Dynamics of warm Chaplygin gas inflationary models with quartic potential
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul; Rani, Shamaila [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Butt, Sadaf [Lahore Leads University, Department of Mathematics, Lahore (Pakistan); Kinnaird College for Women, Department of Mathematics, Lahore (Pakistan)
2016-05-15
Warm inflationary universe models in the context of the generalized Chaplygin gas, the modified Chaplygin gas, and the generalized cosmic Chaplygin gas are being studied. The dissipative coefficient of the form Γ ∝ T, and the weak and the strong dissipative regimes are being considered. We use the quartic potential, (λ{sub *}φ{sup 4})/(4), which is ruled out by current data in cold inflation but in our models by analysis it is seen to be in agreement with the WMAP9 and the latest Planck data. In these scenarios, the power spectrum, the spectral index, and the tensor-to-scalar ratio are being examined in the slow-roll approximation. We show the dependence of the tensor-scalar ratio r on the spectral index n{sub s} and observe that the range of the tensor-scalar ratio is r < 0.05 in the generalized Chaplygin gas, r < 0.15 in the modified Chaplygin gas, and r < 0.12 in the generalized cosmic Chaplygin gas models. Our results are in agreement with recent observational data like WMAP9 and the latest Planck data. (orig.)
Viscous dissipative Chaplygin gas dominated homogenous and isotropic cosmological models
Pun, C S J; Mak, M K; Kovács, Z; Szabó, G M; Harko, T
2008-01-01
The generalized Chaplygin gas, which interpolates between a high density relativistic era and a non-relativistic matter phase, is a popular dark energy candidate. We consider a generalization of the Chaplygin gas model, by assuming the presence of a bulk viscous type dissipative term in the effective thermodynamic pressure of the gas. The dissipative effects are described by using the truncated Israel-Stewart model, with the bulk viscosity coefficient and the relaxation time functions of the energy density only. The corresponding cosmological dynamics of the bulk viscous Chaplygin gas dominated universe is considered in detail for a flat homogeneous isotropic Friedmann-Robertson-Walker geometry. For different values of the model parameters we consider the evolution of the cosmological parameters (scale factor, energy density, Hubble function, deceleration parameter and luminosity distance, respectively), by using both analytical and numerical methods. In the large time limit the model describes an acceleratin...
Intermediate-generalized Chaplygin gas inflationary universe model
Energy Technology Data Exchange (ETDEWEB)
Herrera, Ramon; Olivares, Marco; Videla, Nelson [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Casilla, Valparaiso (Chile)
2013-01-15
An intermediate inflationary universe model in the context of a generalized Chaplygin gas is considered. For the matter we consider two different energy densities; a standard scalar field and a tachyon field, respectively. In general, we discuss the conditions of an inflationary epoch for these models. We also, use recent astronomical observations from Wilkinson Microwave Anisotropy Probe seven year data for constraining the parameters appearing in our models. (orig.)
Limits from Weak Gravity Conjecture on Chaplygin-Gas-Type Models
Institute of Scientific and Technical Information of China (English)
WU Xing; ZHU Zong-Hong
2008-01-01
@@ The weak gravity conjecture is proposed as a criterion to distinguish the landscape from the swampland in string theory. As an application in cosmology of this conjecture, we use it to impose theoretical constraint on parameters of the Chaplygin-gas-type models. Our analysis indicates that the Chaplygin-gas-type models realized in quintessence field are in the swampland.
Modified Chaplygin gas inspired inflationary model in braneworld scenario
Jawad, Abdul; Rani, Shamaila; Mohsaneen, Sidra
2016-05-01
We investigate the modified Chaplygin gas inspired inflationary regime in the brane-world framework in the presence of standard and tachyon scalar fields. We consider the intermediate inflationary scenario and construct the slow-roll parameters, e-folding numbers, spectral index, scalar and tensor power spectra, tensor to scalar ratio for both scalar field models. We develop the ns - N and r - N planes and concluded that ns˜eq96^{+0.5}_{-0.5} and r≤0.0016 for N˜eq60^{+5}_{-5} in both cases of scalar field models as well as for all values of m. These constraints are consistent with observational data such as WMAP7, WMAP9 and Planck data.
First cosmological constraints on the Superfluid Chaplygin gas model
Lazkoz, Ruth; Salzano, Vincenzo
2012-01-01
In this work we set observational constraints of the Superfluid Chaplygin gas model, which gives a unified description of the dark sector of the Universe as a Bose-Einstein condensate (BEC) that behaves as dark energy (DE) while it is in the ground state and as dark matter (DM) when it is in the excited state. We first show and perform the various steps leading to a form of the equations suitable for the observational tests to be carried out. Then, by using a Markov Chain Monte Carlo (MCMC) code, we constrain the model with a sample of cosmology-independent long gamma-ray bursts (LGRBs) calibrated using their Type I Fundamental Plane, as well as the Union2.1 set and observational Hubble parameter data. In this analysis, using our cosmological constraints, we sketch the effective equation of state parameter and deceleration parameter, and we also obtain the redshift of the transition from deceleration to acceleration: $z_t$.
Viscous Chaplygin Gas Models as a Spherical Top-Hat Collapsing Fluids
Jawad, Abdul
2016-01-01
We study the spherical top-hat collapse in Einstein gravity and loop quantum cosmology by taking the non-linear evolution of viscous modified variable chaplygin gas and viscous generalized cosmic chaplygin gas. We calculate the equation of state parameter, square speed of sound, perturbed equation of state parameter, perturbed square speed of sound, density contrast and divergence of peculiar velocity in perturbed region and discussed their behavior. It is observed that both chaplygin gas models support the spherical collapse in Einstein as well as loop quantum cosmology because density contrast remains positive in both cases and the perturbed equation of state parameter remains positive at the present epoch as well as near future. It is remarked here that these parameters provide the consistence results for both chaplygin gas models in both gravities.
Observational constraints on the new generalized Chaplygin gas model
Institute of Scientific and Technical Information of China (English)
Kai Liao; Yu Pan; Zong-Hong Zhu
2013-01-01
We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model.Using the Markov Chain Monte Carlo method,we constrain the NGCG model with type Ⅰa supernovae from the Union2 set (557 data),the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample,the cosmic microwave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results,newly revised data on H(z),as well as a value of θBAO (z =0.55) =(3.90° ± 0.38°) for the angular BAO scale.The constraint results for the NGCG model are ωx=-1.0510(-0.1685)(+0.1563)(1σ)(-0.2398)(+0.2226)(2σ),η=1.0117(-0.0502)(+0.0469)(1σ)(-0.0716)(+0.0693)(2σ) and Ωx=0.7297(-0.0276)(+0.0229)(1σ)(-0.0402)(+0.0329)(2σ),which give a rather stringent constraint.From the results,we can see that a phantom model is slightly favored and the proba-bility that energy transfers from dark matter to dark energy is a little larger than the inverse.
Observational constraints on new generalized Chaplygin gas model
Liao, Kai; Zhu, Zong-Hong
2012-01-01
We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo (MCMC) method, we constrain the NGCG model with the type Ia supernovae (SNe Ia) from Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey (SDSS) data release 7 (DR7) galaxy sample, the cosmic microwave background (CMB) observation from the 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) results, the newly revised $H(z)$ data, as well as a value of $\\theta_{BAO} (z=0.55) = (3.90 \\pm 0.38)^{\\circ}$ for the angular BAO scale. The constraint results for NGCG model are $\\omega_X = -1.0510_{-0.1685}^{+0.1563}(1\\sigma)_{-0.2398}^{+0.2226}(2\\sigma)$, $\\eta = 1.0117_{-0.0502}^{+0.0469}(1\\sigma)_{-0.0716}^{+0.0693}(2\\sigma)$, and $\\Omega_X = 0.7297_{-0.0276}^{+0.0229}(1\\sigma)_{-0.0402}^{+0.0329}(2\\sigma)$, which give a rather stringent constraint. From the results, we can see a phantom model ...
Modified Chaplygin gas as an interacting holographic dark energy model
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The modified Chaplygin gas (MCG) as an interacting model of holographic dark energy in which dark energy and dark matter are coupled together is investigated in this paper. Concretely, by studying the evolutions of related cosmological quantities such as density parameter Ω, equation of state w, deceleration parameter q and transition redshift zT, we find the evolution of the universe is from deceleration to acceleration, their present values are consistent with the latest observations, and the equation of state of holographic dark energy can cross the phantom divide w = -1. Furthermore, we put emphasis upon the geometrical diagnostics for our model, i.e., the statefinder and Om diagnostics. By illustrating the evolutionary trajectories in r - s, r - q, w -w and Om planes, we find that the holographic constant c and the coupling constant b play very important roles in the holographic dark energy (HDE) model. In addition, we also plot the LCDM horizontal lines in Om diagrams, and show the discrimination between the HDE and LCDM models.
Constraints on gen4eralized Chaplygin gas model including gamma-ray bursts
Institute of Scientific and Technical Information of China (English)
Fa-Yin Wang; Zi-Gao Dai; Shi Qi
2009-01-01
Generalized Chaplygin gas (whose equation of state is PGCG = -A/PGCGα) was proposed as a candidate for unification of dark energy and dark matter. We inves-tigate constraints on this model with the latest observed data. We test the model with type-Ia supernovae (SNe Ia), cosmic microwave background (CMB) anisotropy, X-ray gas mass fractions in clusters, and gamma-ray bursts (GRBs). We calibrate the GRB lu-minosity relations without assuming any cosmological models using SNe Ia. We show that GRBs can extend the Hubble diagram to higher redshifts (z> 6). The GRB Hubble diagram is well behaved and delineates the shape of the Hubble diagram well. We mea-sure As≡A/PGCG,0α+1=0.68-0.08+0.04 (where PGCG,0 is the energy density today) and α=-0.22-0.13+0.15at the 1σconfidence level using all the datasets. Our results rule out the standard Chaplygin gas model (α = 1) at the 3a confidence level. The ACDM is allowed at the 2or confidence level. We find that acceleration could have started at a redshift of z ～ 0.70. The concordance of the generalized Chaplygin gas model with the age estimate of an old high redshift quasar is found. In addition, we show that GRBs can break the degeneracy between the generalized Chaplygin gas model and the XCDM model.
Irreversible Processes in a Universe modelled as a mixture of a Chaplygin gas and radiation
Kremer, G M
2003-01-01
The evolution of a Universe modelled as a mixture of a Chaplygin gas and radiation is determined by taking into account irreversible processes. This mixture could interpolate periods of a radiation dominated, a matter dominated and a cosmological constant dominated Universe. The results of a Universe modelled by this mixture are compared with the results of a mixture whose constituents are radiation and quintessence. Among other results it is shown that: (a) for both models there exists a period of a past deceleration with a present acceleration; (b) the slope of the acceleration of the Universe modelled as a mixture of a Chaplygin gas with radiation is more pronounced than that modelled as a mixture of quintessence and radiation; (c) the energy density of the Chaplygin gas tends to a constant value at earlier times than the energy density of quintessence does; (d) the energy density of radiation for both mixtures coincide and decay more rapidly than the energy densities of the Chaplygin gas and of quintessen...
Cosmological constraints on generalized Chaplygin gas model: Markov Chain Monte Carlo approach
Xu, Lixin; Lu, Jianbo
2010-01-01
We use the Markov Chain Monte Carlo method to investigate a global constraints on the generalized Chaplygin gas (GCG) model as the unification of dark matter and dark energy from the latest observational data: the Constitution dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a non-flat universe, the constraint results for GCG model are, $\\Ome...
Fitting the Supernova Type Ia Data with the Chaplygin Gas
Fabris, J C; De Souza, P E
2002-01-01
The supernova type Ia observational data are fitted using a model with cold dark matter and the Chaplygin gas. The Chaplygin gas, which is characterized by a negative pressure varying with the inverse of density, represents in this model the dark energy responsible for the accelaration of the universe. The fitting depends essentially on four parameters: the Hubble constant, the velocity of sound of the Chaplygin gas and the fraction density of the Chaplygin gas and the cold dark matter. The best fitting model is obtained with H_0 = 65 km/Mpc.s, $c_s^2 \\sim 0.92c$ and Omega_{c0} = 1, Omega_{m0} = 0, that is, a universe completely dominated by the Chaplygin gas. This reinforces the possibility that the Chaplygin gas may unify dark matter and dark energy, as it has already been claimed in the literature.
Constraints on the generalized Chaplygin gas model from Gamma-ray bursts
Energy Technology Data Exchange (ETDEWEB)
Freitas, R.C., E-mail: rc_freitas@terra.com.br [Grupo de Gravitacao e Cosmologia, Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910, Vitoria, Espirito Santo (Brazil); Goncalves, S.V.B., E-mail: sergio.vitorino@pq.cnpq.br [Grupo de Gravitacao e Cosmologia, Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910, Vitoria, Espirito Santo (Brazil); Velten, H.E.S., E-mail: velten@cce.ufes.br [Grupo de Gravitacao e Cosmologia, Departamento de Fisica, Universidade Federal do Espirito Santo, 29075-910, Vitoria, Espirito Santo (Brazil); Fakultaet fuer Physik, Universitaet Bielefeld, Bielefeld 33615 (Germany)
2011-09-14
We study the generalized Chaplygin gas model (GCGM) using Gamma-ray bursts as cosmological probes. In order to avoid the so-called circularity problem we use cosmology-independent data set and Bayesian statistics to impose constraints on the model parameters. We observe that a negative value for the parameter {alpha} is favoured in a flat Universe and the estimated value of the parameter H{sub 0} is lower than that found in literature.
Does Chaplygin gas have salvation?
Campos, Juliano Pereira; Perez, Rafael; Piattella, Oliver F; Velten, Hermano
2012-01-01
We investigate the unification scenario provided by the generalised Chaplygin gas model (a perfect fluid characterized by an equation of state p = -A/\\rho^{\\alpha}). Our concerns lie with a possible tension existing between background kinematic tests and those related to the evolution of small perturbations. We analyse data from the observation of the differential age of the universe, type Ia supernovae, baryon acoustic oscillations and the position of the first peak of the angular spectrum of the cosmic background radiation. We show that these tests favour negative values of the parameter \\alpha: we find \\alpha = -0.089^{+0.161}_{-0.128} at the 2\\sigma level. These would correspond to negative values of the square speed of sound which are unacceptable from the point of view of structure formation. We discuss a possible solution to this problem, when the generalised Chaplygin gas is framed in the modified theory of gravity proposed by Rastall. We show that a fluid description within this theory does not serve...
Lu, Jianbo; Xu, Lixin; Wu, Yabo; Liu, Molin
2011-01-01
We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, $\\Omega_{b}h^{2}=0...
Warm intermediate inflationary Universe model in the presence of a generalized Chaplygin gas
Energy Technology Data Exchange (ETDEWEB)
Herrera, Ramon [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Videla, Nelson [Universidad de Chile, Departamento de Fisica, FCFM, Santiago (Chile); Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile)
2016-01-15
A warm intermediate inflationary model in the context of generalized Chaplygin gas is investigated. We study this model in the weak and strong dissipative regimes, considering a generalized form of the dissipative coefficient Γ = Γ(T,φ), and we describe the inflationary dynamics in the slow-roll approximation. We find constraints on the parameters in our model considering the Planck 2015 data, together with the condition for warm inflation T > H, and the conditions for the weak and strong dissipative regimes. (orig.)
Evolution of Holographic Dark Energy in Interacting Modified Chaplygin Gas Model
Institute of Scientific and Technical Information of China (English)
WANG Cong; WU Ya-Bo; LIU Fei
2009-01-01
We investigate the modified Chaplygin gas (MCG) with interaction between holographic dark energy proposed byb Li and dark matter. In this model, evolution of the universe is described in detail, which is from deceleration to acceleration. Specifically, the evolutions of related cosmological quantities such as density parameter, the equation of state of holographic dark energy, deceleration parameter and transition redshift are discussed. Moreover, we also give their present values which are consistent with the lately observations. Furthermore, the results given by us show such a model can accommodate a transition of the dark energy from a normal state wx > -1 to wx < -1 phantom regimes.
Effects of viscous pressure on warm inflationary generalized cosmic Chaplygin gas model
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Saleem, Rabia, E-mail: msharif.math@pu.edu.pk, E-mail: rabiasaleem1988@yahoo.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)
2014-12-01
This paper is devoted to study the effects of bulk viscous pressure on an inflationary generalized cosmic Chaplygin gas model using FRW background. The matter contents of the universe are assumed to be inflaton and imperfect fluid. We evaluate inflaton fields, potentials and entropy density for variable as well as constant dissipation and bulk viscous coefficients in weak as well as high dissipative regimes during intermediate era. In order to discuss inflationary perturbations, we evaluate entropy density, scalar (tensor) power spectra, their corresponding spectral indices, tensor-scalar ratio and running of spectral index in terms of inflaton which are constrained using recent Planck, WMAP7 and Bicep2 probes.
Cosmic Microwave Background Radiation Constraints on a Modified Chaplygin Gas Model
Institute of Scientific and Technical Information of China (English)
LIU Dao-Jun; LI Xin-Zhou
2005-01-01
@@ A modified Chaplygin gas model of unifying dark energy and dark matter with the exotic equation of state p = Bρ- A/ρα , which can also explain the recent expansion of the universe, is investigated by means of constraining the location of the peak of the cosmic microwave background radiation spectrum. We find that the result of CMBR measurements does not exclude the nonzero value of parameter B, but allows it in the range -0.35 (＜～) B (＜～) 0.025.
Analysis to the entangled states from an extended Chaplygin gas model
Meng, X H; Ren, J; Meng, Xin He; Hu, Ming Guang; Ren, Jie
2006-01-01
With considerations of the recently released WMAP year three and supernova legacy survey (SNLS) data set analysis that favors models similar to the $% \\Lambda CDM$ model by possibly mild fluctuations around the vacuum energy or the cosmological constant, we extend the original Chaplygin Gas model (ECG) via modifying the Chaplygin Gas equation of state by two parameters to describe an entangled mixture state from an available matter and the rest component (which can take the cosmological constant or dark energy as in the current cosmic stage, or `curvature-like' term, or radiation component in the early epoch, as various phases) coexistence. At low redshifts, the connection of the ECG model and the Born-infeld field is set up. As paradigms, we use the data coming from the recently released SNLS for the first year and also the famous 157 type Ia supernova (Ia SNe) gold dataset to constrain the model parameters. The restricted results demonstrate clearly how large the entangled degree or the ratio between the en...
Colistete, R C; Goncalves, S V B
2004-01-01
The type Ia supernovae (SNe Ia) observational data are used to estimate the parameters of a cosmological model with cold dark matter and the generalized Chaplygin gas model (GCGM). The GCGM depends essentially on five parameters: the Hubble constant, the parameter $\\bar{A}$ related to the velocity of the sound, the equation of state parameter $\\alpha$, the curvature of the Universe and the fraction density of the generalized Chaplygin gas (or the cold dark matter). The parameter $\\alpha$ is allowed to take negative values and to be greater than 1. The Bayesian parameter estimation yields $\\alpha = - 0.86^{+6.01}_{-0.15}$, $H_0 = 62.0^{+1.32}_{-1.42} km/Mpc.s$, $\\Omega _{k0}=-1.26_{-1.42}^{+1.32}$, $\\Omega_{m0} = 0.00^{+0.86}_{-0.00}$, $\\Omega_{c0} = 1.39^{+1.21}_{-1.25}$, $\\bar A =1.00^{+0.00}_{-0.39}$, $t_0 = 15.3^{+4.2}_{-3.2}$ and $q_0 = -0.80^{+0.86}_{-0.62}$, where $t_0$ is the age of the Universe and $q_0$ is the value of the deceleration parameter today. Our results indicate that a Universe completely ...
Cosmological Imprints of a Generalized Chaplygin Gas Model for the Early Universe
Energy Technology Data Exchange (ETDEWEB)
Bouhmadi-Lopez, Mariam; /Lisbon, CENTRA; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC; Liu, Yen-Wei; /Taiwan, Natl. Taiwan U.
2012-06-06
We propose a phenomenological model for the early universe where there is a smooth transition between an early quintessence phase and a radiation-dominated era. The matter content is modeled by an appropriately modified Chaplygin gas for the early universe. We constrain the model observationally by mapping the primordial power spectrum of the scalar perturbations to the latest data of WMAP7. We compute as well the spectrum of the primordial gravitational waves as would be measured today. We show that the high frequencies region of the spectrum depends on the free parameter of the model and most importantly this region of the spectrum can be within the reach of future gravitational waves detectors.
Chaplygin gas and effective description of inhomogeneous universe models in general relativity
Energy Technology Data Exchange (ETDEWEB)
Roy, Xavier; Buchert, Thomas, E-mail: roy@obs.univ-lyon1.f, E-mail: buchert@obs.univ-lyon1.f [Universite Lyon 1, Centre de Recherche Astrophysique de Lyon, CNRS UMR 5574, 9 avenue Charles Andre, F-69230 Saint-Genis-Laval (France)
2010-09-07
In the framework of spatially averaged inhomogeneous cosmologies in classical general relativity, effective Einstein equations govern the dynamics of averaged scalar variables in a scale-dependent way. A particular cosmology may be characterized by a cosmic equation of state, closing the hierarchy of effective equations. In this context a natural candidate is provided by the Chaplygin gas, standing for a unified description of dark energy and dark matter. In this paper, we suppose that the inhomogeneous properties of matter and geometry obey the Chaplygin equation of state. The most extreme interpretation assumes that both dark energy and dark matter are not included as additional sources, but are both manifestations of spatial geometrical properties. This feature is an important conceptual difference in comparison with the standard approach of a Friedmann-LemaItre-Robertson-Walker universe filled with dust and another fundamental field characterized by the Chaplygin equation of state. We finally discuss the consequences of the resulting scenario for effective cosmological parameters in order to establish the framework of a future confrontation with observations, and we note that the standard Chaplygin gas may not be ruled out by them.
Extended Analysis on New Generalized Chaplygin Gas
Institute of Scientific and Technical Information of China (English)
WANG Jun; WU Ya-Bo; WANG Di; YANG Wei-Qiang
2009-01-01
We extend the study of the new generalizeal Chaplygin gas (NGCG) based on [J.Cosmol.Astropart.Phys.0601 (2006) 003].Specifically,we not only discuss the change rates of the energy densities and the energy transfer of this model,but also perform the Om diagnostic to differentiate the ACDM model from the NGCG and the GCG models.Furthermore,in order to consider the influence of dark energy on structure formation,we also present the evolution of the growth index in this scenario with interaction.
Constraints on the generalized Chaplygin gas model from gamma-ray bursts
Energy Technology Data Exchange (ETDEWEB)
Freitas, Rodolfo Camargo; Goncalves, Sergio Vitorino de Borba; Velten, H.E.S. [Universidade Federal do Espirito Santo (UFES), ES (Brazil). Dept. de Fisica. Grupo de Gravitacao e Cosmologia
2011-07-01
Full text: One of the most important problems of Modern Cosmology is the determination of the matter content of the Universe. Combining data of the rotation curve of spiral galaxies, the dynamics of galaxy clusters and structure formation indicate that there is about ten times more pressureless matter in the Universe than can be afforded by the baryonic matter. Moreover, the Type Ia supernovae (SNe Ia) data indicates that the Universe is accelerating. Models considering matter content dominated by an exotic fluid whose pressure is negative is one of the proposals to explain this current accelerated phase of the Universe. At the same time, the position of the first acoustic peak in the spectrum of CMB anisotropies, as obtained by WMAP, favours a spatially flat Universe. If we consider the matter content of the Universe dominated by a fluid with negative pressure we have a scenario with a proportion of {Omega}{sub m} {approx} 0.27 and the {Omega}{sub de} {approx} 0.73, with respect to the critical density, for the fractions of the pressureless matter and dark energy, respectively. Much observational data that has been used for comparison with the theoretical cosmological models like the generalized Chaplygin gas model. The spectra of anisotropy of cosmic microwave background radiation, baryonic acoustic oscillations, the integrated Sachs-Wolfe effect, the matter power spectrum, gravitational lenses, X-ray data and ages estimates of high-z objects have been used in this sense. Gamma-ray bursts are jets that release {approx} 10{sup 51} - 10{sup 53} ergs or more for a few seconds and becomes, in this brief period of time, the most bright object in the Universe. The search for a self-consistent method to use the GRBs in cosmological problems is intense and promising. In a recent article Liang et al. employed a method to obtain the distance moduli {approx} of GRBs in the redshift range of SNe Ia and extend this result to very high redshift GRBs (z > 1.4) in a completely
The generalized Chaplygin-Jacobi gas
Villanueva, J R
2015-01-01
The present paper is devoted to find a new generalization of the generalized Chaplygin gas. Therefore, starting from the Hubble parameter associated to the Chaplygin scalar field and using some elliptic identities, the elliptic generalization is straightforward. Thus, all relevant quantities that drive inflation are calculated exactly. Finally, using the measurement on inflation from the Planck 2015 results, observational constraints on the parameters are given.
Dynamical Stability and Attractor of the Variable Generalized Chaplygin Gas Model
Institute of Scientific and Technical Information of China (English)
FU Huan-Huan; WU Ya-Bo; CHENG Fang-Yuan
2009-01-01
For the variable generalized Chaplygin gas (VGCG) as a dynamical system,its stability is analyzed and the related dynamical attractors are investigated.By analysis it is shown that there are two critical points corresponding to the matter-dominated phase and the VGCG dark energy-dominated phase,respectively.Moreover,when the parameters n,α and γ take some fixed values,the phase with ωVGCG=-0.92 is a dynamical attractor and the equation of state of VGCG reaches it from either ωVGCG＞-1 or ωVGCG＜-1,independent of the initial values of the dynamical system.This shows a satisfactory cosmological model:the early matter-dominated era,followed by the dark energy-dominated era.Meanwhile,the evolutions of density parameters Ωγ and ΩVGCG are quite different from each other.For different initial values of x and y,Ωγ decreases and flVGCG increases as the time grows,they will eventually approach Ωγ= 0 and ΩVGCG = 1.Furthermore,since different values of n or α may lead to different equation-of-state parameters ωVGC,we also discuss the constraints on the parameters n and α by the observation data.
Evolution of Variable Generalized Chaplygin Gas
Institute of Scientific and Technical Information of China (English)
YANG Xiu-Yi; WU Ya-Bo; L(U) Jian-Bo; LI Song
2007-01-01
@@ We consider the variable Generalized Chaplygin gas (VGCG) proposal for unification of dark matter and dark energy with p= pde and ρ = ρdm + ρde. The equation of state of the VGCG is given by p = -A0a-n/ρα, where a is the scale factor.
FRW Cosmology with the Extended Chaplygin Gas
Directory of Open Access Journals (Sweden)
B. Pourhassan
2014-01-01
Full Text Available We propose extended Chaplygin gas equation of state for which it recovers barotropic fluid with quadratic equation of state. We use numerical method to investigate the behavior of some cosmological parameters such as scale factor, Hubble expansion parameter, energy density, and deceleration parameter. We also discuss the resulting effective equation of state parameter. Using density perturbations we investigate the stability of the theory.
Mass Power Spectrum in a Universe Dominated by the Chaplygin Gas
Fabris, J C
2002-01-01
The mass power spectrum for a Universe dominated by the Chaplygin gas is evaluated numerically from scales of the order of the Hubble horizon to 100 Mpc. The results are compared with a pure baryonic Universe and a cosmological constant model. In all three cases, the spectrum increases with k, the wavenumber of the perturbations. The slope of the spectrum is higher for the baryonic model and smaller for the cosmological constant model, the Chaplygin gas interpolating these two models. The results are analyzed in terms of the sound velocity of the Chaplygin gas and the moment the Universe begins to accelerate.
Dynamical Evolution of Modified Chaplygin Gas
Institute of Scientific and Technical Information of China (English)
FU Ming-Hui; WU Ya-Bo; HE Jing
2008-01-01
Based our previous work [Mod.Phys.Lett.A 22 (2007) 783,Gen.Relat.Grav.39 (2007) 653],some properties of modified Chaplygin gas (MCG) as a dark energy model continue to be studied mainly in two aspects: one is the change rates of the energy density and energy transfer,and the other is the evolution of the growth index.It is pointed that the density of dark energy undergoes the change from decrease to increase no matter whether the interaction between dark energy and dark matter exists or not,but the corresponding transformation points are different from each other.Furthermore,it is stressed that the MCG model even supports the existence of interaction between dark energy and dark matter,and the energy of transfer flows from dark energy to dark matter.The evolution of the interaction term with an ansatz 3Hc2p is discussed with the MCG model.Moreover,the evolution of the growth index f in the MCG model without interaction is illustrated,from which we find that the evolutionary trajectory of f overlaps with that of the ACDM model when α> 0.7 and its theoretical value f≈0.566 given by us at z=0.15 is consistent with the observations.
Variable modified Chaplygin gas in the holographic dark energy scenario
Chattopadhyay, Surajit; Debnath, Ujjal
2012-07-01
The holographic principle emerged in the context of black-holes, where it was noted that a local quantum field theory can not fully describe the black holes [1]. Some long standing debates regarding the time evolution of a system, where a black hole forms and then evaporates, played the key role in the development of the holographic principle [2,3,4]. The Chaplygin gas is characterized by an exotic equation of state p=-B/ρ. where B is a positive constant. Role of Chaplygin gas in the accelerated universe has been studied by several authors. The above mentioned equation of state has been modified to p=-B/ρ^{α}, where α lies between 0 and 1. This equation has been further modified to p=-A+B/ρ^{α}. This is called the modified Chaplygin gas. Debnath [5] introduced a variable modified Chaplygin gas by considering B as a function of scale factor a. In this work, we have considered that the universe is filled with normal matter and variable modified Chaplygin gas. Also we have considered the interaction between normal matter and variable modified Chaplygin gas in FRW universe. Then we have considered a correspondence between the holographic dark energy density and interacting variable modified Chaplygin gas energy density. Then we have reconstructed the potential of the scalar field which describes the variable modified Chaplygin cosmology References: [1] K. Enqvist, S. Hannested and M. S. Sloth, JCAP 2, 004 (2005). [2] L. Thorlocius, hep-th/0404098. [3] G. T. Hooft, gr-qc/9310026. [4] L. Susskind, J. Math. Phys. 36, 6377 (1995). [5] U. Debnath, Astrophys. Space Sci. 312, 295 (2007).
Cosmic walls and filaments formation in modified Chaplygin gas cosmology
Karbasi, S
2016-01-01
We want to study the perturbation growth of an initial seed of an ellipsoidal shape in Top-Hat collapse model of structure formation in the Modified Chaplygin gas cosmology. Considering reasonable values of the constants and the parameters of the model under study, it is shown that a very small deviation from spherical symmetry (ellipsoidal geometry) in the initial seed leads to a final highly non-spherical structure which can be considered as a candidate for justifying already known cosmological structures as cosmic walls and filaments.
Inflationary cosmology with Chaplygin gas in Palatini formalism
Borowiec, Andrzej; Szydlowski, Marek; Wojnar, Aneta
2015-01-01
We present a simple generalisation of the $\\Lambda$CDM model which on the one hand reaches very good agreement with the present day experimental data and provides an internal inflationary mechanism on the other hand. It is based on Palatini modified gravity with quadratic Starobinsky term and generalized Chaplygin gas as a matter source providing, besides a current accelerated expansion, the epoch of endogenous inflation driven by type III freeze singularity. It follows from our statistical analysis that astronomical data favours negative value of the parameter coupling quadratic term into Einstein-Hilbert Lagrangian and as a consequence the bounce instead of initial Big-Bang singularity is preferred.
Constraints on modified Chaplygin gas from large scale structure
Paul, Bikash Chandra; Thakur, Prasenjit; Beesham, Aroon
2016-10-01
We study cosmological models with modified Chaplygin gas (MCG) to determine observational constraints on its EoS parameters using the background and the growth tests data. The background test data consists of H(z)-z data, Baryonic Acoustic Oscillations peak parameter, CMB shift parameter, SN Ia data and the growth test data consists of the linear growth function for the large scale structures of the universe are considered to study MCG in favor of dark energy. For a given range of redshift, the Wiggle-Z measurements and rms mass fluctuations from Ly-α data, employed for analyzing cosmological models numerically to constrain the MCG parameters. The Wang-Steinhardt ansatz for the growth index (γ ) and growth function (f) are also considered for numerical analysis. The best-fit values of EoS parameters determined here are used to study the variation of f, growth index (γ ), EoS parameter, squared sound speed and deceleration parameter with redshift. The constraints on the MCG parameters found here are compared with that of GCG (generalized Chaplygin gas) model for viable cosmology. Cosmologies with MCG satisfactorily describe late acceleration followed by a matter dominated phase. The range of values of EoS parameters, the associated parameters (f, γ , ω , Ω, c2s, q) are also determined from observational data in order to understand the suitability of the MCG model.
Recent observational constraints on generalized Chaplygin gas in UDME scenario
Thakur, P.
2017-03-01
Recent observational predictions suggest that our Universe is passing through an accelerating phase in the recent past. This acceleration may be realized with the negatively pressured dark energy. Generalized Chaplygin gas may be suitable to describe the evolution of the Universe as a candidate of unified dark matter energy (UDME) model. Its EoS parameters are constrained using (i) dimensionless age parameter ( H 0 t 0) and (ii) the observed Hubble ( H( z)- z) data (OHD) + baryon acoustic oscillation (BAO) data + cosmic microwave background (CMB) shift data + supernovae (Union2.1) data. Dimensionless age parameter puts loose bounds on the EoS parameters. Best-fit values of the EoS parameters H 0, A s and α ( A s and α are defined in the energy density for generalized Chaplygin gas (GCG) and in EoS) are then determined from OHD + BAO + CMB + Union2.1 data and contours are drawn to obtain their allowed range of values. The present age of the Universe ( t 0) and the present Hubble parameter ( H 0) have been estimated with 1 σ confidence level. Best-fit values of deceleration parameter ( q), squared sound speed (cs2) and EoS parameter ( ω) of this model are then determined. It is seen that GCG satisfactorily accommodates an accelerating phase and structure formation phase.
Recent observational constraints on generalized Chaplygin gas in UDME scenario
Indian Academy of Sciences (India)
P THAKUR
2017-03-01
Recent observational predictions suggest that our Universe is passing through an accelerating phase in the recent past. This acceleration may be realized with the negatively pressured dark energy. Generalized Chaplygin gas may be suitable to describe the evolution of the Universe as a candidate of unified dark matterenergy (UDME) model. Its EoS parameters are constrained using (i) dimensionless age parameter ($H_{0}t_{0}$) and (ii) the observed Hubble (H(z) − z) data (OHD) + baryon acoustic oscillation (BAO) data + cosmic microwavebackground (CMB) shift data + supernovae (Union2.1) data. Dimensionless age parameter puts loose bounds on the EoS parameters. Best-fit values of the EoS parameters $H_{0}, A_{s}$ and $\\alpha$ ($A_{s}$ and $\\alpha$ are defined in the energy density for generalized Chaplygin gas (GCG) and in EoS) are then determined from OHD+BAO+CMB+Union2.1 data and contours are drawn to obtain their allowed range of values. The present age of the Universe ($t_0$) and the present Hubble parameter ($H_0$) have been estimated with 1σ confidence level. Best-fit values of deceleration parameter (q), squared sound speed ($c^{2}_{s}$ ) and EoS parameter ($\\omega$) of this model are then determined. It is seen that GCG satisfactorily accommodates an accelerating phase and structure formation phase.
Rudra, Prabir; Kundu, Sujata
2013-01-01
Motivated by some previous works of Rudra et al we set to explore the background dynamics when dark energy in the form of New Variable Modified Chaplygin gas is coupled to dark matter with a suitable interaction in the universe described by brane cosmology. The main idea is to find out the efficiency of New variable modified Chaplygin gas to play the role of DE. As a result we resort to the technique of comparison with standard dark energy models. Here the RSII brane model have been considered as the gravity theory. An interacting model is considered in order to search for a possible solution of the cosmic coincidence problem. A dynamical system analysis is performed because of the high complexity of the system . The statefinder parameters are also calculated to classify the dark energy model. Graphs and phase diagrams are drawn to study the variations of these parameters and get an insight into the effectiveness of the dark energy model. It is also seen that the background dynamics of New Variable Modified C...
Spherical "Top-Hat" Collapse in a Modified Chaplygin Gas Dominated Universe
Karbasi, S
2015-01-01
Considering perturbation growth in spherical Top-Hat model of structure formation in a generalized Chaplygin gas dominated universe, we want to study this scenario with modified Chaplygin gas model. Different parameters of this scenario for positive and negative values of A are computed. The evolution of background and collapsed region parameters are found for different cases. The stability of the model and the collapse time rate are considered in different cases. The turn-around redshifts for different values of alpha are computed; the results are in relatively good agreement with current observational data.
Dissipative generalized Chaplygin gas as phantom dark energy
Energy Technology Data Exchange (ETDEWEB)
Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile)]. E-mail: ncruz@lauca.usach.cl; Lepe, Samuel [Instituto de Fisica, Facultad de Ciencias Basicas y Matematicas, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile)]. E-mail: slepe@ucv.cl; Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de la Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)]. E-mail: fcampos@ufro.cl
2007-03-15
The generalized Chaplygin gas, characterized by the equation of state p=-A/{rho}{sup {alpha}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late times. When dissipative processes are taken into account, within the framework of the standard Eckart theory of relativistic irreversible thermodynamics, cosmological analytical solutions are found. Using the truncated causal version of the Israel-Stewart formalism, a suitable model was constructed which crosses the w=-1 barrier. The future-singularities encountered in both approaches are of a new type, and not included in the classification presented by Nojiri and Odintsov [S. Nojiri, S.D. Odintsov, Phys. Rev. D 72 (2005) 023003].
Open static Chaplygin universe
Khalatnikov, I M
2003-01-01
We apply the qualitative theory of dynamical systems to the study of the Chaplygin gas cosmological model. In difference to earlier works devoted to this model we give up sign restrictions on the choice of the sign of the energy density and on the parameters characterising initial conditions for a cosmological evolution. It appears that exists a static stable open universe filled with the Chaplygin gas. Besides exist universes where the acoustic waves have a velocity exceeding that of light in the vacuum.
Viability of variable generalised Chaplygin gas: a thermodynamical approach
Panigrahi, D.; Chatterjee, S.
2017-03-01
The viability of the variable generalised Chaplygin gas (VGCG) model is analysed from the standpoint of its thermodynamical stability criteria with the help of an equation of state, P = - B/ρ ^{α }, where B = B0V^{-n/3}. Here B0 is assumed to be a positive universal constant, n is a constant parameter and V is the volume of the cosmic fluid. We get the interesting result that if the well-known stability conditions of a fluid is adhered to, the values of n are constrained to be negative definite to make ( partial P/partial V) S model in the late stage of the universe while for n model. The thermal equation of state is discussed and the EoS parameter is found to be an explicit function of temperature only. Further for large volume the thermal equation of state parameter is identical with the caloric equation of state parameter when T → 0. It may also be mentioned that like Santos et al. our model does not admit of any critical points. We also observe that although the earlier model of Lu explains many of the current observational findings of different probes it fails to explain the crucial tests of thermodynamical stability.
Chaplygin gas inspired scalar fields inflation via well-known potentials
Jawad, Abdul; Butt, Sadaf; Rani, Shamaila
2016-08-01
Brane inflationary universe models in the context of modified Chaplygin gas and generalized cosmic Chaplygin gas are being studied. We develop these models in view of standard scalar and tachyon fields. In both models, the implemented inflationary parameters such as scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio are derived under slow roll approximations. We also use chaotic and exponential potential in high energy limits and discuss the characteristics of inflationary parameters for both potentials. These models are compatible with recent astronomical observations provided by WMAP7{+}9 and Planck data, i.e., ηs=1.027±0.051, 1.009±0.049, 0.096±0.025 and r<0.38, 0.36, 0.11.
Observational constraints on Modified Chaplygin Gas from Large Scale Structure
Paul, Bikash Chandra; Beesham, Aroonkumar
2014-01-01
We study cosmological models with modified Chaplygin gas (in short, MCG) to determine observational constraints on its EoS parameters. The observational data of the background and the growth tests are employed. The background test data namely, H(z)-z data, CMB shift parameter, Baryonic acoustic oscillations (BAO) peak parameter, SN Ia data are considered to study the dynamical aspects of the universe. The growth test data we employ here consists of the linear growth function for the large scale structures of the universe, models are explored assuming MCG as a candidate for dark energy. Considering the observational growth data for a given range of redshift from the Wiggle-Z measurements and rms mass fluctuations from Ly-$\\alpha$ measurements, cosmological models are analyzed numerically to determine constraints on the MCG parameters. In this case, the Wang-Steinhardt ansatz for the growth index $\\gamma$ and growth function $f$ (defined as $f=\\Omega_{m}^{\\gamma} (a)$) are also taken into account for the numeri...
FRW Bulk Viscous Cosmology with Modified Chaplygin Gas in Flat Space
Saadat, H
2016-01-01
In this paper we study FRW bulk viscous cosmology in presence of modified Chaplygin gas. We write modified Friedmann equations due to bulk viscosity and Chaplygin gas and obtain time-dependent energy density for the special case of flat space.
Viability of Variable Generalised Chaplygin gas - a thermodynamical approach
Panigrahi, D
2016-01-01
The viability of the variable generalised Chaplygin gas (VGCG) model is analysed from the standpoint of its thermodynamical stability criteria with the help of an equation of state, $P = - \\frac{B}{\\rho^{\\alpha}}$, where $B = B_{0}V^{-\\frac{n}{3}}$. Here $B_{0}$ is assumed to be a positive universal constant, $n$ is a constant parameter and $V$ is the volume of the cosmic fluid. We get the interesting result that if the well-known stability conditions of a fluid is adhered to, the values of $n$ are constrained to be negative definite to make $ \\left(\\frac{\\partial P}{\\partial V}\\right)_{S} <0$ \\& $ \\left(\\frac{\\partial P}{\\partial V}\\right)_{T} <0$ throughout the evolution. Moreover the positivity of thermal capacity at constant volume $c_{V}$ as also the validity of the third law of thermodynamics are ensured in this case. For the particular case $n = 0$ the effective equation of state reduces to $\\Lambda$CDM model in the late stage of the universe while for $n <0$ it mimics a phantom-like cosmo...
Chaplygin Gas Ho\\v{r}ava-Lifshitz Quantum Cosmology
Ardehali, Hossein
2016-01-01
In this paper, we study the Chaplygin gas Ho\\v{r}ava-Lifshitz quantum cosmology. Using Schutz formalism and Arnowitt-Deser-Misner decomposition, we obtain the corresponding Schr\\"{o}dinger-Wheeler-DeWitt equation. We obtain exact classical and quantum mechanical solutions and construct wave packets to study the time evolution of the expectation value of the scale factor for two cases. We show that unlike classical solutions and upon choosing appropriate initial conditions, the expectation value of the scale factor never tends to the singular point which exhibits the singularity-free behavior of the solutions in the quantum domain.
Chaplygin gas Hořava-Lifshitz quantum cosmology
Ardehali, Hossein; Pedram, Pouria
2016-02-01
In this paper, we study the Chaplygin gas Hořava-Lifshitz quantum cosmology. Using Schutz formalism and Arnowitt-Deser-Misner decomposition, we obtain the corresponding Schrödinger-Wheeler-DeWitt equation. We obtain exact classical and quantum mechanical solutions and construct wave packets to study the time evolution of the expectation value of the scale factor for two cases. We show that unlike classical solutions and upon choosing appropriate initial conditions, the expectation value of the scale factor never tends to the singular point which exhibits the singularity-free behavior of the solutions in the quantum domain.
Modified Chaplygin Gas with Variable G and A
Institute of Scientific and Technical Information of China (English)
Ujjal Debnath
2011-01-01
We consider a modified Chaplygin gas with the gravitational constant G and the cosmological constant A.The trivial solution describes decelerating phase to accelerating phase of the universe.The non-static with constant equation of state describes the inflationary solution.For static universe,G and A must be formed arbitrarily,and for static universe with constant equation of state,G and A should be constant.The Einstein field equation has two parameters,i.e.the gravitational constant G and the cosmological constant A.The Newtonian constant of gravitation G plays the role of a coupling constant between geometry and matter in the Einstein field equations.In an evolving Universe,it appears natural to look at this "constant" as a function of time.Numerous suggestions based on different arguments have been proposed in the past few decades in which G varies with time.[1,2] Dirac[3-6] proposed a theory with variable G motivated by the occurrence of large numbers discovered by Weyl,Eddington and Dirac himself.Many other extensions of Einstein's theory with time-dependent G have also been proposed to achieve a possible unification of gravitation and elementary particle physics or to incorporate Mach's principle in general relativity.[7-9]%We consider a modified Chaplygin gas with the gravitational constant G and the cosmological constant A. The trivial solution describes decelerating phase to accelerating phase of the universe. The non-static with constant equation of state describes the inflationary soiution. For static universe, G and A must be formed arbitrarily, and for static universe with constant equation of state, G and A should be constant.
Study of Inflationary Generalized Cosmic Chaplygin Gas for Standard and Tachyon Scalar Fields
Sharif, M
2014-01-01
We consider an inflationary universe model in the context of generalized cosmic Chaplygin gas by taking matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index and important observational parameter, i.e., tensor-scalar ratio in terms of inflatons. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case.
Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2014-07-15
We consider an inflationary universe model in the context of the generalized cosmic Chaplygin gas by taking the matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during the intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index, and the important observational parameter, the tensor-scalar ratio in terms of inflation. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case. (orig.)
Co-Existence of Modified Chaplygin Gas and Other Dark Energies in the Framework of Fractal Universe
Maity, Sayani; Debnath, Ujjal
2016-05-01
In this work, we consider a non-flat universe in the framework of fractal cosmology. We have investigated the co-existence of different kinds of dark energy models such as tachyonic field, DBI-essence, hessence, k-essence, dilaton, quintessence with the modified Chaplygin gas (MCG) in fractal universe and obtained the statefinder parameters. The natures of the scalar fields and the concerned potentials have been analyzed by the correspondence scenario in the fractal universe.
Concentration in vanishing pressure limit of solutions to the modified Chaplygin gas equations
Yang, Hanchun; Wang, Jinhuan
2016-11-01
Two kinds of occurrence mechanism on the phenomenon of concentration and the formation of delta shock wave in vanishing pressure limit of solutions to the modified Chaplygin gas equations are analyzed and identified. The Riemann problem of the modified Chaplygin gas equations is first solved. Then it is shown that, as the pressure vanishes, any two-shock Riemann solution tends to a delta-shock solution to the transport equations, and the intermediate density between the two shocks tends to a weighted δ-measure which forms a delta shock wave; any two-rarefaction-wave Riemann solution tends to a two-contact-discontinuity solution to the transport equations, and the nonvacuum intermediate state in between tends to a vacuum state. It is also shown that, as the pressure approaches the generalized Chaplygin gas pressure, any two-shock Riemann solution tends to a delta-shock solution to the generalized Chaplygin gas equations. Some numerical results are presented to show the formation process of delta shock waves and vacuum states.
Directory of Open Access Journals (Sweden)
Hongjun Cheng
2013-01-01
Full Text Available This paper is devoted to the study of a nonsymmetric Keyfitz-Kranzer system of conservation laws with the generalized and modified Chaplygin gas pressure law, which may admit delta shock waves, a topic of interest. Firstly, we solve the Riemann problems with piecewise constant data having a single discontinuity. For the generalized Chaplygin gas pressure law, the solution consists of three different structures: R+J, S+J, and δ. Existence and uniqueness of delta shock solution are established under the generalized Rankine-Hugoniot relation and entropy condition. For the modified Chaplygin gas pressure law, the structures of solution are R+J and S+J. Secondly, we discuss the limits of Riemann solutions for the modified Chaplygin gas pressure law as the pressure law tends to the generalized Chaplygin gas one. In particular, for some cases, the solution S+J tends to a delta shock wave, and it is different from the delta shock wave for the generalized Chaplygin gas pressure law with the same initial data. Thirdly, we simulate the Riemann solutions and examine the formation process of delta shock wave by employing the Nessyahu-Tadmor scheme. The numerical results are coincident with the theoretical analysis.
Wormholes admitting conformal Killing vectors and supported by generalized Chaplygin gas
Energy Technology Data Exchange (ETDEWEB)
Kuhfittig, Peter K.F. [Milwaukee School of Engineering, Department of Mathematics, Milwaukee, WI (United States)
2015-08-15
When Morris and Thorne first proposed that traversable wormholes may be actual physical objects, they concentrated on the geometry by specifying the shape and redshift functions. This mathematical approach necessarily raises questions regarding the determination of the required stress-energy tensor. This paper discusses a natural way to obtain a complete wormhole solution by assuming that the wormhole (1) is supported by generalized Chaplygin gas and (2) admits conformal Killing vectors. (orig.)
Shabani, Hamid
2016-01-01
In this paper, we investigate the cosmological consequences of a scenario for the recently reported accelerated expansion of the Universe, in which the generalized Chaplygin gas (GCG) and the baryonic matter are responsible for this observed phenomenon. Here, we have worked in an isotropic and homogeneous FLRW space time in $f(R,T)$ theory of gravity. We consider three classes of models which include three different forms of $f(R,T)$ function; Class $I$, are those models which employ the standard Chaplygin gas (SCG), in class $II$, we use GCG in the high pressure regime and finally, models $III$ make use of GCG in the high density regimes. The effective equation of state (EoS), the deceleration parameter for these models are calculated and showed that the related present values are more observationally acceptable in $f(R,T)$ gravity, compared to the corresponding ones in the General Relativity (GR). And, among them class $III$ have a better situation; the predictions of these models are more consistent with t...
Does a generalized Chaplygin gas correctly describe the cosmological dark sector?
vom Marttens, R. F.; Casarini, L.; Zimdahl, W.; Hipólito-Ricaldi, W. S.; Mota, D. F.
2017-03-01
Yes, but only for a parameter value that makes it almost coincide with the standard model. We reconsider the cosmological dynamics of a generalized Chaplygin gas (gCg) which is split into a cold dark matter (CDM) part and a dark energy (DE) component with constant equation of state. This model, which implies a specific interaction between CDM and DE, has a ΛCDM limit and provides the basis for studying deviations from the latter. Including matter and radiation, we use the (modified) CLASS code (Blas et al., 2011) to construct the CMB and matter power spectra in order to search for a gCg-based concordance model that is in agreement with the SNIa data from the JLA sample and with recent Planck data. The results reveal that the gCg parameter α is restricted to | α | ≲ 0 . 05, i.e., to values very close to the ΛCDM limit α = 0. This excludes, in particular, models in which DE decays linearly with the Hubble rate.
Constraining Parameters of Generalized Cosmic Chaplygin Gas in Loop Quantum Cosmology
Ranjit, Chayan
2014-01-01
We have assumed the FRW universe in loop quantum cosmology (LQC) model filled with the dark matter and the Generalized Cosmic Chaplygin gas (GCCG) type dark energy where dark matter follows the linear equation of state. We present the Hubble parameter in terms of the observable parameters $\\Omega_{m0}$ and $H_{0}$ with the redshift $z$ and the other parameters like $A$, $B$, $w_{m}$, $ \\omega$ and $\\alpha$ which coming from our model. From Stern data set (12 points)\\& SNe Type Ia 292 data (from \\cite{Riess1,Riess2,Astier}) we have obtained the bounds of the arbitrary parameters by minimizing the $\\chi^{2}$ test. The best-fit values of the parameters are obtained by 66\\%, 90\\% and 99\\% confidence levels. Next due to joint analysis with Stern+BAO and Stern+BAO+CMB observations, we have also obtained the bounds of the parameters ($A,B$) by fixing some other parameters $\\alpha$, $w_{m}$ and $\\omega$. From the best fit values of the parameters, we have obtained the distance modulus $\\mu(z)$ for our theoretical...
