WorldWideScience

Sample records for chaperonins

  1. Chaperonin filaments: The archael cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  2. Ordered biological nanostructures formed from chaperonin polypeptides

    Science.gov (United States)

    Trent, Jonathan D. (Inventor); McMillan, R. Andrew (Inventor); Kagawa, Hiromi (Inventor); Paavola, Chad D. (Inventor)

    2010-01-01

    The following application relates to nanotemplates, nanostructures, nanoarrays and nanodevices formed from wild-type and mutated chaperonin polypeptides, methods of producing such compositions, methods of using such compositions and particular chaperonin polypeptides that can be utilized in producing such compositions.

  3. Serum antibody response to group II chaperonin from Methanobrevibacter oralis and human chaperonin CCT.

    Science.gov (United States)

    Hirai, Kimito; Maeda, Hiroshi; Omori, Kazuhiro; Yamamoto, Tadashi; Kokeguchi, Susumu; Takashiba, Shogo

    2013-06-01

    Both group I (HSP60) and group II (CCT) chaperonins are targets of autoantibodies. Autoimmune reactions to HSP60 have been well characterized, while immune reactions to group II chaperonin have not been clarified. Methanobrevibacter oralis is a suspected periodontal pathogen with group II chaperonin. In this study, serum responses to M. oralis chaperonin, human HSP60, and CCT subunits were examined using sera from patients with periodontitis and autoimmune diseases. In comparison with healthy controls, periodontitis patients showed significantly higher responses to CCT4 and CCT8 on dot blot analysis. Signals for CCT3 and CCT8 in autoimmune disease patients were significantly higher than in controls. Significant differences were also demonstrated by Western blotting in anti-CCT4 response in both patient groups. All subjects showed strong reactivity to M. oralis chaperonin and faint signals to human HSP60. Autoantibodies were raised against CCT rather than HSP60; and CCT3, CCT4, and CCT8 were shown to be the main targets. Host immune systems may be frequently exposed to chaperonins of Archaea in various habitats. Although further studies of the cross-reactivity between M. oralis chaperonin and human CCT are required, anti-CCT autoantibodies may be involved in the pathogenesis of periodontitis and autoimmune diseases.

  4. Chaperonin Polymers in Archaea: The Cytoskeleton of Prokaryotes?

    Science.gov (United States)

    Trent, J. D.; Kagawa, H. K.; Zaluzec, N. J.

    1997-07-01

    Chaperonins are protein complexes that play a critical role in folding nascent polypeptides under normal conditions and refolding damaged proteins under stress conditions. In all organisms these complexes are composed of evolutionarily conserved 60-kDa proteins arranged in double-ring structures with between 7 and 9 protein subunits per ring. These double ring structures are assumed to be the functional units in vivo, although they have never been observed inside cells. Here the authors show that the purified chaperonin from the hyperthermophilic archaeon Sulfolobus shibatae, which is closely related to chaperonins in eukaryotes, has a double ring structure at low concentrations (0.1 mg/ml), but at more physiological concentrations, the rings stack end to end to form polymers. The polymers are stable at physiological temperatures (75 C) and closely resemble structures observed inside unfixed S. shibatae cells. The authors suggest that in vivo chaperonin activity may be regulated by polymerization and that chaperonin polymers may act as a cytoskeleton-like structure in archaea and bacteria.

  5. Characterization of archaeal group II chaperonin-ADP-metal fluoride complexes: implications that group II chaperonins operate as a "two-stroke engine".

    Science.gov (United States)

    Iizuka, Ryo; Yoshida, Takao; Ishii, Noriyuki; Zako, Tamotsu; Takahashi, Kazunobu; Maki, Kosuke; Inobe, Tomonao; Kuwajima, Kunihiro; Yohda, Masafumi

    2005-12-01

    Group II chaperonins, found in Archaea and in the eukaryotic cytosol, act independently of a cofactor corresponding to GroES of group I chaperonins. Instead, the helical protrusion at the tip of the apical domain forms a built-in lid of the central cavity. Although many studies on the lid's conformation have been carried out, the conformation in each step of the ATPase cycle remains obscure. To clarify this issue, we examined the effects of ADP-aluminum fluoride (AlFx) and ADP-beryllium fluoride (BeFx) complexes on alpha-chaperonin from the hyperthermophilic archaeum, Thermococcus sp. strain KS-1. Biochemical assays, electron microscopic observations, and small angle x-ray scattering measurements demonstrate that alpha-chaperonin incubated with ADP and BeFx exists in an asymmetric conformation; one ring is open, and the other is closed. The result indicates that alpha-chaperonin also shares the inherent functional asymmetry of bacterial and eukaryotic cytosolic chaperonins. Most interestingly, addition of ADP and BeFx induced alpha-chaperonin to encapsulate unfolded proteins in the closed ring but did not trigger their folding. Moreover, alpha-chaperonin incubated with ATP and AlFx or BeFx adopted a symmetric closed conformation, and its functional turnover was inhibited. These forms are supposed to be intermediates during the reaction cycle of group II chaperonins.

  6. Difference in the distribution pattern of substrate enzymes in the metabolic network of Escherichia coli, according to chaperonin requirement

    Directory of Open Access Journals (Sweden)

    Niwa Tatsuya

    2011-06-01

    Full Text Available Abstract Background Chaperonins are important in living systems because they play a role in the folding of proteins. Earlier comprehensive analyses identified substrate proteins for which folding requires the chaperonin GroEL/GroES (GroE in Escherichia coli, and they revealed that many chaperonin substrates are metabolic enzymes. This result implies the importance of chaperonins in metabolism. However, the relationship between chaperonins and metabolism is still unclear. Results We investigated the distribution of chaperonin substrate enzymes in the metabolic network using network analysis techniques as a first step towards revealing this relationship, and found that as chaperonin requirement increases, substrate enzymes are more laterally distributed in the metabolic. In addition, comparative genome analysis showed that the chaperonin-dependent substrates were less conserved, suggesting that these substrates were acquired later on in evolutionary history. Conclusions This result implies the expansion of metabolic networks due to this chaperonin, and it supports the existing hypothesis of acceleration of evolution by chaperonins. The distribution of chaperonin substrate enzymes in the metabolic network is inexplicable because it does not seem to be associated with individual protein features such as protein abundance, which has been observed characteristically in chaperonin substrates in previous works. However, it becomes clear by considering this expansion process due to chaperonin. This finding provides new insights into metabolic evolution and the roles of chaperonins in living systems.

  7. Versatile platform for nanotechnology based on circular permutations of chaperonin protein

    Science.gov (United States)

    Paavola, Chad D. (Inventor); Trent, Jonathan D. (Inventor); Chan, Suzanne L. (Inventor); Li, Yi-Fen (Inventor); McMillan, R. Andrew (Inventor); Kagawa, Hiromi (Inventor)

    2010-01-01

    The present invention provides chaperonin polypeptides which are modified to include N-terminal and C-terminal ends that are relocated from the central pore region to various different positions in the polypeptide which are located on the exterior of the folded modified chaperonin polypeptide. In the modified chaperonin polypeptide, the naturally-occurring N-terminal and C-terminal ends are joined together directly or with an intervening linker peptide sequence. The relocated N-terminal or C-terminal ends can be covalently joined to, or bound with another molecule such as a nucleic acid molecule, a lipid, a carbohydrate, a second polypeptide, or a nanoparticle. The modified chaperonin polypeptides can assemble into double-ringed chaperonin structures. Further, the chaperonin structures can organize into higher order structures such as nanofilaments or nanoarrays which can be used to produce nanodevices and nanocoatings.

  8. Chaperonin Structure - The Large Multi-Subunit Protein Complex

    Directory of Open Access Journals (Sweden)

    Irena Roterman

    2009-03-01

    Full Text Available The multi sub-unit protein structure representing the chaperonins group is analyzed with respect to its hydrophobicity distribution. The proteins of this group assist protein folding supported by ATP. The specific axial symmetry GroEL structure (two rings of seven units stacked back to back - 524 aa each and the GroES (single ring of seven units - 97 aa each polypeptide chains are analyzed using the hydrophobicity distribution expressed as excess/deficiency all over the molecule to search for structure-to-function relationships. The empirically observed distribution of hydrophobic residues is confronted with the theoretical one representing the idealized hydrophobic core with hydrophilic residues exposure on the surface. The observed discrepancy between these two distributions seems to be aim-oriented, determining the structure-to-function relation. The hydrophobic force field structure generated by the chaperonin capsule is presented. Its possible influence on substrate folding is suggested.

  9. Explicit solvent molecular dynamics simulations of chaperonin-assisted rhodanese folding

    Institute of Scientific and Technical Information of China (English)

    Ying Ren; Jian Gao; Ji Xu; Wei Ge; Jinghai Li

    2009-01-01

    Chaperonins are known to facilitate the productive folding of numerous misfolded proteins, Despite their established importance, the mechanism of chaperonin-assisted protein folding remains unknown. In the present article, all-atom explicit solvent molecular dynamics (MD) simulations have been performed for the first time on rhodanese folding in a series of cavity-size and cavity-charge chaperonin mutants. A compromise between stability and flexibility of chaperonin structure during the substrate folding has been observed and the key factors affecting this dynamic process are discussed.

  10. Dataset concerning GroEL chaperonin interaction with proteins

    Directory of Open Access Journals (Sweden)

    V.V. Marchenkov

    2016-03-01

    Full Text Available GroEL chaperonin is well-known to interact with a wide variety of polypeptide chains. Here we show the data related to our previous work (http://dx.doi.org/10.1016/j.pep.2015.11.020 [1], and concerning the interaction of GroEL with native (lysozyme, α-lactalbumin and denatured (lysozyme, α-lactalbumin and pepsin proteins in solution. The use of affinity chromatography on the base of denatured pepsin for GroEL purification from fluorescent impurities is represented as well.

  11. Ring Separation Highlights the Protein-Folding Mechanism Used by the Phage EL-Encoded Chaperonin.

    Science.gov (United States)

    Molugu, Sudheer K; Hildenbrand, Zacariah L; Morgan, David Gene; Sherman, Michael B; He, Lilin; Georgopoulos, Costa; Sernova, Natalia V; Kurochkina, Lidia P; Mesyanzhinov, Vadim V; Miroshnikov, Konstantin A; Bernal, Ricardo A

    2016-04-05

    Chaperonins are ubiquitous, ATP-dependent protein-folding molecular machines that are essential for all forms of life. Bacteriophage φEL encodes its own chaperonin to presumably fold exceedingly large viral proteins via profoundly different nucleotide-binding conformations. Our structural investigations indicate that ATP likely binds to both rings simultaneously and that a misfolded substrate acts as the trigger for ATP hydrolysis. More importantly, the φEL complex dissociates into two single rings resulting from an evolutionarily altered residue in the highly conserved ATP-binding pocket. Conformational changes also more than double the volume of the single-ring internal chamber such that larger viral proteins are accommodated. This is illustrated by the fact that φEL is capable of folding β-galactosidase, a 116-kDa protein. Collectively, the architecture and protein-folding mechanism of the φEL chaperonin are significantly different from those observed in group I and II chaperonins.

  12. Arabidopsis chloroplast chaperonin 10 is a calmodulin-binding protein

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2000-01-01

    Calcium regulates diverse cellular activities in plants through the action of calmodulin (CaM). By using (35)S-labeled CaM to screen an Arabidopsis seedling cDNA expression library, a cDNA designated as AtCh-CPN10 (Arabidopsis thaliana chloroplast chaperonin 10) was cloned. Chloroplast CPN10, a nuclear-encoded protein, is a functional homolog of E. coli GroES. It is believed that CPN60 and CPN10 are involved in the assembly of Rubisco, a key enzyme involved in the photosynthetic pathway. Northern analysis revealed that AtCh-CPN10 is highly expressed in green tissues. The recombinant AtCh-CPN10 binds to CaM in a calcium-dependent manner. Deletion mutants revealed that there is only one CaM-binding site in the last 31 amino acids of the AtCh-CPN10 at the C-terminal end. The CaM-binding region in AtCh-CPN10 has higher homology to other chloroplast CPN10s in comparison to GroES and mitochondrial CPN10s, suggesting that CaM may only bind to chloroplast CPN10s. Furthermore, the results also suggest that the calcium/CaM messenger system is involved in regulating Rubisco assembly in the chloroplast, thereby influencing photosynthesis. Copyright 2000 Academic Press.

  13. Diversity of Archaea in Icelandic hot springs based on 16S rRNA and chaperonin genes.

    Science.gov (United States)

    Mirete, Salvador; de Figueras, Carolina G; González-Pastor, Jose E

    2011-07-01

    The diversity of archaeal communities growing in four hot springs (65-90 °C, pH 6.5) was assessed with 16S rRNA gene primers specific for the domain Archaea. Overall, mainly uncultured members of the Desulfurococcales, the Thermoproteales and the Korarchaeota, were identified. Based on this diversity, a set of chaperonin heat-shock protein (Hsp60) gene sequences from different archaeal species were aligned to design two degenerate primer sets for the amplification of the chaperonin gene: Ths and Kor (which can also detect the korarchaeotal chaperonin gene from one of the samples). A phylogenetic tree was constructed using the chaperonin sequences retrieved and other sequences from cultured representatives. The Alpha and Beta paralogs of the chaperonin gene were observed within the main clades and orthologs among them. Cultivated representatives from these clades were assigned to either paralog in the chaperonin tree. Uncultured representatives observed in the 16S rRNA gene analysis were found to be related to the Desulfurococcales. The topologies of the 16S rRNA gene and chaperonin phylogenetic trees were compared, and similar phylogenetic relationships were observed. Our results suggest that the chaperonin Hsp60 gene may be used as a phylogenetic marker for the clades found in this extreme environment.

  14. Chaperonin genes on the rise: new divergent classes and intense duplication in human and other vertebrate genomes

    Directory of Open Access Journals (Sweden)

    Macario Alberto JL

    2010-03-01

    Full Text Available Abstract Background Chaperonin proteins are well known for the critical role they play in protein folding and in disease. However, the recent identification of three diverged chaperonin paralogs associated with the human Bardet-Biedl and McKusick-Kaufman Syndromes (BBS and MKKS, respectively indicates that the eukaryotic chaperonin-gene family is larger and more differentiated than previously thought. The availability of complete genome sequences makes possible a definitive characterization of the complete set of chaperonin sequences in human and other species. Results We identified fifty-four chaperonin-like sequences in the human genome and similar numbers in the genomes of the model organisms mouse and rat. In mammal genomes we identified, besides the well-known CCT chaperonin genes and the three genes associated with the MKKS and BBS pathological conditions, a newly-defined class of chaperonin genes named CCT8L, represented in human by the two sequences CCT8L1 and CCT8L2. Comparative analyses from several vertebrate genomes established the monophyletic origin of chaperonin-like MKKS and BBS genes from the CCT8 lineage. The CCT8L gene originated from a later duplication also in the CCT8 lineage at the onset of mammal evolution and duplicated in primate genomes. The functionality of CCT8L genes in different species was confirmed by evolutionary analyses and in human by expression data. Detailed sequence analysis and structural predictions of MKKS, BBS and CCT8L proteins strongly suggested that they conserve a typical chaperonin-like core structure but that they are unlikely to form a CCT-like oligomeric complex. The characterization of many newly-discovered chaperonin pseudogenes uncovered the intense duplication activity of eukaryotic chaperonin genes. Conclusions In vertebrates, chaperonin genes, driven by intense duplication processes, have diversified into multiple classes and functionalities that extend beyond their well-known protein

  15. Essential Role of the Chaperonin CCT in Rod Outer Segment Biogenesis

    Science.gov (United States)

    Sinha, Satyabrata; Belcastro, Marycharmain; Datta, Poppy; Seo, Seongjin; Sokolov, Maxim

    2014-01-01

    Purpose. While some evidence suggests an essential role for the chaperonin containing t-complex protein 1 (CCT) in ciliogenesis, this function remains poorly understood mechanistically. We used transgenic mice, previously generated in our lab, and characterized by a genetically-induced suppression of CCT in rod photoreceptors as well as a malformation of the rod sensory cilia, the outer segments, to gain new insights into this underlying molecular mechanism. Methods. The CCT activity in rod photoreceptors of mice was suppressed by overexpressing the chaperonin inhibitor, phosducin-like protein short, and the ensuing changes of cellular morphology were analyzed by light and electron microscopy. Protein expression levels were studied by fluorescent microscopy and Western blotting. Results. Suppressing the chaperonin made the photoreceptors incompetent to build their outer segments. Specifically, the CCT-deficient rods appeared unable to expand the outer segment plasma membrane, and accommodate growth of this compartment. Seeking the molecular mechanisms underlying such a shortcoming, we found that the affected rods could not express normal levels of Bardet-Biedl Syndrome (BBS) proteins 2, 5, and 7 and, owing to that deficiency, were unable to assemble the BBSome, a multisubunit complex responsible for ciliary trafficking. A similar effect in response to the chaperonin suppression was also observed in cultured ciliated cells. Conclusions. Our data provide new evidence indicating the essential role of the chaperonin CCT in the biogenesis of vertebrate photoreceptor sensory cilia, and suggest that it may be due to the direct participation of the chaperonin in the posttranslational processing of selected BBS proteins and assembly of the BBSome. PMID:24854858

  16. A single ring is sufficient for productive chaperonin-mediated folding in vivo.

    Science.gov (United States)

    Nielsen, K L; Cowan, N J

    1998-07-01

    Facilitated protein folding by the double toroidal bacterial chaperonin, GroEL/GroES, proceeds by a "two-stroke engine" mechanism in which an allosteric interaction between the two rings synchronizes the reaction cycle by controlling the binding and release of cochaperonin. Using chimeric chaperonin molecules assembled by fusing equatorial and apical domains derived from GroEL and its mammalian mitochondrial homolog, Hsp60, we show that productive folding by Hsp60 and its cognate cochaperonin, Hsp10, proceeds in vitro and in vivo without the formation of a two-ring structure. This simpler "one-stroke" engine works because Hsp60 has a different mechanism for the release of its cochaperonin cap and bound target protein.

  17. The chaperonin assisted and unassisted refolding of rhodanese can be modulated by its N-terminal peptide.

    Science.gov (United States)

    Mendoza, J A; Horowitz, P M

    1994-01-01

    The in vitro refolding of the monomeric, mitochondrial enzyme rhodanese (thiosulfate: cyanide sulfurtransferase, EC 2.8.1.1), which is assisted by the E. coli chaperonins, is modulated by the 23 amino acid peptide (VHQVLYRALVSTKWLAESVRAGK) corresponding to the amino terminal sequence (1-23) of rhodanese. In the absence of the peptide, a maximum recovery of active enzyme of about 65% is achieved after 90 min of initiation of the chaperonin assisted folding reaction. In contrast, this process is substantially inhibited in the presence of the peptide. The maximum recovery of active enzyme is peptide concentration-dependent. The peptide, however, does not prevent the interaction of rhodanese with the chaperonin 60 (cpn60), which leads to the formation of the cpn60-rhodanese complex. In addition, the peptide does not affect the rate of recovery of active enzyme, although it does affect the extent of recovery. Further, the unassisted refolding of rhodanese is also inhibited by the peptide. Thus, the peptide interferes with the folding of rhodanese in either the chaperonin assisted or the unassisted refolding of the enzyme. A 13 amino acid peptide (STKWLAESVRAGK) corresponding to the amino terminal sequence (11-23) of rhodanese does not show any significant effect on the chaperonin assisted or unassisted refolding of the enzyme. The results suggest that other sequences of rhodanese, in addition to the N-terminus, may be required for the binding of cpn60, in accord with a model in which cpn60 interacts with polypeptides through multiple binding sites.

  18. Translocation boost protein-folding efficiency of double-barreled chaperonins.

    Science.gov (United States)

    Coluzza, Ivan; van der Vies, Saskia M; Frenkel, Daan

    2006-05-15

    Incorrect folding of proteins in living cells may lead to malfunctioning of the cell machinery. To prevent such cellular disasters from happening, all cells contain molecular chaperones that assist nonnative proteins in folding into the correct native structure. One of the most studied chaperone complexes is the GroEL-GroES complex. The GroEL part has a "double-barrel" structure, which consists of two cylindrical chambers joined at the bottom in a symmetrical fashion. The hydrophobic rim of one of the GroEL chambers captures nonnative proteins. The GroES part acts as a lid that temporarily closes the filled chamber during the folding process. Several capture-folding-release cycles are required before the nonnative protein reaches its native state. Here we report molecular simulations that suggest that translocation of the nonnative protein through the equatorial plane of the complex boosts the efficiency of the chaperonin action. If the target protein is correctly folded after translocation, it is released. However, if it is still nonnative, it is likely to remain trapped in the second chamber, which then closes to start a reverse translocation process. This shuttling back and forth continues until the protein is correctly folded. Our model provides a natural explanation for the prevalence of double-barreled chaperonins. Moreover, we argue that internal folding is both more efficient and safer than a scenario where partially refolded proteins escape from the complex before being recaptured.

  19. Chaperonin GroEL/GroES over-expression promotes multi-drug resistance in E. coli following exposure to aminoglycoside antibiotics

    Directory of Open Access Journals (Sweden)

    Lise eGoltermann

    2016-01-01

    Full Text Available Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antiobiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and overexpression sensitize and promote short-term tolerance, respectively, to this drug class. Here we show that chaperonin GroEL/GroES over-expression accelerates acquisition of aminoglycoside resistance and multi-drug resistance following sub-lethal aminoglycoside antibiotic exposure. Chaperonin buffering could provide a novel mechanism for antibiotic resistance and multi-drug resistance development.

  20. Chaperonin GroEL/GroES Over-Expression Promotes Aminoglycoside Resistance and Reduces Drug Susceptibilities in Escherichia coli Following Exposure to Sublethal Aminoglycoside Doses

    DEFF Research Database (Denmark)

    Goltermann, Lise; Sarusie, Menachem V; Bentin, Thomas

    2016-01-01

    Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antibiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and over-expression sensitize and promote short-ter...... mechanism for emergence of antibiotic resistance.......Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antibiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and over-expression sensitize and promote short......-term tolerance, respectively, to this drug class. Here, we show that chaperonin GroEL/GroES over-expression accelerates acquisition of streptomycin resistance and reduces susceptibility to several other antibiotics following sub-lethal streptomycin antibiotic exposure. Chaperonin buffering could provide a novel...

  1. Simulation of the shape of chaperonins using the small-angle x-ray scattering curves and torus form factor

    Energy Technology Data Exchange (ETDEWEB)

    Amarantov, S. V., E-mail: amarantov_s@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Naletova, I. N. [Moscow State University, Belozerskii Institute of Molecular Biology and Bioorganic Chemistry (Russian Federation); Kurochkina, L. P. [Russian Academy of Sciences, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation)

    2011-08-15

    The inverse scattering problem has been solved for protein complexes whose surfaces can be described by a set of the simplest doubly connected surfaces in the uniform approximation (a scattering potential inside the molecule is a constant). Solutions of two proteins-well-known GroEL bacterial chaperonin and poor-studied bacteriophage chaperonin, which is a product of 146 gene (gp146)-were taken for the experiment. The shapes of protein complexes have been efficiently reconstructed from the experimental scattering curves. The shell method, the method of the rotation of amino acid sequences with the use of the form factor of an amino acid, and the method of seeking the model parameters of a protein complex with the preliminarily obtained form factor of the model have been used to reconstruct the shape of these particles.

  2. Chaperonin-Inspired pH Protection by Mesoporous Silica SBA-15 on Myoglobin and Lysozyme.

    Science.gov (United States)

    Lynch, Michele M; Liu, Jichuan; Nigra, Michael; Coppens, Marc-Olivier

    2016-09-20

    While enzymes are valuable tools in many fields of biotechnology, they are fragile and must be protected against denaturing conditions such as unfavorable solution pH. Within living organisms, chaperonins help enzymes fold into their native shape and protect them from damage. Inspired by this natural solution, mesoporous silica SBA-15 with different pore diameters is synthesized as a support material for immobilizing and protecting enzymes. In separate experiments, the model enzymes myoglobin and lysozyme are physically adsorbed to SBA-15 and exposed to a range of buffered pH conditions. The immobilized enzymes' biocatalytic activities are quantified and compared to the activities of nonimmobilized enzymes in the same solution conditions. It has been observed that myoglobin immobilized on SBA-15 is protected from acidic denaturation from pH 3.6 to 5.1, exhibiting relative activity of up to 350%. Immobilized lysozyme is protected from unfavorable conditions from pH 6.6 to 7.6, with relative activity of up to 200%. These results indicate that the protective effects conferred to enzymes immobilized by physical adsorption to SBA-15 are driven by the enzymes' electrostatic attraction to the material's surface. The pore diameter of SBA-15 affects the quality of protection given to immobilized enzymes, but the contribution of this effect at different pH values remains unclear.

  3. Alteration of chaperonin60 and pancreatic enzyme in pancreatic acinar cell under pathological condition

    Institute of Scientific and Technical Information of China (English)

    Yong-Yu Li; Moise Bendayan

    2005-01-01

    AIM: To investigate the changes of chaperonin60 (Cpn60)and pancreatic enzymes in pancreatic acinar cells, and to explore their roles in the development of experimental diabetes and acute pancreatitis (AP).METHODS: Two different pathological models were replicated in Sprague-Dawley rats: streptozotocininduced diabetes and sodium deoxycholate-induced AP. The contents of Cpn60 and pancreatic enzymes in different compartments of the acinar cells were measured by quantitative immunocytochemistry.RESULTS: The levels of Cpn60 significantly increased in diabetes, but decreased in AP, especially in the zymogen granules of the pancreatic acinar cells. The elevation of Cpn60 was accompanied with the increased levels of pancreatic lipase and chymotrypsinogen in diabetes.However, a decreased Cpn60 level was accompanied by high levels of lipase and chymotrypsinogen in AP.The amylase level was markedly reduced in both the pathological conditions.CONCLUSION: The equilibrium between Cpn60 and pancreatic enzymes in the acinar cells breaks in AP, and Cpn60 content decreases, suggesting an insufficient chaperone capacity. This may promote the aggregation and autoactivation of the premature enzymes in the pancreatic acinar cells and play roles in the development of AP.

  4. Molecular functions of chaperonin gene, containing tailless complex polypeptide 1 from Macrobrachium rosenbergii.

    Science.gov (United States)

    Arockiaraj, Jesu; Vanaraja, Puganeshwaran; Easwvaran, Sarasvathi; Singh, Arun; Othman, Rofina Yasmin; Bhassu, Subha

    2012-10-25

    Chaperonin (MrChap) was identified from a constructed transcriptome dataset of freshwater prawn Macrobrachium rosenbergii. The MrChap peptide contains a long chaperone super family domain between 11 and 525. Three chaperone tailless complex polypeptide (TCP-1) signatures are present in the MrChap peptide sequence at 36-48, 57-73 and 85-93. The gene expressions of MrChap in both healthy M. rosenbergii and those infected with infectious hypodermal and hematopoietic necrosis virus (IHHNV) were examined using qRT-PCR. To understand its biological activity, the recombinant MrChap gene was constructed and expressed in Escherichia coli BL21 (DE3). The results of ATPase assay showed that the recombinant MrChap protein exhibited apparent ATPase activity. Chaperone activity assay showed that the recombinant MrChap protein is an active chaperone. These results suggest that MrChap is potentially involved in the immune responses against viral infection in M. rosenbergii. These findings indicate that the recombinant MrChap protein may be used in immunotherapeutic approaches.

  5. Modulation of STAT3 folding and function by TRiC/CCT chaperonin.

    Directory of Open Access Journals (Sweden)

    Moses Kasembeli

    2014-04-01

    Full Text Available Signal transducer and activator of transcription 3 (Stat3 transduces signals of many peptide hormones from the cell surface to the nucleus and functions as an oncoprotein in many types of cancers, yet little is known about how it achieves its native folded state within the cell. Here we show that Stat3 is a novel substrate of the ring-shaped hetero-oligomeric eukaryotic chaperonin, TRiC/CCT, which contributes to its biosynthesis and activity in vitro and in vivo. TRiC binding to Stat3 was mediated, at least in part, by TRiC subunit CCT3. Stat3 binding to TRiC mapped predominantly to the β-strand rich, DNA-binding domain of Stat3. Notably, enhancing Stat3 binding to TRiC by engineering an additional TRiC-binding domain from the von Hippel-Lindau protein (vTBD, at the N-terminus of Stat3, further increased its affinity for TRiC as well as its function, as determined by Stat3's ability to bind to its phosphotyrosyl-peptide ligand, an interaction critical for Stat3 activation. Thus, Stat3 levels and function are regulated by TRiC and can be modulated by manipulating its interaction with TRiC.

  6. Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding

    Directory of Open Access Journals (Sweden)

    M. Anaul Kabir

    2011-01-01

    Full Text Available Molecular chaperones are a class of proteins responsible for proper folding of a large number of polypeptides in both prokaryotic and eukaryotic cells. Newly synthesized polypeptides are prone to nonspecific interactions, and many of them make toxic aggregates in absence of chaperones. The eukaryotic chaperonin CCT is a large, multisubunit, cylindrical structure having two identical rings stacked back to back. Each ring is composed of eight different but similar subunits and each subunit has three distinct domains. CCT assists folding of actin, tubulin, and numerous other cellular proteins in an ATP-dependent manner. The catalytic cooperativity of ATP binding/hydrolysis in CCT occurs in a sequential manner different from concerted cooperativity as shown for GroEL. Unlike GroEL, CCT does not have GroES-like cofactor, rather it has a built-in lid structure responsible for closing the central cavity. The CCT complex recognizes its substrates through diverse mechanisms involving hydrophobic or electrostatic interactions. Upstream factors like Hsp70 and Hsp90 also work in a concerted manner to transfer the substrate to CCT. Moreover, prefoldin, phosducin-like proteins, and Bag3 protein interact with CCT and modulate its function for the fine-tuning of protein folding process. Any misregulation of protein folding process leads to the formation of misfolded proteins or toxic aggregates which are linked to multiple pathological disorders.

  7. Allosteric transitions of supramolecular systems explored by network models: application to chaperonin GroEL.

    Directory of Open Access Journals (Sweden)

    Zheng Yang

    2009-04-01

    Full Text Available Identification of pathways involved in the structural transitions of biomolecular systems is often complicated by the transient nature of the conformations visited across energy barriers and the multiplicity of paths accessible in the multidimensional energy landscape. This task becomes even more challenging in exploring molecular systems on the order of megadaltons. Coarse-grained models that lend themselves to analytical solutions appear to be the only possible means of approaching such cases. Motivated by the utility of elastic network models for describing the collective dynamics of biomolecular systems and by the growing theoretical and experimental evidence in support of the intrinsic accessibility of functional substates, we introduce a new method, adaptive anisotropic network model (aANM, for exploring functional transitions. Application to bacterial chaperonin GroEL and comparisons with experimental data, results from action minimization algorithm, and previous simulations support the utility of aANM as a computationally efficient, yet physically plausible, tool for unraveling potential transition pathways sampled by large complexes/assemblies. An important outcome is the assessment of the critical inter-residue interactions formed/broken near the transition state(s, most of which involve conserved residues.

  8. The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution.

    Science.gov (United States)

    Archibald, John M; O'Kelly, Charles J; Doolittle, W Ford

    2002-04-01

    The jakobids are free-living mitochondriate protists that share ultrastructural features with certain amitochondriate groups and possess the most bacterial-like mitochondrial genomes described thus far. Jakobids belong to a diverse group of mitochondriate and amitochondriate eukaryotes, the excavate taxa. The relationships among the various excavate taxa and their relationships to other putative deep-branching protist groups are largely unknown. With the hope of clarifying these issues, we have isolated the cytosolic chaperonin CCTalpha gene from the jakobid Reclinomonas americana (strains 50394 and 50283), the jakobid-like malawimonad Malawimonas jakobiformis, two heteroloboseans (Acrasis rosea and Naegleria gruberi), a euglenozoan (Trypanosoma brucei), and a parabasalid (Monocercomonas sp.). We also amplified the CCTdelta gene from M. jakobiformis. The Reclinomonas and Malawimonas sequences presented here are among the first nuclear protein-coding genes to be described from these organisms. Unlike other putative early diverging protist lineages, a high density of spliceosomal introns was found in the jakobid and malawimonad CCTs-similar to that observed in vertebrate protein-coding genes. An analysis of intron positions in CCT genes from protists, plants, animals, and fungi suggests that many of the intron-sparse or intron-lacking protist lineages may not be primitively so but have lost spliceosomal introns during their evolutionary history. In phylogenetic trees constructed from CCTalpha protein sequences, R. americana (but not M. jakobiformis) shows a weak but consistent affinity for the Heterolobosea and Euglenozoa.

  9. The htpAB operon of Legionella pneumophila cannot be deleted in the presence of the groE chaperonin operon of Escherichia coli.

    Science.gov (United States)

    Nasrallah, Gheyath K; Gagnon, Elizabeth; Orton, Dennis J; Garduño, Rafael A

    2011-11-01

    HtpB, the chaperonin of the intracellular bacterial pathogen Legionella pneumophila , displays several virulence-related functions in vitro. To confirm HtpB's role in vivo, host infections with an htpB deletion mutant would be required. However, we previously reported that the htpAB operon (encoding co-chaperonin and chaperonin) is essential. We attempted here to delete htpAB in a L. pneumophila strain carrying the groE operon (encoding the Escherichia coli co-chaperonin and chaperonin). The groE operon was inserted into the chromosome of L. pneumophila Lp02, and then allelic replacement of htpAB with a gentamicin resistance cassette was attempted. Although numerous potential postallelic replacement transformants showed a correct selection phenotype, we still detected htpAB by PCR and full-size HtpB by immunoblot. Southern blot and PCR analysis indicated that the gentamicin resistance cassette had apparently integrated in a duplicated htpAB region. However, we showed by Southern blot that strain Lp02, and the Lp02 derivative carrying the groE operon, have only one copy of htpAB. These results confirmed that the htpAB operon cannot be deleted, not even in the presence of the groE operon, and suggested that attempts to delete htpAB under strong phenotypic selection result in aberrant genetic recombinations that could involve duplication of the htpAB locus.

  10. Disease-associated mutations in the HSPD1 gene encoding the large subunit of the mitochondrial HSP60/HSP10 chaperonin complex

    Directory of Open Access Journals (Sweden)

    Peter Bross

    2016-08-01

    Full Text Available Heat shock protein 60 (HSP60 forms together with heat shock protein 10 (HSP10 double-barrel chaperonin complexes that are essential for folding to the native state of proteins in the mitochondrial matrix space. Two extremely rare monogenic disorders have been described that are caused by missense mutations in the HSPD1 gene that encodes the HSP60 subunit of the HSP60/HSP10 chaperonin complex. Investigations of the molecular mechanisms underlying these disorders have revealed that different degrees of reduced HSP60 function produce distinct neurological phenotypes. While mutations with deleterious or strong dominant negative effects are not compatible with life, HSPD1 gene variations found in the human population impair HSP60 function and depending on the mechanism and degree of HSP60 dys- and malfunction cause different phenotypes. We here summarize the knowledge on the effects of disturbances of the function of the HSP60/HSP10 chaperonin complex by disease-associated mutations.

  11. The chaperonin CCT inhibits assembly of α-synuclein amyloid fibrils by a specific, conformation-dependent interaction

    Science.gov (United States)

    Sot, Begoña; Rubio-Muñoz, Alejandra; Leal-Quintero, Ahudrey; Martínez-Sabando, Javier; Marcilla, Miguel; Roodveldt, Cintia; Valpuesta, José M.

