnostic algorithms development. The novel diagnostic scheme developed implements on-line preprocessing, outlier detection based on principal component analysis statistics (i.e., Hotelling's T2 and Q-residuals) for tissue Raman spectra verification as well as for organ specific probabilistic diagnostics using different diagnostic algorithms. Free-running optical diagnosis and processing time of based on the randomly resampled training database (80% for learning and 20% for testing) provide the diagnostic accuracy of 85.6% [95% confidence interval (CI): 82.9% to 88.2%] [sensitivity of 80.5% (95% CI: 71.4% to 89.6%) and specificity of 86.2% (95% CI: 83.6% to 88.7%)] for the detection of gastric cancer. The PLS-DA algorithms are further applied prospectively on 10 gastric patients at gastroscopy, achieving the predictive accuracy of 80.0% (60/75) [sensitivity of 90.0% (27/30) and specificity of 73.3% (33/45)] for in vivo diagnosis of gastric cancer. The receiver operating characteristics curves further confirmed the efficacy of Raman endoscopy together with PLS-DA algorithms for in vivo prospective diagnosis of gastric cancer. This work successfully moves biomedical Raman spectroscopic technique into real-time, on-line clinical cancer diagnosis, especially in routine endoscopic diagnostic applications.

  17. Native alunogen: A Raman spectroscopic study of a well-described specimen

    Science.gov (United States)

    Košek, Filip; Culka, Adam; Žáček, Vladimír; Laufek, František; Škoda, Radek; Jehlička, Jan

    2018-04-01

    Alunogen (Al2(SO4)3 · 17H2O) is a common secondary mineral in the terrestrial environment (acid mine drainage, volcanic or coal-fire fumaroles), and is also formed through the acidic weathering of aluminosilicates. Moreover, alunogen has been suggested as a part of the Al-bearing deposits on Mars. The identification of alunogen in secondary sulfate mixtures by Raman spectroscopy strictly depends on good knowledge of alunogen spectral features and band positions. However, comprehensive Raman data of alunogen of natural origin are lacking. This study reports on Raman spectra obtained from two natural specimens originating from a burning coal dump at the Schoeller mine, Kladno, Czech Republic, along with the additional characterizations by infrared spectroscopy, X-ray diffraction, and electron microprobe. For comparison purposes, a Raman spectrum of a synthetic analogue was also obtained. The studied specimens have (Al1.99Fe3+0.01)2 (SO4)3·17H2O as their calculated empirical formula, and the structural parameters correspond to the previously reported data for alunogen. Both natural specimens and the synthetic analogue showed uniform Raman spectra with no extensive band splitting in the sulfate vibrational regions. The most intensive Raman band associated with the symmetric stretching vibration of the SO4 tetrahedra (ν1) is located at 992 cm-1. A multicomponent band was observable in the characteristic region for OH-related vibrations. A small variation in the spectral intensity of the hydroxyl bands suggests that the studied specimens could possibly be slightly dehydrated.

  18. Feasibility of Raman spectroscopy in vitro after 5-ALA-based fluorescence diagnosis in the bladder

    Science.gov (United States)

    Grimbergen, M. C. M.; van Swol, C. F. P.; van Moorselaar, R. J. A.; Mahadevan-Jansen, A.,; Stone, N.

    2006-02-01

    Photodynamic diagnosis (PDD) has become popular in bladder cancer detection. Several studies have however shown an increased false positive biopsies rate under PDD guidance compared to conventional cystoscopy. Raman spectroscopy is an optical technique that utilizes molecular specific, inelastic scattering of light photons to interrogate biological tissues, which can successfully differentiate epithelial neoplasia from normal tissue and inflammations in vitro. This investigation was performed to show the feasibility of NIR Raman spectroscopy in vitro on biopsies obtained under guidance of 5-ALA induced PPIX fluorescence imaging. Raman spectra of a PPIX solution was measured to obtain a characteristic signature for the photosensitzer without contributions from tissue constituents. Biopsies were obtained from patients with known bladder cancer instilled with 50ml, 5mg 5-ALA two hours prior to trans-urethral resection of tumor (TURT). Additional biopsies were obtained at a fluorescent and non-fluorescent area, snap-frozen in liquid nitrogen and stored at -80 °C. Each biopsy was thawed before measurements (10sec integration time) with a confocal Raman system (Renishaw Gloucestershire, UK). The 830 nm excitation (300mW) source is focused on the tissue by a 20X ultra-long-working-distance objective. Differences in fluorescence background between the two groups were removed by means of a special developed fluorescence subtraction algorithm. Raman spectra from ALA biopsies showed different fluorescence background which can be effectively removed by a fluorescence subtraction algorithm. This investigation shows that the interaction of the ALA induced PPIX with Raman spectroscopy in bladder samples. Combination of these techniques in-vivo may lead to a viable method of optical biopsies in bladder cancer detection.

  19. Raman Microspectroscopy of Individual Algal Cells: Sensing Unsaturation of Storage Lipids in vivo

    Directory of Open Access Journals (Sweden)

    Ladislav Nedbal

    2010-09-01

    Full Text Available Algae are becoming a strategic source of fuels, food, feedstocks, and biologically active compounds. This potential has stimulated the development of innovative analytical methods focused on these microorganisms. Algal lipids are among the most promising potential products for fuels as well as for nutrition. The crucial parameter characterizing the algal lipids is the degree of unsaturation of the constituent fatty acids quantified by the iodine value. Here we demonstrate the capacity of the spatially resolved Raman microspectroscopy to determine the effective iodine value in lipid storage bodies of individual living algal cells. The Raman spectra were collected from three selected algal species immobilized in an agarose gel. Prior to immobilization, the algae were cultivated in the stationary phase inducing an overproduction of lipids. We employed the characteristic peaks in the Raman scattering spectra at 1,656 cm−1 (cis C=C stretching mode and 1,445 cm−1 (CH2 scissoring mode as the markers defining the ratio of unsaturated-to-saturated carbon-carbon bonds of the fatty acids in the algal lipids. These spectral features were first quantified for pure fatty acids of known iodine value. The resultant calibration curve was then used to calculate the effective iodine value of storage lipids in the living algal cells from their Raman spectra. We demonstrated that the iodine value differs significantly for the three studied algal species. Our spectroscopic estimations of the iodine value were validated using GC-MS measurements and an excellent agreement was found for the Trachydiscus minutus species. A good agreement was also found with the earlier published data on Botryococcus braunii. Thus, we propose that Raman microspectroscopy can become technique of choice in the rapidly expanding field of algal biotechnology.

  20. Raman scattering in condensed media placed in photon traps

    Science.gov (United States)

    Goncharov, A. P.; Gorelik, V. S.; Krawtsow, A. V.

    2007-11-01

    A new type of resonator cells (photon traps) has been worked out, which ensures the Raman opalescence regime (i.e., the conditions under which the relative Raman scattering intensity at the outlet of the cells increases significantly as compared to the exciting line intensity. The Raman scattering spectra of a number of organic and inorganic compounds placed in photon traps are studied under pulse-periodic excitation by a copper-vapor laser.

  1. Raman microscopic studies of PVD deposited hard ceramic coatings

    International Nuclear Information System (INIS)

    Constable, C.P.

    2000-01-01

    PVD hard ceramic coatings grown via the combined cathodic arc/unbalance magnetron deposition process were studied using Raman microscopy. Characteristic spectra from binary, multicomponent, multilayered and superlattice coatings were acquired to gain knowledge of the solid-state physics associated with Raman scattering from polycrystalline PVD coatings and to compile a comprehensive spectral database. Defect-induced first order scattering mechanisms were observed which gave rise to two pronounced groups of bands related to the acoustical (150- 300cm -1 ) and optical (400-7 50cm -1 ) parts of the phonon spectrum. Evidence was gathered to support the theory that the optic modes were mainly due to the vibrations of the lighter elements and the acoustic modes due to the vibrations of the heavier elements within the lattice. A study into the deformation and disordering on the Raman spectral bands of PVD coatings was performed. TiAIN and TiZrN coatings were intentionally damaged via scratching methods. These scratches were then analysed by Raman mapping, both across and along, and a detailed spectral interpretation performed. Band broadening occurred which was related to 'phonon relaxation mechanisms' as a direct result of the breaking up of coating grains resulting in a larger proportion of grain boundaries per-unit-volume. A direct correlation of the amount of damage with band width was observed. Band shifts were also found to occur which were due to the stresses caused by the scratching process. These shifts were found to be the largest at the edges of scratches. The Raman mapping of 'droplets', a defect inherent to PVD deposition processes, found that higher compressive stresses and large amounts of disorder occurred for coating growth onto droplets. Strategies designed to evaluate the ability of Raman microscopy to monitor the extent of real wear on cutting tools were evaluated. The removal of a coating layer and subsequent detection of a base layer proved

  2. Design and performance of an ultraviolet resonance Raman spectrometer for proteins and nucleic acids.

    Science.gov (United States)

    Russell, M P; Vohník, S; Thomas, G J

    1995-04-01

    We describe an ultraviolet resonance Raman (UVRR) spectrometer appropriate for structural studies of biological macromolecules and their assemblies. Instrument design includes the following features: a continuous wave, intracavity doubled, ultraviolet laser source for excitation of the Raman spectrum; a rotating cell (or jet source) for presentation of the sample to the laser beam; a Cassegrain optic with f/1.0 aperture for collection of the Raman scattering; a quartz prism dispersing element for rejection of stray light and Rayleigh scattering; a 0.75-m single grating monochromator for dispersion of the Raman scattering; and a liquid-nitrogen-cooled, charge-coupled device for detection of the Raman photons. The performance of this instrument, assessed on the basis of the observed signal-to-noise ratios, the apparent resolution of closely spaced spectral bands, and the wide spectrometer bandpass of 2200 cm-1, is believed superior to previously described UVRR spectrometers of similar design. Performance characteristics of the instrument are demonstrated in UVRR spectra obtained from standard solvents, p-ethylphenol, which serves as a model for the tyrosine side chain, the DNA nucleotide deoxyguanosine-5'-monophosphate, and the human tumor necrosis factor binding protein, which is considered representative of soluble globular proteins.