Observational constraints on modified Chaplygin gas in Horava–Lifshitz gravity with dark radiation
Indian Academy of Sciences (India)
B C Paul; P Thakur; M M Verma
2013-10-01
Cosmological models with modified Chaplygin gas (MCG) in the framework of Horava–Lifshitz (HL) theory of gravity, both with and without detailed balance, are obtained. The equation of state (EOS) for a MCG contains three unknown parameters namely, , , . The allowed values of some of these parameters of the EOS are determined using the recent astrophysical and cosmological observational data. Using observational data from $H(z)-z$, baryon acoustic oscillation (BAO) peak parameter and cosmic microwave background (CMB) shift parameter we study cosmologies in detailed-balance and beyond detailed-balance scenario. In this paper we take up the beyond detailed-balance scenario in totality and contribution of dark radiation in detailedbalance scenario on the parameters of the EOS. We explore the effect of dark radiation on the whole range of the effective neutrino parameter ($ N_{}$) to constrain matter contributing parameter in both the detailed-balance and the beyond detailed-balance scenarios. It has been observed that greater the dark radiation less the matter contribution in the MCG in both the scenario considered here. In order to check the validity of beyond detailed-balance scenario we plot supernovae magnitudes () with red-shift of Union2 data and then the variation of state parameter with redshift is studied. It is noted that beyond detailed-balance scenario is suitable for cosmological model in HL gravity with MCG.
Thin-shell wormholes with a generalized Chaplygin gas in Einstein-Born-Infeld theory
Energy Technology Data Exchange (ETDEWEB)
Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Figueroa Aguirre, Griselda [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)
2012-11-15
We construct spherically symmetric thin-shell wormholes supported by a generalized Chaplygin gas in Born-Infeld electrodynamics coupled to Einstein gravity, and we analyze their stability under radial perturbations. For different values of the Born-Infeld parameter and the charge, we compare the results with those obtained in a previous work for Maxwell electrodynamics. The stability region in the parameter space reduces and then disappears as the value of the Born-Infeld parameter is modified in the sense of a larger departure from Maxwell theory. (orig.)
Chaplygin gas of Tachyon Nature Imposed by Noether Symmetry and constrained via H(z) data
Gardai Collodel, Lucas; Medeiros Kremer, Gilberto
2016-04-01
An action of general form is proposed for a Universe containing matter, radiation and dark energy. The latter is interpreted as a tachyon field non-minimally coupled to the scalar curvature. The Palatini approach is used when varying the action so the connection is given by a more generic form. Both the self-interaction potential and the non-minimally coupling function are obtained by constraining the system to present invariability under global point transformation of the fields (Noether Symmetry). The only possible solution is shown to be that of minimal coupling and constant potential (Chaplygin gas). The behavior of the dynamical properties of the system is compared to recent observational data, which infers that the tachyon field must indeed be dynamical.
Chaplygin Gas of Tachyon Nature Imposed by Symmetry and Constrained via H(z) Data
Collodel, Lucas Gardai
2015-01-01
An action of general form is proposed for a Universe containing matter, radiation and dark energy. The latter is interpreted as a tachyon field non-minimally coupled to the scalar curvature. The Palatini approach is used when varying the action so the connection is given by a more generic form. Both the self-interaction potential and the non-minimally coupling function are obtained by constraining the system to present invariability under global point transformation of the fields (Noether Symmetry). The only possible solution is shown to be that of minimal coupling and constant potential (Chaplygin gas). The behavior of the dynamical properties of the system is compared to recent observational data, which infers that the tachyon field must indeed be dynamical.
Duality gives rise to Chaplygin cosmologies with a big rip
Chimento, Luis P.; Lazkoz, Ruth
2006-05-01
We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show that these approaches can be framed within a theory with modified gravity, and we discuss the construction of the duals of the cosmologies generated within that framework. We then investigate the modifications required to generate extended, generalized and modified Chaplygin cosmologies, and then show that their duals belong to a larger family of cosmologies we call enlarged Chaplygin cosmologies. Finally, by letting the parameters of these models take values not earlier considered in the literature we show that some representatives of that family of cosmologies display sudden future singularities. This fact indicates that the behaviour of these spacetimes is rather different from that of generalized or modified Chaplygin gas cosmologies. This reinforces the idea that modifications of gravity can be responsible for unexpected evolutionary features in the universe.
Duality extended Chaplygin cosmologies with a big rip
Chimento, L P; Chimento, Luis P.; Lazkoz, Ruth
2006-01-01
We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show those modifications can be framed within a theory with self-interacting gravity, where the term self-interaction refers here to the presence of functions of $\\rho$ and $p$ in the right hand side of the Einstein equations. We then discuss the construction of the duals of the cosmologies generated within that framework. After that we investigate the modifications required to generate generalized and modified Chaplygin cosmologies and show that their duals belong to a larger family of cosmologies we call extended Chaplygin cosmologies. Finally, by letting the parameters of those models take values not earlier considered in the literature we show some representatives of that family of cosmologies display sudden future singularities, which indicates their behavior is rather different from generalized or modified Chaplygin gas cosmologies. T...
Friedman-Robertson-Walker Models with Late-Time Acceleration
Institute of Scientific and Technical Information of China (English)
Abdussattar; S. R. Prajapati2
2011-01-01
@@ In order to account for the observed cosmic acceleration, a modiGcation of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) FRW models given by Islam is proposed.The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.%In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) FRW models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that ora modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.
Friedmann-Robertson-Walker Models with Late-Time Acceleration
Abdussattar,
2016-01-01
In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.
Friedman—Robertson—Walker Models with Late-Time Acceleration
Abdussattar; Prajapati, S. R.
2011-02-01
In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman—Robertson—Walker (FRW) FRW models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.
Shear and rotation in Chaplygin cosmology
Del Popolo, A; Maydanyuk, S P; Lima, J A S; Jesus, J F; 10.1103/PhysRevD.87.043527
2013-01-01
We study the effect of shear and rotation on results previously obtained dealing with the application of the spherical collapse model (SCM) to generalized Chaplygin gas (gCg) dominated universes. The system is composed of baryons and gCg and the collapse is studied for different values of the parameter $\\alpha$ of the gCg. We show that the joint effect of shear and rotation is that of slowing down the collapse with respect to the simple SCM. This result is of utmost importance for the so-called unified dark matter models, since the described slow down in the growth of density perturbation can solve one of the main problems of the quoted models, namely the instability described in previous papers [e.g., H. B. Sandvik {\\it et al.}, Phys. Rev. D {\\bf 69}, 123524 (2004)] at the linear perturbation level.
Regular and chaotic dynamics in the rubber model of a Chaplygin top
Borisov, Alexey V.; Kazakov, Alexey O.; Pivovarova, Elena N.
2016-12-01
This paper is concerned with the rolling motion of a dynamically asymmetric unbalanced ball (Chaplygin top) in a gravitational field on a plane under the assumption that there is no slipping and spinning at the point of contact. We give a description of strange attractors existing in the system and discuss in detail the scenario of how one of them arises via a sequence of period-doubling bifurcations. In addition, we analyze the dynamics of the system in absolute space and show that in the presence of strange attractors in the system the behavior of the point of contact considerably depends on the characteristics of the attractor and can be both chaotic and nearly quasi-periodic.
Generalized Chaplygin cosmology with changeable-signs interactions
Directory of Open Access Journals (Sweden)
XI Ping
2013-06-01
Full Text Available Using phase space analysis methods,we discuss two kinds of Generalized Chaplygin cosmology with changeable-signs interactions dynamically.Some new stable attractor solutions and heteroclinic trajectory solutions are found in these two types of models.
Saadat, H
2015-01-01
In this paper, we study interacting extended Chaplygin gas as dark matter and quintessence scalar field as dark energy with an effective $\\Lambda$-term in Lyra manifold. As we know Chaplygin gas behaves as dark matter at the early universe while cosmological constant at the late time. Modified field equations are given and motivation of the phenomenological models discussed in details. Four different models based on the interaction term are investigated in this work. Then, we consider other models where Extended Chaplygin gas and quintessence field play role of dark matter and dark energy respectively with two different forms of interaction between the extended Chaplygin gas and quintessence scalar field for both constant and varying $\\Lambda$. Concerning to the mathematical hardness of the problems we discuss results numerically and graphically. Obtained results give us hope that proposed models can work as good models for the early universe with later stage of evolution containing accelerated expansion.
A Cosmological Model of the Early Universe Based on ECG with Variable Λ-Term in Lyra Geometry
Saadat, H.
2016-05-01
In this paper, we study interacting extended Chaplygin gas as dark matter and quintessence scalar field as dark energy with an effective Λ-term in Lyra manifold. As we know Chaplygin gas behaves as dark matter at the early universe while cosmological constant at the late time. Modified field equations are given and motivation of the phenomenological models discussed in details. Four different models based on the interaction term are investigated in this work. Then, we consider other models where Extended Chaplygin gas and quintessence field play role of dark matter and dark energy respectively with two different forms of interaction between the extended Chaplygin gas and quintessence scalar field for both constant and varying Λ. Concerning to the mathematical hardness of the problems we discuss results numerically and graphically. Obtained results give us hope that proposed models can work as good models for the early universe with later stage of evolution containing accelerated expansion.
A Discretization of the Nonholonomic Chaplygin Sphere Problem
Directory of Open Access Journals (Sweden)
Yuri N. Fedorov
2007-03-01
Full Text Available The celebrated problem of a non-homogeneous sphere rolling over a horizontal plane was proved to be integrable and was reduced to quadratures by Chaplygin. Applying the formalism of variational integrators (discrete Lagrangian systems with nonholonomic constraints and introducing suitable discrete constraints, we construct a discretization of the n-dimensional generalization of the Chaplygin sphere problem, which preserves the same first integrals as the continuous model, except the energy. We then study the discretization of the classical 3-dimensional problem for a class of special initial conditions, when an analog of the energy integral does exist and the corresponding map is given by an addition law on elliptic curves. The existence of the invariant measure in this case is also discussed.
Constraining the Generalized and Superfluid Chaplygin Gas Models with the Sandage-Loeb Test
Zhu, Wen-Tao; Wu, Pu-Xun; Yu, Hong-Wei
2015-05-01
Not Available Supported by the National Natural Science Foundation of China under Grants Nos 11175093, 11222545, 11435006, and 11375092, the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20124306110001, and the K.C. Wong Magna Fund of Ningbo University.
Observational Constraints on the Unified Dark-Energy-Dark-Matter Model
Institute of Scientific and Technical Information of China (English)
WU Pu-Xun; YU Hong-Wei
2007-01-01
We investigate the constraints on a generalized Chaplygin gas (GCC) model using the gold sample type-Ia supernovae (She Ia) data, the new Supernova Legacy Survey (SNLS) She Ia data and the size of baryonic acoustic oscillation peak found in Sloan Digital Sky Survey (SDSS). In a spatially flat universe case we obtain, at a 95.4% confidence level, As = 0.76-0.07+0.07 and α = 0.028-0.238+0.322. Our results are consistent with the ACDM model (α = 0), but rule out the standard Chaplygin gas model (α = 1).
Strange star admitting Chaplygin equation of state in Finch-Skea spacetime
Bhar, Piyali
2015-10-01
In the present paper we propose a new model of an anisotropic strange star which admits the Chaplygin equation of state. The exterior spacetime is described by a Schwarzschild line element. The model is developed by assuming the Finch-Skea ansatz (Finch and Skea in Class. Quantum Gravity 6:467, 1989. We obtain the model parameters in closed form. Our model is free from a central singularity. Choosing some particular values for the parameter we show that our model corroborates the observational data of the strange star PSR J1614-2230 (Gangopadhyay et al. in Mon. Not. R. Astron. Soc. 431:3216, 2013.
Energy Technology Data Exchange (ETDEWEB)
1994-12-01
RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based on a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
In this paper we investigate the two-dimensional compressible isentropic Euler equations for Chaplygin gases. Under the assumption that the initial data is close to a constant state and the vorticity of the initial velocity vanishes, we prove the global existence of the smooth solution to the Cauchy problem for twodimensional flow of Chaplygin gases.
Spherical collapse for unified dark matter models
Caramês, Thiago R P; Velten, Hermano E S
2014-01-01
We study the non-linear spherical "top hat" collapse for Chaplygin and viscous unified cosmologies. The term unified refers to models where dark energy and dark matter are replaced by one single component. For the generalized Chaplygin gas (GCG) we extend previous results of [R. A. A. Fernandes {\\it et al}. Physical Review D 85, 083501 (2012)]. We discuss the differences at non-linear level between the GCG with $\\alpha=0$ and the $\\Lambda$CDM model. We show that both are indeed different. The bulk viscous model which differs from the GCG due to the existence of non-adiabatic perturbations is also studied. In this case, the clustering process is in general suppressed and the viable parameter space of the viscous model that accelerates the background expansion does not lead to collapsed structures. This result challenges the viability of unified viscous models.
Statefinder Diagnostic for Dark Energy Models in Bianchi I Universe
Sharif, M
2013-01-01
In this paper, we investigate the statefinder, the deceleration and equation of state parameters when universe is composed of generalized holographic dark energy or generalized Ricci dark energy for Bianchi I universe model. These parameters are found for both interacting as well as non-interacting scenarios of generalized holographic or generalized Ricci dark energy with dark matter and generalized Chaplygin gas. We explore these parameters graphically for different situations. It is concluded that these models represent accelerated expansion of the universe.
Exactly solved models of interacting dark matter and dark energy
Chimento, Luis P
2012-01-01
We introduce an effective one-fluid description of the interacting dark sector in a spatially flat Friedmann-Robertson-Walker space-time and investigate the stability of the power-law solutions. We find the "source equation" for the total energy density and determine the energy density of each dark component. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities, their first derivatives, the total energy density with its derivatives up to second order and the scale factor. We solve the evolution equations of the dark components for both interactions, examine exhaustively several examples and show cases where the problem of the coincidence is alleviated. We show that a generic nonlinear interaction gives rise to the "relaxed Chaplygin gas model" whose effective equation of state includes the variable modified Chaplygin gas model while some others nonlinear interactions yield de Sitter and power-law scenarios.
Chaubey, R.; Shukla, A. K.; Raushan, Rakesh
2017-04-01
The general class of Bianchi cosmological models with dark energy in the form of modified Chaplygin gas with variable Λ and G and bulk viscosity have been considered. We discuss three types of average scale factor by using a special law for deceleration parameter which is linear in time with negative slope. The exact solutions to the corresponding field equations are obtained. We obtain the solution of bulk viscosity ( ξ), cosmological constant (Λ), gravitational parameter ( G) and deceleration parameter ( q) for different equations of state. The model describes an accelerating Universe for large value of time t, wherein the effective negative pressure induced by Chaplygin gas and bulk viscous pressure are driving the acceleration.
Thermodynamics of the Variable Modified Chaplyhin gas
Panigrahi, D
2015-01-01
A cosmological model with a new variant of Chaplygin gas obeying an equation of state(EoS), $P = A\\rho - \\frac{B}{\\rho^{\\alpha}}$ where $B= B_{0}a^{n}$ is investigated in the context of its thermodynamical behaviour. Here $B_{0}$ and $n$ are constants and $a$ is the scale factor. We show that the equation of state of this `Variable Modified Chaplygin gas' (VMCG) can describe the current accelerated expansion of the universe. Following Landau and Lifschitz's criteria we mainly discuss the classical thermodynamical stability of the model and find that the new parameter, $n$ introduced in VMCG plays a crucial role in determining the stability considerations and should be \\emph{negative.} We further observe that although the earlier model of J. Lu explains many of the current observational findings of different probes it fails the desirable tests of thermodynamical stability. We also note that for $n < 0$ our model points to a phantom type of expansion which is found to be compatible with current SNe Ia observ...
Oblique derivative problem for general Chaplygin-Rassias equations
Institute of Scientific and Technical Information of China (English)
2008-01-01
The present paper deals with the oblique derivative problem for general second order equations of mixed （elliptic-hyperbolic） type with the nonsmooth parabolic degenerate line K1（y）uxx+|K2（x）|uyy+a（x,y）ux+b（x, y）uy+c（x,y）u=-d（x,y） in any plane domain D with the boundary D=Γ∪L1∪L2∪L3∪L4, whereΓ（■{y>0}）∈Cμ2 （0<μ<1） is a curve with the end points z=-1,1. L1, L2, L3, L4 are four characteristics with the slopes -H2（x）/H1（y）, H2（x）/H1（y）,-H2（x）/H1（y）, H2（x）/H1（y）(H1（y）=|k1（y）|1/2, H2（x）=|K2（x）|1/2 in {y<0}) passing through the points z=x+iy=-1,0,0,1 respectively. And the boundary condition possesses the form 1/2 u/v=1/H（x,y）Re[λuz]=r（z）, z∈Γ∪L1∪L4, Im[λ（z）uz]|z=zl=bl, l=1,2, u（-1）=b0, u（1）=b3, in which z1, z2 are the intersection points of L1, L2, L3, L4 respectively. The above equations can be called the general Chaplygin-Rassias equations, which include the Chaplygin-Rassias equations K1（y）（M2（x）ux）x+M1（x）（K2（y）uy）y+r（x,y）u=f（x,y）, in D as their special case. The above boundary value problem includes the Tricomi problem of the Chaplygin equation: K（y）uxx+uyy=0 with the boundary condition u（z）=φ（z） onΓ∪L1∪L4 as a special case. Firstly some estimates and the existence of solutions of the corresponding boundary value problems for the degenerate elliptic and hyperbolic equations of second order are discussed. Secondly, the solvability of the Tricomi problem, the oblique derivative problem and Frankl problem for the general Chaplygin- Rassias equations are proved. The used method in this paper is different from those in other papers, because the new notations W（z）=W（x+iy）=uz=[H1（y）ux-iH2（x）uy]/2 in the elliptic domain and W（z）=W（x+jy）=uz=[H1（y）ux-jH2（x）uy]/2 in the hyperbolic domain are introduced for the first time, such that the second order equations of
Gas Turbine Engine Behavioral Modeling
Meyer, Richard T; DeCarlo, Raymond A.; Pekarek, Steve; Doktorcik, Chris
2014-01-01
This paper develops and validates a power flow behavioral model of a gas tur- bine engine with a gas generator and free power turbine. “Simple” mathematical expressions to describe the engine’s power flow are derived from an understand- ing of basic thermodynamic and mechanical interactions taking place within the engine. The engine behavioral model presented is suitable for developing a supervisory level controller of an electrical power system that contains the en- gine connected to a gener...
Modelling gas markets - a survey
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-31
This report reviews research of relevance to the analysis of present and future developments of the European natural gas market. The research activities considered are confined to (1) numerical models for gas markets, (2) analyses of energy demand, and (3) analyses of behaviour and cost structures in the transmission and distribution sector. Most of the market models are strictly micro economic and assume perfect competition or a game-theoretical equilibrium. They use sophisticated solution concepts, but very simplified specifications of supply and demand functions. Most of the research on demand is econometric analyses. These have more detailed model specification than have the aggregated market models. It is found, however, that the econometric literature based on neo-classical economics has not yielded unambiguous results and the specifications disregard important real world aspects of gas demand. The section on demand concludes that the extent of the gas grid is an important determinant for gas demand, but there has been virtually no research on what determines this variable. Data about transmission and distribution of gas in Europe is scarce and only a few non-econometric and virtually no econometric analyses are available. However, some conclusions can be made from relevant North American literature: (1) there has been significant autonomous technical progress in the transmission industry, (2) distribution costs strongly depend on geographical and other conditions, and (3) ownership, whether private or public, may be important for distribution costs and pricing policies. 56 refs., 3 figs., 1 tab.
Steinhauer, L. C.; Kimura, W. D.
2006-11-01
We have developed a 1-D, quasi-steady-state numerical model for a gas-filled capillary discharge that is designed to aid in selecting the optimum capillary radius in order to guide a laser beam with the required intensity through the capillary. The model also includes the option for an external solenoid B-field around the capillary, which increases the depth of the parabolic density channel in the capillary, thereby allowing for propagation of smaller laser beam waists. The model has been used to select the parameters for gas-filled capillaries to be utilized during the Staged Electron Laser Acceleration — Laser Wakefield (STELLA-LW) experiment.
Perumusan Model Moneter Berdasarkan Perilaku Gas Ideal
Directory of Open Access Journals (Sweden)
Rachmad Resmiyanto
2014-04-01
Full Text Available Telah disusun sebuah model moneter yang berdasarkan perilaku gas ideal. Model disusun dengan menggunakan metode kias/analogi. Model moneter gas ideal mengiaskan jumlah uang beredar dengan volume gas, daya beli dengan tekanan gas dan produksi barang dengan suhu gas. Model ini memiliki formulasi yang berbeda dengan Teori Kuantitas Uang (Quantity Theory of Money yang dicetuskan oleh Irving Fisher, model moneter Marshal-Pigou dari Cambridge serta model moneter ala Keynes. Selama ini 3 model tersebut dianggap sebagai model yang mapan dalam teori moneter pada buku-buku teks ekonomi. Model moneter gas ideal dapat menjadi cara pandang baru terhadap sistem moneter.
Comparison of dark energy models after Planck 2015
Energy Technology Data Exchange (ETDEWEB)
Xu, Yue-Yao [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)
2016-11-15
We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations. (orig.)
Comparison of dark energy models after Planck 2015
Xu, Yue-Yao; Zhang, Xin
2016-11-01
We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear-Polarski-Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali-Gabadadze-Porrati model, and the Ricci dark energy model are excluded by the current observations.
A Lattice-Gas Model of Microemulsions
Boghosian, B M; Emerton, A N; Boghosian, Bruce M.; Coveney, Peter V.; Emerton, Andrew N.
1995-01-01
We develop a lattice gas model for the nonequilibrium dynamics of microemulsions. Our model is based on the immiscible lattice gas of Rothman and Keller, which we reformulate using a microscopic, particulate description so as to permit generalisation to more complicated interactions, and on the prescription of Chan and Liang for introducing such interparticle interactions into lattice gas dynamics. We present the results of simulations to demonstrate that our model exhibits the correct phenomenology, and we contrast it with both equilibrium lattice models of microemulsions, and to other lattice gas models.
Multiscale modeling of gas-fluidized beds
Hoef, van der M.A.; Sint Annaland, van M.; Andrews, A.T.; Sundaresan, S.; Kuipers, J.A.M.
2006-01-01
Numerical models of gas-fluidized beds have become an important tool in the design and scale up of gas-solid chemical reactors. However, a single numerical model which includes the solid-solid and solid-fluid interaction in full detail is not feasible for industrial-scale equipment, and for this rea
Adsorption Model for Off-Gas Separation
Energy Technology Data Exchange (ETDEWEB)
Veronica J. Rutledge
2011-03-01
The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior and feedback loops. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes will provide substantial cost savings and many technical benefits. The specific fuel cycle separation process discussed in this report is the off-gas treatment system. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed in gPROMS software. Inputs include gas stream constituents, sorbent, and column properties, equilibrium and kinetic data, and inlet conditions. It models dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions for a multiple component gas stream. The simulation outputs component concentrations along the column length as a function of time from which the breakthrough data is obtained. It also outputs temperature along the column length as a function of time and pressure drop along the column length. Experimental data will be input into the adsorption model to develop a model specific for iodine adsorption on silver mordenite as well as model(s) specific for krypton and xenon adsorption. The model will be validated with experimental breakthrough curves. Another future off-gas modeling goal is to develop a model for the unit operation absorption. The off-gas models will be made available via the server or web for evaluation by customers.
Modelling emissions from natural gas flaring
Directory of Open Access Journals (Sweden)
G. Ezaina Umukoro
2017-04-01
Full Text Available The world today recognizes the significance of environmental sustainability to the development of nations. Hence, the role oil and gas industry plays in environmental degrading activities such as gas flaring is of global concern. This study presents material balance equations and predicts results for non-hydrocarbon emissions such as CO2, CO, NO, NO2, and SO2 etc. from flaring (combustion of 12 natural gas samples representing composition of natural gas of global origin. Gaseous emission estimates and pattern were modelled by coding material balance equations for six reaction types and combustion conditions with a computer program. On the average, anticipated gaseous emissions from flaring natural gas with an average annual global flaring rate 126 bcm per year (between 2000 and 2011 in million metric tonnes (mmt are 560 mmt, 48 mmt, 91 mmt, 93 mmt and 50 mmt for CO2, CO, NO, NO2 and SO2 respectively. This model predicted gaseous emissions based on the possible individual combustion types and conditions anticipated in gas flaring operation. It will assist in the effort by environmental agencies and all concerned to track and measure the extent of environmental pollution caused by gas flaring operations in the oil and gas industry.
Combustion modeling in advanced gas turbine systems
Energy Technology Data Exchange (ETDEWEB)
Smoot, L.D.; Hedman, P.O.; Fletcher, T.H. [Brigham Young Univ., Provo, UT (United States)] [and others
1995-10-01
The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.
Minimal Superstrings and Loop Gas Models
Gaiotto, D; Takayanagi, T; Gaiotto, Davide; Rastelli, Leonardo; Takayanagi, Tadashi
2005-01-01
We reformulate the matrix models of minimal superstrings as loop gas models on random surfaces. In the continuum limit, this leads to the identification of minimal superstrings with certain bosonic string theories, to all orders in the genus expansion. RR vertex operators arise as operators in a Z_2 twisted sector of the matter CFT. We show how the loop gas model implements the sum over spin structures expected from the continuum RNS formulation. Open string boundary conditions are also more transparent in this language.
On modelling the market for natural gas
Energy Technology Data Exchange (ETDEWEB)
Mathiesen, Lars
2001-12-01
Several features may separately or in combination influence conduct and performance of an industry, e.g. the numbers of sellers or buyers, the degree of economies of scale in production and distribution, the temporal and spatial dimensions, etc. Our main focus is on how to model market power. In particular, we demonstrate the rather different solutions obtained from the price-taking behavior versus the oligopolistic Coumot behavior. We also consider two approaches to model the transportation of natural gas. Finally, there is a brief review of previous modeling efforts of the European natural gas industry. (author)
Geochemical modeling of magmatic gas scrubbing
Directory of Open Access Journals (Sweden)
B. Gambardella
2005-06-01
Full Text Available The EQ3/6 software package, version 7.2 was successfully used to model scrubbing of magmatic gas by pure water at 0.1 MPa, in the liquid and liquid-plus-gas regions. Some post-calculations were necessary to account for gas separation effects. In these post-calculations, redox potential was considered to be fixed by precipitation of crystalline a-sulfur, a ubiquitous and precocious process. As geochemical modeling is constrained by conservation of enthalpy upon water-gas mixing, the enthalpies of the gas species of interest were reviewed, adopting as reference state the liquid phase at the triple point. Our results confirm that significant emissions of highly acidic gas species (SO2(g, HCl(g, and HF(g are prevented by scrubbing, until dry conditions are established, at least locally. Nevertheless important outgassing of HCl(g can take place from acid, HCl-rich brines. Moreover, these findings support the rule of thumb which is generally used to distinguish SO2-, HCl-, and HF-bearing magmatic gases from SO2-, HCl-, and HF-free hydrothermal gases.
Fatigue modelling for gas nitriding
Directory of Open Access Journals (Sweden)
H. Weil
2016-10-01
Full Text Available The present study aims to develop an algorithm able to predict the fatigue lifetime of nitrided steels. Linear multi-axial fatigue criteria are used to take into account the gradients of mechanical properties provided by the nitriding process. Simulations on rotating bending fatigue specimens are made in order to test the nitrided surfaces. The fatigue model is applied to the cyclic loading of a gear from a simulation using the finite element software Ansys. Results show the positive contributions of nitriding on the fatigue strength
Comparison of dark energy models after Planck 2015
Xu, Yue-Yao
2016-01-01
We make a comparison for ten typical, popular dark energy models according to theirs capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant $w$ model, and the $\\alpha$ dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaply...
Modeling Greenhouse Gas Emissions from Enteric Fermentation
Kebreab, E.; Tedeschi, L.; Dijkstra, J.; Ellis, J.L.; Bannink, A.; France, J.
2016-01-01
Livestock directly contribute to greenhouse gas (GHG) emissions mainly through methane (CH4) and nitrous oxide (N2O) emissions. For cost and practicality reasons, quantification of GHG has been through development of various types of mathematical models. This chapter addresses the utility and limita
Statistical Modeling Efforts for Headspace Gas
Energy Technology Data Exchange (ETDEWEB)
Weaver, Brian Phillip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-03-17
The purpose of this document is to describe the statistical modeling effort for gas concentrations in WIPP storage containers. The concentration (in ppm) of CO_{2} in the headspace volume of standard waste box (SWB) 68685 is shown. A Bayesian approach and an adaptive Metropolis-Hastings algorithm were used.
Evaluation of Turbulence Models in Gas Dispersion
Moen, Alexander
2016-01-01
Several earlier model validation studies for predicting gas dispersion scenarios have been conducted for the three RANS two-equation eddy viscosity turbulence models, the standard k-ε (SKE), Re- Normalisation group k-ε (RNG) and Realizable k-ε (Realizable). However, these studies have mainly validated one or two of the models, and have mostly used one simulation case as a basis for determining which model is the best suited for predicting such scenarios. In addition, the studies have shown co...
The global nonlinear stability of self-gravitating irrotational Chaplygin fluids in a FRW geometry
LeFloch, Philippe G
2015-01-01
We analyze the global nonlinear stability of FRW (Friedmann-Robertson-Walker) spacetimes in presence of an irrotational perfect fluid. We assume that the fluid is governed by the so-called (generalized) Chaplygin equation of state relating the pressure to the mass-energy density. We express the Einstein equations in wave gauge as a systems of coupled nonlinear wave equations and by performing a suitable conformal transformation, we are able to analyze the global behavior of solutions in future timelike directions. We establish that the (3+1)-spacetime metric and the mass density and velocity vector describing the evolution of the fluid remain globally close to a reference FRW solution, under small initial data perturbations. Our analysis provides also the precise asymptotic behavior of the perturbed solutions in the future directions.
Multisite Interactions in Lattice-Gas Models
Einstein, T. L.; Sathiyanarayanan, R.
For detailed applications of lattice-gas models to surface systems, multisite interactions often play at least as significant a role as interactions between pairs of adatoms that are separated by a few lattice spacings. We recall that trio (3-adatom, non-pairwise) interactions do not inevitably create phase boundary asymmetries about half coverage. We discuss a sophisticated application to an experimental system and describe refinements in extracting lattice-gas energies from calculations of total energies of several different ordered overlayers. We describe how lateral relaxations complicate matters when there is direct interaction between the adatoms, an issue that is important when examining the angular dependence of step line tensions. We discuss the connector model as an alternative viewpoint and close with a brief account of recent work on organic molecule overlayers.
Scale Factor Self-Dual Cosmological Models
dS, U Camara; Sotkov, G M
2015-01-01
We implement a conformal time scale factor duality for Friedmann-Robertson-Walker cosmological models, which is consistent with the weak energy condition. The requirement for self-duality determines the equations of state for a broad class of barotropic fluids. We study the example of a universe filled with two interacting fluids, presenting an accelerated and a decelerated period, with manifest UV/IR duality. The associated self-dual scalar field interaction turns out to coincide with the "radiation-like" modified Chaplygin gas models. We present an equivalent realization of them as gauged K\\"ahler sigma models (minimally coupled to gravity) with very specific and interrelated K\\"ahler- and super-potentials. Their applications in the description of hilltop inflation and also as quintessence models for the late universe are discussed.
Mathematical analysis of intermittent gas injection model in oil production
Tasmi, Silvya, D. R.; Pudjo, S.; Leksono, M.; Edy, S.
2016-02-01
Intermittent gas injection is a method to help oil production process. Gas is injected through choke in surface and then gas into tubing. Gas forms three areas in tubing: gas column area, film area and slug area. Gas column is used to propel slug area until surface. A mathematical model of intermittent gas injection is developed in gas column area, film area and slug area. Model is expanding based on mass and momentum conservation. Using assume film thickness constant in tubing, model has been developed by Tasmi et. al. [14]. Model consists of 10 ordinary differential equations. In this paper, assumption of pressure in gas column is uniform. Model consist of 9 ordinary differential equations. Connection of several variables can be obtained from this model. Therefore, dynamics of all variables that affect to intermittent gas lift process can be seen from four equations. To study the behavior of variables can be analyzed numerically and mathematically. In this paper, simple mathematically analysis approach is used to study behavior of the variables. Variables that affect to intermittent gas injection are pressure in upstream valve and in gas column. Pressure in upstream valve will decrease when gas mass in valve greater than gas mass in choke. Dynamic of the pressure in the gas column will decrease and increase depending on pressure in upstream valve.
Modelling and Simulation of Gas Engines Using Aspen HYSYS
M. C. Ekwonu; Perry, S.; E. A. Oyedoh
2013-01-01
In this paper gas engine model was developed in Aspen HYSYS V7.3 and validated with Waukesha 16V275GL+ gas engine. Fuel flexibility, fuel types and part load performance of the gas engine were investigated. The design variability revealed that the gas engine can operate on poor fuel with low lower heating value (LHV) such as landfill gas, sewage gas and biogas with biogas offering potential integration with bottoming cycles when compared to natural gas. The result of the gas engin...
Modelling and Simulation of Gas Engines Using Aspen HYSYS
Directory of Open Access Journals (Sweden)
M. C. Ekwonu
2013-12-01
Full Text Available In this paper gas engine model was developed in Aspen HYSYS V7.3 and validated with Waukesha 16V275GL+ gas engine. Fuel flexibility, fuel types and part load performance of the gas engine were investigated. The design variability revealed that the gas engine can operate on poor fuel with low lower heating value (LHV such as landfill gas, sewage gas and biogas with biogas offering potential integration with bottoming cycles when compared to natural gas. The result of the gas engine simulation gave an efficiency 40.7% and power output of 3592kW.
Retention models for programmed gas chromatography.
Castello, G; Moretti, P; Vezzani, S
2009-03-06
The models proposed by many authors for the prediction of retention times and temperatures, peak widths, retention indices and separation numbers in programmed temperature and pressure gas chromatography by starting from preliminary measurements of the retention in isothermal and isobaric conditions are reviewed. Several articles showing the correlation between retention data and thermodynamic parameters and the determination of the optimum programming rate are reported. The columns of different polarity used for the experimental measurement and the main equations, mathematical models and calculation procedures are listed. An empirical approach was used in the early models, followed by the application of thermodynamic considerations, iterative calculation procedures and statistical methods, based on increased computing power now available. Multiple column arrangements, simultaneous temperature and pressure programming, applications of two-dimensional and fast chromatography are summarised.
Modelling the Molecular Gas in NGC 6240
Tunnard, R; Garcia-Burillo, S; Carpio, J Graciá; Fuente, A; Tacconi, L; Neri, R; Usero, A
2015-01-01
We present the first observations of H$^{13}$CN$(1-0)$, H$^{13}$CO$^+(1-0)$ and SiO$(2-1)$ in NGC 6240, obtained with the IRAM PdBI. Combining a Markov Chain Monte Carlo (MCMC) code with Large Velocity Gradient (LVG) modelling we derive posterior probability density functions (pdfs) for the dense gas parameters, including mass$-$luminosity conversion factors, finding a large amount of dense molecular gas $(\\sim10^{10}M_\\odot)$ in cold, dense clouds ($T_k\\sim10$ K, $n_{{\\rm H}_2}\\sim10^6$ cm$^{-3}$) with a small volume filling factor $(<0.002)$. Including literature CO data we present simultaneously fitted multi-species, two phase models which spontaneously separate into a hot, diffuse phase ($\\log_{10}\\left(T_k / [{\\rm K}]\\right) = 3.2^{3.3}_{3.1}$, $\\log_{10}\\left(n_{{\\rm H}_2} / [{\\rm cm}^{-3}]\\right)=3.6^{3.8}_{3.5}$) and a cold, dense phase ($\\log_{10}\\left(T_k / [{\\rm K}]\\right) = 0.9^{0.9}_{0.8}$, $\\log_{10}\\left(n_{{\\rm H}_2} / [{\\rm cm}^{-3}]\\right)=6.6^{6.8}_{6.3}$). A restricted three phase model...
Comparison of dark energy models: A perspective from the latest observational data
Li, Miao; Zhang, Xin
2009-01-01
In this paper, we compare some popular dark energy models with the assumption of a flat universe by using the latest observational data including the type Ia supernovae Constitution compilation, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey and the Two Degree Field Galaxy Redshift Survey, and the cosmic microwave background measurement given by the five-year Wilkinson Microwave Anisotropy Probe observations. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to assess the worth of the models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data. For other dynamical dark energy models, we find that some of them, such as the $\\alpha$ dark energy, constant $w$, generalized Chaplygin gas, and holographic dark energy models, can provide good fits to the current data, and th...
Observation Constraints on the Simplified GCG Model
Institute of Scientific and Technical Information of China (English)
DONG Su-Mei; WU Pu-Xun
2007-01-01
A simplified version of generalized Chaplygin gas (GCG) as a dark energy model is studied. By using the latest 162 ESSENCE type la supernovae (Sne la) data, 30 high redshift Sne la data, the baryonk acoustic oscillation peak from SDSS and the CMB data from WMAP3, a strong constraint on this simplified GCG model is obtained. At the 95.4% confidence level we obtain 0.21 ≤ Ωm ≤ 0.31 and 0.994 ≤ a ≤ 1.0 with the best fit fim = 0.25 and a = 1. This best fit scenario corresponds to an accelerating universe with qo ～_0.65 and z ～- 0.81 (a redshift of cosmic phase transition from deceleration to acceleration).
Unified models of the cosmological dark sector
Energy Technology Data Exchange (ETDEWEB)
Zimdahl, W; Velten, H E S [Universidade Federal do EspIrito Santo, Departamento de Fisica, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitoria, EspIrito Santo (Brazil); Hipolito-Ricaldi, W S, E-mail: winfried.zimdahl@pq.cnpq.br, E-mail: hipolito@ceunes.ufes.br, E-mail: velten@cce.ufes.br [Universidade Federal do EspIrito Santo, Departamento de Ciencias Matematicas e Naturais, CEUNES Rodovia BR 101 Norte, km. 60, CEP 29932-540, Sao Mateus, Espirito Santo (Brazil)
2011-09-22
We model the cosmological substratum by a viscous fluid that is supposed to provide a unified description of the dark sector and pressureless baryonic matter. In the homogeneous and isotropic background the total energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically non-adiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q{sub 0} {approx} -0.53 of the deceleration parameter. Moreover, different from other approaches, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.
Scenario analysis of gas crisis using the European Gas Assessment Model (EUGas)
RODRIGUEZ GOMEZ NURIA; ZACCARELLI NICOLA; PAMBOUR KWABENA; BOLADO LAVIN Ricardo
2014-01-01
The European Gas Assessment model (EUGas) is a country level model of the European gas transmission pipeline network which is being developed by JRC-IET (Joint Research Centre – Institute for Energy and Transport). The model aims at supporting Directive 2008/114/EC on “the identification and designation of European Critical Infrastructure (ECI)” and Regulation 994/2010 on “measures to safeguard security of gas supply”. The hydraulic model of the European gas network is developed using a combi...
Evaluation of the gas production economics of the gas hydrate cyclic thermal injection model
Energy Technology Data Exchange (ETDEWEB)
Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.
1985-05-01
The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.
Gas explosion prediction using CFD models
Energy Technology Data Exchange (ETDEWEB)
Niemann-Delius, C.; Okafor, E. [RWTH Aachen Univ. (Germany); Buhrow, C. [TU Bergakademie Freiberg Univ. (Germany)
2006-07-15
A number of CFD models are currently available to model gaseous explosions in complex geometries. Some of these tools allow the representation of complex environments within hydrocarbon production plants. In certain explosion scenarios, a correction is usually made for the presence of buildings and other complexities by using crude approximations to obtain realistic estimates of explosion behaviour as can be found when predicting the strength of blast waves resulting from initial explosions. With the advance of computational technology, and greater availability of computing power, computational fluid dynamics (CFD) tools are becoming increasingly available for solving such a wide range of explosion problems. A CFD-based explosion code - FLACS can, for instance, be confidently used to understand the impact of blast overpressures in a plant environment consisting of obstacles such as buildings, structures, and pipes. With its porosity concept representing geometry details smaller than the grid, FLACS can represent geometry well, even when using coarse grid resolutions. The performance of FLACS has been evaluated using a wide range of field data. In the present paper, the concept of computational fluid dynamics (CFD) and its application to gas explosion prediction is presented. Furthermore, the predictive capabilities of CFD-based gaseous explosion simulators are demonstrated using FLACS. Details about the FLACS-code, some extensions made to FLACS, model validation exercises, application, and some results from blast load prediction within an industrial facility are presented. (orig.)
Liu, Cong; Shahidehpour, Mohammad; Wang, Jianhui
2011-06-01
This paper focuses on transient characteristics of natural gas flow in the coordinated scheduling of security-constrained electricity and natural gas infrastructures. The paper takes into account the slow transient process in the natural gas transmission systems. Considering their transient characteristics, natural gas transmission systems are modeled as a set of partial differential equations (PDEs) and algebraic equations. An implicit finite difference method is applied to approximate PDEs by difference equations. The coordinated scheduling of electricity and natural gas systems is described as a bi-level programming formulation from the independent system operator's viewpoint. The objective of the upper-level problem is to minimize the operating cost of electric power systems while the natural gas scheduling optimization problem is nested within the lower-level problem. Numerical examples are presented to verify the effectiveness of the proposed solution and to compare the solutions for steady-state and transient models of natural gas transmission systems.
Critical-like behavior in a lattice gas model
Wieloch, A; Lukasik, J; Pawlowski, P; Pietrzak, T; Trautmann, W
2010-01-01
ALADIN multifragmentation data show features characteristic of a critical behavior, which are very well reproduced by a bond percolation model. This suggests, in the context of the lattice gas model, that fragments are formed at nearly normal nuclear densities and temperatures corresponding to the Kertesz line. Calculations performed with a lattice gas model have shown that similarly good reproduction of the data can also be achieved at lower densities, particularly in the liquid-gas coexistence region.
Models of the Intergalactic Gas in Stephan's Quintet
Hwang, Jeong-Sun; Renaud, Florent; Appleton, Philip N
2009-01-01
We use smoothed particle hydrodynamics (SPH) models to study the large-scale morphology and dynamical evolution of the intergalactic gas in Stephan's Quintet, and compare to multiwavelength observations. Specifically, we model the formation of the hot X-ray gas, the large-scale shock, and emission line gas as the result of NGC 7318b colliding with the group. We also reproduce the N-body model of Renaud and Appleton for the tidal structures in the group.
Adsorption modeling for off-gas treatment
Energy Technology Data Exchange (ETDEWEB)
Ladshaw, A.; Sharma, K.; Yiacoumi, S.; Tsouris, C. [Georgia Institute of Technology, Atlanta, GA 30332-0459 (United States); De Paoli, D.W. [Oak Ridge National Laboratory: Oak Ridge, TN 37831-6181 (United States)
2013-07-01
Off-gas generated from the reprocessing of used nuclear fuel contains a mixture of several radioactive gases including {sup 129}I{sub 2}, {sup 85}Kr, HTO, and {sup 14}CO{sub 2}. Over the past few decades, various separation and recovery processes have been studied for capturing these gases. Adsorption data for gaseous mixtures of species can be difficult to determine experimentally. Therefore, procedures capable of predicting the adsorption behavior of mixtures need to be developed from the individual isotherms of each of the pure species. A particular isotherm model of interest for the pure species is the Generalized Statistical Thermodynamic Adsorption isotherm. This model contains an adjustable number of parameters and will therefore describe a wide range of adsorption isotherms for a variety of components. A code has been developed in C++ to perform the non-linear regression analysis necessary for the determination of the isotherm parameters, as well as the least number of parameters needed to describe an entire set of data. (authors)
Modeling UK Natural Gas Prices when Gas Prices Periodically Decouple from the Oil Price
2015-01-01
When natural gas prices are subject to periodic decoupling from oil prices, for instance due to peak-load pricing, conventional linear models of price dynamics such as the Vector Error Correction Model (VECM) can lead to erroneous inferences about cointegration relationships, price adjustments and relative values. We propose the use of regime-switching models to address these issues. Our regime switching model uses price data to infer whether pricing is oil-driven (integrated) or gas-specific...
GASCAP: Wellhead Gas Productive Capacity Model documentation, June 1993
Energy Technology Data Exchange (ETDEWEB)
1993-07-01
The Wellhead Gas Productive Capacity Model (GASCAP) has been developed by EIA to provide a historical analysis of the monthly productive capacity of natural gas at the wellhead and a projection of monthly capacity for 2 years into the future. The impact of drilling, oil and gas price assumptions, and demand on gas productive capacity are examined. Both gas-well gas and oil-well gas are included. Oil-well gas productive capacity is estimated separately and then combined with the gas-well gas productive capacity. This documentation report provides a general overview of the GASCAP Model, describes the underlying data base, provides technical descriptions of the component models, diagrams the system and subsystem flow, describes the equations, and provides definitions and sources of all variables used in the system. This documentation report is provided to enable users of EIA projections generated by GASCAP to understand the underlying procedures used and to replicate the models and solutions. This report should be of particular interest to those in the Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas.
Forecasting natural gas consumption in China by Bayesian Model Averaging
Directory of Open Access Journals (Sweden)
Wei Zhang
2015-11-01
Full Text Available With rapid growth of natural gas consumption in China, it is in urgent need of more accurate and reliable models to make a reasonable forecast. Considering the limitations of the single model and the model uncertainty, this paper presents a combinative method to forecast natural gas consumption by Bayesian Model Averaging (BMA. It can effectively handle the uncertainty associated with model structure and parameters, and thus improves the forecasting accuracy. This paper chooses six variables for forecasting the natural gas consumption, including GDP, urban population, energy consumption structure, industrial structure, energy efficiency and exports of goods and services. The results show that comparing to Gray prediction model, Linear regression model and Artificial neural networks, the BMA method provides a flexible tool to forecast natural gas consumption that will have a rapid growth in the future. This study can provide insightful information on natural gas consumption in the future.
Validation of spectral gas radiation models under oxyfuel conditions. Part A: Gas cell experiments
DEFF Research Database (Denmark)
Becher, Valentin; Clausen, Sønnik; Fateev, Alexander;
2011-01-01
AbstractCombustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition as combustion with air. Standard CFD spectral gas radiation models for air combustion are out of their validity range. The series of three articles provides a common spectral basis for the validat......AbstractCombustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition as combustion with air. Standard CFD spectral gas radiation models for air combustion are out of their validity range. The series of three articles provides a common spectral basis...
Numerical model of compressible gas flow in soil pollution control
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Based on the theory of fluid dynamics in porous media, a numerical model of gas flow in unsaturated zone is developed with the consideration of gas density change due to variation of air pressure. This model is characterized of its wider range of availability. The accuracy of this numerical model is analyzed through comparison with modeling results by previous model with presumption of little pressure variation and the validity of this numerical model is shown. Thus it provides basis for the designing and management of landfill gas control system or soil vapor ex.action system in soil pollution control.
Ou, Chenghua; Li, ChaoChun; Ma, Zhonggao
2016-10-01
A water-bearing carbonate gas reservoir is an important natural gas resource being developed worldwide. Due to the long-term water/rock/gas interaction during geological evolution, complex gas/water distribution has formed under the superposed effect of sedimentary facies, reservoir space facies and gravity difference of fluid facies. In view of these challenges, on the basis of the conventional three-stage modeling method, this paper presents a modelling method controlled by four-stage facies to develop 3D model of a water-bearing carbonate gas reservoir. Key to this method is the reservoir property modelling controlled by two-stage facies, and the fluid property modelling controlled by another two-stage facies. The prerequisite of this method is a reliable database obtained from solid geological investigation. On the basis of illustrating the principles of the modelling method controlled by four-stage facies, this paper further implements systematically modeling of the heterogeneous gas/water distribution of the Longwangmiao carbonate formation in the Moxi-Gaoshiti area, Sichuan basin, China.
Modeling of Fission Gas Release in UO2
Energy Technology Data Exchange (ETDEWEB)
MH Krohn
2006-01-23
A two-stage gas release model was examined to determine if it could provide a physically realistic and accurate model for fission gas release under Prometheus conditions. The single-stage Booth model [1], which is often used to calculate fission gas release, is considered to be oversimplified and not representative of the mechanisms that occur during fission gas release. Two-stage gas release models require saturation at the grain boundaries before gas is release, leading to a time delay in release of gases generated in the fuel. Two versions of a two-stage model developed by Forsberg and Massih [2] were implemented using Mathcad [3]. The original Forsbers and Massih model [2] and a modified version of the Forsberg and Massih model that is used in a commercially available fuel performance code (FRAPCON-3) [4] were examined. After an examination of these models, it is apparent that without further development and validation neither of these models should be used to calculate fission gas release under Prometheus-type conditions. There is too much uncertainty in the input parameters used in the models. In addition. the data used to tune the modified Forsberg and Massih model (FRAPCON-3) was collected under commercial reactor conditions, which will have higher fission rates relative to Prometheus conditions [4].
A basic mathematical and numerical model for gas injection
Molenaar, J.
1996-01-01
In this paper we discuss a mathematical model for gas storage processes. In addition we outline an approach for numerical simulations. The focus is on model assumptions and limitations with respect to the software to be developed.
Liu, Qingquan; Cheng, Yuanping; Zhou, Hongxing; Guo, Pinkun; An, Fenghua; Chen, Haidong
2015-05-01
The influence of gas diffusion behavior on gas flow and permeability evolution in coal seams is evaluated in this paper. Coalbed methane (CBM) reservoirs differ from conventional porous media and fractured gas reservoirs due to certain unique features, which lead to two distinct gas pressures: one in fractures and the other in the coal matrix. The latter pressure, also known as the sorption pressure, will be used in calculating sorption-based volume changes. The effective stress laws for single-porosity media is not suitable for CBM reservoirs, and the effective stress laws for multi-porosity media need to be applied. The realization of the above two points is based on the study of the two-phase state of gas migration (involving Fickian diffusion and Darcy flow) in a coal seam. Then, a general porosity and permeability model based on the P-M model is proposed to fit this phenomenon. Moreover, the Klinkenberg effect has been taken into account and set as a reference object. Finally, a coupled gas flow and coal deformation model is proposed and solved by using a finite element method. The numerical results indicate that the effects of gas diffusion behavior and Klinkenberg behavior can have a critical influence on the gas pressure, residual gas content, and permeability evolution during the entire methane degasification period, and the impacts of the two effects are of the same order of magnitude. Without considering the gas diffusion effect, the gas pressure and residual gas content will be underestimated, and the permeability will be overestimated.
Energy Technology Data Exchange (ETDEWEB)
Gomes, Leonardo Vinicius; Mendes, Pedro Paulo C. [Escola Federal de Engenharia de Itajuba, MG (Brazil). Dept. de Eletrotecnica; Ferreira, Claudio [Agencia Nacional de Energia Eletrica (ANEEL), Brasilia, DF (Brazil)
1999-07-01
This paper presents the development and analysis of various mathematical models for gas turbine which can be incorporated to dynamic stability or to electric power systems. The work provides answers for questions such as: the dynamic behaviour of gas turbine driven generator unities, the influence of those equipment in the other elements and the best operational conditions for the equipment.
Modeling biogenic gas bubbles formation and migration in coarse sand
Ye, S.
2011-12-01
Shujun Ye Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China; sjye@nju.edu.cn Brent E. Sleep Department of Civil Engineering, University of Toronto, Toronto, ON, M5S 1A4 CANADA; sleep@ecf.utoronto.ca Methane gas generation in porous media was investigated in an anaerobic two-dimensional sand-filled cell. Inoculation of the lower portion of the cell with a methanogenic culture and addition of methanol to the bottom of the cell led to biomass growth and formation of a gas phase. The formation, migration, distribution and saturation of gases in the cell were visualized by the charge-coupled device (CCD) camera. Gas generated at the bottom of the cell in the biologically active zone moved upwards in discrete fingers, so that gas phase saturations (gas-filled fraction of void space) in the biologically active zone at the bottom of the cell did not exceed 40-50%, while gas accumulation at the top of the cell produced gas phase saturations as high as 80%. Macroscopic invasion percolation (MIP) at near pore scale[Glass, et al., 2001; Kueper and McWhorter, 1992]was used to model gas bubbles growth in porous media. The nonwetting phase migration pathway can be yielded directly by MIP. MIP was adopted to simulate the expansion, fragmentation, and mobilization of gas clusters in the cell. The production of gas, and gas phash saturations were simulated by a continuum model - compositional simulator (COMPSIM) [Sleep and Sykes, 1993]. So a combination of a continuum model and a MIP model was used to simulate the formation, fragmentation and migration of biogenic gas bubbles. Key words: biogenic gas; two dimensional; porous media; MIP; COMPSIM
Viscous dark fluid Universe: a unified model of the dark sector?