    2017-01-01

    The eukaryotic chaperonin CCT (chaperonin containing TCP-1) uses cavities built into its double-ring structure to encapsulate and to assist folding of a large subset of proteins. CCT can inhibit amyloid fibre assembly and toxicity of the polyQ extended mutant of huntingtin, the protein responsible for Huntington’s disease. This raises the possibility that CCT modulates other amyloidopathies, a still-unaddressed question. We show here that CCT inhibits amyloid fibre assembly of α-synuclein A53T, one of the mutants responsible for Parkinson’s disease. We evaluated fibrillation blockade in α-synuclein A53T deletion mutants and CCT interactions of full-length A53T in distinct oligomeric states to define an inhibition mechanism specific for α-synuclein. CCT interferes with fibre assembly by interaction of its CCTζ and CCTγ subunits with the A53T central hydrophobic region (NAC). This interaction is specific to NAC conformation, as it is produced once soluble α-synuclein A53T oligomers form and blocks the reaction before fibres begin to grow. Finally, we show that this association inhibits α-synuclein A53T oligomer toxicity in neuroblastoma cells. In summary, our results and those for huntingtin suggest that CCT is a general modulator of amyloidogenesis via a specific mechanism. PMID:28102321

  12. Structural Mechanisms of Mutant Huntingtin Aggregation Suppression by the Synthetic Chaperonin-like CCT5 Complex Explained by Cryoelectron Tomography*

    Science.gov (United States)

    Darrow, Michele C.; Sergeeva, Oksana A.; Isas, Jose M.; Galaz-Montoya, Jesús G.; King, Jonathan A.; Langen, Ralf; Schmid, Michael F.; Chiu, Wah

    2015-01-01

    Huntington disease, a neurodegenerative disorder characterized by functional deficits and loss of striatal neurons, is linked to an expanded and unstable CAG trinucleotide repeat in the huntingtin gene (HTT). This DNA sequence translates to a polyglutamine repeat in the protein product, leading to mutant huntingtin (mHTT) protein aggregation. The aggregation of mHTT is inhibited in vitro and in vivo by the TCP-1 ring complex (TRiC) chaperonin. Recently, a novel complex comprised of a single type of TRiC subunit has been reported to inhibit mHTT aggregation. Specifically, the purified CCT5 homo-oligomer complex, when compared with TRiC, has a similar structure, ATP use, and substrate refolding activity, and, importantly, it also inhibits mHTT aggregation. Using an aggregation suppression assay and cryoelectron tomography coupled with a novel computational classification method, we uncover the interactions between the synthetic CCT5 complex (∼1 MDa) and aggregates of mutant huntingtin exon 1 containing 46 glutamines (mHTTQ46-Ex1). We find that, in a similar fashion to TRiC, synthetic CCT5 complex caps mHTT fibrils at their tips and encapsulates mHTT oligomers, providing a structural description of the inhibition of mHTTQ46-Ex1 by CCT5 complex and a shared mechanism of mHTT inhibition between TRiC chaperonin and the CCT5 complex: cap and contain. PMID:25995452

  13. Structural Mechanisms of Mutant Huntingtin Aggregation Suppression by the Synthetic Chaperonin-like CCT5 Complex Explained by Cryoelectron Tomography.

    Science.gov (United States)

    Darrow, Michele C; Sergeeva, Oksana A; Isas, Jose M; Galaz-Montoya, Jesús G; King, Jonathan A; Langen, Ralf; Schmid, Michael F; Chiu, Wah

    2015-07-10

    Huntington disease, a neurodegenerative disorder characterized by functional deficits and loss of striatal neurons, is linked to an expanded and unstable CAG trinucleotide repeat in the huntingtin gene (HTT). This DNA sequence translates to a polyglutamine repeat in the protein product, leading to mutant huntingtin (mHTT) protein aggregation. The aggregation of mHTT is inhibited in vitro and in vivo by the TCP-1 ring complex (TRiC) chaperonin. Recently, a novel complex comprised of a single type of TRiC subunit has been reported to inhibit mHTT aggregation. Specifically, the purified CCT5 homo-oligomer complex, when compared with TRiC, has a similar structure, ATP use, and substrate refolding activity, and, importantly, it also inhibits mHTT aggregation. Using an aggregation suppression assay and cryoelectron tomography coupled with a novel computational classification method, we uncover the interactions between the synthetic CCT5 complex (∼ 1 MDa) and aggregates of mutant huntingtin exon 1 containing 46 glutamines (mHTTQ46-Ex1). We find that, in a similar fashion to TRiC, synthetic CCT5 complex caps mHTT fibrils at their tips and encapsulates mHTT oligomers, providing a structural description of the inhibition of mHTTQ46-Ex1 by CCT5 complex and a shared mechanism of mHTT inhibition between TRiC chaperonin and the CCT5 complex: cap and contain.

  14. Folding of newly translated membrane protein CCR5 is assisted by the chaperonin GroEL-GroES

    Science.gov (United States)

    Chi, Haixia; Wang, Xiaoqiang; Li, Jiqiang; Ren, Hao; Huang, Fang

    2015-11-01

    The in vitro folding of newly translated human CC chemokine receptor type 5 (CCR5), which belongs to the physiologically important family of G protein-coupled receptors (GPCRs), has been studied in a cell-free system supplemented with the surfactant Brij-35. The freshly synthesized CCR5 can spontaneously fold into its biologically active state but only slowly and inefficiently. However, on addition of the GroEL-GroES molecular chaperone system, the folding of the nascent CCR5 was significantly enhanced, as was the structural stability and functional expression of the soluble form of CCR5. The chaperonin GroEL was partially effective on its own, but for maximum efficiency both the GroEL and its GroES lid were necessary. These results are direct evidence for chaperone-assisted membrane protein folding and therefore demonstrate that GroEL-GroES may be implicated in the folding of membrane proteins.

  15. [Role of GroEL/GroES chaperonin system and Lon protease in regulation of expression Vibrio fischeri lux genes in Escherichia coli cells].

    Science.gov (United States)

    Manukhov, I V; Kotova, V Iu; Zavil'genskiĭ, G B

    2006-01-01

    It was shown that the chaperonin GroEL/GroES and protease Lon influence the expression of the Vibrio fischeri lux regulon in Escherichia coli cells: E. coli groE mutants bearing hybrid plasmid with the lux regulon were weakly luminescent; cells of the E. coli lon- comprising the entire lux regulon display very intense bioluminescence, with no lag period in the induction curve characteristic of lon+ strains. The luxR gene was cloned from the Vibrio fischeri genome in the pGEX-KG vector. It was shown that the active fusion protein GST-LuxR by affinity chromatography on glutathione-sucrose colony is purified only with proteins GroEL and Lon. The present results showed that the LuxR, transcriptional activator of the V. fischeri lux operon, really complexes with GroEL chaperonin and Lon protease. We suppose, that the GroEL/GroES chaperonin systems is required for the folding of LuxR into an active protein, and the LuxR is the target for the ATP-dependent serine Lon protease of E. coli.

  16. Plastid chaperonin proteins Cpn60α and Cpn60β are required for plastid division in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Osteryoung Katherine W

    2009-04-01

    Full Text Available Abstract Background Plastids arose from a free-living cyanobacterial endosymbiont and multiply by binary division as do cyanobacteria. Plastid division involves nucleus-encoded homologs of cyanobacterial division proteins such as FtsZ, MinD, MinE, and ARC6. However, homologs of many other cyanobacterial division genes are missing in plant genomes and proteins of host eukaryotic origin, such as a dynamin-related protein, PDV1 and PDV2 are involved in the division process. Recent identification of plastid division proteins has started to elucidate the similarities and differences between plastid division and cyanobacterial cell division. To further identify new proteins that are required for plastid division, we characterized previously and newly isolated plastid division mutants of Arabidopsis thaliana. Results Leaf cells of two mutants, br04 and arc2, contain fewer, larger chloroplasts than those of wild type. We found that ARC2 and BR04 are identical to nuclear genes encoding the plastid chaperonin 60α (ptCpn60α and chaperonin 60β (ptCpn60β proteins, respectively. In both mutants, plastid division FtsZ ring formation was partially perturbed though the level of FtsZ2-1 protein in plastids of ptcpn60β mutants was similar to that in wild type. Phylogenetic analyses showed that both ptCpn60 proteins are derived from ancestral cyanobacterial proteins. The A. thaliana genome encodes two members of ptCpn60α family and four members of ptCpn60β family respectively. We found that a null mutation in ptCpn60α abolished greening of plastids and resulted in an albino phenotype while a weaker mutation impairs plastid division and reduced chlorophyll levels. The functions of at least two ptCpn60β proteins are redundant and the appearance of chloroplast division defects is dependent on the number of mutant alleles. Conclusion Our results suggest that both ptCpn60α and ptCpn60β are required for the formation of a normal plastid division apparatus, as

  17. Cloning, characterization and sub-cellular localization of gamma subunit of T-complex protein-1 (chaperonin) from Leishmania donovani

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar,; Kumari, Neeti [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India); Goyal, Neena, E-mail: neenacdri@yahoo.com [Division of Biochemistry, CSIR-Central Drug Research Institute, Chattar Manzil Palace, PO Box 173, Lucknow (India)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer The study presents cloning and characterization of TCP1{gamma} gene from L. donovani. Black-Right-Pointing-Pointer TCP1{gamma} is a subunit of T-complex protein-1 (TCP1), a chaperonin class of protein. Black-Right-Pointing-Pointer LdTCP{gamma} exhibited differential expression in different stages of promastigotes. Black-Right-Pointing-Pointer LdTCP{gamma} co-localized with actin, a cytoskeleton protein. Black-Right-Pointing-Pointer The data suggests that this gene may have a role in differentiation/biogenesis. Black-Right-Pointing-Pointer First report on this chapronin in Leishmania. -- Abstract: T-complex protein-1 (TCP1) complex, a chaperonin class of protein, ubiquitous in all genera of life, is involved in intracellular assembly and folding of various proteins. The gamma subunit of TCP1 complex (TCP1{gamma}), plays a pivotal role in the folding and assembly of cytoskeleton protein(s) as an individual or complexed with other subunits. Here, we report for the first time cloning, characterization and expression of the TCP1{gamma} of Leishmania donovani (LdTCP1{gamma}), the causative agent of Indian Kala-azar. Primary sequence analysis of LdTCP1{gamma} revealed the presence of all the characteristic features of TCP1{gamma}. However, leishmanial TCP1{gamma} represents a distinct kinetoplastid group, clustered in a separate branch of the phylogenic tree. LdTCP1{gamma} exhibited differential expression in different stages of promastigotes. The non-dividing stationary phase promastigotes exhibited 2.5-fold less expression of LdTCP1{gamma} as compared to rapidly dividing log phase parasites. The sub-cellular distribution of LdTCP1{gamma} was studied in log phase promastigotes by employing indirect immunofluorescence microscopy. The protein was present not only in cytoplasm but it was also localized in nucleus, peri-nuclear region, flagella, flagellar pocket and apical region. Co-localization of LdTCP1{gamma} with actin suggests

  18. Molecular diagnostic tools for detection and differentiation of phytoplasmas based on chaperonin-60 reveal differences in host plant infection patterns.

    Directory of Open Access Journals (Sweden)

    Tim J Dumonceaux

    Full Text Available Phytoplasmas ('Candidatus Phytoplasma' spp. are insect-vectored bacteria that infect a wide variety of plants, including many agriculturally important species. The infections can cause devastating yield losses by inducing morphological changes that dramatically alter inflorescence development. Detection of phytoplasma infection typically utilizes sequences located within the 16S-23S rRNA-encoding locus, and these sequences are necessary for strain identification by currently accepted standards for phytoplasma classification. However, these methods can generate PCR products >1400 bp that are less divergent in sequence than protein-encoding genes, limiting strain resolution in certain cases. We describe a method for accessing the chaperonin-60 (cpn60 gene sequence from a diverse array of 'Ca.Phytoplasma' spp. Two degenerate primer sets were designed based on the known sequence diversity of cpn60 from 'Ca.Phytoplasma' spp. and used to amplify cpn60 gene fragments from various reference samples and infected plant tissues. Forty three cpn60 sequences were thereby determined. The cpn60 PCR-gel electrophoresis method was highly sensitive compared to 16S-23S-targeted PCR-gel electrophoresis. The topology of a phylogenetic tree generated using cpn60 sequences was congruent with that reported for 16S rRNA-encoding genes. The cpn60 sequences were used to design a hybridization array using oligonucleotide-coupled fluorescent microspheres, providing rapid diagnosis and typing of phytoplasma infections. The oligonucleotide-coupled fluorescent microsphere assay revealed samples that were infected simultaneously with two subtypes of phytoplasma. These tools were applied to show that two host plants, Brassica napus and Camelina sativa, displayed different phytoplasma infection patterns.

  19. Chaperonin GroEL a Brucella immunodominant antigen identified using Nanobody and MALDI-TOF-MS technologies.

    Science.gov (United States)

    Abbady, A Q; Al-Daoude, A; Al-Mariri, A; Zarkawi, M; Muyldermans, S

    2012-05-15

    The deployment of today's antibodies that are able to distinguish Brucella from the closely similar pathogens, such as Yersinia, is still considered a great challenge since both pathogens share identical LPS (lipopolysaccharide) O-ring epitopes. In addition, because of the great impact of Brucella on health and economy in many countries including Syria, much effort is going to the development of next generation vaccines, mainly on the identification of new immunogenic proteins of this pathogen. In this context, Brucella-specific nanobodies (Nbs), camel genetic engineered heavy-chain antibody fragments, could be of great value. Previously, a large Nb library was constructed from a camel immunized with heat-killed Brucella. Phage display panning of this 'immune' library with Brucella total lysate resulted in a remarkable fast enrichment for a Nb referred to as NbBruc02. In the present work, we investigated the main characteristics of this Nb that can efficiently distinguish under well-defined conditions the Brucella from other bacteria including Yersinia. NbBruc02 showed a strong and specific interaction with its antigen within the crude lysate as tested by a surface plasmon resonance (SPR) biosensor and it was also able to pull down its cognate antigen from such lysate by immuno-capturing. Using matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), NbBruc02 specific antigen was identified as chaperonin GroEL, also known as heat shock protein of 60 kDa (HSP-60), which represents a Brucella immunodominant antigen responsible of maintaining proteins folding during stress conditions. Interestingly, the antigen recognition by NbBruc02 was found to be affected by the state of GroEL folding. Thus, the Nb technology applied in the field of infectious diseases, e.g. brucellosis, yields two outcomes: (1) it generates specific binders that can be used for diagnosis, and perhaps treatment, and (2) it identifies the immunogenic candidate

  20. Predicting relatedness of bacterial genomes using the chaperonin-60 universal target (cpn60 UT): application to Thermoanaerobacter species.

    Science.gov (United States)

    Verbeke, Tobin J; Sparling, Richard; Hill, Janet E; Links, Matthew G; Levin, David; Dumonceaux, Tim J

    2011-05-01

    D.R. Zeigler determined that the sequence identity of bacterial genomes can be predicted accurately using the sequence identities of a corresponding set of genes that meet certain criteria [32]. This three-gene model for comparing bacterial genome pairs requires the determination of the sequence identities for recN, thdF, and rpoA. This involves the generation of approximately 4.2kb of genomic DNA sequence from each organism to be compared, and also normally requires that oligonucleotide primers be designed for amplification and sequencing based on the sequences of closely related organisms. However, we have developed an analogous mathematical model for predicting the sequence identity of whole genomes based on the sequence identity of the 542-567 base pair chaperonin-60 universal target (cpn60 UT). The cpn60 UT is accessible in nearly all bacterial genomes with a single set of universal primers, and its length is such that it can be completely sequenced in one pair of overlapping sequencing reads via di-deoxy sequencing. These mathematical models were applied to a set of Thermoanaerobacter isolates from a wood chip compost pile and it was shown that both the one-gene cpn60 UT-based model and the three-gene model based on recN, rpoA, and thdF predicted that these isolates could be classified as Thermoanaerobacter thermohydrosulfuricus. Furthermore, it was found that the genomic prediction model using cpn60 UT gave similar results to whole-genome sequence alignments over a broad range of taxa, suggesting that this method may have general utility for screening isolates and predicting their taxonomic affiliations.

  1. A yeast two-hybrid screen reveals a strong interaction between the Legionella chaperonin Hsp60 and the host cell small heat shock protein Hsp10.

    Science.gov (United States)

    Nasrallah, Gheyath K

    2015-06-01

    L. pneumophila is an intracellular bacterium that replicates inside a membrane-bound vacuole called Legionella-containing vacuole (LCV), where it plentifully liberates its HtpB chaperonin. From LCV, HtpB reaches the host cell cytoplasm, where it interacts with SAMDC, a cytoplasmic protein required for synthesis of host polyamines that are important for intracellular growth of L. pneumophila. Additionally, cytoplasmic expression of HtpB in S. cerevisiae induces pseudohyphal growth, and in mammalian cells recruits mitochondria to LCV, and modifies actin microfilaments organization. This led us to hypothesize here that HtpB recruits a protein(s) from eukaryotic cells that is involved in the emergence of the aforementioned phenotypes. To identify this protein, a commercially available HeLa cDNA library was screened using a yeast two-hybrid system. Approximately 5×10(6) yeast clones carrying HeLa cDNA library plasmid were screened. Twenty-one positive clones were identified. DNA sequence analysis revealed that all of these positive clones encoded the mammalian small heat shock protein Hsp10. Based on the fact that chaperonions are required to interact with co-chaperonins to function properly in protein folding, we believe that HtpB recruits the host cell Hsp10 to appropriately interact with SAMDC and to induce the multifunction phenotypes deemed important in L. pneumophila pathogenesis.

  2. Chaperonin containing T-complex polypeptide subunit eta (CCT-eta is a specific regulator of fibroblast motility and contractility.

    Directory of Open Access Journals (Sweden)

    Latha Satish

    Full Text Available Integumentary wounds in mammalian fetuses heal without scar; this scarless wound healing is intrinsic to fetal tissues and is notable for absence of the contraction seen in postnatal (adult wounds. The precise molecular signals determining the scarless phenotype remain unclear. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta is specifically reduced in healing fetal wounds in a rabbit model. In this study, we examine the role of CCT-eta in fibroblast motility and contractility, properties essential to wound healing and scar formation. We demonstrate that CCT-eta (but not CCT-beta is underexpressed in fetal fibroblasts compared to adult fibroblasts. An in vitro wound healing assay demonstrated that adult fibroblasts showed increased cell migration in response to epidermal growth factor (EGF and platelet derived growth factor (PDGF stimulation, whereas fetal fibroblasts were unresponsive. Downregulation of CCT-eta in adult fibroblasts with short inhibitory RNA (siRNA reduced cellular motility, both basal and growth factor-induced; in contrast, siRNA against CCT-beta had no such effect. Adult fibroblasts were more inherently contractile than fetal fibroblasts by cellular traction force microscopy; this contractility was increased by treatment with EGF and PDGF. CCT-eta siRNA inhibited the PDGF-induction of adult fibroblast contractility, whereas CCT-beta siRNA had no such effect. In each of these instances, the effect of downregulating CCT-eta was to modulate the behavior of adult fibroblasts so as to more closely approximate the characteristics of fetal fibroblasts. We next examined the effect of CCT-eta modulation on alpha-smooth muscle actin (alpha-SMA expression, a gene product well known to play a critical role in adult wound healing. Fetal fibroblasts were found to constitutively express less alpha-SMA than adult cells. Reduction of CCT-eta with siRNA had minimal effect on cellular

  3. Mycobacterium tuberculosis Chaperonin 10 Is Secreted in the Macrophage Phagosome: Is Secretion Due to Dissociation and Adoption of a Partially Helical Structure at the Membrane?

    Science.gov (United States)

    Fossati, Gianluca; Izzo, Gaetano; Rizzi, Emanuele; Gancia, Emanuela; Modena, Daniela; Moras, Maria Luisa; Niccolai, Neri; Giannozzi, Elena; Spiga, Ottavia; Bono, Letizia; Marone, Piero; Leone, Eugenio; Mangili, Francesca; Harding, Stephen; Errington, Neil; Walters, Christopher; Henderson, Brian; Roberts, Michael M.; Coates, Anthony R. M.; Casetta, Bruno; Mascagni, Paolo

    2003-01-01

    To confirm that Mycobacterium tuberculosis chaperonin 10 (Cpn10) is secreted outside the live bacillus, infected macrophages were examined by electron microscopy. This revealed that the mycobacterial protein accumulates both in the wall of the bacterium and in the matrix of the phagosomes in which ingested mycobacteria survive within infected macrophages. To understand the structural implications underlying this secretion, a structural study of M. tuberculosis Cpn10 was performed under conditions that are generally believed to mimic the membrane environment. It was found that in buffer-organic solvent mixtures, the mycobacterial protein forms two main species, namely, a partially helical monomer that prevails in dilute solutions at room temperature and a dimer that folds into a β-sheet-dominated structure and prevails in either concentrated protein solutions at room temperature or in dilute solutions at low temperature. A partially helical monomer was also found and was completely associated with negatively charged detergents in a micelle-bound state. Remarkably, zwitterionic lipids had no effect on the protein structure. By using N- and C-truncated forms of the protein, the C- and N-terminal sequences were identified as possessing an amphiphilic helical character and as selectively associating with acidic detergent micelles. When the study was extended to other chaperonins, it was found that human Cpn10 is also monomeric and partially helical in dilute organic solvent-buffer mixtures. In contrast, Escherichia coli Cpn10 is mostly dimeric and predominately β-sheet in both dilute and concentrated solutions. Interestingly, human Cpn10 also crosses biological membranes, whereas the E. coli homologue is strictly cytosolic. These results suggest that dissociation to partially helical monomers and interaction with acidic lipids may be two important steps in the mechanism of secretion of M. tuberculosis Cpn10 to the external environment. PMID:12837802

  4. Increased expression and purification of soluble iron-regulatory protein 1 from Escherichia coli co-expressing chaperonins GroES and GroEL

    Directory of Open Access Journals (Sweden)

    H. Carvalho

    2008-04-01

    Full Text Available Iron is an essential metal for all living organisms. However, iron homeostasis needs to be tightly controlled since iron can mediate the production of reactive oxygen species, which can damage cell components and compromise the integrity and/or cause DNA mutations, ultimately leading to cancer. In eukaryotes, iron-regulatory protein 1 (IRP1 plays a central role in the control of intracellular iron homeostasis. This occurs by interaction of IRP1 with iron-responsive element regions at 5' of ferritin mRNA and 3' of transferrin mRNA which, respectively, represses translation and increases mRNA stability. We have expressed IRP1 using the plasmid pT7-His-hIRP1, which codifies for human IRP1 attached to an NH2-terminal 6-His tag. IRP1 was expressed in Escherichia coli using the strategy of co-expressing chaperonins GroES and GroEL, in order to circumvent inclusion body formation and increase the yield of soluble protein. The protein co-expressed with these chaperonins was obtained mostly in the soluble form, which greatly increased the efficiency of protein purification. Metal affinity and FPLC ion exchange chromatography were used in order to obtain highly purified IRP1. Purified protein was biologically active, as assessed by electrophoretic mobility shift assay, and could be converted to the cytoplasmic aconitase form. These results corroborate previous studies, which suggest the use of folding catalysts as a powerful strategy to increase protein solubility when expressing heterologous proteins in E. coli.

  5. Chaperonin-containing t-complex protein-1 subunit β as a possible biomarker for the phase of glomerular hyperfiltration of diabetic nephropathy.

    Science.gov (United States)

    Wu, Chung-Ze; Chang, Li-Chien; Lin, Yuh-Feng; Hung, Yi-Jen; Pei, Dee; Chen, Jin-Shuen

    2015-01-01

    In cell model, we discovered the association between chaperonin-containing t-complex polypeptide 1 subunit β (TCP-1β) and early diabetic nephropathy (DN). In this study, we further explored the relationships between TCP-1β and type 2 diabetic mellitus (DM). To mimic the clinical hyperfiltration state, a type 2 DM mice model was established by feeding a high-fat diet in combination with treatment of streptozotocin and nicotinamide. Blood and urine were collected to determine creatinine clearance (C cr), and kidney tissues were harvested for evaluation of TCP-1β expression by immunohistochemistry and Western blot. Meanwhile, clinical subjects of healthy controls and type 2 DM were recruited to strengthen the evidence with urine TCP-1β. Results showed that C cr and the expression of TCP-1β in kidney were significantly higher one week after hyperglycemia development, suggesting that the hyperfiltration state was successfully established in the mice model. TCP-1β was expressed predominantly on renal tubules. By using the estimated glomerular filtration rate to index progression in clinical investigation, urine TCP-1β level was associated with the hyperfiltration phase in type 2 DM patients. Conclusively, we confirmed that TCP-1β is a possible biomarker for early nephropathy of type 2 DM, but further mechanistic study to elucidate its cause and pathway is needed.

  6. Effects of the chaperonin GroE on the refolding of tryptophanase from Escherichia coli. Refolding is enhanced in the presence of ADP.

    Science.gov (United States)

    Mizobata, T; Akiyama, Y; Ito, K; Yumoto, N; Kawata, Y

    1992-09-01

    The refolding of the tetrameric enzyme tryptophanase was facilitated by the chaperonin GroE. Maximum refolding yield of tryptophanase molecules (about 80%) was attained in the presence of a 15-fold excess of GroE 21-mer over tryptophanase monomer. The GroEL subunit was required for this improvement in refolding yield, whereas the GroES subunit was not. Light scattering experiments of the refolding reaction revealed that GroE bound to tryptophanase folding intermediates and suppressed their aggregation. The presence of ATP was required for the efficient dissociation of tryptophanase from GroEL. However, our experiments indicated that tryptophanase dissociated readily from GroEL in the presence of not only ATP, but also in the presence of non-hydrolyzable ATP analogues such as ATP gamma S (adenosine 5'-O-(3-thiotriphosphate)) and AMP-PNP (adenyl-5'-yl imidodiphosphate) as well. Surprisingly, the release of tryptophanase from GroEL was facilitated in the presence of ADP as well. We concluded that the binding of nucleotides such as ATP and ADP changed the conformation of GroEL and facilitated the dissociation of tryptophanase molecules. The conformation formed in the presence of ADP was distinct from the conformation formed in the presence of ATP, as shown by the selective dissociation of various folding proteins from the two conformations.

  7. Chaperonin-Containing t-Complex Protein-1 Subunit β as a Possible Biomarker for the Phase of Glomerular Hyperfiltration of Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Chung-Ze Wu

    2015-01-01

    Full Text Available In cell model, we discovered the association between chaperonin-containing t-complex polypeptide 1 subunit β (TCP-1β and early diabetic nephropathy (DN. In this study, we further explored the relationships between TCP-1β and type 2 diabetic mellitus (DM. To mimic the clinical hyperfiltration state, a type 2 DM mice model was established by feeding a high-fat diet in combination with treatment of streptozotocin and nicotinamide. Blood and urine were collected to determine creatinine clearance (Ccr, and kidney tissues were harvested for evaluation of TCP-1β expression by immunohistochemistry and Western blot. Meanwhile, clinical subjects of healthy controls and type 2 DM were recruited to strengthen the evidence with urine TCP-1β. Results showed that Ccr and the expression of TCP-1β in kidney were significantly higher one week after hyperglycemia development, suggesting that the hyperfiltration state was successfully established in the mice model. TCP-1β was expressed predominantly on renal tubules. By using the estimated glomerular filtration rate to index progression in clinical investigation, urine TCP-1β level was associated with the hyperfiltration phase in type 2 DM patients. Conclusively, we confirmed that TCP-1β is a possible biomarker for early nephropathy of type 2 DM, but further mechanistic study to elucidate its cause and pathway is needed.

  8. Perspectives on the origin of microfilaments, microtubules, the relevant chaperonin system and cytoskeletal motors--a commentary on the spirochaete origin of flagella

    Institute of Scientific and Technical Information of China (English)

    JING YAN LI; CHUAN FEN WU

    2003-01-01

    The origin of cytoskeleton and the origin of relevant intracellular transportation system are big problems for understanding the emergence of eukaryotic cells. The present article summarized relevant information of evidences and molecular traces on the origin of actin, tubulin, the chaperonin system for folding them,myosins, kinesins, axonemal dyneins and cytoplasmic dyneins. On this basis the authors proposed a series of works, which should be done in the future, and indicated the ways for reaching the targets. Thesetargets are mainly: 1) the reconstruction of evolutionary path from MreB protein of archaeal ancestor of eukaryotic cells to typical actin; 2) the finding of the MreB or MreB-related proteins in crenarchaea and using them to examine J. A. Lake's hypothesis on the origin of eukaryote from "eocytes" crenarchaea);3) the examinations of the existence and distribution of cytoskeleton made of MreB-related protein within coccoid archaea, especially in amoeboid archaeon Thermoplasm acidophilum; 4) using Thermoplasma as a model of archaeal ancestor of eukaryotic cells; 5) the searching for the homolog of ancestral dynein in present-day living archaea. During the writing of this article, Margulis' famous spirochaete hypothesis on the origin of flagella and cilia was unexpectedly involved and analyzed from aspects of tubulins, dyneins and spirochaetes. Actually, spirochaete cannot be reasonably assumed as the ectosymbiotic ancestor of eukaryotic flagella and cilia, since their swing depends upon large amount of bacterial flagella beneath the flexible outer wall, but not depends upon their intracellular tubules and the assumed dyneins. In this case,if they had "evolved" into cilia and lost their bacterial flagella, they would immediately become immobile!In fact, tubulin and dynein-like proteins have not been found in any spirochaete.

  9. The molecular anatomy of human Hsp60 and its similarity with that of bacterial orthologs and acetylcholine receptor reveal a potential pathogenetic role of anti-chaperonin immunity in myasthenia gravis.

    Science.gov (United States)

    Gammazza, Antonella Marino; Bucchieri, Fabio; Grimaldi, Luigi M E; Benigno, Arcangelo; de Macario, Everly Conway; Macario, Alberto J L; Zummo, Giovanni; Cappello, Francesco

    2012-08-01

    Heat-shock protein 60 (Hsp60) is ubiquitous and highly conserved being present in eukaryotes and prokaryotes, including pathogens. This chaperonin, although typically a mitochondrial protein, can also be found in other intracellular sites, extracellularly, and in circulation. Thus, it can signal the immune system and participate in the development of inflammation and immune reactions. Both phenomena can be elicited by human and foreign Hsp60 (e.g., bacterial GroEL), when released into the blood by infectious agents. Consequently, all these Hsp60 proteins become part of a complex autoimmune response characterized by multiple cross reactions because of their structural similarities. In this study, we demonstrate that Hsp60 proteins from humans and two common pathogens, Chlamydia trachomatis and Chlamydia pneumoniae, share various sequence segments of potentially highly immunogenic epitopes with acetylcholine receptor α1 subunit (AChRα1). The structural data indicate that AChRα1 antibodies, implicated in the pathogenesis of myasthenia gravis, could very well be elicited and/or maintained by self- and/or bacterial Hsp60.

  10. Elevated blood Hsp60, its structural similarities and cross-reactivity with thyroid molecules, and its presence on the plasma membrane of oncocytes point to the chaperonin as an immunopathogenic factor in Hashimoto's thyroiditis.

    Science.gov (United States)

    Marino Gammazza, Antonella; Rizzo, Manfredi; Citarrella, Roberto; Rappa, Francesca; Campanella, Claudia; Bucchieri, Fabio; Patti, Angelo; Nikolic, Dragana; Cabibi, Daniela; Amico, Giandomenico; Conaldi, Pier Giulio; San Biagio, Pier Luigi; Montalto, Giuseppe; Farina, Felicia; Zummo, Giovanni; Conway de Macario, Everly; Macario, Alberto J L; Cappello, Francesco

    2014-05-01

    The role Hsp60 might play in various inflammatory and autoimmune diseases is under investigation, but little information exists pertaining to Hashimoto's thyroiditis (HT). With the aim to fill this gap, in the present work, we directed our attention to Hsp60 participation in HT pathogenesis. We found Hsp60 levels increased in the blood of HT patients compared to controls. The chaperonin was immunolocalized in thyroid tissue specimens from patients with HT, both in thyrocytes and oncocytes (Hurthle cells) with higher levels compared to controls (goiter). In oncocytes, we found Hsp60 not only in the cytoplasm but also on the plasma membrane, as shown by double immunofluorescence performed on fine needle aspiration cytology. By bioinformatics, we found regions in the Hsp60 molecule with remarkable structural similarity with the thyroglobulin (TG) and thyroid peroxidase (TPO) molecules, which supports the notion that autoantibodies against TG and TPO are likely to recognize Hsp60 on the plasma membrane of oncocytes. This was also supported by data obtained by ELISA, showing that anti-TG and anti-TPO antibodies cross-react with human recombinant Hsp60. Antibody-antigen (Hsp60) reaction on the cell surface could very well mediate thyroid cell damage and destruction, perpetuating inflammation. Experiments with recombinant Hsp60 did not show stimulation of cytokine production by peripheral blood mononuclear cells from HT patients. All together, these results led us to hypothesize that Hsp60 may be an active player in HT pathogenesis via an antibody-mediated immune mechanism.

  11. Engineering a nanopore with co-chaperonin function

    NARCIS (Netherlands)

    Ho, Ching-Wen; Meervelt, Veerle; Tsai, Keng-Chang; De Temmerman, Pieter-Jan; Mast, Jan; Maglia, Giovanni

    2015-01-01

    The emergence of an enzymatic function can reveal functional insights and allows the engineering of biological systems with enhanced properties. We engineered an alpha hemolysin nanopore to function as GroES, a protein that, in complex with GroEL, forms a two-stroke protein-folding nanomachine. The

  12. The impact of conformational fluctuations on self-assembly: Cooperative aggregation of archaeal chaperonin proteins

    Science.gov (United States)

    Whitelam, Stephen; Rogers, Carl; Pasqua, Andrea; Paavola, Chad; Trent, Jonathan; Geissler, Phillip L.

    2009-01-01

    Protein complexes called rosettasomes self-assemble in solution to form large-scale filamentous and planar structures. The relative abundance of these aggregates varies abruptly with environmental conditions and sample composition. Our simulations of a model of patchy nanoparticles can reproduce this sharp crossover, but only if particles are allowed to switch between two internal states favoring different geometries of local binding. These results demonstrate how local conformational adaptivity can fundamentally influence the cooperativity of pattern-forming dynamics. PMID:19072304

  13. Study of cilia assembly in Tetrahymena and the role of cytosolic chaperonin CCT

    OpenAIRE

    Seixas, Ana Cecília Fernandes, 1974-

    2008-01-01

    Tese de doutoramento em Biologia (Biologia Molecular), apresentada à Universidade de Lisboa através da Faculdade de Ciências, 2008 Os cílios são organelos conservados evolutivamente que são requeridos num vasto número de processos celulares tais como locomoção, quimiotaxia, movimento de fluídos e transdução de sinais. Nos últimos anos, um grande número de publicações tem demonstrado o impacto que pequenas alterações no correcto funcionamento dos cílios tem no Homem. Várias doenças humanas ...

  14. Hsp10 nuclear localization and changes in lung cells response to cigarette smoke suggest novel roles for this chaperonin.

    Science.gov (United States)

    Corrao, Simona; Anzalone, Rita; Lo Iacono, Melania; Corsello, Tiziana; Di Stefano, Antonino; D'Anna, Silvestro Ennio; Balbi, Bruno; Carone, Mauro; Sala, Anna; Corona, Davide; Timperio, Anna Maria; Zolla, Lello; Farina, Felicia; de Macario, Everly Conway; Macario, Alberto J L; Cappello, Francesco; La Rocca, Giampiero

    2014-10-01

    Heat-shock protein (Hsp)10 is the co-chaperone for Hsp60 inside mitochondria, but it also resides outside the organelle. Variations in its levels and intracellular distribution have been documented in pathological conditions, e.g. cancer and chronic obstructive pulmonary disease (COPD). Here, we show that Hsp10 in COPD undergoes changes at the molecular and subcellular levels in bronchial cells from human specimens and derived cell lines, intact or subjected to stress induced by cigarette smoke extract (CSE). Noteworthy findings are: (i) Hsp10 occurred in nuclei of epithelial and lamina propria cells of bronchial mucosa from non-smokers and smokers; (ii) human bronchial epithelial (16HBE) and lung fibroblast (HFL-1) cells, in vitro, showed Hsp10 in the nucleus, before and after CSE exposure; (iii) CSE stimulation did not increase the levels of Hsp10 but did elicit qualitative changes as indicated by molecular weight and isoelectric point shifts; and (iv) Hsp10 nuclear levels increased after CSE stimulation in HFL-1, indicating cytosol to nucleus migration, and although Hsp10 did not bind DNA, it bound a DNA-associated protein.