  3. X-ray resonant Raman scattering cross sections of Mn, Fe, Cu and Zn

    International Nuclear Information System (INIS)

    Sanchez, Hector Jorge; Valentinuzzi, MarIa Cecilia; Perez, Carlos

    2006-01-01

    X-ray fluorescence spectra present singular characteristics produced by the different scattering processes. When atoms are irradiated with incident energy lower and close to an absorption edge, scattering peaks appear due to an inelastic process known as resonant Raman scattering. It constitutes an important contribution to the background of the fluorescent line. The resonant Raman scattering must be taken into account in the determination of low concentration contaminants, especially when the elements have proximate atomic numbers. The values of the mass attenuation coefficients experimentally obtained when materials are analysed with monochromatic x-ray beams under resonant conditions differ from the theoretical values (between 5% and 10%). This difference is due, in part, to the resonant Raman scattering. Monochromatic synchrotron radiation was used to study the Raman effect on pure samples of Mn, Fe, Cu and Zn. Energy scans were carried out in different ranges of energy near the absorption edge of the target element. As the Raman peak has a non-symmetric shape, theoretical models for the differential cross section, convoluted with the instrument function, were used to determine the RRS cross section as a function of the incident energy

  4. Rapid thyroid dysfunction screening based on serum surface-enhanced Raman scattering and multivariate statistical analysis

    Science.gov (United States)

    Tian, Dayong; Lü, Guodong; Zhai, Zhengang; Du, Guoli; Mo, Jiaqing; Lü, Xiaoyi

    2018-01-01

    In this paper, serum surface-enhanced Raman scattering and multivariate statistical analysis are used to investigate a rapid screening technique for thyroid function diseases. At present, the detection of thyroid function has become increasingly important, and it is urgently necessary to develop a rapid and portable method for the detection of thyroid function. Our experimental results show that, by using the Silmeco-based enhanced Raman signal, the signal strength greatly increases and the characteristic peak appears obviously. It is also observed that the Raman spectra of normal and anomalous thyroid function human serum are significantly different. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was used to diagnose thyroid dysfunction, and the diagnostic accuracy was 87.4%. The use of serum surface-enhanced Raman scattering technology combined with PCA-LDA shows good diagnostic performance for the rapid detection of thyroid function. By means of Raman technology, it is expected that a portable device for the rapid detection of thyroid function will be developed.

  5. Raman analysis of ferroelectric switching in niobium-doped lead zirconate titanate thin films

    International Nuclear Information System (INIS)

    Ferrari, P.; Ramos-Moore, E.; Guitar, M.A.; Cabrera, A.L.

    2014-01-01

    Characteristic Raman vibration modes of niobium-doped lead zirconate titanate (PNZT) are studied as a function of ferroelectric domain switching. The microstructure of PNZT is characterized by scanning electron microscopy and X-ray diffraction. Ferroelectric switching is achieved by applying voltages between the top (Au) and bottom (Pt) electrodes, while acquiring the Raman spectra in situ. Vibrational active modes associated with paraelectric and ferroelectric phases are identified after measuring above and below the ferroelectric Curie temperature, respectively. Changes in the relative intensities of the Raman peaks are observed as a function of the switching voltage. The peak area associated with the ferroelectric modes is analyzed as a function of the applied voltage within one ferroelectric polarization loop, showing local maxima around the coercive voltage. This behavior can be understood in terms of the correlation between vibrational and structural properties, since ferroelectric switching modifies the interaction between the body-centered atom (Zr, Ti or Nb) and the Pb–O lattice. - Highlights: • Electric fields induce structural distortions on ferroelectric perovskites. • Ferroelectric capacitor was fabricated to perform hysteresis loops. • Raman analysis was performed in situ during ferroelectric switching. • Raman modes show hysteresis and inflections around the coercive voltages. • Data can be understood in terms of vibrational–structural correlations

  6. Laser Raman Spectroscopic Characterization of Shocked Plagioclase from the Lonar Impact Crater, India.

    Science.gov (United States)

    Chakrabarti, R.; Basu, A. R.; Peterson, J.; Misra, S.

    2004-12-01

    We report Raman spectra of shocked plagioclase grains from the Lonar impact Crater of India. The Lonar Crater, located in the Buldana district of Maharashtra, India (19° 58'N, 76° 31'E), is an almost circular depression in the 65Ma old basalt flows of the Deccan Traps. Age estimates of this impact crater range from 10-50ka. Tektite and basalt samples were collected for this study from the rim of the crater, which is raised about 20 meters above the surrounding plains. For comparison, a Manicouagan maskelynite and an unaltered mid-oceanic ridge basalt with plagioclase laths were also analyzed. Polished thin sections of all these samples were first petrographically studied. The MORB plagioglase as well as the plagioclase from Lonar host-basalts show first order interference colors and distinct multiple lamellar twinning. The Manicouagan maskelynite is isotropic under crossed-polars. The Lonar tektite samples characteristically demonstrate spherules which are identified by their perfectly circular cross-section and isotropic nature. The spherules also contain fragments of the host basalt with plagioclase laths showing lamellar twinning. The groundmass within the spherules shows lath shaped plagioclase grains, most of which show varying degrees of isotropism due to maskelynitization. Raman scattering measurements were performed using the 514.5 nm line of an argon ion laser at an intensity of 40 kW/cm2. An inverted microscope (Nikon TE3000) with 50x objective (NA 0.55) was used for confocal imaging. A holographic notch filter removed residual laser scatter and the Raman scattering was detected by a silicon CCD at -90° C (Princeton Instruments Spec10-400R). Raman spectra were collected from ~250 cm-1 through 2000 cm-1. Raman spectra of crystalline unshocked plagioclase feldspars from the MORB and the Lonar host basalt show strongest peaks at 265 cm-1, 410 cm-1, 510 cm-1 and 1110 cm-1. The results remain the same for different points in a single grain but vary slightly

  7. Triplet State Resonance Raman Spectrum of all-trans-diphenylbutadiene

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Grossman, W.E.L.; Killough, P.M

    1984-01-01

    The resonance Raman spectrum of all-trans-diphenylbutadiene (DPB) in its ground state and the resonance Raman spectrum (RRS) of DPB in its short-lived electronically excited triplet state are reported. Transient spectra were obtained by a pump-probe technique using two pulsed lasers...

  8. Identification of bacteria in drinking water with Raman spectroscopy

    NARCIS (Netherlands)

    van de Vossenberg, J.; Tervahauta, H.; Maquelin, K.; Blokker-Koopmans, C.H.W.; Uytewaal-Aaarts, M.; Kooij, D.; van Wezel, A.P.; van der Gaag, B.

    2013-01-01

    Raman spectroscopy was used to discriminate between Legionella strains and between E. coli and coliform strains. The relationship between triplicate Raman spectra derived from Legionella bacteria was compared with that derived from a blind set of samples and amplified fragment length polymorphism

  9. Raman spectroscopy of graphene on different substrates and ...

    Indian Academy of Sciences (India)

    We show the evolution of Raman spectra with a number of graphene layers on different substrates, SiO2/Si and conducting indium tin oxide (ITO) plate. The mode peak position and the intensity ratio of and 2 bands depend on the preparation of sample for the same number of graphene layers. The 2 Raman band ...

  10. IR, Raman and SERS studies of methyl salicylate

    Science.gov (United States)

    Varghese, Hema Tresa; Yohannan Panicker, C.; Philip, Daizy; Mannekutla, James R.; Inamdar, S. R.