Zimdahl, W; Hipólito-Ricaldi, W S; 10.1142/S2010194511001413
2011-01-01
The Universe is modeled as consisting of pressureless baryonic matter and a bulk viscous fluid which is supposed to represent a unified description of the dark sector. In the homogeneous and isotropic background the \\textit{total} energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value of the deceleration parameter. Moreover, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis. A problem of simple bulk viscous models, however, is the behavior of the gravitational potential and ...
Modeling the Phase Composition of Gas Condensate in Pipelines
Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.
2016-10-01
Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.
Development of a gas systems analysis model (GSAM)
Energy Technology Data Exchange (ETDEWEB)
Godec, M.L. [IFC Resources Inc., Fairfax, VA (United States)
1995-04-01
The objectives of developing a Gas Systems Analysis Model (GSAM) are to create a comprehensive, non-proprietary, PC based model of domestic gas industry activity. The system is capable of assessing the impacts of various changes in the natural gas system within North America. The individual and collective impacts due to changes in technology and economic conditions are explicitly modeled in GSAM. Major gas resources are all modeled, including conventional, tight, Devonian Shale, coalbed methane, and low-quality gas sources. The modeling system asseses all key components of the gas industry, including available resources, exploration, drilling, completion, production, and processing practices, both for now and in the future. The model similarly assesses the distribution, storage, and utilization of natural gas in a dynamic market-based analytical structure. GSAM is designed to provide METC managers with a tool to project the impacts of future research, development, and demonstration (RD&D) benefits in order to determine priorities in a rapidly changing, market-driven gas industry.
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-02-17
The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.
Forecasting China's natural gas consumption based on a combination model
Institute of Scientific and Technical Information of China (English)
Gang Xu; Weiguo Wang
2010-01-01
Ensuring a sufficient energy supply is essential to a country.Natural gas constitutes a vital part in energy supply and therefore forecasting natural gas consumption reliably and accurately is an essential part of a country's energy policy.Over the years,studies have shown that a combinative model gives better projected results compared to a single model.In this study,we used Polynomial Curve and Moving Average Combination Projection (PCMACP) model to estimate the future natural gas consumption in China from 2009 to 2015.The new proposed PCMACP model shows more reliable and accurate results:its Mean Absolute Percentage Error (MAPE) is less than those of any previous models within the investigated range.According to the PCMACP model,the average annual growth rate will increase for the next 7 years and the amount of natural gas consumption will reach 171600 million cubic meters in 2015 in China.
Natural gas distribution network modelling and leak minimization
Westering, W.H.P. van; Hellendoorn, H.; Brasjen, B.J.; Linden, R.J.P. van der
2014-01-01
A gas network model has been constructed based on the steady-state Weymouth equation. A fast and robust solution algorithm is proposed and subsequently used to calculate all flows and pressures in a gas network with over 40,000 pipes. The obtained result is mathematically accurate within 0.1% and ha
Modelling and simulation of gas explosions in complex geometries
Energy Technology Data Exchange (ETDEWEB)
Saeter, Olav
1998-12-31
This thesis presents a three-dimensional Computational Fluid Dynamics (CFD) code (EXSIM94) for modelling and simulation of gas explosions in complex geometries. It gives the theory and validates the following sub-models : (1) the flow resistance and turbulence generation model for densely packed regions, (2) the flow resistance and turbulence generation model for single objects, and (3) the quasi-laminar combustion model. It is found that a simple model for flow resistance and turbulence generation in densely packed beds is able to reproduce the medium and large scale MERGE explosion experiments of the Commission of European Communities (CEC) within a band of factor 2. The model for a single representation is found to predict explosion pressure in better agreement with the experiments with a modified k-{epsilon} model. This modification also gives a slightly improved grid independence for realistic gas explosion approaches. One laminar model is found unsuitable for gas explosion modelling because of strong grid dependence. Another laminar model is found to be relatively grid independent and to work well in harmony with the turbulent combustion model. The code is validated against 40 realistic gas explosion experiments. It is relatively grid independent in predicting explosion pressure in different offshore geometries. It can predict the influence of ignition point location, vent arrangements, different geometries, scaling effects and gas reactivity. The validation study concludes with statistical and uncertainty analyses of the code performance. 98 refs., 96 figs, 12 tabs.
Data Processing Model of Coalmine Gas Early-Warning System
Institute of Scientific and Technical Information of China (English)
QIAN Jian-sheng; YIN Hong-sheng; LIU Xiu-rong; HUA Gang; XU Yong-gang
2007-01-01
The data processing mode is vital to the performance of an entire coalmine gas early-warning system, especially in real-time performance. Our objective was to present the structural features of coalmine gas data, so that the data could be processed at different priority levels in C language. Two different data processing models, one with priority and the other without priority, were built based on queuing theory. Their theoretical formulas were determined via a M/M/1 model in order to calculate average occupation time of each measuring point in an early-warning program. We validated the model with the gas early-warning system of the Huaibei Coalmine Group Corp. The results indicate that the average occupation time for gas data processing by using the queuing system model with priority is nearly 1/30 of that of the model without priority..
Tachyon cosmology with non-vanishing minimum potential: a unified model
Energy Technology Data Exchange (ETDEWEB)
Li, Huiquan, E-mail: hqli@ustc.edu.cn [Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026 (China)
2012-07-01
We investigate the tachyon condensation process in the effective theory with non-vanishing minimum potential and its implications to cosmology. It is shown that the tachyon condensation on an unstable three-brane described by this modified tachyon field theory leads to lower-dimensional branes (defects) forming within a stable three-brane. Thus, in the cosmological background, we can get well-behaved tachyon matter after tachyon inflation, (partially) avoiding difficulties encountered in the original tachyon cosmological models. This feature also implies that the tachyon inflated and reheated universe is followed by a Chaplygin gas dark matter and dark energy universe. Hence, such an unstable three-brane behaves quite like our universe, reproducing the key features of the whole evolutionary history of the universe and providing a unified description of inflaton, dark matter and dark energy in a very simple single-scalar field model.
Cosmological models described by a mixture of van der Waals fluid and dark energy
Kremer, G M
2003-01-01
The Universe is modeled as a binary mixture whose constituents are described by a van der Waals fluid and by a dark energy density. The dark energy density is considered either as the quintessence or as the Chaplygin gas. The irreversible processes concerning the energy transfer between the van der Waals fluid and the gravitational field are taken into account. This model can simulate: (a) an inflationary period where the acceleration grows exponentially and the van der Waals fluid behaves like an inflaton; (b) an inflationary period where the acceleration is positive but it decreases and tends to zero whereas the energy density of the van der Waals fluid decays; (c) a decelerated period which corresponds to a matter dominated period with a non-negative pressure; and (d) a present accelerated period where the dark energy density outweighs the energy density of the van der Waals fluid.
Optimising Gas Quenching Technology through Modelling of Heat Transfer
Institute of Scientific and Technical Information of China (English)
Florent Chaffotte; Linda L(e)fevre; Didier Domergue; Aymeric Goldsteinas; Xavier Doussot; Qingfei Zhang
2004-01-01
Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. The configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.
Gas Deliverability Model with Different Vertical Wells Properties
Directory of Open Access Journals (Sweden)
L. Mucharam
2003-11-01
Full Text Available We present here a gas deliverability computational model for single reservoir with multi wells. The questions of how long the gas delivery can be sustained and how to estimate the plateau time are discussed here. In order to answer such a question, in this case, a coupling method which consists of material balance method and gas flow equation method is developed by assuming no water influx in the reservoir. Given the rate and the minimum pressure of gas at the processing plant, the gas pressure at the wellhead and at the bottom hole can be obtained. From here, the estimation of the gas deliverability can be done. In this paper we obtain a computational method which gives direct computation for pressure drop from the processing plant to the wells, taking into account different well behavior. Here AOF technique is used for obtaining gas rate in each well. Further Tian & Adewumi correlation is applied for pressure drop model along vertical and horizontal pipes and Runge-Kutta method is chosen to compute the well head and bottom hole pressures in each well which then being used to estimate the plateau times. We obtain here direct computational scheme of gas deliverability from reservoir to processing plant for single reservoir with multi-wells properties. Computational results give different profiles (i.e. gas rate, plateau and production time, etc for each well. Further by selecting proper flow rate reduction, the flow distribution after plateau time to sustain the delivery is computed for each well.
Optimising Gas Quenching Technology through Modelling of Heat Transfer
Institute of Scientific and Technical Information of China (English)
FiorentChaffotte; LindaLefevre; DidierDomergue; AymericGoidsteinas; XavierDoussot; QingfeiZhang
2004-01-01
Gas Quenching represents an environmentally friendly alternative to more commonly-used oil quenching. Yet,the performances of this technology remain limited in terms of cooling rates reached compared to oil quenching. Distortion and process homogeneity also have to be controlled carefully. The efficiency of the gas quenching process fully depends on the heat transfer between the gas and the quenched parts. The goal of this study is the optimisation of the gas quenching process efficiency through a better understanding of the heat transfer phenomena involved. The study has been performed with modelling means and validated by an experimental approach. ThE configuration of the gas flow has a major influence on the heat transfer phenomena between the gas and the parts. The fluid dynamics modelling approach performed in this study allows to optimise the heat transfer phenomena. New gas quenching processes allowing enhanced gas quenching performance through higher cooling rates can be thereby identified. The new solutions have been validated in experimental and industrial conditions. Results obtained allow to expect significant improvement of high pressure gas quenching technology.
Computational modeling of Krypton Gas Puffs on Z
Jennings, Christopher
2014-10-01
Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity K-shell radiation. Experiments are currently underway to produce Krypton K-shell emission at ~13 keV, from double annular shell gas puffs imploded from a 12 cm diameter onto a central gas jet. Efficiently radiating at these high photon energies represents a significant challenge which necessitates the careful design and optimization of the gas distribution. To facilitate this we hydro-dynamically model the gas flow out of the nozzle, before imploding that mass distribution using a 3-dimensional resistive, radiative MHD code (GORGON). We present details of how modeled gas profiles are validated against 2-dimensional interferometric measurements of the initial gas distribution, and MHD calculations are validated against power, yield, spectral and imaging diagnostics of the experiments. This approach has enabled us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Guided by our implosion calculations we have designed and implemented gas profiles that help mitigate disruption from Magneto-Rayleigh-Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission. Predicted increases in yield from introducing a relief feature into the inner gas nozzle to create a radially increasing density distribution were recovered in experiment. K-shell yield is predicted to further increase by the introduction of an on-axis gas jet, although the mass of this jet must be carefully selected with respect to the delivered current to avoid reducing the yield. For Kr gas puffs the predicted K-shell yield increase from addition of a light central jet was realized in the experiments, considerably increasing the yield over previous results. Further confidence in our
Thermodynamic Modeling of Natural Gas Systems Containing Water
DEFF Research Database (Denmark)
Karakatsani, Eirini K.; Kontogeorgis, Georgios M.
2013-01-01
with a heavy phase were previously obtained using cubic plus association (CPA) coupled with a solid phase model in the case of hydrates, for the binary systems of water–methane and water–nitrogen and a few natural gas mixtures. In this work, CPA is being validated against new experimental data, both water...... content and phase equilibrium data, and solid model parameters are being estimated for four natural gas main components (methane, ethane, propane, and carbon dioxide). Different tests for the solid model parameters are reported, including vapor-hydrate-equilibria (VHE) and liquid-hydrate-equilibria (LHE......As the need for dew point specifications remains very urgent in the natural gas industry, the development of accurate thermodynamic models, which will match experimental data and will allow reliable extrapolations, is needed. Accurate predictions of the gas phase water content in equilibrium...
Effects of gas types and models on optimized gas fuelling station reservoir's pressure
Directory of Open Access Journals (Sweden)
M. Farzaneh-Gord
2013-06-01
Full Text Available There are similar algorithms and infrastructure for storing gas fuels at CNG (Compressed Natural Gas and CHG (Compressed Hydrogen Gas fuelling stations. In these stations, the fuels are usually stored in the cascade storage system to utilize the stations more efficiently. The cascade storage system generally divides into three reservoirs, commonly termed low, medium and high-pressure reservoirs. The pressures within these reservoirs have huge effects on performance of the stations. In the current study, based on the laws of thermodynamics, conservation of mass and real/ideal gas assumptions, a theoretical analysis has been constructed to study the effects of gas types and models on performance of the stations. It is intended to determine the optimized reservoir pressures for these stations. The results reveal that the optimized pressure differs between the gas types. For ideal and real gas models in both stations (CNG and CHG, the optimized non-dimensional low pressure-reservoir pressure is found to be 0.22. The optimized non-dimensional medium-pressure reservoir pressure is the same for the stations, and equal to 0.58.
Reliability modelling - PETROBRAS 2010 integrated gas supply chain
Energy Technology Data Exchange (ETDEWEB)
Faertes, Denise; Heil, Luciana; Saker, Leonardo; Vieira, Flavia; Risi, Francisco; Domingues, Joaquim; Alvarenga, Tobias; Carvalho, Eduardo; Mussel, Patricia
2010-09-15
The purpose of this paper is to present the innovative reliability modeling of Petrobras 2010 integrated gas supply chain. The model represents a challenge in terms of complexity and software robustness. It was jointly developed by PETROBRAS Gas and Power Department and Det Norske Veritas. It was carried out with the objective of evaluating security of supply of 2010 gas network design that was conceived to connect Brazilian Northeast and Southeast regions. To provide best in class analysis, state of the art software was used to quantify the availability and the efficiency of the overall network and its individual components.
Gas Atomization of Aluminium Melts: Comparison of Analytical Models
Directory of Open Access Journals (Sweden)
Georgios Antipas
2012-06-01
Full Text Available A number of analytical models predicting the size distribution of particles during atomization of Al-based alloys by N2, He and Ar gases were compared. Simulations of liquid break up in a close coupled atomizer revealed that the finer particles are located near the center of the spray cone. Increasing gas injection pressures led to an overall reduction of particle diameters and caused a migration of the larger powder particles towards the outer boundary of the flow. At sufficiently high gas pressures the spray became monodisperse. The models also indicated that there is a minimum achievable mean diameter for any melt/gas system.
Sensitivity analysis of the fission gas behavior model in BISON.
Energy Technology Data Exchange (ETDEWEB)
Swiler, Laura Painton; Pastore, Giovanni; Perez, Danielle; Williamson, Richard
2013-05-01
This report summarizes the result of a NEAMS project focused on sensitivity analysis of a new model for the fission gas behavior (release and swelling) in the BISON fuel performance code of Idaho National Laboratory. Using the new model in BISON, the sensitivity of the calculated fission gas release and swelling to the involved parameters and the associated uncertainties is investigated. The study results in a quantitative assessment of the role of intrinsic uncertainties in the analysis of fission gas behavior in nuclear fuel.
Validation of spectral gas radiation models under oxyfuel conditions
Energy Technology Data Exchange (ETDEWEB)
Becher, Johann Valentin
2013-05-15
Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the
Experimental Grey Box Model Identification of an Active Gas Bearing
DEFF Research Database (Denmark)
Theisen, Lukas Roy Svane; Pierart Vásquez, Fabián Gonzalo; Niemann, Hans Henrik;
2014-01-01
in a dynamic model of an active gas bearing and subsequent control loop design. A grey box model is determined based on experiments where piezo actuated valves are used to perturb the journal and hence excite the rotor-bearing system. Such modelling from actuator to output is shown to effciently support...
Diffusive description of lattice gas models
DEFF Research Database (Denmark)
Fiig, T.; Jensen, H.J.
1993-01-01
in time. We have numerically investigated the power spectrum of the density fluctuations, the lifetime distribution, and the spatial correlation function. We discuss the appropriate Langevin-like diffusion equation which can reproduce our numerical findings. Our conclusion is that the deterministic...... lattice gases are described by a diffusion equation without any bulk noise. The open lattice gas exhibits a crossover behavior as the probability for introducing particles at the edge of the system becomes small. The power spectrum changes from a 1/f to a 1/f2 spectrum. The diffusive description, proven...
Gas discharges modeling by Monte Carlo technique
Directory of Open Access Journals (Sweden)
Savić Marija
2010-01-01
Full Text Available The basic assumption of the Townsend theory - that ions produce secondary electrons - is valid only in a very narrow range of the reduced electric field E/N. In accordance with the revised Townsend theory that was suggested by Phelps and Petrović, secondary electrons are produced in collisions of ions, fast neutrals, metastable atoms or photons with the cathode, or in gas phase ionizations by fast neutrals. In this paper we tried to build up a Monte Carlo code that can be used to calculate secondary electron yields for different types of particles. The obtained results are in good agreement with the analytical results of Phelps and. Petrović [Plasma Sourc. Sci. Technol. 8 (1999 R1].
Model-based dynamic control and optimization of gas networks
Energy Technology Data Exchange (ETDEWEB)
Hofsten, Kai
2001-07-01
This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum
The World gas model. A multi-period mixed complementarity model for the global natural gas market
Energy Technology Data Exchange (ETDEWEB)
Egging, Ruud [Dept of Civil and Environmental Engineering, University of Maryland, 1143 Glenn L. Martin Hall, College Park, MD 20742 (United States); Holz, Franziska [DIW Berlin, Mohrenstr. 58, 10117 Berlin (Germany); Gabriel, Steven A. [Dept of Civil and Environmental Engineering, University of Maryland, 1143 Glenn L. Martin Hall, College Park, MD 20742 (United States); DIW Berlin, Mohrenstr. 58, 10117 Berlin (Germany)
2010-10-15
We provide the description, mathematical formulation and illustrative results of the World Gas Model, a multi-period complementarity model for the global natural gas market with explicit consideration of market power in the upstream market. Market players include producers, traders, pipeline and storage operators, LNG (liquefied natural gas) liquefiers and regasifiers as well as marketers. The model data set contains more than 80 countries and regions and covers 98% of world wide natural gas production and consumption. We also include a detailed representation of cross-border natural gas pipelines and constraints imposed by long-term contracts in the LNG market. The model is calibrated to match production and consumption projections from the PRIMES [EC. European energy and transport: trends to 2030-update 2007. Brussels: European Commission; 2008] and POLES models [EC. World energy technology outlook - 2050 (WETO-H2). Brussels: European Commission; 2006] up to 2030. The results of our numerical simulations illustrate how the supply shares of pipeline and LNG in various regions in the world develop very differently over time. LNG will continue to play a major role in the Asian market, also for new importers like China and India. Europe will expand its pipeline import capacities benefiting from its relative proximity to major gas suppliers. (author)
Estimating Predictive Variance for Statistical Gas Distribution Modelling
Lilienthal, Achim J.; Asadi, Sahar; Reggente, Matteo
2009-05-01
Recent publications in statistical gas distribution modelling have proposed algorithms that model mean and variance of a distribution. This paper argues that estimating the predictive concentration variance entails not only a gradual improvement but is rather a significant step to advance the field. This is, first, since the models much better fit the particular structure of gas distributions, which exhibit strong fluctuations with considerable spatial variations as a result of the intermittent character of gas dispersal. Second, because estimating the predictive variance allows to evaluate the model quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always been a critical issue for gas distribution modelling. It also enables solid comparisons of different modelling approaches, and provides the means to learn meta parameters of the model, to determine when the model should be updated or re-initialised, or to suggest new measurement locations based on the current model. We also point out directions of related ongoing or potential future research work.
A continuum model for metabolic gas exchange in pear fruit.
Directory of Open Access Journals (Sweden)
Q Tri Ho
2008-03-01
Full Text Available Exchange of O(2 and CO(2 of plants with their environment is essential for metabolic processes such as photosynthesis and respiration. In some fruits such as pears, which are typically stored under a controlled atmosphere with reduced O(2 and increased CO(2 levels to extend their commercial storage life, anoxia may occur, eventually leading to physiological disorders. In this manuscript we have developed a mathematical model to predict the internal gas concentrations, including permeation, diffusion, and respiration and fermentation kinetics. Pear fruit has been selected as a case study. The model has been used to perform in silico experiments to evaluate the effect of, for example, fruit size or ambient gas concentration on internal O(2 and CO(2 levels. The model incorporates the actual shape of the fruit and was solved using fluid dynamics software. Environmental conditions such as temperature and gas composition have a large effect on the internal distribution of oxygen and carbon dioxide in fruit. Also, the fruit size has a considerable effect on local metabolic gas concentrations; hence, depending on the size, local anaerobic conditions may result, which eventually may lead to physiological disorders. The model developed in this manuscript is to our knowledge the most comprehensive model to date to simulate gas exchange in plant tissue. It can be used to evaluate the effect of environmental stresses on fruit via in silico experiments and may lead to commercial applications involving long-term storage of fruit under controlled atmospheres.
Modeling Propagation of Gas Path Damage
National Aeronautics and Space Administration — This paper describes how damage propagation can be tracked and modeled for a range of fault modes in some modules of commercial high bypass aircraft engines. To that...
Modeling of neutral gas dynamics in high-density plasmas
Canupp, Patrick Wellington
This thesis describes a physical model of chemically reactive neutral gas flow and discusses numerical solutions of this model for the flow in an inductively coupled plasma etch reactor. To obtain these solutions, this research develops an efficient, implicit numerical method. As a result of the enhanced numerical stability of the scheme, large time steps advance the solution from initial conditions to a final steady state in fewer iterations and with less computational expense than simpler explicit methods. This method would incorporate suitably as a module in currently existing large scale plasma simulation tools. In order to demonstrate the accuracy of the numerical technique, this thesis presents results from two simulations of flows that possess theoretical solutions. The first case is the inviscid flow of a gas through a converging nozzle. A comparison of the numerical solution to isentropic flow theory shows that the numerical technique capably captures the essential flow features of this environment. The second case is the Couette flow of a gas between two parallel plates. The simulation results compare well with the exact solution for this flow. After establishing the accuracy of the numerical technique, this thesis discusses results for the flow of chemically reactive gases in a chlorine plasma etch reactor. This research examines the influence of the plasma on the neutral gas and the dynamics exhibited by the neutral gas in the reactor. This research finds that the neutral gas temperature strongly depends on the rate at which inelastic, electron-impact dissociation reactions occur and on atomic chlorine wall recombination rates. Additionally, the neutral gas Aow in the reactor includes a significant mass flux of etch product from the wafer surface. Resolution of these effects is useful for neutral gas simulation. Finally, this thesis demonstrates that continuum fluid models provide reasonable accuracy for these low pressure reactor flows due to the fact
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-02-26
The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.
Potential biodefense model applications for portable chlorine dioxide gas production.
Stubblefield, Jeannie M; Newsome, Anthony L
2015-01-01
Development of decontamination methods and strategies to address potential infectious disease outbreaks and bioterrorism events are pertinent to this nation's biodefense strategies and general biosecurity. Chlorine dioxide (ClO2) gas has a history of use as a decontamination agent in response to an act of bioterrorism. However, the more widespread use of ClO2 gas to meet current and unforeseen decontamination needs has been hampered because the gas is too unstable for shipment and must be prepared at the application site. Newer technology allows for easy, onsite gas generation without the need for dedicated equipment, electricity, water, or personnel with advanced training. In a laboratory model system, 2 unique applications (personal protective equipment [PPE] and animal skin) were investigated in the context of potential development of decontamination protocols. Such protocols could serve to reduce human exposure to bacteria in a decontamination response effort. Chlorine dioxide gas was capable of reducing (2-7 logs of vegetative and spore-forming bacteria), and in some instances eliminating, culturable bacteria from difficult to clean areas on PPE facepieces. The gas was effective in eliminating naturally occurring bacteria on animal skin and also on skin inoculated with Bacillus spores. The culturable bacteria, including Bacillus spores, were eliminated in a time- and dose-dependent manner. Results of these studies suggested portable, easily used ClO2 gas generation systems have excellent potential for protocol development to contribute to biodefense strategies and decontamination responses to infectious disease outbreaks or other biothreat events.
An Equilibrium-Based Model of Gas Reaction and Detonation
Energy Technology Data Exchange (ETDEWEB)
Trowbridge, L.D.
2000-04-01
During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999.
ACTIVE MODEL ROCKET STABILIZATION VIA COLD GAS THRUSTERS
Malyuta, Danylo; Collaud, Xavier; Martins Gaspar, Mikael; Rouaze, Gautier Marie Pierre; Pictet, Raimondo; Ivanov, Anton; Mullin, Nickolay
2015-01-01
This paper describes the development and testing of a reaction control system (RCS) for a model rocket named FALCO-4. The rocket uses cold gas jets to keep itself perfectly vertical at low speeds. We first describe the mechanical layout of FALCO-4 and the characteristics of the cold gas propulsion system. We then propose a dynamical model of the rocket and a control scheme based on decoupled PID regulators for roll, pitch and yaw. The control scheme is then evaluated based on MATLAB simulatio...
Computational technology of multiscale modeling the gas flows in microchannels
Podryga, V. O.
2016-11-01
The work is devoted to modeling the gas mixture flows in engineering microchannels under conditions of many scales of computational domain. The computational technology of using the multiscale approach combining macro - and microscopic models is presented. At macrolevel the nature of the flow and the external influence on it are considered. As a model the system of quasigasdynamic equations is selected. At microlevel the correction of gasdynamic parameters and the determination of boundary conditions are made. As a numerical model the Newton's equations and the molecular dynamics method are selected. Different algorithm types used for implementation of multiscale modeling are considered. The results of the model problems for separate stages are given.
Hydrodynamical Models of Gas Cloud - Galaxy Collisions
Franklin, M.; Dinge, D.; Jones, T.; Benjamin, B.
1999-05-01
Clouds of neutral hydrogen falling toward the Galactic plane with a speed of about 100 km/s or more are among those considered to be "high velocity clouds" (HVCs). As HVCs are often observed approaching the midplane, the collision of such clouds with the gaseous disk of the Galaxy has been proposed as a precursor event to the phenomena known as "supershells" and as a catalyst to star formation. While many previous analytic calculations have assumed that ram pressure of the resisting medium was negligible, and a ballistic approximation was valid, observations showing a correlation between speed and increased height above the plane, the opposite of what is expected for free fall, suggest otherwise. Benjamin & Danly suggested in 1997 that clouds falling at terminal velocity provide a simple explanation for the observed velocity distribution. In this work, numerical models are used to test the above hypotheses with clouds falling through a more modern model of the interstellar medium than that used in the seminal work by Tenorio-Tagle et al. (TT) in 1987. With the addition of more dense material to the model background, clouds were still able to form supershell-like remnants, though star formation does not appear to be triggered. Further, though agreement was not perfect, the terminal velocity model was found to be a better approximation for these clouds' fall than the ballistic case. Cooling was a physical process included in TT's work which was not included here, but was found to be non-negligible. Simulations which include a cooling algorithm must be done to confirm these results. This work was supported in part by NSF grant AST96-19438.
Modeling Gas Dynamics in California Sea Lions
2015-09-30
predicted and observed values. The model will be used to investigate specific scenarios where marine mammals could be particularly prone to...specific parameter estimates for California sea lions, which was tested in this fiscal year; Aim 2) Compare estimated and measured arterial and venous PO2...In addition, the existing model’s compliance estimate for upper airways was from a terrestrial mammal , whereas we can now use data for California
Off-gas Adsorption Model and Simulation - OSPREY
Energy Technology Data Exchange (ETDEWEB)
Veronica J Rutledge
2013-10-01
The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed.
Gas phase metal cluster model systems for heterogeneous catalysis.
Lang, Sandra M; Bernhardt, Thorsten M
2012-07-14
Since the advent of intense cluster sources, physical and chemical properties of isolated metal clusters are an active field of research. In particular, gas phase metal clusters represent ideal model systems to gain molecular level insight into the energetics and kinetics of metal-mediated catalytic reactions. Here we summarize experimental reactivity studies as well as investigations of thermal catalytic reaction cycles on small gas phase metal clusters, mostly in relation to the surprising catalytic activity of nanoscale gold particles. A particular emphasis is put on the importance of conceptual insights gained through the study of gas phase model systems. Based on these concepts future perspectives are formulated in terms of variation and optimization of catalytic materials e.g. by utilization of bimetals and metal oxides. Furthermore, the future potential of bio-inspired catalytic material systems are highlighted and technical developments are discussed.
Modeling CO2 air dispersion from gas driven lake eruptions
Chiodini, Giovanni; Costa, Antonio; Rouwet, Dmitri; Tassi, Franco
2016-04-01
The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a theoretical point of view, gas dispersion can be fully studied by solving the complete equations system for mass, momentum and energy transport, in actual practice, different simplified models able to describe only specific phases or aspects have to be used. In order to simulate dispersion of a heavy gas and to assess the consequent hazard we used a model based on a shallow layer approach (TWODEE2). This technique which uses depth-averaged variables to describe the flow behavior of dense gas over complex topography represents a good compromise between the complexity of computational fluid dynamic models and the simpler integral models. Recently the model has been applied for simulating CO2 dispersion from natural gas emissions in Central Italy. The results have shown how the dispersion pattern is strongly affected by the intensity of gas release, the topography and the ambient wind speed. Here for the first time we applied TWODEE2 code to simulate the dispersion of the large CO2 clouds released by limnic eruptions. An application concerns the case of the 1986 event at lake Nyos. Some difficulties for the simulations were related to the lack of quantitative information: gas flux estimations are not well constrained, meteorological conditions are only qualitatively known, the digital model of the terrain is of poor quality. Different scenarios were taken into account in order to reproduce the qualitative observations available for such episode. The observations regard mainly the effects of gas on
Modeling acid-gas generation from boiling chloride brines
Directory of Open Access Journals (Sweden)
Sonnenthal Eric
2009-11-01
Full Text Available Abstract Background This study investigates the generation of HCl and other acid gases from boiling calcium chloride dominated waters at atmospheric pressure, primarily using numerical modeling. The main focus of this investigation relates to the long-term geologic disposal of nuclear waste at Yucca Mountain, Nevada, where pore waters around waste-emplacement tunnels are expected to undergo boiling and evaporative concentration as a result of the heat released by spent nuclear fuel. Processes that are modeled include boiling of highly concentrated solutions, gas transport, and gas condensation accompanied by the dissociation of acid gases, causing low-pH condensate. Results Simple calculations are first carried out to evaluate condensate pH as a function of HCl gas fugacity and condensed water fraction for a vapor equilibrated with saturated calcium chloride brine at 50-150°C and 1 bar. The distillation of a calcium-chloride-dominated brine is then simulated with a reactive transport model using a brine composition representative of partially evaporated calcium-rich pore waters at Yucca Mountain. Results show a significant increase in boiling temperature from evaporative concentration, as well as low pH in condensates, particularly for dynamic systems where partial condensation takes place, which result in enrichment of HCl in condensates. These results are in qualitative agreement with experimental data from other studies. Conclusion The combination of reactive transport with multicomponent brine chemistry to study evaporation, boiling, and the potential for acid gas generation at the proposed Yucca Mountain repository is seen as an improvement relative to previously applied simpler batch evaporation models. This approach allows the evaluation of thermal, hydrological, and chemical (THC processes in a coupled manner, and modeling of settings much more relevant to actual field conditions than the distillation experiment considered. The actual
Gas entrainment in scaled model of pool type LMFBR
Energy Technology Data Exchange (ETDEWEB)
Banerjee, I.; Chandra, L.; Laxman, D.; Kumar, A.; Gopal, C.A.; Shivakumar, N.S.; Padmakumar, G.; Anand Babu, C.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu (India)
2007-07-01
The reactor Thermal hydraulics plays an important role for successful operation of Prototype Fast Breeder Reactor (PFBR), which is under construction at Kalpakkam, India. One of the issues to be resolved in PFBR is argon cover gas entrainment problem from free liquid sodium surface. The entrained cover gas may hinder the normal reactor operation. High free surface velocity along with the presence of various immersed components in the hot pool is the cause of gas entrainment from free surface. To reduce the free surface velocity and hence gas entrainment, ring type baffle plates were considered. Initially the optimum geometry of the baffle plate was arrived through numerical analysis using PHOENICS, a commercial computational fluid dynamics tool. Finally the experiments were conducted in a 1/4 scale water model of PFBR primary circuit with selected baffle plate geometry. It was found that a baffle plate with radial width of 125 mm in the model and located above intermediate heat exchanger is very effective to reduce the gas entrainment problem in PFBR. (authors)
A heterogeneous model for gas transport in carbon molecular sieves.
Ding, L P; Yuan, Y X; Farooq, S; Bhatia, S K
2005-01-18
A dual resistance model with distribution of either barrier or pore diffusional activation energy is proposed in this work for gas transport in carbon molecular sieve (CMS) micropores. This is a novel approach in which the equilibrium is homogeneous, but the kinetics is heterogeneous. The model seems to provide a possible explanation for the concentration dependence of the thermodynamically corrected barrier and pore diffusion coefficients observed in previous studies from this laboratory on gas diffusion in CMS. The energy distribution is assumed to follow the gamma distribution function. It is shown that the energy distribution model can fully capture the behavior described by the empirical model established in earlier studies to account for the concentration dependence of thermodynamically corrected barrier and pore diffusion coefficients. A methodology is proposed for extracting energy distribution parameters, and it is further shown that the extracted energy distribution parameters can effectively predict integral uptake and column breakthrough profiles over a wide range of operating pressures.
Model-based dynamic control and optimization of gas networks
Energy Technology Data Exchange (ETDEWEB)
Hofsten, Kai
2001-07-01
This work contributes to the research on control, optimization and simulation of gas transmission systems to support the dispatch personnel at gas control centres for the decision makings in the daily operation of the natural gas transportation systems. Different control and optimization strategies have been studied. The focus is on the operation of long distance natural gas transportation systems. Stationary optimization in conjunction with linear model predictive control using state space models is proposed for supply security, the control of quality parameters and minimization of transportation costs for networks offering transportation services. The result from the stationary optimization together with a reformulation of a simplified fluid flow model formulates a linear dynamic optimization model. This model is used in a finite time control and state constrained linear model predictive controller. The deviation from the control and the state reference determined from the stationary optimization is penalized quadratically. Because of the time varying status of infrastructure, the control space is also generally time varying. When the average load is expected to change considerably, a new stationary optimization is performed, giving a new state and control reference together with a new dynamic model that is used for both optimization and state estimation. Another proposed control strategy is a control and output constrained nonlinear model predictive controller for the operation of gas transmission systems. Here, the objective is also the security of the supply, quality control and minimization of transportation costs. An output vector is defined, which together with a control vector are both penalized quadratically from their respective references in the objective function. The nonlinear model predictive controller can be combined with a stationary optimization. At each sampling instant, a non convex nonlinear programming problem is solved giving a local minimum
An integral representation of functions in gas-kinetic models
Perepelitsa, Misha
2016-08-01
Motivated by the theory of kinetic models in gas dynamics, we obtain an integral representation of lower semicontinuous functions on {{{R}}^d,} {d≥1}. We use the representation to study the problem of compactness of a family of the solutions of the discrete time BGK model for the compressible Euler equations. We determine sufficient conditions for strong compactness of moments of kinetic densities, in terms of the measures from their integral representations.
Energy Technology Data Exchange (ETDEWEB)
Kuuskraa, V.A.; Hammersheimb, E.; Sawyer, W.
1985-05-01
The objective of the work performed under this directive is to assess whether gas hydrates could potentially be technically and economically recoverable. The technical potential and economics of recovering gas from a representative hydrate reservoir will be established using the cyclic thermal injection model, HYDMOD, appropriately modified for this effort, integrated with economics model for gas production on the North Slope of Alaska, and in the deep offshore Atlantic. The results from this effort are presented in this document. In Section 1, the engineering cost and financial analysis model used in performing the economic analysis of gas production from hydrates -- the Hydrates Gas Economics Model (HGEM) -- is described. Section 2 contains a users guide for HGEM. In Section 3, a preliminary economic assessment of the gas production economics of the gas hydrate cyclic thermal injection model is presented. Section 4 contains a summary critique of existing hydrate gas recovery models. Finally, Section 5 summarizes the model modification made to HYDMOD, the cyclic thermal injection model for hydrate gas recovery, in order to perform this analysis.
An integration scheme for stiff solid-gas reactor models
Directory of Open Access Journals (Sweden)
Bjarne A. Foss
2001-04-01
Full Text Available Many dynamic models encounter numerical integration problems because of a large span in the dynamic modes. In this paper we develop a numerical integration scheme for systems that include a gas phase, and solid and liquid phases, such as a gas-solid reactor. The method is based on neglecting fast dynamic modes and exploiting the structure of the algebraic equations. The integration method is suitable for a large class of industrially relevant systems. The methodology has proven remarkably efficient. It has in practice performed excellent and been a key factor for the success of the industrial simulator for electrochemical furnaces for ferro-alloy production.
Microeconomics of the ideal gas like market models
Chakrabarti, Anindya S.; Chakrabarti, Bikas K.
2009-10-01
We develop a framework based on microeconomic theory from which the ideal gas like market models can be addressed. A kinetic exchange model based on that framework is proposed and its distributional features have been studied by considering its moments. Next, we derive the moments of the CC model (Eur. Phys. J. B 17 (2000) 167) as well. Some precise solutions are obtained which conform with the solutions obtained earlier. Finally, an output market is introduced with global price determination in the model with some necessary modifications.
Modeling the Conductivity of a Subnanosecond Breakdown Gas Switch
Chen, Jinhui; Scott Tyo, J.; Jerald Buchenauer, C.
We present two different modeling methods for understanding subnanosecond breakdown processes in gas plasma switches. The first method uses a finite element time domain method in order to understand experimental measurements of the remote electromagnetic (EM) fields. This method only models the EM fields and is good for analysis, but lacks a predictive capability for the full nonlinear plasma system. The second modeling method uses a PIC code, and is fully self consistent. We make comparisons with experimental measurements and conclude that the PIC model may provide a good understanding of the subnanosecond breakdown phenomena.
Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-01-01
The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.
Beyond pressureless gas dynamics : Quadrature-based velocity moment models
Chalons, Christophe; Massot, Marc
2010-01-01
Following the seminal work of F. Bouchut on zero pressure gas dynamics which has been extensively used for gas particle-flows, the present contribution investigates quadrature-based velocity moments models for kinetic equations in the framework of the infinite Knudsen number limit, that is, for dilute clouds of small particles where the collision or coalescence probability asymptotically approaches zero. Such models define a hierarchy based on the number of moments and associated quadrature nodes, the first level of which leads to pressureless gas dynamics. We focus in particular on the four moment model where the flux closure is provided by a two-node quadrature in the velocity phase space and provide the right framework for studying both smooth and singular solutions. The link with both the kinetic underlying equation as well as with zero pressure gas dynamics is provided and we define the notion of measure solutions as well as the mathematical structure of the resulting system of four PDEs. We exhibit a fa...
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-02-24
The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).
A Paradigm for Modeling and Computation of Gas Dynamics
Xu, Kun
2016-01-01
In the continuum flow regime, the Navier-Stokes equations are usually used for the description of gas dynamics. On the other hand, the Boltzmann equation is applied for the rarefied gas dynamics. Both equations are constructed from modeling flow physics in different scales. Fortunately, due to the distinct separation of scales, i.e., the hydrodynamic and kinetic ones, both Navier-Stokes equations and the Boltzmann equation are valid in their respectable domains. However, in real physical application, there may not have such a distinctive scale separation. For example, around a hypersonic flying vehicle, the flow physics at different regions may correspond to different regimes, where the local Knudsen number can be changed in several order of magnitudes. With a variation of modeling scale, theoretically a continuous governing equation from kinetic Boltzmann equation to the hydrodynamic Navier-Stokes equations should exist. However, due to the difficulties of a direct modeling of flow physics in the scale betwe...
Validation of DWPF Melter Off-Gas Combustion Model
Energy Technology Data Exchange (ETDEWEB)
Choi, A.S.
2000-08-23
The empirical melter off-gas combustion model currently used in the DWPF safety basis calculations is valid at melter vapor space temperatures above 570 degrees C, as measured in the thermowell. This lower temperature bound coincides with that of the off-gas data used as the basis of the model. In this study, the applicability of the empirical model in a wider temperature range was assessed using the off-gas data collected during two small-scale research melter runs. The first data set came from the Small Cylindrical Melter-2 run in 1985 with the sludge feed coupled with the precipitate hydrolysis product. The second data set came from the 774-A melter run in 1996 with the sludge-only feed prepared with the modified acid addition strategy during the feed pretreatment step. The results of the assessment showed that the data from these two melter runs agreed well with the existing model, and further provided the basis for extending the lower temperature bound of the model to the measured melter vapor space temperature of 445 degrees C.
MODELING AND AVAILABILITY ANALYZES OF A COMPLEX GAS PIPELINE NETWORK
Energy Technology Data Exchange (ETDEWEB)
Ainouche, A.; Ainouche, H.
2007-07-01
The network reliability, in the way of security of supply of international markets, is proved to be an essential criterion for the conservation of the market shares and the conquest of new customers. In relation with the importance and the existing configurations diversity of gas pipelines networks, the obtaining of a global availability model of a network is difficult to implement by the use of a classic approach based on the analysis of the whole of failure risks, the definition of their probability and the estimation of their impact in term of productivity. This because mainly of the huge dimensions of the phase space that would result from such a conception. To get round this problem we implemented a systemic type approach for the modeling of the availability of a complex gas pipelines network. The approach of modeling is of 'bottom-up' type. The model of coordination is a model of flow maximization whose formalization requires the representation of the gas pipeline network by the graphs theory. The developed tool can also be used as a stand of experimentation and to define by simulation the impact of every decision having the tendency to improve the availability of the network. (auth)
Off-Gas Adsorption Model Capabilities and Recommendations
Energy Technology Data Exchange (ETDEWEB)
Lyon, Kevin L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Welty, Amy K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Law, Jack [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-03-01
Off-gas treatment is required to reduce emissions from aqueous fuel reprocessing. Evaluating the products of innovative gas adsorption research requires increased computational simulation capability to more effectively transition from fundamental research to operational design. Early modeling efforts produced the Off-Gas SeParation and REcoverY (OSPREY) model that, while efficient in terms of computation time, was of limited value for complex systems. However, the computational and programming lessons learned in development of the initial model were used to develop Discontinuous Galerkin OSPREY (DGOSPREY), a more effective model. Initial comparisons between OSPREY and DGOSPREY show that, while OSPREY does reasonably well to capture the initial breakthrough time, it displays far too much numerical dispersion to accurately capture the real shape of the breakthrough curves. DGOSPREY is a much better tool as it utilizes a more stable set of numerical methods. In addition, DGOSPREY has shown the capability to capture complex, multispecies adsorption behavior, while OSPREY currently only works for a single adsorbing species. This capability makes DGOSPREY ultimately a more practical tool for real world simulations involving many different gas species. While DGOSPREY has initially performed very well, there is still need for improvement. The current state of DGOSPREY does not include any micro-scale adsorption kinetics and therefore assumes instantaneous adsorption. This is a major source of error in predicting water vapor breakthrough because the kinetics of that adsorption mechanism is particularly slow. However, this deficiency can be remedied by building kinetic kernels into DGOSPREY. Another source of error in DGOSPREY stems from data gaps in single species, such as Kr and Xe, isotherms. Since isotherm data for each gas is currently available at a single temperature, the model is unable to predict adsorption at temperatures outside of the set of data currently
Mathematical Model of Natural Gas Desulfurization Based on Membrane Absorption
Institute of Scientific and Technical Information of China (English)
Wang Shuli; Ma Jun; Wang Ganyu; Zhou Heng
2014-01-01
Models of mass transfer kinetics combined with mass transfer differential equation and mass transfer resistance equation were established on the basis of double-iflm theory. Mass transfer process of H2S absorption by means of polypro-pylene hydrophobic microporous hollow ifber membrane contactor was simulated using MDEA (N-methyldiethanolamine) as the absorption liquid and corresponding experiments of natural gas desulfurization were performed. The simulation re-sults indicated that the removal rate of hydrogen sulifde showed positive dependence on the absorption liquid concentration and gas pressure. However, the desulfurization rate showed negative dependence on gas lfow. The simulated values were in good agreement with the experimental results. The in-tube concentration of hydrogen sulifde at the same point increased with increase in the gas velocity. Axial concentration of hydrogen sulifde decreased rapidly at the beginning, and the de-crease saw a slowdown during the latter half period. Hydrogen sulifde concentration dropped quickly in the radial direction, and the reduction in the radial direction was weakened with the increase of axial length due to the gradual reduction of hy-drogen sulifde concentration along the tube. The desulfurization rate under given operating conditions can be predicted by this model, and the theoretical basis for membrane module design can also be provided.
Modeling the Pollution of Pristine Gas in the Early Universe
Pan, Liubin; Scalo, John
2013-01-01
We conduct a comprehensive theoretical and numerical investigation of the pollution of pristine gas in turbulent flows, designed to provide new tools for modeling the evolution of the first generation of stars. The properties of such Population III (Pop III) stars are thought to be very different than later generations, because cooling is dramatically different in gas with a metallicity below a critical value Z_c, which lies between ~10^-6 and 10^-3 solar value. Z_c is much smaller than the typical average metallicity, , and thus the mixing efficiency of the pristine gas in the interstellar medium plays a crucial role in the transition from Pop III to normal star formation. The small critical value, Z_c, corresponds to the far left tail of the probability distribution function (PDF) of the metallicity. Based on closure models for the PDF formulation of turbulent mixing, we derive equations for the fraction of gas, P, lying below Z_c, in compressible turbulence. Our simulation data shows that the evolution of ...
Sorption Modeling and Verification for Off-Gas Treatment
Energy Technology Data Exchange (ETDEWEB)
Tavlarides, Lawrence [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View Texas A& M; DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-12-20
This project was successfully executed to provide valuable adsorption data and improve a comprehensive model developed in previous work by the authors. Data obtained were used in an integrated computer program to predict the behavior of adsorption columns. The model is supported by experimental data and has been shown to predict capture of off gas similar to that evolving during the reprocessing of nuclear waste. The computer program structure contains (a) equilibrium models of off-gases with the adsorbate; (b) mass-transfer models to describe off-gas mass transfer to a particle, diffusion through the pores of the particle, and adsorption on the active sites of the particle; and (c) incorporation of these models into fixed bed adsorption modeling, which includes advection through the bed. These models are being connected with the MOOSE (Multiphysics Object-Oriented Simulation Environment) software developed at the Idaho National Laboratory through DGOSPREY (Discontinuous Galerkin Off-gas SeParation and REcoverY) computer codes developed in this project. Experiments for iodine and water adsorption have been conducted on reduced silver mordenite (Ag0Z) for single layered particles. Adsorption apparatuses have been constructed to execute these experiments over a useful range of conditions for temperatures ranging from ambient to 250°C and water dew points ranging from -69 to 19°C. Experimental results were analyzed to determine mass transfer and diffusion of these gases into the particles and to determine which models best describe the single and binary component mass transfer and diffusion processes. The experimental results were also used to demonstrate the capabilities of the comprehensive models developed to predict single-particle adsorption and transients of the adsorption-desorption processes in fixed beds. Models for adsorption and mass transfer have been developed to mathematically describe adsorption kinetics and transport via diffusion and advection
Stochastic Lattice Gas Model for a Predator-Prey System
Satulovsky, J E; Satulovsky, Javier; Tome, Tania
1994-01-01
We propose a stochastic lattice gas model to describe the dynamics of two animal species population, one being a predator and the other a prey. This model comprehends the mechanisms of the Lotka-Volterra model. Our analysis was performed by using a dynamical mean-field approximation and computer simulations. Our results show that the system exhibits an oscillatory behavior of the population densities of prey and predators. For the sets of parameters used in our computer simulations, these oscillations occur at a local level. Mean-field results predict synchronized collective oscillations.
Modified lattice-gas model for the gas-liquid-solid phase diagram
Imry, Yoseph; Schwartz, Moshe
1980-04-01
Crystalline order parameters related to the localization of the particles within the cells are introduced into the usual lattice-gas model. The coupling of these order parameters to the usual liquid-gas transition is shown to produce, in the simplest approximation, phase diagrams of qualitatively correct shapes. The Goldstone modes of the solid are retained in this picture. The Landau theory of melting is reviewed and shown to always lead to a first-order solid-fluid transition. The question of the possibility of the transition becoming second order due to fluctuations is discussed qualitatively. This possibility is shown to depend on the relative sizes of the first-order transition and the critical region of the fluctuations.
Multiscale model reduction for shale gas transport in fractured media
Akkutlu, I Y; Vasilyeva, Maria
2015-01-01
In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work \\cite{aes14}, where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method. In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. We developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations on a Cartesian fine grid. In this paper, we consider arbitrary fracture orientations and use triangular fine grid and developed GMsFEM for nonlinear flows. Moreover, we develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region ...
2010-08-31
... Pipeline and Hazardous Materials Safety Administration Liquefied Natural Gas Facilities: Obtaining Approval... Safety Administration (PHMSA) issues federal safety standards for siting liquefied natural gas (LNG...) NFPA 59A: Standard for the Production, Storage, and Handling of Liquefied Natural Gas. That...
Dense Molecular Gas: A Sensitive Probe of Stellar Feedback Models
Hopkins, Philip F; Murray, Norman; Quataert, Eliot
2012-01-01
We show that the mass fraction of GMC gas (n>100 cm^-3) in dense (n>>10^4 cm^-3) star-forming clumps, observable in dense molecular tracers (L_HCN/L_CO(1-0)), is a sensitive probe of the strength and mechanism(s) of stellar feedback. Using high-resolution galaxy-scale simulations with pc-scale resolution and explicit models for feedback from radiation pressure, photoionization heating, stellar winds, and supernovae (SNe), we make predictions for the dense molecular gas tracers as a function of GMC and galaxy properties and the efficiency of stellar feedback. In models with weak/no feedback, much of the mass in GMCs collapses into dense sub-units, predicting L_HCN/L_CO(1-0) ratios order-of-magnitude larger than observed. By contrast, models with feedback properties taken directly from stellar evolution calculations predict dense gas tracers in good agreement with observations. Changing the strength or timing of SNe tends to move systems along, rather than off, the L_HCN-L_CO relation (because SNe heat lower-de...
Homogeneous gas phase models of relaxation kinetics in neon afterglow
Directory of Open Access Journals (Sweden)
Marković Vidosav Lj.
2007-01-01
Full Text Available The homogeneous gas phase models of relaxation kinetics (application of the gas phase effective coefficients to represent surface losses are applied for the study of charged and neutral active particles decay in neon afterglow. The experimental data obtained by the breakdown time delay measurements as a function of the relaxation time td (τ (memory curve is modeled in early, as well as in late afterglow. The number density decay of metastable states can explain neither the early, nor the late afterglow kinetics (memory effect, because their effective lifetimes are of the order of milliseconds and are determined by numerous collision quenching processes. The afterglow kinetics up to hundreds of milliseconds is dominated by the decay of molecular neon Ne2 + and nitrogen ions N2 + (present as impurities and the approximate value of N2 + ambipolar diffusion coefficient is determined. After the charged particle decay, the secondary emitted electrons from the surface catalyzed excitation of nitrogen atoms on the cathode determine the breakdown time delay down to the cosmic rays and natural radioactivity level. Due to the neglecting of number density spatial profiles, the homogeneous gas phase models give only the approximate values of the corresponding coefficients, but reproduce correctly other characteristics of afterglow kinetics from simple fits to the experimental data.