  15. Hsp10 nuclear localization and changes in lung cells response to cigarette smoke suggest novel roles for this chaperonin

    Science.gov (United States)

    Corrao, Simona; Anzalone, Rita; Lo Iacono, Melania; Corsello, Tiziana; Di Stefano, Antonino; D'Anna, Silvestro Ennio; Balbi, Bruno; Carone, Mauro; Sala, Anna; Corona, Davide; Timperio, Anna Maria; Zolla, Lello; Farina, Felicia; Conway de Macario, Everly; Macario, Alberto J. L.; Cappello, Francesco; La Rocca, Giampiero

    2014-01-01

    Heat-shock protein (Hsp)10 is the co-chaperone for Hsp60 inside mitochondria, but it also resides outside the organelle. Variations in its levels and intracellular distribution have been documented in pathological conditions, e.g. cancer and chronic obstructive pulmonary disease (COPD). Here, we show that Hsp10 in COPD undergoes changes at the molecular and subcellular levels in bronchial cells from human specimens and derived cell lines, intact or subjected to stress induced by cigarette smoke extract (CSE). Noteworthy findings are: (i) Hsp10 occurred in nuclei of epithelial and lamina propria cells of bronchial mucosa from non-smokers and smokers; (ii) human bronchial epithelial (16HBE) and lung fibroblast (HFL-1) cells, in vitro, showed Hsp10 in the nucleus, before and after CSE exposure; (iii) CSE stimulation did not increase the levels of Hsp10 but did elicit qualitative changes as indicated by molecular weight and isoelectric point shifts; and (iv) Hsp10 nuclear levels increased after CSE stimulation in HFL-1, indicating cytosol to nucleus migration, and although Hsp10 did not bind DNA, it bound a DNA-associated protein. PMID:25355063

  16. Effects of a Mutation in the HSPE1 Gene Encoding the Mitochondrial Co-chaperonin HSP10 and Its Potential Association with a Neurological and Developmental Disorder

    DEFF Research Database (Denmark)

    Bie, Anne S; Fernandez-Guerra, Paula; Birkler, Rune I D;

    2016-01-01

    or the literature. To evaluate whether the mutation may be disease-associated we investigated its effects by in vitro and ex vivo studies. Our in vitro studies indicated that the purified mutant protein was functional, yet its thermal stability, spontaneous refolding propensity, and resistance to proteolytic...

  17. AcEST: BP919789 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 5|CH601_BRASO 60 kDa chaperonin 1 OS=Bradyrhizobium sp. ... 243 4e-64 sp|Q11DQ8|CH602_MESSB...Da chaperonin 1 OS=Rhodospirillum rubr... 239 8e-63 sp|Q11LG4|CH601_MESSB 60 kDa chaperonin 1 OS=Mesorhizobi

  18. Genomic structure of the human mitochondrial chaperonin genes: Hsp60 and Hsp10 are localised head to head on chromosome 2 separated by a bidirectional promoter

    DEFF Research Database (Denmark)

    Hansen, J.J.; Bross, P.; Westergaard, M.;

    2003-01-01

    are not known to express any member of the platelet-derived growth factor receptor family. In order to study if epidermis may be genetically transformed to a platelet-derived growth factor sensitive compartment we aimed to introduce the gene encoding human platelet-derived growth factor receptor beta (PDGF beta...... at the air-liquid interface on devitalized dermis, we were able to establish a multilayered epithelium showing histologic similarities to that evolved from native keratinocytes or keratinocytes transduced with the reporter gene encoding enhanced green fluorescent protein. Receptor-modified epidermal tissue...... cultured for 6 days and examined by immunofluorescence microscopy was shown to contain PDGF beta R-expressing keratinocytes distributed in all layers of living epidermis. By continued tissue culture in serum-containing medium, the epidermis became increasingly cornified although receptor-positive cells...

  19. AcEST: DK951540 [AcEST

    Lifescience Database Archive (English)

    Full Text Available chaperonin OS=Rhizobium leguminosaru... 212 2e-54 sp|Q11DQ8|CH602_MESSB 60 kDa chaperonin 2 OS=Mesorhizobiu...edic... 212 2e-54 sp|P35469|CH601_RHIME 60 kDa chaperonin 1 OS=Rhizobium meliloti ... 212 2e-54 sp|Q11LG4|CH601_MESSB

  20. Mimicking the action of GroEL in molecular dynamics simulations : Application to the refinement of protein structures

    NARCIS (Netherlands)

    Fan, H; Mark, AE

    2006-01-01

    Bacterial chaperonin, GroEL, together with its co-chaperonin, GroES, facilitates the folding of a variety of polypeptides. Experiments suggest that GroEL stimulates protein folding by multiple cycles of binding and release. Misfolded proteins first bind to an exposed hydrophobic surface on GroEL. Gr

  1. EST Table: CA946010 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available CA946010 KI000048 10/09/28 97 %/134 aa ref|NP_001073348.1| chaperonin [Bombyx mori]...0588 10/09/10 63 %/134 aa gnl|Amel|GB13033-PA 10/09/10 66 %/134 aa gi|91077396|ref|XP_975299.1| PREDICTED: similar to chaperonin [Tribolium castaneum] FS904811 L9 ...

  2. Yeast Interacting Proteins Database: YML064C, YOR020C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available th this bait as prey (0) YOR020C HSP10 Mitochondrial matrix co-chaperonin that inhibits the ATPase activity ... YOR020C Prey gene name HSP10 Prey description Mitochondrial matrix co-chaperonin that inhibits

  3. The Expression, Purification of Chaperonin β Subunit from the Thermoacidophilic Archaeon,Acidianus tengchongensis and its Activity Analysis%腾冲嗜酸热两面菌S5分子伴侣β亚基的表达、纯化和活性的初步分析

    Institute of Scientific and Technical Information of China (English)

    马晴; 张渝英

    2007-01-01

    用NdeI和BamHI酶切回收腾冲嗜酸热两面菌S5的分子伴侣β亚基基因片段插入pET-23b的相应位置,并分别在BL21(DE3)和Rosetta-gamiTMB(DE3)pLysS中表达.表达的β亚基以可溶的形式存在.β亚基在Rosetta-gamiTMB(DE3)pLysS中表达较高,其占菌体总蛋白的16.2%,且以单体和聚体形式同时存在.表达的菌体经超声破碎、70℃热处理后,上清中β亚基蛋白含量达到30%,再经(NH4)2SO4沉淀、Bio-Gel A-1.5m和DEAE-Sepharose CL-6B柱层析,得到在SDS-PAGE呈电泳均一的β亚基,Native-PAGE表明其为聚体,有弱的ATPase活性.

  4. Co-overexpression of bacterial GroESL chaperonins partly overcomes non-productive folding and tetramer assembly of E. coli-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) carrying the prevalent disease-causing K304E mutation

    DEFF Research Database (Denmark)

    Bross, P; Andresen, B S; Winter, V;

    1993-01-01

    underlying MCAD deficiency caused by the prevalent K304E mutation. Depending on which of the three amino acids--lysine (wild-type), glutamic acid (K304E) or glutamine (K304Q) are present at position 304 of the mature polypeptide, three different patterns were observed in our assay system: (i) solubility...... and the enzyme activity measured as observed for the wild-type protein. (iii) Solubility of the K304E mutant is in a similar fashion GroESL responsive as the K304Q mutant, but the amount of tetramer observed and the enzyme activity measured do not correlate with the amount of soluble K304E MCAD protein detected...... in Western blotting. In a first attempt to estimate the specific activity, we show that tetrameric K304E and K304Q mutant MCAD display a specific activity in the range of the wild-type enzyme. Taken together, our results strongly suggest, that the K304E mutation primarily impairs the rate of folding...

  5. Los complejos Chaperonina(MSP63inducen anticuerpos de reacciones cruzadas, bactericidas y opsonofagocítica.

    Directory of Open Access Journals (Sweden)

    Juan Marzoa

    2009-08-01

    Full Text Available Alteration of the native structure of antigens can lead to the loss of protective epitopes. Our previous results showed that separation of the meningococcal outer membrane proteins in native conditions revealed the existence of protein complexes that could be relevant for the development of new vaccine formulations. The aim of this work was to analyse the immunogenic characteristics of a highly conserved 700 kDa chaperonin complex (CxChap detected and purified by using high resolution clear native electrophoresis. Analysis of the anti-CxChap serum by Western-blotting revealed the presence of antibodies against the MSP63 but also against the macrophage infectivity potentiator-like protein (MIP, which is coopurified with the chaperonin complex. Antibodies raised by immunisation with CxChap chaperonin complex show bactericidal and opsonophagocytic activity.

  6. Novel Protein Folding Pathways for Protein Salvage and Recycling

    Science.gov (United States)

    2013-08-26

    fermentation physiology for formate and carbon monoxide. In Fig. 3 below, actual gene replacement and knockouts of the chaperonin HSP60 loci in...without Hsp60 under the same experimental conditions (20 mM sodium acetate , pH 6.0, 2 mM ATP) at 37 ⁰C exhibited no overall change in Figure 6. ThT

  7. Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance

    DEFF Research Database (Denmark)

    Wang, Wei-Qing; Møller, Ian Max; Song, Song-Quan

    2012-01-01

    these seeds to identify the candidate proteins associated with the loss of desiccation tolerance and found a total of seven proteins – tubulin alpha-1 chain, seed biotin-containing protein SBP65, P54 protein, vicilin, vicilin-like antimicrobial peptides 2–3, convicilin and TCP-1/cpn60 chaperonin family...

  8. Effects of solar UV-B radiation on canopy structure of Ulva communities from southern Spain

    NARCIS (Netherlands)

    Bischof, K; Peralta, G; Krabs, G; van de Poll, WH; Perez-Llorens, JL; Breeman, AM

    2002-01-01

    Within the sheltered creeks of Cadiz bay, Ulva thalli form extended mat-like canopies. The effect of solar ultraviolet radiation on photosynthetic activity, the composition of photosynthetic and xanthophyll cycle pigments, and the amount of RubisCO, chaperonin 60 (CPN 60), and the induction of DNA d

  9. Effects of solar UV-B radiation on canopy structure of Ulva communities from southern Spain

    NARCIS (Netherlands)

    Bischof, K.; Peralta, G.; Kräbs, G.; van de Poll, W.H.; Lucas Pérez-Lloréns, J.; Breeman, A.M.

    2002-01-01

    Within the sheltered creeks of Cádiz bay, Ulva thalli form extended mat-like canopies. The effect of solar ultraviolet radiation on photosynthetic activity, the composition of photosynthetic and xanthophyll cycle pigments, and the amount of RubisCO, chaperonin 60 (CPN 60), and the induction of DNA d

  10. SwissProt search result: AK070291 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070291 J023052I10 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chaperonin alpha subunit) (The...rmophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 1e-77 ...

  11. SwissProt search result: AK107266 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107266 002-125-H06 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chap...eronin alpha subunit) (Thermophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 9e-98 ...

  12. SwissProt search result: AK100651 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100651 J023111D11 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chaperonin alpha subunit) (The...rmophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 3e-80 ...

  13. SwissProt search result: AK065883 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065883 J013048I04 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chaperonin alpha subunit) (The...rmophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 1e-72 ...

  14. SwissProt search result: AK105701 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105701 001-201-D07 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chap...eronin alpha subunit) (Thermophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 2e-92 ...

  15. SwissProt search result: AK069949 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069949 J023034K12 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chaperonin alpha subunit) (The...rmophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 2e-93 ...

  16. SwissProt search result: AK062146 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062146 001-045-G12 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chap...eronin alpha subunit) (Thermophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 2e-34 ...

  17. SwissProt search result: AK121568 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK121568 J033035C24 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chaperonin alpha subunit) (The...rmophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 2e-95 ...

  18. SwissProt search result: AK099642 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK099642 J013060L05 (P46219) Thermosome alpha subunit (Thermosome subunit 1) (Chaperonin alpha subunit) (The...rmophilic factor 55 alpha) (TF55-alpha) (Ring complex alpha subunit) (Thermophilic factor 56) THSA_SULSH 3e-17 ...

  19. SwissProt search result: AK120503 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120503 J013122K17 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 1e-141 ...

  20. SwissProt search result: AK063576 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK063576 001-117-H02 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 3e-85 ...

  1. SwissProt search result: AK069617 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK069617 J023019K12 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 0.0 ...

  2. SwissProt search result: AK060117 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060117 006-308-E09 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 2e-71 ...

  3. SwissProt search result: AK073999 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK073999 J033073C08 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 1e-177 ...

  4. SwissProt search result: AK070127 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070127 J023045O03 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 1e-157 ...

  5. SwissProt search result: AK062098 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062098 001-045-A02 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 1e-137 ...

  6. SwissProt search result: AK070603 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK070603 J023059D06 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 1e-150 ...

  7. SwissProt search result: AK119217 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119217 001-046-E10 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 1e-113 ...

  8. SwissProt search result: AK100602 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK100602 J023107D12 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 1e-108 ...

  9. SwissProt search result: AK101537 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101537 J033048E22 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 1e-151 ...

  10. SwissProt search result: AK060773 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK060773 001-033-B08 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 2e-53 ...

  11. SwissProt search result: AK101334 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101334 J033034I03 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 1e-142 ...

  12. SwissProt search result: AK061901 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061901 001-041-H05 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 7e-75 ...

  13. SwissProt search result: AK119223 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119223 001-100-D06 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 5e-71 ...

  14. SwissProt search result: AK109517 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK109517 002-109-A02 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 0.0 ...

  15. SwissProt search result: AK061410 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK061410 006-306-B08 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 2e-63 ...

  16. SwissProt search result: AK120234 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK120234 J013043L17 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 1e-13 ...

  17. SwissProt search result: AK068562 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068562 J013152E19 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 1e-127 ...

  18. SwissProt search result: AK119623 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK119623 002-117-H08 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 0.0 ...

  19. SwissProt search result: AK068277 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK068277 J013146G10 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 2e-77 ...

  20. SwissProt search result: AK108892 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK108892 002-152-E06 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 1e-139 ...

  1. SwissProt search result: AK101042 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK101042 J033003J10 (P35635) 60 kDa chaperonin (Protein Cpn60) (groEL protein) (Immunoreactive... protein Bb65) (Immunoreactive protein Bb63) (Heat shock protein 60) (HSP 60) CH60_BARBA 2e-20 ...

  2. Hypothesis of demodicidosis rosacea flushing etiopathogenesis.

    Science.gov (United States)

    Robledo, Mary Ann; Orduz, Mariana

    2015-04-01

    Most of the patients with erythematotelangiectatic rosacea are characterized by flushing, oedema and telangiectasia. The etiopathogenesis of the flushing in rosacea patients is unknown. Clinically the flushing in rosacea is similar to the "Asian flushing syndrome". Most Asians have an overactive alcohol dehydrogenase (ADH) that tends to break down alcohol into acetaldehyde faster. People with "Asians flushing syndrome" have a genetic disorder with the Aldehyde Dehydrogenase 2(∗)2 (ALDH2(∗)2) allele. This is the reason why they do not metabolize very well the acetaldehyde that comes from the alcohol, which means that acetaldehyde takes much longer to clear from their blood. ALDH2 enzyme is primarily responsible for oxidation of acetaldehyde derived from ethanol metabolism, as well as oxidation of various other endogenous and exogenous aldehydes. Acetaldehyde produces the vasodilatation in the "Asian flushing syndrome". The antibodies against the GroEl chaperonin protein, a 62-kDa heat shock protein were found in the Bacillus oleronius isolated from Demodex mites, in rosacea patients. The GroEl chaperonin protein is a protein that plays a key role in normal folding of ALDH2. If the GroEl chaperonin antibodies found in patients with rosacea, cross react with the human GroEl chaperonin protein, they will not fold normally the ALDH2, and then the enzyme will not metabolize the acetaldehyde. Many of the patients with rosacea have a concomitant infection with Helicobacter pylori in their stomach. The H.pylori produces high amounts of acetaldehyde, which comes from their metabolism of ethanol or carbohydrates. As a result, high amounts of acetaldehyde will circulate for longer time in the blood, until the liver CYP2E1(p450) enzyme system finally metabilizes the acetaldehyde, during that period of time the patients will experience a flushing as well as the people with the "Asian flushing syndrome" suffer when they drink ethanol. To prove the hypothesis it is necessary

  3. A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model.

    Science.gov (United States)

    Min, Wonki; Angileri, Francesca; Luo, Haibin; Lauria, Antonino; Shanmugasundaram, Maruda; Almerico, Anna Maria; Cappello, Francesco; de Macario, Everly Conway; Lednev, Igor K; Macario, Alberto J L; Robb, Frank T

    2014-10-27

    Chaperonins mediate protein folding in a cavity formed by multisubunit rings. The human CCT has eight non-identical subunits and the His147Arg mutation in one subunit, CCT5, causes neuropathy. Knowledge is scarce on the impact of this and other mutations upon the chaperone's structure and functions. To make progress, experimental models must be developed. We used an archaeal mutant homolog and demonstrated that the His147Arg mutant has impaired oligomeric assembly, ATPase activity, and defective protein homeostasis functions. These results establish for the first time that a human chaperonin gene defect can be reproduced and studied at the molecular level with an archaeal homolog. The major advantage of the system, consisting of rings with eight identical subunits, is that it amplifies the effects of a mutation as compared with the human counterpart, in which just one subunit per ring is defective. Therefore, the slight deficit of a non-lethal mutation can be detected and characterized.

  4. Expression, purification, crystallization and X-ray diffraction studies of the molecular chaperone prefoldin from Homo sapiens.

    Science.gov (United States)

    Aikawa, Yoshiki; Kida, Hiroshi; Nishitani, Yuichi; Miki, Kunio

    2015-09-01

    Proper protein folding is an essential process for all organisms. Prefoldin (PFD) is a molecular chaperone that assists protein folding by delivering non-native proteins to group II chaperonin. A heterohexamer of eukaryotic PFD has been shown to specifically recognize and deliver non-native actin and tubulin to chaperonin-containing TCP-1 (CCT), but the mechanism of specific recognition is still unclear. To determine its crystal structure, recombinant human PFD was reconstituted, purified and crystallized. X-ray diffraction data were collected to 4.7 Å resolution. The crystals belonged to space group P21212, with unit-cell parameters a = 123.2, b = 152.4, c = 105.9 Å.

  5. Dicty_cDB: [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available VF (Link to library) VFB833 (Link to dictyBase) - - - Contig-U15138-1 VFB833Z (Link... to Original site) - - VFB833Z 192 - - - - Show VFB833 Library VF (Link to library) Clone ID VFB833 (Link to dict...yBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15138-1 Original site URL http://dict...nces producing significant alignments: (bits) Value N U72247 |U72247.1 Dictyostelium discoideum chaperonin 6...0 (hspA) mRNA, complete cds. 351 2e-93 1 AF359268 |AF359268.1 Dictyostelium discoideum chaperonin 60 gene, c

  6. Identification of a Soluble Factor that Induces Cell Death and Growth Inhibition in Prostate Carcinoma Cells

    Science.gov (United States)

    2010-02-01

    year report, we showed partial purification of PCIF activity using ultrafiltration , carboxymethyl (CM) - diethyaminopropyl (ANX) ion exchange columns...suspected that PCIF may form a complex with other protein(s) based upon the observation that the molecular weight (M.W.) of PCIF ranges between 10 – 25...Tubulin-specific chaperone A (Tubulin-folding cofactor A) (CFA) (TCP1-chaperonin cofactor A) 5.254 12.725 Q12904 Multisynthetase complex auxiliary

  7. Single-particle cryo-electron microscopy of macromolecular assemblies

    OpenAIRE

    Cheng, Kimberley

    2009-01-01

    In this thesis, single-particle cryo-electron microscopy (cryo-EM) was used to study the structure of three macromolecular assemblies: the two hemocyanin isoforms from Rapana thomasiana, the Pyrococcus furiosus chaperonin, and the ribosome from Escherichia coli. Hemocyanins are large respiratory proteins in arthropods and molluscs. Most molluscan hemocyanins exist as two distinct isoforms composed of related polypeptides. In most species the two isoforms differ in terms of their oligomeric st...

  8. Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species

    DEFF Research Database (Denmark)

    Houbraken, J.; Spierenburg, H.; Frisvad, Jens Christian

    2012-01-01

    The phylogenetic relationship among Geosmithia argillacea, Talaromyces emersonii, Talaromyces byssochlamydoides and other members of the Trichocomaceae was studied using partial RPB2 (RNA polymerase II gene, encoding the second largest protein subunit), Tsr1 (putative ribosome biogenesis protein......) and Cct8 (putative chaperonin complex component TCP-1) gene sequences. The results showed that these species form a distinct clade within the Trichocomaceae and Trichocoma paradoxa is phylogenetically most closely related. Based on phenotypic and physiological characters and molecular data, we propose...

  9. AcEST: DK953481 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ium meliloti ... 208 1e-53 sp|Q2KBZ7|CH601_RHIEC 60 kDa chaperonin 1 OS=Rhizobium etli (str... 208 1e-53 sp|A5VTU1|CH60_BRUO2...QSGEQIEQVATISANNDR 512 V EVV L+ K++ I + E++ QV TISAN +R Sbjct: 124 VAEVVKDLQAKAKKINTSEEVAQVGTISANGER 156 >sp|A5VTU1|CH60_BRUO2

  10. Immunohistochemistry of human Hsp60 in health and disease: from autoimmunity to cancer.

    Science.gov (United States)

    Cappello, Francesco; de Macario, Everly Conway; Zummo, Giovanni; Macario, Alberto J L

    2011-01-01

    Hsp60 (also called Cpn60) is a chaperonin with essential functions for cell physiology and survival. Additionally, its involvement in the pathogenesis of a number of diseases (e.g., some autoimmune disorders and cancer) is becoming evident with new research. For example, the distribution and levels of Hsp60 in cells and tissues have been found altered in many pathologic conditions, and the significance of these alterations is being investigated in a number of laboratories. The aim of this ongoing research is to determine the meaning of these Hsp60 alterations with regard to pathogenetic mechanisms, diagnosis, classification of lesions, and assessing of prognosis and response to treatment. Hsp60 occurs in the mitochondria, i.e., its typical residence according to classic knowledge, and also in other locales, such as the cytosol, the cell membrane, the intercellular space, and biological fluids (e.g., blood and cerebrospinal fluid). Detection and quantitative determinations in all these locations are becoming essential components of laboratory pathology in clinics and research. Consequently, immunohistochemistry targeting Hsp60 is also becoming essential for pathologists and researchers interested in disorders involving this chaperonin. In this chapter, we briefly summarize some recent discoveries on the participation of Hsp60 in the pathogenesis of human diseases and describe in detail how to perform immunohistochemical reactions for detecting the chaperonin, determining its location, and measuring its levels of expression.

  11. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation.

    Science.gov (United States)

    Münch, Christian; Harper, J Wade

    2016-06-30

    The mitochondrial matrix is unique in that it must integrate the folding and assembly of proteins derived from the nuclear and mitochondrial genomes. In Caenorhabditis elegans, the mitochondrial unfolded protein response (UPRmt) senses matrix protein misfolding and induces a program of nuclear gene expression, including mitochondrial chaperonins, to promote mitochondrial proteostasis. While misfolded mitochondrial-matrix-localized ornithine transcarbamylase induces chaperonin expression, our understanding of mammalian UPRmt is rudimentary, reflecting a lack of acute triggers for UPRmt activation. This limitation has prevented analysis of the cellular responses to matrix protein misfolding and the effects of UPRmt on mitochondrial translation to control protein folding loads. Here we combine pharmacological inhibitors of matrix-localized HSP90/TRAP1 (ref. 8) or LON protease, which promote chaperonin expression, with global transcriptional and proteomic analysis to reveal an extensive and acute response of human cells to UPRmt. This response encompasses widespread induction of nuclear genes, including matrix-localized proteins involved in folding, pre-RNA processing and translation. Functional studies revealed rapid but reversible translation inhibition in mitochondria occurring concurrently with defects in pre-RNA processing caused by transcriptional repression and LON-dependent turnover of the mitochondrial pre-RNA processing nuclease MRPP3 (ref. 10). This study reveals that acute mitochondrial protein folding stress activates both increased chaperone availability within the matrix and reduced matrix-localized protein synthesis through translational inhibition, and provides a framework for further dissection of mammalian UPRmt.

  12. Cloning, expression and mapping of the full-length cDNA of human CCTβ subunit

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chaperonins assist the proper folding of target proteins without being a part of the substrates. The eukaryotic cytosolic chaperonin, CCT-Chaperonin Containing TCP-1 (tailless complex polypeptide-1), is mainly involved in the formation of cytoskeletal proteins and is essential for cell viability. Mammalian CCT is commonly a protein complex composed of 7-9 subunit species. We have isolated a novel full-length cDNA from human testis cDNA library. This cDNA of 1935 bp contains a 1605 bp open reading frame (ORF) encoding 535 amino acids (aa). The deduced protein of the cDNA is highly homologous to the CCTβ subunit of saccharomyces cerevisiae, schizosaccharomyces pombe, caenorhabditis elegans and mouse, etc. Especially high homology (97%) is found between the deduced protein and mouse CCTb. On the basis of such high homology, the protein encoded by the new gene was proposed to be a human CCTβ subunit. Northern hybridization showed that human CCTβ gene is expressed as a transcript of about 2.0 kb in various tissues. Overexpression was seen in testis with the expression level 3-24 times of those in other tissues. The CCTβ gene was mapped to human chromosome 12q14 by Radiation Hybrid Mapping. Through homologous search, the 5′-end of the cDNA sequence was found to share intermittent regional homology with the 3′-end of human genomic sequence (U91327). The genomic structure of the 5′-end of CCTβ was also described in detail through comparative analysis.

  13. Characterisation and expression analysis of trophozoite and cyst proteins of Acanthamoeba spp. isolated from Acanthamoeba keratitis (AK) patient.

    Science.gov (United States)

    Behera, Himansu Sekhar; Satpathy, Gita

    2016-01-01

    The study was carried out to characterise and analyze the expression pattern of proteins of infective trophozoite and cyst forms of Acanthamoeba spp. isolated from an amoebic keratitis patient. Protein was isolated from the trophozoites and cysts of Acanthamoeba spp. isolates and subjected to SDS PAGE, 2D PAGE analysis where a large number of protein bands and protein spots were observed. Four prominent protein spots i.e. 2 from trophozoites and 2 from cysts that appeared more intense compared to the corresponding spots in other corresponding gel were excised from the 2D PAGE gels and analysed by MALDI-TOF/TOF MS assay and Mascot search software. Protein spots from trophozoites were identified as "hypothetical protein ACA1" and "eukaryotic porin protein" and those from cysts were identified as "chaperone protein DnaK" and "chaperonin protein" respectively. Proteomic results of 4 proteins were further validated by reverse genomics using quantitative real time PCR assay which showed a 1388 fold and 4.35 fold increase in expression of "hypothetical protein ACA1" gene and "eukaryotic porin protein" gene respectively in trophozoites compared to cysts and a 15 fold and 12.36 fold increase in expression of "chaperone protein DnaK" gene and "chaperonin protein" gene respectively in cysts compared to trophozoites. "Hypothetical protein ACA1" of trophozoites, whose function is unknown might have some important role in the parasite division and pathogenicty of Acanthamoeba spp. which needs further study. As trophozoites are the active and feeding form of Acanthamoeba spp., "eukaryotic porin" proteins may have some important role in efflux of toxic metabolites and exudates from interior of cell to outside along with some role in pathogenicity. Similarly proteins such as "chaperone protein DnaK" and "chaperonin protein" which belongs to group of heat shock proteins may have a role in folding of cyst specific proteins in cyst which needs further study.

  14. A novel technique of three-dimensional reconstruction segmentation and analysis for sliced images of biological tissues

    Institute of Scientific and Technical Information of China (English)

    LI Jing; ZHAO Hai-yan; RUAN Xing-yun; XU Yong-qing; MENG Wei-zheng; LI Kun-peng; ZHANG Jing-qiang

    2005-01-01

    A novel technique of three-dimensional (3D) reconstruction, segmentation, display and analysis of series slices of images including microscopic wide field optical sectioning by deconvolution method, cryo-electron microscope slices by Fourier-Bessel synthesis and electron tomography (ET), and a series of computed tomography (CT) was developed to perform simultaneous measurement on the structure and function of biomedical samples. The paper presents the 3D reconstruction segmentation display and analysis results of pollen spore, chaperonin, virus, head, cervical bone, tibia and carpus. At the same time, it also puts forward some potential applications of the new technique in the biomedical realm.

  15. Uncovering Mechanisms for Repair and Protection in Cold Environments Through Studies of Cold Adapted Archaea

    Science.gov (United States)

    2009-12-18

    Contract Number: FA9550-07-1-0085 Rick Cavicchioli, Tim Williams, Oliver Pilak University of New South Wales, Sydney, Australia Introduction...adapted microorganism . Objective 1: Progress All three chaperonin genes from M. burtonii have been cloned and the gene products have been...2ºC, 1ºC, 4ºC, 10ºC, 16ºC, 23ºC, 28ºC), which encompasses the lower to upper growth limits of M. burtonii. We also examined the effect of

  16. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells

    DEFF Research Database (Denmark)

    Jensen, T G; Bross, P; Andresen, B S;

    1995-01-01

    Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is a potentially lethal inherited defect in the beta-oxidation of fatty acids. By comparing the behaviour of five missense MCAD mutant proteins expressed in COS cells and in Escherichia coli, we can define some of these as "pure folding mutants......." Upon expression in E. coli, these mutant proteins produce activity levels in the range of the wild-type enzyme only if the chaperonins GroESL are co-overproduced. When overexpressed in COS cells, the pure folding mutants display enzyme activities comparable to the wild-type enzyme. The results suggest...

  17. [Host factors in the regulation of the Vibrio fischeri lux operon in Escherichia coli cells].

    Science.gov (United States)

    Manukhov, I V; Kotova, V Iu; Zavil'gel'skiĭ, G B

    2006-01-01

    It has been shown that the chaperonin GroEL, together with GroES co-chaperonin and Lon ATP-dependent protease are involved in the regulation of expression of the Vibrio fischeri lux operon in Escherichia coli cells. The cells of E. coli groE (pF1)- bearing a plasmid with the complete V. fischeri lux regulon were weakly luminescent. The cells of E. coli lonA (pF1) displayed intense bioluminescence. The same effects also occurred in mutant E. coli strains bearing a hybrid plasmid pVFR1, where the luxR gene and the regulatory region of the V. fischeri lux operon were inserted before the Photorhabdus luminescens luxCDABE cassette. The V. fischeri luxR gene was cloned in the pGEX-KG vector with the formation of a hybrid gene gst-luxR. It was shown that affinity chromatography of the product of expression, the chimeric protein GST-LuxR, on a column with glutathione-agarose resulted in its copurification with the proteins GroEL and Lon. Consequently, LuxR, the transcription activator of the lux operon, forms complexes with these proteins. It is supposed that GroEL/GroES is responsible for the folding of the LuxR protein, and Lon protease degrades the LuxR protein either before its folding into an active globule or at denaturing.

  18. Changes in immunohistochemical levels and subcellular localization after therapy and correlation and colocalization with CD68 suggest a pathogenetic role of Hsp60 in ulcerative colitis.

    Science.gov (United States)

    Tomasello, Giovanni; Rodolico, Vito; Zerilli, Monica; Martorana, Anna; Bucchieri, Fabio; Pitruzzella, Alessandro; Marino Gammazza, Antonella; David, Sabrina; Rappa, Francesca; Zummo, Giovanni; Damiani, Provvidenza; Accomando, Salvatore; Rizzo, Manfredi; de Macario, Everly Conway; Macario, Alberto J L; Cappello, Francesco

    2011-12-01

    In an earlier work, the role of heat shock protein (Hsp60) in the pathogenesis of ulcerative colitis (UC) was suggested by its significant increase in the pathological mucosa parallel with an increase in inflammatory cells. More data in this direction are reported in this work. We analyzed by immunohistochemistry biopsies of colon tissue from 2 groups of patients with UC and treated with either 5-aminosalicylic acid (5-ASA) alone or in combination with a probiotic. We looked for inflammatory markers and Hsp60. Both the treatments were effective in reducing symptoms but the group treated with both 5-ASA and probiotics showed better clinical results. Amelioration of symptoms was associated with reduction of both inflammation and Hsp60, a reduction that was most marked in the group treated with 5-ASA and probiotics. The levels of Hsp60 positively correlated with those of CD68-positive cells, and double immunofluorescence showed a high index of colocalization of the chaperonin and CD68 in lamina propria. Immunoelectron microscopy showed that Hsp60-classically a mitochondrial protein-was abundantly also present in cytosol in biopsies taken at the time of diagnosis, but not after the treatment. Our data suggest that Hsp60 is an active player in pathogenesis of UC and it can be hypothesized that the chaperonin is responsible, at least in part, for initiation and maintenance of disease.

  19. Xanthomonas citri subsp. citri surface proteome by 2D-DIGE: Ferric enterobactin receptor and other outer membrane proteins potentially involved in citric host interaction.

    Science.gov (United States)

    Carnielli, Carolina Moretto; Artier, Juliana; de Oliveira, Julio Cezar Franco; Novo-Mansur, Maria Teresa Marques

    2017-01-16

    Xanthomonas citri subsp. citri (XAC) is the causative agent of citrus canker, a disease of great economic impact around the world. Understanding the role of proteins on XAC cellular surface can provide new insights on pathogen-plant interaction. Surface proteome was performed in XAC grown in vivo (infectious) and in vitro (non-infectious) conditions, by labeling intact cells followed by cellular lysis and direct 2D-DIGE analysis. Seventy-nine differential spots were analyzed by mass spectrometry. Highest relative abundance for in vivo condition was observed for spots containing DnaK protein, 60kDa chaperonin, conserved hypothetical proteins, malate dehydrogenase, phosphomannose isomerase, and ferric enterobactin receptors. Elongation factor Tu, OmpA-related proteins, Oar proteins and some Ton-B dependent receptors were found in spots decreased in vivo. Some proteins identified on XAC's surface in infectious condition and predicted to be cytoplasmic, such as DnaK and 60KDa chaperonin, have also been previously found at cellular surface in other microorganisms. This is the first study on XAC surface proteome and results point to mediation of molecular chaperones in XAC-citrus interaction. The approach utilized here can be applied to other pathogen-host interaction systems and help to achieve new insights in bacterial pathogenicity toward promising targets of biotechnological interest.

  20. Non-structural proteins P17 and P33 are involved in the assembly of the internal membrane-containing virus PRD1

    Energy Technology Data Exchange (ETDEWEB)

    Karttunen, Jenni; Mäntynen, Sari [Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä (Finland); Ihalainen, Teemu O. [Stem Cells in Neurological Applications Group, BioMediTech, University of Tampere, Tampere (Finland); Bamford, Jaana K.H. [Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä (Finland); Oksanen, Hanna M., E-mail: hanna.oksanen@helsinki.fi [Institute of Biotechnology and Department of Biosciences, University of Helsinki, Biocenter 2, P.O. Box 56 (Viikinkaari 5), FIN-00014 Helsinki (Finland)

    2015-08-15

    Bacteriophage PRD1, which has been studied intensively at the structural and functional levels, still has some gene products with unknown functions and certain aspects of the PRD1 assembly process have remained unsolved. In this study, we demonstrate that the phage-encoded non-structural proteins P17 and P33, either individually or together, complement the defect in a temperature-sensitive GroES mutant of Escherichia coli for host growth and PRD1 propagation. Confocal microscopy of fluorescent fusion proteins revealed co-localisation between P33 and P17 as well as between P33 and the host chaperonin GroEL. A fluorescence recovery after photobleaching assay demonstrated that the diffusion of the P33 fluorescent fusion protein was substantially slower in E. coli than theoretically calculated, presumably resulting from intermolecular interactions. Our results indicate that P33 and P17 function in procapsid assembly, possibly in association with the host chaperonin complex GroEL/GroES. - Highlights: • Two non-structural proteins of PRD1 are involved in the virus assembly. • P17 and P33 complement the defect in GroES of Escherichia coli. • P33 co-localises with GroEL and P17 in the bacterium. • Slow motion of P33 in the bacterium suggests association with cellular components.

  1. HSP10 selective preference for myeloid and megakaryocytic precursors in normal human bone marrow

    Directory of Open Access Journals (Sweden)

    F Cappello

    2009-06-01

    Full Text Available Heat shock proteins (HSPs constitute a heterogeneous family of proteins involved in cell homeostasis. During cell life they are involved in harmful insults, as well as in immune and inflammatory reactions. It is known that they regulate gene expression, and cell proliferation, differentiation and death. HSP60 is a mitochondrial chaperonin, highly preserved during evolution, responsible of protein folding. Its function is strictly dependent on HSP10 in both prokaryotic and eukaryotic elements. We investigated the presence and the expression of HSP60 and HSP10 in a series of 20 normal human bone marrow specimens (NHBM by the means of immunohistochemistry. NHBM showed no expression of HSP60, probably due to its being below the detectable threshold, as already demonstrated in other normal human tissues. By contrast, HSP10 showed a selective positivity for myeloid and megakaryocytic lineages. The positivity was restricted to precursor cells, while mature elements were constantly negative.We postulate that HSP10 plays a role in bone marrow cell differentiation other than being a mitochondrial co-chaperonin. The present data emphasize the role of HSP10 during cellular homeostasis and encourage further investigations in this field.