    2007-04-01

    The IR and Raman spectra of methyl salicylate (MS) were recorded and analysed. Surface enhanced Raman scattering (SERS) spectrum was recorded in silver colloid. The vibrational wave numbers of the compound have been computed using the Hartree-Fock/6-31G * basis and compared with the experimental values. SERS studies suggest a flat orientation of the molecule at the metal surface.

  11. Polarized Raman study on the lattice structure of BiFeO3 films prepared by pulsed laser deposition

    KAUST Repository

    Yang, Yang; Yao, Yingbang; Zhang, Q.; Zhang, Xixiang

    2014-01-01

    Polarized Raman spectroscopy was used to study the lattice structure of BiFeO3 films on different substrates prepared by pulsed laser deposition. Interestingly, the Raman spectra of BiFeO3 films exhibit distinct polarization dependences

  12. Raman tensor elements of β-Ga2O3.

    Science.gov (United States)

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-11-03

    The Raman spectrum and particularly the Raman scattering intensities of monoclinic β-Ga 2 O 3 are investigated by experiment and theory. The low symmetry of β-Ga 2 O 3 results in a complex dependence of the Raman intensity for the individual phonon modes on the scattering geometry which is additionally affected by birefringence. We measured the Raman spectra in dependence on the polarization direction for backscattering on three crystallographic planes of β-Ga 2 O 3 and modelled these dependencies using a modified Raman tensor formalism which takes birefringence into account. The spectral position of all 15 Raman active phonon modes and the Raman tensor elements of 13 modes were determined and are compared to results from ab-initio calculations.

  13. Infrared absorption and Raman scattering spectroscopic studies of condensed ions

    International Nuclear Information System (INIS)

    Dao, N.Q.; Knidiri, M.

    1975-01-01

    Infrared and Raman spectra of the complex K 5 (UO 2 ) 2 F 9 were recorded in the region 4000 to 80 cm -1 . Factor group analysis was used to classify the internal vibrations of the binuclear ion (UO 2 ) 2 F 9 5- . Infrared and Raman spectra were assigned and splitting of the internal modes of the (UO 2 ) 2 F 9 5- anion interpreted. (author)

  14. Development of Single Cell Raman Spectroscopy for Cancer Screening and Therapy Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Chan, James W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2009-02-24

    The overall goal of this project was to develop a new technology for cancer detection based on single cell laser tweezers Raman spectroscopy (LTRS). This method has the potential to improve the detection of cancer characteristics in single cells by acquiring cellular spectral markers that reflect the intrinsic biology of the cell. These spectral biomarkers are a new form of molecular signatures in the field of cancer research that may hold promise in accurately identifying and diagnosing cancer and measuring patient response to treatment. The primary objectives of this proposed work were to perform a full characterization of the Raman spectra of single normal, transformed, and cancer cells to identify cancer spectral signatures, validate the clinical significance of these results by direct correlation to established clinical parameters for assessing cancer, and to develop the optical technology needed for efficient sampling and analysis of cells needed for the practical use of such a system in the clinic. The results indicated that normal T and B lymphocytes could be distinguished from their neoplastic cultured cells and leukemia patient cells with classification sensitivities and specificities routinely exceeding 90% based on multivariate statistical analysis and leave-one-out cross validation. Differences primarily in the Raman peaks associated with DNA and protein were observed between normal and leukemic cells and were consistent for both the cultured and primary cells. Differences between normal and leukemia patient cells were more subtle than between normal and leukemia cultured cells but were still significant to allow for accurate discrimination. Furthermore, it is revealed that the spectral differences are representative of the neoplastic phenotype of the cells and not a reflection of the different metabolic states (resting versus active) of normal and leukemic cells. The effect of different standard cell fixation protocols (i.e. methanol, paraformaledhye

  15. Analysis of Phthalate Ester Content in PVC Plastics by means of FT-Raman Spectroscopy

    DEFF Research Database (Denmark)

    Nørbygaard, Thomas; Berg, Rolf W.

    2004-01-01

    Polyvinyl chloride, PVC or [CH2-CHCl]n , is a common polymer used extensively for a wide range of industrial and household products. To achieve the proper material characteristics (e.g. softness, ductility), plasticizers such as phthalates are usually added to the otherwise hard and brittle PVC......, medical devices and toys may harm the e.g. reproductive organs of exposed infants. PVC is readily distinguished from other common polymers (e.g. polyethylene, polypropylene, polystyrene) by the use of Raman spectroscopy. By far the most commonly used phthalate plasticizer in PVC is di(2-ethylhexyl......-phenyl group, and as the relative intensities of the six bands vary only slightly from one phthalate ester to the next one we have obtained an identifiable, characteristic fingerprint of the phthalate ester group as a whole. By use of the set of six bands, which are common to all the measured Raman spectra, we...

  16. Interaction of zirconium and hafnium tetrachlorides with cesium, rubidium and potassium chlorides and Raman spectra of reaction products; Vzaimodejstvie tetrakhloridov tsirkoniya i gafniya s khloridami tseziya, rubidiya i kaliya i spektry KRS produktov reaktsij

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A B; Vovkotrub, Eh G; Strekalovskij, V N [UrO RAN, Inst. Vysokotemperaturnoj Ehlektrokhimii, Ekaterinburg (Russian Federation)

    2008-05-15

    Raman spectroscopy was used to reveal the formation of novel complexes involving [Zr{sub 2}Cl{sub 9}]{sup -} and [Hf{sub 2}Cl{sub 9}]{sup -} anions in molten mixtures of ZrCl{sub 4} and HfCl{sub 4} with CsCl, RbCl, and KCl. A prediction is made about the presence of the above-mentioned complex anions in poorly investigated melts of the corresponding binary systems at high concentrations of ZrCl{sub 4} or HfCl{sub 4}.

  17. Coherent Raman scattering: Applications in imaging and sensing

    Science.gov (United States)

    Cui, Meng

    In this thesis, I discuss the theory, implementation and applications of coherent Raman scattering to imaging and sensing. A time domain interferometric method has been developed to collect high resolution shot-noise-limited Raman spectra over the Raman fingerprint regime and completely remove the electronic background signal in coherent Raman scattering. Compared with other existing coherent Raman microscopy methods, this time domain approach is proved to be simpler and more robust in rejecting background signal. We apply this method to image polymers and biological samples and demonstrate that the same setup can be used to collect two photon fluorescence and self phase modulation signals. A signal to noise ratio analysis is performed to show that this time domain method has a comparable signal to noise ratio to spectral domain methods, which we confirm experimentally. The coherent Raman method is also compared with spontaneous Raman scattering. The conditions under which coherent methods provide signal enhancement are discussed and experiments are performed to compare coherent Raman scattering with spontaneous Raman scattering under typical biological imaging conditions. A critical power, above which coherent Raman scattering is more sensitive than spontaneous Raman scattering, is experimentally determined to be ˜1mW in samples of high molecule concentration with a 75MHz laser system. This finding is contrary to claims that coherent methods provide many orders of magnitude enhancement under comparable conditions. In addition to the far field applications, I also discuss the combination of our time domain coherent Raman method with near field enhancement to explore the possibility of sensing and near field imaging. We report the first direct time-resolved coherent Raman measurement performed on a nanostructured substrate for molecule sensing. The preliminary results demonstrate that sub 20 fs pulses can be used to obtain coherent Raman spectra from a small number

  18. COMBINED RAMAN AND SEM STUDY ON CAF2 FORMED ON/IN ENAMEL BY APF TREATMENTS

    NARCIS (Netherlands)

    TSUDA, H; JONGEBLOED, WL; STOKROOS, [No Value; ARENDS, J

    1993-01-01

    Raman spectra containing the distinct band at 322 cm(-1) due to CaF2 or CaF2-like material formed in/on fluoridated bovine enamel were recorded using a micro-Raman spectrograph. Due to increasing levels of background fluorescence with increasing thickness of enamel, the Raman measurements were

  19. Raman spectroscopic characterisations and analytical discrimination between caffeine and demethylated analogues of pharmaceutical relevance

    Science.gov (United States)

    Edwards, H. G. M.; Munshi, T.; Anstis, M.

    2005-05-01

    The FT Raman spectrum of caffeine was analysed along with that of its demethylated analogues, theobromine and theophylline. The similar but not identical structures of these three compounds allowed a more detailed assignment of the Raman bands. Noticeable differences in the Raman spectra of these compounds were apparent and key marker bands have been identified for the spectroscopic identification of these three compounds.