Planning the network of gas pipelines through modeling tools
Energy Technology Data Exchange (ETDEWEB)
Sucupira, Marcos L.L.; Lutif Filho, Raimundo B. [Companhia de Gas do Ceara (CEGAS), Fortaleza, CE (Brazil)
2009-07-01
Natural gas is a source of non-renewable energy used by different sectors of the economy of Ceara. Its use may be industrial, residential, commercial, as a source of automotive fuel, as a co-generation of energy and as a source for generating electricity from heat. For its practicality this energy has a strong market acceptance and provides a broad list of clients to fit their use, which makes it possible to reach diverse parts of the city. Its distribution requires a complex network of pipelines that branches throughout the city to meet all potential clients interested in this source of energy. To facilitate the design, analysis, expansion and location of bottlenecks and breaks in the distribution network, a modeling software is used that allows the network manager of the net to manage the various information about the network. This paper presents the advantages of modeling the gas distribution network of natural gas companies in Ceara, showing the tool used, the steps necessary for the implementation of the models, the advantages of using the software and the findings obtained with its use. (author)
Semiphenomenological model for gas-liquid phase transitions.
Benilov, E S; Benilov, M S
2016-03-01
We examine a rarefied gas with inter-molecular attraction. It is argued that the attraction force amplifies random density fluctuations by pulling molecules from lower-density regions into high-density regions and thus may give rise to an instability. To describe this effect, we use a kinetic equation where the attraction force is taken into account in a way similar to how electromagnetic forces in plasma are treated in the Vlasov model. It is demonstrated that the instability occurs when the temperature T is lower than a certain threshold value T(s) depending on the gas density. It is further shown that, even if T is only marginally lower than T(s), the instability generates clusters with density much higher than that of the gas. These results suggest that the instability should be interpreted as a gas-liquid phase transition, with T(s) being the temperature of saturated vapor and the high-density clusters representing liquid droplets.
Filter-matrix lattice Boltzmann model for microchannel gas flows.
Zhuo, Congshan; Zhong, Chengwen
2013-11-01
The lattice Boltzmann method has been shown to be successful for microscale gas flows, and it has attracted significant research interest. In this paper, the recently proposed filter-matrix lattice Boltzmann (FMLB) model is first applied to study the microchannel gas flows, in which a Bosanquet-type effective viscosity is used to capture the flow behaviors in the transition regime. A kinetic boundary condition, the combined bounce-back and specular-reflection scheme with the second-order slip scheme, is also designed for the FMLB model. By analyzing a unidirectional flow, the slip velocity and the discrete effects related to the boundary condition are derived within the FMLB model, and a revised scheme is presented to overcome such effects, which have also been validated through numerical simulations. To gain an accurate simulation in a wide range of Knudsen numbers, covering the slip and the entire transition flow regimes, a set of slip coefficients with an introduced fitting function is adopted in the revised second-order slip boundary condition. The periodic and pressure-driven microchannel flows have been investigated by the present model in this study. The numerical results, including the velocity profile and the mass flow rate, as well as the nonlinear pressure distribution along the channel, agree fairly well with the solutions of the linearized Boltzmann equation, the direct simulation Monte Carlo results, the experimental data, and the previous results of the multiple effective relaxation lattice Boltzmann model. Also, the present results of the velocity profile and the mass flow rate show that the present model with the fitting function can yield improved predictions for the microchannel gas flow with higher Knudsen numbers in the transition flow regime.
Steady state cooling flow models with gas loss for normal elliptical galaxies
Sarazin, Craig L.; Ashe, Gregory A.
1989-01-01
A grid of cooling flow models for the hot gas in normal elliptical galaxies is calculated, including the loss of gas due to inhomogeneous cooling. The loss process is modeled as a distributed sink for the gas with the rate of loss being proportional to the local cooling rate. The cooling flow models with gas loss have smaller sonic radii, smaller inflow rates in their central regions, lower densities, and higher temperatures than homogeneous models. The reduction in the amount of hot gas flowing into the center of the models brings the models into much better agreement with the observed X-ray surface brightness profiles of elliptical galaxies. However, there is a large dispersion in the observed X-ray luminosities of ellipticals, and this cannot be explained by variations in the efficiency of gas loss. The gas-loss models have X-ray surface brightness profiles which are much less centrally peaked than the no-gas-loss models.
Applications of vortex gas models to tornadogenesis and maintenance
Bělík, Pavel; Potvin, Corey K; Scholz, Kurt; Shvartsman, Mikhail M
2016-01-01
Two-dimensional and three-dimensional vortex gas models are discussed and proposed in this paper as potential models for tornadogenesis and tornado maintenance. The idea of maximization of entropy is utilized which gives rise to negative-temperature systems, in such systems energy is transferred from smaller to larger scales resulting in an inverse energy cascade. In this paper, the smaller scales are represented by intense, supercritical vortices, which transfer energy to the larger-scale tornadic flows. We address the formation of these vortices as a result of the interaction of the flow with the surface and a boundary layer.
Study of deformation of droplet in external force field by using liquid-gas model of lattice-gas
Energy Technology Data Exchange (ETDEWEB)
Ebihara, Ken-ichi; Watanabe, Tadashi [Japan Atomic Energy Research Inst., Center for Promotion of Computational Science and Engineering, Tokai, Ibaraki (Japan)
2000-10-01
The deformation of the droplet by the external force which is assumed to be gravity is studied by using the liquid-gas model of lattice-gas. Two types of liquid-gas models, one is the minimal model and the other is the maximal model, which are distinguished from each other by the added long-range interactions are used for the simulation of the droplet deformation. The difference of the droplet deformation between the maximal model and the minimal model was observed. While the droplet of the minimal model elongates in the direction of the external force, the droplet of the maximal model elongates in the perpendicular direction to the external force. Therefore the droplet deformation in the external force field of the maximal model is more similar to the droplet deformation which is observed in experiments than that of the minimal model. (author)
The modeling of carbon isotope kinetics and its application to the evaluation of natural gas
Institute of Scientific and Technical Information of China (English)
Xianqing LI; Xianming XIAO; Yongchun TANG; Hui TIAN; Qiang ZHOU; Yunfeng YANG; Peng DONG; Yan WANG; Zhihong SONG
2008-01-01
The modeling of carbon isotope kinetics of natural gas is an issue driving pioneering research in the oil and gas geochemistry in China and internationally.Combined with the sedimentary burial history and basin geothermal history,the modeling of carbon isotope kinetics provides a new and effective means for the determination of the origin and accumulation history of natural gas pools.In this paper,we introduce the modeling of carbon isotope kinetics of natural gas formation and its applications to the assessment of natural gas maturity,the determination of the gas source,the history of gas accumulation,and the oil-gas ratio.It is shown that this approach is of great value for these applications.The carbon isotopic characteristics of natural gas are not only affected by the gas source and maturity of the source rock,but also are related to the accumulation condition and geothermal gradient in a basin.There are obvious differences in the characteristics of carbon isotope ratios between instantaneous gas and cumulative gas.Different basins have different kinetic models of carbon isotope fractionation,which depends on the gas source condition,the accumulation history and the sedimentary-tectonic history.Since the origin of natural gas in the superimposed basin in China is very complicated,and the natural gas pool is characterized by multiphase and variable gas-sources,this paper may provide a new perspective on the study and evaluation of natural gas.
Energy Technology Data Exchange (ETDEWEB)
Venson, Giuliano Gardolinski [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica], e-mail: venson@ufmg.br; Barros, Jose Eduardo Mautone; Pereira, Josemar Figueiredo [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte, MG (Brazil)], e-mail: mautone@des.cefetmg.br, e-mail: josemar_cefet@yahoo.com.br
2006-07-01
This work presents the modeling of a gas microturbine power generator. The microturbine consists in a small thermo-electrical power unit, design for combined heat and power generation. The unit has an electric generator, coaxially connected with a turbocharger, which one is driven by a fuel burner. The system also incorporates an air regenerator, used for pre-heat the combustion air, and a heat exchanger, used for water heating. The objective of the modeling is the attainment of the electrical performance and the operational limits for the microturbine in function of the subsystems operational conditions. The modeling is based on the first law of the thermodynamic, using specific models for each component. In the combustion chamber is used a model that takes the fuel injection properties, as absolute pressure and temperature. A semi-empirical model, based in the modified Euler equation, is used in the turbocharger. In the air regenerator and heat exchanger, the method of mean logarithmic temperature difference is used. Through the modeling of a commercial microturbine, reference values obtained were used in some subsystems of a new microturbine. The results for this new microturbine in development, based in automotive turbochargers, indicate a nominal electrical power of 38 kW with electrical efficiency of 33% and global efficiency of 73%. (author)
Empirical slip and viscosity model performance for microscale gas flows.
Energy Technology Data Exchange (ETDEWEB)
Gallis, Michail A.; Boyd, Iain D. (University of Michigan, Ann Arbor, MI); McNenly, Matthew J. (University of Michigan, Ann Arbor, MI)
2004-07-01
For the simple geometries of Couette and Poiseuille flows, the velocity profile maintains a similar shape from continuum to free molecular flow. Therefore, modifications to the fluid viscosity and slip boundary conditions can improve the continuum based Navier-Stokes solution in the non-continuum non-equilibrium regime. In this investigation, the optimal modifications are found by a linear least-squares fit of the Navier-Stokes solution to the non-equilibrium solution obtained using the direct simulation Monte Carlo (DSMC) method. Models are then constructed for the Knudsen number dependence of the viscosity correction and the slip model from a database of DSMC solutions for Couette and Poiseuille flows of argon and nitrogen gas, with Knudsen numbers ranging from 0.01 to 10. Finally, the accuracy of the models is measured for non-equilibrium cases both in and outside the DSMC database. Flows outside the database include: combined Couette and Poiseuille flow, partial wall accommodation, helium gas, and non-zero convective acceleration. The models reproduce the velocity profiles in the DSMC database within an L{sub 2} error norm of 3% for Couette flows and 7% for Poiseuille flows. However, the errors in the model predictions outside the database are up to five times larger.
Natural gas production problems : solutions, methodologies, and modeling.
Energy Technology Data Exchange (ETDEWEB)
Rautman, Christopher Arthur; Herrin, James M.; Cooper, Scott Patrick; Basinski, Paul M. (El Paso Production Company, Houston, TX); Olsson, William Arthur; Arnold, Bill Walter; Broadhead, Ronald F. (New Mexico Bureau of Geology and Mineral Resources, Socorro, NM); Knight, Connie D. (Consulting Geologist, Golden, CO); Keefe, Russell G.; McKinney, Curt (Devon Energy Corporation, Oklahoma City, OK); Holm, Gus (Vermejo Park Ranch, Raton, NM); Holland, John F.; Larson, Rich (Vermejo Park Ranch, Raton, NM); Engler, Thomas W. (New Mexico Institute of Mining and Technology, Socorro, NM); Lorenz, John Clay
2004-10-01
Natural gas is a clean fuel that will be the most important domestic energy resource for the first half the 21st centtuy. Ensuring a stable supply is essential for our national energy security. The research we have undertaken will maximize the extractable volume of gas while minimizing the environmental impact of surface disturbances associated with drilling and production. This report describes a methodology for comprehensive evaluation and modeling of the total gas system within a basin focusing on problematic horizontal fluid flow variability. This has been accomplished through extensive use of geophysical, core (rock sample) and outcrop data to interpret and predict directional flow and production trends. Side benefits include reduced environmental impact of drilling due to reduced number of required wells for resource extraction. These results have been accomplished through a cooperative and integrated systems approach involving industry, government, academia and a multi-organizational team within Sandia National Laboratories. Industry has provided essential in-kind support to this project in the forms of extensive core data, production data, maps, seismic data, production analyses, engineering studies, plus equipment and staff for obtaining geophysical data. This approach provides innovative ideas and technologies to bring new resources to market and to reduce the overall environmental impact of drilling. More importantly, the products of this research are not be location specific but can be extended to other areas of gas production throughout the Rocky Mountain area. Thus this project is designed to solve problems associated with natural gas production at developing sites, or at old sites under redevelopment.
Gas modelling in the disc of HD 163296
Tilling, I; Meeus, G; Mora, A; Montesinos, B; Riviere-Marichalar, P; Eiroa, C; Thi, W -F; Isella, A; Roberge, A; Martin-Zaidi, C; Kamp, I; Pinte, C; Sandell, G; Vacca, W D; Ménard, F; Mendigutía, I; Duchêne, G; Dent, W R F; Aresu, G; Meijerink, R; Spaans, M
2011-01-01
We present detailed model fits to observations of the disc around the Herbig Ae star HD 163296. This well-studied object has an age of ~ 4 Myr, with evidence of a circumstellar disc extending out to ~ 540AU. We use the radiation thermo-chemical disc code ProDiMo to model the gas and dust in the circumstellar disc of HD 163296, and attempt to determine the disc properties by fitting to observational line and continuum data. These include new Herschel/PACS observations obtained as part of the open-time key program GASPS (Gas in Protoplanetary Systems), consisting of a detection of the [OI]63mic line and upper limits for several other far infrared lines. We complement this with continuum data and ground-based observations of the 12CO 3-2, 2-1 and 13CO J=1-0 line transitions, as well as the H2 S(1) transition. We explore the effects of stellar ultraviolet variability and dust settling on the line emission, and on the derived disc properties. Our fitting efforts lead to derived gas/dust ratios in the range 9-100, ...
Damage spreading in a driven lattice gas model
Rubio Puzzo, M. Leticia; Saracco, Gustavo P.; Albano, Ezequiel V.
2013-06-01
We studied damage spreading in a Driven Lattice Gas (DLG) model as a function of the temperature T, the magnitude of the external driving field E, and the lattice size. The DLG model undergoes an order-disorder second-order phase transition at the critical temperature Tc(E), such that the ordered phase is characterized by high-density strips running along the direction of the applied field; while in the disordered phase one has a lattice-gas-like behavior. It is found that the damage always spreads for all the investigated temperatures and reaches a saturation value D that depends only on T. D increases for TTc(E=∞) and is free of finite-size effects. This behavior can be explained as due to the existence of interfaces between the high-density strips and the lattice-gas-like phase whose roughness depends on T. Also, we investigated damage spreading for a range of finite fields as a function of T, finding a behavior similar to that of the case with E=∞.
Monte Carlo modeling and optimization of buffer gas positron traps
Marjanović, Srđan; Petrović, Zoran Lj
2017-02-01
Buffer gas positron traps have been used for over two decades as the prime source of slow positrons enabling a wide range of experiments. While their performance has been well understood through empirical studies, no theoretical attempt has been made to quantitatively describe their operation. In this paper we apply standard models as developed for physics of low temperature collision dominated plasmas, or physics of swarms to model basic performance and principles of operation of gas filled positron traps. The Monte Carlo model is equipped with the best available set of cross sections that were mostly derived experimentally by using the same type of traps that are being studied. Our model represents in realistic geometry and fields the development of the positron ensemble from the initial beam provided by the solid neon moderator through voltage drops between the stages of the trap and through different pressures of the buffer gas. The first two stages employ excitation of N2 with acceleration of the order of 10 eV so that the trap operates under conditions when excitation of the nitrogen reduces the energy of the initial beam to trap the positrons without giving them a chance to become annihilated following positronium formation. The energy distribution function develops from the assumed distribution leaving the moderator, it is accelerated by the voltage drops and forms beams at several distinct energies. In final stages the low energy loss collisions (vibrational excitation of CF4 and rotational excitation of N2) control the approach of the distribution function to a Maxwellian at room temperature but multiple non-Maxwellian groups persist throughout most of the thermalization. Optimization of the efficiency of the trap may be achieved by changing the pressure and voltage drops and also by selecting to operate in a two stage mode. The model allows quantitative comparisons and test of optimization as well as development of other properties.
Sorption Modeling and Verification for Off-Gas Treatment
Energy Technology Data Exchange (ETDEWEB)
Tavlarides, Lawrence L. [Syracuse Univ., NY (United States); Lin, Ronghong [Syracuse Univ., NY (United States); Nan, Yue [Syracuse Univ., NY (United States); Yiacoumi, Sotira [Georgia Inst. of Technology, Atlanta, GA (United States); Tsouris, Costas [Georgia Inst. of Technology, Atlanta, GA (United States); Ladshaw, Austin [Georgia Inst. of Technology, Atlanta, GA (United States); Sharma, Ketki [Georgia Inst. of Technology, Atlanta, GA (United States); Gabitto, Jorge [Prairie View A & M Univ., Prairie View, TX (United States); DePaoli, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-04-29
The project has made progress toward developing a comprehensive modeling capability for the capture of target species in off gas evolved during the reprocessing of nuclear fuel. The effort has integrated experimentation, model development, and computer code development for adsorption and absorption processes. For adsorption, a modeling library has been initiated to include (a) equilibrium models for uptake of off-gas components by adsorbents, (b) mass transfer models to describe mass transfer to a particle, diffusion through the pores of the particle and adsorption on the active sites of the particle, and (c) interconnection of these models to fixed bed adsorption modeling which includes advection through the bed. For single-component equilibria, a Generalized Statistical Thermodynamic Adsorption (GSTA) code was developed to represent experimental data from a broad range of isotherm types; this is equivalent to a Langmuir isotherm in the two-parameter case, and was demonstrated for Kr on INL-engineered sorbent HZ PAN, water sorption on molecular sieve A sorbent material (MS3A), and Kr and Xe capture on metal-organic framework (MOF) materials. The GSTA isotherm was extended to multicomponent systems through application of a modified spreading pressure surface activity model and generalized predictive adsorbed solution theory; the result is the capability to estimate multicomponent adsorption equilibria from single-component isotherms. This advance, which enhances the capability to simulate systems related to off-gas treatment, has been demonstrated for a range of real-gas systems in the literature and is ready for testing with data currently being collected for multicomponent systems of interest, including iodine and water on MS3A. A diffusion kinetic model for sorbent pellets involving pore and surface diffusion as well as external mass transfer has been established, and a methodology was developed for determining unknown diffusivity parameters from transient
Phase transition with an isospin dependent lattice gas model
Energy Technology Data Exchange (ETDEWEB)
Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)
1998-10-01
The nuclear liquid-gas phase transition is studied within an isospin dependent Lattice Gas Model in the canonical ensemble. Finite size effects on thermodynamical variables are analyzed by a direct calculation of the partition function, and it is shown that phase coexistence and phase transition are relevant concepts even for systems of a few tens of particles. Critical exponents are extracted from the behaviour of the fragment production yield as a function of temperature by means of a finite size scaling. The result is that in a finite system well defined critical signals can be found at supercritical (Kertesz line) as well as subcritical densities. For isospin asymmetric systems it is shown that, besides the modification of the critical temperature, isotopic distributions can provide an extra observable to identify and characterize the transition. (author) 21 refs.
Modeling of Hybrid Permanent Magnetic-Gas Bearings
DEFF Research Database (Denmark)
Morosi, Stefano; Santos, Ilmar
2009-01-01
Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings....... In the present paper, a detailed mathematical modeling of the gas bearing based on the compressible form of the Reynolds equation is presented. Perturbation theory is applied in order to identify the dynamic characteristic of the bearing. Due to the simple design of the magnetic bearings elements - being...... the rotor equilibrium position can be made independent on the rotational speed and applied load; it becomes function of the passive magnetic bearing offset. By adjusting the offset it is possible to significantly influence the dynamic coefficients of the hybrid bearing....
Extended models of nonlinear waves in liquid with gas bubbles
Kudryashov, Nikolay A
2016-01-01
In this work we generalize the models for nonlinear waves in a gas--liquid mixture taking into account an interphase heat transfer, a surface tension and a weak liquid compressibility simultaneously at the derivation of the equations for nonlinear waves. We also take into consideration high order terms with respect to the small parameter. Two new nonlinear differential equations are derived for long weakly nonlinear waves in a liquid with gas bubbles by the reductive perturbation method considering both high order terms with respect to the small parameter and the above mentioned physical properties. One of these equations is the perturbation of the Burgers equation and corresponds to main influence of dissipation on nonlinear waves propagation. The other equation is the perturbation of the Burgers--Korteweg--de Vries equation and corresponds to main influence of dispersion on nonlinear waves propagation.
A complementarity model for the European natural gas market
Energy Technology Data Exchange (ETDEWEB)
Egging, Ruud [Department of Civil and Environmental Engineering, University of Maryland College Park, MD 20742 (United States); Gabriel, Steven A. [Department of Civil and Environmental Engineering, Applied Mathematics and Scientific Computation Program, University of Maryland College Park, MD 20742 (United States); Holz, Franziska [DIW Berlin, Mohrenstrasse 58, D-10117 Berlin (Germany); Zhuang, Jifang [Chevron USA, Houston, TX 77401 (United States)
2008-07-15
In this paper, we present a detailed and comprehensive complementarity model for computing market equilibrium values in the European natural gas system. Market players include producers and their marketing arms which we call ''traders'', pipeline and storage operators, marketers, LNG liquefiers, regasifiers, tankers, and three end-use consumption sectors. The economic behavior of producers, traders, pipeline and storage operators, liquefiers and regasifiers is modeled via optimization problems whose Karush-Kuhn-Tucker (KKT) optimality conditions in combination with market-clearing conditions form the complementarity system. The LNG tankers, marketers and consumption sectors are modeled implicitly via appropriate cost functions, aggregate demand curves, and ex post calculations, respectively. The model is run on several case studies that highlight its capabilities, including a simulation of a disruption of Russian supplies via Ukraine. (author)
Mathematical Modeling of Metal Active Gas (MAG) Arc Welding
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In the present paper, a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and “indirect” heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically analyzed by using the model, and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result, it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding , including weld bead with undercutting.
Modeling Circumgalactic Gas During the Peak Epoch of Galaxy Growth
Dave, Romeel
During the peak of cosmic star formation at z=1-4, galaxy growth is increasingly believed to be modulated by large-scale inflows and outflows of baryons that intimately connect galaxies to their surrounding circumgalactic medium (CGM). Unfortunately, direct observational signatures of these baryon cycling processes are elusive and fragmented, owing to the diffuse and multi- phase nature of the CGM. This proposal aims to use advanced multi-scale cosmological hydrodynamic simulations to investigate how inflows and outflows within circumgalactic gas are manifested in present and future observables, and how those observables in turn constrain the physical processes driving galaxy evolution. The simulation methodology includes ``random" cosmological runs, ``zoom" runs of individual halos, and radiative transfer to better model the ionization conditions. We will focus on absorption and emission signatures in HI and metal lines using common rest-UV and rest-optical tracers. Key questions include: How do metal absorbers trace the enrichment and ionization conditions within circumgalactic gas? How much absorption arises from inflow versus outflow, and what are the characteristic absorption, emission, and/or kinematic signatures of each? What emission lines from CGM gas are predicted to be observable, and how does the combination of emission and absorption constrain CGM properties? What are the roles of metallicity, ionization, and large-scale structure in establishing the correlations of metal absorbers and galaxies on CGM scales? How do all these CGM properties relate to host galaxy properties such as mass, and how do they vary with outflow model? The overall goal is to develop a comprehensive hierarchical-based framework for assembling various observations of circumgalactic gas into a unified scenario for how inflows and outflows govern the growth of galaxies.
The Geopolitical Impact of Shale Gas: The Modelling Approach
Auping, W.L.; De Jong, S.; Pruyt, E.; Kwakkel, J.H.
2014-01-01
The US’ shale gas revolution, a spectacular increase in natural gas extraction from previously unconventional sources, has led to considerable lower gas prices in North America. This study focusses on consequences of the shale gas revolution on state stability of traditional oil and gas exporting co
Modeling condensation with a noncondensable gas for mixed convection flow
Liao, Yehong
2007-05-01
This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface
Gas-Grain Models for Interstellar Anion Chemistry
Cordiner, M. A.; Charnely, S. B.
2012-01-01
Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment
Gas turbine cooling modeling - Thermodynamic analysis and cycle simulations
Energy Technology Data Exchange (ETDEWEB)
Jordal, Kristin
1999-02-01
Considering that blade and vane cooling are a vital point in the studies of modern gas turbines, there are many ways to include cooling in gas turbine models. Thermodynamic methods for doing this are reviewed in this report, and, based on some of these methods, a number of model requirements are set up and a Cooled Gas Turbine Model (CGTM) for design-point calculations of cooled gas turbines is established. Thereafter, it is shown that it is possible to simulate existing gas turbines with the CGTM. Knowledge of at least one temperature in the hot part of the turbine (TET, TRIT or possibly TIT) is found to be vital for a complete heat balance over the turbine. The losses, which are caused by the mixing of coolant and main flow, are in the CGTM considered through a polytropic efficiency reduction factor S. Through the study of S, it can be demonstrated that there is more to gain from coolant reduction in a small and/or old turbine with poor aerodynamics, than there is to gain in a large, modern turbine, where the losses due to interaction between coolant and main flow are, relatively speaking, small. It is demonstrated, at the design point (TET=1360 deg C, {pi}=20) for the simple-cycle gas turbine, that heat exchanging between coolant and fuel proves to have a large positive impact on cycle efficiency, with an increase of 0.9 percentage points if all of the coolant passes through the heat exchanger. The corresponding improvement for humidified coolant is 0.8 percentage points. A design-point study for the HAT cycle shows that if all of the coolant is extracted after the humidification tower, there is a decrease in coolant requirements of 7.16 percentage points, from 19.58% to 12.52% of the compressed air, and an increase in thermal efficiency of 0.46 percentage points, from 53.46% to 53.92%. Furthermore, it is demonstrated with a TET-parameter variation, that the cooling of a simple-cycle gas turbine with humid air can have a positive effect on thermal efficiency
Externally Fired micro-Gas Turbine: Modelling and experimental performance
Energy Technology Data Exchange (ETDEWEB)
Traverso, Alberto; Massardo, Aristide F. [Thermochemical Power Group, Dipartimento di Macchine, Sistemi Energetici e Trasporti, Universita di Genova, Genova (Italy); Scarpellini, Riccardo [Ansaldo Ricerche s.r.l., Genova (Italy)
2006-11-15
This work presents the steady-state and transient performance obtained by an Externally Fired micro-Gas Turbine (EFmGT) demonstration plant. The plant was designed by Ansaldo Ricerche (ARI) s.r.l. and the Thermochemical Power Group (TPG) of the Universita di Genova, using the in-house TPG codes TEMP (Thermoeconomic Modular Program) and TRANSEO. The plant was based on a recuperated 80kW micro-gas turbine (Elliott TA-80R), which was integrated with the externally fired cycle at the ARI laboratory. The first goal of the plant construction was the demonstration of the EFmGT control system. The performance obtained in the field can be improved in the near future using high-temperature heat exchangers and apt external combustors, which should allow the system to operate at the actual micro-gas turbine inlet temperature (900-950{sup o}C). This paper presents the plant layout and the control system employed for regulating the microturbine power and rotational speed. The experimental results obtained by the pilot plant in early 2004 are shown: the feasibility of such a plant configuration has been demonstrated, and the control system has successfully regulated the shaft speed in all the tests performed. Finally, the plant model in TRANSEO, which was formerly used to design the control system, is shown to accurately simulate the plant behaviour both at steady-state and transient conditions. (author)
Modeling cast IN-738 superalloy gas tungsten arc welds
Energy Technology Data Exchange (ETDEWEB)
Bonifaz, E.A. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, E2-327F EITC, Winnipeg, Man., R3T 5V6 (Canada); Universidad San Francisco de Quito, Casilla Postal: 17-12-841 Circulo de Cumbaya, Quito (Ecuador)], E-mail: bonifaz@cc.umanitoba.ca; Richards, N.L. [Department of Mechanical and Manufacturing Engineering, University of Manitoba, E2-327F EITC, Winnipeg, Man., R3T 5V6 (Canada)], E-mail: nrichar@cc.umanitoba.ca
2009-04-15
A three-dimensional finite-element thermal model has been developed to generate weld profiles, and to analyze transient heat flow, thermal gradients and thermal cycles in cast IN-738 superalloy gas tungsten arc welds. Outputs of the model (cooling rates, the thermal gradient G and the growth rate R) were used to describe solidification structures found around the weld pool for three different welding speeds at constant heat input. Calculations around the weld pool indicate that the cooling rate increases from the fusion line to the centerline at all welding speeds. It was also observed that the cooling rate (G x R) and the ratio G/R fall with welding speed. For instance, as the welding speed is increased, the cooling rates at the centerline, fusion line and penetration depth decrease. Moreover, it was observed that as the power and welding speed both increase (but keeping the heat input constant), the weld pool becomes wider and more elongated, shifting from circular to elliptical shaped. The calculations were performed using ABAQUS FE code on the basis of a time-increment Lagrangian formulation. The heat source represented by a moving Gaussian power density distribution is applied over the top surface of the specimen during a period of time that depends on the welding speed. Temperature-dependent material properties and the effect of forced convection due to the flow of the shielding gas are included in the model. Numerically predicted sizes of the melt-pool zone and dendrite secondary arm spacing induced by the gas tungsten arc welding process are also given.
Jet fire consequence modeling for high-pressure gas pipelines
Coccorullo, Ivano; Russo, Paola
2016-12-01
A simple and reliable approach for sizing the hazard area potentially affected by a jet fire as consequence of the failure of high-pressure pipeline is proposed. A release rate model, taking pipeline operation properties and source release properties into account, is coupled with SLAB dispersion model and point source radiation model to calculate the hazard distance. The hazard distance is set beyond the distance at which a low chance of fatality can occur to people exposed and a wooden structure is not expected to burn due to radiation heat of jet fire. The comparison between three gases with different physico-chemical properties (i.e. natural gas, hydrogen, ethylene) is shown. The influence of pipeline operating parameters, such as: pressure, pipeline diameter and length, hole size, on the hazard area for the three gases is evaluated. Finally, a simple correlation is proposed for calculating the hazard distance as function of these parameters.
Study on Turbulent Modeling in Gas Entrainment Evaluation Method
Ito, Kei; Ohshima, Hiroyuki; Nakamine, Yoshiaki; Imai, Yasutomo
Suppression of gas entrainment (GE) phenomena caused by free surface vortices are very important to establish an economically superior design of the sodium-cooled fast reactor in Japan (JSFR). However, due to the non-linearity and/or locality of the GE phenomena, it is not easy to evaluate the occurrences of the GE phenomena accurately. In other words, the onset condition of the GE phenomena in the JSFR is not predicted easily based on scaled-model and/or partial-model experiments. Therefore, the authors are developing a CFD-based evaluation method in which the non-linearity and locality of the GE phenomena can be considered. In the evaluation method, macroscopic vortex parameters, e.g. circulation, are determined by three-dimensional CFD and then, GE-related parameters, e.g. gas core (GC) length, are calculated by using the Burgers vortex model. This procedure is efficient to evaluate the GE phenomena in the JSFR. However, it is well known that the Burgers vortex model tends to overestimate the GC length due to the lack of considerations on some physical mechanisms. Therefore, in this study, the authors develop a turbulent vortex model to evaluate the GE phenomena more accurately. Then, the improved GE evaluation method with the turbulent viscosity model is validated by analyzing the GC lengths observed in a simple experiment. The evaluation results show that the GC lengths analyzed by the improved method are shorter in comparison to the original method, and give better agreement with the experimental data.
Institute of Scientific and Technical Information of China (English)
陈建彬; 吕小强
2011-01-01
Aiming at the fact that the energy and mass exchange phenomena exist between barrel and gas-operated device of the automatic weapon, for describing its interior ballistics and dynamic characteristics of the gas-operated device accurately, a new variable-mass thermodynamics model is built. It is used to calculate the automatic mechanism velocity of a certain automatic weapon, the calculation results coincide with the experimental results better, and thus the model is validated. The influences of structure parameters on gas-operated device＇ s dynamic characteristics are discussed. It shows that the model is valuable for design and accurate performance prediction of gas-operated automatic weapon.
Advanced modeling of oxy-fuel combustion of natural gas
Energy Technology Data Exchange (ETDEWEB)
Chungen Yin
2011-01-15
The main goal of this small-scale project is to investigate oxy-combustion of natural gas (NG) through advanced modeling, in which radiation, chemistry and mixing will be reasonably resolved. 1) A state-of-the-art review was given regarding the latest R and D achievements and status of oxy-fuel technology. The modeling and simulation status and achievements in the field of oxy-fuel combustion were also summarized; 2) A computer code in standard c++, using the exponential wide band model (EWBM) to evaluate the emissivity and absorptivity of any gas mixture at any condition, was developed and validated in detail against data in literature. A new, complete, and accurate WSGGM, applicable to both air-fuel and oxy-fuel combustion modeling and applicable to both gray and non-gray calculation, was successfully derived, by using the validated EWBM code as the reference mode. The new WSGGM was implemented in CFD modeling of two different oxy-fuel furnaces, through which its great, unique advantages over the currently most widely used WSGGM were demonstrated. 3) Chemical equilibrium calculations were performed for oxy-NG flame and air-NG flame, in which dissociation effects were considered to different degrees. Remarkable differences in oxy-fuel and air-fuel combustion were revealed, and main intermediate species that play key roles in oxy-fuel flames were identified. Different combustion mechanisms are compared, e.g., the most widely used 2-step global mechanism, refined 4-step global mechanism, a global mechanism developed for oxy-fuel using detailed chemical kinetic modeling (CHEMKIN) as reference. 4) Over 15 CFD simulations were done for oxy-NG combustion, in which radiation, chemistry, mixing, turbulence-chemistry interactions, and so on were thoroughly investigated. Among all the simulations, RANS combined with 2-step and refined 4-step mechanism, RANS combined with CHEMKIN-based new global mechanism for oxy-fuel modeling, and LES combined with different combustion
Operational modeling of a sustainable gas supply chain
Bekkering, Jan; Broekhuis, Ton A; van Gemert, Wim J. T.
2010-01-01
Biogas production from codigestion of cattle manure and biomass can have a significant contribution to a sustainable gas supply when this gas is upgraded to specifications prescribed for injection into the national gas grid and injected into this grid. In this study, we analyzed such a gas supply ch
Transient multiphase flow modeling of gas well liquid loading
Veeken, K.; Hu, B.; Schiferli, W.
2009-01-01
Gas well liquid loading occurs when gas production becomes insufficient to lift the associated liquids to surface. When that happens gas production first turns intermittent and eventually stops. Hence in depleting gas reservoirs the technical abandonment pressure and ultimate recovery are typically
An electricity price model with consideration to load and gas price effects
Institute of Scientific and Technical Information of China (English)
黄民翔; 陶小虎; 韩祯祥
2003-01-01
Some characteristics of the electricity load and prices are studied, and the relationship between electricity prices and gas (fuel) prices is analyzed in this paper. Because electricity prices are strongly dependent on load and gas prices, the authors constructed a model for electricity prices based on the effects of these two factors; and used the Geometric Mean Reversion Brownian Motion (GMRBM) model to describe the electricity load process, and a Geometric Brownian Motion(GBM) model to describe the gas prices; deduced the price stochastic process model based on the above load model and gas price model. This paper also presents methods for parameters estimation, and proposes some methods to solve the model.
Analytical model of neutral gas shielding for hydrogen pellet ablation
Energy Technology Data Exchange (ETDEWEB)
Kuteev, Boris V.; Tsendin, Lev D. [State Technical Univ., St. Petersburg (Russian Federation)
2001-11-01
A kinetic gasdynamic scaling for hydrogen pellet ablation is obtained in terms of a neural gas shielding model using both numerical and analytical approaches. The scaling on plasma and pellet parameters proposed in the monoenergy approximation by Milora and Foster dR{sub pe}/dt{approx}S{sub n}{sup 2/3}R{sub p}{sup -2/3}q{sub eo}{sup 1/3}m{sub i}{sup -1/3} is confirmed. Here R{sub p} is the pellet radius, S{sub n} is the optical thickness of a cloud, q{sub eo} is the electron energy flux density and m{sub i} is the molecular mass. Only the numeral factor is approximately two times less than that for the monoenergy approach. Due to this effect, the pellet ablation rates, which were obtained by Kuteev on the basis of the Milora scaling, should be reduced by a factor of 1.7. Such a modification provides a reasonable agreement (even at high plasma parameters) between the two-dimensional kinetic model and the one-dimensional monoenergy approximation validated in contemporary tokamak experiments. As the could (in the kinetic approximation) is significantly thicker than that for the monoenergy case as well as the velocities of the gas flow are much slower, the relative effect of plasma and magnetic shielding on the ablation rate is strongly reduced. (author)
Nahoon: Time-dependent gas-phase chemical model
Wakelam, V.
2014-09-01
Nahoon is a gas-phase chemical model that computes the chemical evolution in a 1D temperature and density structure. It uses chemical networks downloaded from the KInetic Database for Astrochemistry (KIDA) but the model can be adapted to any network. The program is written in Fortran 90 and uses the DLSODES (double precision) solver from the ODEPACK package to solve the coupled stiff differential equations. The solver computes the chemical evolution of gas-phase species at a fixed temperature and density and can be used in one dimension (1D) if a grid of temperature, density, and visual extinction is provided. Grains, both neutral and negatively charged, and electrons are considered as chemical species and their concentrations are computed at the same time as those of the other species. Nahoon contains a test to check the temperature range of the validity of the rate coefficients and avoid extrapolations outside this range. A test is also included to check for duplication of chemical reactions, defined over complementary ranges of temperature.
Dynamic-structure-factor measurements on a model Lorentz gas
Egelstaff, P. A.; Eder, O. J.; Glaser, W.; Polo, J.; Renker, B.; Soper, A. K.
1990-02-01
A model system for the Lorentz gas can be made [Eder, Chen, and Egelstaff, Proc. Phys. Soc. London 89, 833 (1966); McPherson and Egelstaff, Can. J. Phys. 58, 289 (1980)] by mixing small quantities of hydrogen with an argon host. For neutron-scattering experiments the large H-to-Ar cross section ratio (~200) makes the argon relatively invisible. Dynamic-structure-factor [S(Q,ω) for H2] measurements at room temperature have been made on this system using the IN4 spectrometer at the Institute Laue Langevin, Grenoble, France. Argon densities between 1.9 and 10.5 atoms/nm3 were used for 0.4gas host at densities of 4 and 10.5 atoms/nm3; helium is relatively invisible also compared to hydrogen. These experiments are described, and some examples of the results are presented to show the qualitative effects observed. The principle observation is a pronounced narrowing of S(Q,ω) as a function of ω as the argon density is increased. This effect is large at low Q and decreases with increasing Q, and also decreases substantially when helium is used in place of argon. In addition, the shape of S(Q,ω) is more complex than can be accommodated within a simple model, but slightly less complicated than a computer simulation so showing the significance of multiple-collision processes.
CFD modelling of longwall goaf gas flow to improve gas capture and prevent goaf self-heating
Institute of Scientific and Technical Information of China (English)
REN Ting-xiang
2009-01-01
CFD models have been developed to investigate the Iongwall goaf gas flow pat-terns under different mining and geological control conditions. The Iongwall goaf was treated as porous regions and gas flow was modelled as a momentum sink added to the momentum equation. Gas desorption from the caved goaf and destressed coal seams within the mining disturbed area was modelled as additional mass sources in the continu-ity equation. These CFD models were developed according to specific Iongwall layouts and calibrated against field monitoring data. Two case studies were presented demon-strating the application of CFD modelling of goaf gas flow characteristics for improved goaf gas capture and the reduction of oxygen ingress into the goaf areas for self-heating pre-vention. Results from the case studies indicate that the optimum goaf drainage strategy would be a combination of shallow (near the face) and deep holes to improve the overall drainage efficiency and gas purity. For gassy longwall faces retreating against the seam dip, it is recommended to conduct cross-measure roof hole drainage targeting the fractured zones overlying the return comer, rather than high capacity surface goaf drainage deep in the goaf.
Development and application of an efficient gas extraction model for low-rank high-gas coal beds
Institute of Scientific and Technical Information of China (English)
Baiquan Lin; He Li; Desheng Yuan; Ziwen Li
2015-01-01
To promote gas extraction in low-rank high-gas coal beds, the pore structure characteristics of the coal and their effect on gas desorption were studied. The results show that micropores are relatively rare in low-rank coal;mesopores are usually semi-open and inkpot-shaped whereas macropores are usually slit-shaped. Gas desorption is relatively easy at high-pressure stages, whereas it is difficult at low-pressure stages because of the‘bottleneck effect’ of the semi-open inkpot-shaped mesopores. A ‘two-three-two’ gas extraction model was established following experimental analysis and engi-neering practice applied in the Binchang mining area. In this model, gas extraction is divided into three periods:a planning period, a transitional period and a production period. In each period, surface extraction and underground extraction are performed simultaneously, and pressure-relief extraction and conventional extraction are coupled to each other. After applying this model, the gas extraction rate rose to 78.8%.
Natural gas transmission and distribution model of the National Energy Modeling System
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-02-01
The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.
Anyonic behavior of an intermediate-statistics fermion gas model.
Algin, Abdullah; Irk, Dursun; Topcu, Gozde
2015-06-01
We study the high-temperature behavior of an intermediate-statistics fermionic gas model whose quantum statistical properties enable us to effectively deduce the details about both the interaction among deformed (quasi)particles and their anyonic behavior. Starting with a deformed fermionic grand partition function, we calculate, in the thermodynamical limit, several thermostatistical functions of the model such as the internal energy and the entropy by means of a formalism of the fermionic q calculus. For high temperatures, a virial expansion of the equation of state for the system is obtained in two and three dimensions and the first five virial coefficients are derived in terms of the model deformation parameter q. From the results obtained by the effect of fermionic deformation, it is found that the model parameter q interpolates completely between bosonlike and fermionic systems via the behaviors of the third and fifth virial coefficients in both two and three spatial dimensions and in addition it characterizes effectively the interaction among quasifermions. Our results reveal that the present deformed (quasi)fermion model could be very efficient and effective in accounting for the nonlinear behaviors in interacting composite particle systems.
A paradigm for modeling and computation of gas dynamics
Xu, Kun; Liu, Chang
2017-02-01
In the continuum flow regime, the Navier-Stokes (NS) equations are usually used for the description of gas dynamics. On the other hand, the Boltzmann equation is applied for the rarefied flow. These two equations are based on distinguishable modeling scales for flow physics. Fortunately, due to the scale separation, i.e., the hydrodynamic and kinetic ones, both the Navier-Stokes equations and the Boltzmann equation are applicable in their respective domains. However, in real science and engineering applications, they may not have such a distinctive scale separation. For example, around a hypersonic flying vehicle, the flow physics at different regions may correspond to different regimes, where the local Knudsen number can be changed significantly in several orders of magnitude. With a variation of flow physics, theoretically a continuous governing equation from the kinetic Boltzmann modeling to the hydrodynamic Navier-Stokes dynamics should be used for its efficient description. However, due to the difficulties of a direct modeling of flow physics in the scale between the kinetic and hydrodynamic ones, there is basically no reliable theory or valid governing equations to cover the whole transition regime, except resolving flow physics always down to the mean free path scale, such as the direct Boltzmann solver and the Direct Simulation Monte Carlo (DSMC) method. In fact, it is an unresolved problem about the exact scale for the validity of the NS equations, especially in the small Reynolds number cases. The computational fluid dynamics (CFD) is usually based on the numerical solution of partial differential equations (PDEs), and it targets on the recovering of the exact solution of the PDEs as mesh size and time step converging to zero. This methodology can be hardly applied to solve the multiple scale problem efficiently because there is no such a complete PDE for flow physics through a continuous variation of scales. For the non-equilibrium flow study, the direct
Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification
Energy Technology Data Exchange (ETDEWEB)
Liu, Zhen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Safta, Cosmin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sargsyan, Khachik [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Najm, Habib N. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-CA), Livermore, CA (United States); LaFranchi, Brian W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ivey, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schrader, Paul E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michelsen, Hope A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bambha, Ray P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2014-09-01
In this project we have developed atmospheric measurement capabilities and a suite of atmospheric modeling and analysis tools that are well suited for verifying emissions of green- house gases (GHGs) on an urban-through-regional scale. We have for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate atmospheric CO_{2} . This will allow for the examination of regional-scale transport and distribution of CO_{2} along with air pollutants traditionally studied using CMAQ at relatively high spatial and temporal resolution with the goal of leveraging emissions verification efforts for both air quality and climate. We have developed a bias-enhanced Bayesian inference approach that can remedy the well-known problem of transport model errors in atmospheric CO_{2} inversions. We have tested the approach using data and model outputs from the TransCom3 global CO_{2} inversion comparison project. We have also performed two prototyping studies on inversion approaches in the generalized convection-diffusion context. One of these studies employed Polynomial Chaos Expansion to accelerate the evaluation of a regional transport model and enable efficient Markov Chain Monte Carlo sampling of the posterior for Bayesian inference. The other approach uses de- terministic inversion of a convection-diffusion-reaction system in the presence of uncertainty. These approaches should, in principle, be applicable to realistic atmospheric problems with moderate adaptation. We outline a regional greenhouse gas source inference system that integrates (1) two ap- proaches of atmospheric dispersion simulation and (2) a class of Bayesian inference and un- certainty quantification algorithms. We use two different and complementary approaches to simulate atmospheric dispersion. Specifically, we use a Eulerian chemical transport model CMAQ and a Lagrangian Particle Dispersion Model - FLEXPART-WRF. These two models share the same WRF
Models for grains and gas ejection dynamics from a silo
Zhou, Yixian; Aussillous, Pascale; Ruyer, Pierre; Iusti/Gep Team; Semia/Limar Team
2015-11-01
In the hypothetical conditions of a reactivity initiated accident in a nuclear power plant, some of the fuel rods could break. If fuel fragmentation occurs, hot fuel particles and pressurized gas could interact with the surrounding fluid. The violence of this interaction depends on the discharge rate toward the fluid. In the present work, we study the discharge dynamics and identify the parameters governing this flow. In this paper, we focus on the experimental study of the discharge of a silo composed of spherical glass beads, with an orifice either lateral or at the bottom, with or without air flow. The measured parameters are the mass flow rate and the pressure along the silo, whereas the controlled parameters are the size of particles, the size of orifices, and the flow rate of air. For the case without air flow we found that the flow rate of particles ejected from the bottom orifice is 3 times greater than from the lateral orifice. For the case of a lateral orifice, when the form of the orifice is rectangular with width W and height D, we identify two regimes which depend on the ratio of width to height W / D . For the case with air flow, we found that the flow rate increases with the air flow. A simple physical model is proposed to describe the grains and gas ejection.
Modeling of Gas Production from Shale Reservoirs Considering Multiple Transport Mechanisms.
Directory of Open Access Journals (Sweden)
Chaohua Guo
Full Text Available Gas transport in unconventional shale strata is a multi-mechanism-coupling process that is different from the process observed in conventional reservoirs. In micro fractures which are inborn or induced by hydraulic stimulation, viscous flow dominates. And gas surface diffusion and gas desorption should be further considered in organic nano pores. Also, the Klinkenberg effect should be considered when dealing with the gas transport problem. In addition, following two factors can play significant roles under certain circumstances but have not received enough attention in previous models. During pressure depletion, gas viscosity will change with Knudsen number; and pore radius will increase when the adsorption gas desorbs from the pore wall. In this paper, a comprehensive mathematical model that incorporates all known mechanisms for simulating gas flow in shale strata is presented. The objective of this study was to provide a more accurate reservoir model for simulation based on the flow mechanisms in the pore scale and formation geometry. Complex mechanisms, including viscous flow, Knudsen diffusion, slip flow, and desorption, are optionally integrated into different continua in the model. Sensitivity analysis was conducted to evaluate the effect of different mechanisms on the gas production. The results showed that adsorption and gas viscosity change will have a great impact on gas production. Ignoring one of following scenarios, such as adsorption, gas permeability change, gas viscosity change, or pore radius change, will underestimate gas production.
Testing dark energy models with $H(z)$ data
Qi, Jing-Zhao; Liu, Wen-Biao
2016-01-01
$Om(z)$ is a diagnostic approach to distinguish dark energy models. However, there are few articles to discuss what is the distinguishing criterion. In this paper, firstly we smooth the latest observational $H(z)$ data using a model-independent method -- Gaussian processes, and then reconstruct the $Om(z)$ and its fist order derivative $\\mathcal{L}^{(1)}_m$. Such reconstructions not only could be the distinguishing criteria, but also could be used to estimate the authenticity of models. We choose some popular models to study, such as $\\Lambda$CDM, generalized Chaplygin gas (GCG) model, Chevallier-Polarski-Linder (CPL) parametrization and Jassal-Bagla-Padmanabhan (JBP) parametrization. We plot the trajectories of $Om(z)$ and $\\mathcal{L}^{(1)}_m$ with $1 \\sigma$ confidence level of these models, and compare them to the reconstruction from $H(z)$ data set. The result indicates that the $H(z)$ data does not favor the CPL and JBP models at $1 \\sigma$ confidence level. Strangely, in high redshift range, the recons...
Effects of gas types and models on optimized gas fuelling station reservoir's pressure
M. Farzaneh-Gord; M. Deymi-Dashtebayaz; Rahbari,H. R.
2013-01-01
There are similar algorithms and infrastructure for storing gas fuels at CNG (Compressed Natural Gas) and CHG (Compressed Hydrogen Gas) fuelling stations. In these stations, the fuels are usually stored in the cascade storage system to utilize the stations more efficiently. The cascade storage system generally divides into three reservoirs, commonly termed low, medium and high-pressure reservoirs. The pressures within these reservoirs have huge effects on performance of the stations. In the c...
Modelling internal air systems in gas turbine engines
Institute of Scientific and Technical Information of China (English)
J Michael Owen
2007-01-01
Rotating-disc systems can be used to model,experimentally and computationally,the flow and heat transfer that occur inside the internal cooling-air systems of gas turbine engines.These rotating-disc systems have been used successfully to simplify and understand some of the complex flows that occur in internal-air systems,and designers have used this insight to improve the cooling effectiveness,thereby increasing the engine efficiency and reducing the emissions.In this review paper,three important cases are considered:hot-gas ingress;the pre-swirl system;and buoyancy-induced flow.Ingress,or ingestion,occurs when hot gas from the mainstream gas path is ingested into the wheel-space between the turbine disc and its adjacent casing.Rim seals are fitted at the periphery of the system,and sealing flow is used to reduce or prevent ingress.However,too much sealing air reduces the engine efficiency,and too little can cause serious overheating,resulting in damage to the turbine rim and blade roots.Although the flow is three-dimensional and unsteady,there are encouraging signs that simple 'orifice models' could be used to estimate the amount of ingress into the wheel-space.In a pre-swirl system,the cooling air for the gas-turbine blades is swirled by stationary nozzles,and the air is delivered to the blades via receiver holes in the rotating turbine disc.Swirling the air reduces its temperature relative to the rotating blades,and the designer needs to calculate the air temperature and pressure drop in the system.The designer also needs to calculate the effect of this swirling flow on the heat transfer from the turbine disc to the air,as this has a significant effect on the temperature distribution and stresses in the disc.Recent experimental and computational studies have given a better understanding of the flow and heat transfer in these systems.Buoyancy-induced flow occurs in the cavity between two co-rotating compressor discs when the temperature of the discs is higher
Pseudo-particle modeling for gas flow in microchannels
Institute of Scientific and Technical Information of China (English)
WANG LiMin; GE Wei; CHEN FeiGuo
2007-01-01
The velocity profiles and temperature distributions of gas flow in microchannels, for Knudsen numbers ranging from 0.01 to 0.20, are investigated with pseudo-particle modeling (PPM). It has been found that the velocity profiles are mainly affected by Knudsen number and the external force fields applied. When Knudsen number was increased, the slip velocities on the walls increased at the beginning, and then decreased. The temperature distributions were also significantly affected by the external force. The Darcy friction factor increased with increasing Knudsen number, and its variation with Mach number under increased Knudsen number was similar to the so-called premature laminar-turbulent transition observed in experiments.
Stochastic method for modeling of the rarefied gas transport coefficients
Rudyak, V. Ya; Lezhnev, E. V.
2016-08-01
In this paper, we propose an algorithm for computation of the transport coefficients of rarefied gas, which is based on stochastic modeling of phase trajectories considered molecular system. The hard spheres potential is used. The number of operations is proportional to the number of used molecules. Naturally in this algorithm the conservation laws are performed. The efficiency of the algorithm is demonstrated by the calculation of the viscosity and diffusion coefficients of several noble gases (argon, neon, xenon, krypton). It was shown that the algorithm accuracy of the order of 1-2% can be obtained by using a relatively small number of molecules. The accuracy dependence on the number of used molecules, statistics (number of the used phase trajectories) and calculation time was analyzed.