  2. Hsp60 is targeted to a cryptic mitochondrion-derived organelle ("crypton") in the microaerophilic protozoan parasite Entamoeba histolytica.

    Science.gov (United States)

    Mai, Z; Ghosh, S; Frisardi, M; Rosenthal, B; Rogers, R; Samuelson, J

    1999-03-01

    Entamoeba histolytica is a microaerophilic protozoan parasite in which neither mitochondria nor mitochondrion-derived organelles have been previously observed. Recently, a segment of an E. histolytica gene was identified that encoded a protein similar to the mitochondrial 60-kDa heat shock protein (Hsp60 or chaperonin 60), which refolds nuclear-encoded proteins after passage through organellar membranes. The possible function and localization of the amebic Hsp60 were explored here. Like Hsp60 of mitochondria, amebic Hsp60 RNA and protein were both strongly induced by incubating parasites at 42 degreesC. 5' and 3' rapid amplifications of cDNA ends were used to obtain the entire E. histolytica hsp60 coding region, which predicted a 536-amino-acid Hsp60. The E. histolytica hsp60 gene protected from heat shock Escherichia coli groEL mutants, demonstrating the chaperonin function of the amebic Hsp60. The E. histolytica Hsp60, which lacked characteristic carboxy-terminal Gly-Met repeats, had a 21-amino-acid amino-terminal, organelle-targeting presequence that was cleaved in vivo. This presequence was necessary to target Hsp60 to one (and occasionally two or three) short, cylindrical organelle(s). In contrast, amebic alcohol dehydrogenase 1 and ferredoxin, which are bacteria-like enzymes, were diffusely distributed throughout the cytosol. We suggest that the Hsp60-associated, mitochondrion-derived organelle identified here be named "crypton," as its structure was previously hidden and its function is still cryptic.

  3. Probing the functional mechanism of Escherichia coli GroEL using circular permutation.

    Directory of Open Access Journals (Sweden)

    Tomohiro Mizobata

    Full Text Available BACKGROUND: The Escherichia coli chaperonin GroEL subunit consists of three domains linked via two hinge regions, and each domain is responsible for a specific role in the functional mechanism. Here, we have used circular permutation to study the structural and functional characteristics of the GroEL subunit. METHODOLOGY/PRINCIPAL FINDINGS: Three soluble, partially active mutants with polypeptide ends relocated into various positions of the apical domain of GroEL were isolated and studied. The basic functional hallmarks of GroEL (ATPase and chaperoning activities were retained in all three mutants. Certain functional characteristics, such as basal ATPase activity and ATPase inhibition by the cochaperonin GroES, differed in the mutants while at the same time, the ability to facilitate the refolding of rhodanese was roughly equal. Stopped-flow fluorescence experiments using a fluorescent variant of the circularly permuted GroEL CP376 revealed that a specific kinetic transition that reflects movements of the apical domain was missing in this mutant. This mutant also displayed several characteristics that suggested that the apical domains were behaving in an uncoordinated fashion. CONCLUSIONS/SIGNIFICANCE: The loss of apical domain coordination and a concomitant decrease in functional ability highlights the importance of certain conformational signals that are relayed through domain interlinks in GroEL. We propose that circular permutation is a very versatile tool to probe chaperonin structure and function.

  4. Proteome of Gluconacetobacter diazotrophicus co-cultivated with sugarcane plantlets.

    Science.gov (United States)

    dos Santos, Marise Fonseca; Muniz de Pádua, Vânia Lúcia; de Matos Nogueira, Eduardo; Hemerly, Adriana Silva; Domont, Gilberto Barbosa

    2010-03-10

    Gluconacetobacter diazotrophicus is a micro-aerobic bacterium able to fix atmospheric nitrogen in endophytic mode. A proteomic approach was used to analyze proteins differentially expressed in the presence and absence of sugarcane plantlets. Two-dimensional gel electrophoresis (2-DE) showed 42 spots with altered levels of expression. Analysis of these spots by matrix-assisted laser desorption ionization time-of-flight in tandem (MALDI-TOF-TOF) identified 38 proteins. Differentially expressed proteins were associated with carbohydrate and energy metabolism, folding, sorting and degradation processes, and transcription and translation. Among proteins expressed in co-cultivated bacteria, four belong to membrane systems; others, like a transcription elongation factor (GreA), a 60 kDa chaperonin (GroEL), and an outer membrane lipoprotein (Omp16) have also been described in other plant-bacteria associations, indicating a common protein expression pattern as a result of symbiosis. A high protein content of 60kDa chaperonin isoforms was detected as non-differentially expressed proteins of the bacteria proteome. These results allow the assessment of the physiological significance of specific proteins to G. diazotrophicus metabolism and to the pathways involved in bacteria-host endophytic interaction.

  5. Identifying Protein Stabilizing Ligands Using GroEL

    Science.gov (United States)

    Naik, Subhashchandra; Haque, Inamul; Degner, Nick; Kornilayev, Boris; Bomhoff, Gregory; Hodges, Jacob; Khorassani, Ara-Azad; Katayama, Hiroo; Morris, Jill; Kelly, Jeffery; Seed, John; Fisher, Mark T.

    2010-01-01

    Over the past five years, it has become increasingly apparent to researchers that the initial promise and excitement of using gene replacement therapies to ameliorate folding diseases are still far from being broadly or easily applicable. Because a large number of human diseases are protein folding diseases (~30 to 50%), many researchers now realize that more directed approaches to target and reverse the fundamental misfolding reactions preceding disease are highly feasible and offer the potential of developing more targeted drug therapies. This is also true with a large number of so called “orphan protein folding diseases”. The development of a broad-based general screening array method using the chaperonin as a detection platform will enable us to screen large chemical combinatorial libraries for specific ligands against the elusive transient, primary reactions that often lead to protein misfolding. This development will provide a highly desirable tool for the pharmaceutical, academic and medical professions. PMID:19802819

  6. In Vitro Reassembly of Tobacco Ribulose-1,5-bisphosphate Carboxylase/ Oxygenase from Fully Denatured Subunits

    Institute of Scientific and Technical Information of China (English)

    Zhen-Hua YONG; Gen-Yun CHEN; Jiao-Nai SHI; Da-Quan XU

    2006-01-01

    It has been generally proved impossible to reassemble ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) from fully denatured subunits in vitro in higher plant, because large subunit of fully denatured Rubisco is liable to precipitate when the denaturant is removed by common methods of direct dilution and one-step dialysis. In our experiment, the problem of precipitation was resolved by an improved gradual dialysis method, which gradually decreased the concentration of denaturant. However, fully denatured Rubisco subunits still could not be reassembled into holoenzyme using gradual dialysis unless chaperonin 60was added. The restored activity of reassembled Rubisco was approximately 8% of natural enzyme. The quantity of reassembled Rubisco increased greatly when heat shock protein 70 was present in the reassembly process. ATP and Mg2+ were unnecessary for in vitro reassembly of Rubisco, and Mg2+ inhibited the reassembly process. The reassembly was weakened when ATP, Mg2+ and K+ existed together in the reassembly process.

  7. 26 S proteasomes function as stable entities

    DEFF Research Database (Denmark)

    Hendil, Klavs B; Hartmann-Petersen, Rasmus; Tanaka, Keiji

    2002-01-01

    Most proteins in eukaryotic cells are degraded by 26-S proteasomes, usually after being conjugated to ubiquitin. In the absence of ATP, 26-S proteasomes fall apart into their two sub-complexes, 20-S proteasomes and PA700, which reassemble upon addition of ATP. Conceivably, 26-S proteasomes...... dissociate and reassemble during initiation of protein degradation in a ternary complex with the substrate, as in the dissociation-reassembly cycles found for ribosomes and the chaperonin GroEL/GroES. Here we followed disassembly and assembly of 26-S proteasomes in cell extracts as the exchange of PA700...... subunits between mouse and human 26-S proteasomes. Compared to the rate of proteolysis in the same extract, the disassembly-reassembly cycle was much too slow to present an obligatory step in a degradation cycle. It has been suggested that subunit S5a (Mcb1, Rpn10), which binds poly-ubiquitin substrates...

  8. Interaction of hepatitis C virus F protein with prefoldin 2 perturbs tubulin cytoskeleton organization.

    Science.gov (United States)

    Tsao, Mei-Ling; Chao, Chung-Hao; Yeh, Chau-Ting

    2006-09-15

    By use of the yeast two-hybrid system, hepatitis C virus (HCV) F protein was found to interact with a cellular protein named prefoldin 2. The interaction was confirmed by confocal immunofluorescence microscopy as well as coimmunoprecipitation experiments. Prefoldin 2 is a subunit of a hexameric molecular chaperone complex, named prefoldin, which delivers nascent actin and tubulin proteins to the eukaryotic cytosolic chaperonin for facilitated folding. Functional prefoldin spontaneously assembles from its six subunits (prefoldin 1-6). In the yeast three-hybrid system, it was found that expression of HCV F protein impeded the interaction between prefoldin 1 and 2. By performing immunofluorescence experiment and non-denaturing gel electrophoresis, it was shown that expression of HCV F protein resulted in aberrant organization of tubulin cytoskeleton. Since HCV replication requires intact microtubule and actin polymerization, HCV F protein may serve as a modulator to prevent high level of HCV replication and thus contributes to viral persistence in chronic HCV infection.

  9. Complex formation of CdSe/ZnS/TOPO nanocrystal vs. molecular chaperone in aqueous solution by hydrophobic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Hiromi [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan)]. E-mail: horihiro@cc.tuat.ac.jp; Iwami, Noriya [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Tachibana, Fumi [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Ohtaki, Akashi [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Iizuka, Ryo [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Zako, Tamotsu [Bioengineering Laboratory, RIKEN - Institute of Physical and Chemical Research, 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan); Oda, Masaru [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Strategic Research Initiative for Future Nano-Science and Technology, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Yohda, Masafumi [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Strategic Research Initiative for Future Nano-Science and Technology, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Tani, Toshiro [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Strategic Research Initiative for Future Nano-Science and Technology, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan)

    2007-11-15

    Feasibilities to stabilize CdSe/ZnS/trioctylphosphineoxide (TOPO) nanocrystals (quantum dots, QDs) in aqueous solutions with prefoldin macromolecules in their bioactive states are reported. Prefoldin is a jellyfish-shaped hexameric co-chaperone of the group II chaperonins. As a protein folding intermediate is captured within its central cavity, so CdSe/ZnS/TOPO QDs would also be included within this cavity. It is also found the QDs can be much more dispersed in aqueous solutions and suspended for certain period of time by adding trace amount of t-butanol in the buffer prior to the mixing of the QDs mother solution. While biochemical procedures are evaluated with ordinary fluorescence measurements, possible complex formations are also evaluated with TIRFM single-molecule detection techniques.

  10. Expression and Purification of ST14, a Tumor Metastasis-associated Protein, and Its Activity Assay%肿瘤转移相关蛋白ST14的表达、纯化及活性鉴定

    Institute of Scientific and Technical Information of China (English)

    葛维挺; 郑树; 孙立峰; 史影; 胡涵光; 丁克峰

    2004-01-01

    ST14 is one of the type Ⅱ transmembrane serine proteases that correlates with the process of tumor metastasis. The C-terminal catalytic region (900 bp) of ST14 was cloned into the expression vector pGEX-4T-2 and the positive plasmid pGEX-4T-2-STI4 was transformed into E. coli BL21, then cultured and induced with IPTG. The chaperonin GroEL was found to be tightly associated with the fusion protein and co-purified with it by regular GST affinity chromatography. A method for the removal of contaminating GroEL from GST-ST14 fusion protein was described, the purity of product was 96.2%. Enzyme activity assay indicated that this fusion protein had serine protease activity.

  11. Oxidative modification of the molecular chaperone family in a PC12 cell model of Parkinson's disease induced by Z-lle-Glu(OtBu)-Ala-Leucinal

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Yimin Yang; Jing Bai; Ming Chang; Linsen Hu

    2011-01-01

    Previous studies have demonstrated that ubiquitin-proteasome system function is significantly decreased in the substantia nigra of Parkinson's disease patients.In the present study, proteasome inhibitor Z-Ile-Glu(OtBu)-Ala-Leucinal (PSI) was used to inhibit the function of the ubiquitin-proteasome system in PC12 cells to simulate Parkinson's disease.Oxidatively modified proteins were identified to determine pathogenesis of Parkinson's disease.Results demonstrated that 24 hours of 10 μmol/L PSI-treatment in PC12 cells simulated pathological characteristics of Parkinson's disease: neuronal degeneration and eosinophilic inclusion formation in neurons.In PSI-treated PC12 cells, three oxidative proteins and a molecular chaperone family member were detected: chaperonin containing t-complex polypeptide 1 subunit 3, glucose-regulated protein 58,and heat shock protein 70.This is the first study to demonstrate oxidative modification of a molecule family in a cell model of Parkinson's disease induced with PSI.

  12. Investigation of antibacterial mechanism and identification of bacterial protein targets mediated by antibacterial medicinal plant extracts.

    Science.gov (United States)

    Yong, Ann-Li; Ooh, Keng-Fei; Ong, Hean-Chooi; Chai, Tsun-Thai; Wong, Fai-Chu

    2015-11-01

    In this paper, we investigated the antibacterial mechanism and potential therapeutic targets of three antibacterial medicinal plants. Upon treatment with the plant extracts, bacterial proteins were extracted and resolved using denaturing gel electrophoresis. Differentially-expressed bacterial proteins were excised from the gels and subjected to sequence analysis by MALDI TOF-TOF mass spectrometry. From our study, seven differentially expressed bacterial proteins (triacylglycerol lipase, N-acetylmuramoyl-L-alanine amidase, flagellin, outer membrane protein A, stringent starvation protein A, 30S ribosomal protein s1 and 60 kDa chaperonin) were identified. Additionally, scanning electron microscope study indicated morphological damages induced on bacterial cell surfaces. To the best of our knowledge, this represents the first time these bacterial proteins are being reported, following treatments with the antibacterial plant extracts. Further studies in this direction could lead to the detailed understanding of their inhibition mechanism and discovery of target-specific antibacterial agents.

  13. Análise funcional das proteínas HrcA, GroES/GroEL e DnaK/DnaJ em Caulobacter crescentus

    OpenAIRE

    Michelle Fernanda Susin

    2005-01-01

    O operon groESL de C. crescentus apresenta dupla regulação. A indução deste operon por choque térmico é dependente do fator sigma de choque térmico σ32. A temperaturas fisiológicas, a expressão de groESL apresenta regulação temporal durante o ciclo celular da bactéria e o controle envolve a proteína repressora HrcA e o elemento CIRCE (controlling inverted repeat of chaperonin expression). Para estudar a atividade da proteína repressora in vitro, produzimos e purificamos de E. coli a Hrc...

  14. AcEST: DK955560 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ■■ - Swiss-Prot (release 56.9) Link to BlastX Result : Swiss-Prot sp_hit_id Q8IWN7 Definition sp|Q8IWN7|RP1L1_HUMAN Retinitis...M2 60 kDa chaperonin 1 OS=Prochlorococcus mar... 33 1.2 >sp|Q8IWN7|RP1L1_HUMAN Retinitis...initis pigmentosa 1-like 1 protein OS=H... 38 0.036 sp|Q8C6E0|CC104_MOUSE Coiled-co.........................................done Score E Sequences producing significant alignments: (bits) Value sp|Q8IWN7|RP1L1_HUMAN Ret

  15. Molecular cloning, characterization and expression analysis of a heat shock protein 10 (Hsp10) from Pennisetum glaucum (L.), a C4 cereal plant from the semi-arid tropics.

    Science.gov (United States)

    Nitnavare, Rahul B; Yeshvekar, Richa K; Sharma, Kiran K; Vadez, Vincent; Reddy, Malireddy K; Reddy, Palakolanu Sudhakar

    2016-08-01

    Heat shock proteins (Hsp10) belong to the ubiquitous family of heat-shock molecular chaperones found in the organelles of both prokaryotes and eukaryotes. Chaperonins assist the folding of nascent and stress-destabilized proteins. A cDNA clone encoding a 10 kDa Hsp was isolated from pearl millet, Pennisetum glaucum (L.) by screening a heat stress cDNA library. The fulllength PgHsp10 cDNA consisted of 297 bp open reading frame (ORF) encoding a 98 amino acid polypeptide with a predicted molecular mass of 10.61 kDa and an estimated isoelectric point (pI) of 7.95. PgHsp10 shares 70-98 % sequence identity with other plant homologs. Phylogenetic analysis revealed that PgHsp10 is evolutionarily close to the maize Hsp10 homolog. The predicted 3D model confirmed a conserved eight-stranded ß-barrel with active site between the ß-barrel comprising of eight-strands, with conserved domain VLLPEYGG sandwiched between two ß-sheets. The gene consisted of 3 exons and 2 introns, while the position and phasing of these introns were conserved similar to other plant Hsp10 family genes. In silico analysis of the promoter region of PgHsp10 presented several distinct set of cis-elements and transcription factor binding sites. Quantitative RT-PCR analysis showed that PgHsp10 gene was differentially expressed in response to abiotic stresses with the highest level of expression under heat stress conditions. Results of this study provide useful information regarding the role of chaperonins in stress regulation and generated leads for further elucidation of their function in plant stress tolerance.

  16. Chlamydia trachomatis infection and anti-Hsp60 immunity: the two sides of the coin.

    Directory of Open Access Journals (Sweden)

    Francesco Cappello

    2009-08-01

    Full Text Available Chlamydia trachomatis (CT infection is one of the most common causes of reproductive tract diseases and infertility. CT-Hsp60 is synthesized during infection and is released in the bloodstream. As a consequence, immune cells will produce anti-CT-Hsp60 antibodies. Hsp60, a ubiquitous and evolutionarily conserved chaperonin, is normally sequestered inside the cell, particularly into mitochondria. However, upon cell stress, as well as during carcinogenesis, the chaperonin becomes exposed on the cell surface (sf-Hsp60 and/or is secreted from cells into the extracellular space and circulation. Reports in the literature on circulating Hsp and anti-Hsp antibodies are in many cases short on details about Hsp60 concentrations, and about the specificity spectra of the antibodies, their titers, and their true, direct, pathogenetic effects. Thus, more studies are still needed to obtain a definitive picture on these matters. Nevertheless, the information already available indicates that the concurrence of persistent CT infection and appearance of sf-Hsp60 can promote an autoimmune aggression towards stressed cells and the development of diseases such as autoimmune arthritis, multiple sclerosis, atherosclerosis, vasculitis, diabetes, and thyroiditis, among others. At the same time, immunocomplexes composed of anti-CT-Hsp60 antibodies and circulating Hsp60 (both CT and human may form deposits in several anatomical locations, e.g., at the glomerular basal membrane. The opposite side of the coin is that pre-tumor and tumor cells with sf-Hsp60 can be destroyed with participation of the anti-Hsp60 antibody, thus stopping cancer progression before it is even noticed by the patient or physician.

  17. Chaperone-assisted refolding of Escherichia coli maltodextrin glucosidase.

    Science.gov (United States)

    Paul, Subhankar; Punam, Shashikala; Chaudhuri, Tapan K

    2007-11-01

    In vitro refolding of maltodextrin glucosidase, a 69 kDa monomeric Escherichia coli protein, was studied in the presence of glycerol, dimethylsulfoxide, trimethylamine-N-oxide, ethylene glycol, trehalose, proline and chaperonins GroEL and GroES. Different osmolytes, namely proline, glycerol, trimethylamine-N-oxide and dimethylsulfoxide, also known as chemical chaperones, assist in protein folding through effective inhibition of the aggregation process. In the present study, it was observed that a few chemical chaperones effectively reduced the aggregation process of maltodextrin glucosidase and hence the in vitro refolding was substantially enhanced, with ethylene glycol being the exception. Although, the highest recovery of active maltodextrin glucosidase was achieved through the ATP-mediated GroEL/GroES-assisted refolding of denatured protein, the yield of correctly folded protein from glycerol- or proline-assisted spontaneous refolding process was closer to the chaperonin-assisted refolding. It was also observed that the combined application of chemical chaperones and molecular chaperone was more productive than their individual contribution towards the in vitro refolding of maltodextrin glucosidase. The chemical chaperones, except ethylene glycol, were found to provide different degrees of protection to maltodextrin glucosidase from thermal denaturation, whereas proline caused the highest protection. The observations from the present studies conclusively demonstrate that chemical or molecular chaperones, or the combination of both chaperones, could be used in the efficient refolding of recombinant E. coli maltodextrin glucosidase, which enhances the possibility of identifying or designing suitable small molecules that can act as chemical chaperones in the efficient refolding of various aggregate-prone proteins of commercial and medical importance.

  18. Role of N-terminal region of Escherichia coli maltodextrin glucosidase in folding and function of the protein.

    Science.gov (United States)

    Pastor, Ashutosh; Singh, Amit K; Shukla, Prakash K; Equbal, Md Javed; Malik, Shikha T; Singh, Tej P; Chaudhuri, Tapan K

    2016-09-01

    Maltodextrin glucosidase (MalZ) hydrolyses short malto-oligosaccharides from the reducing end releasing glucose and maltose in Escherichia coli. MalZ is a highly aggregation prone protein and molecular chaperonins GroEL and GroES assist in the folding of this protein to a substantial level. The N-terminal region of this enzyme appears to be a unique domain as seen in sequence comparison studies with other amylases as well as through homology modelling. The sequence and homology model analysis show a probability of disorder in the N-Terminal region of MalZ. The crystal structure of this enzyme has been reported in the present communication. Based on the crystallographic structure, it has been interpreted that the N-terminal region of the enzyme (Met1-Phe131) might be unstructured or flexible. To understand the role of the N-terminal region of MalZ in its enzymatic activity, and overall stability, a truncated version (Ala111-His616) of MalZ was created. The truncated version failed to fold into an active enzyme both in E. coli cytosol and in vitro even with the assistance of chaperonins GroEL and GroES. Furthermore, the refolding effort of N-truncated MalZ in the presence of isolated N-terminal domain didn't succeed. Our studies suggest that while the structural rigidity or orientation of the N-terminal region of the MalZ protein may not be essential for its stability and function, but the said domain is likely to play an important role in the formation of the native structure of the protein when present as an integral part of the protein.

  19. Molecular importance of prawn large heat shock proteins 60, 70 and 90.

    Science.gov (United States)

    Chaurasia, Mukesh Kumar; Nizam, Faizal; Ravichandran, Gayathri; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Arshad, Aziz; Elumalai, Preetham; Arockiaraj, Jesu

    2016-01-01

    Considering the importance of heat shock proteins (HSPs) in the innate immune system of prawn, a comparative molecular approach was proposed to study the crustacean large HSPs 60, 70 and 90. Three different large HSPs were identified from freshwater prawn Macrobrachium rosenbergii (Mr) cDNA library during screening. The structural and functional characteristic features of HSPs were studied using various bioinformatics tools. Also, their gene expression and mRNA regulation upon various pathogenic infections was studied by relative quantification using 2(-ΔΔCT) method. MrHSP60 contains a long chaperonin 60 domain at 46-547 which carries a chaperonin 60 signature motif between 427 and 438, whereas MrHSP70 contains a long HSP70 domain at 21-624 and MrHSP90 carries a HSP90 domain at 188-719. The two dimensional analysis showed that MrHSP60 contains more amino acids (52%) in helices, whereas MrHSP70 (40.6%) and MrHSP90 (51.8%) carried more residues in coils. Gene expression results showed significant (P < 0.05) expression of MrHSP60, 70 and 90 in haemocyte, gill and hepatopancreas, respectively. Further, the expression level was up-regulated upon bacterial (Aeromonas hydrophilla and Vibrio harveyi) and viral [white spot syndrome virus (WSSV) and M. rosenbergii nodo virus (MrNV)] infections during various time periods. The gene expression results exhibited the potential involvement of these three HSPs in the immune system of prawn. The study indicated the potentiality of these molecules, thereby protecting cells against pathogens as well as severe cellular and environmental stresses in crustaceans.

  20. Probing single biomolecules in solution using the anti-Brownian electrokinetic (ABEL) trap.

    Science.gov (United States)

    Wang, Quan; Goldsmith, Randall H; Jiang, Yan; Bockenhauer, Samuel D; Moerner, W E

    2012-11-20

    Single-molecule fluorescence measurements allow researchers to study asynchronous dynamics and expose molecule-to-molecule structural and behavioral diversity, which contributes to the understanding of biological macromolecules. To provide measurements that are most consistent with the native environment of biomolecules, researchers would like to conduct these measurements in the solution phase if possible. However, diffusion typically limits the observation time to approximately 1 ms in many solution-phase single-molecule assays. Although surface immobilization is widely used to address this problem, this process can perturb the system being studied and contribute to the observed heterogeneity. Combining the technical capabilities of high-sensitivity single-molecule fluorescence microscopy, real-time feedback control and electrokinetic flow in a microfluidic chamber, we have developed a device called the anti-Brownian electrokinetic (ABEL) trap to significantly prolong the observation time of single biomolecules in solution. We have applied the ABEL trap method to explore the photodynamics and enzymatic properties of a variety of biomolecules in aqueous solution and present four examples: the photosynthetic antenna allophycocyanin, the chaperonin enzyme TRiC, a G protein-coupled receptor protein, and the blue nitrite reductase redox enzyme. These examples illustrate the breadth and depth of information which we can extract in studies of single biomolecules with the ABEL trap. When confined in the ABEL trap, the photosynthetic antenna protein allophycocyanin exhibits rich dynamics both in its emission brightness and its excited state lifetime. As each molecule discontinuously converts from one emission/lifetime level to another in a primarily correlated way, it undergoes a series of state changes. We studied the ATP binding stoichiometry of the multi-subunit chaperonin enzyme TRiC in the ABEL trap by counting the number of hydrolyzed Cy3-ATP using stepwise

  1. Protective Response Mechanisms to Heat Stress in Interaction with High [CO2] Conditions in Coffea spp.

    Science.gov (United States)

    Martins, Madlles Q.; Rodrigues, Weverton P.; Fortunato, Ana S.; Leitão, António E.; Rodrigues, Ana P.; Pais, Isabel P.; Martins, Lima D.; Silva, Maria J.; Reboredo, Fernando H.; Partelli, Fábio L.; Campostrini, Eliemar; Tomaz, Marcelo A.; Scotti-Campos, Paula; Ribeiro-Barros, Ana I.; Lidon, Fernando J. C.; DaMatta, Fábio M.; Ramalho, José C.

    2016-01-01

    Modeling studies have predicted that coffee crop will be endangered by future global warming, but recent reports highlighted that high [CO2] can mitigate heat impacts on coffee. This work aimed at identifying heat protective mechanisms promoted by CO2 in Coffea arabica (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown at 25/20°C (day/night), under 380 or 700 μL CO2 L−1, and then gradually submitted to 31/25, 37/30, and 42/34°C. Relevant heat tolerance up to 37/30°C for both [CO2] and all coffee genotypes was observed, likely supported by the maintenance or increase of the pools of several protective molecules (neoxanthin, lutein, carotenes, α-tocopherol, HSP70, raffinose), activities of antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), catalase (CAT), and the upregulated expression of some genes (ELIP, Chaperonin 20). However, at 42/34°C a tolerance threshold was reached, mostly in the 380-plants and Icatu. Adjustments in raffinose, lutein, β-carotene, α-tocopherol and HSP70 pools, and the upregulated expression of genes related to protective (ELIPS, HSP70, Chape 20, and 60) and antioxidant (CAT, CuSOD2, APX Cyt, APX Chl) proteins were largely driven by temperature. However, enhanced [CO2] maintained higher activities of GR (Icatu) and CAT (Icatu and IPR108), kept (or even increased) the Cu,Zn-SOD, APX, and CAT activities, and promoted a greater upregulation of those enzyme genes, as well as those related to HSP70, ELIPs, Chaperonins in CL153, and Icatu. These changes likely favored the maintenance of reactive oxygen species (ROS) at controlled levels and contributed to mitigate of photosystem II photoinhibition at the highest temperature. Overall, our results highlighted the important role of enhanced [CO2] on the coffee crop acclimation and sustainability under predicted future global warming scenarios. PMID:27446174

  2. Enhancement of solubility in Escherichia coli and purification of an aminotransferase from Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B1

    Directory of Open Access Journals (Sweden)

    Hartinger Doris

    2010-08-01

    Full Text Available Abstract Background Fumonisin B1 is a cancerogenic mycotoxin produced by Fusarium verticillioides and other fungi. Sphingopyxis sp. MTA144 can degrade fumonisin B1, and a key enzyme in the catabolic pathway is an aminotransferase which removes the C2-amino group from hydrolyzed fumonisin B1. In order to study this aminotransferase with respect to a possible future application in enzymatic fumonisin detoxification, we attempted expression of the corresponding fumI gene in E. coli and purification of the enzyme. Since the aminotransferase initially accumulated in inclusion bodies, we compared the effects of induction level, host strain, expression temperature, solubility enhancers and a fusion partner on enzyme solubility and activity. Results When expressed from a T7 promoter at 30°C, the aminotransferase accumulated invariably in inclusion bodies in DE3 lysogens of the E. coli strains BL21, HMS174, Rosetta 2, Origami 2, or Rosetta-gami. Omission of the isopropyl-beta-D-thiogalactopyranoside (IPTG used for induction caused a reduction of expression level, but no enhancement of solubility. Likewise, protein production but not solubility correlated with the IPTG concentration in E. coli Tuner(DE3. Addition of the solubility enhancers betaine and sorbitol or the co-enzyme pyridoxal phosphate showed no effect. Maltose-binding protein, used as an N-terminal fusion partner, promoted solubility at 30°C or less, but not at 37°C. Low enzyme activity and subsequent aggregation in the course of purification and cleavage indicated that the soluble fusion protein contained incorrectly folded aminotransferase. Expression in E. coli ArcticExpress(DE3, which co-expresses two cold-adapted chaperonins, at 11°C finally resulted in production of appreciable amounts of active enzyme. Since His tag-mediated affinity purification from this strain was hindered by co-elution of chaperonin, two steps of chromatography with optimized imidazole concentration in the

  3. Molecular characterization of the uncultivatable hemotropic bacterium Mycoplasma haemofelis.

    Science.gov (United States)

    Barker, Emily N; Darby, Alistair C; Helps, Chris R; Peters, Iain R; Heesom, Kate J; Arthur, Christopher J; Crossett, Ben; Hughes, Margaret A; Radford, Alan D; Tasker, Séverine

    2011-07-12

    Mycoplasma haemofelis is a pathogenic feline hemoplasma. Despite its importance, little is known about its metabolic pathways or mechanism of pathogenicity due to it being uncultivatable. The recently sequenced M. haemofelis str. Langford 1 genome was analysed and compared to those of other available hemoplasma genomes.Analysis showed that in hemoplasmas genes involved in carbohydrate metabolism are limited to enzymes of the glycolytic pathway, with glucose appearing to be the sole energy source. The majority of the pentose phosphate pathway enzymes that catalyze the de novo synthesis of ribonucleotides were absent, as were cell division protein FtsZ and chaperonins GroEL/ES. Uncharacterized protein paralogs containing putative surface expression motifs, comprised 62% of M. haemofelis and 19% of Mycoplasma suis genome coverage respectively, the majority of which were present in a small number of unstructured islands. Limited mass spectrometry and immunoblot data matched a number of characterized proteins and uncharacterized paralogs, confirming their expression and immunogenicity in vivo.These data have allowed further characterization of these important pathogens, including their limited metabolic capabilities, which may contribute to their uncultivatable status. A number of immunogenic proteins, and a potential mechanism for host immune system evasion, have been identified.

  4. Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader.

    Science.gov (United States)

    Coleman, Nicholas V; Yau, Sheree; Wilson, Neil L; Nolan, Laura M; Migocki, Margaret D; Ly, Mai-Anh; Crossett, Ben; Holmes, Andrew J

    2011-06-01

    Mycobacterium strain NBB4 was isolated on ethene as part of a bioprospecting study searching for novel monooxygenase (MO) enzymes of interest to biocatalysis and bioremediation. Previous work indicated that strain NBB4 contained an unprecedented diversity of MO genes, and we hypothesized that each MO type would support growth on a distinct hydrocarbon substrate. Here, we attempted to untangle the relationships between MO types and hydrocarbon substrates. Strain NBB4 was shown to grow on C2 -C4 alkenes and C2 -C16 alkanes. Complete gene clusters encoding six different monooxygenases were recovered from a fosmid library, including homologues of ethene MO (etnABCD), propene MO (pmoABCD), propane MO (smoABCD), butane MO (smoXYB1C1Z), cytochrome P450 (CYP153; fdx-cyp-fdr) and alkB (alkB-rubA1-rubA2). Catabolic enzymes involved in ethene assimilation (EtnA, EtnC, EtnD, EtnE) and alkane assimilation (alcohol and aldehyde dehydrogenases) were identified by proteomics, and we showed for the first time that stress response proteins (catalase/peroxidase, chaperonins) were induced by growth on C2 -C5 alkanes and ethene. Surprisingly, none of the identified MO genes could be specifically associated with oxidation of small alkanes, and thus the nature of the gaseous alkane MO in NBB4 remains mysterious.

  5. Molecular characterization of the uncultivatable hemotropic bacterium Mycoplasma haemofelis

    Directory of Open Access Journals (Sweden)

    Barker Emily N

    2011-07-01

    Full Text Available Abstract Mycoplasma haemofelis is a pathogenic feline hemoplasma. Despite its importance, little is known about its metabolic pathways or mechanism of pathogenicity due to it being uncultivatable. The recently sequenced M. haemofelis str. Langford 1 genome was analysed and compared to those of other available hemoplasma genomes. Analysis showed that in hemoplasmas genes involved in carbohydrate metabolism are limited to enzymes of the glycolytic pathway, with glucose appearing to be the sole energy source. The majority of the pentose phosphate pathway enzymes that catalyze the de novo synthesis of ribonucleotides were absent, as were cell division protein FtsZ and chaperonins GroEL/ES. Uncharacterized protein paralogs containing putative surface expression motifs, comprised 62% of M. haemofelis and 19% of Mycoplasma suis genome coverage respectively, the majority of which were present in a small number of unstructured islands. Limited mass spectrometry and immunoblot data matched a number of characterized proteins and uncharacterized paralogs, confirming their expression and immunogenicity in vivo. These data have allowed further characterization of these important pathogens, including their limited metabolic capabilities, which may contribute to their uncultivatable status. A number of immunogenic proteins, and a potential mechanism for host immune system evasion, have been identified.

  6. Atomic modeling of cryo-electron microscopy reconstructions--joint refinement of model and imaging parameters.

    Science.gov (United States)

    Chapman, Michael S; Trzynka, Andrew; Chapman, Brynmor K

    2013-04-01

    When refining the fit of component atomic structures into electron microscopic reconstructions, use of a resolution-dependent atomic density function makes it possible to jointly optimize the atomic model and imaging parameters of the microscope. Atomic density is calculated by one-dimensional Fourier transform of atomic form factors convoluted with a microscope envelope correction and a low-pass filter, allowing refinement of imaging parameters such as resolution, by optimizing the agreement of calculated and experimental maps. A similar approach allows refinement of atomic displacement parameters, providing indications of molecular flexibility even at low resolution. A modest improvement in atomic coordinates is possible following optimization of these additional parameters. Methods have been implemented in a Python program that can be used in stand-alone mode for rigid-group refinement, or embedded in other optimizers for flexible refinement with stereochemical restraints. The approach is demonstrated with refinements of virus and chaperonin structures at resolutions of 9 through 4.5 Å, representing regimes where rigid-group and fully flexible parameterizations are appropriate. Through comparisons to known crystal structures, flexible fitting by RSRef is shown to be an improvement relative to other methods and to generate models with all-atom rms accuracies of 1.5-2.5 Å at resolutions of 4.5-6 Å.

  7. The solution structure of the N-terminal domain of human tubulin binding cofactor C reveals a platform for tubulin interaction.