  20. Optical diagnostic of hepatitis B (HBV) and C (HCV) from human blood serum using Raman spectroscopy

    International Nuclear Information System (INIS)

    Anwar, Shahzad; Firdous, Shamaraz

    2015-01-01

    Hepatitis is the second most common disease worldwide with half of the cases arising in the developing world. The mortality associated with hepatitis B and C can be reduced if the disease is detected at the early stages of development. The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying hepatitis progression. Raman spectra were acquired from 20 individuals with six hepatitis B infected patients, six hepatitis C infected patients and eight healthy patients in order to gain an insight into the determination of biochemical changes for early diagnostic. The human blood serum was examined at a 532 nm excitation laser source. Raman characteristic peaks were observed in normal sera at 1006, 1157 and 1513 cm −1 , while in the case of hepatitis B and C these peaks were found to be blue shifted with decreased intensity. New Raman peaks appeared in HBV and HCV infected sera at 1194, 1302, 844, 905, 1065 and 1303 cm −1 respectively. A Mat lab subroutine and frequency domain filter program is developed and applied to signal processing of Raman scattering data. The algorithms have been successfully applied to remove the signal noise found in experimental scattering signals. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in blood sera during disease progression resulting in exceptional prediction accuracy when discriminating between normal and malignant. Raman spectroscopy shows enormous clinical potential as a rapid non-invasive diagnostic tool for hepatitis and other infectious diseases. (letter)

  1. Optical diagnostic of hepatitis B (HBV) and C (HCV) from human blood serum using Raman spectroscopy

    Science.gov (United States)

    Anwar, Shahzad; Firdous, Shamaraz

    2015-06-01

    Hepatitis is the second most common disease worldwide with half of the cases arising in the developing world. The mortality associated with hepatitis B and C can be reduced if the disease is detected at the early stages of development. The aim of this study was to investigate the potential of Raman spectroscopy as a diagnostic tool to detect biochemical changes accompanying hepatitis progression. Raman spectra were acquired from 20 individuals with six hepatitis B infected patients, six hepatitis C infected patients and eight healthy patients in order to gain an insight into the determination of biochemical changes for early diagnostic. The human blood serum was examined at a 532 nm excitation laser source. Raman characteristic peaks were observed in normal sera at 1006, 1157 and 1513 cm-1, while in the case of hepatitis B and C these peaks were found to be blue shifted with decreased intensity. New Raman peaks appeared in HBV and HCV infected sera at 1194, 1302, 844, 905, 1065 and 1303 cm-1 respectively. A Mat lab subroutine and frequency domain filter program is developed and applied to signal processing of Raman scattering data. The algorithms have been successfully applied to remove the signal noise found in experimental scattering signals. The results show that Raman spectroscopy displays a high sensitivity to biochemical changes in blood sera during disease progression resulting in exceptional prediction accuracy when discriminating between normal and malignant. Raman spectroscopy shows enormous clinical potential as a rapid non-invasive diagnostic tool for hepatitis and other infectious diseases.

  2. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  3. Raman tweezers spectroscopy of live, single red and white blood cells.

    Directory of Open Access Journals (Sweden)

    Aseefhali Bankapur

    Full Text Available An optical trap has been combined with a Raman spectrometer to make high-resolution measurements of Raman spectra of optically-immobilized, single, live red (RBC and white blood cells (WBC under physiological conditions. Tightly-focused, near infrared wavelength light (1064 nm is utilized for trapping of single cells and 785 nm light is used for Raman excitation at low levels of incident power (few mW. Raman spectra of RBC recorded using this high-sensitivity, dual-wavelength apparatus has enabled identification of several additional lines; the hitherto-unreported lines originate purely from hemoglobin molecules. Raman spectra of single granulocytes and lymphocytes are interpreted on the basis of standard protein and nucleic acid vibrational spectroscopy data. The richness of the measured spectrum illustrates that Raman studies of live cells in suspension are more informative than conventional micro-Raman studies where the cells are chemically bound to a glass cover slip.

  4. Optimizing laser crater enhanced Raman spectroscopy.

    Science.gov (United States)

    Lednev, V N; Sdvizhenskii, P A; Grishin, M Ya; Filichkina, V A; Shchegolikhin, A N; Pershin, S M

    2018-03-20

    Raman signal enhancement by laser crater production was systematically studied for 785 nm continuous wave laser pumping. Laser craters were produced in L-aspartic acid powder by a nanosecond pulsed solid state neodymium-doped yttrium aluminum garnet laser (532 nm, 8 ns, 1 mJ/pulse), while Raman spectra were then acquired by using a commercial spectrometer with 785 nm laser beam pumping. The Raman signal enhancement effect was studied in terms of the number of ablating pulses used, the lens-to-sample distance, and the crater-center-laser-spot offset. The influence of the experiment parameters on Raman signal enhancement was studied for different powder materials. Maximum Raman signal enhancement reached 11 fold for loose powders but decreased twice for pressed tablets. Raman signal enhancement was demonstrated for several diverse powder materials like gypsum or ammonium nitrate with better results achieved for the samples tending to give narrow and deep craters upon the laser ablation stage. Alternative ways of cavity production (steel needle tapping and hole drilling) were compared with the laser cratering technique in terms of Raman signal enhancement. Drilling was found to give the poorest enhancement of the Raman signal, while both laser ablation and steel needle tapping provided comparable results. Here, we have demonstrated for the first time, to the best of our knowledge, that a Raman signal can be enhanced 10 fold with the aid of simple cavity production by steel needle tapping in rough highly reflective materials. Though laser crater enhancement Raman spectroscopy requires an additional pulsed laser, this technique is more appropriate for automatization compared to the needle tapping approach.

  5. Effects of Space Weathering on Reflectance Spectra of Ureilites: A Proof-of-Concept Study

    Science.gov (United States)

    Goodrich, C. A.; Gillis-Davis, J.; Cloutis, E.; Applin, D.; Hibbits, C.; Klima, R.; Christoffersen, R.; Fries, M.; Decker, S.

    2017-07-01

    Space weathering and spectral studies of three ureilitic samples show that space weathering causes significant changes in UV-VIS-IR spectra and Raman spectra. Changes due to amorphization of carbon could disguise ureilitic asteroids as CC-like.

  6. Surface enhanced Raman optical activity (SEROA)

    DEFF Research Database (Denmark)

    Abdali, Salim; Blanch, E.W.

    2008-01-01

    Raman optical activity (ROA) directly monitors the stereochemistry of chiral molecules and is now an incisive probe of biomolecular structure. ROA spectra contain a wealth of information on tertiary folding, secondary structure and even the orientation of individual residues in proteins and nucleic...

  7. UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser

    Science.gov (United States)

    Shirley, John A.

    1990-01-01

    Raman spectra of H2 and H2O in flames excited by a narrowband KrF excimer laser are reported. Observations are made over a porous-plug, flat-flame burner reacting H2 in air, fuel-rich with nitrogen dilution to control the temperature, and with an H2 diffusion flame. Measurements made from UV Raman spectra show good agreement with measurements made by other means, both for gas temperature and relative major species concentrations. Laser-induced fluorescence interferences arising from OH and O2 are observed in emission near the Raman spectra. These interferences do not preclude Raman measurements, however.

  8. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites

    Directory of Open Access Journals (Sweden)

    L. Bokobza

    2012-07-01

    Full Text Available In this work Raman spectroscopy was used for extensive characterization of multiwall carbon nanotube (MWNTs and of MWCNTs/rubber composites. We have measured the Raman spectra of bundled and dispersed multiwall carbon nanotubes. All the Raman bands of the carbon nanotubes are seen to shift to higher wavenumbers upon debundling on account of less intertube interactions. Effects of laser irradiation were also investigated. Strong effects are observed by changing the wavelength of the laser excitation. On the other hand, at a given excitation wavelength, changes on the Raman bands are observed by changing the laser power density due to sample heating during the measurement procedure.

  9. LASER RADIATION CHARACTERISTICS (BRIEF COMMUNICATIONS): Conversion of KrCl and XeCl laser radiation to the visible spectral range by stimulated Raman scattering in lead vapor

    Science.gov (United States)

    Evtushenko, Gennadii S.; Mel'chenko, S. V.; Panchenko, Aleksei N.; Tarasenko, Viktor F.

    1990-04-01

    Conversion of KrCl and XeCl laser radiation by stimulated Raman scattering was achieved in lead vapor. The KrCl laser radiation was converted into three lines in the visible region at λ = 406, 590, and 723 nm by transitions from both the ground and first excited levels of the lead atom. The conversion efficiency of XeCl laser radiation of low spatial coherence was found to be limited by the activation of a competing nonlinear process.

  10. Micro-Raman scattering in ZnTe thin films

    International Nuclear Information System (INIS)

    Larramendi, E. M.; Gutierrez Z-B, K.; Hernandez, E.; Melo, O. de; Berth, G.; Wiedemeier, V.; Lischka, K; Schikora, D.; Woggon, U.