On The Modeling Of Hybrid Aerostatic - Gas Journal Bearings
DEFF Research Database (Denmark)
Morosi, Stefano; Santos, Ilmar
2010-01-01
Gas journal bearing have been increasingly adopted in modern turbo-machinery applications, as they meet the demands of operation at higher rotational speeds, in clean environment and great efficiency. Due to the fact that gaseous lubricants, typically air, have much lower viscosity than more...... conventional oil bearings, carrying capacity and dynamic characteristics of passive systems are generally poorer. In order to enhance these characteristics, one solution is to employ active control strategies. The present contribution presents a detailed mathematical modeling for active lubrication...... of a compressible fluid film journal bearing. Control forces are generated by injecting pressurized air into the bearing gap through orifices located on the bearing walls. A modified form of the compressible Reynolds equation for active lubrication is derived. By solving this equation, stiffness and damping...
Orlic, B.; Wassing, B.B.T.; Geel, C.R.
2013-01-01
A geomechanical modeling study was conducted to investigate stability of major faults during past gas production and future underground gas storage operations in a depleted gas field in the Netherlands. The field experienced induced seismicity during gas production, which was most likely caused by t
Energy Technology Data Exchange (ETDEWEB)
Presler, V.T. [Russian Academy of Science, Kemerovo (Russian Federation). Siberian Branch, Inst. of Coal & Coal Fuel Chemistry
2002-04-01
The models for air-gas processes of different hierarchical level are considered in designing and driving development workings in the coal seams. The procedure is proposed for model adaptation according to the on-line data, which makes it possible to estimate the state of medium and working capacity of measuring equipment.
Multiscale model reduction for shale gas transport in fractured media
Akkutlu, I. Y.
2016-05-18
In this paper, we develop a multiscale model reduction technique that describes shale gas transport in fractured media. Due to the pore-scale heterogeneities and processes, we use upscaled models to describe the matrix. We follow our previous work (Akkutlu et al. Transp. Porous Media 107(1), 235–260, 2015), where we derived an upscaled model in the form of generalized nonlinear diffusion model to describe the effects of kerogen. To model the interaction between the matrix and the fractures, we use Generalized Multiscale Finite Element Method (Efendiev et al. J. Comput. Phys. 251, 116–135, 2013, 2015). In this approach, the matrix and the fracture interaction is modeled via local multiscale basis functions. In Efendiev et al. (2015), we developed the GMsFEM and applied for linear flows with horizontal or vertical fracture orientations aligned with a Cartesian fine grid. The approach in Efendiev et al. (2015) does not allow handling arbitrary fracture distributions. In this paper, we (1) consider arbitrary fracture distributions on an unstructured grid; (2) develop GMsFEM for nonlinear flows; and (3) develop online basis function strategies to adaptively improve the convergence. The number of multiscale basis functions in each coarse region represents the degrees of freedom needed to achieve a certain error threshold. Our approach is adaptive in a sense that the multiscale basis functions can be added in the regions of interest. Numerical results for two-dimensional problem are presented to demonstrate the efficiency of proposed approach. © 2016 Springer International Publishing Switzerland
Accelerating Expansion of the Universe
Chakraborty, Writambhara
2011-01-01
This thesis concentrates on the accelerated expansion of the Universe recently explored by measurements of redshift and luminosity-distance relations of type Ia Supernovae. We have considered a model of the universe filled with modified Chaplygin gas and barotropic fluid. The role of dynamical cosmological constant has been explored with Modified Chaplygin Gas as the background fluid. Various phenomenological models for \\Lambda have been studied in presence of the gravitational constant G to be constant or time dependent. A new form of the well known Chaplygin gas model has been presented by introducing inhomogeneity in the EOS. This model explains w=-1 crossing. An interaction of this model with the scalar field has also been investigated through a phenomenological coupling function. Tachyonic field has been depicted as dark energy model to represent the present acceleration of the Universe. A mixture of the tachyonic fluid has been considered with Generalized Chaplygin Gas to show the role of the later as a...
Inhomogeneous imperfect fluid inflation
Elizalde, Emilio
2016-01-01
A generalized equation of state corresponding to a model that includes a Chaplygin gas and a viscous term is investigated, in the context of the reconstruction program in scalar field cosmology. The corresponding inflationary model parameters can be conveniently adjusted in order to reproduce the most recent PLANCK data. The influence of the Chaplygin gas term contribution, in relation with previous models, is discussed. Exit from inflation is also shown to occur in the new model.
Kinetic model on coke oven gas with steam reforming
Institute of Scientific and Technical Information of China (English)
ZHANG Jia-yuan; ZHOU Jie-min; YAN Hong-jie
2008-01-01
The effects of factors such as the molar ratio of H2O to CH4 (n(H2O)/n(CH4)), methane conversion temperature and time on methane conversion rate were investigated to build kinetic model for reforming of coke-oven gas with steam. The results of experiments show that the optimal conditions for methane conversion are that the molar ratio of H2O to CH4 varies from 1.1 to 1.3and the conversion temperature varies from 1 223 to 1 273 K. The methane conversion rate is more than 95% when the molar ratio ofH2O to CH4 is 1.2, the conversion temperature is above 1 223 K and the conversion time is longer than 0.75 s. Kinetic model of methane conversion was proposed. All results demonstrate that the calculated values by the kinetic model accord with the experimental data well, and the error is less than 1.5%.
Monte Carlo model for electron degradation in xenon gas
Mukundan, Vrinda
2016-01-01
We have developed a Monte Carlo model for studying the local degradation of electrons in the energy range 9-10000 eV in xenon gas. Analytically fitted form of electron impact cross sections for elastic and various inelastic processes are fed as input data to the model. Two dimensional numerical yield spectrum, which gives information on the number of energy loss events occurring in a particular energy interval, is obtained as output of the model. Numerical yield spectrum is fitted analytically, thus obtaining analytical yield spectrum. The analytical yield spectrum can be used to calculate electron fluxes, which can be further employed for the calculation of volume production rates. Using yield spectrum, mean energy per ion pair and efficiencies of inelastic processes are calculated. The value for mean energy per ion pair for Xe is 22 eV at 10 keV. Ionization dominates for incident energies greater than 50 eV and is found to have an efficiency of 65% at 10 keV. The efficiency for the excitation process is 30%...
Modelling and Identification for Control of Gas Bearings
DEFF Research Database (Denmark)
Theisen, Lukas Roy Svane; Niemann, Hans Henrik; Santos, Ilmar
2015-01-01
Gas bearings are popular for their high speed capabilities, low friction and clean operation, but suffer from poor damping, which poses challenges for safe operation in presence of disturbances. Enhanced damping can be achieved through active lubrication techniques using feedback control laws...... to industrial rotating machinery with gas bearings and to allow for subsequent control design. The paper shows how piezoelectric actuators in a gas bearing are efficiently used to perturb the gas film for identification over relevant ranges of rotational speed and gas injection pressure. Parameter...
Thermodynamic and Process Modelling of Gas Hydrate Systems in CO2 Capture Processes
DEFF Research Database (Denmark)
Herslund, Peter Jørgensen
A novel gas separation technique based on gas hydrate formation (solid precipitation) is investigated by means of thermodynamic modeling and experimental investigations. This process has previously been proposed for application in post-combustion carbon dioxide capture from power station flue gas...
Model of coupled gas flow and deformation process in heterogeneous coal seams and its application
Institute of Scientific and Technical Information of China (English)
ZHANG Chun-hui; ZHAO Quan-sheng; YU Yong-jiang
2011-01-01
The heterogeneity of coal was studied by mechanical tests. Probability plots of experimental data show that the mechanical parameters of heterogeneous coal follow a Weibull distribution. Based on elasto-plastic mechanics and gas dynamics, the model of coupled gas flow and deformation process of heterogeneous coal was presented and the effects of heterogeneity of coal on gas flow and failure of coal were investigated. Major findings include: The effect of the heterogeneity of coal on gas flow and mechanical failure of coal can be considered by the model in this paper. Failure of coal has a great effect on gas flow.
Modelling and Numerical Simulation of Gas Migration in a Nuclear Waste Repository
Bourgeat, Alain; Smai, Farid
2010-01-01
We present a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological radioactive waste repository. This model includes capillary effects and the gas diffusivity. The choice of the main variables in this model, Total or Dissolved Hydrogen Mass Concentration and Liquid Pressure, leads to a unique and consistent formulation of the gas phase appearance and disappearance. After introducing this model, we show computational evidences of its adequacy to simulate gas phase appearance and disappearance in different situations typical of underground radioactive waste repository.
Ma, Y.G.
2000-01-01
The emission of clusters in the nuclear disassembly is investigated within the framework of isospin dependent lattice gas model and classical molecular dynamics model. As observed in the recent experimental data, it is found that the emission of individual cluster is poissonian and thermal scaling is observed in the linear Arrhenius plots made from the average multiplicity of each cluster. The mass, isotope and charge dependent "emission barriers" are extracted from the slopes of the Arrheniu...
Thermodynamic Model for Updraft Gasifier with External Recirculation of Pyrolysis Gas
Directory of Open Access Journals (Sweden)
Fajri Vidian
2016-01-01
Full Text Available Most of the thermodynamic modeling of gasification for updraft gasifier uses one process of decomposition (decomposition of fuel. In the present study, a thermodynamic model which uses two processes of decomposition (decomposition of fuel and char is used. The model is implemented in modification of updraft gasifier with external recirculation of pyrolysis gas to the combustion zone and the gas flowing out from the side stream (reduction zone in the updraft gasifier. The goal of the model obtains the influences of amount of recirculation pyrolysis gas fraction to combustion zone on combustible gas and tar. The significant results of modification updraft are that the increases amount of recirculation of pyrolysis gas will increase the composition of H2 and reduce the composition of tar; then the composition of CO and CH4 is dependent on equivalence ratio. The results of the model for combustible gas composition are compared with previous study.
Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.
1999-01-01
The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable
Hu, Shenyang; Burkes, Douglas E.; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie
2016-10-01
Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the formation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was developed. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn't cause the gas bubble alignment, and fast 1-D migration of interstitials along directions in the body-centered cubic U matrix causes the gas bubble alignment along directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.
Energy Technology Data Exchange (ETDEWEB)
Hu, Shenyang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Senor, David J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Setyawan, Wahyu [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Zhijie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2016-07-08
Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the for- mation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was devel- oped. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials along $\\langle$110$\\rangle$ directions in the body-centered cubic U matrix causes the gas bubble alignment along $\\langle$110$\\rangle$ directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.
Overview: Understanding nucleation phenomena from simulations of lattice gas models
Binder, Kurt; Virnau, Peter
2016-12-01
Monte Carlo simulations of homogeneous and heterogeneous nucleation in Ising/lattice gas models are reviewed with an emphasis on the general insight gained on the mechanisms by which metastable states decay. Attention is paid to the proper distinction of particles that belong to a cluster (droplet), that may trigger a nucleation event, from particles in its environment, a problem crucial near the critical point. Well below the critical point, the lattice structure causes an anisotropy of the interface tension, and hence nonspherical droplet shapes result, making the treatment nontrivial even within the conventional classical theory of homogeneous nucleation. For temperatures below the roughening transition temperature facetted crystals rather than spherical droplets result. The possibility to find nucleation barriers from a thermodynamic analysis avoiding a cluster identification on the particle level is discussed, as well as the question of curvature corrections to the interfacial tension. For the interpretation of heterogeneous nucleation at planar walls, knowledge of contact angles and line tensions is desirable, and methods to extract these quantities from simulations will be mentioned. Finally, also the problem of nucleation near the stability limit of metastable states and the significance of the spinodal curve will be discussed, in the light of simulations of Ising models with medium range interactions.
Comparison of dark energy models:A perspective from the latest observational data
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We compare some popular dark energy models under the assumption of a flat universe by using the latest observational data including the type Ia supernovae Constitution compilation,the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey,the cosmic microwave background measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observations and the determination of H0 from the Hubble Space Telescope.Model comparison statistics such as the Bayesian and Akaike information criteria are applied to assess the worth of the models.These statistics favor models that give a good fit with fewer parameters.Based on this analysis,we find that the simplest cosmological constant model that has only one free parameter is still preferred by the current data.For other dynamical dark energy models,we find that some of them,such as the αdark energy,constant w,generalized Chaplygin gas,Chevalliear-Polarski-Linder parametrization,and holographic dark energy models,can provide good fits to the current data,and three of them,namely,the Ricci dark energy,agegraphic dark energy,and Dvali-Gabadadze-Porrati models,are clearly disfavored by the data.
Minimal model quantification of pulmonary gas exchange in intensive care patients
DEFF Research Database (Denmark)
Karbing, Dan Stieper; Kjærgaard, Søren; Andreassen, Steen
2011-01-01
of both oxygen and carbon dioxide. Three models of varying complexity were compared for their ability to fit measured data from intensive care patients and to provide adequate description of patients' gas exchange abnormalities. Pairwise F-tests showed that a two parameter model provided superior fit......Mathematical models are required to describe pulmonary gas exchange. The challenge remains to find models which are complex enough to describe physiology and simple enough for clinical practice. This study aimed at finding the necessary 'minimal' modeling complexity to represent the gas exchange...... to patient data compared to a shunt only model (p...
Experimental and Modeling Studies on the Prediction of Gas Hydrate Formation
Directory of Open Access Journals (Sweden)
Jian-Yi Liu
2015-01-01
Full Text Available On the base of some kinetics model analysis and kinetic observation of hydrate formation process, a new prediction model of gas hydrate formation is proposed. The analysis of the present model shows that the formation of gas hydrate not only relevant with gas composition and free water content but also relevant with temperature and pressure. Through contrast experiment, the predicted result of the new prediction method of gas hydrate crystallization kinetics is close to measured result, it means that the prediction method can reflect the hydrate crystallization accurately.
Directory of Open Access Journals (Sweden)
V. A. Lapin
2009-09-01
Full Text Available The mathematical model of heat transfer in vortex heat exchanger using natural gas energy which is released under decompression in gas-main pipe-lines for consumers of gas supply systems (dwellings, public and industrial buildings.
Modeling studies of biological gas desulfurization under haloalkaline conditions
Klok, J.B.M.
2015-01-01
Abstract Biogas, synthesis and natural gas streams often require treatment because of the presence of gaseous hydrogen sulphide (H2S). About 25 years ago, a biotechnological gas treatment process was developed as an alternative to the conventionally applied technologies. This proces
Modeling corrosion behavior of gas tungsten arc welded titanium alloy
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The pitting corrosion characteristics of pulse TIG welded Ti-6Al-4V titanium alloy in marine environment were explained.Besides the rapid advance of titanium metallurgy, this is also due to the successful solution of problems associated with the development of titanium alloy welding. The preferred welding process of titanium alloy is frequently gas tungsten arc(GTA) welding due to its comparatively easier applicability and better economy. In the case of single pass GTA welding of thinner section of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current process. The benefit of the process is utilized to obtain better quality titanium weldments. Four factors, five levels, central composite, rotatable design matrix are used to optimize the required number of experiments. The mathematical models have been developed by response surface method(RSM). The results reveal that the titanium alloy can form a protective scale in marine environment and is resistant to pitting corrosion. Experimental results are provided to illustrate the proposed approach.
Literature search for offsite data to improve the DWPF melter off-gas model
Energy Technology Data Exchange (ETDEWEB)
Daniel, W.E.
2000-05-04
This report documents the literature search performed and any relevant data that may help relax some of the constraints on the DWPF melter off-gas model. The objective of this task was to look for outside sources of technical data to help reduce some of the conservatism built in the DWPF melter off-gas model.
Energy Technology Data Exchange (ETDEWEB)
Eknes, Monika Loeland
1996-12-31
This Dr. ing. thesis deals with escalation scenarios initiated by gas explosions on offshore installations. Gas explosions is one of the major hazards to such installations. The objectives were to estimate the probability of ignition and frequency of gas explosions for gas leaks on top sides of offshore installations, and to estimate the response and resistance of components that could result in escalation if they failed. Main fields considered cover risk analysis methodology, gas explosions, simplified escalation models, evaluation of structural consequences, case studies, and guidelines. 107 refs., 33 figs., 33 tabs.
Modelling combustion reactions for gas flaring and its resulting emissions
Directory of Open Access Journals (Sweden)
O. Saheed Ismail
2016-07-01
Full Text Available Flaring of associated petroleum gas is an age long environmental concern which remains unabated. Flaring of gas maybe a very efficient combustion process especially steam/air assisted flare and more economical than utilization in some oil fields. However, it has serious implications for the environment. This study considered different reaction types and operating conditions for gas flaring. Six combustion equations were generated using the mass balance concept with varying air and combustion efficiency. These equations were coded with a computer program using 12 natural gas samples of different chemical composition and origin to predict the pattern of emission species from gas flaring. The effect of key parameters on the emission output is also shown. CO2, CO, NO, NO2 and SO2 are the anticipated non-hydrocarbon emissions of environmental concern. Results show that the quantity and pattern of these chemical species depended on percentage excess/deficiency of stoichiometric air, natural gas type, reaction type, carbon mass content, impurities, combustion efficiency of the flare system etc. These emissions degrade the environment and human life, so knowing the emission types, pattern and flaring conditions that this study predicts is of paramount importance to governments, environmental agencies and the oil and gas industry.
Gas-dynamic modeling of gas flow in semi-closed space including channel surface fluctuation
Petrova, E. N.; Salnikov, A. F.
2016-10-01
In this article frequency interaction conditions, that affect on acoustic stability of solid-propellant rocket engine (SPRE) action, and its influence on level change of pressure fluctuations with longitudinal gas oscillations in the combustion chamber (CC) are considered. Studies of CC in the assessment of the operating rocket engine stability are reported.
Multicomponent seismic forward modeling of gas hydrates beneath the seafloor
Institute of Scientific and Technical Information of China (English)
Yang Jia-Jia; He Bing-Shou; Zhang Jian-Zhong
2014-01-01
We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves (P-waves) and shear waves (S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottom-simulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P-and S-waves, which increases the complexity of the wavefield record.
`Gas cushion' model and hydrodynamic boundary conditions for superhydrophobic textures
Nizkaya, Tatiana V; Vinogradova, Olga I
2014-01-01
Superhydrophobic Cassie textures with trapped gas bubbles reduce drag, by generating large effective slip, which is important for a variety of applications that involve a manipulation of liquids at the small scale. Here we discuss how the dissipation in the gas phase of textures modifies their friction properties and effective slip. We propose an operator method, which allows us the mapping of the flow in the gas subphase to a local slip boundary condition at the liquid/gas interface. The determined uniquely local slip length depends on the viscosity contrast and underlying topography, and can be immediately used to evaluate an effective slip of the texture. Beside Cassie surfaces our approach is valid for Wenzel textures, where a liquid follows the surface relief, as well as for rough surfaces impregnated by a low-viscosity `lubricant'. These results provide a framework for the rational design of textured surfaces for numerous applications.
An electricity price model with consideration to load and gas price effects
Institute of Scientific and Technical Information of China (English)
黄民翔; 陶小虎; 韩祯祥
2003-01-01
Some characteristics of the electricity load and prices are studied, and the relationship between electricity prices and gas (fnel) prices is analyzed in this paper. Because electricity prices are strongly depen-dent on load and gas prices, the authors constructed a model for electricity prices based on the effects of these two factors; and used the Geometric Mean Reversion Brownian Motion (GMRBM) model to describe the electricity load process, and a Geometric Brownian Motion(GBM) model to describe the gas prices ; deduced the price stochastic process model based on the above load model and gas price model. This paper also presents methods for parameters estimation, and proposes some methods to solve the model.
EIA model documentation: Documentation of the Oil and Gas Supply Module (OGSM)
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-01-01
The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projects are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region.
Development of a Random Field Model for Gas Plume Detection in Multiple LWIR Images.
Energy Technology Data Exchange (ETDEWEB)
Heasler, Patrick G.
2008-09-30
This report develops a random field model that describes gas plumes in LWIR remote sensing images. The random field model serves as a prior distribution that can be combined with LWIR data to produce a posterior that determines the probability that a gas plume exists in the scene and also maps the most probable location of any plume. The random field model is intended to work with a single pixel regression estimator--a regression model that estimates gas concentration on an individual pixel basis.
Algebraic model for bubble tracking in horizontal gas-liquid flow
Energy Technology Data Exchange (ETDEWEB)
Freitas, Felipe G.C. de; Tisserant, Hendy R. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Morales, Rigoberto E.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica e de Materiais; Mazza, Ricardo A.; Rosa, Eugenio S. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica
2008-07-01
The current work extends the concept of unit-cell applied in gas-liquid slug flow models to predict the evolution of the gas and liquid flow properties along a horizontal pipe. The motivation of this model is its simplicity, easiness of application and low computational cost. It is a useful tool of reference data generation in order to check the consistency of numerical slug tracking models. The potential of the model is accessed by comparing the gas bubbles and liquid slug sizes, the translational bubble velocity and the pressure drop against experimental data. (author)
Fast and accurate calculation of dilute quantum gas using Uehling-Uhlenbeck model equation
Yano, Ryosuke
2017-02-01
The Uehling-Uhlenbeck (U-U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U-U model equation. DSMC analysis based on the U-U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U-U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculating the viscosity coefficient of a Bose gas on the basis of the Green-Kubo expression and the shock layer of a dilute Bose gas around a cylinder.
The Water-Induced Linear Reduction Gas Diffusivity Model Extended to Three Pore Regions
DEFF Research Database (Denmark)
Chamindu, T. K. K. Deepagoda; de Jonge, Lis Wollesen; Kawamoto, Ken
2015-01-01
. Characterization of soil functional pore structure is an essential prerequisite to understand key gas transport processes in variably saturated soils in relation to soil ecosystems, climate, and environmental services. In this study, the water-induced linear reduction (WLR) soil gas diffusivity model originally......An existing gas diffusivity model developed originally for sieved, repacked soils was extended to characterize gas diffusion in differently structured soils and functional pore networks. A gas diffusivity-derived pore connectivity index was used as a measure of soil structure development...... developed for sieved, repacked soil was extended to two simple, linear regions to characterize gas diffusion and functional pore-network structure also in intact, structured soil systems. Based on the measurements in soils with markedly different pore regions, we showed that the two linear regions can...
Semi-gas kinetics model for performance modeling of flowing chemical oxygen-iodine lasers (COIL)
Institute of Scientific and Technical Information of China (English)
GAO Zhi; HU Limin; SHEN Yiqing
2004-01-01
A semi-gas kinetics (SGK) model for performance analyses of flowing chemical oxygen-iodine laser (COIL) is presented. In this model, the oxygen-iodine reaction gas flow is treated as a continuous medium, and the effect of thermal motions of particles of different laser energy levels on the performances of the COIL is included and the velocity distribution function equations are solved by using the double-parameter perturbational method. For a premixed flow, effects of different chemical reaction systems, different gain saturation models and temperature, pressure, yield of excited oxygen, iodine concentration and frequency-shift on the performances of the COIL are computed, and the calculated output power agrees well with the experimental data. The results indicate that the power extraction of the SGK model considering 21 reactions is close to those when only the reversible pumping reaction is considered, while different gain saturation models and adjustable parameters greatly affect the output power, the optimal threshold gain range, and the length of power extraction.
Integrated field modelling[Oil and gas fields
Energy Technology Data Exchange (ETDEWEB)
Nazarian, Bamshad
2002-07-01
This research project studies the feasibility of developing and applying an integrated field simulator to simulate the production performance of an entire oil or gas field. It integrates the performance of the reservoir, the wells, the chokes, the gathering system, the surface processing facilities and whenever applicable, gas and water injection systems. The approach adopted for developing the integrated simulator is to couple existing commercial reservoir and process simulators using available linking technologies. The simulators are dynamically linked and customised into a single hybrid application that benefits from the concept of open software architecture. The integrated field simulator is linked to an optimisation routine developed based on the genetic algorithm search strategies. This enables optimisation of the system at field level, from the reservoir to the process. Modelling the wells and the gathering network is achieved by customising the process simulator. This study demonstrated that the integrated simulation improves current capabilities to simulate the performance of the entire field and optimise its design. This is achieved by evaluating design options including spread and layout of the wells and gathering system, processing alternatives, reservoir development schemes and production strategies. Effectiveness of the integrated simulator is demonstrated and tested through several field-level case studies that discuss and investigate technical problems relevant to offshore field development. The case studies cover topics such as process optimisation, optimum tie-in of satellite wells into existing process facilities, optimal well location and field layout assessment of a high pressure high temperature deepwater oil field. Case study results confirm the viability of the total field simulator by demonstrating that the field performance simulation and optimal design were obtained in an automated process with treasonable computation time. No significant
Integrated field modelling[Oil and gas fields
Energy Technology Data Exchange (ETDEWEB)
Nazarian, Bamshad
2002-07-01
This research project studies the feasibility of developing and applying an integrated field simulator to simulate the production performance of an entire oil or gas field. It integrates the performance of the reservoir, the wells, the chokes, the gathering system, the surface processing facilities and whenever applicable, gas and water injection systems. The approach adopted for developing the integrated simulator is to couple existing commercial reservoir and process simulators using available linking technologies. The simulators are dynamically linked and customised into a single hybrid application that benefits from the concept of open software architecture. The integrated field simulator is linked to an optimisation routine developed based on the genetic algorithm search strategies. This enables optimisation of the system at field level, from the reservoir to the process. Modelling the wells and the gathering network is achieved by customising the process simulator. This study demonstrated that the integrated simulation improves current capabilities to simulate the performance of the entire field and optimise its design. This is achieved by evaluating design options including spread and layout of the wells and gathering system, processing alternatives, reservoir development schemes and production strategies. Effectiveness of the integrated simulator is demonstrated and tested through several field-level case studies that discuss and investigate technical problems relevant to offshore field development. The case studies cover topics such as process optimisation, optimum tie-in of satellite wells into existing process facilities, optimal well location and field layout assessment of a high pressure high temperature deepwater oil field. Case study results confirm the viability of the total field simulator by demonstrating that the field performance simulation and optimal design were obtained in an automated process with treasonable computation time. No significant
Modeling of microbial gas generation: application to the eastern Mediterranean “Biogenic Play”
Energy Technology Data Exchange (ETDEWEB)
Schneider, M.; Dubille, M.; Montadert, L.
2016-07-01
Biogenic gas is becoming increasingly important as an exploration target in the petroleum industry because it occurs in geologically predictable circumstances and in large quantities at shallow depths as free gas or gas hydrates. As accumulations of biogenic gas result in a subtle synchronization between early generation and early trapping, we integrated a macroscopic model of microbial gas generation within a 3D basin and petroleum system forward simulator. The macroscopic model is based on a microscopic model, which consists in a 1D sedimentary column that accounts for sedimentation, compaction, Darcy flow and Diffusion flow. The organic carbon is the only non-soluble element considered in this version of the model. The dissolved elements are O2, SO4 2-, H2, CH3COOH, and CH4. Methane is dissolved in water or present as a free phase if its concentration exceeds its solubility at given pressure and temperature. In this microscopic model, the transformation of substrate into biomass is described through a set of logistic equations coupled with the transport equations (advection and diffusion). Based on the microscopic considerations we developed the macroscopic model of low maturity/biogenic gas generation in which hydrocarbons are generated through first order kinetic reactions at low maturity. This macroscopic model is adapted to petroleum system modeling at basin scale with TemisFlow®, which aims to understand and predict hydrocarbon generation, migration, and accumulation. It is composed of: i) A source rock criteria which allow defining the biogenic gas source rocks potential and ii) A kinetic model of methane generation. The previous model has been successfully applied on different basins such as the Carupano Basin from the offshore Venezuela, the Magdalena Delta (offshore Colombia) and the offshore Vietnam where direct observations of low-maturity gas were available. Furthermore, it has been applied in the offshore Lebanon in order to check the viability of
Gas kinetic algorithm for flows in Poiseuille-like microchannels using Boltzmann model equation
Institute of Scientific and Technical Information of China (English)
LI; Zhihui; ZHANG; Hanxin; FU; Song
2005-01-01
The gas-kinetic unified algorithm using Boltzmann model equation have been extended and developed to solve the micro-scale gas flows in Poiseuille-like micro-channels from Micro-Electro-Mechanical Systems (MEMS). The numerical modeling of the gas kinetic boundary conditions suitable for micro-scale gas flows is presented. To test the present method, the classical Couette flows with various Knudsen numbers, the gas flows from short microchannels like plane Poiseuille and the pressure-driven gas flows in two-dimensional short microchannels have been simulated and compared with the approximate solutions of the Boltzmann equation, the related DSMC results, the modified N-S solutions with slip-flow boundary theory, the gas-kinetic BGK-Burnett solutions and the experimental data. The comparisons show that the present gas-kinetic numerical algorithm using the mesoscopic Boltzmann simplified velocity distribution function equation can effectively simulate and reveal the gas flows in microchannels. The numerical experience indicates that this method may be a powerful tool in the numerical simulation of micro-scale gas flows from MEMS.
Model of Gas Flow Through Porous Refractory Applied to an Upper Tundish Nozzle
Liu, Rui; Thomas, Brian G.
2015-02-01
Argon gas commonly is injected into the liquid metal stream through the porous refractory walls in many metallurgical processes. In this work, a new model has been developed to investigate gas diffusion through heated porous refractory, including the effects of refractory geometry, the thermal expansion of the gas, temperature-dependent gas viscosity, and possible leakage into unsealed joints. A novel one-way-flow pressure boundary condition has been formulated and implemented to prevent unrealistic flow into the refractory. The complete model is validated with both analytical solutions of 1D test problems and observations of a water bubbling experiment. Then, to demonstrate practical application of this general model, argon gas flow is simulated through a double-slitted upper tundish nozzle during continuous steel casting with a slide-gate system. Realistic liquid steel pressure distributions with the bubbling threshold condition are applied on the inner surface. Parametric studies are conducted to investigate the effects of joint gas leakage, refractory conductivity, permeability, and injection pressure on the resulting gas distributions, gas mass flow rates, and leakage fraction. This new model of porous flow can serve as the first step of a comprehensive multiphase model system.
A numerical study of gas transport in human lung models
Lin, Ching-Long; Hoffman, Eric A.
2005-04-01
Stable Xenon (Xe) gas has been used as an imaging agent for decades in its radioactive form, is chemically inert, and has been used as a ventilation tracer in its non radioactive form during computerized tomography (CT) imaging. Magnetic resonance imaging (MRI) using hyperpolarized Helium (He) gas and Xe has also emerged as a powerful tool to study regional lung structure and function. However, the present state of knowledge regarding intra-bronchial Xe and He transport properties is incomplete. As the use of these gases rapidly advances, it has become critically important to understand the nature of their transport properties and to, in the process, better understand the role of gas density in general in determining regional distribution of respiratory gases. In this paper, we applied the custom developed characteristic-Galerkin finite element method, which solves the three-dimensional (3D) incompressible variable-density Navier-Stokes equations, to study the transport of Xe and He in the CT-based human lung geometries, especially emulating the washin and washout processes. The realistic lung geometries are segmented and reconstructed from CT images as part of an effort to build a normative atlas (NIH HL-064368) documenting airway geometry over 4 decades of age in healthy and disease-state adult humans. The simulation results show that the gas transport process depends on the gas density and the body posture. The implications of these results on the difference between washin and washout time constants are discussed.
Compressible gas gills of diving insects: measurements and models.
Matthews, Philip G D; Seymour, Roger S
2010-05-01
Many diving insects collect a bubble of air from the surface to supply their oxygen requirements while submerged. It has been theorised that these air bubbles may also act as compressible gas gills, as the low oxygen partial pressure P(O(2))within the bubble caused by the insect's respiration creates a gradient capable of driving the diffusion of oxygen from the water into the bubble. Under these conditions nitrogen diffuses in the opposite direction, resulting in a situation where the volume of the bubble is continually shrinking while oxygen is obtained. This study measures changes in volume and P(O(2)) within the gas gills held by a tethered water bug, Agraptocorixa eurynome. Both gill volume and P(O(2)) drop rapidly at the beginning of a dive, but eventually the P(O(2)) reaches an apparently stable level while volume continually declines at a slower rate. Active ventilation of the gill is crucial to maintaining oxygen uptake. These measurements are used to calculate oxygen flux into the gas gill and the oxygen consumption rate V(O(2)) of the bug. The effectiveness of a gas gill as a respiratory organ is also demonstrated by determining the critical P(O(2)) of the water bug and comparing this with measured gas gill P(O(2)) and calculated V(O(2)) .
Simulation of Water Level Fluctuations in a Hydraulic System Using a Coupled Liquid-Gas Model
Directory of Open Access Journals (Sweden)
Chao Wang
2015-08-01
Full Text Available A model for simulating vertical water level fluctuations with coupled liquid and gas phases is presented. The Preissmann implicit scheme is used to linearize the governing equations for one-dimensional transient flow for both liquid and gas phases, and the linear system is solved using the chasing method. Some classical cases for single liquid and gas phase transients in pipelines and networks are studied to verify that the proposed methods are accurate and reliable. The implicit scheme is extended using a dynamic mesh to simulate the water level fluctuations in a U-tube and an open surge tank without consideration of the gas phase. Methods of coupling liquid and gas phases are presented and used for studying the transient process and interaction between the phases, for gas phase limited in a chamber and gas phase transported in a pipeline. In particular, two other simplified models, one neglecting the effect of the gas phase on the liquid phase and the other one coupling the liquid and gas phases asynchronously, are proposed. The numerical results indicate that the asynchronous model performs better, and are finally applied to a hydropower station with surge tanks and air shafts to simulate the water level fluctuations and air speed.
Modelling of landfill gas adsorption with bottom ash for utilization of renewable energy
Energy Technology Data Exchange (ETDEWEB)
Miao, Chen
2011-10-06
Energy crisis, environment pollution and climate change are the serious challenges to people worldwide. In the 21st century, human being is trend to research new technology of renewable energy, so as to slow down global warming and develop society in an environmentally sustainable method. Landfill gas, produced by biodegradable municipal solid waste in landfill, is a renewable energy source. In this work, landfill gas utilization for energy generation is introduced. Landfill gas is able to produce hydrogen by steam reforming reactions. There is a steam reformer equipment in the fuel cells system. A sewage plant of Cologne in Germany has run the Phosphoric Acid Fuel Cells power station with biogas for more than 50,000 hours successfully. Landfill gas thus may be used as fuel for electricity generation via fuel cells system. For the purpose of explaining the possibility of landfill gas utilization via fuel cells, the thermodynamics of landfill gas steam reforming are discussed by simulations. In practice, the methane-riched gas can be obtained by landfill gas purification and upgrading. This work investigate a new method for upgrading-landfill gas adsorption with bottom ash experimentally. Bottom ash is a by-product of municipal solid waste incineration, some of its physical and chemical properties are analysed in this work. The landfill gas adsorption experimental data show bottom ash can be used as a potential adsorbent for landfill gas adsorption to remove CO{sub 2}. In addition, the alkalinity of bottom ash eluate can be reduced in these adsorption processes. Therefore, the interactions between landfill gas and bottom ash can be explained by series reactions accordingly. Furthermore, a conceptual model involving landfill gas adsorption with bottom ash is developed. In this thesis, the parameters of landfill gas adsorption equilibrium equations can be obtained by fitting experimental data. On the other hand, these functions can be deduced with theoretical approach
A Mathematical Model of Gas-Turbine Pump Complex
Shpilevoy, V. A.; Chekardovsky, S. M.; Zakirazkov, A. G.
2016-10-01
The articles analyzes the state of an extensive network of main oil pipelines of Tyumen region on the basis of statistical data, and also suggest ways of improving the efficiency of energy-saving policy on the main transport oil. Various types of main oil pipelines pump drives were examined. It was determined that now there is no strict analytical dependence between main operating properties of the power turbine of gas turbine engine. At the same time it is necessary to determine the operating parameters using a turbine at GTPU, interconnection between power and speed frequency, as well as the feasibility of using a particular mode. Analysis of foreign experience, the state of domestic enterprises supplying the country with gas turbines, features of the further development of transport of hydrocarbon resources allows us to conclude the feasibility of supplying the oil transportation industry of our country with pumping units based on gas turbine drive.
An Explosive Range Model Based on the Gas Composition, Temperature, and Pressure during Air Drilling
Directory of Open Access Journals (Sweden)
Xiangyu Fan
2016-01-01
Full Text Available Air drilling is low cost and effectively improves the penetration rate and causes minimal damage to liquid-sensitive pay zones. However, there is a potential downhole explosion when combustible gas mixed with drilling fluid reaches the combustible condition. In this paper, based on the underground combustion mechanism, an explosive range calculation model is established. This model couples the state equation and the empirical formula method, which considers the inert gas content, pressure, mixed gas component, and temperature. The result shows that increase of the inert gas content narrows the explosive range, while increase of the gas temperature and pressure improves the explosive range. A case in Chongqing, China, is used to validate the explosive range calculation model.
Computational modeling of Krypton gas puffs with tailored mass density profiles on Z
Energy Technology Data Exchange (ETDEWEB)
Jennings, C. A.; Ampleford, D. J.; Lamppa, D. C.; Hansen, S. B.; Jones, B.; Harvey-Thompson, A. J.; Jobe, M.; Strizic, T.; Reneker, J.; Rochau, G. A.; Cuneo, M. E. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185 (United States)
2015-05-15
Large diameter multi-shell gas puffs rapidly imploded by high current (∼20 MA, ∼100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ∼13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.
Carbone, Francesco; El, Gennady
2015-01-01
We undertake a detailed comparison of the results of direct numerical simulations of the integrable soliton gas dynamics with the analytical predictions inferred from the exact solutions of the relevant kinetic equation for solitons. We use the KdV soliton gas as a simplest analytically accessible model yielding major insight into the general properties of soliton gases in integrable systems. Two model problems are considered: (i) the propagation of a `trial' soliton through a one-component `cold' soliton gas consisting of randomly distributed solitons of approximately the same amplitude; and (ii) collision of two cold soliton gases of different amplitudes (soliton gas shock tube problem) leading to the formation of an incoherend dispersive shock wave. In both cases excellent agreement is observed between the analytical predictions of the soliton gas kinetics and the direct numerical simulations. Our results confirm relevance of the kinetic equation for solitons as a quantitatively accurate model for macrosco...
A simple model of gas flow in a porous powder compact.
Energy Technology Data Exchange (ETDEWEB)
Shugard, Andrew D.; Robinson, David B.
2014-04-01
This report describes a simple model for ideal gas flow from a vessel through a bed of porous material into another vessel. It assumes constant temperature and uniform porosity. Transport is treated as a combination of viscous and molecular flow, with no inertial contribution (low Reynolds number). This model can be used to fit data to obtain permeability values, determine flow rates, understand the relative contributions of viscous and molecular flow, and verify volume calibrations. It draws upon the Dusty Gas Model and other detailed studies of gas flow through porous media.
A Simple Model of Gas Flow in a Porous Powder Compact
Energy Technology Data Exchange (ETDEWEB)
Shugard, Andrew D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Robinson, David [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2012-07-01
This report describes a simple model for ideal gas flow from a vessel through a bed of porous material into another vessel. It assumes constant temperature and uniform porosity. Transport is treated as a combination of viscous and molecular flow, with no inertial contribution (low Reynolds number). This model can be used to fit data to obtain permeability values, determine flow rates, understand the relative contributions of viscous and molecular flow, and verify volume calibrations. It draws upon the Dusty Gas Model and other detailed studies of gas flow through porous media.
Geochemical modelling of hydrogen gas migration in an unsaturated bentonite buffer
Sedighi, M.; Thomas, H.R.; Al Masum, S.; Vardon, P.J.; Nicholson, D.; Chen, Q.
2014-01-01
This paper presents an investigation of the transport and fate of hydrogen gas through compacted bentonite buffer. Various geochemical reactions that may occur in the multiphase and multicomponent system of the unsaturated bentonite buffer are considered. A reactive gas transport model, developed wi
Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities
Lee, Myung W.
2008-01-01
Elastic velocities and hydraulic permeability of gas hydrate-bearing sediments strongly depend on how gas hydrate accumulates in pore spaces and various gas hydrate accumulation models are proposed to predict physical property changes due to gas hydrate concentrations. Elastic velocities and permeability predicted from a cementation model differ noticeably from those from a pore-filling model. A nuclear magnetic resonance (NMR) log provides in-situ water-filled porosity and hydraulic permeability of gas hydrate-bearing sediments. To test the two competing models, the NMR log along with conventional logs such as velocity and resistivity logs acquired at the Mallik 5L-38 well, Mackenzie Delta, Canada, were analyzed. When the clay content is less than about 12 percent, the NMR porosity is 'accurate' and the gas hydrate concentrations from the NMR log are comparable to those estimated from an electrical resistivity log. The variation of elastic velocities and relative permeability with respect to the gas hydrate concentration indicates that the dominant effect of gas hydrate in the pore space is the pore-filling characteristic.
MATHEMATIC MODELING IN ANALYSIS OF BIO-GAS PURIFICATION FROM CARBON DIOXIDE
Directory of Open Access Journals (Sweden)
Y. A. Losiouk
2009-01-01
Full Text Available The paper considers a possibility to involve bio-gas generated at testing grounds of hard domestic garbage in power supply system in the Republic of Belarus. An example of optimization using mathematical modeling of plant operation which is used for bio-gas enrichment is given in the paper.
Molecular interpretation of nonclassical gas dynamics of dense vapors under the van der Waals model
Colonna, P.; Guardone, A.
2006-01-01
The van der Waals polytropic gas model is used to investigate the role of attractive and repulsive intermolecular forces and the influence of molecular complexity on the possible nonclassical gas dynamic behavior of vapors near the liquid-vapor saturation curve. The decrease of the sound speed upon
Development and test of an evaluation protocol for heavy gas dispersion models
Duijm, N.J.; Carissimo, B.; Mercer, A.; Bartholome, C.; Giesbrecht, H.
1997-01-01
In order to improve the quality (i.e. fitness-for-purpose) of models used to describe the atmospheric dispersion of heavy gas, an evaluation methodology has been developed and tested through a small evaluation exercise. This activity was carried out by the Heavy Gas Dispersion Expert Group, which wa
Rodrigues, M.A.M.; Cone, J.W.; Ferreira, L.M.M.; Blok, M.C.; Guedes, C.
2009-01-01
In vitro and in situ studies were conducted to evaluate the influence of different mathematical models, used to fit gas production profiles of 15 feedstuffs, on estimates of nylon bag organic matter (OM) degradation kinetics. The gas production data were fitted to Exponential, Logistic, Gompertz and
Mathematical model of diffusion-limited gas bubble dynamics in unstirred tissue with finite volume.
Srinivasan, R Srini; Gerth, Wayne A; Powell, Michael R
2002-02-01
Models of gas bubble dynamics for studying decompression sickness have been developed by considering the bubble to be immersed in an extravascular tissue with diffusion-limited gas exchange between the bubble and the surrounding unstirred tissue. In previous versions of this two-region model, the tissue volume must be theoretically infinite, which renders the model inapplicable to analysis of bubble growth in a finite-sized tissue. We herein present a new two-region model that is applicable to problems involving finite tissue volumes. By introducing radial deviations to gas tension in the diffusion region surrounding the bubble, the concentration gradient can be zero at a finite distance from the bubble, thus limiting the tissue volume that participates in bubble-tissue gas exchange. It is shown that these deviations account for the effects of heterogeneous perfusion on gas bubble dynamics, and are required for the tissue volume to be finite. The bubble growth results from a difference between the bubble gas pressure and an average gas tension in the surrounding diffusion region that explicitly depends on gas uptake and release by the bubble. For any given decompression, the diffusion region volume must stay above a certain minimum in order to sustain bubble growth.
Energy Technology Data Exchange (ETDEWEB)
Al Mamon, Abdulla; Das, Sudipta [Visva-Bharati, Department of Physics, Santiniketan (India)
2015-06-15
In this present work, we try to build up a cosmological model using a non-canonical scalar field within the framework of a spatially flat FRW space-time. In this context, we have considered four different parametrizations of the equation of state parameter of the non-canonical scalar field. Under this scenario, analytical solutions for various cosmological parameters have been found out. It has been found that the deceleration parameter shows a smooth transition from a positive value to some negative value which indicates that the universe was undergoing an early deceleration followed by late time acceleration which is essential for the structure formation of the universe. With these four parametrizations, the future evolution of the models are also discussed. It has been found that one of the models (Generalized Chaplygin gas model, GCG) mimics the concordance ΛCDM in the near future, whereas two other models (CPL and JBP) diverge due to future singularity. Finally, we have studied these theoretical models with the latest datasets from SN Ia + H(z) + BAO/CMB. (orig.)
SIMPLODE: An Imploding Gas Puff Plasma Model. I. Neon.
2014-09-26
cylindrical annular gas puff plasma of uniform density carrying a uniform current in the Z- direction. Only the radial motion is considered - hence...suggest that the relationship between current and yield is a linear one, because it is not, it is only indicative that in general, for optimum kinematics
3D numerical modeling of shale gas stimulation and seisimicity
Shahid, A.S.; Wassing, B.B.T.; Verga, F.; Fokker, P.A.
2013-01-01
The economic production from shale gas reservoir depends on the success of hydraulic stimulation, which is aimed at the creation of a permeable complex fracture network. This is achieved by the reactivation of a natural fracture network; however, the reactivation may be accompanied by unwanted seism
Disequilibrium econometrics. An application to modelling of the natural gas market in the USA
Energy Technology Data Exchange (ETDEWEB)
Barret, C.
1990-08-01
Econometrics methods applicable to limited dependent variable models are presented. Qualitative models are briefly reported, TOBIT models and disequilibrium models are developed. The different formulations are used for simulating the gas market in the USA. Evolution and regulations of this market are reported and an approach by disequilibrium is developed.
Design and off-design thermodynamic model of a gas turbine for performance prediction
Energy Technology Data Exchange (ETDEWEB)
Monteiro, Ulisses A. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Ensaios de Modelos de Engenharia (LEME)]. E-mail: ulisses@peno.coppe.ufrj.br; Belchior, Carlos Rodrigues Pereira [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE). Lab. de Maquinas Termicas (LMT)]. E-mail: belchior@peno.coppe.ufrj.br
2008-07-01
There are some types of faults that do not leave 'signatures' in the vibration spectrum of a gas turbine. These faults can only be detected by other analysis techniques. One of these techniques is the gas turbine performance analysis or gas path analysis which relates the efficiency, mass flow, temperature, pressure, fuel consumption and power to the gas turbine faults. In this paper the methodology used in the development of a thermodynamic model that simulates the design and off-design operation of a gas turbine with a free power turbine will be presented. The results obtained are used to predict the gas turbine performance in both design and off-design operation point, and also to simulate some types of faults. (author)
DEFF Research Database (Denmark)
Poulsen, T.G.; Christophersen, Mette; Moldrup, P.
2003-01-01
were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...
ECONOMETRIC MODELING OF THE DYNAMICS OF VOLUMES HYDROCARBONS OF SMALL OIL AND GAS ENTERPRISES
Directory of Open Access Journals (Sweden)
GORLOV A.V.
2015-01-01
Full Text Available In this paper investigates the principles of functioning of small oil and gas enterprises of Russia. The basic characteristics and socio-economic tasks performed by the small oil and gas enterprises. Made correlation and regression analysis, a result of which the pair correlation coefficients between the indicator of development of small oil and gas enterprises (volumes hydrocarbons and the factors that characterize the work environment of their operation; built regressions, describing the process of development of small oil and gas enterprises. With a view to forecasting the development of small oil and gas enterprises built production function of Cobb-Douglas and selected econometric model, has good predictive properties. Made predictive calculations dynamics of volumes hydrocarbons of small oil and gas enterprises on formulating scenarios for the planning period (2015-2016 years.
Dynamic modeling of fixed-bed adsorption of flue gas using a variable mass transfer model
Energy Technology Data Exchange (ETDEWEB)
Park, Jehun; Lee, Jae W. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)
2016-02-15
This study introduces a dynamic mass transfer model for the fixed-bed adsorption of a flue gas. The derivation of the variable mass transfer coefficient is based on pore diffusion theory and it is a function of effective porosity, temperature, and pressure as well as the adsorbate composition. Adsorption experiments were done at four different pressures (1.8, 5, 10 and 20 bars) and three different temperatures (30, 50 and 70 .deg. C) with zeolite 13X as the adsorbent. To explain the equilibrium adsorption capacity, the Langmuir-Freundlich isotherm model was adopted, and the parameters of the isotherm equation were fitted to the experimental data for a wide range of pressures and temperatures. Then, dynamic simulations were performed using the system equations for material and energy balance with the equilibrium adsorption isotherm data. The optimal mass transfer and heat transfer coefficients were determined after iterative calculations. As a result, the dynamic variable mass transfer model can estimate the adsorption rate for a wide range of concentrations and precisely simulate the fixed-bed adsorption process of a flue gas mixture of carbon dioxide and nitrogen.
Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling
Energy Technology Data Exchange (ETDEWEB)
Pastore, Giovanni, E-mail: Giovanni.Pastore@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Swiler, L.P., E-mail: LPSwile@sandia.gov [Optimization and Uncertainty Quantification, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-1318 (United States); Hales, J.D., E-mail: Jason.Hales@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Novascone, S.R., E-mail: Stephen.Novascone@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Perez, D.M., E-mail: Danielle.Perez@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Spencer, B.W., E-mail: Benjamin.Spencer@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States); Luzzi, L., E-mail: Lelio.Luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, via La Masa 34, I-20156 Milano (Italy); Van Uffelen, P., E-mail: Paul.Van-Uffelen@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D-76344 Karlsruhe (Germany); Williamson, R.L., E-mail: Richard.Williamson@inl.gov [Fuel Modeling and Simulation, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415-3840 (United States)
2015-01-15
The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code with a recently implemented physics-based model for fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO{sub 2} single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information in the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior predictions with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, significantly higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.
Alaska North Slope regional gas hydrate production modeling forecasts
Wilson, S.J.; Hunter, R.B.; Collett, T.S.; Hancock, S.; Boswell, R.; Anderson, B.J.
2011-01-01
A series of gas hydrate development scenarios were created to assess the range of outcomes predicted for the possible development of the "Eileen" gas hydrate accumulation, North Slope, Alaska. Production forecasts for the "reference case" were built using the 2002 Mallik production tests, mechanistic simulation, and geologic studies conducted by the US Geological Survey. Three additional scenarios were considered: A "downside-scenario" which fails to identify viable production, an "upside-scenario" describes results that are better than expected. To capture the full range of possible outcomes and balance the downside case, an "extreme upside scenario" assumes each well is exceptionally productive.Starting with a representative type-well simulation forecasts, field development timing is applied and the sum of individual well forecasts creating the field-wide production forecast. This technique is commonly used to schedule large-scale resource plays where drilling schedules are complex and production forecasts must account for many changing parameters. The complementary forecasts of rig count, capital investment, and cash flow can be used in a pre-appraisal assessment of potential commercial viability.Since no significant gas sales are currently possible on the North Slope of Alaska, typical parameters were used to create downside, reference, and upside case forecasts that predict from 0 to 71??BM3 (2.5??tcf) of gas may be produced in 20 years and nearly 283??BM3 (10??tcf) ultimate recovery after 100 years.Outlining a range of possible outcomes enables decision makers to visualize the pace and milestones that will be required to evaluate gas hydrate resource development in the Eileen accumulation. Critical values of peak production rate, time to meaningful production volumes, and investments required to rule out a downside case are provided. Upside cases identify potential if both depressurization and thermal stimulation yield positive results. An "extreme upside
Observations from using models to fit the gas production of varying volume test cells and landfills.
Lamborn, Julia
2012-12-01
Landfill operators are looking for more accurate models to predict waste degradation and landfill gas production. The simple microbial growth and decay models, whilst being easy to use, have been shown to be inaccurate. Many of the newer and more complex (component) models are highly parameter hungry and many of the required parameters have not been collected or measured at full-scale landfills. This paper compares the results of using different models (LANDGEM, HBM, and two Monod models developed by the author) to fit the gas production of laboratory scale, field test cell and full-scale landfills and discusses some observations that can be made regarding the scalability of gas generation rates. The comparison of these results show that the fast degradation rate that occurs at laboratory scale is not replicated at field-test cell and full-scale landfills. At small scale, all the models predict a slower rate of gas generation than actually occurs. At field test cell and full-scale a number of models predict a faster gas generation than actually occurs. Areas for future work have been identified, which include investigations into the capture efficiency of gas extraction systems and into the parameter sensitivity and identification of the critical parameters for field-test cell and full-scale landfill predication.
Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas
Bahrami, Parviz A.
2012-01-01
A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.
Territorial and branch associations of the oil and gas complex and the trends in their modeling
Energy Technology Data Exchange (ETDEWEB)
Chudnovskaya, S.N.
1983-01-01
Tendencies in the development of the Western Siberian region are studied on the basis of economic and mathematical modeling. The basic interrelations for an expanded system of the oil and gas complex are examined.
A Physics-Based Starting Model for Gas Turbine Engines Project
National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing an integrated starting model for gas turbine engines using a new physics-based...
Pizza or Pancake? Formation Models of Gas Escape Biosignatures in Terrestrial and Martian Sediments
Bonaccorsi, R.; Fairen, A. G.; Baker, L.; McKay, C. P.; Willson, D.
2016-05-01
Fine-grained sedimentary hollowed structures were imaged in Gale Crater, but no biomarkers identified to support biology. Our observation-based (gas escape) terrestrial model could inform on possible martian paleoenvironments at time of formation.
Analysis of Stability for Gas-Kinetic Non-Local Traffic Model
Institute of Scientific and Technical Information of China (English)
SUN Xi-Ming; DONG Yu-Jie
2006-01-01
@@ The gas-kinetic non-local traffic model is improved by taking into account the relative velocity of the correlated vehicles. The stability of different relaxation time modes is analytically investigated with the perturbation method.
Gas Clumping in Self-Consistent Reionisation Models
Finlator, K; Özel, F; Davé, R
2012-01-01
We use a suite of cosmological hydrodynamic simulations including a self-consistent treatment for inhomogeneous reionisation to study the impact of galactic outflows and photoionisation heating on the volume-averaged recombination rate of the intergalactic medium (IGM). By incorporating an evolving ionising escape fraction and a treatment for self-shielding within Lyman limit systems, we have run the first simulations of "photon-starved" reionisation scenarios that simultaneously reproduce observations of the abundance of galaxies, the optical depth to electron scattering of cosmic microwave background photons \\tau, and the effective optical depth to Lyman\\alpha absorption at z=5. We confirm that an ionising background reduces the clumping factor C by more than 50% by smoothing moderately-overdense (\\Delta=1--100) regions. Meanwhile, outflows increase clumping only modestly. The clumping factor of ionised gas is much lower than the overall baryonic clumping factor because the most overdense gas is self-shield...
Virial modeling of gas-solid Joule-Thomson effect for argon-carbon aerosol
Energy Technology Data Exchange (ETDEWEB)
Rybolt, T.R. (Tennessee Univ., Chattanooga, TN (USA))
1989-12-01
This paper presents the history of and later experimentation with the Joule--Thomson effect. The effect is discussed in terms of its association with a gas-solid dispersion. Experimental measurements of aerosol cooling were compared to a viral model utilizing chromatographic second gas-solid viral coefficients. The author extends the application of this model to include the effects of higher order viral coefficients.
Black, Paul Randall
2007-01-01
Acoustic Transfer Functions Derived from Finite Element Modeling for Thermoacoustic Stability Predictions of Gas Turbine Engines Design and prediction of thermoacoustic instabilities is a major challenge in aerospace propulsion and the operation of power generating gas turbine engines. This is a complex problem in which multiple physical systems couple together. Traditionally, thermoacoustic models can be reduced to dominant physics which depend only on flame dynamics and acoustics. Th...
HFC-134a refrigerant gas hydrate formation process and RIN model
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In this paper, the macroscopic visualization experiments of HFC-134a refrigerant gas hydrate formation are investigated. According to the macroscopic photos and Mori's microscopic photos of HFC-134a hydrate formation process, the mechanism of gas hydrate formation is analyzed.A random inducement nucleation model is presented to describe the hydrate formation process. The factors affecting the fractal growth dimension in the model, such as step,branch increment and angle, are discussed.``
A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System
DEFF Research Database (Denmark)
Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper
2015-01-01
Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....
A New Model for Gas Transfer and Storage in a Permeable Volcanic Edifice
Collinson, A. D.; Neuberg, J.
2011-12-01
There is a marked contrast between the behaviour of a volcano in an open system compared to one which is closed. It is therefore essential to understand degassing, to appreciate how much gas is lost and where. Previous studies by a variety of scientists have led to the accumulation of data via field evidence from both active and fossil volcanoes (Stasiuk et al., 1996), laboratory experiments (Moore et al., 1994) and conceptual modelling, in which Darcy's law has become increasingly applicable (Eichelberger et al., 1986; Edmonds et al., 2003). Of particular interest for this study, is the effect different permeabilities have on the degree and pattern of the gas flux. A new method has been devised to investigate gas transport and storage in a permeable volcanic edifice. The continuity equation and Darcy's law are amalgamated to derive a partial differential equation which is solved using a finite element method to obtain the gas pressure. The associated pressure gradient is then used within Darcy's law to calculate the gas flux. The properties of the gas are described by the ideal gas law. The strength of this method is that it allows the modelling of two and three dimensional structures both in stationary equilibrium and as a time dependent progression. A geometry is created and the pressure and permeabilites incorporated into the model as boundary and domain conditions respectively. The aim of the model is to investigate how variable permeability and pressure gradients influence the gas flux, for example highly permeable cracks in the dome, or impermeable layers within the volcanic structure. We also use this gas model to complement the model of Neuberg et al. (2006) in which brittle failure of the conduit-wall boundary is used as a trigger mechanism of low-frequency earthquakes. The associated behaviour of the gas in response to the brittle failure is simulated in our model by increasing the permeability through a narrow zone at the boundary between the conduit
Modelling and analysis of offshore energy systems on North Sea oil and gas platforms
DEFF Research Database (Denmark)
Nguyen, Tuong-Van; Elmegaard, Brian; Pierobon, Leonardo
2012-01-01
export, and power generation. In this paper, a generic model of a North Sea oil and gas platform is described and the most thermodynamically inefficient processes are identified by performing an exergy analysis. Models and simulations are built and run with the tools Aspen Plus R, DNA and Aspen HYSYS R....... Results reveal that the total exergy destruction of the system is particularly sensitive to the gas-to-oil ratio and amounts to 55-65 MW, while the total exergy losses amount to 15-20 MW. The gas compression train and the production manifold module are the most exergy-destructive operations of the oil...
Evaluation of reduced chemical kinetic mechanisms used for modeling mild combustion for natural gas
Directory of Open Access Journals (Sweden)
Hamdi Mohamed
2009-01-01
Full Text Available A numerical and parametric study was performed to evaluate the potential of reduced chemistry mechanisms to model natural gas chemistry including NOx chemistry under mild combustion mode. Two reduced mechanisms, 5-step and 9-step, were tested against the GRI-Mech3.0 by comparing key species, such as NOx, CO2 and CO, and gas temperature predictions in idealized reactors codes under mild combustion conditions. It is thus concluded that the 9-step mechanism appears to be a promising reduced mechanism that can be used in multi-dimensional codes for modeling mild combustion of natural gas.
Gas transfer model to design a ventilator for neonatal total liquid ventilation.
Bonfanti, Mirko; Cammi, Antonio; Bagnoli, Paola
2015-12-01
The study was aimed to optimize the gas transfer in an innovative ventilator for neonatal Total Liquid Ventilation (TLV) that integrates the pumping and oxygenation functions in a non-volumetric pulsatile device made of parallel flat silicone membranes. A computational approach was adopted to evaluate oxygen (O2) and carbon dioxide (CO2) exchanges between the liquid perfluorocarbon (PFC) and the oxygenating gas, as a function of the geometrical parameter of the device. A 2D semi-empirical model was implemented to this purpose using Comsol Multiphysics to study both the fluid dynamics and the gas exchange in the ventilator. Experimental gas exchanges measured with a preliminary prototype were compared to the simulation outcomes to prove the model reliability. Different device configurations were modeled to identify the optimal design able to guarantee the desired gas transfer. Good agreement between experimental and simulation outcomes was obtained, validating the model. The optimal configuration, able to achieve the desired gas exchange (ΔpCO2 = 16.5 mmHg and ΔpO2 = 69 mmHg), is a device comprising 40 modules, 300 mm in length (total exchange area = 2.28 m(2)). With this configuration gas transfer performance is satisfactory for all the simulated settings, proving good adaptability of the device.
Mathematical model of diffusion-limited evolution of multiple gas bubbles in tissue.
Srinivasan, R Srini; Gerth, Wayne A; Powell, Michael R
2003-04-01
Models of gas bubble dynamics employed in probabilistic analyses of decompression sickness incidence in man must be theoretically consistent and simple, if they are to yield useful results without requiring excessive computations. They are generally formulated in terms of ordinary differential equations that describe diffusion-limited gas exchange between a gas bubble and the extravascular tissue surrounding it. In our previous model (Ann. Biomed. Eng. 30: 232-246, 2002), we showed that with appropriate representation of sink pressures to account for gas loss or gain due to heterogeneous blood perfusion in the unstirred diffusion region around the bubble, diffusion-limited bubble growth in a tissue of finite volume can be simulated without postulating a boundary layer across which gas flux is discontinuous. However, interactions between two or more bubbles caused by competition for available gas cannot be considered in this model, because the diffusion region has a fixed volume with zero gas flux at its outer boundary. The present work extends the previous model to accommodate interactions among multiple bubbles by allowing the diffusion region volume of each bubble to vary during bubble evolution. For given decompression and tissue volume, bubble growth is sustained only if the bubble number density is below a certain maximum.
Numerical Analysis of Turbulent Combustion in a Model Swirl Gas Turbine Combustor
Directory of Open Access Journals (Sweden)
Ali Cemal Benim
2016-01-01
Full Text Available Turbulent reacting flows in a generic swirl gas turbine combustor are investigated numerically. Turbulence is modelled by a URANS formulation in combination with the SST turbulence model, as the basic modelling approach. For comparison, URANS is applied also in combination with the RSM turbulence model to one of the investigated cases. For this case, LES is also used for turbulence modelling. For modelling turbulence-chemistry interaction, a laminar flamelet model is used, which is based on the mixture fraction and the reaction progress variable. This model is implemented in the open source CFD code OpenFOAM, which has been used as the basis for the present investigation. For validation purposes, predictions are compared with the measurements for a natural gas flame with external flue gas recirculation. A good agreement with the experimental data is observed. Subsequently, the numerical study is extended to syngas, for comparing its combustion behavior with that of natural gas. Here, the analysis is carried out for cases without external flue gas recirculation. The computational model is observed to provide a fair prediction of the experimental data and predict the increased flashback propensity of syngas.
Energy Technology Data Exchange (ETDEWEB)
Lochner, Stefan [Institute of Energy Economics at the University of Cologne (EWI), Albertus-Magnus-Platz, 50923 Cologne (Germany)], E-mail: Stefan.Lochner@uni-koeln.de; Bothe, David [Frontier Economics Limited, Wolfsstr. 16, 50667 Cologne (Germany)], E-mail: david.bothe@frontier-economics.com
2009-04-15
Quickly declining natural gas reserves in some parts of the world, increasing demand in today's major gas consuming regions, the emergence of new demand centres and the globalization of natural gas markets caused by the rising importance of liquefied natural gas (LNG) are changing global gas supply structures and will continue to do so over the next decades. Applying a global gas market model, we produce a forecast for global gas supply to 2030 and determine the supplier-specific long-run average costs of gas supplied to three major consuming regions. Results for the three regions are compared and analysed with a focus on costs, supply diversification and the different roles of LNG. We find that while European and Japanese external gas supply will be less diversified in international comparison, gas can be supplied at relatively low costs due to the regions' favourable locations in geographic proximity to large gas producers. The US market's supply structure on the other hand will significantly change from its current situation. The growing dependency on LNG imports from around the world will lead to significantly higher supply costs but will also increase diversification as gas will originate from an increasing number of LNG exporting countries.
Energy Technology Data Exchange (ETDEWEB)
Lochner, Stefan [Institute of Energy Economics at the University of Cologne (EWI), Albertus-Magnus-Platz, 50923 Cologne (Germany); Bothe, David [Frontier Economics Limited, Wolfsstr. 16, 50667 Cologne (Germany)
2009-04-15
Quickly declining natural gas reserves in some parts of the world, increasing demand in today's major gas consuming regions, the emergence of new demand centres and the globalization of natural gas markets caused by the rising importance of liquefied natural gas (LNG) are changing global gas supply structures and will continue to do so over the next decades. Applying a global gas market model, we produce a forecast for global gas supply to 2030 and determine the supplier-specific long-run average costs of gas supplied to three major consuming regions. Results for the three regions are compared and analysed with a focus on costs, supply diversification and the different roles of LNG. We find that while European and Japanese external gas supply will be less diversified in international comparison, gas can be supplied at relatively low costs due to the regions' favourable locations in geographic proximity to large gas producers. The US market's supply structure on the other hand will significantly change from its current situation. The growing dependency on LNG imports from around the world will lead to significantly higher supply costs but will also increase diversification as gas will originate from an increasing number of LNG exporting countries. (author)
The Impact of Molecular Gas on Mass Models of Nearby Galaxies
Frank, B. S.; de Blok, W. J. G.; Walter, F.; Leroy, A.; Carignan, C.
2016-04-01
We present CO velocity fields and rotation curves for a sample of nearby galaxies, based on data from HERACLES. We combine our data with THINGS, SINGS, and KINGFISH results to provide a comprehensive sample of mass models of disk galaxies inclusive of molecular gas. We compare the kinematics of the molecular (CO from HERACLES) and atomic (H i from THINGS) gas distributions to determine the extent to which CO may be used to probe the dynamics in the inner part of galaxies. In general, we find good agreement between the CO and H i kinematics, with small differences in the inner part of some galaxies. We add the contribution of the molecular gas to the mass models in our galaxies by using two different conversion factors αCO to convert CO luminosity to molecular gas mass surface density—the constant Milky Way value and the radially varying profiles determined in recent work based on THINGS, HERACLES, and KINGFISH data. We study the relative effect that the addition of the molecular gas has on the halo rotation curves for Navarro-Frenk-White and the observationally motivated pseudo-isothermal halos. The contribution of the molecular gas varies for galaxies in our sample—for those galaxies where there is a substantial molecular gas content, using different values of αCO can result in significant differences to the relative contribution of the molecular gas and hence the shape of the dark matter halo rotation curves in the central regions of galaxies.
An integrated transient model for simulating the operation of natural gas transport systems
Pambour, Kwabena Addo; Bolado-Lavin, Ricardo; Dijkema, Gerard P. J.
2016-01-01
This paper presents an integrated transient hydraulic model that describes the dynamic behavior of natural gas transport systems (GTS). The model includes sub models of the most important facilities comprising a GTS, such as pipelines, compressor stations, pressure reduction stations, underground ga
A Dynamic Model of the Combined Electricity and Natural Gas Markets
DEFF Research Database (Denmark)
Jenkins, Sandra; Annaswamy, Anuradha M.; Hansen, Jacob;
2015-01-01
quantitative modeling in order to garner insights into the effectiveness of various solutions. In this paper, a quantitative model with a dynamic market mechanism is proposed to evaluate the effects of the fuel uncertainty of natural gas-fired power plants on Social Welfare. The results of the model show...
Some insights in novel risk modeling of liquefied natural gas carrier maintenance operations
Nwaoha, T. C.; John, Andrew
2016-06-01
This study discusses the analysis of various modeling approaches and maintenance techniques applicable to the Liquefied Natural Gas (LNG) carrier operations in the maritime environment. Various novel modeling techniques are discussed; including genetic algorithms, fuzzy logic and evidential reasoning. We also identify the usefulness of these algorithms in the LNG carrier industry in the areas of risk assessment and maintenance modeling.
Experimental studies and model analysis of noble gas fractionation in porous media
Ding, Xin; Kennedy, B. Mack.; Evans, William C.; Stonestrom, David A.
2016-01-01
The noble gases, which are chemically inert under normal terrestrial conditions but vary systematically across a wide range of atomic mass and diffusivity, offer a multicomponent approach to investigating gas dynamics in unsaturated soil horizons, including transfer of gas between saturated zones, unsaturated zones, and the atmosphere. To evaluate the degree to which fractionation of noble gases in the presence of an advective–diffusive flux agrees with existing theory, a simple laboratory sand column experiment was conducted. Pure CO2 was injected at the base of the column, providing a series of constant CO2 fluxes through the column. At five fixed sampling depths within the system, samples were collected for CO2 and noble gas analyses, and ambient pressures were measured. Both the advection–diffusion and dusty gas models were used to simulate the behavior of CO2 and noble gases under the experimental conditions, and the simulations were compared with the measured depth-dependent concentration profiles of the gases. Given the relatively high permeability of the sand column (5 ´ 10−11 m2), Knudsen diffusion terms were small, and both the dusty gas model and the advection–diffusion model accurately predicted the concentration profiles of the CO2 and atmospheric noble gases across a range of CO2 flux from ?700 to 10,000 g m−2 d−1. The agreement between predicted and measured gas concentrations demonstrated that, when applied to natural systems, the multi-component capability provided by the noble gases can be exploited to constrain component and total gas fluxes of non-conserved (CO2) and conserved (noble gas) species or attributes of the soil column relevant to gas transport, such as porosity, tortuosity, and gas saturation.
Assessment of Condensation Models in SPACE in the Presence of Noncondensable Gas
Energy Technology Data Exchange (ETDEWEB)
Kim, Ji Hun; Yang, Jin Hwa; Park, Goon Cherl [Seoul National University, Seoul (Korea, Republic of)
2011-10-15
The condensation phenomena play an important role in heat removal of reactor coolant system, especially the PRHRS(Passive Residual Heat Removal System) in SMART. During the PRHRS operation, nitrogen gas might be generated because of evaporation in the steam generator. It will act as a noncondensable gas in the condensation heat exchanger. It is known that even a small amount of noncondensable gas can reduce the condensation heat transfer considerably. SPACE adopted condensation models through the experimental studies for those condition. In order to analyze the heat transfer in the steam generator of next generation NPP by using SPACE, verification of its condensation model is essential. In this study, assessment of condensation models in the SPACE in the presence of noncondensable gas is performed by validation with a benchmark experiment
Energy Technology Data Exchange (ETDEWEB)
Elsharkawy, A.M.; Foda, S.G. [Kuwait University, Safat (Kuwait). Petroleum Engineering Dept.
1998-03-01
Currently, two approaches are being used to predict the changes in retrograde gas condensate composition and estimate the pressure depletion behavior of gas condensate reservoirs. The first approach uses the equation of states whereas the second uses empirical correlations. Equations of states (EOS) are poor predictive tools for complex hydrocarbon systems. The EOS needs adjustment against phase behavior data of reservoir fluid of known composition. The empirical correlation does not involve numerous numerical computations but their accuracy is limited. This study presents two general regression neural network (GRNN) models. The first model, GRNNM1, is developed to predict dew point pressure and gas compressibility at dew point using initial composition of numerous samples while the second model, GRNNM2, is developed to predict the changes in well stream effluent composition at any stages of pressure depletion. GRNNM2 can also be used to determine the initial reservoir fluid composition using dew point pressure, gas compressibility at dew point, and reservoir temperature. These models are based on analysis of 142 sample of laboratory studies of constant volume depletion (CVD) for gas condensate systems forming a total of 1082 depletion stages. The database represents a wide range of gas condensate systems obtained worldwide. The performance of the GRNN models has been compared to simulation results of the equation of state. The study shows that the proposed general regression neural network models are accurate, valid, and reliable. These models can be used to forecast CVD data needed for many reservoir engineering calculations in case laboratory data is unavailable. The GRNN models save computer time involved in EOS calculations. The study also show that once these models are properly trained they can be used to cut expenses of frequent sampling and laborious experimental CVD tests required for gas condensate reservoirs. 55 refs., 13 figs., 6 tabs.
Modeling the flow regime near the source in underwater gas releases
Premathilake, Lakshitha T.; Yapa, Poojitha D.; Nissanka, Indrajith D.; Kumarage, Pubudu
2016-12-01
Recent progress in calculating gas bubble sizes in a plume, based on phenomenological approaches using the release conditions is a significant improvement to make the gas plume models self-reliant. Such calculations require details of conditions Near the Source of Plume (NSP); (i.e. the plume/jet velocity and radius near the source), which inspired the present work. Determining NSP conditions for gas plumes are far more complex than that for oil plumes due to the substantial density difference between gas and water. To calculate NSP conditions, modeling the early stage of the plume is important. A novel method of modeling the early stage of an underwater gas release is presented here. Major impact of the present work is to define the correct NSP conditions for underwater gas releases, which is not possible with available methods as those techniques are not based on the physics of flow region near the source of the plume/jet. We introduce super Gaussian profiles to model the density and velocity variations of the early stages of plume, coupled with the laws of fluid mechanics to define profile parameters. This new approach, models the velocity profile variation from near uniform, across the section at the release point to Gaussian some distance away. The comparisons show that experimental data agrees well with the computations.
Modeling the Flow Regime Near the Source in Underwater Gas Releases
Institute of Scientific and Technical Information of China (English)
Lakshitha T. Premathilake; Poojitha D. Yapa; Indrajith D. Nissanka; Pubudu Kumarage
2016-01-01
Recent progress in calculating gas bubble sizes in a plume, based on phenomenological approaches using the release conditions is a significant improvement to make the gas plume models self-reliant. Such calculations require details of conditions Near the Source of Plume (NSP); (i.e. the plume/jet velocity and radius near the source), which inspired the present work. Determining NSP conditions for gas plumes are far more complex than that for oil plumes due to the substantial density difference between gas and water. To calculate NSP conditions, modeling the early stage of the plume is important. A novel method of modeling the early stage of an underwater gas release is presented here. Major impact of the present work is to define the correct NSP conditions for underwater gas releases, which is not possible with available methods as those techniques are not based on the physics of flow region near the source of the plume/jet. We introduce super Gaussian profiles to model the density and velocity variations of the early stages of plume, coupled with the laws of fluid mechanics to define profile parameters. This new approach, models the velocity profile variation from near uniform, across the section at the release point to Gaussian some distance away. The comparisons show that experimental data agrees well with the computations.
Formation Models and Distribution of Oil and Gas Pools in Tarim Basin,China
Institute of Scientific and Technical Information of China (English)
Long Shengxiang
2008-01-01
This article reports the main formation models and distribution of the oil and gas pools in Tarim basin,China,including (I) occurrence of the found oil and gas pools,(2) main formation models of oil and gas pools,and (3) distribution law of oil/gas pools.Petroleum is distributed widely in the strata of Tarim basin from the Sinian at the bottom to the Neogene at the top.However,the found oil and gas fields are mainly distributed in Shaya (沙雅) uplift,Tazhong (塔中) uplift,and Kuche (库车)depression.This article presents 4 main formation models,namely,early formation and long-term preservation,early formation and late reformation,middle-late multiphase-multisource formation,late single-stage formation.Tarim basin is very rich in petroleum resources.Long-term inherited intrabasinal paleohighs and slope zones are the most favorable areas for accumulation of hydrocarbons,but the types of oil and gas pools are different from area to area.The control of unconformities and faults on hydrocarbon accumulating is prominent in Tarim basin.Preservation conditions are of utmost importance.Formation of some oil and gas pools is the result of reforming and re-accumulating of early accumulated hydrocarbons.
Modeling the injection of gas-liquid jets into fluidized bed of fine particles
Energy Technology Data Exchange (ETDEWEB)
Aryiapadi, S.; Berutti, F.; Briens, C.; Hulet, C. [Western Ontario University, Dept. of Chemical and Biochemical Engineeering, London, ON (Canada); Griffith, P. [Massachussetts Institute of Technology, Dept. of Mechanical Engineering, Cambridge, MA (United States)
2003-08-01
A simplified momentum-based approach to calculate the solid entrainment rate into a gas-liquid jet injected into a fluidized bed is described. The model is verified by a recently developed experimental technique. The paper also addresses correction factors to the initial momentum calculated from the homogenous model. The solids entrainment rates predicted by the model were found to be very close to experimentally obtained values. It is suggested that the model can be usefully employed in characterizing the behaviour of gas-liquid jets injected into fluidized beds of fine particles. 21 refs., 8 figs.
Modelling for Control of Exhaust Gas Recirculation on Large Diesel Engines
DEFF Research Database (Denmark)
Hansen, Jakob Mahler; Zander, Claes-Göran; Pedersen, Nicolai
2013-01-01
models. While literature is rich on four-stroke automotive engines, this paper considers two-stroke engines and develops a non-linear dynamic model of the exhaust gas system. Parameters are determined by system identication. The paper uses black-box nonlinear model identication and modelling from rst...... principles followed by parameter identication and compares the results of these approaches. The paper performs a validation against experimental data from a test engine and presents a linearised model for EGR control design....
Brown, Paul D.; Charnley, S. B.
1991-01-01
The effects on gas phase chemistry which result from the continuous desorption of methane molecules from grain surfaces are studied. Significant and sustained enhancements in the abundances of several complex hydrocarbon molecules are found, in good agreement with their observed values in TMC-1. The overall agreement is, however, just as good for the case of zero CH4 desorption efficiency. It is thus impossible to determine from the models whether or not the grain-surface production of methane is responsible for the observed abundances of some hydrocarbon molecules.
ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Modeling of gas discharge plasma
Smirnov, Boris M.
2009-06-01
The condition for the self-maintenance of a gas discharge plasma (GDP) is derived from its ionization balance expressed in the Townsend form and may be used as a definition of a gas discharge plasma in its simplest form. The simple example of a gas discharge plasma in the positive column of a cylindrical discharge tube allows demonstrating a wide variety of possible GDP regimes, revealing a contradiction between simple models used to explain gas discharge regimes and the large number of real processes responsible for the self-maintenance of GDP. The variety of GDP processes also results in a stepwise change of plasma parameters and developing some instabilities as the voltage or discharge current is varied. As a consequence, new forms and new applications of gas discharge arise as technology progresses.
Control oriented modeling of ejector in anode gas recirculation solid oxygen fuel cell systems
Energy Technology Data Exchange (ETDEWEB)
Zhu Yinhai, E-mail: yinhai.zhu@gmail.co [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Li Yanzhong, E-mail: yzli-epe@mail.xjtu.edu.c [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Cai Wenjian [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)
2011-04-15
A one-equation model is proposed for fuel ejector in anode gas recirculation solid oxide fuel cell (SOFC) system. Firstly, the fundamental governing equations are established by employing the thermodynamic, fluid dynamic principles and chemical constraints inside the ejector; secondly, the one-equation model is derived by using the parameter analysis and lumped-parameter method. Finally, the computational fluid dynamics (CFD) technique is employed to obtain the source data for determining the model parameters. The effectiveness of the model is studied under a wide range of operation conditions. The effect of ejector performance on the anode gas recirculation SOFC system is also discussed. The presented model, which only contains four constant parameters, is useful in real-time control and optimization of fuel ejector in the anode gas recirculation SOFC system.
Directory of Open Access Journals (Sweden)
Tongshan Wang
2011-01-01
Full Text Available The prediction of oil cracked gas resources is necessary and urgent in the gas exploration of these basins at high to over stage in China. A marine crude oil sample was pyrolyzed using sealed gold tubes system in our study. The pyrolysates including gas, liquid, and solid were quantitatively analyzed. Based on the pyrolysis data and kinetic calculation, the yield correlativity among gas, liquid, and solid products was regressed with high correlative coefficients to establish a prediction model suitable for the resource estimation of oil cracked gas. The verification formula for this model was also established on the principle of mass conservation. The affecting factors and the application preconditions of this model were discussed. Finally the model was extrapolated to the prediction of oil cracked gas resources of Feixianguan formation in NE Sichuan basin, SW China. The prediction value of oil cracked resources is about 6.84×1012 m3, and generation intensity of oil cracked gas is about 97.5×108 m3/km2, and the paleo-oil reserves is about 97×108 t. The verifying value for this prediction is approximately equal to 1, indicating the model is reliable in the resource estimation of oil cracked gas.
An Efficient Hybrid DSMC/MD Algorithm for Accurate Modeling of Micro Gas Flows
Liang, Tengfei
2013-01-01
Aiming at simulating micro gas flows with accurate boundary conditions, an efficient hybrid algorithmis developed by combining themolecular dynamics (MD) method with the direct simulationMonte Carlo (DSMC)method. The efficiency comes from the fact that theMD method is applied only within the gas-wall interaction layer, characterized by the cut-off distance of the gas-solid interaction potential, to resolve accurately the gas-wall interaction process, while the DSMC method is employed in the remaining portion of the flow field to efficiently simulate rarefied gas transport outside the gas-wall interaction layer. A unique feature about the present scheme is that the coupling between the two methods is realized by matching the molecular velocity distribution function at the DSMC/MD interface, hence there is no need for one-toone mapping between a MD gas molecule and a DSMC simulation particle. Further improvement in efficiency is achieved by taking advantage of gas rarefaction inside the gas-wall interaction layer and by employing the "smart-wall model" proposed by Barisik et al. The developed hybrid algorithm is validated on two classical benchmarks namely 1-D Fourier thermal problem and Couette shear flow problem. Both the accuracy and efficiency of the hybrid algorithm are discussed. As an application, the hybrid algorithm is employed to simulate thermal transpiration coefficient in the free-molecule regime for a system with atomically smooth surface. Result is utilized to validate the coefficients calculated from the pure DSMC simulation with Maxwell and Cercignani-Lampis gas-wall interaction models. ©c 2014 Global-Science Press.
Dynamic Modeling and Analysis of an Industrial Gas Suspension Absorber for Flue Gas Desulfurization
DEFF Research Database (Denmark)
Cignitti, Stefano; Mansouri, Seyed Soheil; Sales-Cruz, Mauricio
2016-01-01
another plant data set. It was verified that in spite of the simplicity of the model, very good prediction of industrial behavior was obtained. Furthermore, the dynamic analysis of the system was performed by carrying out open-loop and closed-loop simulations to verify plant dynamics. Therefore, a simple...
Study of Gas Flow Characteristics in Tight Porous Media with a Microscale Lattice Boltzmann Model
Zhao, Jianlin; Yao, Jun; Zhang, Min; Zhang, Lei; Yang, Yongfei; Sun, Hai; An, Senyou; Li, Aifen
2016-09-01
To investigate the gas flow characteristics in tight porous media, a microscale lattice Boltzmann (LB) model with the regularization procedure is firstly adopted to simulate gas flow in three-dimensional (3D) digital rocks. A shale digital rock and a sandstone digital rock are reconstructed to study the effects of pressure, temperature and pore size on microscale gas flow. The simulation results show that because of the microscale effect in tight porous media, the apparent permeability is always higher than the intrinsic permeability, and with the decrease of pressure or pore size, or with the increase of temperature, the difference between apparent permeability and intrinsic permeability increases. In addition, the Knudsen numbers under different conditions are calculated and the results show that gas flow characteristics in the digital rocks under different Knudsen numbers are quite different. With the increase of Knudsen number, gas flow in the digital rocks becomes more uniform and the effect of heterogeneity of the porous media on gas flow decreases. Finally, two commonly used apparent permeability calculation models are evaluated by the simulation results and the Klinkenberg model shows better accuracy. In addition, a better proportionality factor in Klinkenberg model is proposed according to the simulation results.
Energy Technology Data Exchange (ETDEWEB)
Schossler, Patricia [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Institute of Environmental and Sustainable Chemistry, Technische Universitaet Braunschweig, Hagenring 30, D-38106 Braunschweig (Germany); Schripp, Tobias, E-mail: tobias.schripp@wki.fraunhofer.de [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Salthammer, Tunga [Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Bienroder Weg 54E, D-38108 Braunschweig (Germany); Bahadir, Muefit [Institute of Environmental and Sustainable Chemistry, Technische Universitaet Braunschweig, Hagenring 30, D-38106 Braunschweig (Germany)
2011-09-01
The ongoing health debate about polymer plasticizers based on the esters of phthalic acid, especially di(2-ethylhexyl) phthalate (DEHP), has caused a trend towards using phthalates of lower volatility such as diisononyl phthalate (DINP) and towards other acid esters, such as adipates, terephthalates, citrates, etc. Probably the most important of these so-called 'alternative' plasticizers is diisononyl cyclohexane-1,2-dicarboxylate (DINCH). In the indoor environment, the continuously growing market share of this compound since its launch in 2002 is inter alia apparent from the increasing concentration of DINCH in settled house dust. From the epidemiological point of view there is considerable interest in identifying how semi-volatile organic compounds (SVOCs) distribute in the indoor environment, especially in air, airborne particles and sedimented house dust. This, however, requires reliable experimental concentration data for the different media and good measurements or estimates of their physical and chemical properties. This paper reports on air concentrations for DINP, DINCH, diisobutyl phthalate (DIBP), diisobutyl adipate (DIBA), diisobutyl succinate (DIBS) and diisobutyl glutarate (DIBG) from emission studies in the Field and Laboratory Emission Cell (FLEC). For DINP and DINCH it took about 50 days to reach the steady-state value: for four months no decay in the concentration could be observed. Moreover, vapor pressures p{sub 0} and octanol-air partitioning coefficients K{sub OA} were obtained for 37 phthalate and non-phthalate plasticizers from two different algorithms: EPI Suite and SPARC. It is shown that calculated gas/particle partition coefficients K{sub p} and fractions can widely differ due to the uncertainty in the predicted p{sub 0} and K{sub OA} values. For most of the investigated compounds reliable experimental vapor pressures are not available. Rough estimates can be obtained from the measured emission rate of the pure compound in a
Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification
Energy Technology Data Exchange (ETDEWEB)
Zheng, Peng; Greve, David W; Oppenheim, Irving J
2013-01-01
We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.
Langasite surface acoustic wave gas sensors: modeling and verification
Energy Technology Data Exchange (ETDEWEB)
Peng Zheng,; Greve, D. W.; Oppenheim, I. J.
2013-03-01
We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.
The spatial distribution of cold gas in hierarchical galaxy formation models
Kim, Han-Seek; Benson, A J; Cole, S; Frenk, C S; Lacey, C G; Power, C; Schneider, M
2010-01-01
The distribution of cold gas in dark matter haloes is driven by key processes in galaxy formation: gas cooling, galaxy mergers, star formation and reheating of gas by supernovae. We compare the predictions of four different galaxy formation models for the spatial distribution of cold gas. We find that satellite galaxies make little contribution to the abundance or clustering strength of cold gas selected samples, and are far less important than they are in optically selected samples. The halo occupation distribution function of present-day central galaxies with cold gas mass > 10^9 h^-1 Msun is peaked around a halo mass of ~ 10^11 h^-1 Msun, a scale that is set by the AGN suppression of gas cooling. The model predictions for the projected correlation function are in good agreement with measurements from the HI Parkes All-Sky Survey. We compare the effective volume of possible surveys with the Square Kilometre Array with those expected for a redshift survey in the near-infrared. Future redshift surveys using n...
Analysis of a system modelling the motion of a piston in a viscous gas
Maity, Debayan; Takahashi, Takéo; Tucsnak, Marius
2016-09-01
We study a free boundary problem modelling the motion of a piston in a viscous gas. The gas-piston system fills a cylinder with fixed extremities, which possibly allow gas from the exterior to penetrate inside the cylinder. The gas is modeled by the 1D compressible Navier-Stokes system and the piston motion is described by the second Newton's law. We prove the existence and uniqueness of global in time strong solutions. The main novelty brought in by our results is that they include the case of nonhomogeneous boundary conditions which, as far as we know, have not been studied in this context. Moreover, even for homogeneous boundary conditions, our results require less regularity of the initial data than those obtained in previous works.
Energy transfer process in gas models of Lennard-Jones interactions
Yang, Jinghua; Wang, Jiao; Zhao, Hong
2011-01-01
We perform simulations to investigate how the energy carried by a molecule transfers to others in an equilibrium gas model. For this purpose we consider a microcanonical ensemble of equilibrium gas systems, each of them contains a tagged molecule located at the same position initially. The ensuing transfer process of the energy initially carried by the tagged molecule is then exposed in terms of the ensemble-averaged energy density distribution. In both a 2D and a 3D gas model with Lennard-Jones interactions at room temperature, it is found that the energy carried by a molecule propagates in the gas ballistically, in clear contrast with the Gaussian diffusion widely assumed in previous studies. A possible scheme of experimental study of this issue is also proposed
Khaksarfard, R.; Kameshki, M. R.; Paraschivoiu, M.
2010-06-01
Hydrogen is a renewable and clean source of energy, and it is a good replacement for the current fossil fuels. Nevertheless, hydrogen should be stored in high-pressure reservoirs to have sufficient energy. An in-house code is developed to numerically simulate the release of hydrogen from a high-pressure tank into ambient air with more accuracy. Real gas models are used to simulate the flow since high-pressure hydrogen deviates from ideal gas law. Beattie-Bridgeman and Abel Noble equations are applied as real gas equation of state. A transport equation is added to the code to calculate the concentration of the hydrogen-air mixture after release. The uniqueness of the code is to simulate hydrogen in air release with the real gas model. Initial tank pressures of up to 70 MPa are simulated.
The gas-phase thermal chemistry of tetralin and related model systems
Energy Technology Data Exchange (ETDEWEB)
Malandra, J.
1993-05-01
The thesis is divided into 5 papers: gas-phase thermal decomposition of tetralin; flash vacuum pyrolysis of 3-benzocycloheptenone and 1,3, 4,5-tetrahydro-2-benzothiepin-2,2-dioxide (model systems for gas-phase pyrolysis of tetralin); high-temperature gas-phase reactions of o-allylbenzyl radicals generated by flash vacuum pyrolysis of is(o-allylbenzyl) oxalate; flash vacuum pyrolysis of 1,4-diphenylbutane; and flash vacuum pyrolysis of o-allyltoluene, o-(3-butenyl)toluene and o-(pentenyl)toluene were also used.
Gavrilik, A M
2013-01-01
We consider the deformed Bose gas model with the deformation structure function that is the combination of a q-deformation and a quadratically polynomial deformation. Such a choice of the unifying deformation structure function enables us to describe the interacting gas of composite (two-fermionic or two-bosonic) bosons. Using the relevant generalization of the Jackson derivative, we derive a two-parametric expression for the total number of particles, from which the deformed virial expansion of the equation of state is obtained. The latter is interpreted as the virial expansion for the effective description of a gas of interacting composite bosons with some interaction potential.
General slip regime permeability model for gas flow through porous media
Zhou, Bo; Jiang, Peixue; Xu, Ruina; Ouyang, Xiaolong
2016-07-01
A theoretical effective gas permeability model was developed for rarefied gas flow in porous media, which holds over the entire slip regime with the permeability derived as a function of the Knudsen number. This general slip regime model (GSR model) is derived from the pore-scale Navier-Stokes equations subject to the first-order wall slip boundary condition using the volume-averaging method. The local closure problem for the volume-averaged equations is studied analytically and numerically using a periodic sphere array geometry. The GSR model includes a rational fraction function of the Knudsen number which leads to a limit effective permeability as the Knudsen number increases. The mechanism for this behavior is the viscous fluid inner friction caused by converging-diverging flow channels in porous media. A linearization of the GSR model leads to the Klinkenberg equation for slightly rarefied gas flows. Finite element simulations show that the Klinkenberg model overestimates the effective permeability by as much as 33% when a flow approaches the transition regime. The GSR model reduces to the unified permeability model [F. Civan, "Effective correlation of apparent gas permeability in tight porous media," Transp. Porous Media 82, 375 (2010)] for the flow in the slip regime and clarifies the physical significance of the empirical parameter b in the unified model.
Investigation on a gas-liquid ejector using three-dimensional CFD model
Kang, S. H.; Song, X. G.; Park, Y. C.
2012-11-01
This paper is focusing on the numeral study of a gas-liquid ejector used for ballast water treatment. The gasliquid ejector is investigated through steady three-dimensional multiphase CFD analysis with commercial software ANSYS-CFX 13.0. Water as the primary fluid is driven through the driving nozzle and air is ejected into as the second gas instead of the ozone in real application. Several turbulence models such as Standard k-ɛ model, RNG k-ɛ model, SST model and k-ω model, and different mesh size and compared extensively with the experimental results to eliminate the influence of the auxiliary system, turbulence models and mesh generation. The appropriate numerical model in terms of the best combination of turbulence model and mesh size are used in the subsequent research the study the influence of the operating condition such as the driving pressure/velocity and the back pressure of the ejector on its performance. The results provide deep insight on the influence of various factors on the performance of gas-liquid ejector. And the proposed numerical model will be very helpful in the further design optimization of the gas-liquid ejectors.
Analysis of Gas Radiative Transfer Using Box Model and Its Comparison with Gray Band Approximation
Institute of Scientific and Technical Information of China (English)
Yuying Liu; Xinxin Zhang
2003-01-01
On the basis of a wide range survey of various models or treatment methods for the calculation of radiative properties of gases, box model, which is similar to the gray band approximation of spectral band model, was applied to evaluate the gas properties in this paper. In order to compare the accuracy of box model with that of gray band approximation of spectral band models, a typical one-dimensional gas radiation problem was analyzed using discrete ordinate method. Comparing with the widely used gray band approximation of narrow band model or exponential wide band model, box model can well evaluate the radiation source term of the radiative problem.It also has the advantages of simplicity and easy to code, so it is practicable and useful for some complex engineering problems.
Directory of Open Access Journals (Sweden)
Леонид Иванович Нефедов
2014-08-01
Full Text Available The extraction and processing and gas transportation have been analyzed in the article. Decomposition of the process of monitoring is introduced based on that; allowing the hierarchical structure of the monitoring system is request. Scientific novelty consists in the fact that developed generalized synthesis quality model monitoring system to extract, processing and gas transportation, which allows solving the problem of synthesis of a unified system and criteria positions.
Interacting polytropic gas model of phantom dark energy in non-flat universe
Energy Technology Data Exchange (ETDEWEB)
Karami, K. [University of Kurdistan, Department of Physics, Sanandaj (Iran); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran); Ghaffari, S.; Fehri, J. [University of Kurdistan, Department of Physics, Sanandaj (Iran)
2009-11-15
By introducing the polytropic gas model of interacting dark energy, we obtain the equation of state for the polytropic gas energy density in a non-flat universe. We show that for an even polytropic index by choosing K>Ba{sup (3)/(n)}, one can obtain {omega}{sub {lambda}}{sup eff}<-1, which corresponds to a universe dominated by phantom dark energy. (orig.)
Hot-gas cleanup system model development. Volume I. Final report
Energy Technology Data Exchange (ETDEWEB)
Ushimaru, K.; Bennett, A.; Bekowies, P.J.
1982-11-01
This two-volume report summarizes the state of the art in performance modeling of advanced high-temperature, high-pressure (HTHP) gas cleanup devices. Volume I contains the culmination of the research effort carried over the past 12 months and is a summary of research achievements. Volume II is the user's manual for the computer programs developed under the present research project. In this volume, Section 2 presents background information on pressurized, fluidized-bed combustion concepts, a description of the role of the advanced gas cleanup systems, and a list of advanced gas cleanup systems that are currently in development under DOE sponsorship. Section 3 describes the methodology for the software architecture that forms the basis of the well-disciplined and structured computer programs developed under the present project. Section 4 reviews the fundamental theories that are important in analyzing the cleanup performance of HTHP gas filters. Section 5 discusses the effect of alkali agents in HTHP gas cleanup. Section 6 evaluates the advanced HTHP gas cleanup models based on their mathematical integrity, availability of supporting data, and the likelihood of commercialization. As a result of the evaluation procedure detailed in Section 6, five performance models were chosen to be incorporated into the overall system simulation code, ASPEN. These five models (the electrocyclone, ceramic bag filter, moving granular bed filter, electrostatic granular bed filter, and electrostatic precipitator) are described in Section 7. The method of cost projection for these five models is discussed in Section 8. The supporting data and validation of the computer codes are presented in Section 9, and finally the conclusions and recommendations for the HTHP gas cleanup system model development are given in Section 10. 72 references, 19 figures, 25 tables.
A simple, closed-form, mathematical model for gas exchange in microchannel artificial lungs.
Potkay, Joseph A
2013-06-01
Microfabrication techniques are attractive for constructing artificial lungs due to the ability to create features similar in size to those in the natural lung. However, a simple and intuitive mathematical model capable of accurately predicting the gas exchange performance of microchannel artificial lungs does not currently exist. Such a model is critical to understanding and optimizing these devices. Here, we describe a simple, closed-form mathematical model for gas exchange in microchannel artificial lungs and qualify it through application to experimental data from several research groups. We utilize lumped parameters and several assumptions to obtain a closed-form set of equations that describe gas exchange. This work is intended to augment computational models by providing a more intuitive, albeit potentially less accurate, understanding of the operation and trade-offs inherent in microchannel artificial lung devices.
Density-Corrected Models for Gas Diffusivity and Air Permeability in Unsaturated Soil
DEFF Research Database (Denmark)
Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per
2011-01-01
Accurate prediction of gas diffusivity (Dp/Do) and air permeability (ka) and their variations with air-filled porosity (e) in soil is critical for simulating subsurface migration and emission of climate gases and organic vapors. Gas diffusivity and air permeability measurements from Danish soil...... in subsurface soil. The data were regrouped into four categories based on compaction (total porosity F 0.4 m3 m-3) and soil texture (volume-based content of clay, silt, and organic matter 15%). The results suggested that soil compaction more than soil type was the major control on gas...... diffusivity and to some extent also on air permeability. We developed a density-corrected (D-C) Dp(e)/Do model as a generalized form of a previous model for Dp/ Do at -100 cm H2O of matric potential (Dp,100/Do). The D-C model performed well across soil types and density levels compared with existing models...
Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling
Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T.
1999-01-01
We offer a first-principle-based effective medium model for elastic-wave velocity in unconsolidated, high porosity, ocean bottom sediments containing gas hydrate. The dry sediment frame elastic constants depend on porosity, elastic moduli of the solid phase, and effective pressure. Elastic moduli of saturated sediment are calculated from those of the dry frame using Gassmann's equation. To model the effect of gas hydrate on sediment elastic moduli we use two separate assumptions: (a) hydrate modifies the pore fluid elastic properties without affecting the frame; (b) hydrate becomes a component of the solid phase, modifying the elasticity of the frame. The goal of the modeling is to predict the amount of hydrate in sediments from sonic or seismic velocity data. We apply the model to sonic and VSP data from ODP Hole 995 and obtain hydrate concentration estimates from assumption (b) consistent with estimates obtained from resistivity, chlorinity and evolved gas data. Copyright 1999 by the American Geophysical Union.
A combustion model for studying the effects of ideal gas properties on jet noise
Jacobs, Jerin; Tinney, Charles
2016-11-01
A theoretical combustion model is developed to simulate the influence of ideal gas effects on various aeroacoustic parameters over a range of equivalence ratios. The motivation is to narrow the gap between laboratory and full-scale jet noise testing. The combustion model is used to model propane combustion in air and kerosene combustion in air. Gas properties from the combustion model are compared to real lab data acquired at the National Center for Physical Acoustics at the University of Mississippi as well as outputs from NASA's Chemical Equilibrium Analysis code. Different jet properties are then studied over a range of equivalence ratios and pressure ratios for propane combustion in air, kerosene combustion in air and heated air. The findings reveal negligible differences between the three constituents where the density and sound speed ratios are concerned. Albeit, the area ratio required for perfectly expanded flow is shown to be more sensitive to gas properties, relative to changes in the temperature ratio.
DEFF Research Database (Denmark)
Andersen, C.E.; Søgaard-Hansen, J.; Majborn, B.
1994-01-01
A radon test structure has been established at a field site at Riso National Laboratory. Measurements have been made of soil gas entry rates, pressure couplings and radon depletion. The experimental results have been compared with results obtained from measured soil parameters and a two......-dimensional steady-state numerical model of Darcy flow and combined diffusive and advective transport of radon. For most probe locations, the calculated values of the pressure couplings and the radon depletion agree well with the measured values, thus verifying important elements of the Darcy flow approximation......, and the ability of the model to treat combined diffusive and advective transport of radon. However, the model gives an underestimation of the soil gas entry rate. Even if it is assumed that the soil has a permeability equal to the highest of the measured values, the model underestimates the soil gas entry rate...
ANALYSIS OF A COMPRESSIBLE GAS-LIQUID MODEL MOTIVATED BY OIL WELL CONTROL OPERATIONS
Institute of Scientific and Technical Information of China (English)
Steinar Evje; K.H. Karlsen
2012-01-01
We are interested in a viscous two-phase gas-liquid mixture model relevant for modeling of well control operations within the petroleum industry. We focus on a simplified mixture model and provide an existence result within an appropriate class of weak solutions. We demonstrate that upper and lower limits can be obtained for the gas and liquid masses which ensure that transition to single-phase regions do not occur. This is used together with appropriate a prior estimates to obtain convergence to a weak solution for a sequence of approximate solutions corresponding to mollified initial data. Moreover, by imposing an additional regularity condition on the initial masses, a uniqueness result is obtained. The framework herein seems useful for further investigations of more realistic versions of the gas-liquid model that take into account different flow regimes.
A model-based analysis of the implications of shale gas developments for the European gas market
Energy Technology Data Exchange (ETDEWEB)
De Joode, J.; Plomp, A.J.; Ozdemir, O. [ECN Policy Studies, Petten (Netherlands)
2012-04-15
Shale gas in Europe could potentially be a big thing, especially in particular regions. Whereas test drillings need to confirm the technical recoverability of deposits and further research is needed on the environmental and safety aspects of shale gas production, this paper illustrates that shale gas developments may have substantial implications for regional gas balances, gas flows, and infrastructure requirements throughout Europe in the next decades.
Gas-liquid phase transition in modified pseudopotential and “shelf Coulomb” ultracold plasma models
Butlitsky, M. A.; Zelener, B. B.; Zelener, B. V.
2016-11-01
Phase diagrams for the “shelf Coulomb” and the modified pseudopotential plasma models developed in our previous works are compared. Qualitative agreement is observed between gas-liquid phase transition region of “shelf Coulomb” model and liquid-gas structure region of modified pseudopotential one. The possibility of experimental finding of the phase transition in nonequilibrium ultracold Rydberg plasma is considered. Parameters (density, temperature, levels of Rydberg atoms) for such a transition are estimated. Conclusion is made that “shelf Coulomb” model phase transition is practically impossible to observe in equilibrium strongly coupled plasmas due to high neutral atoms density at low temperatures: T crit ≈ 0.076.
A CFD Model for Fluid Dynamics in a Gas-fluidised Bed
Institute of Scientific and Technical Information of China (English)
ZHANG Kai; Stefano Brandani
2004-01-01
A modified particle bed model derived from the two-fluid momentum balance equations was employed to predict the gas-fluidised bed behaviour. Additional terms are included in both the fluid and the particle momentum balance equations to take into account the effect of the dispersed solid phase. This model has been extended to two-dimensional formulations and has been implemented in the commercial code CFX 4.3. The model correctly simulates the homogeneous fluidisation of Geldart Group A and the bubbling fluidisation of Geldart Group B in gas-solid fluidised beds.
Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion.
Dapelo, Davide; Alberini, Federico; Bridgeman, John
2015-11-15
A novel Euler-Lagrangian (EL) computational fluid dynamics (CFD) finite volume-based model to simulate the gas mixing of sludge for anaerobic digestion is developed and described. Fluid motion is driven by momentum transfer from bubbles to liquid. Model validation is undertaken by assessing the flow field in a labscale model with particle image velocimetry (PIV). Conclusions are drawn about the upscaling and applicability of the model to full-scale problems, and recommendations are given for optimum application.