    Directory of Open Access Journals (Sweden)

    Ma Flor Garcia-Mayoral

    Full Text Available Human Tubulin Binding Cofactor C (TBCC is a post-chaperonin involved in the folding and assembly of α- and β-tubulin monomers leading to the release of productive tubulin heterodimers ready to polymerize into microtubules. In this process it collaborates with other cofactors (TBC's A, B, D, and E and forms a supercomplex with TBCD, β-tubulin, TBCE and α-tubulin. Here, we demonstrate that TBCC depletion results in multipolar spindles and mitotic failure. Accordingly, TBCC is found at the centrosome and is implicated in bipolar spindle formation. We also determine by NMR the structure of the N-terminal domain of TBCC. The TBCC N-terminal domain adopts a spectrin-like fold topology composed of a left-handed 3-stranded α-helix bundle. Remarkably, the 30-residue N-terminal segment of the TBCC N-terminal domain is flexible and disordered in solution. This unstructured region is involved in the interaction with tubulin. Our data lead us to propose a testable model for TBCC N-terminal domain/tubulin recognition in which the highly charged N-terminus as well as residues from the three helices and the loops interact with the acidic hypervariable regions of tubulin monomers.

  8. Site-Specific Ser/Thr/Tyr Phosphoproteome of Sinorhizobium meliloti at Stationary Phase.

    Science.gov (United States)

    Liu, Tao; Tian, Chang Fu; Chen, Wen Xin

    2015-01-01

    Sinorhizobium meliloti, a facultative microsymbiont of alfalfa, should fine-tune its cellular processes to live saprophytically in soils characterized with limited nutrients and diverse stresses. In this study, TiO2 enrichment and LC-MS/MS were used to uncover the site-specific Ser/Thr/Tyr phosphoproteome of S. meliloti in minimum medium at stationary phase. There are a total of 96 unique phosphorylated sites, with a Ser/Thr/Tyr distribution of 63:28:5, in 77 proteins. Phosphoproteins identified in S. meliloti showed a wide distribution pattern regarding to functional categories, such as replication, transcription, translation, posttranslational modification, transport and metabolism of amino acids, carbohydrate, inorganic ion, succinoglycan etc. Ser/Thr/Tyr phosphosites identified within the conserved motif in proteins of key cellular function indicate a crucial role of phosphorylation in modulating cellular physiology. Moreover, phosphorylation in proteins involved in processes related to rhizobial adaptation was also discussed, such as those identified in SMa0114 and PhaP2 (polyhydroxybutyrate synthesis), ActR (pH stress and microaerobic adaption), SupA (potassium stress), chaperonin GroEL2 (viability and potentially symbiosis), and ExoP (succinoglycan synthesis and secretion). These Ser/Thr/Tyr phosphosites identified herein would be helpful for our further investigation and understanding of the role of phosphorylation in rhizobial physiology.

  9. Site-Specific Ser/Thr/Tyr Phosphoproteome of Sinorhizobium meliloti at Stationary Phase.

    Directory of Open Access Journals (Sweden)

    Tao Liu

    Full Text Available Sinorhizobium meliloti, a facultative microsymbiont of alfalfa, should fine-tune its cellular processes to live saprophytically in soils characterized with limited nutrients and diverse stresses. In this study, TiO2 enrichment and LC-MS/MS were used to uncover the site-specific Ser/Thr/Tyr phosphoproteome of S. meliloti in minimum medium at stationary phase. There are a total of 96 unique phosphorylated sites, with a Ser/Thr/Tyr distribution of 63:28:5, in 77 proteins. Phosphoproteins identified in S. meliloti showed a wide distribution pattern regarding to functional categories, such as replication, transcription, translation, posttranslational modification, transport and metabolism of amino acids, carbohydrate, inorganic ion, succinoglycan etc. Ser/Thr/Tyr phosphosites identified within the conserved motif in proteins of key cellular function indicate a crucial role of phosphorylation in modulating cellular physiology. Moreover, phosphorylation in proteins involved in processes related to rhizobial adaptation was also discussed, such as those identified in SMa0114 and PhaP2 (polyhydroxybutyrate synthesis, ActR (pH stress and microaerobic adaption, SupA (potassium stress, chaperonin GroEL2 (viability and potentially symbiosis, and ExoP (succinoglycan synthesis and secretion. These Ser/Thr/Tyr phosphosites identified herein would be helpful for our further investigation and understanding of the role of phosphorylation in rhizobial physiology.

  10. Induction of heat shock protein (hsp)60 in Isochrysis galbana exposed to sublethal preparations of dispersant and Prudhoe Bay crude oil

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, M.F.; Olsen, H.E.; Gasuad, K.A.; Tjeerdema, R.S. [University of California, Santa Cruz (United States). Dept. of Chemistry and Biochemistry; Sowby, M.L. [California Dept. of Fish and Game, Sacramento (United States). Office of Spill Prevention and Response

    1999-11-01

    Adaptation to sublethal exposure to crude oil by phytoplankton is poorly understood. Use of chemical dispersants for oil spill remediation increases petroleum hydrocarbon concentrations in water, while exposing marine organisms to potentially toxic concentrations of dispersant. Heat shock proteins (hsps) have been found to serve as an adaptive and protective mechanism against environmental stresses. The objective of this project was to examine the induction of hsps in Isochrysis galbana, a golden-brown algae, following exposure to the water-accommodated fraction (WAF) of Prudhoe Bay crude oil (PBCO) and PBCO chemically dispersed with Corexit 9527 (dispersed oil: DO). Initial experiments using {sup 35}S-labelled amino acids and 2-dimensional electrophoresis with subsequent western blotting identified and confirmed hsp60, a member of the chaperonin family of stress proteins, as being efficiently induced by heat shock in this species. One-dimensional SDS PAGE and western blotting, with hsp60 antibodies and chemiluminescence detection, were used to quantitate hsp60 following exposure to a range of environmental temperatures and concentrations of WAF and DO preparations. Results of this study are consistent with previous studies in other species documenting increases in hsp60 levels with exposure to xenobiotics. Further studies are investigating the protective function of hsp60 against the toxic effects of exposure to WAF and DO preparations. (author)

  11. Optimizing immobilized enzyme performance in cell-free environments to produce liquid fuels.

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sanat

    2015-02-05

    The overall goal of this project was to optimize enzyme performance for the production of bio-diesel fuel. Enzyme immobilization has attracted much attention as a means to increase productivity. Mesorporous silica materials have been known to be best suited for immobilizing enzymes. A major challenge is to ensure that the enzymatic activity is retained after immobilization. Two major factors which drive enzymatic deactivation are protein-surface and inter-protein interactions. Previously, we studied protein stability inside pores and how to optimize protein-surface interactions to minimize protein denaturation. In this work we studied eh effect of surface curvature and chemistry on inter-protein interactions. Our goal was to find suitable immobilization supports which minimize these inter-protein interactions. Our studies carried out in the frame work of Hydrophobic-Polar (HP) model showed that enzymes immobilized inside hydrophobic pores of optimal sizes are best suited to minimize these inter-protein interactions. Besides, this study is also of biological importance to understand the role of chaperonins in protein disaggregation. Both of these aspects profited immensely with collaborations with our experimental colleague, Prof. Georges Belfort (RPI), who performed the experimental analog of our theoretical works.

  12. The odyssey of Hsp60 from tumor cells to other destinations includes plasma membrane-associated stages and Golgi and exosomal protein-trafficking modalities.

    Directory of Open Access Journals (Sweden)

    Claudia Campanella

    Full Text Available BACKGROUND: In a previous work we showed for the first time that human tumor cells secrete Hsp60 via exosomes, which are considered immunologically active microvesicles involved in tumor progression. This finding raised questions concerning the route followed by Hsp60 to reach the exosomes, its location in them, and whether Hsp60 can be secreted also via other mechanisms, e.g., by the Golgi. We addressed these issues in the work presented here. PRINCIPAL FINDINGS: We found that Hsp60 localizes in the tumor cell plasma membrane, is associated with lipid rafts, and ends up in the exosomal membrane. We also found evidence that Hsp60 localizes in the Golgi apparatus and its secretion is prevented by an inhibitor of this organelle. CONCLUSIONS/SIGNIFICANCE: We propose a multistage process for the translocation of Hsp60 from the inside to the outside of the cell that includes a combination of protein traffic pathways and, ultimately, presence of the chaperonin in the circulating blood. The new information presented should help in designing future strategies for research and for developing diagnostic-monitoring means useful in clinical oncology.

  13. Hsp10: anatomic distribution, functions, and involvement in human disease.

    Science.gov (United States)

    David, Sabrina; Bucchieri, Fabio; Corrao, Simona; Czarnecka, Anna M; Campanella, Claudia; Farina, Felicia; Peri, Giovanni; Tomasello, Giovanni; Sciumè, Carmelo; Modica, Giuseppe; La Rocca, Giampiero; Anzalone, Rita; Giuffrè, Mario; Conway De Macario, Everly; Macario, Alberto J L; Cappello, Francesco; Zummo, Giovanni

    2013-01-01

    There is growing evidence that molecular chaperones/heat shock proteins are involved in the pathogenesis of a number of human diseases, known as chaperonopathies. A better molecular understanding of the pathogenetic mechanisms is essential for addressing new strategies in diagnostics, therapeutics and clinical management of chaperonopathies, including those in which Hsp10 is involved. This chaperonin has been studied for a long time as a member of the mitochondrial protein-folding machine. However, although in normal cells Hsp10 is mainly localized in the mitochondrial matrix, it has also been found during and after stress in other subcellular compartments, such as cytosol, vesicles and secretory granules, alone or in combination with other proteins. In these extramitochondrial locales, Hsp10 plays an active role in cell signalling. For example, cancer cells often show altered levels of Hsp10, compared to normal cells. Hsp10 may also be found in the extracellular space and in the bloodstream, with a possible immunomodulatory activity. This minireview focuses on some studies to date on the involvement of Hsp10 in human disease pathogenesis.

  14. Hsp10, Hsp70, and Hsp90 immunohistochemical levels change in ulcerative colitis after therapy

    Directory of Open Access Journals (Sweden)

    G. Tomasello

    2011-10-01

    Full Text Available Ulcerative colitis (UC is a form of inflammatory bowel disease (IBD characterized by damage of large bowel mucosa and frequent extra-intestinal autoimmune comorbidities. The role played in IBD pathogenesis by molecular chaperones known to interact with components of the immune system involved in inflammation is unclear. We previously demonstrated that mucosal Hsp60 decreases in UC patients treated with conventional therapies (mesalazine, probiotics, suggesting that this chaperonin could be a reliable biomarker useful for monitoring response to treatment, and that it might play a role in pathogenesis. In the present work we investigated three other heat shock protein/molecular chaperones: Hsp10, Hsp70, and Hsp90. We found that the levels of these proteins are increased in UC patients at the time of diagnosis and decrease after therapy, supporting the notion that these proteins deserve attention in the study of the mechanisms that promote the development and maintenance of IBD, and as biomarkers of this disease (e.g., to monitor response to treatment at the histological level.

  15. Hsp60 response in experimental and human temporal lobe epilepsy.

    Science.gov (United States)

    Marino Gammazza, Antonella; Colangeli, Roberto; Orban, Gergely; Pierucci, Massimo; Di Gennaro, Giancarlo; Lo Bello, Margherita; D'Aniello, Alfredo; Bucchieri, Fabio; Pomara, Cristoforo; Valentino, Mario; Muscat, Richard; Benigno, Arcangelo; Zummo, Giovanni; de Macario, Everly Conway; Cappello, Francesco; Di Giovanni, Giuseppe; Macario, Alberto J L

    2015-03-24

    The mitochondrial chaperonin Hsp60 is a ubiquitous molecule with multiple roles, constitutively expressed and inducible by oxidative stress. In the brain, Hsp60 is widely distributed and has been implicated in neurological disorders, including epilepsy. A role for mitochondria and oxidative stress has been proposed in epileptogenesis of temporal lobe epilepsy (TLE). Here, we investigated the involvement of Hsp60 in TLE using animal and human samples. Hsp60 immunoreactivity in the hippocampus, measured by Western blotting and immunohistochemistry, was increased in a rat model of TLE. Hsp60 was also increased in the hippocampal dentate gyrus neurons somata and neuropil and hippocampus proper (CA3, CA1) of the epileptic rats. We also determined the circulating levels of Hsp60 in epileptic animals and TLE patients using ELISA. The epileptic rats showed circulating levels of Hsp60 higher than controls. Likewise, plasma post-seizure Hsp60 levels in patients were higher than before the seizure and those of controls. These results demonstrate that Hsp60 is increased in both animals and patients with TLE in affected tissues, and in plasma in response to epileptic seizures, and point to it as biomarker of hippocampal stress potentially useful for diagnosis and patient management.

  16. The histone deacetylase inhibitor SAHA induces HSP60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cells.

    Science.gov (United States)

    Campanella, Claudia; D'Anneo, Antonella; Marino Gammazza, Antonella; Caruso Bavisotto, Celeste; Barone, Rosario; Emanuele, Sonia; Lo Cascio, Filippa; Mocciaro, Emanuele; Fais, Stefano; Conway De Macario, Everly; Macario, Alberto J L; Cappello, Francesco; Lauricella, Marianna

    2016-05-17

    HSP60 undergoes changes in quantity and distribution in some types of tumors suggesting a participation of the chaperonin in the mechanism of transformation and cancer progression. Suberoylanilide hydroxamic acid (SAHA), a member of a family of histone deacetylase inhibitors (HDACi), has anti-cancer potential but its interaction, if any, with HSP60 has not been elucidated. We investigated the effects of SAHA in a human lung-derived carcinoma cell line (H292). We analysed cell viability and cycle; oxidative stress markers; mitochondrial integrity; HSP60 protein and mRNA levels; and HSP60 post-translational modifications, and its secretion. We found that SAHA is cytotoxic for H292 cells, interrupting the cycle at the G2/M phase, which is followed by death; cytotoxicity is associated with oxidative stress, mitochondrial damage, and diminution of intracellular levels of HSP60; HSP60 undergoes a post-translational modification and becomes nitrated; and nitrated HSP60 is exported via exosomes. We propose that SAHA causes ROS overproduction and mitochondrial dysfunction, which leads to HSP60 nitration and release into the intercellular space and circulation to interact with the immune system. These successive steps might constitute the mechanism of the anti-tumor action of SAHA and provide a basis to design supplementary therapeutic strategies targeting HSP60, which would be more efficacious than the compound alone.

  17. Hsp60 is actively secreted by human tumor cells.

    Directory of Open Access Journals (Sweden)

    Anna M Merendino

    Full Text Available BACKGROUND: Hsp60, a Group I mitochondrial chaperonin, is classically considered an intracellular chaperone with residence in the mitochondria; nonetheless, in the last few years it has been found extracellularly as well as in the cell membrane. Important questions remain pertaining to extracellular Hsp60 such as how generalized is its occurrence outside cells, what are its extracellular functions and the translocation mechanisms that transport the chaperone outside of the cell. These questions are particularly relevant for cancer biology since it is believed that extracellular chaperones, like Hsp70, may play an active role in tumor growth and dissemination. METHODOLOGY/PRINCIPAL FINDINGS: Since cancer cells may undergo necrosis and apoptosis, it could be possible that extracellular Hsps are chiefly the result of cell destruction but not the product of an active, physiological process. In this work, we studied three tumor cells lines and found that they all release Hsp60 into the culture media by an active mechanism independently of cell death. Biochemical analyses of one of the cell lines revealed that Hsp60 secretion was significantly reduced, by inhibitors of exosomes and lipid rafts. CONCLUSIONS/SIGNIFICANCE: Our data suggest that Hsp60 release is the result of an active secretion mechanism and, since extracellular release of the chaperone was demonstrated in all tumor cell lines investigated, our observations most likely reflect a general physiological phenomenon, occurring in many tumors.

  18. Proteomic profiling of endorepellin angiostatic activity on human endothelial cells

    Directory of Open Access Journals (Sweden)

    Iozzo Renato V

    2008-02-01

    Full Text Available Abstract Background Endorepellin, the C-terminal domain V of the heparan sulfate proteoglycan perlecan, exhibits powerful and targeted anti-angiogenic activity on endothelial cells. To identify proteins involved with endorepellin anti-angiogenic action, we performed an extensive comparative proteomic analysis between vehicle- and endorepellin-treated human endothelial cells. Results Proteomic analysis of endorepellin influence on human umbilical vein endothelial cells identified five differentially expressed proteins, three of which (β-actin, calreticulin, and chaperonin/Hsp60 were down-regulated and two of which (vimentin and the β subunit of prolyl 4-hydroxylase also known as protein disulfide isomerase were up-regulated in response to endorepellin treatment—and associated with a fold change (endorepellin/control ≤ 0.75 and ≥ 2.00, and a statistically significant p-value as determined by Student's t test. Conclusion The proteins identified represent potential target areas involved with endorepellin anti-angiogenic mechanism of action. Further elucidation as such will ultimately provide useful in utilizing endorepellin as an anti-angiogenic therapy in humans.

  19. Multiplex detection of bacteria associated with normal microbiota and with bacterial vaginosis in vaginal swabs by use of oligonucleotide-coupled fluorescent microspheres.

    Science.gov (United States)

    Dumonceaux, Tim J; Schellenberg, John; Goleski, Vanessa; Hill, Janet E; Jaoko, Walter; Kimani, Joshua; Money, Deborah; Ball, T Blake; Plummer, Francis A; Severini, Alberto

    2009-12-01

    Bacterial vaginosis (BV) is a recurrent condition that is associated with a range of negative outcomes, including the acquisition of human immunodeficiency virus and other sexually transmitted diseases, preterm births, and pelvic inflammatory disease. In contrast to the Lactobacillus-dominated normal vaginal microbiota, BV is characterized by a lack of lactobacilli and an abundance of anaerobic and gram-negative organisms, including Gardnerella vaginalis and Atopobium vaginae. To date, the laboratory diagnosis of BV has relied upon the fulfillment of criteria determined by microscopic observation of Gram-stained vaginal swabs. We describe a molecular-based method for the easy determination of the species profile within the vaginal microbiota based on the amplification of the chaperonin-60 genes of all bacteria present in the swab and hybridization of the amplicon to species-specific oligonucleotide-coupled fluorescent beads that are identified by flow cytometry with a Luminex instrument. We designed a nineplex Luminex array for characterization of the vaginal microbiota and applied it to the analysis of vaginal swabs from individuals from Africa and North America. Using the presence of A. vaginae or G. vaginalis, or both, as the defining criterion for BV, we found that the method was highly specific and sensitive for the diagnosis of BV using microscopy as a gold standard.

  20. Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency

    DEFF Research Database (Denmark)

    Pedersen, Christina Bak; Bross, P.; Winter, V.S.;

    2003-01-01

    Short chain acyl-CoA dehydrogenase (SCAD) deficiency is an inborn error of the mitochondrial fatty acid metabolism caused by rare variations as well as common susceptibility variations in the SCAD gene. Earlier studies have shown that a common variant SCAD protein (R147W) was impaired in folding...... and aggregation of variant SCAD proteins. In this study we investigated the processing of a set of disease-causing variant SCAD proteins (R22W, G68C, W153R, R359C, and Q341H) and two common variant proteins (R147W and G185S) that lead to reduced SCAD activity. All SCAD proteins, including the wild type, associate...... with mitochondrial hsp60 chaperonins; however, the variant SCAD proteins remained associated with hsp60 for prolonged periods of time. Biogenesis experiments at two temperatures revealed that some of the variant proteins (R22W, G68C, W153R, and R359C) caused severe misfolding, whereas others (R147W, G185S, and Q341H...

  1. Treating Alzheimer’s disease withYizhijiannao granules by regulating expression of multiple proteins in temporal lobe

    Institute of Scientific and Technical Information of China (English)

    Hong Zhu; Liuyang Luo; Sihang Hu; Keli Dong; Guangcheng Li; Ting Zhang

    2014-01-01

    Yizhijiannao granules have been shown to improve cognitive function in Alzheimer’s disease patients. The present study sought to explore the mechanisms involved in the cognitive enhanc-ing effects ofYizhijiannao granule. Senescence-accelerated mouse prone 8 mice with learning and memory disorders were intragastrically treated withYizhijiannao granule for 8 weeks. Mice intragastrically treated with double distilled water for 8 weeks were considered as the control group. 2D gel electrophoresis was used to isolate total protein from the temporal lobe of senes-cence-accelerated mouse prone 8 mice, and differential protein spots were obtained by mass spectrometry. Thirty-seven differential protein spots were found in the temporal lobe area of both groups. Ten protein spots were identiifed: high mobility group box 1, dimethylarginine dimethylaminohydrolase-1, neuroglobin, hemoglobin beta adult major chain, peroxiredoxin-6, coiflin-1, lfotillin 1, peptidylprolyl isomerase A, voltage-dependent anion channel-2 and chap-eronin containing TCP1, and subunit 2. Among other functions, these proteins are separately involved in the regulation of amyloid beta production, oxidative stress, neuroinflammation, regulation of tau phosphorylation, and regulation of neuronal apoptosis. Our results revealed thatYizhijiannao granule can regulate the expression of various proteins in the temporal lobe of senescence-accelerated mouse prone 8 mice, and may be therapeutically beneifcial for the treat-ment of Alzheimer’s disease.

  2. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion.

    Directory of Open Access Journals (Sweden)

    Swarnalee Dutta

    Full Text Available The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs. We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430. There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE, compared to those exposed to groundnut-root exudates (GRE. In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2, in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.

  3. Autoinhibition of TBCB regulates EB1-mediated microtubule dynamics.

    Science.gov (United States)

    Carranza, Gerardo; Castaño, Raquel; Fanarraga, Mónica L; Villegas, Juan Carlos; Gonçalves, João; Soares, Helena; Avila, Jesus; Marenchino, Marco; Campos-Olivas, Ramón; Montoya, Guillermo; Zabala, Juan Carlos

    2013-01-01

    Tubulin cofactors (TBCs) participate in the folding, dimerization, and dissociation pathways of the tubulin dimer. Among them, TBCB and TBCE are two CAP-Gly domain-containing proteins that together efficiently interact with and dissociate the tubulin dimer. In the study reported here we showed that TBCB localizes at spindle and midzone microtubules during mitosis. Furthermore, the motif DEI/M-COO(-) present in TBCB, which is similar to the EEY/F-COO(-) element characteristic of EB proteins, CLIP-170, and α-tubulin, is required for TBCE-TBCB heterodimer formation and thus for tubulin dimer dissociation. This motif is responsible for TBCB autoinhibition, and our analysis suggests that TBCB is a monomer in solution. Mutants of TBCB lacking this motif are derepressed and induce microtubule depolymerization through an interaction with EB1 associated with microtubule tips. TBCB is also able to bind to the chaperonin complex CCT containing α-tubulin, suggesting that it could escort tubulin to facilitate its folding and dimerization, recycling or degradation.

  4. Constructing Optimal Coarse-Grained Sites of Huge Biomolecules by Fluctuation Maximization.

    Science.gov (United States)

    Li, Min; Zhang, John Zenghui; Xia, Fei

    2016-04-12

    Coarse-grained (CG) models are valuable tools for the study of functions of large biomolecules on large length and time scales. The definition of CG representations for huge biomolecules is always a formidable challenge. In this work, we propose a new method called fluctuation maximization coarse-graining (FM-CG) to construct the CG sites of biomolecules. The defined residual in FM-CG converges to a maximal value as the number of CG sites increases, allowing an optimal CG model to be rigorously defined on the basis of the maximum. More importantly, we developed a robust algorithm called stepwise local iterative optimization (SLIO) to accelerate the process of coarse-graining large biomolecules. By means of the efficient SLIO algorithm, the computational cost of coarse-graining large biomolecules is reduced to within the time scale of seconds, which is far lower than that of conventional simulated annealing. The coarse-graining of two huge systems, chaperonin GroEL and lengsin, indicates that our new methods can coarse-grain huge biomolecular systems with up to 10,000 residues within the time scale of minutes. The further parametrization of CG sites derived from FM-CG allows us to construct the corresponding CG models for studies of the functions of huge biomolecular systems.

  5. Characterization of a chaperone ClpB homologue of Paracoccidioides brasiliensis.

    Science.gov (United States)

    Jesuino, Rosália S A; Azevedo, Maristela O; Felipe, M Sueli S; Pereira, Maristela; De Almeida Soares, Célia M

    2002-08-01

    We report the cloning and sequence analysis of a genomic clone encoding a Paracoccidioides brasiliensis ClpB chaperone homologue (PbClpB). The clpb gene was identified in a lambda Dash II library. Sequencing of Pbclpb revealed a long open reading frame capable of encoding a 792 amino acid, 87.9 kDa protein, pI of 5.34. The predicted polypeptide contains several consensus motifs of the ClpB proteins. Canonical sequences such as two putative nucleotide-binding sites, chaperonins ClpA/B signatures and highly conserved casein kinase phosphorylation domains are present. ClpB is 69% to 49% identical to members of the ClpB family from several organisms from prokaryotes to eukaryotes. The transcript of PbclpB was detected as a mRNA species of 3.0 kb, preferentially expressed in the yeast parasitic phase of the fungus. A 89 kDa protein was also detected in yeast cells of P. brasiliensis.

  6. Biophysical principles predict fitness landscapes of drug resistance.

    Science.gov (United States)

    Rodrigues, João V; Bershtein, Shimon; Li, Anna; Lozovsky, Elena R; Hartl, Daniel L; Shakhnovich, Eugene I

    2016-03-15

    Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype-phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies.

  7. The Solution Structure of the N-Terminal Domain of Human Tubulin Binding Cofactor C Reveals a Platform for Tubulin Interaction

    Science.gov (United States)

    Garcia-Mayoral, Mª Flor; Castaño, Raquel; Fanarraga, Monica L.; Zabala, Juan Carlos; Rico, Manuel; Bruix, Marta

    2011-01-01

    Human Tubulin Binding Cofactor C (TBCC) is a post-chaperonin involved in the folding and assembly of α- and β-tubulin monomers leading to the release of productive tubulin heterodimers ready to polymerize into microtubules. In this process it collaborates with other cofactors (TBC's A, B, D, and E) and forms a supercomplex with TBCD, β-tubulin, TBCE and α-tubulin. Here, we demonstrate that TBCC depletion results in multipolar spindles and mitotic failure. Accordingly, TBCC is found at the centrosome and is implicated in bipolar spindle formation. We also determine by NMR the structure of the N-terminal domain of TBCC. The TBCC N-terminal domain adopts a spectrin-like fold topology composed of a left-handed 3-stranded α-helix bundle. Remarkably, the 30-residue N-terminal segment of the TBCC N-terminal domain is flexible and disordered in solution. This unstructured region is involved in the interaction with tubulin. Our data lead us to propose a testable model for TBCC N-terminal domain/tubulin recognition in which the highly charged N-terminus as well as residues from the three helices and the loops interact with the acidic hypervariable regions of tubulin monomers. PMID:22028797

  8. Distinct symmetry and limited peptide refolding activity of the thermosomes from the acidothermophilic archaea Acidianus tengchongensis S5{sup T}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li [The State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Hu, Zhong-jun [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Luo, Yuan-ming [The State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Huo, Yan-wu [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Ma, Qing [The State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); The College of Life Sciences, Beijing Normal University, Beijing 100875 (China); He, Yong-zhi; Zhang, Yu-ying [The State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China); Sun, Fei, E-mail: feisun@ibp.ac.cn [National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Dong, Zhi-yang, E-mail: dongzy@sun.im.ac.cn [The State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101 (China)

    2010-03-05

    Recombinant thermosomes from the Acidianus tengchongensis strain S5{sup T} were purified to homogeneity and assembled in vitro into homo-oligomers (rATcpn{alpha} or rATcpn{beta}) and hetero-oligomers (rATcpn{alpha}{beta}). The symmetries of these complexes were determined by electron microscopy and image analysis. The rATcpn{alpha} homo-oligomer was shown to possess 8-fold symmetry while both rATcpn{beta} and rATcpn{alpha}{beta} oligomers adopted 9-fold symmetry. rATcpn{alpha}{beta} oligomers were shown to contain the {alpha} and {beta} subunits in a 1:2 ratio. All of the complexes prevented the irreversible inactivation of yeast alcohol dehydrogenase at 55 {sup o}C and completely prevented the formation of aggregates during thermal inactivation of citrate synthase at 45 {sup o}C. All rATcpn complexes showed trace ATP hydrolysis activity. Furthermore, rATcpn{beta} sequestered fully chemically denatured substrates (GFP and thermophilic malic dehydrogenase) in vitro without refolding them in an ATP-dependent manner. This property is similar to previously reported properties of chaperonins from Sulfolobus tokodaii and Sulfolobus acidocaldarius. These features are consistent with the slow growth rates of these species of archaea in their native environment.

  9. Self-reporting materials: protein-mediated visual indication of damage in a bulk polymer.

    Science.gov (United States)

    Bruns, Nice; Clark, Douglas S

    2011-01-01

    Damage self-reporting materials are able to indicate the presence of microscopic damaged regions by easy to detect signals, such as fluorescence. Therefore, these smart materials can reduce the risk of catastrophic failure of load-bearing components, e.g., in aerospace and construction applications. We highlight here our proof-of-concept paper and we present some additional data, which shows that proteins can be used as mechanophores in solid polymeric materials. Macroscopic mechanical forces were transferred from the polymer to the embedded proteins. The biomolecules act as molecular strain sensor, giving the material the desired self-reporting property. Poly(ethylene glycol) and poly(acrylamide) (PAAm) networks were doped with small amounts of thermsosome (THS), a protein cage from the family of chaperonins, that encapsulated a pair of fluorescent proteins. THS acts as a scaffold which brings the two fluorescent proteins into distance suitable for fluorescence resonance energy transfer (FRET). Moreover, THS can be distorted by mechanic forces so that the distance between the fluorescent proteins changes, leading to a change in FRET efficiency. Using the brittle PAAm as a model system, we were able to visualize microcracks in the polymers by FRET microscopy and by fluorescence lifetime imaging. THS also stabilizes the encapsulated guest proteins against thermal denaturation, increasing their half-live at 70 degrees C by a factor of 2.3.

  10. Detection and identification of the heterogeneous novel subgroup 16SrXIII-(A/I)I phytoplasma associated with strawberry green petal disease and Mexican periwinkle virescence.

    Science.gov (United States)

    Pérez-López, Edel; Dumonceaux, Tim J

    2016-11-01

    Phytoplasmas (species of the genus 'CandidatusPhytoplasma') are insect-vectored phytopathogenic bacteria associated with economically and ecologically important crop diseases. Strawberry production represents an important part of agricultural activity in Mexico and elsewhere, and infection of plants with phytoplasma renders the fruit inedible by altering plant development, resulting in virescence and phyllody. In this study we examined samples taken from four strawberry plants showing symptoms associated with strawberry green petal disease and from two periwinkle plants showing virescence, sampled in different areas of Mexico. Analysis of the 16S rRNA-encoding sequences showed that the plants were infected with a phytoplasma previously identified as Mexican periwinkle virescence (MPV; 16SrXIII). Examination of bacterial sequences from these samples revealed that two distinct 16S rRNA gene sequences were present in each sample along with a single chaperonin-60 (cpn60) sequence and a single rpoB sequence, suggesting that this strain displays 16S rRNA gene sequence heterogeneity. Two distinct rrn operons, identified with subgroup 16SrXIII-A and the newly described subgroup 16SrXIII-I, were identified from the six samples analyzed, delineating the novel subgroup 16SrXIII-(A/I)I, following the nomenclature proposed for heterogeneous subgroups.

  11. Single molecule FRET detection in CdSe-QD donor and Cy5-labeled molecular chaperone acceptor complex by imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Toshiro, E-mail: ttani@cc.tuat.ac.j [Division of Advanced Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Oda, Masaru [Division of Advanced Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Sakai, Hiroshi; Araki, Daisuke; Itoh, Yoshinori [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Ohtaki, Akashi; Yohda, Masafumi [Division of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan)

    2011-03-15

    We report single molecule spectroscopic evidence of FRET in CdSe quantum dot (QD) conjugated with Cy5-labeled molecular chaperone systems in buffer solutions. Donor QDs are core-shell type nanocrystals covered with organic surfactants on their outermost surfaces, i.e. CdSe/ZnS/TOPO's. As prototype molecular chaperones, we adopt prefoldins (PFDs), on which Cy5's are labeled as acceptors. Donor QDs possess two-fold degenerate emission dipoles perpendicular to the c-axis, due to their Wurtzite crystal structures, while acceptor Cy5's possess linear absorption and emission dipoles. Thus, their combination provides novel features to those in conventional FRET systems. PFDs are jellyfish-shaped hexameric co-chaperones of group II chaperonins, which recognize hydrophobic portions of denatured proteins and encapsulate them within their central cavities. Hence, PFDs will also capture the CdSe/ZnS/TOPO QDs due to its surface similarity to the denatured proteins. By introducing simple microscope setup for single QD-PFD-Cy5 spectroscopy, we have successfully captured the emission spectra in FRET regime. We also have observed peculiar features in time evolution profiles of single QD emissions conjugated with Cy5-labeled PFDs under polarization modulation measurements. Notable point of our hybrid conjugates is that they are biochemically in living action. We describe our present results in relation to possible protein reactions.

  12. Energy transfer in hybrid CdSe quantum dots vs. labelled molecular chaperone systems by imaging microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Toshiro; Oda, Masaru [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Horiuchi, Hiromi; Usukura, Eiji; Sakai, Hiroshi [Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Ohtaki, Akashi [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Yohda, Masafumi [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan); Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Kogane-i, Tokyo 184-8588 (Japan)

    2009-04-15

    Resonant energy transfer in hybrid CdSe quantum dot (QD) conjugated with Cy5-labelled molecular chaperone systems is observed with single molecule imaging technique. Photonic QDs are the core-shell type nanocrystals covered with organic surfactants on the outermost surfaces, i.e. CdSe/ZnS/TOPO's, and prefoldin (PFD) is used as prototype molecular chaperons. PFD is a jellyfish-shaped hexameric co-chaperone of group II chaperonins, which recognize hydrophobic portion of denatured proteins and encapsulate them within its central cavity. So the CdSe/ZnS/TOPO QDs can also be captured be cause of its surface similarity to the denatured proteins. We have found one possible reaction pathway to get such artificial complex in aqueous solutions with keeping bioactivities of the proteins. Performance of the complex is evaluated by TIRF imaging microscopy. As the proteins are transparent in visible wavelength region, labeling dyes, Cy5, which also work as acceptors, are connected to detect their behaviors microscopically. Foerster type energy transfer is observed from the QD donors to Cy5-labeled PFD acceptors in single molecule level, which can be a distinct evidence for the complex formation. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana

    KAUST Repository

    Thomas, Ludivine

    2013-05-01

    The second messenger 3\\'-5\\'-cyclic adenosine monophosphate (cAMP) and adenylyl cyclases (ACs), enzymes that catalyse the formation of cAMP from ATP, are increasingly recognized as important signaling molecules in a number of physiological responses in higher plants. Here we used proteomics to identify cAMP-dependent protein signatures in Arabidopsis thaliana and identify a number of differentially expressed proteins with a role in light- and temperature-dependent responses, notably photosystem II subunit P-1, plasma membrane associated cation-binding protein and chaperonin 60 β. Based on these proteomics results we conclude that, much like in cyanobacteria, algae and fungi, cAMP may have a role in light signaling and the regulation of photosynthesis as well as responses to temperature and we speculate that ACs could act as light and/or temperature sensors in higher plants. Biological significance: This current study is significant since it presents the first proteomic response to cAMP, a novel and key second messenger in plants. It will be relevant to researchers in plant physiology and in particular those with an interest in second messengers and their role in biotic and abiotic stress responses. © 2013 Elsevier B.V.

  14. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    Directory of Open Access Journals (Sweden)

    Kamela O. Alegre

    2015-03-01

    Full Text Available Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS. Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

  15. Differentially expressed phosphoproteins in diazoxide-pretreated ventricular myocytes by two-dimensional electrophoresis and mass spectrometry in vitro

    Institute of Scientific and Technical Information of China (English)

    LI Hong; XIAO Ying-bin; GAO Yu-qi; YANG Tian-de

    2006-01-01

    Objective:To analyze and identify differentially expressed phosphoproteins associated with mitochondrial KATP channel opening. Methods: Adult rat ventricular myocytes were isolated, cultured,and identified, and pretreated without or with 100μmol/L diazoxide for 10 min. Phosphoproteins prepared and enriched from the control and diazoxide-pretreated cells were separated by two-dimensional gel electrophoresis (2-DE) followed by sliver staining. The obtained interesting phosphoproteins were further identified by mass spectrometry. Results: Associated with diazoxide preconditioning, the proteins of chaperonin containing TCP-1 and hypothetical protein XP_ 346548 were phosphorylated significantly (P<0. 01), while the 94-kDa glucose-regulated protein, calpactin I heavy chain and ferritin were dephosphorylated markedly (P<0. 01). Conclusion: These findings suggest that cardiomyocytes undergo significant posttranslational modification via phosphorylation in a multitude of proteins in order to respond diazoxide preconditioning, and these phosphorylated protein may mediate the downstream signaling of cardioprotection by mitochondrial KATP channel opening induced by ischemic preconditioning.