    2008-01-01

    In this work we present micro-raman measurements on ZnTe thin films grown by isothermal closed space sublimation on GaAs(001) substrates in helium and nitrogen atmospheres. Micro-raman spectra were recorded at room temperature using the backscattering geometry (illuminated spot: 3 μm2, 0.3 cm-1 of resolution and the line 532 nm of a DPSSL as power excitation). Up to four order LO-phonon replicas and no peak from TO phonon were observed in the micro-raman spectra as evidence of the epitaxial character and good quality of the films (the TO mode is forbidden according to the selection rules for backscattering along [001] of this heterostructure). The micro-raman spectra also revealed two features at low energy, which have been assigned incorrectly in recent works. We demonstrate that these raman peaks can be associated to the presence of few monolayers of crystalline tellurium or its oxides on the surface of the films. These features were not observed in micro-raman spectra of as grown ZnTe films terminated in a Zn surface. However, they were detected after a prolonged exposure of the samples to air. In addition, it is shown that this effect is accelerated under a high power laser excitation (laser annealing) as used in conventional micro-Raman measurement setups. Preliminary results that suggest the inclusion of nitrogen in ZnTe structure are also shown. (Full text)

  11. Narrow-gap physical vapour deposition synthesis of ultrathin SnS1-xSex (0 ≤ x ≤ 1) two-dimensional alloys with unique polarized Raman spectra and high (opto)electronic properties.

    Science.gov (United States)

    Gao, Wei; Li, Yongtao; Guo, Jianhua; Ni, Muxun; Liao, Ming; Mo, Haojie; Li, Jingbo

    2018-05-10

    Here we report ultrathin SnS1-xSex alloyed nanosheets synthesized via a narrow-gap physical vapour deposition approach. The SnS1-xSex alloy presents a uniform quadrangle shape with a lateral size of 5-80 μm and a thickness of several nanometers. Clear orthorhombic symmetries and unique in-plane anisotropic properties of the 2D alloyed nanosheets were found with the help of X-ray diffraction, high resolution transmission electron microscopy and polarized Raman spectroscopy. Moreover, 2D alloyed field-effect transistors were fabricated, exhibiting a unipolar p-type semiconductor behavior. This study also provided a lesson that the thickness of the alloyed channels played the major role in the current on/off ratio, and the high ratio of 2.10 × 102 measured from a large ultrathin SnS1-xSex device was two orders of magnitude larger than that of previously reported SnS, SnSe nanosheet based transistors because of the capacitance shielding effect. Obviously enhanced Raman peaks were also found in the thinner nanosheets. Furthermore, the ultrathin SnS0.5Se0.5 based photodetector showed a highest responsivity of 1.69 A W-1 and a short response time of 40 ms under illumination of a 532 nm laser from 405 to 808 nm. Simultaneously, the corresponding highest external quantum efficiency of 392% and detectivity of 3.96 × 104 Jones were also achieved. Hopefully, the narrow-gap synthesis technique provides us with an improved strategy to obtain large ultrathin 2D nanosheets which may tend to grow into thicker ones for stronger interlayer van der Waals forces, and the enhanced physical and (opto)electrical performances in the obtained ultrathin SnS1-xSex alloyed nanosheets prove their great potential in the future applications for versatile devices.

  12. Detection of biologically active diterpenoic acids by Raman Spectroscopy

    DEFF Research Database (Denmark)

    Talian, Ivan; Orinak, Andrej; Efremov, Evtim V.

    2010-01-01

    Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy is not su......Three poorly detectable, biologically active diterpenoic acids, kaurenoic, abietic, and gibberellic acid, were studied by using different modes of Raman spectroscopy. Because of their structural similarities, in the absence of strongly polarizable groups, conventional Raman spectroscopy...... few enhanced Raman lines. SERS spectra with 514-nm excitation with Ag colloids were also relatively weak. The best SERS spectrawere obtained with 785-nm excitation on a novel nanostructured substrate, 'black silicon' coated with a 400-nm gold layer. The spectra showed clear differences...

  13. Quantum statistics of stimulated Raman and hyper-Raman scattering by master equation approach

    International Nuclear Information System (INIS)

    Gupta, P.S.; Dash, J.

    1991-01-01

    A quantum theoretical density matrix formalism of stimulated Raman and hyper-Raman scattering using master equation approach is presented. The atomic system is described by two energy levels. The effects of upper level population and the cavity loss are incorporated. The photon statistics, coherence characteristics and the building up of the Stokes field are investigated. (author). 8 figs., 5 refs

  14. Design and Calibration of a Raman Spectrometer for use in a Laser Spectroscopy Instrument Intended to Analyze Martian Surface and Atmospheric Characteristics for NASA

    Science.gov (United States)

    Lucas, John F.; Hornef, James

    2016-01-01

    This project's goal is the design of a Raman spectroscopy instrument to be utilized by NASA in an integrated spectroscopy strategy that will include Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Induced Florescence Spectroscopy (LIFS) for molecule and element identification on Mars Europa, and various asteroids. The instrument is to be down scaled from a dedicated rover mounted instrument into a compact unit with the same capabilities and accuracy as the larger instrument. The focus for this design is a spectrometer that utilizes Raman spectroscopy. The spectrometer has a calculated range of 218 nm wavelength spectrum with a resolution of 1.23 nm. To filter out the laser source wavelength of 532 nm the spectrometer design utilizes a 532 nm wavelength dichroic mirror and a 532 nm wavelength notch filter. The remaining scatter signal is concentrated by a 20 x microscopic objective through a 25-micron vertical slit into a 5mm diameter, 1cm focal length double concave focusing lens. The light is then diffracted by a 1600 Lines per Millimeter (L/mm) dual holographic transmission grating. This spectrum signal is captured by a 1-inch diameter double convex 3 cm focal length capture lens. An Intensified Charge Couple Device (ICCD) is placed within the initial focal cone of the capture lens and the Raman signal captured is to be analyzed through spectroscopy imaging software. This combination allows for accurate Raman spectroscopy to be achieved. The components for the spectrometer have been bench tested in a series of prototype developments based on theoretical calculations, alignment, and scaling strategies. The mounting platform is 2.5 cm wide by 8.8 cm long by 7 cm height. This platform has been tested and calibrated with various sources such as a neon light source and ruby crystal. This platform is intended to be enclosed in a ruggedized enclosure for mounting on a rover platform. The size and functionality of the Raman spectrometer allows for the rover to

  15. Corrosion product characterisation by fibre optic raman spectroscopy

    International Nuclear Information System (INIS)

    Guzonas, D.A.; Rochefort, P.A.; Turner, C.W.

    1998-01-01

    Fibre optic Raman spectroscopy has been used to characterise secondary-side deposits removed from CANDU steam generators. The deposits examined were in the form of powders, millimetre-sized flakes, and deposits on the surfaces of pulled steam generator tubes. The compositions of the deposits obtained using Raman spectroscopy are similar to the compositions obtained using other ex-situ analytical techniques. A semi-quantitative estimate of amounts of the major components can be obtained from the spectra. It was noted that the signal-to-noise ratio of the Raman spectra decreased as the amount of magnetite in the deposit increased, as a result of absorption of the laser light by the magnetite. The conversion of magnetite to hematite by the laser beam was observed when high laser powers were used. The Raman spectra of larger flake samples clearly illustrate the inhomogeneous nature of the deposits. (author)

  16. Spectral reconstruction for shifted-excitation Raman difference spectroscopy (SERDS).

    Science.gov (United States)

    Guo, Shuxia; Chernavskaia, Olga; Popp, Jürgen; Bocklitz, Thomas

    2018-08-15

    Fluorescence emission is one of the major obstacles to apply Raman spectroscopy in biological investigations. It is usually several orders more intense than Raman scattering and hampers further analysis. In cases where the fluorescence emission is too intense to be efficiently removed via routine mathematical baseline correction algorithms, an alternative approach is needed. One alternative approach is shifted-excitation Raman difference spectroscopy (SERDS), where two Raman spectra are recorded with two slightly different excitation wavelengths. Ideally, the fluorescence emission at the two excitations does not change while the Raman spectrum shifts according to the excitation wavelength. Hence the fluorescence is removed in the difference of the two recorded Raman spectra. For better interpretability a spectral reconstruction procedure is necessary to recover the fluorescence-free Raman spectrum. This is challenging due to the intensity variations between the two recorded Raman spectra caused by unavoidable experimental changes as well as the presence of noise. Existent approaches suffer from drawbacks like spectral resolution loss, fluorescence residual, and artefacts. In this contribution, we proposed a reconstruction method based on non-negative least squares (NNLS), where the intensity variations between the two measurements are utilized in the reconstruction model. The method achieved fluorescence-free reconstruction on three real-world SERDS datasets without significant information loss. Thereafter, we quantified the performance of the reconstruction based on artificial datasets from four aspects: reconstructed spectral resolution, precision of reconstruction, signal-to-noise-ratio (SNR), and fluorescence residual. The artificial datasets were constructed with varied Raman to fluorescence intensity ratio (RFIR), SNR, full-width at half-maximum (FWHM), excitation wavelength shift, and fluorescence variation between the two spectra. It was demonstrated that

  17. A review of Raman spectroscopy advances with an emphasis on clinical translation challenges in oncology

    Science.gov (United States)