Modeling on the gas-generating amount of sediments hydrate-bearing
Energy Technology Data Exchange (ETDEWEB)
Gong, J.M.; Cao, Z.M. [Ocean Univ. of China, Qingdao (China); Jian-Ming, G.; Chen, J.W. [Qingdao Inst. of Marine Geology, Qingdao (China); Zhang, M.; Yang, G.F. [Yangtze Univ., Jingzhou (China); Li, J. [PetroChina, HeBei (China). Langfang Branch, Research Inst. of Petroleum Exploration and Development
2008-07-01
Gas hydrate is a form of clean fossil energy. It has the characteristics of extensive distribution, large reserve, high-energy capacity and less pollution after combustion. It also has a great energy value, generating interest from governments and scientists in different countries. This paper discussed a study in which methane generating hydrate-bearing sediments were investigated. A total of 58 sediment samples from 4 sites of ODP Leg 204 were modeled by 5 temperature points. ODP Leg 204 lies offshore western United States, in the Hydrate Ridge region (Oregon) of the Pacific. It is one of the most studied areas and clearest about hydrate distribution in the world. The paper described the study area and sample preparation. It also discussed the modeling and geochemical characteristics of the gas-generating samples. A model section revealed bacteria species, substrate deployment, selection of culture flask, and sample culture. The geochemical characteristics of the gas-generating samples were also described. It was concluded that the sediments within 1,200 meters below the seafloor were the main gas source of the biogenic gas hydrate. The organic matter abundance of the sediments at this depth and the migration passage of the fluids in the strata were important for the formation and preservation of the gas hydrate deposits. 21 refs., 1 tab., 6 figs.
The Cauchy problem for a model of immiscible gas flow with large data
Energy Technology Data Exchange (ETDEWEB)
Sande, Hilde
2008-12-15
The thesis consists of an introduction and two papers; 1. The solution of the Cauchy problem with large data for a model of a mixture of gases. 2. Front tracking for a model of immiscible gas flow with large data. (AG) refs, figs
Modeling methane fluxes in wetlands with gas-transporting plants. 3. Plot scale.
Segers, R.; Leffelaar, P.A.
2001-01-01
A process model based on kinetic principles was developed for methane fluxes from wetlands with gas-transporting plants and a fluctuating water table. Water dynamics are modeled with the 1-D Richards equation. For temperature a standard diffusion equation is used. The depth-dependent dynamics of met
Phase equilibrium modeling of gas hydrate systems for CO2 capture
DEFF Research Database (Denmark)
Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens
2012-01-01
Two thermodynamic models capable of describing dissociation pressures of mixed gas clathrate hydrates formed from ternary mixtures of CO2, N2 and liquid water, are presented. Both of the models utilize the Cubic-Plus-Association (CPA) equation of state (EOS) for the thermodynamic description of t...
Reconstructing an interacting holographic polytropic gas model in a non-flat FRW universe
Energy Technology Data Exchange (ETDEWEB)
Karami, K; Abdolmaleki, A, E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of)
2010-05-01
We study the correspondence between the interacting holographic dark energy and the polytropic gas model of dark energy in a non-flat FRW universe. This correspondence allows one to reconstruct the potential and the dynamics for the scalar field of the polytropic model, which describe accelerated expansion of the universe.
Boundary States and Correlation Functions of Tricritical Ising Model from Coulomb-Gas Formalism
Institute of Scientific and Technical Information of China (English)
Smain Balaska; Toufik Sahabi
2009-01-01
We consider the minimal conformal model describing the tricritical Ising model on the disk and on the upper half plane. Using the coulomb-gas formalism we determine its consistents boundary states as well as its one-point and two-point correlation functions.
The initial conditions and evolution of isolated galaxy models: effects of the hot gas halo
Hwang, Jeong-Sun; Choi, Jun-Hwan
2013-01-01
We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In addition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 $N$-body/hydrodynamic simulation code, paying particular attention to the effects of the gas halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. On the other hand, the SFRs in the models with a gas halo emerge to be either relatively flat throughout the simulations or increasing over a gigayear and then decreasing to the end. The mo...
Extending the Modelling Framework for Gas-Particle Systems
DEFF Research Database (Denmark)
Rosendahl, Lasse Aistrup
, with very good results. Single particle combustion has been tested using a number of different particle combustion models applied to coal and straw particles. Comparing the results of these calculations to measurements on straw burnout, the results indicate that for straw, existing heterogeneous combustion...... models perform well, and may be used in high temperature ranges. Finally, the particle tracking and combustion model is applied to an existing coal and straw co- fuelled burner. The results indicate that again, the straw follows very different trajectories than the coal particles, and also that burnout...
MSW to synthetic natural gas: System modeling and thermodynamics assessment.
Zhu, Lin; Zhang, Le; Fan, Junming; Jiang, Peng; Li, Luling
2016-02-01
To achieve environmental-friendly and energy-efficiency synthetic natural gas (SNG) production routing from municipal solid waste (MSW), a MSW-to-SNG process is unprecedentedly presented in this work, of which the designed configuration is developed and simulated with the aid of Aspen Plus. In addition, sensitivity analyses on major operation parameters, such as equivalence volume ratio (ER), steam-to-MSW mass ratio (S/M) and methanation pressure, are performed with the discussion of process efficiencies and SNG quality. In parallel, the comparison analysis is considered by adopting various MSW material. In this work, the composition of SNG mainly consists of 87.7% CH4, 2.9% CO2, 2.3% H2 and 7.1% N2. And lower heating value (LHV) together with Wobbe index of SNG are separately 31.66MJ/Nm(3) and 45.90MJ/Nm(3). Moreover, the wood-to-SNG, MSW-to-SNG and coal-to-SNG processes are carried out to demonstrate the superiority of the MSW-to-SNG process. The results reveal that the MSW-to-SNG process is a promising option to dispose MSW environmentally, meanwhile converting MSW to the valuable SNG.
Directory of Open Access Journals (Sweden)
Christopher P. Paolini
2012-01-01
Full Text Available The ideal gas (IG model is probably the most well-known gas models in engineering thermodynamics. In this paper, we extend the IG model into an ideal gas equilibrium (IGE model mixture model by incorporating chemical equilibrium calculations as part of the state evaluation. Through a simple graphical interface, users can set the atomic composition of a gas mixture. We have integrated this model into a thermodynamic web portal TEST (http://thermofluids.sdsu.edu/ that contains Java applets for various models for properties of pure substances. In the state panel of the IGE model, the known thermodynamic properties are entered. For a given pressure and temperature, the mixture's Gibbs function is minimized subject to atomic constraints and the equilibrium composition along with thermodynamic properties of the mixture are calculated and displayed. What is unique about this approach is that equilibrium computations are performed in the background, without requiring any major change in the familiar user interface used in other state daemons. Properties calculated by this equilibrium state daemon are compared with results from other established applications such as NASA CEA and STANJAN. Also, two different algorithms, an iterative approach and a direct approach based on minimizing different thermodynamic functions in different situation, are compared.
Goldschmidt, M.J.V.; Beetstra, R.; Kuipers, J.A.M.
2004-01-01
A critical comparison of a hard-sphere discrete particle model, a two-fluid model with kinetic theory closure equations and experiments performed in a pseudo-two-dimensional gas-fluidised bed is made. Bubble patterns, time-averaged particle distributions and bed expansion dynamics measured with a no
Studies on scaled models for gas entrainment in the surge tank of LMFBR
Energy Technology Data Exchange (ETDEWEB)
Ramdasu, D.; Shivakumar, N.S.; Padmakumar, G.; Anand Babu, C.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Rammohan, S.; Sreekala, S.K.; Manikandan, S.; Saseendran, S. [Fluid Control Research Institute, Palghat (India)
2007-07-01
This paper presents the studies carried out in the different scale models of Surge tank used in the secondary circuit of Liquid metal fast breeder reactor (LMFBR). Surge tank acquires importance because of its ability to take care of pressure surges in case of a sodium water reaction in Steam Generators (SG). The blanket of argon cover gas above the sodium free surface in the surge tank acts as a cushion for the surges. At the same time, argon gas is a source of entrainment into the sodium which is undesirable from the consideration of effective heat transfer in Inter mediate Heat Exchanger and SG, cavitation in pumps and operational problems of continuous feed and bleed of cover gas, thus leading to unfavourable reactor operating conditions. To investigate the phenomenon of gas entrainment in surge tank, hydraulic experiments were conducted in water using 1/38, 1/32, 1/22 and 1/12 scale models with Froude similarity. The minimum height of liquid column required to avoid gas entrainment was determined using different types of internal devices. Experiments were carried out in the 5/8 scale model to confirm the results of the smaller scale models. It was found that free surface height to avoid gas entrainment varies for different scale models. The combination of Pepper pot with ring plate was found to be the most effective in avoiding gas entrainment at H/D equals 1.28 where H is the height of liquid column in the tank from tank bottom and D is the inner diameter of surge tank.
Studies on fluid model for numerical simulation of gas discharges in color plasma displays
Institute of Scientific and Technical Information of China (English)
HE Feng; LIU Chun-Liang
2005-01-01
The fluid models of gas discharge in alternating current plasma display panel (AC PDP) cell are discussed.From the Boltzmann equation, the hydrodynamic equations are derived, but this model consumes much computa tional time for simulation. The drift-diffusion approximation model and the local field approximation model are ob tained to simplify the numerical computation, and the approximation conditions of these two models are discussed in detail. The drift-diffusion approximation model gives more satisfactory result for PDP simulation, and the expression of energy balance equation is given completely in this model.
Karacan, C.O.; Olea, R.A.; Goodman, G.
2012-01-01
Determination of the size of the gas emission zone, the locations of gas sources within, and especially the amount of gas retained in those zones is one of the most important steps for designing a successful methane control strategy and an efficient ventilation system in longwall coal mining. The formation of the gas emission zone and the potential amount of gas-in-place (GIP) that might be available for migration into a mine are factors of local geology and rock properties that usually show spatial variability in continuity and may also show geometric anisotropy. Geostatistical methods are used here for modeling and prediction of gas amounts and for assessing their associated uncertainty in gas emission zones of longwall mines for methane control.This study used core data obtained from 276 vertical exploration boreholes drilled from the surface to the bottom of the Pittsburgh coal seam in a mining district in the Northern Appalachian basin. After identifying important coal and non-coal layers for the gas emission zone, univariate statistical and semivariogram analyses were conducted for data from different formations to define the distribution and continuity of various attributes. Sequential simulations performed stochastic assessment of these attributes, such as gas content, strata thickness, and strata displacement. These analyses were followed by calculations of gas-in-place and their uncertainties in the Pittsburgh seam caved zone and fractured zone of longwall mines in this mining district. Grid blanking was used to isolate the volume over the actual panels from the entire modeled district and to calculate gas amounts that were directly related to the emissions in longwall mines.Results indicated that gas-in-place in the Pittsburgh seam, in the caved zone and in the fractured zone, as well as displacements in major rock units, showed spatial correlations that could be modeled and estimated using geostatistical methods. This study showed that GIP volumes may
A Cloud Microphysics Model for the Gas Giant Planets
Palotai, Csaba J.; Le Beau, Raymond P.; Shankar, Ramanakumar; Flom, Abigail; Lashley, Jacob; McCabe, Tyler
2016-10-01
Recent studies have significantly increased the quality and the number of observed meteorological features on the jovian planets, revealing banded cloud structures and discrete features. Our current understanding of the formation and decay of those clouds also defines the conceptual modes about the underlying atmospheric dynamics. The full interpretation of the new observational data set and the related theories requires modeling these features in a general circulation model (GCM). Here, we present details of our bulk cloud microphysics model that was designed to simulate clouds in the Explicit Planetary Hybrid-Isentropic Coordinate (EPIC) GCM for the jovian planets. The cloud module includes hydrological cycles for each condensable species that consist of interactive vapor, cloud and precipitation phases and it also accounts for latent heating and cooling throughout the transfer processes (Palotai and Dowling, 2008. Icarus, 194, 303–326). Previously, the self-organizing clouds in our simulations successfully reproduced the vertical and horizontal ammonia cloud structure in the vicinity of Jupiter's Great Red Spot and Oval BA (Palotai et al. 2014, Icarus, 232, 141–156). In our recent work, we extended this model to include water clouds on Jupiter and Saturn, ammonia clouds on Saturn, and methane clouds on Uranus and Neptune. Details of our cloud parameterization scheme, our initial results and their comparison with observations will be shown. The latest version of EPIC model is available as open source software from NASA's PDS Atmospheres Node.
How to get cool in the heat: comparing analytic models of halo gas cooling with EAGLE
Stevens, Adam R H; Contreras, Sergio; Croton, Darren J; Padilla, Nelson D; Schaller, Matthieu; Schaye, Joop; Theuns, Tom
2016-01-01
We use the hydrodynamic, cosmological EAGLE simulations to investigate how hot gas in haloes condenses to form and grow galaxies. We select haloes from the simulations that are actively cooling and study the temperature, distribution, and metallicity of their hot, cold, and transitioning `cooling' gas, placing these in context of semi-analytic models. Our selection criteria lead us to focus on Milky Way-like haloes. We find the hot-gas density profiles of the haloes form a progressively stronger core over time, the nature of which can be captured by a beta profile that has a simple dependence on redshift. In contrast, the hot gas that actually cools is broadly consistent with a singular isothermal sphere. We find that cooling gas carries a few times the specific angular momentum of the halo and is offset in spin direction from the rest of the hot gas. The gas loses ~60% of its specific angular momentum during the cooling process, generally remaining greater than that of the halo, and is better aligned with th...
Shmakov, A. F.; Modorskii, V. Ya.
2016-10-01
This paper presents the results of numerical modeling of gas-dynamic processes occurring in the flow path, thermal analysis and evaluation of the stress-strain state of a three-stage design of the compressor gas pumping unit. Physical and mathematical models of the processes developed. Numerical simulation was carried out in the engineering software ANSYS 13. The problem is solved in a coupled statement, in which the results of the gas-dynamic calculation transferred as boundary conditions for the evaluation of the thermal and stress-strain state of a three-stage design of the compressor gas pumping unit. The basic parameters, which affect the stress-strain state of the housing and changing gaps of labyrinth seals in construction. The method of analysis of the pumped gas flow influence on the strain of construction was developed.
Consequence modeling of fire on Methane storage tanks in a gas refinery
Directory of Open Access Journals (Sweden)
Sara Shahedi ali abadi
2016-06-01
Full Text Available Introduction: using fossil fuels, some hazards such as explosion and fire are probable. This study was aimed to consequence modeling of fire on Methane storage tanks in a gas refinery using analyzing the risk, and modeling and evaluating the related consequences. Method: Hazard analysis by PHA was used to choosing the worst-case scenario. Then, causes of the scenario were determined by FTA. After that, consequence modeling by the PHAST software was applied for the consequence analysis. Results: Based on some criteria, the fire of methane gas tank (V-100 was selected as the worst-case scenario at the refinery. The qualitative fault tree showed three factors including mechanical, process, and human failures contribute in gas leakage. The leakage size and weather conditions were effective on the distance of radiation. Using consequence modeling, thermal radiation was considered as the major outcome of the incident. Finally, for outcome evaluating, probit equations were used to quantify losses and the percentage of fatalities due to the methane gas leakage and fire occurrence. The maximum number of fatalities caused by fire was obtained 23 persons. Conclusions: In conclusion, the methane gas vessel in the refinery can be considered as the main center of hazard, therefore the implementation of the safety rules, eliminating mechanical failures, personal protection and education, and Effective measures to prevent and fighting of fire are proposed for decreasing the probable losses and fatalities.
Chemistry in Disks. IV. Benchmarking gas-grain chemical models with surface reactions
Semenov, D; Wakelam, V; Dutrey, A; Chapillon, E; Guilloteau, St; Henning, Th; Launhardt, R; Pietu, V; Schreyer, K
2010-01-01
Abridged: We detail and benchmark two sophisticated chemical models developed by the Heidelberg and Bordeaux astrochemistry groups. The main goal of this study is to elaborate on a few well-described tests for state-of-the-art astrochemical codes covering a range of physical conditions and chemical processes, in particular those aimed at constraining current and future interferometric observations of protoplanetary disks. We consider three physical models: a cold molecular cloud core, a hot core, and an outer region of a T Tauri disk. Our chemical network (for both models) is based on the original gas-phase osu_03_2008 ratefile and includes gas-grain interactions and a set of surface reactions for the H-, O-, C-, S-, and N-bearing molecules. The benchmarking is performed with the increasing complexity of the considered processes: (1) the pure gas-phase chemistry, (2) the gas-phase chemistry with accretion and desorption, and (3) the full gas-grain model with surface reactions. Using atomic initial abundances ...
Noble gas encapsulation into carbon nanotubes: Predictions from analytical model and DFT studies
Balasubramani, Sree Ganesh; Singh, Devendra; Swathi, R. S.
2014-11-01
The energetics for the interaction of the noble gas atoms with the carbon nanotubes (CNTs) are investigated using an analytical model and density functional theory calculations. Encapsulation of the noble gas atoms, He, Ne, Ar, Kr, and Xe into CNTs of various chiralities is studied in detail using an analytical model, developed earlier by Hill and co-workers. The constrained motion of the noble gas atoms along the axes of the CNTs as well as the off-axis motion are discussed. Analyses of the forces, interaction energies, acceptance and suction energies for the encapsulation enable us to predict the optimal CNTs that can encapsulate each of the noble gas atoms. We find that CNTs of radii 2.98 - 4.20 Å (chiral indices, (5,4), (6,4), (9,1), (6,6), and (9,3)) can efficiently encapsulate the He, Ne, Ar, Kr, and Xe atoms, respectively. Endohedral adsorption of all the noble gas atoms is preferred over exohedral adsorption on various CNTs. The results obtained using the analytical model are subsequently compared with the calculations performed with the dispersion-including density functional theory at the M06 - 2X level using a triple-zeta basis set and good qualitative agreement is found. The analytical model is however found to be computationally cheap as the equations can be numerically programmed and the results obtained in comparatively very less time.
Study of coal and gas outbursts by numerical modeling approach
Institute of Scientific and Technical Information of China (English)
LI Sheng; ZHANG Hong-wei
2007-01-01
During mining or road-way development, the distribution of stress and coal pore pressure in the coal face and rib around the new opening will change, under certain conditions, dynamic failure of coal in the form of an outburst can occur. In the modeling studies presented in this paper, an outburst was considered to consist of three distinct stages:preinitiation, initiation and post-initiation, which takes into account the major processes and mechanisms that can influence both outburst-proneness and post-initiation outburst behavior. The model has been applied to simulate the effects of mechanisms in the coal matrix, coal strength, coal damage, geological structures on outbursts. The model constructed using the FLAC software, which were undertaken to research the effects on outbursts of coal strength pressure gradient, and other factors.
Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco
DEFF Research Database (Denmark)
Vollertsen, Jes; Revilla, Nohemy; Hvitved-Jacobsen, Thorkild;
2015-01-01
An extensive measuring campaign targeted on sewer odor problems was undertaken in San Francisco. It was assessed whether a conceptual sewer process model could reproduce the measured concentrations of total sulfide in the wastewater and H2S gas in the sewer atmosphere, and to which degree...... such simulations have potential for further improving odor and sulfide management. The campaign covered measurement of wastewater sulfide by grab sampling and diurnal sampling, and H2S gas in the sewer atmosphere was logged. The tested model was based on the Wastewater Aerobic/Anaerobic Transformations in Sewers...... (WATS) sewer process concept, which never had been calibrated to such an extensive dataset. The study showed that the model was capable of reproducing the general levels of wastewater sulfide, wastewater pH, and sewer H2S gas. It could also reproduce the general variability of these parameters, albeit...
DEFF Research Database (Denmark)
Pierart Vásquez, Fabián Gonzalo
Gas journal bearings have been increasingly adopted in modern turbo-machinery due to their numerous indisputable advantages. They can operate at higher speed than most bearing designs, almost without noise or heat generation and in most cases, as in this work, the gas used is air which is cheap...... work, the control signal design is based on a theoretical model. This approach enables easy modifications of any of the numerous physical parameters in the system if needed. The theoretical model used is based on a modifed version of Reynolds equation where an extra term is added in order to include...... frequencies and damping ratios of the rotor-bearing system) is performed and finally to design controllers that allows improvement of the dynamic properties of the rotor-active gas bearings system and lets the systemto safely cross the critical speeds, using the theoretical model as a design tool. The results...
Challenges in Slug Modeling and Control for Offshore Oil and Gas Productions: A Review Study
DEFF Research Database (Denmark)
Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu
2017-01-01
the state-of-the-art related to analysis, detection, dynamical modeling and elimination of the slug within the offshore oil & gas Exploration and Production (E&P) processes. Modeling of slugging flow has been used to investigate the slug characteristics and for design of anti-slug control as well, however...... most models require specific facility and operating data which, unfortunately, often is not available from most offshore installations. Anti-slug control have been investigated for several decades in oil & gas industry, but many of these existing methods suffer the consequent risk of simultaneously...... reducing the oil & gas production. This paper concludes that slug is a well defined phenomenon, but even though it has been investigated for several decades the current anti-slug control methods still have problems related to robustness. It is predicted that slug-induced challenges will be even more severe...
Injection Performance of a Gas-Solid Injector Based on the Particle Trajectory Model
Directory of Open Access Journals (Sweden)
Daolong Yang
2015-01-01
Full Text Available Gas-solid injectors are widely used feeding equipment in pneumatic conveying systems. The performance of a gas-solid injector has a significant influence on the type of application it can be employed for. To determine the key factors influencing the injection performance and address clogging problems in a gas-solid injector during a pneumatic conveying process, the particle trajectory model has been utilised as a means to perform simulations. In the particle trajectory model, the gas phase is treated as a continuous medium and the particle phase is treated as a dispersed phase. In this work, numerical and experimental studies were conducted for different nozzle positions in a gas-solid injector. A gas-solid injector test-bed was constructed based on the results of the simulations. The results show that the nozzle position is the key factor that affects the injection performance. The number of extrusive particles first increases and then decreases with the change in the nozzle position from left to right. Additionally, there is an optimum nozzle position that maximises the injection mass and minimises the number of particles remaining in the hopper. Based on the results of this work, the injection performance can be significantly increased and the clogging issues are effectively eliminated.
Modeling gas formation and mineral precipitation in a granular iron column.
Jeen, Sung-Wook; Amos, Richard T; Blowes, David W
2012-06-19
In granular iron permeable reactive barriers (PRBs), hydrogen gas formation, entrapment and release of gas bubbles, and secondary mineral precipitation have been known to affect the permeability and reactivity. The multicomponent reactive transport model MIN3P was enhanced to couple gas formation and release, secondary mineral precipitation, and the effects of these processes on hydraulic properties and iron reactivity. The enhanced model was applied to a granular iron column, which was studied for the treatment of trichloroethene (TCE) in the presence of dissolved CaCO(3). The simulation reasonably reproduced trends in gas formation, secondary mineral precipitation, permeability changes, and reactivity changes observed over time. The simulation showed that the accumulation of secondary minerals reduced the reactivity of the granular iron over time, which in turn decreased the rate of mineral accumulation, and also resulted in a gradual decrease in gas formation over time. This study provides a quantitative assessment of the evolving nature of geochemistry and permeability, resulting from coupled processes of gas formation and mineral precipitation, which leads to a better understanding of the processes controlling the granular iron reactivity, and represents an improved method for incorporating these factors into the design of granular iron PRBs.
French gas industry in transition: breach in the public service model
Energy Technology Data Exchange (ETDEWEB)
Finon, D
2001-08-01
France is generally viewed as the European country that most vigorously resists the pressure to liberalize its national gas markets. The moderate reform which has resulted from the transcription of the European gas directive was voted in 2002 after much delay. The main reason is the robustness of the French public service-model which has shaped the gas industry organisation in the same way as most of the network industries. To explain the institutional stability of the French gas industry, this document analyses its institutional trajectory shaped by the public service model and its strong institutional path dependency, marked by the resistance to change. The central hypothesis of the analysis is that, as long as this model demonstrates economic and social efficiency in the development of gas supply in relation to public services obligation and in the control of the import dependence risk in the gas sector, no reform can be brought about by endogenous factors. The analysis of the French gas industry transition consists of four sections. After a survey of its historical development, the author presents its organisation and regulation under the public service model and its performances in terms of social and economic efficiency. In the third section, the minimalist reform for transcribing the European Directive in the French law is presented, in order to identify its potential effects in terms of competition development and public service erosion. Finally, in the fourth section, the industrial policy option to preserve the existence of a French mono-energy company and its consequences in terms of strategic adaptation are discussed. (A.L.B.)
Liang, Tengfei
2013-07-16
A systematic study on the performance of two empirical gas-wall interaction models, the Maxwell model and the Cercignani-Lampis (CL) model, in the entire Knudsen range is conducted. The models are evaluated by examining the accuracy of key macroscopic quantities such as temperature, density, and pressure, in three benchmark thermal problems, namely the Fourier thermal problem, the Knudsen force problem, and the thermal transpiration problem. The reference solutions are obtained from a validated hybrid DSMC-MD algorithm developed in-house. It has been found that while both models predict temperature and density reasonably well in the Fourier thermal problem, the pressure profile obtained from Maxwell model exhibits a trend that opposes that from the reference solution. As a consequence, the Maxwell model is unable to predict the orientation change of the Knudsen force acting on a cold cylinder embedded in a hot cylindrical enclosure at a certain Knudsen number. In the simulation of the thermal transpiration coefficient, although all three models overestimate the coefficient, the coefficient obtained from CL model is the closest to the reference solution. The Maxwell model performs the worst. The cause of the overestimated coefficient is investigated and its link to the overly constrained correlation between the tangential momentum accommodation coefficient and the tangential energy accommodation coefficient inherent in the models is pointed out. Directions for further improvement of models are suggested.
Energy Technology Data Exchange (ETDEWEB)
Egging, R.G.
2010-11-15
This dissertation develops deterministic and stochastic multi-period mixed complementarity problems (MCP) for the global natural gas market, as well as solution approaches for large-scale stochastic MCP. The deterministic model is unique in the combination of the level of detail of the actors in the natural gas markets and the transport options, the detailed regional and global coverage, the multi-period approach with endogenous capacity expansions for transportation and storage infrastructure, the seasonal variation in demand and the representation of market power according to Nash-Cournot theory. The model is applied to several scenarios for the natural gas market that cover the formation of a cartel by the members of the Gas Exporting Countries Forum, a low availability of unconventional gas in the United States, and cost reductions in long-distance gas transportation. The results provide insights in how different regions are affected by various developments, in terms of production, consumption, traded volumes, prices and profits of market participants. The stochastic MCP is developed and applied to a global natural gas market problem with four scenarios for a time horizon until 2050 with nineteen regions and containing 78,768 variables. The scenarios vary in the possibility of a gas market cartel formation and varying depletion rates of gas reserves in the major gas importing regions. Outcomes for hedging decisions of market participants show some significant shifts in the timing and location of infrastructure investments, thereby affecting local market situations. A first application of Benders decomposition (BD) is presented to solve a large-scale stochastic MCP for the global gas market with many hundreds of first-stage capacity expansion variables and market players exerting various levels of market power. The largest problem solved successfully using BD contained 47,373 variables of which 763 first-stage variables, however using BD did not result in
Multi-period natural gas market modeling Applications, stochastic extensions and solution approaches
Egging, Rudolf Gerardus
This dissertation develops deterministic and stochastic multi-period mixed complementarity problems (MCP) for the global natural gas market, as well as solution approaches for large-scale stochastic MCP. The deterministic model is unique in the combination of the level of detail of the actors in the natural gas markets and the transport options, the detailed regional and global coverage, the multi-period approach with endogenous capacity expansions for transportation and storage infrastructure, the seasonal variation in demand and the representation of market power according to Nash-Cournot theory. The model is applied to several scenarios for the natural gas market that cover the formation of a cartel by the members of the Gas Exporting Countries Forum, a low availability of unconventional gas in the United States, and cost reductions in long-distance gas transportation. 1 The results provide insights in how different regions are affected by various developments, in terms of production, consumption, traded volumes, prices and profits of market participants. The stochastic MCP is developed and applied to a global natural gas market problem with four scenarios for a time horizon until 2050 with nineteen regions and containing 78,768 variables. The scenarios vary in the possibility of a gas market cartel formation and varying depletion rates of gas reserves in the major gas importing regions. Outcomes for hedging decisions of market participants show some significant shifts in the timing and location of infrastructure investments, thereby affecting local market situations. A first application of Benders decomposition (BD) is presented to solve a large-scale stochastic MCP for the global gas market with many hundreds of first-stage capacity expansion variables and market players exerting various levels of market power. The largest problem solved successfully using BD contained 47,373 variables of which 763 first-stage variables, however using BD did not result in
Khalilpour, Rajab
2011-08-12
The modeling and optimal design/operation of gas membranes for postcombustion carbon capture (PCC) is presented. A systematic methodology is presented for analysis of membrane systems considering multicomponent flue gas with CO 2 as target component. Simplifying assumptions is avoided by namely multicomponent flue gas represented by CO 2/N 2 binary mixture or considering the co/countercurrent flow pattern of hollow-fiber membrane system as mixed flow. Optimal regions of flue gas pressures and membrane area were found within which a technoeconomical process system design could be carried out. High selectivity was found to not necessarily have notable impact on PCC membrane performance, rather, a medium selectivity combined with medium or high permeance could be more advantageous. © 2011 American Institute of Chemical Engineers (AIChE).
Computational model and simulations of gas-liquid-solid three-phase interactions
Zhang, Lucy; Wang, Chu
2013-11-01
A computational technique to model three-phase (gas-liquid-solid) interactions is proposed in this study. This numerical algorithm couples a connectivity-free front-tracking method that treats gas-liquid multi-fluid interface to the immersed finite element method that treats fully-coupled fluid-solid interactions. The numerical framework is based on a non-boundary-fitted meshing technique where the background grid is fixed where no mesh-updating or re-meshing is required. An indicator function is used to identify the gas from the liquid, and the fluid (gas or liquid) from the solid. Several 2-D and 3-D validation cases are demonstrated to show the accuracy and the robustness of the method. Funding from NRC and CCNI computational facility at Rensselaer Polytechnic Institute are greatly acknowledged.
Gas Emission Prediction Model of Coal Mine Based on CSBP Algorithm
Directory of Open Access Journals (Sweden)
Xiong Yan
2016-01-01
Full Text Available In view of the nonlinear characteristics of gas emission in a coal working face, a prediction method is proposed based on cuckoo search algorithm optimized BP neural network (CSBP. In the CSBP algorithm, the cuckoo search is adopted to optimize weight and threshold parameters of BP network, and obtains the global optimal solutions. Furthermore, the twelve main affecting factors of the gas emission in the coal working face are taken as input vectors of CSBP algorithm, the gas emission is acted as output vector, and then the prediction model of BP neural network with optimal parameters is established. The results show that the CSBP algorithm has batter generalization ability and higher prediction accuracy, and can be utilized effectively in the prediction of coal mine gas emission.
Nongray-gas Effects in Modeling of Large-scale Oxy-fuel Combustion Processes
DEFF Research Database (Denmark)
Yin, Chungen
2012-01-01
, among which radiative heat transfer under oxy-fuel conditions is one of the fundamental issues. This paper demonstrates the nongray-gas effects in modeling of large-scale oxy-fuel combustion processes. Oxy-fuel combustion of natural gas in a large-scale utility boiler is numerically investigated......, the gray calculation of the oxy-fuel WSGGM remarkably over-predicts the radiative heat transfer to the furnace walls and under-predicts the gas temperature at the furnace exit plane, which also result in a higher incomplete combustion in the gray calculation. Moreover, the gray and non-gray calculations......Quite some studies have been conducted in order to implement oxy-fuel combustion with flue gas recycle in conventional utility boilers as an effective effort of carbon capture and storage. However, combustion under oxy-fuel conditions is significantly different from conventional air-fuel firing...
A Gas Centric Model For Intergalactic Filament Development During the First Gigayear
Harford, A Gayler
2016-01-01
Using a cosmological simulation of the first gigayear of the universe, we find that the mass per unit length of reionizing intergalactic filaments is proportional to the square of the sound speed with a proportionality constant equal to that predicted for a gravitationally bound, isothermal cylinder. These cylinders contain both gas and dark matter, and the dark matter contributes to the gravitational field roughly in proportion to its abundance. The dark matter of each galaxy collapses according to the cycloid predicted for spherically symmetric collapse in an expanding universe. In contrast, the gas collapses more slowly into the centre of the galaxy. After reionization filaments persist and, in some cases, become enriched in either gas or dark matter. We have incorporated these findings into a unified model. A key feature of a gravitationally bound, isothermal cylinder is that the mass per unit length depends only upon the temperature and ionization state of the gas. This property suggests a lower limit on...
An Analytic Model for the Evolution of the Stellar, Gas, and Metal Content of Galaxies
Davé, Romeel; Oppenheimer, Benjamin D
2011-01-01
We present an analytic formalism that describes the evolution of the stellar, gas, and metal content of galaxies. It is based on the idea, inspired by hydrodynamic simulations, that galaxies live in a slowly-evolving equilibrium between inflow, outflow, and star formation. We argue that this formalism broadly captures the behavior of galaxy properties evolving in simulations. The resulting equilibrium equations for the star formation rate, gas fraction, and metallicity depend on three key free parameters that represent ejective feedback, preventive feedback, and re-accretion of ejected material. We schematically describe how these parameters are constrained by models and observations. Galaxies perturbed off the equilibrium relations owing to inflow stochasticity tend to be driven back towards equilibrium, such that deviations in star formation rate at a given mass are correlated with gas fraction and anti-correlated with metallicity. After an early gas accumulation epoch, quiescently star-forming galaxies are...
Models of evolution of gas and abundances in dwarf irregular galaxies
Gavilan, M; Díaz, A I
2009-01-01
We have developed a grid of chemical evolution models applied to dwarf isolated galaxies, using \\cite{gav05} yields. The input data enclose different star formation efficiencies, galaxy mass and collapse time values. The result is a wide collection of solutions that vary from objects with low metallicity and great amount of gas, to those with little gas and high metallicity. No environmental effects like tidal or galactic winds have been treated, so these objects are expected to be close to field dwarf galaxies, more than cluster ones. We have studied the time evolution of the abundance of oxygen and nitrogen and the amount of gas, related to their star formation history, as well as the possibility of gas losses by SN winds.
Lattice-fluid model for gas-liquid chromatography.
Tao, Y; Wells, P S; Yi, X; Yun, K S; Parcher, J F
1999-11-01
Lattice-fluid models describe molecular ensembles in terms of the number of lattice sites occupied by molecular species (r-mers) and the interactions between neighboring molecules. The lattice-fluid model proposed by Sanchez and Lacombe (Macromolecules, 1978;11:1145-1156) was used to model specific retention volume data for a series of n-alkane solutes with n-alkane, polystyrene, and poly(dimethylsiloxane) stationary liquid phases. Theoretical equations were derived for the specific retention volume and also for the temperature dependence and limiting (high temperature) values for the specific retention volume. The model was used to predict retention volumes within 10% for the n-alkanes phases; 22% for polystyrene; and from 20 to 70% for PDMS using no adjustable parameters. The temperature derivative (enthalpy) could be calculated within 5% for all of the solutes in nine stationary liquid phases. The limiting value for the specific retention volume at high temperature (entropy controlled state) could be calculated within 10% for all of the systems. The limiting data also provided a new chromatographic method to measure the size parameter, r, for any chromatographic solute using characteristic and size parameters for the stationary phase only. The calculated size parameters of the solutes were consistent, i.e. independent of the stationary phase and agreed within experimental error with the size parameters previously reported from saturated vapor pressure, latent heat of vaporization or density data.
GASTALE. An oligopolistic model of production and trade in the European gas market
Energy Technology Data Exchange (ETDEWEB)
Boots, M.G.; Rijkers, F.A.M. [ECN Policy Studies, Petten (Netherlands); Hobbs, B.F. [John Hopkins University, Baltimore, Maryland (United States)
2003-08-01
The empirical model GASTALE is described and used to analyse the European natural gas market. These analyses focus primarily on the role of the downstream trading companies and their interaction with gas producers. By default, producers of natural gas are assumed to form an oligopoly in the paper. Meanwhile, downstream within-country traders of gas are represented in different versions of the model as local oligopolists or perfect competitors. The model therefore has a two-level structure, in which producers engage in competition a la Cournot, and each producer is a Stackelberg leader with respect to traders, who may be Cournot oligopolists or perfect competitors. The case of Cournot traders results in a new form of energy model, that of successive oligopoly. The model is formulated as a complementarity problem, and is solved by nonlinear programming. Considering this oligopolistic market structure, several tentative conclusions emerge. First, our model results show that successive oligopoly (so-called 'double marginalisation') yields significantly higher prices and lower consumer welfare than if oligopoly exists only on one level. Second, oligopoly in the trading market (because of the high concentration of traders) results in more distortion than oligopoly in production. Third, the level of traders' profits depends on the possibilities of discrimination on the border prices. If price discrimination by producers is allowed, these producers collect a greater share of the margins on end-use prices. Fourth, when the number of traders increases and assuming an oligopolistic downstream structure, end-use prices converge to prices corresponding with perfect competition. Thus, it is important to prevent (or abolish) monopolistic structures in the downstream gas market. In the case where oligopolistic competition among downstream gas companies cannot be prevented, vertical integration should be supported (or at least not be discouraged), especially if it
Analysis of Neutron Stars Observations Using a Correlated Fermi Gas Model
Hen, O; Piasetzky, E; Weinstein, L B
2016-01-01
Background: The nuclear symmetry energy is a fundamental ingredient in determining the equation of state (EOS) of neutron stars (NS). Recent terrestrial experiments constrain both its value and slope at nuclear saturation density, however, its value at higher densities is unknown. Assuming a Free Fermi-gas (FFG) model for the kinetic symmetry energy, the high-density extrapolation depends on a single parameter, the density dependence of the potential symmetry energy. The Correlated Fermi-gas (CFG) model improves on the FFG model by including the effects of short-range, correlated, high-momentum, nucleons in nuclear matter. Using the CFG model for the kinetic symmetry energy along with constraints from terrestrial measurements leads to a much softer density dependence for the potential symmetry energy. Purpose: Examine the ability of the FFG and CFG models to describe NS observables that are directly sensitive to the symmetry energy at high-density. Specifically, examine the ability of the CFG model, with its ...
Energy Technology Data Exchange (ETDEWEB)
Goodarz Ahmadi
2002-07-01
In this project, a computational modeling approach for analyzing flow and ash transport and deposition in filter vessels was developed. An Eulerian-Lagrangian formulation for studying hot-gas filtration process was established. The approach uses an Eulerian analysis of gas flows in the filter vessel, and makes use of the Lagrangian trajectory analysis for the particle transport and deposition. Particular attention was given to the Siemens-Westinghouse filter vessel at Power System Development Facility in Wilsonville in Alabama. Details of hot-gas flow in this tangential flow filter vessel are evaluated. The simulation results show that the rapidly rotation flow in the spacing between the shroud and the vessel refractory acts as cyclone that leads to the removal of a large fraction of the larger particles from the gas stream. Several alternate designs for the filter vessel are considered. These include a vessel with a short shroud, a filter vessel with no shroud and a vessel with a deflector plate. The hot-gas flow and particle transport and deposition in various vessels are evaluated. The deposition patterns in various vessels are compared. It is shown that certain filter vessel designs allow for the large particles to remain suspended in the gas stream and to deposit on the filters. The presence of the larger particles in the filter cake leads to lower mechanical strength thus allowing for the back-pulse process to more easily remove the filter cake. A laboratory-scale filter vessel for testing the cold flow condition was designed and fabricated. A laser-based flow visualization technique is used and the gas flow condition in the laboratory-scale vessel was experimental studied. A computer model for the experimental vessel was also developed and the gas flow and particle transport patterns are evaluated.
THE IMPACT OF MOLECULAR GAS ON MASS MODELS OF NEARBY GALAXIES
Energy Technology Data Exchange (ETDEWEB)
Frank, B. S.; Blok, W. J. G. de [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo (Netherlands); Walter, F. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Leroy, A. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Carignan, C., E-mail: frank@astron.nl [Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa)
2016-04-15
We present CO velocity fields and rotation curves for a sample of nearby galaxies, based on data from HERACLES. We combine our data with THINGS, SINGS, and KINGFISH results to provide a comprehensive sample of mass models of disk galaxies inclusive of molecular gas. We compare the kinematics of the molecular (CO from HERACLES) and atomic (H i from THINGS) gas distributions to determine the extent to which CO may be used to probe the dynamics in the inner part of galaxies. In general, we find good agreement between the CO and H i kinematics, with small differences in the inner part of some galaxies. We add the contribution of the molecular gas to the mass models in our galaxies by using two different conversion factors α{sub CO} to convert CO luminosity to molecular gas mass surface density—the constant Milky Way value and the radially varying profiles determined in recent work based on THINGS, HERACLES, and KINGFISH data. We study the relative effect that the addition of the molecular gas has on the halo rotation curves for Navarro–Frenk–White and the observationally motivated pseudo-isothermal halos. The contribution of the molecular gas varies for galaxies in our sample—for those galaxies where there is a substantial molecular gas content, using different values of α{sub CO} can result in significant differences to the relative contribution of the molecular gas and hence the shape of the dark matter halo rotation curves in the central regions of galaxies.
A Mathematic Model of Gas-diffusion Electrodes in Contact with Liquid Electrolytes
Institute of Scientific and Technical Information of China (English)
LI Jun; XI Dan-li; SHI Yong; WU Xi-hui
2008-01-01
A mathematic model is developed which is applied to analyze the main factors that affect electrode performance and to account for the process of reaction and mass transfer in gas-diffusion electrodes in contact with liquid electrolytes. Electrochemical Thiele modulus φ2 and electrochemical effectiveness factor ηD are introduced to elucidate the effects of diffusion on electrochemical reaction and utilization of the gas-diffusion electrode.Profile of the reactant along axial direction is discussed,dependence of electrode potential V on current density J.are predicated by means of the newly developed mathematical model.
Particle-in-cell modeling of gas-confined barrier discharge
Levko, Dmitry; Raja, Laxminarayan L.
2016-04-01
Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.
Simple stochastic lattice gas automaton model for formation of river networks
Yan, Guangwu; Zhang, Jianying; Wang, Huimin; Guo, Li
2008-12-01
A stochastic lattice gas automata model for formation of river networks is proposed. The model is based on two-dimensional lattice gas automata with three fundamental principles at each node. The water source is regarded as a fixed point where a drop of water drips every time step. This system can be treated as a memory network: the probability of water moving along a direction relies on the history of the channel segment along which water drops have moved. Last, we find that the width of the river channel and the number of channels with this width meet a scaling law when the system reaches a critical status.
Tracking energy fluctuations from fragment partitions in the Lattice Gas model
Gulminelli, F; D'Agostino, M; Chomaz, Ph.
2004-01-01
Partial energy fluctuations are known tools to reconstruct microcanonical heat capacities. For nuclear multifragmentation, approximations have been developed to infer fluctuations at freeze out from the observed fragment partitions. The accuracy of this procedure is under debate. Using a well controlled computer experiment, the Lattice Gas model, we show that the proposed method is very accurate if fluctuations are reconstructed following closely the experimental procedure. We also show that a precise reconstruction of the configurational energy at freeze out is especially delicate in the case of classical models like Lennard Jones or Lattice Gas that present a cristallized ground state.
Modelling of associating mixtures for applications in the oil & gas and chemical industries
DEFF Research Database (Denmark)
Kontogeorgis, Georgios; Folas, Georgios; Muro Sunè, Nuria
2007-01-01
-alcohol (glycol)-alkanes and certain acid and amine-containing mixtures. Recent results include glycol-aromatic hydrocarbons including multiphase, multicomponent equilibria and gas hydrate calculations in combination with the van der Waals-Platteeuw model. This article will outline some new applications...... of the model of relevance to the petroleum and chemical industries: high pressure vapor-liquid and liquid-liquid equilibrium in alcohol-containing mixtures, mixtures with gas hydrate inhibitors and mixtures with polar and hydrogen bonding chemicals including organic acids. Some comparisons with conventional...
A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models
Luo, Li-Shi
1998-01-01
A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.
Electron-gas clusters: the ultimate jellium model
Koskinen, M.; Lipas, P. O.; Manninen, M.
1995-12-01
The local spin-density approximation is used to calculate ground- and isomeric-state geometries of jellium clusters with 2 to 22 electrons. The positive background charge of the model is completely deformable, both in shape and in density. The model has no input parameters. The resulting shapes of the clusters exhibit breaking of axial and inversion symmetries; in general the shapes are far from ellipsoidal. Those clusters which lack inversion symmetry are extremely soft against odd-multipole deformations. Some clusters can be interpreted as molecules built from magic clusters. The deformation produces a gap at the Fermi level. This results in a regular odd-even staggering of the total energy per electron and of the HOMO level. The strongly deformed 14-electron cluster is semimagic. Stable isomers are predicted. The splitting of the plasmon resonance due to deformation is estimated on a classical argument.
Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling
Energy Technology Data Exchange (ETDEWEB)
Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL
2015-01-01
This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in which hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.
Energy Technology Data Exchange (ETDEWEB)
Greenblatt, Jeffery B.
2013-10-10
A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants
Preliminary design and modelling of a gas-fired thermoelectric generator
Directory of Open Access Journals (Sweden)
Klimanek Adam
2016-01-01
Full Text Available The paper discusses modelling of coupled heat transfer and electricity generation in a thermoelectric generator designed for reliable island-mode power supply. The considered generator is a new concept of a low power supply (50 W whose aim is to provide electricity for remote gas pressure reduction stations with the purpose to maintain the control and automation equipment. This equipment contributes to the system safety and minimizes the risk of unintended methane emissions. The thermoelectric generator is designed for reliable and maintenance-free operation and power supply. Natural gas is burned in a partially premixed burner and the flue gas heats the hot side of the thermoelectric generator. The combustion air cools the cold side of the thermoelectric generator, providing the temperature difference required for electricity generation occurring based on the Seebeck effect. The flow of air and flue gas through the system is driven by chimney draft. The developed model couples the heat transfer on the hot and the cold side, as well as the generation of electrical energy inside the thermoelectric modules. The model takes into account convection and conduction in the gas flow conduits and in finned heat exchangers of the cold and hot sides. The analysis demonstrates the relevance of design and operational parameters on the boundary temperatures of the thermoelectric modules. The obtained results will be used in further (ongoing phase leading to the design and construction of a prototype electricity generator dedicated for island-mode supply.
Integrated reservoir and decision modeling to optimize spacing in unconventional gas reservoirs
Energy Technology Data Exchange (ETDEWEB)
Turkarslan, G.; McVay, D.A.; Ortiz, R.R. [Texas A and M Univ., College Station, TX (United States); Bickel, J.E.; Montiel, L.V. [Texas Univ., Austin, TX (United States)
2010-07-01
Unconventional gas plays are risky and operators must balance the need to conserve capital and protect the environment by avoiding over drilling with the desire to increase profitability. The purpose of this study was to develop technology and tools to help operators determine optimal well spacing in highly uncertain and risky unconventional gas reservoirs as quickly as possible. The paper presented a study that developed an integrated reservoir and decision modeling system that incorporated uncertainty. A Monte Carlo simulation was used to match and predict production performance in unconventional gas reservoirs. Simulation results were integrated with a Bayesian decision model that accounted for the risk facing operators. In order to determine optimal development strategies, these integrated tools were applied to a hypothetical case based on data from Deep Basin tight gas sands in Alberta. The paper provided background information on the Deep Basin Sands and the reservoir model. The Monte Carlo simulation and geostatistical analysis were presented. It was concluded that it is important to incorporate the lessons learned between development stages in unconventional gas reservoirs. 23 refs., 9 tabs., 16 figs.
A Pore-Centric Model for Combined Shrinkage and Gas Porosity in Alloy Solidification
Khalajzadeh, Vahid; Carlson, Kent D.; Backman, Daniel G.; Beckermann, Christoph
2017-04-01
A unified model has been developed for combined gas- and shrinkage-induced pore formation during solidification of metal alloys. The model is based on a pore-centric approach, in which the temporal evolution of the pore radius is calculated as a function of cooling rate, thermal gradient, gas diffusion, and shrinkage. It accounts for the effect of porosity formation on the liquid velocity within the mushy zone. Simulations for an aluminum alloy show that the porosity transitions smoothly from shrinkage-induced to gas-induced as the Niyama value is increased. A Blake (cavitation) instability is observed to occur when the porosity is both gas- and shrinkage-driven. A revised dimensionless Niyama curve for pure shrinkage is presented. The experimentally observed gas porosity trend that the pore volume decreases with increasing cooling rate is well predicted. The pore-centric formulation allows the present model to be solved locally, at any point in a casting, during a regular casting simulation.
Modeling studies of gas movement and moisture migration at Yucca Mountain, Nevada
Energy Technology Data Exchange (ETDEWEB)
Tsang, Y.W.; Pruess, K. [Lawrence Berkeley Lab., CA (United States)
1991-06-01
Modeling studies on moisture redistribution processes that are mediated by gas phase flow and diffusion have been carried out. The problem addressed is the effect of a lowered humidity of the soil gas at the land surface on moisture removal from Yucca Mountain, the potential site for a high-level nuclear waste repository. At the land surface, humid formation gas contacts much drier atmospheric air. Near this contact, the humidity of the soil gas may be considerably lower than at greater depth, where the authors expect equilibrium with the liquid phase and close to 100% humidity. The lower relative humidity of the soil gas may be modeled by imposing, at the land surface, an additional negative capillary suction corresponding to vapor pressure lowering according to Kelvin`s Equation, thus providing a driving force for the upward movement of moisture in both the vapor and liquid phases. Sensitivity studies show that moisture removal from Yucca Mountain arising from the lowered-relative-humidity boundary condition is controlled by vapor diffusion. There is much experimental evidence in the soil literature that diffusion of vapor is enhanced due to pore-level phase change effects by a few orders of magnitude. Modeling results presented here will account for this enhancement in vapor diffusion.
Energy Technology Data Exchange (ETDEWEB)
Cazin, J.; Couput, J.P.; Dudezert, C. et al
2005-07-01
A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)
A computational model of insect discontinuous gas exchange: A two-sensor, control systems approach.
Grieshaber, Beverley J; Terblanche, John S
2015-06-07
The insect gas exchange system is characterised by branching air-filled tubes (tracheae/tracheoles) and valve-like structures in their outer integument (spiracles) which allow for a periodic gas exchange pattern known as the discontinuous gas exchange cycle (DGC). The DGC facilitates the temporal decoupling of whole animal gas exchange from cellular respiration rates and may confer several physiological benefits, which are nevertheless highly controversial (primarily reduction of cellular oxidative damage and/or respiratory water saving). The intrinsic and extrinsic factors influencing DGCs are the focus of extensive ongoing research and little consensus has been reached on the evolutionary genesis or mechanistic costs and benefits of the pattern. Despite several hypotheses and much experimental and evolutionary biology research, a mechanistic physical model, which captures various key elements of the DGC pattern, is currently lacking. Here, we present a biologically realistic computational, two-sensor DGC model (pH/carbon dioxide and oxygen setpoints) for an Orthopteran gas exchange system, and show computationally for the first time that a control system of two interacting feedback loops is capable of generating a full DGC pattern with outputs which are physiologically realistic, quantitatively matching experimental results found in this taxonomic model elsewhere. A finite-element mathematical approach is employed and various trigger sets are considered. Parameter sensitivity analyses suggest that various aspects of insect DGC are adequately captured in this model. In particular, with physiologically relevant input parameters, the full DGC pattern is induced; and the phase durations, endotracheal carbon dioxide partial pressure ranges, and pH fluctuations which arise are physically realistic. The model results support the emergent property hypothesis for the existence of DGC, and indicate that asymmetric loading and off-loading (hysteresis) in one of the sensor
D. Granieri; COSTA, A.; Macedonio, G.; Chiodini, G.(INFN Sezione di Lecce, Lecce, Italy); Bisson, M.; Avino, R.; Caliro, S
2011-01-01
A model to describe the cloud dispersion of gas denser than air is presented here. The dispersion of heavy gas is basically governed by the gravity but, when the density contrast (gas vs air) is not important the dispersion is controlled by the wind and atmospheric turbulence (so-called “passive dispersion”). DisGas is a model for dense gases which are dispersed under passive conditions, based on the full solution of the advection-diffusion equations for the gas concentration (Sankaranarayana...
Marine Gas Turbine Modeling for Modern Control Design.