  16. Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi.

    Science.gov (United States)

    Gill, Erin E; Diaz-Triviño, Sara; Barberà, Maria José; Silberman, Jeffrey D; Stechmann, Alexandra; Gaston, Daniel; Tamas, Ivica; Roger, Andrew J

    2007-12-01

    Unicellular eukaryotes that lack mitochondria typically contain related organelles such as hydrogenosomes or mitosomes. To characterize the evolutionary diversity of these organelles, we conducted an expressed sequence tag (EST) survey on the free-living amoeba Mastigamoeba balamuthi, a relative of the human parasite Entamoeba histolytica. From 19 182 ESTs, we identified 21 putative mitochondrial proteins implicated in protein import, amino acid interconversion and carbohydrate metabolism, two components of the iron-sulphur cluster (Fe-S) assembly apparatus as well as two enzymes characteristic of hydrogenosomes. By immunofluorescence microscopy and subcellular fractionation, we show that mitochondrial chaperonin 60 is targeted to small abundant organelles within Mastigamoeba. In transmission electron micrographs, we identified double-membraned compartments that likely correspond to these mitochondrion-derived organelles, The predicted organellar proteome of the Mastigamoeba organelle indicates a unique spectrum of functions that collectively have never been observed in mitochondrion-related organelles. However, like Entamoeba, the Fe-S cluster assembly proteins in Mastigamoeba were acquired by lateral gene transfer from epsilon-proteobacteria and do not possess obvious organellar targeting peptides. These data indicate that the loss of classical aerobic mitochondrial functions and acquisition of anaerobic enzymes and Fe-S cluster assembly proteins occurred in a free-living member of the eukaryote super-kingdom Amoebozoa.

  17. Identification of genes involved in the response of haemocytes of Penaeus japonicus by suppression subtractive hybridization (SSH) following microbial challenge.

    Science.gov (United States)

    He, Nanhai; Liu, Haipeng; Xu, Xun

    2004-08-01

    Penaeus japonicus were injected with a heat-killed microorganism suspension and 291 randomly selected cDNA fragments generated by suppression subtractive hybridization (SSH) were sequenced. A total of 71 cDNA clones corresponding to 25 genes were found to have enhanced expression, of which eight are found for the first time in shrimp. The most abundant gene in the subtractive library was Kunitz-type protease inhibitor, clearly indicating this protease inhibitor in the response. A number of genes encoding signaling molecules, such as Ras-related nuclear protein (Ran), growth factor receptor bound protein (Grb), TGF-beta receptor interacting protein, integrin binding protein and interferon receptor bound protein were found for the first time in the shrimp, and they may be involved in the regulation of the host defense against the injected microbes. Furthermore, cDNAs of chaperonin, proteasome, antioxidant as well as genes associated with actin reorganization, which may be necessary for phagocytosis and encapsulation, were also expressed at a higher level after the challenge. These results may facilitate the understanding of shrimp immune responses.

  18. DNA characterization of simian Entamoeba histolytica-like strains to differentiate them from Entamoeba histolytica.

    Science.gov (United States)

    Takano, Jun-ichiro; Tachibana, Hiroshi; Kato, Miyoko; Narita, Toyoko; Yanagi, Tetsuo; Yasutomi, Yasuhiro; Fujimoto, Koji

    2009-10-01

    Two simian Entamoeba histolytica-like strains, EHMfas1 and P19-061405, have been suggested to represent a new species based on genetic characterization. Sequence analyses of the hexokinase, glucose phosphate isomerase, and phosphoglucomutase genes supported the previous findings of isoenzyme analyses demonstrating a new zymodeme pattern. Phylogenetic studies of 18S rDNA, 5.8S rDNA, the chaperonin 60 gene, and the pyridine nucleotide transhydrogenase gene showed original clusters of simian E. histolytica-like strains below or near E. histolytica, respectively. Comparative studies of the chitinase and the serine-rich E. histolytica protein genes and locus 1-2 region revealed that most mutated units were shared among the simian E. histolytica-like strains. The similarities of each of the repeating units within the simian E. histolytica-like strains or E. histolytica and the differences of those between the both might be generated by concerted evolution. Our results indicate that EHMfas1 and P19-061405 should be considered to be the same species, despite that they were isolated from different monkey species and different habitats. Simian E. histolytica-like amebas may be endemic to macaque monkeys, as a counterpart to E. histolytica in humans, and should be differentiated from E. histolytica by the revival name Entamoeba nuttalli, as proposed for P19-061405.

  19. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes.

    Science.gov (United States)

    Schneider, Rachel E; Brown, Mark T; Shiflett, April M; Dyall, Sabrina D; Hayes, Richard D; Xie, Yongming; Loo, Joseph A; Johnson, Patricia J

    2011-11-01

    The human pathogen Trichomonas vaginalis lacks conventional mitochondria and instead contains divergent mitochondrial-related organelles. These double-membrane bound organelles, called hydrogenosomes, produce molecular hydrogen. Phylogenetic and biochemical analyses of hydrogenosomes indicate a common origin with mitochondria; however identification of hydrogenosomal proteins and studies on its metabolism have been limited. Here we provide a detailed proteomic analysis of the T. vaginalis hydrogenosome. The proteome of purified hydrogenosomes consists of 569 proteins, a number substantially lower than the 1,000-1,500 proteins reported for fungal and animal mitochondrial proteomes, yet considerably higher than proteins assigned to mitosomes. Pathways common to and distinct from both mitochondria and mitosomes were revealed by the hydrogenosome proteome. Proteins known to function in amino acid and energy metabolism, Fe-S cluster assembly, flavin-mediated catalysis, oxygen stress response, membrane translocation, chaperonin functions, proteolytic processing and ATP hydrolysis account for ∼30% of the hydrogenosome proteome. Of the 569 proteins in the hydrogenosome proteome, many appear to be associated with the external surface of hydrogenosomes, including large numbers of GTPases and ribosomal proteins. Glycolytic proteins were also found to be associated with the hydrogenosome proteome, similar to that previously observed for mitochondrial proteomes. Approximately 18% of the hydrogenosomal proteome is composed of hypothetical proteins of unknown function, predictive of multiple activities and properties yet to be uncovered for these highly adapted organelles.

  20. Network Analysis Identifies Disease-Specific Pathways for Parkinson's Disease.

    Science.gov (United States)

    Monti, Chiara; Colugnat, Ilaria; Lopiano, Leonardo; Chiò, Adriano; Alberio, Tiziana

    2016-12-21

    Neurodegenerative diseases are characterized by the progressive loss of specific neurons in selected regions of the central nervous system. The main clinical manifestation (movement disorders, cognitive impairment, and/or psychiatric disturbances) depends on the neuron population being primarily affected. Parkinson's disease is a common movement disorder, whose etiology remains mostly unknown. Progressive loss of dopaminergic neurons in the substantia nigra causes an impairment of the motor control. Some of the pathogenetic mechanisms causing the progressive deterioration of these neurons are not specific for Parkinson's disease but are shared by other neurodegenerative diseases, like Alzheimer's disease and amyotrophic lateral sclerosis. Here, we performed a meta-analysis of the literature of all the quantitative proteomic investigations of neuronal alterations in different models of Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis to distinguish between general and Parkinson's disease-specific pattern of neurodegeneration. Then, we merged proteomics data with genetics information from the DisGeNET database. The comparison of gene and protein information allowed us to identify 25 proteins involved uniquely in Parkinson's disease and we verified the alteration of one of them, i.e., transaldolase 1 (TALDO1), in the substantia nigra of 5 patients. By using open-source bioinformatics tools, we identified the biological processes specifically affected in Parkinson's disease, i.e., proteolysis, mitochondrion organization, and mitophagy. Eventually, we highlighted four cellular component complexes mostly involved in the pathogenesis: the proteasome complex, the protein phosphatase 2A, the chaperonins CCT complex, and the complex III of the respiratory chain.

  1. Proteome Analysis of the Adaptation of a Phenol-Degrading Bacterium Acinetobacter sp. EDP3 to the Variation of Phenol Loadings%蛋白质组学方法分析不同苯酚浓度下菌株Acinetobacter sp.EDP3的应激机理

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Strain EDP3 was isolated from an industrial-activated sludge. It belonged to the gamma group of Proteobacteria with an identity of 97.0% to Acinetobacter calcoaceticus according to the 1 6S rRNA gene sequences. It can tolerate up to 1000mg.L-1 phenol at room temperature with a much longer lag phase. This indicates that higher phenol concentration has induced some physiological and genotypic changes in the bacterium. The aim of this study is,therefore,to investigate these responses to phenol concentration variations in strain EDP3. Proteome analysis is conducted by means of a two-dimensional polyacrylamide gel electrophoresis (2D PAGE) and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was conducted to obtain a deeper insight into the adaptive responses inside the bacterium. Comparative analysis of the proteome profiles of strain EDp3 the higher phenol concentration,oxidative stress proteins were dominant. The synthesis of a heat shock protein,600O0 chaperonin GroEL,was also amplified. In addition,the expression of one membrane protein,adenosine 5'-triphosphate (ATP)-binding cassette (ABC) type sugar transporter,was found up-regulated. The inhibition of adenosine 5'-triphosphate (ATP) and RNA/protein synthesis was also observed.

  2. Excavating abiotic stress-related gene resources of terrestrial macroscopic cyanobacteria for crop genetic engineering: dawn and challenge.

    Science.gov (United States)

    Ye, Shuifeng; Gao, Xiang

    2015-01-01

    Genetically engineered (GE) crops with resistance to environmental stresses are one of the most important solutions for future food security. Numerous genes associated to plant stress resistance have been identified and characterized. However, the current reality is that only a few transgenic crops expressing prokaryotic genes are successfully applied in field conditions. These few prokaryotic genes include Agrobacterium strain CP4 EPSPS gene, Bacillus thuringiensis Cry1Ab gene and a bacterial chaperonin gene. Thus, the excavation of potentially critical genes still remains an arduous task for crop engineering. Terrestrial macroscopic cyanobacteria, Nostoc commune and Nostoc flagelliforme, which exhibit extreme resistance to desiccation stress, may serve as new prokaryotic bioresources for excavating critical genes. Recently, their marker gene wspA was heterologously expressed in Arabidopsis plant and the transgenics exhibited more flourishing root systems than wild-type plants under osmotic stress condition. In addition, some new genes associated with drought response and adaptation in N. flagelliforme are being uncovered by our ongoing RNA-seq analysis. Although the relevant work about the terrestrial macroscopic cyanobacteria is still underway, we believe that the prospect of excavating their critical genes for application in GE crops is quite optimistic.

  3. Microcystin-Bound Protein Patterns in Different Cultures of Microcystis aeruginosa and Field Samples

    Science.gov (United States)

    Wei, Nian; Hu, Lili; Song, Lirong; Gan, Nanqin

    2016-01-01

    Micocystin (MC) exists in Microcystis cells in two different forms, free and protein-bound. We examined the dynamic change in extracellular free MCs, intracellular free MCs and protein-bound MCs in both batch cultures and semi-continuous cultures, using high performance liquid chromatography and Western blot. The results showed that the free MC per cell remained constant, while the quantity of protein-bound MCs increased with the growth of Microcystis cells in both kinds of culture. Significant changes in the dominant MC-bound proteins occurred in the late exponential growth phase of batch cultures, while the dominant MC-bound proteins in semi-continuous cultures remained the same. In field samples collected at different months in Lake Taihu, the dominant MC-bound proteins were shown to be similar, but the amount of protein-bound MC varied and correlated with the intracellular MC content. We identified MC-bound proteins by two-dimensional electrophoresis immunoblots and mass spectrometry. The 60 kDa chaperonin GroEL was a prominent MC-bound protein. Three essential glycolytic enzymes and ATP synthase alpha subunit were also major targets of MC-binding, which might contribute to sustained growth in semi-continuous culture. Our results indicate that protein-bound MC may be important for sustaining growth and adaptation of Microcystis sp. PMID:27754336

  4. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds.

    Science.gov (United States)

    Links, Matthew G; Demeke, Tigst; Gräfenhan, Tom; Hill, Janet E; Hemmingsen, Sean M; Dumonceaux, Tim J

    2014-04-01

    In order to address the hypothesis that seeds from ecologically and geographically diverse plants harbor characteristic epiphytic microbiota, we characterized the bacterial and fungal microbiota associated with Triticum and Brassica seed surfaces. The total microbial complement was determined by amplification and sequencing of a fragment of chaperonin 60 (cpn60). Specific microorganisms were quantified by qPCR. Bacteria and fungi corresponding to operational taxonomic units (OTU) that were identified in the sequencing study were isolated and their interactions examined. A total of 5477 OTU were observed from seed washes. Neither total epiphytic bacterial load nor community richness/evenness was significantly different between the seed types; 578 OTU were shared among all samples at a variety of abundances. Hierarchical clustering revealed that 203 were significantly different in abundance on Triticum seeds compared with Brassica. Microorganisms isolated from seeds showed 99-100% identity between the cpn60 sequences of the isolates and the OTU sequences from this shared microbiome. Bacterial strains identified as Pantoea agglomerans had antagonistic properties toward one of the fungal isolates (Alternaria sp.), providing a possible explanation for their reciprocal abundances on both Triticum and Brassica seeds. cpn60 enabled the simultaneous profiling of bacterial and fungal microbiota and revealed a core seed-associated microbiota shared between diverse plant genera.

  5. Immunoproteomic profiling of Rickettsia parkeri and Rickettsia amblyommii.

    Science.gov (United States)

    Pornwiroon, Walairat; Bourchookarn, Apichai; Paddock, Christopher D; Macaluso, Kevin R

    2015-09-01

    Rickettsia parkeri is an Amblyomma-associated, spotted fever group Rickettsia species that causes an eschar-associated, febrile illness in multiple countries throughout the Western Hemisphere. Many other rickettsial species of known or uncertain pathogenicity have been detected in Amblyomma spp. ticks in the Americas, including Rickettsia amblyommii, "Candidatus Rickettsia andeanae" and Rickettsia rickettsii. In this study, we utilized an immunoproteomic approach to compare antigenic profiles of low-passage isolates of R. parkeri and R. amblyommii with serum specimens from patients with PCR- and culture-confirmed infections with R. parkeri. Five immunoreactive proteins of R. amblyommii and nine immunoreactive proteins of R. parkeri were identified by matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry. Four of these, including the outer membrane protein (Omp) A, OmpB, translation initiation factor IF-2, and cell division protein FtsZ, were antigens common to both rickettsiae. Serum specimens from patients with R. parkeri rickettsiosis reacted specifically with cysteinyl-tRNA synthetase, DNA-directed RNA polymerase subunit alpha, putative sigma (54) modulation protein, chaperonin GroEL, and elongation factor Tu of R. parkeri which have been reported as virulence factors in other bacterial species. Unique antigens identified in this study may be useful for further development of the better serological assays for diagnosing infection caused by R. parkeri.

  6. Mammalian ribosomal and chaperone protein RPS3A counteracts α-synuclein aggregation and toxicity in a yeast model system.

    Science.gov (United States)

    De Graeve, Stijn; Marinelli, Sarah; Stolz, Frank; Hendrix, Jelle; Vandamme, Jurgen; Engelborghs, Yves; Van Dijck, Patrick; Thevelein, Johan M

    2013-11-01

    Accumulation of aggregated forms of αSyn (α-synuclein) into Lewy bodies is a known hallmark associated with neuronal cell death in Parkinson's disease. When expressed in the yeast Saccharomyces cerevisiae, αSyn interacts with the plasma membrane, forms inclusions and causes a concentration-dependent growth defect. We have used a yeast mutant, cog6Δ, which is particularly sensitive to moderate αSyn expression, for screening a mouse brain-specific cDNA library in order to identify mammalian proteins that counteract αSyn toxicity. The mouse ribosomal and chaperone protein RPS3A was identified as a suppressor of αSyn [WT (wild-type) and A53T] toxicity in yeast. We demonstrated that the 50 N-terminal amino acids are essential for this function. The yeast homologues of RPS3A were not effective in suppressing the αSyn-induced growth defect, illustrating the potential of our screening system to identify modifiers that would be missed using yeast gene overexpression as the first screening step. Co-expression of mouse RPS3A delayed the formation of αSyn-GFP inclusions in the yeast cells. The results of the present study suggest that the recently identified extraribosomal chaperonin function of RPS3A also acts on the neurodegeneration-related protein αSyn and reveal a new avenue for identifying promising candidate mammalian proteins involved in αSyn functioning.

  7. Effect of Carthami Tinctorii Fructus Herbal-acupuncture Solution(CTF-HAS on Gene Expression in HepG2 carcinomar cells by Proteomic Analysis

    Directory of Open Access Journals (Sweden)

    Lee Kyung-min

    2005-06-01

    Full Text Available Objective : It has long been known about the osteogenic effect of CTF-HAS on bone tissues. However, it has not been determined the effect of CTF-HAS on cancer cells. The purpose of this study is to screen the CTF-HAS mediated differentially expressed genes in cancer cells such as HepG2 hepatoma cells lines. Methods : CTF-HAS was prepared by boiling and stored at -70℃ until use. For proteomic analysis, total protein was analyzed by 2D gel electrophoresis and Q-TOF mass spectrometer. Results : In proteomic analysis, three spots were identified by 2D-gel electrophoresis and Q-TOF analysis. One down-regulated protein was heat shock 70kDa protein 5 and up-regulated proteins were chaperonin and 2-phospho -pyruvate-hydratase α-enolase by 1.5mg/㎖ of CTF-HAS. Discussion : Proteomic ananlysis approach were performed to screen the differential expression genes. The screened genes will be used for the better understanding in therapeutic effect of CTF-HAS on cancer field.

  8. CCT2 Mutations Evoke Leber Congenital Amaurosis due to Chaperone Complex Instability

    Science.gov (United States)

    Minegishi, Yuriko; Sheng, XunLun; Yoshitake, Kazutoshi; Sergeev, Yuri; Iejima, Daisuke; Shibagaki, Yoshio; Monma, Norikazu; Ikeo, Kazuho; Furuno, Masaaki; Zhuang, Wenjun; Liu, Yani; Rong, Weining; Hattori, Seisuke; Iwata, Takeshi

    2016-01-01

    Leber congenital amaurosis (LCA) is a hereditary early-onset retinal dystrophy that is accompanied by severe macular degeneration. In this study, novel compound heterozygous mutations were identified as LCA-causative in chaperonin-containing TCP-1, subunit 2 (CCT2), a gene that encodes the molecular chaperone protein, CCTβ. The zebrafish mutants of CCTβ are known to exhibit the eye phenotype while its mutation and association with human disease have been unknown. The CCT proteins (CCT α-θ) forms ring complex for its chaperon function. The LCA mutants of CCTβ, T400P and R516H, are biochemically instable and the affinity for the adjacent subunit, CCTγ, was affected distinctly in both mutants. The patient-derived induced pluripotent stem cells (iPSCs), carrying these CCTβ mutants, were less proliferative than the control iPSCs. Decreased proliferation under Cct2 knockdown in 661W cells was significantly rescued by wild-type CCTβ expression. However, the expression of T400P and R516H didn’t exhibit the significant effect. In mouse retina, both CCTβ and CCTγ are expressed in the retinal ganglion cells and connecting cilium of photoreceptor cells. The Cct2 knockdown decreased its major client protein, transducing β1 (Gβ1). Here we report the novel LCA mutations in CCTβ and the impact of chaperon disability by these mutations in cellular biology. PMID:27645772

  9. Neisseria arctica sp. nov. isolated from nonviable eggs of greater white-fronted geese (Anser albifrons) in Arctic Alaska

    Science.gov (United States)

    Hansen, Cristina M.; Himschoot, Elizabeth; Hare, Rebekah F.; Meixell, Brandt; Van Hemert, Caroline R.; Hueffer, Karsten

    2017-01-01

    During the summers of 2013 and 2014, isolates of a novel Gram-negative coccus in the Neisseria genus were obtained from the contents of nonviable greater white-fronted goose (Anser albifrons) eggs on the Arctic Coastal Plain of Alaska. We used a polyphasic approach to determine whether these isolates represent a novel species. 16S rRNA gene sequences, 23S rRNA gene sequences, and chaperonin 60 gene sequences suggested that these Alaskan isolates are members of a distinct species that is most closely related to Neisseria canis, N. animaloris, and N. shayeganii. Analysis of the rplF gene additionally showed that our isolates are unique and most closely related to N. weaveri. Average nucleotide identity of the whole genome sequence of our type strain was between 71.5% and 74.6% compared to close relatives, further supporting designation as a novel species. Fatty acid methyl ester analysis showed a predominance of C14:0, C16:0, and C16:1ω7c fatty acids. Finally, biochemical characteristics distinguished our isolates from other Neisseria species. The name Neisseria arctica (type strain KH1503T = ATCC TSD-57T = DSM 103136T) is proposed.

  10. Proteomic analysis of stress-related proteins in transgenic broccoli harboring a gene for cytokinin production during postharvest senescence.

    Science.gov (United States)

    Liu, Mao-Sen; Li, Hui-Chun; Chang, You-Min; Wu, Min-Tze; Chen, Long-Fang Oliver

    2011-09-01

    Our previous study revealed a cytokinin-related retardation of post-harvest floret yellowing in transgenic broccoli (Brassica oleracea var. italica) that harbored the bacterial isopentenyltransferase (ipt) gene. We aimed to investigate the underlining mechanism of this delayed post-harvest senescence. We used 2D electrophoresis and liquid chromatography-electrospray ionization-mass spectrometry/mass spectrometry for a proteomics analysis of heads of ipt-transgenic and non-transgenic inbred lines of broccoli at harvest and after four days post-harvest storage. At harvest, we found an accumulation of stress-responsive proteins involved in maintenance of protein folding (putative protein disulfide isomerase, peptidyl-prolyl cis-trans isomerase and chaperonins), scavenging of reactive oxygen species (Mn superoxide dismutase), and stress protection [myrosinase-binding protein, jasmonate inducible protein, dynamin-like protein, NADH dehydrogenase (ubiquinone) Fe-S protein 1 and stress-inducible tetratricopeptide repeat-containing protein]. After four days' post-harvest storage of non-transgenic broccoli florets, the levels of proteins involved in protein folding and carbon fixation were decreased, which indicates cellular degradation and a change in metabolism toward senescence. In addition, staining for antioxidant enzyme activity of non-transgenic plants after post-harvest storage revealed a marked decrease in activity of Fe-superoxide dismutase and ascorbate peroxidase. Thus, the accumulation of stress-responsive proteins and antioxidant enzyme activity in ipt-transgenic broccoli are most likely associated with retardation of post-harvest senescence.

  11. Cloning of the heat shock protein 60 gene from the stem borer, Chilo suppressalis, and analysis of expression characteristics under heat stress.

    Science.gov (United States)

    Cui, Ya-Dong; Du, Yu-Zhou; Lu, Ming-Xing; Qiang, Cheng-Kui

    2010-01-01

    Heat shock protein 60 is an important chaperonin. In this paper, hsp60 of the stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae), was cloned by RT-PCR and rapid amplification of cDNA end (RACE) reactions. The full length cDNA of hsp6 degrees Consisted of 2142 bp, with an ORF of 1719 bp, encoding 572 amino acid residues, with a 5'UTR of 158 bp and a 3'UTR of 265 bp. Cluster analysis confirmed that the deduced amino acid sequence shared high identity with the reported sequences from other insects (77%-86%). To investigate whether hsp60 in C. suppressalis responds to thermal stress, the expression levels of hsp60 mRNA in larval haemocytes across temperature gradients from 31 to 39 degrees C were analysed by real-time quantitative PCR. There was no significant difference for hsp60 expression from 28 to 31 degrees C. he temperatures for maximal induction of hsp60 expression in haemocytes was close to 36 degrees C. Hsp60 expression was observed by using flow cytometry. These results revealed that thermal stress significantly induced hsp60 expression and Hsp60 synthesis in larval haemocytes, and the expression profiles of Hsp60 at the mRNA and protein levels were in high agreement with each other from 33 to 39 degrees C.

  12. Suppression of Cpn10 increases mitochondrial fission and dysfunction in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    So Jung Park

    Full Text Available To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10 interacts with heat shock protein 60 (HSP60 and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.

  13. Characterization and pathogenic role of outer membrane vesicles produced by the fish pathogen Piscirickettsia salmonis under in vitro conditions.

    Science.gov (United States)

    Oliver, Cristian; Valenzuela, Karla; Hernández, Mauricio; Sandoval, Rodrigo; Haro, Ronie E; Avendaño-Herrera, Ruben; Cárcamo, Juan G; Villar, Maite T; Artigues, Antonio; Garduño, Rafael; Yáñez, Alejandro J

    2016-02-29

    Piscirickettsia salmonis is one of the major fish pathogens affecting Chilean aquaculture. This Gram-negative bacterium is highly infectious and is the etiological agent of Piscirickettsiosis. Little is currently known about how the virulence factors expressed by P. salmonis are delivered to host cells. However, it is known that several Gram-negative microorganisms constitutively release outer membrane vesicles (OMVs), which have been implicated in the delivery of virulence factors to host cells. In this study, OMVs production by P. salmonis was observed during infection in CHSE-214 cells and during normal growth in liquid media. The OMVs were spherical vesicles ranging in size between 25 and 145 nm. SDS-PAGE analysis demonstrated that the protein profile of the OMVs was similar to the outer membrane protein profile of P. salmonis. Importantly, the bacterial chaperonin Hsp60 was found in the OMVs of P. salmonis by Western-blot and LC-MS/MS analyses. Finally, in vitro infection assays showed that purified OMVs generated a cytopathic effect on CHSE-214 cells, suggesting a role in pathogenesis. Therefore, OMVs might be an important vehicle for delivering effector molecules to host cells during P. salmonis infection.

  14. Biochemical and Enzymatic Characterization of a Thermostable DNA Ligase Encoded by Thermophilic Acidophilic Archaebacterium Strain JP2%一种嗜热耐酸古细菌JP2菌株编码的热稳定DNA连接酶的生物化学及酶学特性研究

    Institute of Scientific and Technical Information of China (English)

    兰海燕; 刘纯; HENDRY PHIL

    2006-01-01

    A thermostable DNA ligase gene was identified, and the biochemical and enzymatic properties of the ligase were characterized from JP2 strain which was enriched from geothermally active sites in Papua New Guinea. The nucleotide and amino acid sequences showed much high identities compared with that of archeabacterium species Sulfolobus solfataricus and Sulfolobus shibatae,especially in the six conserved motif sequences, which are known to be closely related to the key function of ligase. Recombinant JP2 ligase showed high activity in nick-joining reaction. It was the most active when Mn2+ present as divalent metal cofactor rather than Mg2+ and Ca2+ etc.. Assay of thermostability over a range of temperatures showed that at 50~80℃ the enzyme displayed relative high activity. Further thermostability experiment indicated that the activity of JP2 ligase could last for a long time at 80℃ and 85℃,however, at 90℃ and 95℃, it became unstable quickly. An investigation on the acquired thermotolerance of recombinant JP2 ligase was done by applying a chaperonin known as TF55 in thermophile on JP2 ligase reaction. Result showed that TF55 could not help in improving thermostability of ligase at 85℃. The possible reason might be that at 85℃ in vitro, the chaperonin itself was denatured.%对分离自巴布亚新几内亚地热活跃区的一种嗜热耐酸古细菌--JP2菌株中的DNA连接酶基因进行了克隆、表达、纯化,并对其生物化学及酶学特性进行了研究.对其核酸及氨基酸序列的分析表明:JP2菌株的DNA连接酶与古细菌种Sulfolobus solfataricus和Sulfolobus shibatae的DNA连接酶具有很高的同源性,尤其在与功能紧密相关的6个保守结构基序的一致性更高.JP2连接酶表现出高的DNA缺口连接活性,在二价金属辅因子的选择方面,JP2连接酶更倾向于Mn2+离子而不是Mg2+、Ca2+及其他离子.不同温度时的热稳定性测试显示:JP2连接酶在50~80℃时为较适

  15. Proteomics profiling of chikungunya-infected Aedes albopictus C6/36 cells reveal important mosquito cell factors in virus replication.

    Directory of Open Access Journals (Sweden)

    Regina Ching Hua Lee

    2015-03-01

    Full Text Available Chikungunya virus (CHIKV is the only causative agent of CHIKV fever with persistent arthralgia, and in some cases may lead to neurological complications which can be highly fatal, therefore it poses severe health issues in many parts of the world. CHIKV transmission can be mediated via the Aedes albopictus mosquito; however, very little is currently known about the involvement of mosquito cellular factors during CHIKV-infection within the mosquito cells. Unravelling the neglected aspects of mosquito proteome changes in CHIKV-infected mosquito cells may increase our understanding on the differences in the host factors between arthropod and mammalian cells for successful replication of CHIKV. In this study, the CHIKV-infected C6/36 cells with differential cellular proteins expression were profiled using two-dimensional gel electrophoresis (2DE coupled with the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS. 2DE analysis on CHIKV-infected C6/36 cells has shown 23 mosquito cellular proteins that are differentially regulated, and which are involved diverse biological pathways, such as protein folding and metabolic processes. Among those identified mosquito proteins, spermatogenesis-associated factor, enolase phosphatase e-1 and chaperonin-60kD have been found to regulate CHIKV infection. Furthermore, siRNA-mediated gene knockdown of these proteins has demonstrated the biological importance of these host proteins that mediate CHIKV infection. These findings have provided an insight to the importance of mosquito host factors in the replication of CHIKV, thus providing a potential channel for developing novel antiviral strategies against CHIKV transmission.

  16. Evaluation of heat shock protein (HSP-60) induction on accumulation of carbohydrate in Isochrysis galbana

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, H.; Wolfe, M.; Tell, J.; Tjeerdema, R. [Univ. of California, Santa Cruz, CA (United States). Dept. of Chemistry and Biochemistry

    1995-12-31

    Primary levels of the marine food chain may play an important role in the fate of petroleum hydrocarbons in both chemically dispersed and un-dispersed oil spills. HSP-60 proteins, members of the chaperonin family of stress proteins, are induced in response to a wide variety of environmental agents, including UV light, heavy metals, and xenobiotics. Increased production and storage of carbohydrate in I. galbana has been associated with aging and stress. Thus, HSP-60 and carbohydrate storage were selected as sublethal endpoints of exposure to the primary producer, I. galbana, a golden brown, unicellular algae, and a significant component of the marine phytoplankton community. The authors have found that I. galbana cultures exposed to water-accommodated fractions (WAF) of Prudhoe Bay Crude Oil (PBCO), and PBCO/dispersant preparations efficiently induce HSP-60. Studies indicated that WAF produced a dose-related response in I. galbana, which increased as a function of time. Dispersant alone showed the greatest induction, while combined WAF-dispersant showed less induction, suggesting a possible competition between crude oil and algae for dispersant interaction. In addition, they have demonstrated that I. galbana accumulates carbohydrates in response to exposure to WAF and PBCO/dispersant preparations and therefore represents another index of stress in this organism. They were interested in determining if induction of stress proteins and HSP60 in particular represented an adaptive-mechanism, allowing this algae to better cope with exposure to petroleum hydrocarbons released in the marine environment during an oil spill. In an effort to determine if stress protein induction serves as a protective adaptive response to exposure to petroleum hydrocarbons they examined the effect of heat shock induction on the accumulation of carbohydrates by these organisms in response to exposure to WAF and dispersed oil preparations.

  17. ADPase activity of recombinantly expressed thermotolerant ATPases may be caused by copurification of adenylate kinase of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baoyu; Sysoeva, Tatyana A.; Chowdhury, Saikat; Guo, Liang; Nixon, B.Tracy; (IIT); (Penn)

    2009-10-06

    Except for apyrases, ATPases generally target only the {gamma}-phosphate of a nucleotide. Some non-apyrase ATPases from thermophilic microorganisms are reported to hydrolyze ADP as well as ATP, which has been described as a novel property of the ATPases from extreme thermophiles. Here, we describe an apparent ADP hydrolysis by highly purified preparations of the AAA+ ATPase NtrC1 from an extremely thermophilic bacterium, Aquifex aeolicus. This activity is actually a combination of the activities of the ATPase and contaminating adenylate kinase (AK) from Escherichia coli, which is present at 1/10 000 of the level of the ATPase. AK catalyzes conversion of two molecules of ADP into AMP and ATP, the latter being a substrate for the ATPase. We raise concern that the observed thermotolerance of E. coli AK and its copurification with thermostable proteins by commonly used methods may confound studies of enzymes that specifically catalyze hydrolysis of nucleoside diphosphates or triphosphates. For example, contamination with E. coli AK may be responsible for reported ADPase activities of the ATPase chaperonins from Pyrococcus furiosus, Pyrococcus horikoshii, Methanococcus jannaschii and Thermoplasma acidophilum; the ATP/ADP-dependent DNA ligases from Aeropyrum pernix K1 and Staphylothermus marinus; or the reported ATP-dependent activities of ADP-dependent phosphofructokinase of P. furiosus. Purification methods developed to separate NtrC1 ATPase from AK also revealed two distinct forms of the ATPase. One is tightly bound to ADP or GDP and able to bind to Q but not S ion exchange matrixes. The other is nucleotide-free and binds to both Q and S ion exchange matrixes.

  18. Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress.

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2014-07-01

    Heat stress causes a decrease of fertility in roosters. Yet, the way acute heat stress affects protein expression remains poorly understood. This study investigated differential protein expression in testes of the L2 strain of Taiwan country chickens following acute heat stress. Twelve 45-week-old roosters were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2 hours of recovery, and with 6 hours of recovery. Testis samples were collected for morphologic assay and protein analysis. Some of the differentially expressed proteins were validated by Western blot and immunohistochemistry. Abnormal and apoptotic spermatogenic cells were observed at 2 hours of recovery after acute heat stress, especially among the spermatocytes. Two-dimensional difference gel electrophoresis revealed that 119 protein spots were differentially expressed in chicken testes following heat stress, and peptide mass fingerprinting revealed that these spots contained 92 distinct proteins. In the heat-stressed samples, the heat shock proteins, chaperonin containing t-complex, and proteasome subunits were downregulated, and glutathione S-transferase, transgelin, and DJ-1 were upregulated. Our results demonstrate that acute heat stress impairs the processes of translation, protein folding, and protein degradation, and thus results in apoptosis and interferes with spermatogenesis. On the other hand, the increased expression of antioxidant enzymes, including glutathione S-transferase and DJ-1, may attenuate heat-induced damage. These findings may have implications for breeding chickens that can tolerate more extreme conditions.

  19. On primordial sense-antisense coding.

    Science.gov (United States)

    Rodin, Andrei S; Rodin, Sergei N; Carter, Charles W

    2009-11-01

    The genetic code is implemented by aminoacyl-tRNA synthetases (aaRS). These 20 enzymes are divided into two classes that, despite performing same functions, have nothing common in structure. The mystery of this striking partition of aaRSs might have been concealed in their sterically complementary modes of tRNA recognition that, as we have found recently, protect the tRNAs with complementary anticodons from confusion in translation. This finding implies that, in the beginning, life increased its coding repertoire by the pairs of complementary codons (rather than one-by-one) and used both complementary strands of genes as templates for translation. The class I and class II aaRSs may represent one of the most important examples of such primordial sense-antisense (SAS) coding (Rodin and Ohno, Orig Life Evol Biosph 25:565-589, 1995). In this report, we address the issue of SAS coding in a wider scope. We suggest a variety of advantages that such coding would have had in exploring a wider sequence space before translation became highly specific. In particular, we confirm that in Achlya klebsiana a single gene might have originally coded for an HSP70 chaperonin (class II aaRS homolog) and an NAD-specific GDH-like enzyme (class I aaRS homolog) via its sense and antisense strands. Thus, in contrast to the conclusions in Williams et al. (Mol Biol Evol 26:445-450, 2009), this could indeed be a "Rosetta stone" gene (Carter and Duax, Mol Cell 10:705-708, 2002) (eroded somewhat, though) for the SAS origin of the two aaRS classes.