    Jermyn, Michael; Desroches, Joannie; Aubertin, Kelly; St-Arnaud, Karl; Madore, Wendy-Julie; De Montigny, Etienne; Guiot, Marie-Christine; Trudel, Dominique; Wilson, Brian C.; Petrecca, Kevin; Leblond, Frederic

    2016-12-01

    There is an urgent need for improved techniques for disease detection. Optical spectroscopy and imaging technologies have potential for non- or minimally-invasive use in a wide range of clinical applications. The focus here, in vivo Raman spectroscopy (RS), measures inelastic light scattering based on interaction with the vibrational and rotational modes of common molecular bonds in cells and tissue. The Raman ‘signature’ can be used to assess physiological status and can also be altered by disease. This information can supplement existing diagnostic (e.g. radiological imaging) techniques for disease screening and diagnosis, in interventional guidance for identifying disease margins, and in monitoring treatment responses. Using fiberoptic-based light delivery and collection, RS is most easily performed on accessible tissue surfaces, either on the skin, in hollow organs or intra-operatively. The strength of RS lies in the high biochemical information content of the spectra, that characteristically show an array of very narrow peaks associated with specific chemical bonds. This results in high sensitivity and specificity, for example to distinguish malignant or premalignant from normal tissues. A critical issue is that the Raman signal is often very weak, limiting clinical use to point-by-point measurements. However, non-linear techniques using pulsed-laser sources have been developed to enable in vivo Raman imaging. Changes in Raman spectra with disease are often subtle and spectrally distributed, requiring full spectral scanning, together with the use of tissue classification algorithms that must be trained on large numbers of independent measurements. Recent advances in instrumentation and spectral analysis have substantially improved the clinical feasibility of RS, so that it is now being investigated with increased success in a wide range of cancer types and locations, as well as for non-oncological conditions. This review covers recent advances and

  18. Raman spectroscopy for diagnosis of glioblastoma multiforme

    Science.gov (United States)

    Clary, Candace Elise

    Glioblastoma multiforme (GBM), the most common and most fatal malignant brain tumor, is highly infiltrative and incurable. Although improved prognosis has been demonstrated by surgically resecting the bulk tumor, a lack of clear borders at the tumor margins complicates the selection decision during surgery. This dissertation investigates the potential of Raman spectroscopy for distinguishing between normal and malignant brain tissue and sets the groundwork for a surgical diagnostic guide for resection of gross malignant gliomas. These studies revealed that Raman spectroscopy was capable of discriminating between normal scid mouse brain tissue and human xenograft tumors induced in those mice. The spectra of normal and malignant tissue were normalized by dividing by the respective magnitudes of the peaks near 1440 cm -1. Spectral differences include the shape of the broad peaks near 1440 cm-1 and 1660 cm-1 and the relative magnitudes of the peaks at 1264 cm-1, 1287 cm-1, 1297 cm-1, 1556 cm -1, 1586 cm-1, 1614 cm-1, and 1683 cm-1. From these studies emerged questions regarding how to objectively normalize and compare spectra for future automation. Some differences in the Raman spectra were shown to be inherent in the disease states of the cells themselves via differences in the Raman spectra of normal human astrocytes in culture and cultured cells derived from GBM tumors. The spectra of astrocytes and glioma cells were normalized by dividing by the respective magnitudes of the peaks near 1450 cm-1. The differences between the Raman spectra of normal and transformed cells include the ratio of the 1450 cm-1/1650 cm-1 peaks and the relative magnitudes of the peaks at 1181 cm-1, 1191 cm-1, 1225 cm-1, 1263 cm -1, 1300 cm-1, 1336 cm-1, 1477 cm-1, 1494 cm-1, and 1695 cm -1. Previous Raman spectroscopic studies of biological cells have shown that the magnitude of the Raman signal decreases over time, indicating sample damage. Cells exposed to laser excitation at similar power

  19. UV Resonant Raman Spectrometer with Multi-Line Laser Excitation

    Science.gov (United States)

    Lambert, James L.; Kohel, James M.; Kirby, James P.; Morookian, John Michael; Pelletier, Michael J.

    2013-01-01

    A Raman spectrometer employs two or more UV (ultraviolet) laser wavel engths to generate UV resonant Raman (UVRR) spectra in organic sampl es. Resonant Raman scattering results when the laser excitation is n ear an electronic transition of a molecule, and the enhancement of R aman signals can be several orders of magnitude. In addition, the Ra man cross-section is inversely proportional to the fourth power of t he wavelength, so the UV Raman emission is increased by another fact or of 16, or greater, over visible Raman emissions. The Raman-scatter ed light is collected using a high-resolution broadband spectrograph . Further suppression of the Rayleigh-scattered laser light is provi ded by custom UV notch filters.

  20. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  1. [Research on Identification and Determination of Pesticides in Apples Using Raman Spectroscopy].

    Science.gov (United States)

    Zhai, Chen; Peng, Yan-kun; Li, Yong-yu; Dhakal, Sagar; Xu, Tian-feng; Guo, Lang-hua

    2015-08-01

    Raman spectroscopy combined with chemometric methods has been thought to an efficient method for identification and determination of pesticide residues in fruits and vegetables. In the present research, a rapid and nondestructive method was proposed and testified based on self-developed Raman system for the identification and determination of deltamethrin and acetamiprid remaining in apple. The peaks of Raman spectra at 574 and 843 cm(-1) can be used to identify deltamethrin and acetamiprid, respectively, the characteristic peaks of deltamethrin and acetamiprid were still visible when the concentrations of the two pesticides were 0.78 and 0.15 mg · kg(-1) in apples samples, respectively. Calibration models of pesticide content were developed by partial least square (PLS) algorithm with different spectra pretreatment methods (Savitzky-Golay smoothing, first derivative transformation, second derivative transformation, baseline calibration, standard normal variable transformation). The baseline calibration methods by 8th order polynomial fitting gave the best results. For deltamethrin, the obtained prediction coefficient (Rp) value from PLS model for the results of prediction and gas chromatography measurement was 0.94; and the root mean square error of prediction (RMSEP) was 0.55 mg · kg(-1). The values of Rp and RMSEP were respective 0.85 and 0.12 mg · kg(-1) for acetamiprid. According to the detect performance, applying Raman technology in the nondestructive determination of pesticide residuals in apples is feasible. In consideration of that it needs no pretreatment before spectra collection and causes no damage to sample, this technology can be used in detection department, fruit and vegetable processing enterprises, supermarket, and vegetable market. The result of this research is promising for development of industrially feasible technology for rapid, nondestructive and real time detection of different types of pesticide with its concentration in apples. This

  2. OPTIMIZATION OF RAMAN SPECTROSCOPY FOR SPECIATION OF ORGANICS IN WATER

    Science.gov (United States)

    We describe herein a method for determining constants for simultaneously occurring, site-specific "microequilibria" (as with tautomers) for organics in water. The method is based in part on modeling temperature-variant Raman spectra according to the van't Hoff equation. Spectra a...

  3. Lanthanum trilactate: Vibrational spectroscopic study - infrared/Raman spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Švecová, M.; Novák, Vít; Bartůněk, V.; Člupek, M.

    2016-01-01

    Roč. 87, Nov (2016), s. 123-128 ISSN 0924-2031 Institutional support: RVO:61388963 Keywords : lanthanum trilactate * tris(2-hydroxypropanoato-O1,O2) * lanthanum tris[2-(hydroxy-kappa O)propanoato-kappa O] * Raman spectra * infrared spectra * DFT Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.740, year: 2016

  4. Interpretation of the Raman spectra of the glassy states of Si{sub x}S{sub 1−x} and Si{sub x}Se{sub 1−x}

    Energy Technology Data Exchange (ETDEWEB)

    Devi, V. Radhika [M.L.R. Institute of Technology, Affiliated to Jawaharlal Nehru Technological University, Dundigal, Hyderabad 500043 (India); Zabidi, Noriza Ahmad [Department of Physics, Centre for Defence Foundation Studies, National Defence University of Malaysia, Kem Sungai Besi, Kuala Lumpur 57000 (Malaysia); Shrivastava, Keshav N., E-mail: keshav1001@yahoo.com [School of Physics, University of Hyderabad, Hyderabad 50046 (India); Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2013-09-16

    We use the density-functional theory to make models of Si{sub x}S{sub y} and Si{sub x}Se{sub y} for the values of x,y = 1–6. The vibrational frequencies are calculated for each model. The stable clusters are selected on the basis of positive vibrational frequencies. In the case of Si{sub x}S{sub 1−x}, the values of the vibrational frequencies calculated from the first principles for Si{sub 2}S(triangular)cluster of atoms, 364.1 cm{sup −1} and 380.8 cm{sup −1}, agree with the experimentally measured values of 367 cm{sup −1} and 381 cm{sup −1}, indicating that Si{sub 2}S clusters occur in the glassy state of SiS. The calculated values of the vibrational frequencies of SiSe{sub 4} (pyramidal) which agree with the experimental Raman frequencies of glassy Si{sub x}Se{sub 1−x} are 114, 166 and 361 cm{sup −1}. The calculated values for Si{sub 2}Se{sub 4} (bipyramidal) which agree with the experimental data of Si{sub x}Se{sub 1−x} are 166 and 464 cm{sup −1}. In Si{sub 4}Se (pyramidal) the values 246 and 304 cm{sup −1} agree with the measured values. In Si{sub 4}Se{sub 2} (bipyramidal), the calculated values 162, 196 and 304 cm{sup −1} agree with the measured values. The calculated values of 473 cm{sup −1} for Si{sub 6}Se{sub 2} (bipyramidal) also agree with the experimentally measured values. We thus find that pyramidal structures are present in the amorphous Si{sub x}Se{sub 1−x} glassy state. - Highlights: • A first principles calculation is performed to calculate the vibrational frequencies. • The calculated frequencies of clusters agree with measured Raman values. • The structures, bond lengths and symmetries are determined. • The importance of Jahn–Teller effect in SiS and in SiSe is clearly seen. • The clusters of SiS and SiSe are found to stabilize in different symmetries.