1986-06-01
MOZO E-4ZWa" ~ C E- 0F.ZwEi.E- -inn4= 974WE.)O -4L c E-4 Ha W: WZ ( 0 ~ ) 0 "a . 4W< W .wz z 00 w 4 *0 = 0 ::) O=W( 0 0 C.M 0 =0UU n.X0 - Z -O)0 uo...Models/e/Dian criteria, AlfAVL-TR- 7B--74_,1976.6q 2. Merril,W., Lehtinen, B., Zeller J. , TheRole of Moo Theory in the Des3n of Coro fOrft Journal o
DEFF Research Database (Denmark)
Christensen, K. A.; Livbjerg, Hans
2000-01-01
multicomponent growth models are treated. The local gas phase composition is determined from a gas phase chemical equilibrium calculation combined with finite reaction rate kinetics for slower reactions. The model is useful in the analysis of boiler operation with respect to the formation of particles, HCl, SO2......The paper presents a numerical model for the simulation of gas to particle conversion and the chemical changes during cooling of a flue gas from the combustion of fuels rich in volatile alkali species. For the homogeneous nucleation of alkali species the model uses the classical theory modified...
A coupled DEM and LBM model for simulation of outbursts of coal and gas
Institute of Scientific and Technical Information of China (English)
Sheng Xue; Liang Yuan; Junfeng Wang; Yucang Wang; Jun Xie
2015-01-01
An outburst of coal and gas is a major hazard in underground coal mining. It is generally accepted that an outburst occurs when certain conditions of stress, coal gassiness and physical–mechanical properties of coal are met. Outbursting is recognized as a two-step process, i.e., initiation and development. In this paper, we present a fully-coupled solid and fluid code to model the entire process of an outburst. The deformation, failure and fracture of solid (coal) are modeled with the discrete element method, and the flow of fluid (gas and water) such as free flow and Darcy flow are modeled with the lattice Boltzmann method. These two methods are coupled in a two-way process, i.e., the solid part provides a moving boundary condition and transfers momentum to the fluid, while the fluid exerts a dragging force upon the solid. Gas desorption from coal occurs at the solid–fluid boundary, and gas diffusion is implemented in the solid code where particles are assumed to be porous. A simple 2D example to simulate the process of an outburst with the model is also presented in this paper to demonstrate the capability of the coupled model.
A quantitative approach to developing more mechanistic gas exchange models for field grown potato
DEFF Research Database (Denmark)
Ahmadi, Seyed Hamid; Andersen, Mathias Neumann; Poulsen, Rolf Thostrup
2009-01-01
of chemical and hydraulic signalling on stomatal conductance as exp(-β[ABA])exp(-δ|ψ|) in which [ABA] and |ψ| are xylem ABA concentration and absolute value of leaf or stem water potential. In this study we found that stem water potential could be a very reliable indicator of how plant water status affects......In this study we introduce new gas exchange models that are developed under natural conditions of field grown potato. The new models could explain about 85% of the stomatal conductance variations, which was much higher than the well-known gas exchange models such as the Ball-Berry model [Ball......, Woodrow, Berry, 1987. In: Nijhoff, M. (Eds.), Progress in Photosynthesis Research, vol. 4. Dordrecht, The Netherlands, pp. 5.221-5.224]. To overcome the limitations of previous models in simulating stomatal conductance when plants are exposed to drought stress, we proposed a down-regulating factor...
Preliminary Modeling, Testing, and Analysis of a Gas Tankless Water Heater: Preprint
Energy Technology Data Exchange (ETDEWEB)
Burch, J.; Hoeschele, M.; Springer, D.; Rudd, A.
2008-05-01
Today's gas tankless water heaters offer significant energy savings over conventional gas storage tank water heaters, but savings depends on the draw pattern. A one-node model incorporating heat exchanger mass is used to address this and other issues. Key model parameters are determined from least-squares regression on short-term data, including burner efficiency, thermal capacitance, and thermal loss coefficient. The calibrated model agrees with data to ~5% on Qgas, with temperature RMS deviation of ~4..deg..C. Efficiency with a standard realistic draw is 71%, compared to 81% predicted from standard energy-factors. Adding a small tank controlled by the tankless heater solves issues of oscillations with solar pre-heat, low-flow and hot-water-delay issues. Future work includes model refinements and developing optimal data protocols for model parameter extraction.
Comparison Of Four Landfill Gas Models Using Data From Four Danish Landfills
DEFF Research Database (Denmark)
Mønster, Jacob G.; Mou, Zishen; Kjeldsen, Peter
2011-01-01
, and to compare the four Danish landfill sites. The results show that three of the models generally give similar methane generation output. Only the LandGem model seems to give a much higher methane generation for Danish waste data, most likely due to a low organic fraction. Interpretation of the waste data......Data about type and quantity of waste disposed in four Danish landfills was collected and used on four different landfill gas generation models. This was done to compare the output data in order to evaluate the performance of the four landfill gas models when used on Danish waste types...... and the categorization of the waste play an important role in the methane prediction and combining the model predictions with whole site methane measurements would therefore be advised....
DEFF Research Database (Denmark)
Gong, M.; Zhang, Y.; Weschler, Charles J.
2014-01-01
for scenarios in which (A) a previously unexposed occupant encounters gas-phase phthalates in three different environments over a single 24-h period; (B) the same as 'A', but the pattern is repeated for seven consecutive days. In the 24-h scenario, the transient model predicts more phthalate absorbed into skin......A transient model is developed to predict dermal absorption of gas-phase chemicals via direct air-to-skin-to-blood transport under non-steady-state conditions. It differs from published models in that it considers convective mass-transfer resistance in the boundary layer of air adjacent to the skin...... and less absorbed into blood than would a steady-state model. In the 7-day scenario, results calculated by the transient and steady-state models converge over a time period that varies between 3 and 4days for all but the largest phthalate (DEHP). Dermal intake is comparable to or larger than inhalation...
Wang, Ruifei; Song, Hongqing; Tang, Hewei; Wang, Yuhe; Killough, John; Huang, Gang
2016-01-01
Permeability variation in tight channel sand formation makes an important role in gas production. Based on the features of channel sand formation, a mathematical model has been established considering anisotropy of permeability. The analytical solutions were derived for productivity of both vertical wells and vertically fractured wells. Simulation results show that, gas production rate of anisotropic channel sand formation is less than that of isotropic formation. For vertically fractured well, artificial fracture direction, drainage radius, permeability ratio and fracture half-length have considerable influence on production rate. The optimum fracture direction should be deviated less than π/8 from the maximum permeability direction (or the channel direction). In addition, the analytical model was verified by in situ measured data. The research provides theoretical basis for the development of tight channel sand gas reservoirs.
Two-Region Extended Archie's Law Model for Soil Air Permeability and Gas Diffusivity
DEFF Research Database (Denmark)
Hamamoto, Shoichiro; Møldrup, Per; Kawamoto, Ken
2011-01-01
The air permeability (ka) and soil gas diffusion coefficients (Dp) are controlling factors for gas transport and fate in variably saturated soils. We developed a unified model for ka and Dp based on the classical Archie's law, extended by: (i) allowing for two-region gas transport behavior...... for structured soils, with the natural field moisture condition (set at −100 cm H2O matric potential [pF 2]) as the reference (spliced) point between the large-pore (drained pore diameter ≥30 μm at pF ≤ 2) and the small-pore (subsequently drained pores 2) regions, and (ii) including a percolation...... threshold, set as 10% of the total porosity for structureless porous media or 10% of the porosity in the large-pore region for structured soils. The resulting extended Archie's law with reference point (EXAR) models for ka and Dp were fitted to the measured data. For both structureless and structured porous...
Generalized Density-Corrected Model for Gas Diffusivity in Variably Saturated Soils
DEFF Research Database (Denmark)
Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per
2011-01-01
Accurate predictions of the soil-gas diffusivity (Dp/Do, where Dp is the soil-gas diffusion coefficient and Do is the diffusion coefficient in free air) from easily measureable parameters like air-filled porosity (ε) and soil total porosity (φ) are valuable when predicting soil aeration...... and the emission of greenhouse gases and gaseous-phase contaminants from soils. Soil type (texture) and soil density (compaction) are two key factors controlling gas diffusivity in soils. We extended a recently presented density-corrected Dp(ε)/Do model by letting both model parameters (α and β) be interdependent...... and also functions of φ. The extension was based on literature measurements on Dutch and Danish soils ranging from sand to peat. The parameter α showed a promising linear relation to total porosity, while β also varied with α following a weak linear relation. The thus generalized density-corrected (GDC...
Skřínský, Jan; Vereš, Ján; Peer, Václav; Friedel, Pavel
2016-06-01
The effect of initial concentration on the explosion behavior of a stoichiometric CH4/O2/N2 mixture under air-combustion conditions was studied. Two mathematical models were used with the aim at simulating the gas explosion in the middle scale explosion vessel, and the associated effects of the temperature for different gas/air concentrations. Peak pressure, maximum rate of pressure rise and laminar burning velocity were measured from pressure time records of explosions occurring in a 1 m3 closed cylindrical vessel. The results of the models were validated considering a set of data (pressure time histories and root mean square velocity). The obtained results are relevant to the practice of gas explosion testing and the interpretation of test results and, they should be taken as the input data for CFD simulation to improve the conditions for standard tests.
WELL-POSEDNESS OF A COMPRESSIBLE GAS-LIQUID MODEL FOR DEEPWATER OIL WELL OPERATIONS
Institute of Scientific and Technical Information of China (English)
Helmer A.FRIIS; Steinar EVJE
2014-01-01
The main purpose of this paper is two-fold: (i) to generalize an existence result for a compressible gas-liquid model with a friction term recently published by Friis and Evje [SIAM J. Appl. Math., 71 (2011), pp. 2014-2047]; (ii) to derive a uniqueness result for the same model. A main ingredient in the existence part is the observation that we can consider weaker assumptions on the initial liquid and gas mass, and still obtain an existence result. Compared to the above mentioned work, we rely on a more refined application of the estimates provided by the basic energy estimate. Concerning the uniqueness result, we borrow ideas from Fang and Zhang [Nonlinear Anal. TMA, 58 (2004), pp. 719-731] and derive a stability result under appropriate constraints on parameters that determine rate of decay toward zero at the boundary for gas and liquid masses, and growth rate of masses associated with the friction term and viscous coefficient.
Paumel, K.; Moysan, J.; Chatain, D.; Corneloup, G.; Baqué, F.
2011-08-01
Ultrasonic inspection of sodium-cooled fast reactor requires a good acoustic coupling between the transducer and the liquid sodium. Ultrasonic transmission through a solid surface in contact with liquid sodium can be complex due to the presence of microscopic gas pockets entrapped by the surface roughness. Experiments are run using substrates with controlled roughness consisting of a network of holes and a modeling approach is then developed. In this model, a gas pocket stiffness at a partially solid-liquid interface is defined. This stiffness is then used to calculate the transmission coefficient of ultrasound at the entire interface. The gas pocket stiffness has a static, as well as an inertial component, which depends on the ultrasonic frequency and the radiative mass.
Three-Dimensional Model for Electrospinning Processes in Controlled Gas Counterflow
Lauricella, Marco; Succi, Sauro
2016-01-01
We study the effects of a controlled gas flow on the dynamics of electrified jets in the electrospinning process. The main idea is to model the air drag effects of the gas flow by using a non-linear Langevin-like approach. The model is employed to investigate the dynamics of electrified polymer jets at different conditions of air drag force, showing that a controlled gas counterflow can lead to a decrease of the average diameter of electrospun fibers, and potentially to an improvement of the quality of electrospun products. We probe the influence of air drag effects on the bending instabilities of the jet and on its angular fluctuations during the process. The insights provided by this study might prove useful for the design of future electrospinning experiments and polymer nanofiber materials.
Noble gases solubility models of hydrocarbon charge mechanism in the Sleipner Vest gas field
Barry, P. H.; Lawson, M.; Meurer, W. P.; Warr, O.; Mabry, J. C.; Byrne, D. J.; Ballentine, C. J.
2016-12-01
-water exchange (i.e., volumetric gas-water ratios). These data are discussed within the framework of several conceptual models: (i) total gas-stripping model, which assumes all noble gases have been stripped from the water phase, thus defining the minimum volume of water to have interacted with the hydrocarbon phase; (ii) equilibrium model, which assumes equilibration between groundwater and hydrocarbon phase at reservoir P, T and salinity; and (iii) open and closed system gas-stripping models, using concentrations and elemental ratios. By applying these models to Ne-Ar data from Sleipner, we estimate volumetric gas-water ratios (Vg/Vw) between 0.02 and 0.07, which are lower than standard geologic gas-water estimates of ∼0.24, estimated by combining gas-in-place estimates with groundwater porosity estimates. Sleipner Vest data can be best approximated by an open system model, which predicts more than an order of magnitude more groundwater interaction during migration than geologic estimates, indicating a dynamic aquifer system and/or a hydrous migration pathway. In an open system, the extent of gas loss can be estimated to be between 8 and 10 reservoir volumes, which have passed through the system and been lost (i.e., filled and spilled).
COMPUTATIONAL FLUID DYNAMICS FOR DENSE GAS-SOLID FLUIDIZED BEDS: A MULTI-SCALE MODELING STRATEGY
Institute of Scientific and Technical Information of China (English)
M.; A.; van; der; Hoef; M.; van; Sint; Annaland; J.; A.; M.; Kuipers
2005-01-01
Dense gas-particle flows are encountered in a variety of industrially important processes for large scale production of fuels, fertilizers and base chemicals. The scale-up of these processes is often problematic and is related to the intrinsic complexities of these flows which are unfortunately not yet fully understood despite significant efforts made in both academic and industrial research laboratories. In dense gas-particle flows both (effective) fluid-particle and (dissipative) particle-particle interactions need to be accounted for because these phenomena to a large extent govern the prevailing flow phenomena, i.e. the formation and evolution of heterogeneous structures. These structures have significant impact on the quality of the gas-solid contact and as a direct consequence thereof strongly affect the performance of the process. Due to the inherent complexity of dense gas-particles flows, we have adopted a multi-scale modeling approach in which both fluid-particle and particle-particle interactions can be properly accounted for. The idea is essentially that fundamental models, taking into account the relevant details of fluid-particle (lattice Boltzmann model) and particle-particle (discrete particle model) interactions, are used to develop closure laws to feed continuum models which can be used to compute the flow structures on a much larger (industrial) scale. Our multi-scale approach (see Fig. 1 ) involves the lattice Boltzmann model, the discrete particle model, the continuum model based on the kinetic theory of granular flow,and the discrete bubble model. In this paper we give an overview of the multi-scale modeling strategy, accompanied by illustrative computational results for bubble formation. In addition, areas which need substantial further attention will be highlighted.
The structure of radiative shock waves. III. The model grid for partially ionized hydrogen gas
Fadeyev, Y A; Fadeyev, Yu. A.
2001-01-01
The grid of the models of radiative shock waves propagating through partially ionized hydrogen gas with temperature 3000K <= T_1 <= 8000K and density 10^{-12} gm/cm^3 <= \\rho_1 <= 10^{-9}gm/cm^3 is computed for shock velocities 20 km/s <= U_1 <= 90 km/s. The fraction of the total energy of the shock wave irreversibly lost due to radiation flux ranges from 0.3 to 0.8 for 20 km/s <= U_1 <= 70 km/s. The postshock gas is compressed mostly due to radiative cooling in the hydrogen recombination zone and final compression ratios are within 1 <\\rho_N/\\rho_1 \\lesssim 10^2, depending mostly on the shock velocity U_1. The preshock gas temperature affects the shock wave structure due to the equilibrium ionization of the unperturbed hydrogen gas, since the rates of postshock relaxation processes are very sensitive to the number density of hydrogen ions ahead the discontinuous jump. Both the increase of the preshock gas temperature and the decrease of the preshock gas density lead to lower postsh...
Star formation in semi-analytic galaxy formation models with multiphase gas
Somerville, Rachel S.; Popping, Gergö; Trager, Scott C.
2015-11-01
We implement physically motivated recipes for partitioning cold gas into different phases (atomic, molecular, and ionized) in galaxies within semi-analytic models of galaxy formation based on cosmological merger trees. We then model the conversion of molecular gas into stars using empirical recipes motivated by recent observations. We explore the impact of these new recipes on the evolution of fundamental galaxy properties such as stellar mass, star formation rate (SFR), and gas and stellar phase metallicity. We present predictions for stellar mass functions, stellar mass versus SFR relations, and cold gas phase and stellar mass-metallicity relations for our fiducial models, from redshift z ˜ 6 to the present day. In addition we present predictions for the global SFR, mass assembly history, and cosmic enrichment history. We find that the predicted stellar properties of galaxies (stellar mass, SFR, metallicity) are remarkably insensitive to the details of the recipes used for partitioning gas into H I and H2. We see significant sensitivity to the recipes for H2 formation only in very low mass haloes (M_h ≲ 10^{10.5} M_{⊙}), which host galaxies with stellar masses m_* ≲ 10^8 M_{⊙}. The properties of low-mass galaxies are also quite insensitive to the details of the recipe used for converting H2 into stars, while the formation epoch of massive galaxies does depend on this significantly. We argue that this behaviour can be interpreted within the framework of a simple equilibrium model for galaxy evolution, in which the conversion of cold gas into stars is balanced on average by inflows and outflows.
Papangelakis, V. G.; Demopoulos, G. P.
1992-12-01
This article is the second in a three-article series devoted to the development of comprehensive three-phase steady-state reactor models. In this article in particular, model equations are developed for the case of a leaching reactor operating under pure gas-transfer control. That is, the transfer of a gaseous reactant at the g-1 interface is considered to be the controlling step of the process rather than the particle dissolution reaction itself. For the derivation of the appropriate model equations, the gas-transfer capacity of the reactor is coupled with the particle dissolution kinetics. Two model versions are developed. In model version 1, the dissolved gas is assumed to be distributed equally among all particles. On the basis of this assumption, a gastransfer control-shrinking core model (GTC-SCM) equation is formulated which, along with the segregated flow model, helps to calculate the conversion of the solid phase. The size distribution of the particles at the exit of the reactor is computed via a mass-particle size density (PSD) function derived with the use of the population balance model (PBM). In model version 2, the dissolved gas is assumed to be distributed among particles in proportion to their surface area. Using the PBM, equations are developed suitable for the calculation of the total specific surface area of the reacting solids and their conversion. Single as well as multiple parallel leaching reactions are considered in developing the two model versions.
Numerical modeling of gas-phase kinetics in formation of secondary aerosol
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Three basic modules of gas-phase photochemical reactions involved in the formation of secondary aerosol are developed for modeling the concentration variation of precursors of aerosol, including ketone (RCOx), aldehyde (ALD), peroxyacetylnitrate (PAN), NO2, and SO2, followed by numerical solution for each of the modules. Reasonable trends of concentration variation of the precursors can be obtained from the proposed modules.
A Constructivist-Based Model for the Teaching of Dissolution of Gas in a Liquid
Calik, Muammer; Ayas, Alipasa; Coll, Richard K.
2006-01-01
In this article we present details of a four-step constructivist-based teaching strategy, which helps students understand the dissolution of a gas in a liquid. The model derived from Ayas (1995) involves elicitation of pre-existing ideas, focusing on the target concept, challenging students' ideas, and applying newly constructed ideas to similar…
$L^\\infty$ solutions for a model of polytropic gas flow with diffusive entropy
Frid, Hermano; Karlsen, Kenneth H
2010-01-01
We establish the global existence of $L^\\infty$ solutions for a model of polytropic gas flow with diffusive entropy. The result is obtained by showing the convergence of a class of finite difference schemes, which includes the Lax-Friedrichs and Godunov schemes. Such convergence is achieved by proving the estimates required for the application of the compensated compactness theory.
Detailed seismic modeling of induced seismicity at the Groningen gas field
Paap, B.F.; Steeghs, T.P.H.; Kraaijpoel, D.A.
2016-01-01
We present the results of a detailed seismic modeling study of induced seismicity observed at the Groningen gas field, situated in the North-eastern part of the Netherlands. Seismic simulations are valuable to support the interpretation of observed earthquake waveforms recordings and to increase the
Development of a Gas Dynamic and Thermodynamic Simulation Model of the Lontra Blade Compressor™
Karlovsky, Jerome
2015-08-01
The Lontra Blade Compressor™ is a patented double acting, internally compressing, positive displacement rotary compressor of innovative design. The Blade Compressor is in production for waste-water treatment, and will soon be launched for a range of applications at higher pressure ratios. In order to aid the design and development process, a thermodynamic and gas dynamic simulation program has been written in house. The software has been successfully used to optimise geometries and running conditions of current designs, and is also being used to evaluate future designs for different applications and markets. The simulation code has three main elements. A positive displacement chamber model, a leakage model and a gas dynamic model to simulate gas flow through ports and to track pressure waves in the inlet and outlet pipes. All three of these models are interlinked in order to track mass and energy flows within the system. A correlation study has been carried out to verify the software. The main correlation markers used were mass flow, chamber pressure, pressure wave tracking in the outlet pipe, and volumetric efficiency. It will be shown that excellent correlation has been achieved between measured and simulated data. Mass flow predictions were to within 2% of measured data, and the timings and magnitudes of all major gas dynamic effects were well replicated. The simulation will be further developed in the near future to help with the optimisation of exhaust and inlet silencers.
Numerical Simulation of Dense Gas-Solid Fluidized Beds: A Multiscale Modeling Strategy
Hoef, van der M.A.; Sint Annaland, van M.; Deen, N.G.; Kuipers, J.A.M.
2008-01-01
Gas-solid fluidized beds are widely applied in many chemical processes involving physical and/or chemical transformations, and for this reason they are the subject of intense research in chemical engineering science. Over the years, researchers have developed a large number of numerical models of ga
GEMFLOW: A time dependent model to assess responses to natural gas supply crises
Energy Technology Data Exchange (ETDEWEB)
Szikszai, A., E-mail: andras.szikszai@ec.europa.eu [European Commission, JRC-Institute for Energy, Energy Security Unit, P.O. Box 2, 1755 ZG Petten (Netherlands); Monforti, F. [European Commission, JRC-Institute for Energy, Energy Security Unit, P.O. Box 2, 1755 ZG Petten (Netherlands)
2011-09-15
The January 2009 gas dispute, followed by the biggest gas supply crisis ever, called for significant changes at the community level. In line with other measures (e.g. a new regulation to ensure security of gas supply), a new tool is needed that will help decision-makers react properly in such a situation. Based on Monte-Carlo modeling principles, this new tool is being developed to take the first step towards a comprehensive model. This model could be of great support to common European efforts in order to assess the possible outcomes of a supply disruption beforehand and minimize losses during an emergency by finding the optimal distribution of flows. Naturally, the described model cannot serve at present as hydraulic software that is currently used by the national system operators, but it is able to draw significant conclusions from the European gas system's capabilities. - Highlights: > Use of storages at maximum in case of supply shortfall is not necessarily the best solution. > The ratio of withdrawal capacity to storage space is crucial in the withdrawal utilization. > Combination of reverse flows and storages affects the success of disruption management. > Definition of lowest consumption level is inevitable for appropriate disruption management.
From Chiral quark dynamics with Polyakov loop to the hadron resonance gas model
Arriola, E Ruiz; Salcedo, L L
2012-01-01
Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.
Reactor modeling and process analysis for partial oxidation of natural gas
Albrecht, Bogdan Alexandru
2004-01-01
This thesis analyses a novel process of partial oxidation of natural gas and develops a numerical tool for the partial oxidation reactor modeling. The proposed process generates syngas in an integrated plant of a partial oxidation reactor, a syngas turbine and an air separation unit. This is called
Modeling the adsorption of mixed gases based on pure gas adsorption properties
Tzabar, N.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.
2015-12-01
Sorption-based Joule-Thomson (JT) cryocoolers usually operate with pure gases. A sorption-based compressor has many benefits; however, it is limited by the pressure ratios it can provide. Using a mixed-refrigerant (MR) instead of a pure refrigerant in JT cryocoolers allows working at much lower pressure ratios. Therefore, it is attractive using MRs in sorption- based cryocoolers in order to reduce one of its main limitations. The adsorption of mixed gases is usually investigated under steady-state conditions, mainly for storage and separation processes. However, the process in a sorption compressor goes through various temperatures, pressures and adsorption concentrations; therefore, it differs from the common mixed gases adsorption applications. In order to simulate the sorption process in a compressor a numerical analysis for mixed gases is developed, based on pure gas adsorption characteristics. The pure gas adsorption properties have been measured for four gases (nitrogen, methane, ethane, and propane) with Norit-RB2 activated carbon. A single adsorption model is desired to describe the adsorption of all four gases. This model is further developed to a mixed-gas adsorption model. In future work more adsorbents will be tested using these four gases and the adsorption model will be verified against experimental results of mixed-gas adsorption measurements.
Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model
Tang, Jiechen; Zhou, Chao; Yuan, Xinyu; Sriboonchitta, Songsak
2015-01-01
This paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR) and conditional value at risk (CVaR). Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels. PMID:26351652
Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model
Directory of Open Access Journals (Sweden)
Jiechen Tang
2015-01-01
Full Text Available This paper concentrates on estimating the risk of Title Transfer Facility (TTF Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR and conditional value at risk (CVaR. Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels.
Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model.
Tang, Jiechen; Zhou, Chao; Yuan, Xinyu; Sriboonchitta, Songsak
2015-01-01
This paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR) and conditional value at risk (CVaR). Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels.
Asymptotic Analysis in a Gas-Solid Combustion Model with Pattern Formation
Institute of Scientific and Technical Information of China (English)
Claude-Michel BRAUNER; Lina HU; Luca LORENZI
2013-01-01
The authors consider a free interface problem which stems from a gas-solid model in combustion with pattern formation.A third-order,fully nonlinear,self-consistent equation for the flame front is derived.Asymptotic methods reveal that the interface approaches a solution to the Kuramoto-Sivashinsky equation.Numerical results which illustrate the dynamics are presented.
DEFF Research Database (Denmark)
Pierart, Fabián G.; Santos, Ilmar F.
2016-01-01
Actively-controlled lubrication techniques are applied to radial gas bearings aiming at enhancing one of their most critical drawbacks, their lack of damping. A model-based control design approach is presented using simple feedback control laws, i.e. proportional controllers. The design approach...
Towards Control-Oriented Modeling of Natural Gas-Diesel RCCI Combustion
Bekdemir, C.; Baert, R.; Willems, F.; Somers, B.
2015-01-01
For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The introduct
A Multi-Fidelity Surrogate Model for Handling Real Gas Equations of State
Ouellet, Frederick; Park, Chanyoung; Rollin, Bertrand; Balachandar, S."bala"
2016-11-01
The explosive dispersal of particles is an example of a complex multiphase and multi-species fluid flow problem. This problem has many engineering applications including particle-laden explosives. In these flows, the detonation products of the explosive cannot be treated as a perfect gas so a real gas equation of state is used to close the governing equations (unlike air, which uses the ideal gas equation for closure). As the products expand outward from the detonation point, they mix with ambient air and create a mixing region where both of the state equations must be satisfied. One of the more accurate, yet computationally expensive, methods to deal with this is a scheme that iterates between the two equations of state until pressure and thermal equilibrium are achieved inside of each computational cell. This work strives to create a multi-fidelity surrogate model of this process. We then study the performance of the model with respect to the iterative method by performing both gas-only and particle laden flow simulations using an Eulerian-Lagrangian approach with a finite volume code. Specifically, the model's (i) computational speed, (ii) memory requirements and (iii) computational accuracy are analyzed to show the benefits of this novel modeling approach. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA00023.
Directory of Open Access Journals (Sweden)
C. Buizert
2011-05-01
Full Text Available Compacted snow (firn preserves a continuous record of atmospheric composition up to a century back in time. Firn air transport modeling is essential for interpretation of firn gas records. Each site needs to be characterised individually through a tuning procedure, in which the effective diffusivity at each depth is adjusted to optimise the agreement between modeled and measured mixing ratios of a selected reference gas (usually CO_{2}. We present the characterisation of the NEEM site, Northern Greenland (77.45° N 51.06° W, where an ensemble of ten reference tracers is used to constrain the diffusivity reconstruction. By analysing uncertainties in both data and the reference gas atmospheric histories, we can objectively assign weights to each of the gases used for the model tuning, and define a root mean square criterion that is minimised in the tuning. Each tracer constrains the firn profile differently through its unique atmospheric history and free air diffusivity, making our multiple-tracer characterisation method a clear improvement over the commonly used single-tracer tuning. Six firn air transport models are tuned to the NEEM site; all models successfully reproduce the data within a 1σ Gaussian distribution. The modern day Δage, i.e. the difference between gas age and ice age, is calculated to be 182 ± 8 yr. We find evidence that diffusivity does not vanish completely in the firn lock-in zone, as is commonly assumed. We further present the first intercomparison study of firn air models, where we introduce diagnostic scenarios designed to probe specific aspects of the model physics. Our results show that there are major differences in the way the models handle advective transport. Furthermore diffusive fractionation of isotopes in the firn is poorly constrained by the models, which has consequences for attempts to reconstruct the isotopic composition of trace gases back in time using firn air and ice core records.
Coupled model of deformation and gas flow process with temperature and slippage effect
Directory of Open Access Journals (Sweden)
Chunhui ZHANG
2015-06-01
Full Text Available The effects of temperature, slippage effect and effective stress of coal on the coupled mechanism of deformation and gas glow are key issues to control coal and gas outburst and design the methane recovery engineering. Firstly, intact coal from Huaxing mine in Jilin Province is crushed and coal briquette specimen are made. Then the tri-axial coupled test setup of the deformation, gas flow and temperature developed by ourselves is adopted to investigate the effects of pore pressure, effective stress and temperature on the permeability of coal briquette specimen. The results show that: 1 Under the condition of low pore pressure, the permeability first reduces with pore pressure increasing, then at a threshold of pore pressure it rises with pore pressure increasing, which is called “slippage effect”. 2 The effective confining stress significantly influences the permeability. With increasing effective confining stress, the space of pores and cracks are compressed and the permeability reduces. 3 The temperature significantly influences the permeability and the permeability decreases with temperature increasing. The main reason is that the space of pores and cracks is compressed due to the temperature stress. Because of the constraint around, temperature compressive stress appears in internal coal samples. Coal pore and fracture space is compressed, and the sample permeability decreases. Besides, the viscosity of gas increases with temperature increasing. It decreases the trend of coal permeability . The temperature influence on coal permeability approximates to linear relationship. 4 The empirical permeability evolution equation with varying temperature, effective stress and slippage effects is presented. The coal is viewed as elastic medium, combined with effective stress principle and the empirical permeability equation, the coupled model of deformation and gas flow with varying temperature and slippage effects is built. Furthermore, the code
Calculation models for prediction of Liquefied Natural Gas (LNG) ageing during ship transportation
Energy Technology Data Exchange (ETDEWEB)
Miana, Mario; Hoyo, Rafael del; Rodrigalvarez, Vega; Valdes, Jose Ramon [Instituto Tecnologico de Aragon, Area de Investigacion, Desarrollo y Servicios Tecnologicos, Maria de Luna 7, 50018 Zaragoza (Spain); Llorens, Raul [ENAGAS SA, Direccion de Ingenieria y Tecnologia del Gas, Autovia A - 2, km. 306.4, 50012 Zaragoza (Spain)
2010-05-15
A group of European gas transportation companies within the European Gas Research Group launched in 2007 the 'MOLAS' Project to provide a software program for the analysis of the Liquefied Natural Gas (LNG) ageing process during ship transportation. This program contains two different modeling approaches: a physical algorithm and an 'intelligent' model. Both models are fed with the same input data, which is composed of the ship characteristics (BOR and capacity), voyage duration, LNG composition, temperature, pressure, and volume occupied by liquid phase at the port of origin, together with pressure at the port of destination. The results obtained are the LNG composition, temperature and liquid volume at the port of destination. Furthermore, the physical model obtains the evolution over time of such variables en route as it is based on unsteady mass balances over the system, while the i-model applies neural networks to obtain regression coefficients from historical data composed only of origin and destination measurements. This paper describes both models and validates them from previous published models and experimental data measured in ENAGAS LNG regasification plants. (author)
A washboard with moment of inertia model of gas-surface scattering.
Yan, Tianying; Hase, William L; Tully, John C
2004-01-08
A washboard with moment of inertia (WBMI) model for gas atom scattering from a flexible surface is proposed and applied. This model is a direct extension of the washboard model [J. Chem. Phys. 92, 680 (1990)] proposed for gas atom scattering from relatively rigid, corrugated surfaces. In addition, a moment of inertia is incorporated in the original washboard model to describe the flexibility of softer, more highly corrugated surfaces such as polymer or liquid surfaces. The moment of inertia of the effective surface object introduces a dependence of the efficiency of energy transfer on the position and direction of impact, a feature that has been shown to be critical by molecular dynamics simulations. The WBMI model is solved numerically by Monte Carlo integration, which makes the implementation of multiple impacts between a colliding atom and the surface very efficient. The model is applied to Ne and Ar atoms scattering from an alkylthiolate self-assembled monolayer surface and reproduces the major results obtained by classical trajectory simulation of the same system, i.e., a bimodal translation energy distribution P(E(f)) with the low-energy component well-fit with a Boltzmann distribution, but with a temperature that may (Ar) or may not (Ne) be the same as the surface temperature. This indicates that the WBMI model, with well-motivated physical assumptions and simplified interaction, reveals many of the major aspects of the gas-surface collision dynamics, though it does not take into account the real-time dynamics explicitly.
A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms
Sánchez, Marcelo
2016-11-30
Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.
Energy Technology Data Exchange (ETDEWEB)
Eldegard, Tom [Foundation for Research in Economics and Business Administration, Bergen (Norway)
1996-07-01
The study aims at clarifying the framework for possible LNG exports from Northern Russia and focuses on the European natural gas markets. The first stage provides general background information on the market structure and related topics. In the second stage this information is used to develop a formal market model and subject it to simulations with various assumptions of the future gas supply. The model is described and results from simulations are given. In the first stage facts from the history of the European natural gas market are outlined. Underlying conditions for the development of natural gas markets in Europe are addressed. The EU has been promoting trade liberalisation in the energy sector but most counties resist freer gas trade across the boarders. New infrastructure development for natural gas are either underway or planned. Some important projects are mentioned. Gas in a global perspective is discussed. The cost structure of the LNG chain is mentioned and an overview of existing LNG export capacities world-wide and major reception terminals in Europe and the USA is given. The second stage employs a scenario analysis to evaluate the economic effects of hypothetical LNG deliveries from Northern Russia. The model is developed for the analysis of West European natural gas markets and designed to allow users to create a structural system of interconnected producers and market regions. Basic assumptions for the evolution of natural gas markets till 2005 is developed and base case scenarios calculated for the years 2000 and 2005 and used as a point of reference for the alternative scenarios considered. According to the analysis the introduction of a new LNG supplier in the European gas market will inflict a substantial loss upon all the existing producers. The primary keys to this result are the assumptions made for gas demand and supply capacity. The LNG alternative will hardly be approved for purely economic reasons as long as the Russians maintain
A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine
Brito, C. H. G.; Maia, C. B.; Sodré, J. R.
2015-09-01
This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.
Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating
Directory of Open Access Journals (Sweden)
R. Chacón
2012-03-01
Full Text Available A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H2, hydrogen sulfide (H2S and ammonia (NH3 in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS and hydrodenitrogenation (HDN and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H2/feed ratio and the inhibiting effect of H2S on HDS and NH3 on HDN.
An integrated framework for gas turbine based power plant operational modeling and optimization
Zhao, Yongjun
The deregulation of the electric power market introduced a strong element of competition. Power plant operators strive to develop advanced operational strategies to maximize the profitability in the dynamic electric power market. New methodologies for gas turbine power plant operational modeling and optimization are needed for power plant operation to enhance operational decision making, and therefore to maximize power plant profitability by reducing operations and maintenance cost and increasing revenue. In this study, a profit based, lifecycle oriented, and unit specific methodology for gas turbine based power plant operational modeling was developed, with the power plant performance, reliability, maintenance, and market dynamics considered simultaneously. The generic methodology is applicable for a variety of optimization problems, and several applications were implemented using this method. A multiple time-scale method was developed for gas turbine power plants long term generation scheduling. This multiple time-scale approach allows combining the detailed granularity of the day-to-day operations with global (seasonal) trends, while keeping the resulting optimization model relatively compact. Using the multiple time-scale optimization method, a profit based outage planning method was developed, and the key factors for this profit based approach include power plant aging, performance degradation, reliability degradation, and, importantly, the energy market dynamics. Also a novel approach for gas turbine based power plant sequential preventive maintenance scheduling was introduced, and a profit based sequential preventive maintenance scheduling was developed for more effective maintenance scheduling. Methods to evaluate the impact of upgrade packages on gas turbine power plant performance, reliability, and economics were developed, and TIES methodology was applied for effective evaluation and selection of gas turbine power plant upgrade packages.
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model
Megias, E; Salcedo, L L
2013-01-01
Based on first principle QCD arguments, it has been argued in arXiv:1204.2424[hep-ph] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop hep-ph/0412308, hep-ph/0607338. The existence of exotic states in the spectrum is discussed.
Liquid-Gas Phase Transition for Asymmetric Nuclear Matter in the Zimanyi-Moszkowski Model
Institute of Scientific and Technical Information of China (English)
ZHANG Xu-Ming; QIAN Wei-Liang; SU Ru-Keng
2004-01-01
By using the improved Zimanyi-Moszkowski (ZM) model including the freedom of nucleons, σ mesons, ω mesons and ρ mesons, we investigate the liquid-gas phase transition for asymmetric nuclear matter. It is found that the phase transition for asymmetric nuclear matter in the improved ZM model with the isospin vector ρ meson degree of freedom is well defined. The binodal surface, which is essential in the study of the phase transition process, is addressed.
Constituent Quarks and Gluons, Polyakov loop and the Hadron Resonance Gas Model *,**
Directory of Open Access Journals (Sweden)
Megías E.
2014-03-01
Full Text Available Based on first principle QCD arguments, it has been argued in [1] that the vacuum expectation value of the Polyakov loop can be represented in the hadron resonance gas model. We study this within the Polyakov-constituent quark model by implementing the quantum and local nature of the Polyakov loop [2, 3]. The existence of exotic states in the spectrum is discussed.
Monitoring and modeling wetland chloride concentrations in relationship to oil and gas development
Post van der Burg, Max; Tangen, Brian A.
2015-01-01
Extraction of oil and gas via unconventional methods is becoming an important aspect of energy production worldwide. Studying the effects of this development in countries where these technologies are being widely used may provide other countries, where development may be proposed, with some insight in terms of concerns associated with development. A fairly recent expansion of unconventional oil and gas development in North America provides such an opportunity. Rapid increases in energy development in North America have caught the attention of managers and scientists as a potential stressor for wildlife and their habitats. Of particular concern in the Northern Great Plains of the U.S. is the potential for chloride-rich produced water associated with unconventional oil and gas development to alter the water chemistry of wetlands. We describe a landscape scale modeling approach designed to examine the relationship between potential chloride contamination in wetlands and patterns of oil and gas development. We used a spatial Bayesian hierarchical modeling approach to assess multiple models explaining chloride concentrations in wetlands. These models included effects related to oil and gas wells (e.g. age of wells, number of wells) and surficial geology (e.g. glacial till, outwash). We found that the model containing the number of wells and the surficial geology surrounding a wetland best explained variation in chloride concentrations. Our spatial predictions showed regions of localized high chloride concentrations. Given the spatiotemporal variability of regional wetland water chemistry, we do not regard our results as predictions of contamination, but rather as a way to identify locations that may require more intensive sampling or further investigation. We suggest that an approach like the one outlined here could easily be extended to more of an adaptive monitoring approach to answer questions about chloride contamination risk that are of interest to managers.
The Prevalence of Gas Outflows in Type 2 AGNs. II. 3D Biconical Outflow Models
Bae, Hyun-Jin; Woo, Jong-Hak
2016-09-01
We present 3D models of biconical outflows combined with a thin dust plane for investigating the physical properties of the ionized gas outflows and their effect on the observed gas kinematics in type 2 active galactic nuclei (AGNs). Using a set of input parameters, we construct a number of models in 3D and calculate the spatially integrated velocity and velocity dispersion for each model. We find that three primary parameters, i.e., intrinsic velocity, bicone inclination, and the amount of dust extinction, mainly determine the simulated velocity and velocity dispersion. Velocity dispersion increases as the intrinsic velocity or the bicone inclination increases, while velocity (i.e., velocity shifts with respect to systemic velocity) increases as the amount of dust extinction increases. Simulated emission-line profiles well reproduce the observed [O iii] line profiles, e.g., narrow core and broad wing components. By comparing model grids and Monte Carlo simulations with the observed [O iii] velocity-velocity dispersion distribution of ˜39,000 type 2 AGNs, we constrain the intrinsic velocity of gas outflows ranging from ˜500 to ˜1000 km s-1 for the majority of AGNs, and up to ˜1500-2000 km s-1 for extreme cases. The Monte Carlo simulations show that the number ratio of AGNs with negative [O iii] velocity to AGNs with positive [O iii] velocity correlates with the outflow opening angle, suggesting that outflows with higher intrinsic velocity tend to have wider opening angles. These results demonstrate the potential of our 3D models for studying the physical properties of gas outflows, applicable to various observations, including spatially integrated and resolved gas kinematics.
Bourgeat, Alain; Smaï, Farid
2008-01-01
We derive a compositional compressible two-phase, liquid and gas, flow model for numerical simulations of hydrogen migration in deep geological repository for radioactive waste. This model includes capillary effects and the gas high diffusivity. Moreover, it is written in variables (total hydrogen mass density and liquid pressure) chosen in order to be consistent with gas appearance or disappearance. We discuss the well possedness of this model and give some computational evidences of its adequacy to simulate gas generation in a water saturated repository.
Wickramarachchi, P. N.; Kawamoto, K.; Hamamoto, S.; Nagamori, M.; Moldrup, P.; Komatsu, T.
2011-12-01
for ka than Dp for both fractions. We suggest this is because of compaction effects caused to create well-aligned macropore networks that are available for gas transport through the porous material. Then, the famous predictive models, the water induced linear reduction (WLR) model for Dp and the reference point law (RPL) model for ka were modified with reference point measurements (dry conditions) and model parameters and they correlated linearly to dry bulk density values for both fractions of landfill final cover soil.
The rate of gas-bubble growth in tissue under decompression. Mathematical modelling.
Kislyakov YuYa; Kopyltsov, A V
1988-03-01
A mathematical model simulating the formation of gas bubbles in biological tissues under decompression is presented. It is written as a system of partial differential equations solved on a computer. For the nitrogen-oxygen gas mixture, used for respiration in deep-water immersions, the effects of the physico-chemical properties of the gases, the magnitude of pressure differentials and the density of bubble-formation centres on the bubble size and rate of growth were studied. It is shown that in the case of drastic pressure differentials the formation of bubbles capable of producing microcirculatory disturbances is accomplished within a few seconds.
Operation, Modeling and Analysis of the Reverse Water Gas Shift Process
Whitlow, Jonathan E.
2001-01-01
The Reverse Water Gas Shift process is a candidate technology for water and oxygen production on Mars under the In-Situ Propellant Production project. This report focuses on the operation and analysis of the Reverse Water Gas Shift (RWGS) process, which has been constructed at Kennedy Space Center. A summary of results from the initial operation of the RWGS, process along with an analysis of these results is included in this report. In addition an evaluation of a material balance model developed from the work performed previously under the summer program is included along with recommendations for further experimental work.
Matter-elements model and application for prediction of coal and gas outburst
Institute of Scientific and Technical Information of China (English)
PENG Shou-jian; XU Jiang; TAO Yun-qi; CHENG Ming-jun
2009-01-01
The theory and method of extenics were applied to establish classical field mat-ter elements and segment field matter elements for coal and gas outburst. A mat-ter-element model for prediction was established based on five matter-elements, which in-cluded gas pressure, types of coal damage, coal rigidity, initial speed of methane diffusion and in-situ stress. Each index weight was given fairly and quickly through the improved analytic hierarchy process, which need not carry on consistency checks, so accuracy of assessment can be improved.
Energy Technology Data Exchange (ETDEWEB)
Hu, Shenyang; Burkes, Douglas; Lavender, Curt A.; Joshi, Vineet
2016-11-01
A three dimensional microstructure dependent swelling model is developed for studying the fission gas swelling kinetics in irradiated nuclear fuels. The model is extended from the Booth model [1] in order to investigate the effect of heterogeneous microstructures on gas bubble swelling kinetics. As an application of the model, the effect of grain morphology, fission gas diffusivity, and spatial dependent fission rate on swelling kinetics are simulated in UMo fuels. It is found that the decrease of grain size, the increase of grain aspect ratio for the grain having the same volume, and the increase of fission gas diffusivity (fission rate) cause the increase of swelling kinetics. Other heterogeneities such as second phases and spatial dependent thermodynamic properties including diffusivity of fission gas, sink and source strength of defects could be naturally integrated into the model to enhance the model capability.
HI Gas in Disk and Dwarf Galaxies in the Semi-analytic Models of Galaxy Formation†
Fu, Jian; Wang, Jing; Luo, Yu
We construct the radially-resolved semi-analytic models of galaxy formation based on the L-Galaxies model framework, which include both atomic and molecular gas phase in ISM. The models run on the halo outputs of ΛCDM cosmology N-body simulation. Our models can reproduce varies observations of HI gas in nearby galaxies, e.g. the HI mass function, the HI-to-star ratio vs stellar mass and stellar surface density, universal HI radial surface density profile in outer disks etc. We also give the physical origin of HI size-mass relation. Based on our model results for local dwarf galaxies, we show that the ``missing satellite problem'' also exists in the HI component, i.e., the models over-predict dwarf galaxies with low HI mass around the Milky Way. That is a shortcoming of current ΛCDM cosmology framework. Future survey for HI gas in local dwarf galaxies (e.g. MeerKAT, SKA & FAST) can help to verify the nature of dark matter (cold or warm).
Semi-analytic models for HI gas in disk and local dwarf galaxies
Fu, Jian
2015-08-01
We construct the radially-resolved semi-analytic models of galaxy formation based on the L-Galaxies model framework, which include both atomic and molecular gas phase in ISM. The models adopt the ΛCDM cosmology simulation Millennium, Millennium II and Aquarius. Our models can reproduce varies properties of HI gas in nearby galaxies, e.g. the HI mass function, the HI-to-star ratio vs stellar mass and stellar surface density, universal HI radial surface density profile in outer disks etc. We can also give some physical origins of HI size mass relation in many observations.Based on our model results for local dwarf galaxies, we show that the "missing satellite problem" also exists in the HI component, i.e., the models over predict dwarf galaxies with low HI mass. That is a shortcoming of current ΛCDM cosmology framework. Future survey for HI gas in dwarf galaxies (e.g. SKA or FAST) in local group can help to verify the correctness of cold dark matter.
Time-series gas prediction model using LS-SVR within a Bayesian framework
Institute of Scientific and Technical Information of China (English)
Qiao Meiying; Ma Xiaoping; Lan Jianyi; Wang Ying
2011-01-01
The traditional least squares support vector regression (LS-SVR) model, using cross validation to determine the regularization parameter and kernel parameter, is time-consuming. We propose a Bayesian evidence framework to infer the LS-SVR model parameters. Three levels Bayesian inferences are used to determine the model parameters, regularization hyper-parameters and tune the nuclear parameters by model comparison. On this basis, we established Bayesian LS-SVR time-series gas forecasting models and provide steps for the algorithm. The gas outburst data of a Hebi 10th mine working face is used to validate the model. The optimal embedding dimension and delay time of the time series were obtained by the smallest differential entropy method. Finally, within a MATLAB7.1 environment, we used actual coal gas data to compare the traditional LS-SVR and the Bayesian LS-SVR with LS-SVMlab1.5 Toolbox simulation. The results show that the Bayesian framework of an LS-SVR significantly improves the speed and accuracy of the forecast
Wang, Shifang; Wu, Tao; Deng, Yongju; Zheng, Qiusha; Zheng, Qian
2016-08-01
Gas diffusion in dry porous media has been a hot topic in several areas of technology for many years. In this paper, a diffusivity model for gas diffusion in dry porous media is developed based on fractal theory and Fick’s law, which incorporates the effects of converging-diverging pores and tortuous characteristics of capillaries as well as Knudsen diffusion. The effective gas diffusivity model is expressed as a function of the fluctuation amplitude of the capillary cross-section size variations, the porosity, the pore area fractal dimension and the tortuosity fractal dimension. The results show that the relative diffusivity decreases with the increase of the fluctuation amplitude and increases with the increase of pore area fractal dimension. To verify the validity of the present model, the relative diffusivity from the proposed fractal model is compared with the existing experimental data as well as two available models of Bruggeman and Shou. Our proposed diffusivity model with pore converging-diverging effect included is in good agreement with reported experimental data.
Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype
Energy Technology Data Exchange (ETDEWEB)
Simani, S. [Universita di Ferrara (Italy). Dipartimento di Ingegneria; Fantuzzi, C. [Universita di Modena e Reggio Emilia (Italy). Dipartimento di Scienze e Metodi per l' Ingegneria
2006-07-15
In this paper, a model-based procedure exploiting analytical redundancy for the detection and isolation of faults on a gas turbine process is presented. The main point of the present work consists of exploiting system identification schemes in connection with observer and filter design procedures for diagnostic purpose. Linear model identification (black-box modelling) and output estimation (dynamic observers and Kalman filters) integrated approaches to fault diagnosis are in particular advantageous in terms of solution complexity and performance. This scheme is especially useful when robust solutions are considered for minimising the effects of modelling errors and noise, while maximising fault sensitivity. A model of the process under investigation is obtained by identification procedures, whilst the residual generation task is achieved by means of output observers and Kalman filters designed in both noise-free and noisy assumptions. The proposed tools have been tested on a single-shaft industrial gas turbine prototype model and they have been evaluated using non-linear simulations, based on the gas turbine data. (author)
Garner, C Edwin; Liang, Shenxuan; Yin, Lei; Yu, Xiaozhong
2015-05-01
1-Bromopropane (1-BP) was introduced into the workplace as an alternative to ozone-depleting solvents and increasingly used in manufacturing industry. The potential exposure to 1-BP and the current reports of adverse effects associated with occupational exposure to high levels of 1-BP have increased the need to understand the mechanism of 1-BP toxicity in animal models as a mean of understanding risk in workers. Physiologically based pharmacokinetic (PBPK) model for 1-BP has been developed to examine 2 metabolic pathway assumptions for gas-uptake inhalation study. Based on previous gas-uptake experiments in the Fischer 344 rat, the PBPK model was developed by simulating the 1-BP concentration in a closed chamber. In the model, we tested the hypothesis that metabolism responsibilities were shared by the p450 CYP2E1 and glutathione (GSH) conjugation. The results showed that 2 metabolic pathways adequately simulated 1-BP closed chamber concentration. Furthermore, the above model was tested by simulating the gas-uptake data of the female rats pretreated with 1-aminobenzotrizole, a general P450 suicide inhibitor, or d,l-buthionine (S,R)-sulfoximine, an inhibitor of GSH synthesis, prior to exposure to 800 ppm 1-BP. The comparative investigation on the metabolic pathway of 1-BP through the PBPK modeling in both sexes provides critical information for understanding the role of p450 and GSH in the metabolism of 1-BP and eventually helps to quantitatively extrapolate current animal studies to human.
Institute of Scientific and Technical Information of China (English)
Yang Zongchang; Zhou Shaowu
2015-01-01
Monitoring and analysis of daily gas concentrations at a mining face is a vital task on safety production and security management in the coal-mining industry. This study addresses modeling and prediction of daily gas concentration variations based on the elliptic orbit model. The model describes the hourly variation in daily gas concentration by mapping its time-series into the polar coordinates to create its elliptic orbit trace for further analysis. Experiments show workability of the proposed method that daily gas concentration variation at a mining face of one coal mine in China is well described by the elliptic orbit model. Result analysis and performance comparison of the proposed elliptic orbit model with the classical AR model on the same prediction tasks indicate potentiality of the proposed elliptic orbit model, which presents a vivid approach for modeling and forecasting daily gas concentration variations in an intuitive and concise way.