  20. Fusion Proteins Cpn10-Erns with Properties of Generating CSFV-Neutralized Antibodies

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    When pigs are infected with classical swine fever virus (CSFV), the antibody primarily targets the structural glycoprotein E rns of the virus. Previous investigations have demonstrated that E rns has low or no virus neutralizing capacity. In this study, candidate subunit marker vaccine, chaperonin 10(Cpn10)-Erns, which possess the property of generating neutralized antibodies against lethal challenge of virulent CSFV was developed. The gene of E rns was isolated from Hog cholera lapinized virus (HCLV)-infected spleen cells of rabbits via RT-PCR method and fused to the downstream region of the cpn10 gene; the products of recombinant fusion protein (cpn10-Erns) induced expression in Escherichia coli, and the products were purified by affinity chromatography. During the course of vaccination, the candidate vaccines cpn10-E rns were used for the immunization of guinea pigs, and they induced a strong antibody response against cpn10-Erns. The antibodies can be immobilized by coating inactivated CSFV particles, indicating that these antibodies can recognize CSFV. Neutralization assay was carried out on rabbits according to National Regulations on Veterinary Drug. The results clearly indicate that the typical fever of rabbits induced by the live attenuated HCLV could be inhibited by preincubation with the antisera (dilution 1:4) induced by cpn10-Erns, but not inhibited by preincubation with the antisera induced only by Erns. Analogous results were observed for the group of the rabbits immunized with cpn10-Erns, which were protected against the typical fever induced by the challenge with HCLV. The findings of this study formed the basis of a new means for developing subunit marker vaccine against CSFV.

  1. Quantitative molecular diagnostic assays of grain washes for Claviceps purpurea are correlated with visual determinations of ergot contamination

    Science.gov (United States)

    Comte, Alexia; Gräfenhan, Tom; Links, Matthew G.; Hemmingsen, Sean M.

    2017-01-01

    We examined the epiphytic microbiome of cereal grain using the universal barcode chaperonin-60 (cpn60). Microbial community profiling of seed washes containing DNA extracts prepared from field-grown cereal grain detected sequences from a fungus identified only to Class Sordariomycetes. To identify the fungal sequence and to improve the reference database, we determined cpn60 sequences from field-collected and reference strains of the ergot fungus, Claviceps purpurea. These data allowed us to identify this fungal sequence as deriving from C. purpurea, and suggested that C. purpurea DNA is readily detectable on agricultural commodities, including those for which ergot was not identified as a grading factor. To get a sense of the prevalence and level of C. purpurea DNA in cereal grains, we developed a quantitative PCR assay based on the fungal internal transcribed spacer (ITS) and applied it to 137 samples from the 2014 crop year. The amount of Claviceps DNA quantified correlated strongly with the proportion of ergot sclerotia identified in each grain lot, although there was evidence that non-target organisms were responsible for some false positives with the ITS-based assay. We therefore developed a cpn60-targeted loop-mediated isothermal amplification assay and applied it to the same grain wash samples. The time to positive displayed a significant, inverse correlation to ergot levels determined by visual ratings. These results indicate that both laboratory-based and field-adaptable molecular diagnostic assays can be used to detect and quantify pathogen load in bulk commodities using cereal grain washes. PMID:28257512

  2. Upon oxidative stress, the antiapoptotic Hsp60/procaspase-3 complex persists in mucoepidermoid carcinoma cells

    Directory of Open Access Journals (Sweden)

    C Campanella

    2009-08-01

    Full Text Available Hsp60, a mitochondrial chaperonin highly conserved during evolution, has been found elevated in the cytosol of cancer cells, both in vivo and in vitro, but its role in determining apoptosis during oxidative stress (OS has not yet been fully elucidated. The aim of the present work was to study the effects of OS on Hsp60 levels and its interactions with procaspase- 3 (p-C3 and p53 in tumor cells. NCI-H292 (mucoepidermoid carcinoma cells were exposed to various concentrations of hydrogen peroxide (H2O2 for 24 hours. Cell viability was determined by Trypan blue and MTT assays. DNA damage was assessed by the Comet assay, and apoptosis was measured by the AnnexinV cytofluorimetric test. Exposure to increasing concentrations of H2O2 resulted in a reduction of cell viability, DNA damage, and early apoptotic phenomena. Hsp60, p-C3, p53, and p21 were assessed by Western blotting and immunocytochemistry before and after OS. Hsp60 and p-C3 were present before and after OS induction. Immunoprecipitation experiments showed an Hsp60/p-C3 complex before OS that persisted after it, while an Hsp60/p53 complex was not detected in either condition. The presence of wild type (wt p53 was confirmed by RT-PCR, and p21 detection suggested p53 activation after OS. We postulate that, although OS may induce early apoptosis in NCI-H292 cells, Hsp60 exerts an anti-apoptotic effect in these cells and, by extension, it may do so in other cancer cells.

  3. Molecular chaperones encoded by a reduced nucleus: the cryptomonad nucleomorph.

    Science.gov (United States)

    Archibald, J M; Cavalier-Smith, T; Maier, U; Douglas, S

    2001-06-01

    Molecular chaperones mediate the correct folding of nascent or denatured proteins and are found in both the organelles and cytoplasm of eukaryotic cells. Cryptomonad algae are unusual in possessing an extra cytoplasmic compartment (the periplastid space), the result of having engulfed and retained a photosynthetic eukaryote. Within the periplastid space is a diminutive nucleus (the nucleomorph) that encodes mostly genes for its own expression as well as a few needed by the plastid. Two plastid-encoded chaperones (GroEL and DnaK) and a nucleomorph-encoded chaperone (Cpn60) have been reported from the cryptomonad, Guillardia theta. Here we analyse G. theta nucleomorph genes for members of the cytosolic HSP70 and HSP90 families of molecular chaperones, a heat shock transcription factor (HSF), and all eight subunits of the group II chaperonin, CCT. These are presumably all active in the periplastid space, assisting in the maturation of polypeptides required by the cell; we propose a central role for them also in the structure and assembly of a putative relict mitotic apparatus. Curiously, none of the genes for co-chaperones of HSP70, HSP90, or CCT have been detected in the nucleomorph genome; they are either not needed or are encoded in the host nuclear genome and targeted back into the periplastid space. Endoplasmic reticulum (ER) homologs of HSP70 and HSP90 are also not present. Striking differences in the degree of conservation of the various nucleomorph-encoded molecular chaperones were observed. While the G. theta HSP70 and HSP90 homologs are well conserved, each of the eight CCT subunits (alpha, beta, gamma, delta, epsilon, eta, theta, and zeta) is remarkably divergent. Such differences are likely evidence for reduced/different functional constraints on the various molecular chaperones functioning in the periplastid space.

  4. Proteomic analysis reveals metabolic and regulatory systems involved the syntrophic and axenic lifestyle of Syntrophomonas wolfei.

    Directory of Open Access Journals (Sweden)

    Jessica Rhea Sieber

    2015-02-01

    Full Text Available Microbial syntrophy is a vital metabolic interaction necessary for the complete oxidation of organic biomass to methane in all-anaerobic ecosystems. However, this process is thermodynamically constrained and represents an ecosystem-level metabolic bottleneck. To gain insight into the physiology of this process, a shotgun proteomic approach was used to quantify the protein landscape of the model syntrophic metabolizer, Syntrophomonas wolfei, grown axenically and syntrophically with Methanospirillum hungatei. Remarkably, the abundance of most proteins as represented by normalized spectral abundance factor (NSAF value changed very little between the pure and coculture growth conditions. Among the most abundant proteins detected were GroEL and GroES chaperonins, a small heat shock protein, and proteins involved in electron transfer, beta-oxidation, and ATP synthesis. Several putative energy conservation enzyme systems that utilize NADH and ferredoxin were present. The abundance of an EtfAB2 and the membrane-bound iron-sulfur oxidoreductase (Swol_0698 gene product delineated a potential conduit for electron transfer between acyl-CoA dehydrogenases and membrane redox carriers. Proteins detected only when S. wolfei was grown with M. hungatei included a zinc-dependent dehydrogenase with a GroES domain, whose gene is present in genomes in many organisms capable of syntrophy, and transcriptional regulators responsive to environmental stimuli or the physiological status of the cell. The proteomic analysis revealed an emphasis macromolecular stability and energy metabolism to S. wolfei and presence of regulatory mechanisms responsive to external stimuli and cellular physiological status.

  5. Complete sequencing of the bla(NDM-1-positive IncA/C plasmid from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sekizuka

    Full Text Available The complete sequence of the plasmid pNDM-1_Dok01 carrying New Delhi metallo-β-lactamase (NDM-1 was determined by whole genome shotgun sequencing using Escherichia coli strain NDM-1_Dok01 (multilocus sequence typing type: ST38 and the transconjugant E. coli DH10B. The plasmid is an IncA/C incompatibility type composed of 225 predicted coding sequences in 195.5 kb and partially shares a sequence with bla(CMY-2-positive IncA/C plasmids such as E. coli AR060302 pAR060302 (166.5 kb and Salmonella enterica serovar Newport pSN254 (176.4 kb. The bla(NDM-1 gene in pNDM-1_Dok01 is terminally flanked by two IS903 elements that are distinct from those of the other characterized NDM-1 plasmids, suggesting that the bla(NDM-1 gene has been broadly transposed, together with various mobile elements, as a cassette gene. The chaperonin groES and groEL genes were identified in the bla(NDM-1-related composite transposon, and phylogenetic analysis and guanine-cytosine content (GC percentage showed similarities to the homologs of plant pathogens such as Pseudoxanthomonas and Xanthomonas spp., implying that plant pathogens are the potential source of the bla(NDM-1 gene. The complete sequence of pNDM-1_Dok01 suggests that the bla(NDM-1 gene was acquired by a novel composite transposon on an extensively disseminated IncA/C plasmid and transferred to the E. coli ST38 isolate.

  6. Complete sequencing of the bla(NDM-1)-positive IncA/C plasmid from Escherichia coli ST38 isolate suggests a possible origin from plant pathogens.

    Science.gov (United States)

    Sekizuka, Tsuyoshi; Matsui, Mari; Yamane, Kunikazu; Takeuchi, Fumihiko; Ohnishi, Makoto; Hishinuma, Akira; Arakawa, Yoshichika; Kuroda, Makoto

    2011-01-01

    The complete sequence of the plasmid pNDM-1_Dok01 carrying New Delhi metallo-β-lactamase (NDM-1) was determined by whole genome shotgun sequencing using Escherichia coli strain NDM-1_Dok01 (multilocus sequence typing type: ST38) and the transconjugant E. coli DH10B. The plasmid is an IncA/C incompatibility type composed of 225 predicted coding sequences in 195.5 kb and partially shares a sequence with bla(CMY-2)-positive IncA/C plasmids such as E. coli AR060302 pAR060302 (166.5 kb) and Salmonella enterica serovar Newport pSN254 (176.4 kb). The bla(NDM-1) gene in pNDM-1_Dok01 is terminally flanked by two IS903 elements that are distinct from those of the other characterized NDM-1 plasmids, suggesting that the bla(NDM-1) gene has been broadly transposed, together with various mobile elements, as a cassette gene. The chaperonin groES and groEL genes were identified in the bla(NDM-1)-related composite transposon, and phylogenetic analysis and guanine-cytosine content (GC) percentage showed similarities to the homologs of plant pathogens such as Pseudoxanthomonas and Xanthomonas spp., implying that plant pathogens are the potential source of the bla(NDM-1) gene. The complete sequence of pNDM-1_Dok01 suggests that the bla(NDM-1) gene was acquired by a novel composite transposon on an extensively disseminated IncA/C plasmid and transferred to the E. coli ST38 isolate.

  7. Prefoldin Subunits Are Protected from Ubiquitin-Proteasome System-mediated Degradation by Forming Complex with Other Constituent Subunits*

    Science.gov (United States)

    Miyazawa, Makoto; Tashiro, Erika; Kitaura, Hirotake; Maita, Hiroshi; Suto, Hiroo; Iguchi-Ariga, Sanae M. M.; Ariga, Hiroyoshi

    2011-01-01

    The molecular chaperone prefoldin (PFD) is a complex comprised of six different subunits, PFD1-PFD6, and delivers newly synthesized unfolded proteins to cytosolic chaperonin TRiC/CCT to facilitate the folding of proteins. PFD subunits also have functions different from the function of the PFD complex. We previously identified MM-1α/PFD5 as a novel c-Myc-binding protein and found that MM-1α suppresses transformation activity of c-Myc. However, it remains unclear how cells regulate protein levels of individual subunits and what mechanisms alter the ratio of their activities between subunits and their complex. In this study, we found that knockdown of one subunit decreased protein levels of other subunits and that transfection of five subunits other than MM-1α into cells increased the level of endogenous MM-1α. We also found that treatment of cells with MG132, a proteasome inhibitor, increased the level of transfected/overexpressed MM-1α but not that of endogenous MM-1α, indicating that overexpressed MM-1α, but not endogenous MM-1α, was degraded by the ubiquitin proteasome system (UPS). Experiments using other PFD subunits showed that the UPS degraded a monomer of PFD subunits, though extents of degradation varied among subunits. Furthermore, the level of one subunit was increased after co-transfection with the respective subunit, indicating that there are specific combinations between subunits to be stabilized. These results suggest mutual regulation of protein levels among PFD subunits and show how individual subunits form the PFD complex without degradation. PMID:21478150

  8. Splice Isoforms of Phosducin-like Protein Control the Expression of Heterotrimeric G Proteins*

    Science.gov (United States)

    Gao, Xueli; Sinha, Satyabrata; Belcastro, Marycharmain; Woodard, Catherine; Ramamurthy, Visvanathan; Stoilov, Peter; Sokolov, Maxim

    2013-01-01

    Heterotrimeric G proteins play an essential role in cellular signaling; however, the mechanism regulating their synthesis and assembly remains poorly understood. A line of evidence indicates that the posttranslational processing of G protein β subunits begins inside the protein-folding chamber of the chaperonin containing t-complex protein 1. This process is facilitated by the ubiquitously expressed phosducin-like protein (PhLP), which is thought to act as a CCT co-factor. Here we demonstrate that alternative splicing of the PhLP gene gives rise to a transcript encoding a truncated, short protein (PhLPs) that is broadly expressed in human tissues but absent in mice. Seeking to elucidate the function of PhLPs, we expressed this protein in the rod photoreceptors of mice and found that this manipulation caused a dramatic translational and posttranslational suppression of rod heterotrimeric G proteins. The investigation of the underlying mechanism revealed that PhLPs disrupts the folding of Gβ and the assembly of Gβ and Gγ subunits, events normally assisted by PhLP, by forming a stable and apparently inactive tertiary complex with CCT preloaded with nascent Gβ. As a result, the cellular levels of Gβ and Gγ, which depends on Gβ for stability, decline. In addition, PhLPs evokes a profound and rather specific down-regulation of the Gα transcript, leading to a complete disappearance of the protein. This study provides the first evidence of a generic mechanism, whereby the splicing of the PhLP gene could potentially and efficiently regulate the cellular levels of heterotrimeric G proteins. PMID:23888055

  9. Transcript and protein profiling identify candidate gene sets of potential adaptive significance in New Zealand Pachycladon

    Directory of Open Access Journals (Sweden)

    Schmidt Silvia

    2010-05-01

    Full Text Available Abstract Background Transcript profiling of closely related species provides a means for identifying genes potentially important in species diversification. However, the predictive value of transcript profiling for inferring downstream-physiological processes has been unclear. In the present study we use shotgun proteomics to validate inferences from microarray studies regarding physiological differences in three Pachycladon species. We compare transcript and protein profiling and evaluate their predictive value for inferring glucosinolate chemotypes characteristic of these species. Results Evidence from heterologous microarrays and shotgun proteomics revealed differential expression of genes involved in glucosinolate hydrolysis (myrosinase-associated proteins and biosynthesis (methylthioalkylmalate isomerase and dehydrogenase, the interconversion of carbon dioxide and bicarbonate (carbonic anhydrases, water use efficiency (ascorbate peroxidase, 2 cys peroxiredoxin, 20 kDa chloroplastic chaperonin, mitochondrial succinyl CoA ligase and others (glutathione-S-transferase, serine racemase, vegetative storage proteins, genes related to translation and photosynthesis. Differences in glucosinolate hydrolysis products were directly confirmed. Overall, prediction of protein abundances from transcript profiles was stronger than prediction of transcript abundance from protein profiles. Protein profiles also proved to be more accurate predictors of glucosinolate profiles than transcript profiles. The similarity of species profiles for both transcripts and proteins reflected previously inferred phylogenetic relationships while glucosinolate chemotypes did not. Conclusions We have used transcript and protein profiling to predict physiological processes that evolved differently during diversification of three Pachycladon species. This approach has also identified candidate genes potentially important in adaptation, which are now the focus of ongoing study

  10. A Study of the Infant Nasal Microbiome Development over the First Year of Life and in Relation to Their Primary Adult Caregivers Using cpn60 Universal Target (UT) as a Phylogenetic Marker.

    Science.gov (United States)

    Peterson, Shelley W; Knox, Natalie C; Golding, George R; Tyler, Shaun D; Tyler, Andrea D; Mabon, Philip; Embree, Joanne E; Fleming, Fiona; Fanella, Sergio; Van Domselaar, Gary; Mulvey, Michael R; Graham, Morag R

    2016-01-01

    Whereas the infant gut microbiome is the subject of intense study, relatively little is known regarding the nares microbiome in newborns and during early life. This study aimed to survey the typical composition and diversity of human anterior nare microflora for developing infants over time, and to explore how these correlate to their primary caregivers. Single nare swabs were collected at five time points over a one-year period for each subject from infant-caregiver pairs. Our study comprised of 50 infants (recruited at 2 weeks, post delivery) and their 50 primary caregivers. Applying the chaperonin-60 (cpn60) universal target (UT) amplicon as our molecular barcoding marker to census survey the microbial communities, we longitudinally surveyed infant nares microbiota at 5 time points over the course of the first year of life. The inter- and intra-subject diversity was catalogued and compared, both longitudinally and relative to their adult primary caregivers. Although within-subject variability over time and inter-subject variability were both observed, the assessment detected only one or two predominant genera for individual infant samples, belonging mainly to phyla Actinobacteria, Firmicutes, and Proteobacteria. Consistent with previously observed microbial population dynamics in other body sites, the diversity of nares microflora increased over the first year of life and infants showed differential operational taxonomic units (OTUs) relative to their matched primary caregiver. The collected evidence also support that both temporal and seasonal changes occur with respect to carriage of potentially pathogenic bacteria (PPBs), which may influence host predisposition to infection. This pilot study surveying paired infant/caregiver nare microbiomes provides novel longitudinal diversity information that is pertinent to better understanding nare microbiome development in infants.

  11. Characterization of intestinal microbiota and response to dietary virginiamycin supplementation in the broiler chicken.

    Science.gov (United States)

    Dumonceaux, Tim J; Hill, Janet E; Hemmingsen, Sean M; Van Kessel, Andrew G

    2006-04-01

    The inclusion of antibiotic growth promoters, such as virginiamycin, at subtherapeutic levels in poultry feeds has a positive effect on health and growth characteristics, possibly due to beneficial effects on the host gastrointestinal microbiota. To improve our understanding of the chicken gastrointestinal microbiota and the effect of virginiamycin on its composition, we characterized the bacteria found in five different gastrointestinal tract locations (duodenal loop, mid-jejunum, proximal ileum, ileocecal junction, and cecum) in 47-day-old chickens that were fed diets excluding or including virginiamycin throughout the production cycle. Ten libraries (five gastrointestinal tract locations from two groups of birds) of approximately 555-bp chaperonin 60 PCR products were prepared, and 10,932 cloned sequences were analyzed. A total of 370 distinct cpn60 sequences were identified, which ranged in frequency of recovery from 1 to 2,872. The small intestinal libraries were dominated by sequences from the Lactobacillales (90% of sequences), while the cecum libraries were more diverse and included members of the Clostridiales (68%), Lactobacillales (25%), and Bacteroidetes (6%). To assess the effects of virginiamycin on the gastrointestinal microbiota, 15 bacterial targets were enumerated using quantitative, real-time PCR. Virginiamycin was associated with increased abundance of many of the targets in the proximal gastrointestinal tract (duodenal loop to proximal ileum), with fewer targets affected in the distal regions (ileocecal junction and cecum). These findings provide improved profiling of the composition of the chicken intestinal microbiota and indicate that microbial responses to virginiamycin are most significant in the proximal small intestine.

  12. Bridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models.

    Directory of Open Access Journals (Sweden)

    Hyuntae Na

    2015-10-01

    Full Text Available Dynamics can provide deep insights into the functional mechanisms of proteins and protein complexes. For large protein complexes such as GroEL/GroES with more than 8,000 residues, obtaining a fine-grained all-atom description of its normal mode motions can be computationally prohibitive and is often unnecessary. For this reason, coarse-grained models have been used successfully. However, most existing coarse-grained models use extremely simple potentials to represent the interactions within the coarse-grained structures and as a result, the dynamics obtained for the coarse-grained structures may not always be fully realistic. There is a gap between the quality of the dynamics of the coarse-grained structures given by all-atom models and that by coarse-grained models. In this work, we resolve an important question in protein dynamics computations--how can we efficiently construct coarse-grained models whose description of the dynamics of the coarse-grained structures remains as accurate as that given by all-atom models? Our method takes advantage of the sparseness of the Hessian matrix and achieves a high efficiency with a novel iterative matrix projection approach. The result is highly significant since it can provide descriptions of normal mode motions at an all-atom level of accuracy even for the largest biomolecular complexes. The application of our method to GroEL/GroES offers new insights into the mechanism of this biologically important chaperonin, such as that the conformational transitions of this protein complex in its functional cycle are even more strongly connected to the first few lowest frequency modes than with other coarse-grained models.

  13. Bridging between NMA and Elastic Network Models: Preserving All-Atom Accuracy in Coarse-Grained Models.

    Science.gov (United States)

    Na, Hyuntae; Jernigan, Robert L; Song, Guang

    2015-10-01

    Dynamics can provide deep insights into the functional mechanisms of proteins and protein complexes. For large protein complexes such as GroEL/GroES with more than 8,000 residues, obtaining a fine-grained all-atom description of its normal mode motions can be computationally prohibitive and is often unnecessary. For this reason, coarse-grained models have been used successfully. However, most existing coarse-grained models use extremely simple potentials to represent the interactions within the coarse-grained structures and as a result, the dynamics obtained for the coarse-grained structures may not always be fully realistic. There is a gap between the quality of the dynamics of the coarse-grained structures given by all-atom models and that by coarse-grained models. In this work, we resolve an important question in protein dynamics computations--how can we efficiently construct coarse-grained models whose description of the dynamics of the coarse-grained structures remains as accurate as that given by all-atom models? Our method takes advantage of the sparseness of the Hessian matrix and achieves a high efficiency with a novel iterative matrix projection approach. The result is highly significant since it can provide descriptions of normal mode motions at an all-atom level of accuracy even for the largest biomolecular complexes. The application of our method to GroEL/GroES offers new insights into the mechanism of this biologically important chaperonin, such as that the conformational transitions of this protein complex in its functional cycle are even more strongly connected to the first few lowest frequency modes than with other coarse-grained models.

  14. Effects of solar UV-B radiation on canopy structure of Ulva communities from southern Spain.

    Science.gov (United States)

    Bischof, Kai; Peralta, Gloria; Kräbs, Gudrun; Van De Poll, Willem H; Pérez-Lloréns, José Lucas; Breeman, Anneke M

    2002-12-01

    Within the sheltered creeks of Cádiz bay, Ulva thalli form extended mat-like canopies. The effect of solar ultraviolet radiation on photosynthetic activity, the composition of photosynthetic and xanthophyll cycle pigments, and the amount of RubisCO, chaperonin 60 (CPN 60), and the induction of DNA damage in Ulva aff. rotundata Bliding from southern Spain was assessed in the field. Samples collected from the natural community were covered by screening filters, generating different radiation conditions. During daily cycles, individual thalli showed photoinhibitory effects of the natural solar radiation. This inhibition was even more pronounced in samples only exposed to photosynthetically active radiation (PAR). Strongly increased heat dissipation in these samples indicated the activity of regulatory mechanisms involved in dynamic photoinhibition. Adverse effects of UV-B radiation on photosynthesis were only observed in combination with high levels of PAR, indicating the synergistic effects of the two wavelength ranges. In samples exposed either to PAR+UV-A or to UV-B+UV-A without PAR, no inhibition of photosynthetic quantum yield was found in the course of the day. At the natural site, the top layer of the mat-like canopies is generally completely bleached. Artificially designed Ulva canopies exhibited fast bleaching of the top layer under the natural solar radiation conditions, while this was not observed in canopies either shielded from UV or from PAR. The bleached first layer of the canopies acts as a selective UV-B filter, and thus prevents subcanopy thalli from exposure to harmful radiation. This was confirmed by the differences in photosynthetic activity, pigment composition, and the concentration of RubisCO in thalli with different positions within the canopy. In addition, the induction of the stress protein CPN 60 under UV exposure and the low accumulation of DNA damage indicate the presence of physiological protection mechanisms against harmful UV-B. A

  15. Geochemistry meets Biochemistry: Minimal Metabolic Systems in Extremely Thermophilic Bacteria from Geothermal Environments.

    Science.gov (United States)

    Robb, F. T.; DiRuggiero, J.; Davila, J.; Schwartz, M.

    2002-05-01

    A growing body of research confirms that extreme thermophiles can grow at temperatures of at least 113.5oC, at elevated pressures. Other archaeal isolates can thrive in hostile chemical conditions, for example pH 0.8. We, and others have shown that hyperthermophiles have novel heat shock proteins and other chaperonins that permit them to maintain native protein structures in unfavorable conditions. They are also able to survive using individual gases and gas mixtures We have determined the complete genome sequence of a bacterial isolate from thermal mats on the Kamchatka Peninsula that grows on a salts medium with carbon monoxide as its sole energy and carbon source. It forms hydrogen in proportion with CO consumption. The minimal size of its genome, 2.1 megabase pairs, and its ability to form spores have led us to propose that this autotrophic bacterium can serve as a model for ancestral microbial cells. We have isolated a new class of thermophilic, extremely radiation resistant bacteria from Yellowstone National Park that can withstand space vacuum for extended periods. In collaboration with NASA Goddard, we have exposed filters coated with one of these isolates to space vacuum and to extreme UV during a sounding rocket flight at White Sands. Deinococcus radiodurans, the most desiccation and radiation resistant organism characterized so far, was exposed as a control. The new isolate was slightly more desiccation resistant than D. radiodurans, and significantly more resistant than D. radiodurans to extreme UV at 34 nm. These studies may provide insights into the potential for viable bacterial cells to survive transmission through space, a phenomenon usually referred to as panspermia.

  16. Identification and functional analysis of healing regulators in Drosophila.

    Science.gov (United States)

    Álvarez-Fernández, Carmen; Tamirisa, Srividya; Prada, Federico; Chernomoretz, Ariel; Podhajcer, Osvaldo; Blanco, Enrique; Martín-Blanco, Enrique

    2015-01-01

    Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the overall steps in wound healing, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process. However, they do allow the less understood aspects of the healing response to be explored, e.g., which signal(s) are responsible for initiating tissue remodeling? How is sealing of the epithelia achieved? Or, what inhibitory cues cancel the healing machinery upon completion? Answering these and other questions first requires the identification and functional analysis of wound specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method that is healing-permissive and that allows live imaging and biochemical analysis of cultured imaginal discs. We performed comparative genome-wide profiling between Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. Sets of potential wound-specific genes were subsequently identified. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in healing assays. This non-saturated analysis defines a relevant set of genes whose changes in expression level are functionally significant for proper tissue repair. Amongst these we identified the TCP1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound healing response.

  17. Identification and functional analysis of healing regulators in Drosophila.

    Directory of Open Access Journals (Sweden)

    Carmen Álvarez-Fernández

    Full Text Available Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the overall steps in wound healing, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process. However, they do allow the less understood aspects of the healing response to be explored, e.g., which signal(s are responsible for initiating tissue remodeling? How is sealing of the epithelia achieved? Or, what inhibitory cues cancel the healing machinery upon completion? Answering these and other questions first requires the identification and functional analysis of wound specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method that is healing-permissive and that allows live imaging and biochemical analysis of cultured imaginal discs. We performed comparative genome-wide profiling between Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. Sets of potential wound-specific genes were subsequently identified. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in healing assays. This non-saturated analysis defines a relevant set of genes whose changes in expression level are functionally significant for proper tissue repair. Amongst these we identified the TCP1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound healing response.

  18. The MitCHAP-60 disease is due to entropic destabilization of the human mitochondrial Hsp60 oligomer.

    Science.gov (United States)

    Parnas, Avital; Nadler, Michal; Nisemblat, Shahar; Horovitz, Amnon; Mandel, Hanna; Azem, Abdussalam

    2009-10-01

    The 60-kDa heat shock protein (mHsp60) is a vital cellular complex that mediates the folding of many of the mitochondrial proteins. Its function is executed in cooperation with the co-chaperonin, mHsp10, and requires ATP. Recently, the discovery of a new mHsp60-associated neurodegenerative disorder, MitCHAP-60 disease, has been reported. The disease is caused by a point mutation at position 3 (D3G) of the mature mitochondrial Hsp60 protein, which renders it unable to complement the deletion of the homologous bacterial protein in Escherichia coli (Magen, D., Georgopoulos, C., Bross, P., Ang, D., Segev, Y., Goldsher, D., Nemirovski, A., Shahar, E., Ravid, S., Luder, A., Heno, B., Gershoni-Baruch, R., Skorecki, K., and Mandel, H. (2008) Am. J. Hum. Genet. 83, 30-42). The molecular basis of the MitCHAP-60 disease is still unknown. In this study, we present an in vitro structural and functional analysis of the purified wild-type human mHsp60 and the MitCHAP-60 mutant. We show that the D3G mutation leads to destabilization of the mHsp60 oligomer and causes its disassembly at low protein concentrations. We also show that the mutant protein has impaired protein folding and ATPase activities. An additional mutant that lacks the first three amino acids (N-del), including Asp-3, is similarly impaired in refolding activity. Surprisingly, however, this mutant exhibits profound stabilization of its oligomeric structure. These results suggest that the D3G mutation leads to entropic destabilization of the mHsp60 oligomer, which severely impairs its chaperone function, thereby causing the disease.

  19. Mitochondrial hsp60 chaperonopathy causes an autosomal-recessive neurodegenerative disorder linked to brain hypomyelination and leukodystrophy.

    Science.gov (United States)

    Magen, Daniella; Georgopoulos, Costa; Bross, Peter; Ang, Debbie; Segev, Yardena; Goldsher, Dorit; Nemirovski, Alexandra; Shahar, Eli; Ravid, Sarit; Luder, Anthony; Heno, Bayan; Gershoni-Baruch, Ruth; Skorecki, Karl; Mandel, Hanna

    2008-07-01

    Hypomyelinating leukodystrophies (HMLs) are disorders involving aberrant myelin formation. The prototype of primary HMLs is the X-linked Pelizaeus-Merzbacher disease (PMD) caused by mutations in PLP1. Recently, homozygous mutations in GJA12 encoding connexin 47 were found in patients with autosomal-recessive Pelizaeus-Merzbacher-like disease (PMLD). However, many patients of both genders with PMLD carry neither PLP1 nor GJA12 mutations. We report a consanguineous Israeli Bedouin kindred with clinical and radiological findings compatible with PMLD, in which linkage to PLP1 and GJA12 was excluded. Using homozygosity mapping and mutation analysis, we have identified a homozygous missense mutation (D29G) not previously described in HSPD1, encoding the mitochondrial heat-shock protein 60 (Hsp60) in all affected individuals. The D29G mutation completely segregates with the disease-associated phenotype. The pathogenic effect of D29G on Hsp60-chaperonin activity was verified by an in vivo E. coli complementation assay, which demonstrated compromised ability of the D29G-Hsp60 mutant protein to support E. coli survival, especially at high temperatures. The disorder, which we have termed MitCHAP-60 disease, can be distinguished from spastic paraplegia 13 (SPG13), another Hsp60-associated autosomal-dominant neurodegenerative disorder, by its autosomal-recessive inheritance pattern, as well as by its early-onset, profound cerebral involvement and lethality. Our findings suggest that Hsp60 defects can cause neurodegenerative pathologies of varying severity, not previously suspected on the basis of the SPG13 phenotype. These findings should help to clarify the important role of Hsp60 in myelinogenesis and neurodegeneration.

  20. Isolation and characterization of a hydrogen- and ethanol-producing Clostridium sp. strain URNW.

    Science.gov (United States)

    Ramachandran, Umesh; Wrana, Nathan; Cicek, Nazim; Sparling, Richard; Levin, David B

    2011-03-01

    Identification, characterization, and end-product synthesis patterns were analyzed in a newly identified mesophilic, anaerobic Clostridium sp. strain URNW, capable of producing hydrogen (H₂) and ethanol. Metabolic profiling was used to characterize putative end-product synthesis pathways of the Clostridium sp. strain URNW, which was found to grow on cellobiose; on hexose sugars, such as glucose, sucrose, and mannose; and on sugar alcohols, like mannitol and sorbitol. When grown in batch cultures on 2 g cellobiose·L⁻¹, Clostridium sp. strain URNW showed a cell generation time of 1.5 h, and the major end-products were H2, formate, carbon dioxide (CO₂), lactate, butyrate, acetate, pyruvate, and ethanol. The total volumetric H₂ production was 14.2 mmol·(L culture)⁻¹ and the total production of ethanol was 0.4 mmol·(L culture)⁻¹. The maximum yield of H₂ was 1.3 mol·(mol glucose equivalent)⁻¹ at a carbon recovery of 94%. The specific production rates of H₂, CO₂, and ethanol were 0.45, 0.13, and 0.003 mol·h⁻¹·(g dry cell mass)-1, respectively. BLAST analyses of 16S rDNA and chaperonin 60 (cpn60) sequences from Clostridium sp. strain URNW revealed a 98% nucleotide sequence identity with the 16S rDNA and cpn60 sequences from Clostridium intestinale ATCC 49213. Phylogenetic analyses placed Clostridium sp. strain URNW within the butyrate-synthesizing clostridia.

  1. Congenital Chloride-Losing Diarrhea in a Mexican child with the novel homozygous SLC26A3 mutation G393W

    Directory of Open Access Journals (Sweden)

    Fabian R. Reimold

    2015-06-01

    Full Text Available Congenital chloride diarrhea is an autosomal recessive disease caused by mutations in the intestinal lumenal membrane Cl-/HCO3- exchanger, SLC26A3.We report here the novel SLC26A3 mutation G393W in a Mexican child, the first such report in a patient from Central America. SLC26A3 G393W expression in Xenopus oocytes exhibits a mild hypomorphic phenotype, with normal surface expression and moderately reduced anion transport function. However, expression of HA-SLC26A3 in HEK-293 cells reveals intracellular retention and greatly decreased steady-state levels of the mutant polypeptide, in contrast to peripheral membrane expression of the wildtype protein. Whereas wildtype HA-SLC26A3 is apically localized in polarized monolayers of filter-grown MDCK cells and Caco2 cells, mutant HA-SLC26A3 G393W exhibits decreased total polypeptide abundance, with reduced or absent surface expression and sparse punctate (or absent intracellular distribution. The WT protein is similarly localized in LLCPK1 cells, but the mutant fails to accumulate to detectable levels. We conclude that the chloride-losing diarrhea phenotype associated with homozygous expression of SLC26A3 G393W likely reflects lack of apical surface expression in enterocytes, secondary to combined abnormalities in polypeptide trafficking and stability. Future progress in development of general or target-specific folding chaperonins and correctors may hold promise for pharmacological rescue of this and similar genetic defects in membrane protein targeting.

  2. Identification of Immunoreactive Leishmania infantum Protein Antigens to Asymptomatic Dog Sera through Combined Immunoproteomics and Bioinformatics Analysis

    Science.gov (United States)

    Samiotaki, Martina; Panayotou, George; Karagouni, Evdokia

    2016-01-01

    Leishmania infantum is the etiologic agent of zoonotic visceral leishmaniasis (VL) in countries in the Mediterranean basin, where dogs are the domestic reservoirs and represent important elements in the transmission of the disease. Since the major focal areas of human VL exhibit a high prevalence of seropositive dogs, the control of canine VL could reduce the infection rate in humans. Efforts toward this have focused on the improvement of diagnostic tools, as well as on vaccine development. The identification of parasite antigens including suitable major histocompatibility complex (MHC) class I- and/or II-restricted epitopes is very important since disease protection is characterized by strong and long-lasting CD8+ T and CD4+ Th1 cell-dominated immunity. In the present study, total protein extract from late-log phase L. infantum promastigotes was analyzed by two-dimensional western blots and probed with sera from asymptomatic and symptomatic dogs. A total of 42 protein spots were found to differentially react with IgG from asymptomatic dogs, while 17 of these identified by Coommasie stain were extracted and analyzed. Of these, 21 proteins were identified by mass spectrometry; they were mainly involved in metabolism and stress responses. An in silico analysis predicted that the chaperonin HSP60, dihydrolipoamide dehydrogenase, enolase, cyclophilin 2, cyclophilin 40, and one hypothetical protein contain promiscuous MHCI and/or MHCII epitopes. Our results suggest that the combination of immunoproteomics and bioinformatics analyses is a promising method for the identification of novel candidate antigens for vaccine development or with potential use in the development of sensitive diagnostic tests. PMID:26906226

  3. Immunoproteomic analysis of human serological antibody responses to vaccination with whole-cell pertussis vaccine (WCV.