  5. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models

    Science.gov (United States)

    Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.

    2017-08-01

    We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments

  6. Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Prasana, E-mail: prasanasahoo@gmail.com [Indira Gandhi Center for Atomic Research, Surface and Nanoscience Division (India); Murthy, P. Sriyutha [Bhabha Atomic Research Centre, Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division (India); Dhara, S., E-mail: dhara@igcar.gov.in [Indira Gandhi Center for Atomic Research, Surface and Nanoscience Division (India); Venugopalan, V. P. [Bhabha Atomic Research Centre, Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division (India); Das, A.; Tyagi, A. K. [Indira Gandhi Center for Atomic Research, Surface and Nanoscience Division (India)

    2013-08-15

    Understanding the mechanism of nanoparticle (NP) induced toxicity in microbes is of potential importance to a variety of disciplines including disease diagnostics, biomedical implants, and environmental analysis. In this context, toxicity to bacterial cells and inhibition of biofilm formation by GaN NPs and their functional derivatives have been investigated against gram positive and gram negative bacterial species down to single cellular level. High levels of inhibition of biofilm formation (>80 %) was observed on treatments with GaN NPs at sub-micro molar concentrations. These results were substantiated with morphological features investigated with field emission scanning electron microscope, and the observed changes in vibrational modes of microbial cells using Raman spectroscopy. Raman spectra provided molecular interpretation of cell damage by registering signatures of molecular vibrations of individual living microbial cells and mapping the interplay of proteins at the cell membrane. As compared to the untreated cells, Raman spectra of NP-treated cells showed an increase in the intensities of characteristic protein bands, which confirmed membrane damage and subsequent release of cellular contents outside the cells. Raman spectral mapping at single cellular level can facilitate understanding of the mechanistic aspect of toxicity of GaN NPs. The effect may be correlated to passive diffusion causing mechanical damage to the membrane or ingress of Ga{sup 3+} (ionic radius {approx}0.076 nm) which can potentially interfere with bacterial metabolism, as it resembles Fe{sup 2+} (ionic radius {approx}0.077 nm), which is essential for energy metabolism.

  7. Probing the cellular damage in bacteria induced by GaN nanoparticles using confocal laser Raman spectroscopy

    International Nuclear Information System (INIS)

    Sahoo, Prasana; Murthy, P. Sriyutha; Dhara, S.; Venugopalan, V. P.; Das, A.; Tyagi, A. K.

    2013-01-01

    Understanding the mechanism of nanoparticle (NP) induced toxicity in microbes is of potential importance to a variety of disciplines including disease diagnostics, biomedical implants, and environmental analysis. In this context, toxicity to bacterial cells and inhibition of biofilm formation by GaN NPs and their functional derivatives have been investigated against gram positive and gram negative bacterial species down to single cellular level. High levels of inhibition of biofilm formation (>80 %) was observed on treatments with GaN NPs at sub-micro molar concentrations. These results were substantiated with morphological features investigated with field emission scanning electron microscope, and the observed changes in vibrational modes of microbial cells using Raman spectroscopy. Raman spectra provided molecular interpretation of cell damage by registering signatures of molecular vibrations of individual living microbial cells and mapping the interplay of proteins at the cell membrane. As compared to the untreated cells, Raman spectra of NP-treated cells showed an increase in the intensities of characteristic protein bands, which confirmed membrane damage and subsequent release of cellular contents outside the cells. Raman spectral mapping at single cellular level can facilitate understanding of the mechanistic aspect of toxicity of GaN NPs. The effect may be correlated to passive diffusion causing mechanical damage to the membrane or ingress of Ga 3+ (ionic radius ∼0.076 nm) which can potentially interfere with bacterial metabolism, as it resembles Fe 2+ (ionic radius ∼0.077 nm), which is essential for energy metabolism

  8. Polarization Sensitive Coherent Raman Measurements of DCVJ

    Science.gov (United States)

    Anderson, Josiah; Cooper, Nathan; Lawhead, Carlos; Shiver, Tegan; Ujj, Laszlo

    2014-03-01

    Coherent Raman spectroscopy which recently developed into coherent Raman microscopy has been used to produce label free imaging of thin layers of material and find the spatial distributions of certain chemicals within samples, e.g. cancer cells.(1) Not all aspects of coherent scattering have been used for imaging. Among those for example are special polarization sensitive measurements. Therefore we have investigated the properties of polarization sensitive CARS spectra of a highly fluorescent molecule, DCVJ.(2) Spectra has been recorded by using parallel polarized and perpendicular polarized excitations. A special polarization arrangement was developed to suppress the non-resonant background scattering from the sample. These results can be used to improve the imaging properties of a coherent Raman microscope in the future. This is the first time coherent Raman polarization sensitive measurements have been used to characterize the vibrational modes of DCVJ. 1: K. I. Gutkowski, et al., ``Fluorescence of dicyanovinyl julolidine in a room temperature ionic liquid '' Chemical Physics Letters 426 (2006) 329 - 333 2: Fouad El-Diasty, ``Coherent anti-Stokes Raman scattering: Spectroscopy and microscopy'' Vibrational Spectroscopy 55 (2011) 1-37

  9. Etude par spectrométrie infrarouge et Raman de la pyrimidone-2 et de son chlorhydrate (chlorure d'oxo-2 pyrimidinium)

    Science.gov (United States)

    Picquenard, Eric; Lautié, Alain

    The i.r. and Raman spectra of crystalline 2-pyrimidone, its hydrochloride and corresponding N-deuterated derivatives have been investigated between 4000 and 200 cm -. Aqueous solutions were also examined. An assignment for all intramolecular fundamentals is given. Effects of the protonation on the C=O group and on the ring are discussed as well as strength and characteristics of the hydrogen bonds NH … O and NH … Cl -.

  10. Crystallization of ikaite and its pseudomorphic transformation into calcite: Raman spectroscopy evidence

    Science.gov (United States)

    Sánchez-Pastor, N.; Oehlerich, Markus; Astilleros, José Manuel; Kaliwoda, Melanie; Mayr, Christoph C.; Fernández-Díaz, Lurdes; Schmahl, Wolfgang W.

    2016-02-01

    Ikaite (CaCO3·6H2O) is a metastable phase that crystallizes in nature from alkaline waters with high phosphate concentrations at temperatures close to 0 °C. This mineral transforms into anhydrous calcium carbonate polymorphs when temperatures rise or when exposed to atmospheric conditions. During the transformation in some cases the shape of the original ikaite crystal is preserved as a pseudomorph. Pseudomorphs after ikaite are considered as a valuable paleoclimatic indicator. In this work we conducted ikaite crystal growth experiments at near-freezing temperatures using the single diffusion silica gel technique, prepared with a natural aqueous solution from the polymictic lake Laguna Potrok Aike (51°57‧S, 70°23‧W) in Patagonia, Argentina. The ikaite crystals were recovered from the gels and the transformation reactions were monitored by in situ Raman spectroscopy at two different temperatures. The first spectra collected showed the characteristic features of ikaite. In successive spectra new bands at 1072, 1081 and 1086 cm-1 and changes in the intensity of bands corresponding to the OH modes were observed. These changes in the Raman spectra were interpreted as corresponding to intermediate stages of the transformation of ikaite into calcite and/or vaterite. After a few hours, the characteristics of the Raman spectrum were consistent with those of calcite. While ikaite directly transforms into calcite at 10 °C in contact with air, at 20 °C this transformation involves the formation of intermediate, metastable vaterite. During the whole process the external shape of ikaite crystals was preserved. Therefore, this transformation showed the typical characteristics of a pseudomorphic mineral replacement, involving the generation of a large amount of porosity to account for the large difference in molar volumes between ikaite and calcite. A mechanism involving the coupled dissolution of ikaite and crystallization of calcite/vaterite is proposed for this

  11. Introductory Raman spectroscopy

    CERN Document Server

    Ferraro, John R

    2012-01-01

    Praise for Introductory Raman Spectroscopy Highlights basic theory, which is treated in an introductory fashion Presents state-of-the-art instrumentation Discusses new applications of Raman spectroscopy in industry and research.

  12. Detecting changes during pregnancy with Raman spectroscopy

    Science.gov (United States)

    Vargis, Elizabeth; Robertson, Kesha; Al-Hendy, Ayman; Reese, Jeff; Mahadevan-Jansen, Anita

    2010-02-01

    Preterm labor is the second leading cause of neonatal mortality and leads to a myriad of complications like delayed development and cerebral palsy. Currently, there is no way to accurately predict preterm labor, making its prevention and treatment virtually impossible. While there are some at-risk patients, over half of all preterm births do not fall into any high-risk category. This study seeks to predict and prevent preterm labor by using Raman spectroscopy to detect changes in the cervix during pregnancy. Since Raman spectroscopy has been used to detect cancers in vivo in organs like the cervix and skin, it follows that spectra will change over the course of pregnancy. Previous studies have shown that fluorescence decreased during pregnancy and increased during post-partum exams to pre-pregnancy levels. We believe significant changes will occur in the Raman spectra obtained during the course of pregnancy. In this study, Raman spectra from the cervix of pregnant mice and women will be acquired. Specific changes that occur due to cervical softening or changes in hormonal levels will be observed to understand the likelihood that a female mouse or a woman will enter labor.

  13. A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation.

    Science.gov (United States)

    Sharma, Shiv K; Misra, Anupam K; Lucey, Paul G; Lentz, Rachel C F

    2009-08-01

    The authors have developed an integrated remote Raman and laser-induced breakdown spectroscopy (LIBS) system for measuring both the Raman and LIBS spectra of minerals with a single 532 nm laser line of 35 mJ/pulse and 20 Hz. The instrument has been used for analyzing both Raman and LIBS spectra of carbonates, sulfates, hydrous and anhydrous silicates, and iron oxide minerals in air. These experiments demonstrate that by focusing a frequency-doubled 532 nm Nd:YAG pulsed laser beam with a 10x beam expander to a 529-microm diameter spot on a mineral surface located at 9 m, it is possible to measure simultaneously both the remote Raman and LIBS spectra of calcite, gypsum and olivine by adjusting the laser power electronically. The spectra of calcite, gypsum, and olivine contain fingerprint Raman lines; however, it was not possible to measure the remote Raman spectra of magnetite and hematite at 9 m because of strong absorption of 532 nm laser radiation and low intensities of Raman lines from these minerals. The remote LIBS spectra of both magnetite and hematite contain common iron emission lines but show difference in the minor amount of Li present in these two minerals. Remote Raman and LIBS spectra of a number of carbonates, sulfates, feldspars and phyllosilicates at a distance of 9 m were measured with a 532-nm laser operating at 35 mJ/pulse and by changing photon flux density at the sample by varying the spot diameter from 10 mm for Raman to 530 microm for LIBS measurements. The complementary nature of these spectra is highlighted and discussed. The combined Raman and LIBS system can also be re-configured to perform micro-Raman and micro-LIBS analyses, which have applications in trace/residue analysis and analysis of very small samples in the nano-gram range.

  14. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  15. In situ Raman Spectroscopy of Oxide Films on Zirconium Alloy in Simulated PWR Primary Water Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Ho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun [UNIST, Ulsan (Korea, Republic of)

    2016-05-15

    The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pretransition zirconium oxide in high-temperature water chemistry. In this work, Raman spectroscopy was used for in situ investigations for characterizing the phase of zirconium oxide. In situ Raman spectroscopy is a well-suited technique for investigating in detail the characteristics of oxide films in a high-temperature corrosion environment. In previous studies, an in situ Raman system was developed for investigating the oxides on nickel-based alloys and low alloy steels in high-temperature water environment. Also, the early stage oxidation behavior of zirconium alloy with different dissolved hydrogen concentration environments in high temperature water was treated in the authors' previous study. In this study, a specific zirconium alloy was oxidized and investigated with in situ Raman spectroscopy for 100 d oxidation, which is close to the first transition time of the zirconium alloy oxidation. The ex situ investigation methods such as transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS) were used to further characterize the zirconium oxide structure. As oxidation time increased, the Raman peaks of tetragonal zirconium oxide were merged or became weaker. However, the monoclinic zirconium oxide peaks became distinct. The tetragonal zirconium oxide was just found near the O/M interface and this could explain the Raman spectra difference between the 30 d result and others.

  16. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  17. Depth profiling of calcifications in breast tissue using picosecond Kerr-gated Raman spectroscopy.

    Science.gov (United States)

    Baker, Rebecca; Matousek, Pavel; Ronayne, Kate Louise; Parker, Anthony William; Rogers, Keith; Stone, Nicholas

    2007-01-01

    Breast calcifications are found in both benign and malignant lesions and their composition can indicate the disease state. Calcium oxalate (dihydrate) (COD) is associated with benign lesions, however calcium hydroxyapatite (HAP) is found mainly in proliferative lesions including carcinoma. The diagnostic practices of mammography and histopathology examine the morphology of the specimen. They can not reliably distinguish between the two types of calcification, which may indicate the presence of a cancerous lesion during mammography. We demonstrate for the first time that Kerr-gated Raman spectroscopy is capable of non-destructive probing of sufficient biochemical information from calcifications buried within tissue, and this information can potentially be used as a first step in identifying the type of lesion. The method uses a picosecond pulsed laser combined with fast temporal gating of Raman scattered light to enable spectra to be collected from a specific depth within scattering media by collecting signals emerging from the sample at a given time delay following the laser pulse. Spectra characteristic of both HAP and COD were obtained at depths of up to 0.96 mm, in both chicken breast and fatty tissue; and normal and cancerous human breast by utilising different time delays. This presents great potential for the use of Raman spectroscopy as an adjunct to mammography in the early diagnosis of breast cancer.

  18. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum

    Science.gov (United States)

    Tugarova, Anna V.; Mamchenkova, Polina V.; Dyatlova, Yulia A.; Kamnev, Alexander A.

    2018-03-01

    Vibrational (Fourier transform infrared (FTIR) and Raman) spectroscopic techniques can provide unique molecular-level information on the structural and compositional characteristics of complicated biological objects. Thus, their applications in microbiology and related fields are steadily increasing. In this communication, biogenic selenium nanoparticles (Se NPs) were obtained via selenite (SeO32-) reduction by the bacterium Azospirillum thiophilum (strain VKM B-2513) for the first time, using an original methodology for obtaining extracellular NPs. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed the Se NPs to have average diameters within 160-250 nm; their zeta potential was measured to be minus 18.5 mV. Transmission FTIR spectra of the Se NPs separated from bacterial cells showed typical proteinacious, polysaccharide and lipid-related bands, in line with TEM data showing a thin layer covering the Se NPs surface. Raman spectra of dried Se NPs layer in the low-frequency region (under 500 cm-1 down to 150 cm-1) showed a single very strong band with a maximum at 250 cm-1 which, in line with its increased width (ca. 30 cm-1 at half intensity), can be attributed to amorphous elementary Se. Thus, a combination of FTIR and Raman spectroscopic approaches is highly informative in non-destructive analysis of structural and compositional properties of biogenic Se NPs.

  19. Ultraviolet resonance Raman studies of N-methylacetamide

    International Nuclear Information System (INIS)

    Mayne, L.C.; Ziegler, L.D.; Hudson, B.

    1985-01-01

    Resonance Raman spectra of the simple peptide model compound N-methylacetamide have been obtained with 218- and 200-nm laser radiation. A large enhancement of the amide II vibration is observed relative to that of Raman spectra obtained with visible radiation. Replacement of the amide hydrogen by deuterium results in a spectrum with most of its intensity in the amide II' mode. Excitation of this deuterated species with 200-nm radiation results in intensity in the overtones of this modes, a feature characteristic of resonance enhanced spectra. Isotopic substitution of the amide carbon and nitrogen by 13 C and 15 N results in a spectral shift to lower frequency by nearly the amount expected for a normal mode consisting primarily of the motion of the amide C and N atoms. These results, taken together, demonstrate that the geometry change of N-methylacetamide upon electronic excitation to the π-π/sup */ state is dominated by a change in the C-N bond length. Studies of mixtures of the deuterio and protio forms show that a significant normal mode rotation occurs on isotopic substitution such that the amide II' of the deuterio form becomes approximately equally distributed between the amide II and III vibrations of the protio form. The amide I and I' vibrations are very diffuse in aqueous solutions at the dilutions used. These bands become sharp in acetonitrile. This behavior is interpreted in terms of a range of frequencies for this vibration due to a distribution of hydrogen-bonded species. 23 references, 5 figures

  20. Blood proteins analysis by Raman spectroscopy method

    Science.gov (United States)

    Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.

    2016-04-01

    This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.