    Directory of Open Access Journals (Sweden)

    Yong-Zhang Zhu

    Full Text Available BACKGROUND: Pertussis (whooping cough caused by Bordetella pertussis (B.p, continues to be a serious public health threat. Vaccination is the most economical and effective strategy for preventing and controlling pertussis. However, few systematic investigations of actual human immune responses to pertussis vaccines have been performed. Therefore, we utilized a combination of two-dimensional electrophoresis (2-DE, immunoblotting, and mass spectrometry to reveal the entire antigenic proteome of whole-cell pertussis vaccine (WCV targeted by the human immune system as a first step toward evaluating the repertoire of human humoral immune responses against WCV. METHODOLOGY/PRINCIPAL FINDINGS: Immunoproteomic profiling of total membrane enriched proteins and extracellular proteins of Chinese WCV strain 58003 identified a total of 30 immunoreactive proteins. Seven are known pertussis antigens including Pertactin, Serum resistance protein, chaperonin GroEL and two OMP porins. Sixteen have been documented to be immunogenic in other pathogens but not in B.p, and the immunogenicity of the last seven proteins was found for the first time. Furthermore, by comparison of the human and murine immunoproteomes of B.p, with the exception of four human immunoreactive proteins that were also reactive with mouse immune sera, a unique group of antigens including more than 20 novel immunoreactive proteins that uniquely reacted with human immune serum was confirmed. CONCLUSIONS/SIGNIFICANCE: This study is the first time that the repertoire of human serum antibody responses against WCV was comprehensively investigated, and a small number of previously unidentified antigens of WCV were also found by means of the classic immunoproteomic strategy. Further research on these newly identified predominant antigens of B.p exclusively against humans will not only remarkably accelerate the development of diagnostic biomarkers and subunit vaccines but also provide detailed insight

  4. Alterations of proteins in MDCK cells during acute potassium deficiency.

    Science.gov (United States)

    Peerapen, Paleerath; Ausakunpipat, Nardtaya; Chanchaem, Prangwalai; Thongboonkerd, Visith

    2016-06-01

    Chronic K(+) deficiency can cause hypokalemic nephropathy associated with metabolic alkalosis, polyuria, tubular dilatation, and tubulointerstitial injury. However, effects of acute K(+) deficiency on the kidney remained unclear. This study aimed to explore such effects by evaluating changes in levels of proteins in renal tubular cells during acute K(+) deficiency. MDCK cells were cultivated in normal K(+) (NK) (K(+)=5.3 mM), low K(+) (LK) (K(+)=2.5 mM), or K(+) depleted (KD) (K(+)=0 mM) medium for 24 h and then harvested. Cellular proteins were resolved by two-dimensional gel electrophoresis (2-DE) and visualized by SYPRO Ruby staining (5 gels per group). Spot matching and quantitative intensity analysis revealed a total 48 protein spots that had significantly differential levels among the three groups. Among these, 46 and 30 protein spots had differential levels in KD group compared to NK and LK groups, respectively. Comparison between LK and NK groups revealed only 10 protein spots that were differentially expressed. All of these differentially expressed proteins were successfully identified by Q-TOF MS and/or MS/MS analyses. The altered levels of heat shock protein 90 (HSP90), ezrin, lamin A/C, tubulin, chaperonin-containing TCP1 (CCT1), and calpain 1 were confirmed by Western blot analysis. Global protein network analysis showed three main functional networks, including 1) cell growth and proliferation, 2) cell morphology, cellular assembly and organization, and 3) protein folding in which the altered proteins were involved. Further investigations on these networks may lead to better understanding of pathogenic mechanisms of low K(+)-induced renal injury.

  5. The response of human skin commensal bacteria as a reflection of UV radiation: UV-B decreases porphyrin production.

    Directory of Open Access Journals (Sweden)

    Yanhan Wang

    Full Text Available Recent global radiation fears reflect the urgent need for a new modality that can simply determine if people are in a radiation risk of developing cancer and other illnesses. Ultraviolet (UV radiation has been thought to be the major risk factor for most skin cancers. Although various biomarkers derived from the responses of human cells have been revealed, detection of these biomarkers is cumbersome, probably requires taking live human tissues, and varies significantly depending on human immune status. Here we hypothesize that the reaction of Propionibacterium acnes (P. acnes, a human resident skin commensal, to UV radiation can serve as early surrogate markers for radiation risk because the bacteria are immediately responsive to radiation. In addition, the bacteria can be readily accessible and exposed to the same field of radiation as human body. To test our hypothesis, P. acnes was exposed to UV-B radiation. The production of porphyrins in P. acnes was significantly reduced with increasing doses of UV-B. The porphyrin reduction can be detected in both P. acnes and human skin bacterial isolates. Exposure of UV-B to P. acnes- inoculated mice led to a significant decrease in porphyrin production in a single colony of P. acnes and simultaneously induced the formation of cyclobutane pyrimidine dimers (CPD in the epidermal layers of mouse skin. Mass spectrometric analysis via a linear trap quadrupole (LTQ-Orbitrap XL showed that five peptides including an internal peptide (THLPTGIVVSCQNER of a peptide chain release factor 2 (RF2 were oxidized by UV-B. Seven peptides including three internal peptides of 60 kDa chaperonin 1 were de-oxidized by UV-B. When compared to UV-B, gamma radiation also decreased the porphyrin production of P. acnes in a dose-dependent manner, but induced a different signature of protein oxidation/de-oxidation. We highlight that uncovering response of skin microbiome to radiation will facilitate the development of pre

  6. 'Ca. Liberibacter asiaticus' proteins orthologous with pSymA-encoded proteins of Sinorhizobium meliloti: hypothetical roles in plant host interaction.

    Directory of Open Access Journals (Sweden)

    L David Kuykendall

    Full Text Available Sinorhizobium meliloti strain 1021, a nitrogen-fixing, root-nodulating bacterial microsymbiont of alfalfa, has a 3.5 Mbp circular chromosome and two megaplasmids including 1.3 Mbp pSymA carrying nonessential 'accessory' genes for nitrogen fixation (nif, nodulation and host specificity (nod. A related bacterium, psyllid-vectored 'Ca. Liberibacter asiaticus,' is an obligate phytopathogen with a reduced genome that was previously analyzed for genes orthologous to genes on the S. meliloti circular chromosome. In general, proteins encoded by pSymA genes are more similar in sequence alignment to those encoded by S. meliloti chromosomal orthologs than to orthologous proteins encoded by genes carried on the 'Ca. Liberibacter asiaticus' genome. Only two 'Ca. Liberibacter asiaticus' proteins were identified as having orthologous proteins encoded on pSymA but not also encoded on the chromosome of S. meliloti. These two orthologous gene pairs encode a Na(+/K+ antiporter (shared with intracellular pathogens of the family Bartonellacea and a Co++, Zn++ and Cd++ cation efflux protein that is shared with the phytopathogen Agrobacterium. Another shared protein, a redox-regulated K+ efflux pump may regulate cytoplasmic pH and homeostasis. The pSymA and 'Ca. Liberibacter asiaticus' orthologs of the latter protein are more highly similar in amino acid alignment compared with the alignment of the pSymA-encoded protein with its S. meliloti chromosomal homolog. About 182 pSymA encoded proteins have sequence similarity (≤ E-10 with 'Ca. Liberibacter asiaticus' proteins, often present as multiple orthologs of single 'Ca. Liberibacter asiaticus' proteins. These proteins are involved with amino acid uptake, cell surface structure, chaperonins, electron transport, export of bioactive molecules, cellular homeostasis, regulation of gene expression, signal transduction and synthesis of amino acids and metabolic cofactors. The presence of multiple orthologs defies mutational

  7. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  8. Comparative genomics of Bacillus thuringiensis phage 0305φ8-36: defining patterns of descent in a novel ancient phage lineage

    Directory of Open Access Journals (Sweden)

    Serwer Philip

    2007-10-01

    Full Text Available Abstract Background The recently sequenced 218 kb genome of morphologically atypical Bacillus thuringiensis phage 0305φ8-36 exhibited only limited detectable homology to known bacteriophages. The only known relative of this phage is a string of phage-like genes called BtI1 in the chromosome of B. thuringiensis israelensis. The high degree of divergence and novelty of phage genomes pose challenges in how to describe the phage from its genomic sequences. Results Phage 0305φ8-36 and BtI1 are estimated to have diverged 2.0 – 2.5 billion years ago. Positionally biased Blast searches aligned 30 homologous structure or morphogenesis genes between 0305φ8-36 and BtI1 that have maintained the same gene order. Functional clustering of the genes helped identify additional gene functions. A conserved long tape measure gene indicates that a long tail is an evolutionarily stable property of this phage lineage. An unusual form of the tail chaperonin system split to two genes was characterized, as was a hyperplastic homologue of the T4gp27 hub gene. Within this region some segments were best described as encoding a conservative array of structure domains fused with a variable component of exchangeable domains. Other segments were best described as multigene units engaged in modular horizontal exchange. The non-structure genes of 0305φ8-36 appear to include the remnants of two replicative systems leading to the hypothesis that the genome plan was created by fusion of two ancestral viruses. The case for a member of the RNAi RNA-directed RNA polymerase family residing in 0305φ8-36 was strengthened by extending the hidden Markov model of this family. Finally, it was noted that prospective transcriptional promoters were distributed in a gradient of small to large transcripts starting from a fixed end of the genome. Conclusion Genomic organization at a level higher than individual gene sequence comparison can be analyzed to aid in understanding large phage

  9. 夏枯草提取物作用Jurkat细胞的蛋白质组学研究%Study on Proteomics of Jurkat Cells Treated with the Extracts from Prunella vulgaris

    Institute of Scientific and Technical Information of China (English)

    张明智; 孙振昌; 付晓瑞; 陈长英; 丁梦杰

    2009-01-01

    目的:研究夏枯草提取物作用于Jurkat细胞后蛋白质组的变化.方法:体外培养Jurkat细胞,用MTT法观察不同浓度夏枯草提取物对细胞的增殖抑制作用.加入20 μg/mL夏枯草提取物作用于细胞48 h,提取总蛋白,进行双向电泳测定,凝胶银染显色,用ImageMaster 2D Platium 5.0软件对获得的蛋白图谱加以分析,寻找差异表达的蛋白质.切取差异点,胶内酶切后进行MALDI-TOF-MS分析和数据库搜索,实现对蛋白点的定性鉴定.结果:夏枯草提取物可显著抑制Jurkat细胞的生长,且具有一定的量效关系.经双向电泳和质谱后,成功鉴定了11个蛋白质,包括glyceraldehyde-3-phosphate dehydrogenase、coagulation factor VII、Heterogeneous nuclear ribonucleoprotein L、heat shock 70 kDa protein 8 isoform 2、immunoglobulin heavy chain variable region、heterogeneous nuclear ribonucleoprotein A2/B1、heterogeneous nuclear ribonucleoprotein L(为heterogeneous nuclear ribonucleoprotein A2/B1不同亚型)、zinc finger protein 43、chaperonin containing TCP1、subunit 6A (zeta 1)、isoform CRA_b.结论:夏枯草提取物可显著抑制Jurkat细胞的生长,并引起Jurkat细胞蛋白质组的改变,这可能是夏枯草提取物抗肿瘤作用的机制之一.

  10. Proteomics of Raji cells treated with the extract from Prunella vulgaris L%夏枯草提取物对Raji细胞增殖抑制的蛋白质组学研究

    Institute of Scientific and Technical Information of China (English)

    张明智; 孙振昌; 付晓瑞; 陈长英; 丁梦杰

    2009-01-01

    目的:分析夏枯草提取物作用于Raji细胞后蛋白质组的变化.方法:体外培养Raji细胞,用MTT观察不同浓度夏枯草提取物对细胞的增殖抑制作用.加入18μtg/mL夏枯草提取物作用于细胞48 h,提取总蛋白,进行双向电泳测定,凝胶银染显色,用ImageMaster 2D Platium 5.0软件对获得的蛋白图谱加以分析,寻找差异表达的蛋白质.切取差异点,胶内酶切后进行MALDI-TOF-Ms分析和数据库搜索,实现对蛋白点的鉴定.结果:夏枯草提取物可显著抑制Raji细胞的生长,且具有一定的量效关系.经双向电泳和质谱后,成功鉴定了27个(已知蛋白22个,未知蛋白5个)蛋白质,包括macrophin 1 isoform 2,mitochondrial heat shock 60×103 protein 1 variant 1, similar to PIK4CA variant protein, glyceraldehyde-3-phos-phate dehydrogenase,chaperonin containing TCP1,subunit 2 (beta),isoform CRA_a,methylcrotonoyl-Coenzyme A carboxylase 2 (beta),ehaperonin con-taining TCP1.subunit 6A (zeta 1)和 isoform CRA_b等.结论:夏枯草提取物可显著抑制Raji细胞的生长,并引起Raji细胞蛋白质组的改变,可能与夏枯草提取物的抗肿瘤作用有关.

  11. Sex differences in the response of the alveolar macrophage proteome to treatment with exogenous surfactant protein-A

    Directory of Open Access Journals (Sweden)

    Phelps David S

    2012-07-01

    Full Text Available Abstract Background Male wild type (WT C57BL/6 mice are less capable of clearing bacteria and surviving from bacterial pneumonia than females. However, if an oxidative stress (acute ozone exposure occurs before infection, the advantage shifts to males who then survive at higher rates than females. We have previously demonstrated that survival in surfactant protein-A (SP-A knockout (KO mice compared to WT was significantly reduced. Because the alveolar macrophage (AM is pivotal in host defense we hypothesized that SP-A and circulating sex hormones are responsible for these sex differences. We used 2D-DIGE to examine the relationship of sex and SP-A on the AM proteome. The role of SP-A was investigated by treating SP-A KO mice with exogenous SP-A for 6 and 18 hr and studying its effects on the AM proteome. Results We found: 1 less variance between KO males and females than between the WT counterparts by principal component analysis, indicating that SP-A plays a role in sex differences; 2 fewer changes in females when the total numbers of significantly changing protein spots or identified whole proteins in WT or 18 hr SP-A-treated males or females were compared to their respective KO groups; 3 more proteins with functions related to chaperones or protease balance and Nrf2-regulated proteins changed in response to SP-A in females than in males; and 4 the overall pattern of SP-A induced changes in actin-related proteins were similar in both sexes, although males had more significant changes. Conclusions Although there seems to be an interaction between sex and the effect of SP-A, it is unclear what the responsible mechanisms are. However, we found that several of the proteins that were expressed at significantly higher levels in females than in males in WT and/or in KO mice are known to interact with the estrogen receptor and may thus play a role in the SP-A/sex interaction. These include major vault protein, chaperonin subunit 2 (beta (CCT2, and Rho

  12. Effective enhancement of Pseudomonas stutzeri D-phenylglycine aminotransferase functional expression in Pichia pastoris by co-expressing Escherichia coli GroEL-GroES

    Directory of Open Access Journals (Sweden)

    Jariyachawalid Kanidtha

    2012-04-01

    Full Text Available Abstract Background D-phenylglycine aminotransferase (D-PhgAT of Pseudomonas stutzeri ST-201 catalyzes the reversible stereo-inverting transamination potentially useful in the application for synthesis of D-phenylglycine and D-4-hydroxyphenylglycine using L-glutamate as a low cost amino donor substrate in one single step. The enzyme is a relatively hydrophobic homodimeric intracellular protein difficult to express in the soluble functionally active form. Over-expression of the dpgA gene in E. coli resulted in the majority of the D-PhgAT aggregated into insoluble inclusion bodies that failed to be re-natured. Expression in Pichia pastoris was explored as an alternative route for high level production of the D-PhgAT. Results Intracellular expression of the codon-optimized synthetic dpgA gene under the PAOX1 promoter in P. pastoris resulted in inactive D-PhgAT associated with insoluble cellular fraction and very low level of D-PhgAT activity in the soluble fraction. Manipulation of culture conditions such as addition of sorbitol to induce intracellular accumulation of osmolytes, addition of benzyl alcohol to induce chaperone expression, or lowering incubation temperature to slow down protein expression and folding rates all failed to increase the active D-PhgAT yield. Co-expression of E. coli chaperonins GroEL-GroES with the D-PhgAT dramatically improved the soluble active enzyme production. Increasing gene dosage of both the dpgA and those of the chaperones further increased functional D-PhgAT yield up to 14400-fold higher than when the dpgA was expressed alone. Optimization of cultivation condition further increased D-PhgAT activity yield from the best co-expressing strain by 1.2-fold. Conclusions This is the first report on the use of bacterial chaperones co-expressions to enhance functional intracellular expression of bacterial enzyme in P. pastoris. Only two bacterial chaperone genes groEL and groES were sufficient for dramatic enhancement of

  13. Molecular mechanism of glucocorticoid resistance in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Sara De Iudicibus; Raffaella Franca; Stefano Martelossi; Alessandro Ventura; Giuliana Decorti

    2011-01-01

    Natural and synthetic glucocorticoids (GCs) are widely employed in a number of inflammatory, autoimmune and neoplastic diseases, and, despite the introduction of novel therapies, remain the first-line treatment for inducing remission in moderate to severe active Crohn’s disease and ulcerative colitis. Despite their extensive therapeutic use and the proven effectiveness, consider-able clinical evidence of wide inter-individual differences in GC efficacy among patients has been reported, in particular when these agents are used in inflammatory diseases. In recent years, a detailed knowledge of the GC mechanism of action and of the genetic variants affecting GC activity at the molecular level has arisen from several studies. GCs interact with their cytoplasmic receptor, and are able to repress inflammatory gene expression through several distinct mechanisms. The glucocorticoid receptor (GR) is therefore crucial for the effects of these agents: mutations in the GR gene (NR3C1, nuclear re-ceptor subfamily 3, group C, member 1) are the primary cause of a rare, inherited form of GC resistance; in ad-dition, several polymorphisms of this gene have been described and associated with GC response and toxicity. However, the GR is not self-standing in the cell and the receptor-mediated functions are the result of a complex interplay of GR and many other cellular partners. The latter comprise several chaperonins of the large coopera-tive hetero-oligomeric complex that binds the hormone-free GR in the cytosol, and several factors involved in the transcriptional machinery and chromatin remodeling, that are critical for the hormonal control of target genes transcription in the nucleus. Furthermore, variants in the principal effectors of GCs (e.g. cytokines and their regulators) have also to be taken into account for a com-prehensive evaluation of the variability in GC response. Polymorphisms in genes involved in the transport and/or metabolism of these hormones have also been

  14. Transcriptional profiling of summer wheat, grown under different realistic UV-B irradiation regimes.

    Science.gov (United States)

    Zinser, Christian; Seidlitz, Harald K; Welzl, Gerhard; Sandermann, Heinrich; Heller, Werner; Ernst, Dieter; Rau, Werner

    2007-07-01

    There is limited information on the impact of present-day ultraviolet-B (UV-B) radiation on a reprogramming of gene expression in crops. Summer wheat was cultivated in controlled environmental facilities under simulated realistic climatic conditions. We investigated the effect of different regimes of UV-B radiation on summer wheat (Triticum aestivum L.) cultivars Nandu, Star and Turbo. Until recently, these were most important in Bavaria. Different cultivars of crops often show great differences in their sensitivity towards UV-B radiation. To identify genes that might be involved in UV-B defence mechanisms, we first analyzed selected genes known to be involved in plant defence mechanisms. RNA gel blot analysis of RNA isolated from the flag leaf of 84-day-old plants showed differences in transcript levels among the cultivars. Flag leaves are known to be important for grain development, which was completed at 84 days post-anthesis. Catalase 2 (Cat2) transcripts were elevated by increased UV irradiation in all cultivars with highest levels in cv. Nandu. Pathogenesis-related protein 1 (PR1) transcripts were elevated only in cv. Star. A minor influence on transcripts for phenylalanine ammonia-lyase (PAL) was observed in all three cultivars. This indicates different levels of acclimation to UV-B radiation in the wheat cultivars studied. To analyze these responses in more detail, UV-B-exposed flag leaves of 84-day-old wheat (cv. Nandu) were pooled to isolate cDNAs of induced genes by suppression-subtractive hybridization (SSH). Among the initially isolated cDNA clones, 13 were verified by RNA gel blot analysis showing an up-regulation at elevated levels of UV-B radiation. Functional classification revealed genes encoding proteins associated with protein assembly, chaperonins, programmed cell death and signal transduction. We also studied growth, flowering time, ear development and yield as more typical agricultural parameters. Plant growth of young plants was reduced at

  15. 采用蛋白质组学技术研究 CDK2在肝癌发生中的作用%Proteomic Technologies for Analysis of Role of CDK2 in Pathogenesis of Hepatocarcinoma

    Institute of Scientific and Technical Information of China (English)

    李丽梅; 阿茹娜

    2015-01-01

    Objective To observe the effect of stable cyclin-dependent kinase 2(CDK2)siRNA transfection on proteomic expression in human hepatoma HepG2 cells,and to investigate the role of CDK2 in the pathogenesis of hepatocarcinoma.Methods Two-dimensional gel electrophoresis-mass spectrometry(2-DE-MS)was used to detect the protein expression in CDK2shRNA-trans-fected HepG2 cells(HepG2-CDK2shRNA cells)and HepG2 cells.Results Ten differential ex-pression proteins were identified by 2-DE-MS.Of them,7 proteins(cytokeratin 18,chaperonin 10-related proteins(HSP10,HSPE1 and CPNl0),human chorionic gonadotropin,Kv channel interac-ting protein 3,olfactory receptors(family 2,subfamily L and member 2),chromosome 9 open read-ing frame 3,and ELYS transcription factor-like protein TMBS62)were not expressed in HepG2-CDK2shRNA cells,and 3 proteins(high-mobility group box 1,heterogeneous nuclear ribonucleo-protein H1 and immunoglobulin heavy chain variable region)were down-regulated in HepG2-CDK2shRNA cells.Conclusion There were significant changes in expressed proteins involved in cell cycle,signal transduction,and tumor metastasis and infiltration after the inhibition of CDK2 expression in human hepatoma HepG2 cells.%目的:观察稳定转染细胞周期蛋白依赖性激酶2(cyclin-dependent kinase 2,CDK2)干扰 RNA 对人肝癌细胞株 HepG2蛋白质组表达的变化,探讨 CDK2在肝癌发生中的作用。方法采用双向凝胶电泳-质谱技术比较稳定转染 CDK2干扰 RNA 的 HepG2-CDK2shRNA 细胞株及 HepG2细胞株蛋白质表达的变化。结果经双向电泳-图像分析-质谱技术得到10个差异表达的蛋白质。其中7种[细胞角蛋白18((cytokeratin18,CK18))、热休克蛋白家族成员伴侣素10(chaperonin 10-related protein,Hsp10、HSPE1、CPNl0)、人绒毛膜促性腺激素(hCG2039058)、钾离子通道蛋白3(Kv channel interacting protein 3,Kv3)、嗅觉受体(olfactory receptor,family 2、subfamily L

  16. Interaction between four rice proteins and P7-2, an unstructural viral protein encoded by Rice black streaked dwarf virus S7%四种水稻蛋白与水稻黑条矮缩病毒编码非结构蛋白 P7-2的互作分析

    Institute of Scientific and Technical Information of China (English)

    张上林; 孙丽英; 陈剑平

    2013-01-01

    Rice black streaked dwarf virus (RBSDV), a member of the genus Fijivirus, infects maize and rice plants and causes significant yield losses in Asia .RBSDV has a genome of 10 dsRNAs and encodes 12 proteins.Six of these proteins (P1, P2, P3, P4, P8 and P10) are structural components of the viral particle .There are six non-structural proteins, P5, P6, P7-1, P7-2, P9-1, and P9-2.Among those non-structural proteins, P5, P6 and P9-1 have been shown to involve in viroplasm formation and P 7-1 has been identified to form the cytoplasmic tubular-like structures that serve as a conduit for virion movement between cells .The function of P7-2 and P9-2 is still unknow . In this study , we utilized protein Pull-Down assay and liquid chromatography-tandem mass spectrometry ( LC-MS/MS) techniques to identify the proteins from rice ( Oryza sativa) that interact with P7-2.Four proteins were found to bind P7-2 by Pull-Down assay.Two of them are transcription-associated proteins, one is an aminotransferase and the other one is a putative chaperonin 60 beta precursor .Using real-time quantitative PCR , the transcript expression lev-els of transcription-associated protein and putative chaperonin 60 beta precursor were up-regulated by RBSDV infec-tion.In contrast , the transcript expression of aminotransferase protein was suppressed by RBSDV infection .%水稻黑条矮缩病毒( RBSDV)是斐济病毒属的成员之一,可侵染玉米和水稻等作物,给亚洲地区的田间生产带来严重的损失。 RBSDV有10条双链RNA(double strand RNA, dsRNA)基因组,编码12个蛋白。其中6个蛋白是病毒粒子的结构成分(P1,P2,P3,P4,P8,P10),6个非结构蛋白分别为P5,P6,P7-1,P7-2,P9-1, P9-2。在非结构蛋白中,P5,P6和P9-1已被证实参与形成毒质结构,P7-1被认为可在细胞质中形成类似管状的结构作为病毒胞间扩散的通道,P7-2和P9-2的功能目前尚不明确。

  17. The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.

    Science.gov (United States)

    Cavalier-Smith, T

    2002-01-01

    Prokaryotes constitute a single kingdom, Bacteria, here divided into two new subkingdoms: Negibacteria, with a cell envelope of two distinct genetic membranes, and Unibacteria, comprising the new phyla Archaebacteria and Posibacteria, with only one. Other new bacterial taxa are established in a revised higher-level classification that recognizes only eight phyla and 29 classes. Morphological, palaeontological and molecular data are integrated into a unified picture of large-scale bacterial cell evolution despite occasional lateral gene transfers. Archaebacteria and eukaryotes comprise the clade neomura, with many common characters, notably obligately co-translational secretion of N-linked glycoproteins, signal recognition particle with 7S RNA and translation-arrest domain, protein-spliced tRNA introns, eight-subunit chaperonin, prefoldin, core histones, small nucleolar ribonucleoproteins (snoRNPs), exosomes and similar replication, repair, transcription and translation machinery. Eubacteria (posibacteria and negibacteria) are paraphyletic, neomura having arisen from Posibacteria within the new subphylum Actinobacteria (possibly from the new class Arabobacteria, from which eukaryotic cholesterol biosynthesis probably came). Replacement of eubacterial peptidoglycan by glycoproteins and adaptation to thermophily are the keys to neomuran origins. All 19 common neomuran character suites probably arose essentially simultaneously during the radical modification of an actinobacterium. At least 11 were arguably adaptations to thermophily. Most unique archaebacterial characters (prenyl ether lipids; flagellar shaft of glycoprotein, not flagellin; DNA-binding protein lob; specially modified tRNA; absence of Hsp90) were subsequent secondary adaptations to hyperthermophily and/or hyperacidity. The insertional origin of protein-spliced tRNA introns and an insertion in proton-pumping ATPase also support the origin of neomura from eubacteria. Molecular co-evolution between

  18. Proteomic analysis on hepatotoxicity of selenium-enriched yeast to channel catfish(Ictalurus punctatus)liver%富硒酵母对斑点叉尾蛔肝脏的毒性作用及蛋白质组学的影响

    Institute of Scientific and Technical Information of China (English)

    熊华伟; 简少卿; 贾小芳; 虞舜; 何宝荣; 曾艳; 张丽军; 虞鹏程

    2011-01-01

    -enriched yeast were selected for MS analysis and identified successfully, including 3 u-regulated proteins and 5 uniquely expressed proteins in selenium-enriched yeast group compared with the controls. These differential proteins correspond to chaperonin TCP1 subunit 8 and glyceraldehyde-3-phosphate dehydrogenase,4SNc-Tudor domain protein, adenosine kinase a, transketolase and alanyl-tRNA synthetase-like et al. Obvious toxicity was detected in the channel catfish liver after feeding with selenium-enriched yeast. Organic selenium might strengthen immune through 4SNc-Tudor protein involved signal transmission pathway. Differential proteins identified in our work could be specific biomarkers related to toxicity of organic Se to channel catfish.

  19. 采用蛋白质组学技术研究 CDK2在肝癌发生中的作用

    Institute of Scientific and Technical Information of China (English)

    李丽梅; 阿茹娜

    2015-01-01

    目的:观察稳定转染细胞周期蛋白依赖性激酶2(cyclin-dependent kinase 2,CDK2)干扰 RNA 对人肝癌细胞株 HepG2蛋白质组表达的变化,探讨 CDK2在肝癌发生中的作用。方法采用双向凝胶电泳-质谱技术比较稳定转染 CDK2干扰 RNA 的 HepG2-CDK2shRNA 细胞株及 HepG2细胞株蛋白质表达的变化。结果经双向电泳-图像分析-质谱技术得到10个差异表达的蛋白质。其中7种[细胞角蛋白18((cytokeratin18,CK18))、热休克蛋白家族成员伴侣素10(chaperonin 10-related protein,Hsp10、HSPE1、CPNl0)、人绒毛膜促性腺激素(hCG2039058)、钾离子通道蛋白3(Kv channel interacting protein 3,Kv3)、嗅觉受体(olfactory receptor,family 2、subfamily L、member 2)、染色体9开放性读码框架3(chromosome 9 open reading frame 3)、ELYS 转录因子样蛋白(ELYS transcription factor-like protein TMBS62)]在 HepG2-CDK2shRNA 细胞中不表达,3种[高迁移率族蛋白1(high-mobility group box 1,HMGB1)、异源核糖核蛋白 H1(heterogeneous nuclear ribonucleoprotein H1,hnRNP H1)、免疫球蛋白重链可变区(immunoglobulin heavy chain variable region,IgVH)]表达下调。结论CDK2表达抑制后人肝癌细胞 HepG2在细胞周期、信号转导、肿瘤转移和浸润等方面的蛋白质表达存在显著差异。

  20. 耐青霉素肺炎链球菌的蛋白质组学研究%Proteomic analysis of penicillin-resistant streptococcus pneumoniae strain

    Institute of Scientific and Technical Information of China (English)

    王勇; 卜劲松

    2014-01-01

    目的:观察耐青霉素肺炎链球菌异常蛋白表达,探讨其蛋白组学差异与耐青霉素的关系。方法采用次抑菌浓度法将肺炎链球菌国际标准菌株诱导为耐青霉素肺炎链球菌株;双向电泳分离肺炎链球菌标准株和诱导耐药株的全菌蛋白质;Image Master 2D Platinum 5.0软件对电泳图谱进行分析,寻找表达差异蛋白点;对差异蛋白点进行质谱分析。结果成功诱导耐青霉素肺炎链球菌,并建立肺炎链球菌标准株和耐药株的全菌蛋白双向电泳图谱。标准株和耐药株分别分离出约320,350个蛋白点,发现10个差异蛋白。与标准株比较,ABC转运器、触发因子、DNA聚合酶Ⅲ、氨基酸ABC转运和SP表面蛋白A表达量上调,分子伴侣、脂蛋白、果糖二磷酸醛缩酶、α-烯醇化酶和假想蛋白表达量下调。结论耐青霉素肺炎链球菌蛋白表达异常导致的蛋白组学改变可为深入探讨其耐药机制提供新的研究方向。%Objective To analyze the proteomics of penicil in- resistant streptococcus pneumonia (PRSP). Methods The penicil in- resistant streptococcus pneumonia strain was induced by sub- MIC method. The protein profile of Streptococcus pneumoniae and induced PRSP were examined by two- dimensional electrophoresis;and the electrophoretic patterns were ana-lyzed by using Image Master 2D Platinum 5.0. The differential y expressed proteins were further identified by mass spectrometry. Results PRSP strains were induce successful y. Ten differential y expressed proteins were identified between Streptococcus pneumoniae and induced PRSP. The expression of ABC transporter, trigger factor, DNA Polymerase III, amino acid transport, pneumococcal surface protein A was increase in PRSP;while the expression of chaperonin GroES, lipoprotein, fructose bisphos-phate aldolase,α- enolase decreases, hypothetical protein SpneT_02001699 was decreased. Conclusion The findings of pro

  1. Pharmacological Effects of Erythropoietin and its Derivative Carbamyl erythropoietin in Cerebral White Matter Injury

    Science.gov (United States)

    Liu, Wei

    with translational potential for PVL, which is the primary injury underlying cerebral palsy. After confirming the neuroprotective effects of EPO and CEPO on PVL mice, we continued to study the mechanisms relating to their functions. As we learned from our lab's previous study, microglia play an important role in the pathogenesis of PVL, linking multiple effectors downstream of hypoxia-ischemia and inflammation. We found that EPO and CEPO inhibit microglial activation and reduced the severity of injury. Furthermore, we found that EPO and CEPO decreased the activity of poly (ADP-ribose) polymerase-1 (PARP-1) in activated microglia. PARP-1 activity increases in response to many insults, such as infection, ischemia and toxicity. Therefore, we hypothesized that EPO and CEPO decrease microglial activation by inhibiting PARP-1 activity, and thus leading to protection against inflammation and cell death. Besides pharmacological studies of EPO and CEPO on PVL, we also investigated other endogenous factors that may affect neonatal white matter injury. Heat shock proteins (HSPs) are important chaperones that facilitate appropriate protein folding and modification. HSP60, a chaperonin located in the mitochondria, is one of these important molecules that promote appropriate protein folding. HSP60 expression levels increased significantly in the brains of PVL mice compared with control animals. In microglial cell culture, we found that after LPS treatment, HSP60 expression levels increased both inside microglial cells and in the extracellular medium. In addition, we noted enhanced HSP60 immunoreactivity in the brains of PVL mice, which localized inside activated microglial cells and extracellularly. The rise in HSP60 activity after hypoxia-ischemia and LPS administration implies that it potentially functions as one of the triggers of microglial activation and central nervous system inflammation.

  2. Using the Proteomic Method to Research the Interaction between Brassica napus and Sclerotinia sclerotiorum

    Institute of Scientific and Technical Information of China (English)

    Li Wen; Ying Chen; Jiabin Shu; Tailong Tan; Qiuping Zhang; Mingzhi Yin; Chunyun Guan

    2012-01-01

    immediately in liquid nitrogen and stored at-80℃.Proteins were extracted and separated by 2DE,and then all the 43 differentially expressed spots were analyzed by MALD-TOF/TOF MS,which 42 were identified as certain proteins.Among those identified proteins,22 proteins involved in antioxidation,response to stimulus,material and energy metabolism,biological regulation and transcription etc.were up-regulated or only expressed in the resistant line.It seemed reasonable to infer that the increase or presence of those proteins in resistant line leaves might relate to the disease-resistance of S.sclerotiorum.qRT-PCR analysis was conducted to verify some of the proteomic data.The expressions of 8 proteins were found the consistency in RNA and protein levels,they were a thiol methyltransferase,a trypsin inhibitor propeptide,a chaperonin,a cytosolic triose phosphate isomerase,a heat stress-induced protein,an L-ascorbate peroxidase,an alpha/beta-hydrolase domain-containing protein and a putative protein.The activities of some enzymes,i.e.superoxide dismutase (SOD),catalase (CAT),peroxidase (POD) and polyphenol oxidase (PPO),and the contents of reactive oxygen species (ROS) and malondialdehyde (MDA),which involved in antioxidation were also detected to investigate the relationship between the disease-resistance and the antioxidation.We found that the activities of the enzymes involved in antioxidation in the resistant line were higher than those in the susceptible line,and the contents of ROS and MDA in the resistant line were lower than those in the susceptible line.Therefore we suggested that the expressions of some proteins involved in antioxidation and the elimination of ROS were induced after inoculation of S.sclerotiorum,and this caused the higher resistance in the resistant line.However those proteins were absent or decreased in susceptible lines,leading to the weak ability of elimination of ROS and disease-resistance.Further studies are needed to validate the relationship between