WorldWideScience

Sample records for chaperones improves cell

  1. Overexpression of CHOP alone and in combination with chaperones is effective in improving antibody production in mammalian cells.

    Science.gov (United States)

    Nishimiya, Daisuke; Mano, Takashi; Miyadai, Kenji; Yoshida, Hiroko; Takahashi, Tohru

    2013-03-01

    Secretory capacities including folding and assembly are believed to be limiting factors in the establishment of mammalian cell lines producing high levels of recombinant therapeutic proteins. To achieve industrial success, it is also important to improve protein folding, assembly, and secretory processes in combination with increasing transcription and translation. Here, we identified the expression of CHOP/Gadd153 and GRP78, which are unfolded protein response (UPR)-related genes, correlated with recombinant antibody production in stable CHO cells. Subsequently, CHOP overexpression resulted in increasing recombinant antibody production in some mammalian cell lines, and in addition a threefold further enhancement was obtained by combining expression with UPR-related genes or ER chaperones in transient assays. Overexpression of CHOP had no effect on the biochemical characteristics of the product. These results suggest overexpression of CHOP and its combinations may be an effective method to efficiently select a single cell line with a high level of antibody production in the development of cell lines for manufacturing. PMID:22926643

  2. Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression.

    Directory of Open Access Journals (Sweden)

    Lisa Cadavez

    Full Text Available In type 2 diabetes, beta-cell dysfunction is thought to be due to several causes, one being the formation of toxic protein aggregates called islet amyloid, formed by accumulations of misfolded human islet amyloid polypeptide (hIAPP. The process of hIAPP misfolding and aggregation is one of the factors that may activate the unfolded protein response (UPR, perturbing endoplasmic reticulum (ER homeostasis. Molecular chaperones have been described to be important in regulating ER response to ER stress. In the present work, we evaluate the role of chaperones in a stressed cellular model of hIAPP overexpression. A rat pancreatic beta-cell line expressing hIAPP exposed to thapsigargin or treated with high glucose and palmitic acid, both of which are known ER stress inducers, showed an increase in ER stress genes when compared to INS1E cells expressing rat IAPP or INS1E control cells. Treatment with molecular chaperone glucose-regulated protein 78 kDa (GRP78, also known as BiP or protein disulfite isomerase (PDI, and chemical chaperones taurine-conjugated ursodeoxycholic acid (TUDCA or 4-phenylbutyrate (PBA, alleviated ER stress and increased insulin secretion in hIAPP-expressing cells. Our results suggest that the overexpression of hIAPP induces a stronger response of ER stress markers. Moreover, endogenous and chemical chaperones are able to ameliorate induced ER stress and increase insulin secretion, suggesting that improving chaperone capacity can play an important role in improving beta-cell function in type 2 diabetes.

  3. Chemical chaperones improve protein secretion and rescue mutant factor VIII in mice with hemophilia A.

    Directory of Open Access Journals (Sweden)

    Stefanie D Roth

    Full Text Available Inefficient intracellular protein trafficking is a critical issue in the pathogenesis of a variety of diseases and in recombinant protein production. Here we investigated the trafficking of factor VIII (FVIII, which is affected in the coagulation disorder hemophilia A. We hypothesized that chemical chaperones may be useful to enhance folding and processing of FVIII in recombinant protein production, and as a therapeutic approach in patients with impaired FVIII secretion. A tagged B-domain-deleted version of human FVIII was expressed in cultured Chinese Hamster Ovary cells to mimic the industrial production of this important protein. Of several chemical chaperones tested, the addition of betaine resulted in increased secretion of FVIII, by increasing solubility of intracellular FVIII aggregates and improving transport from endoplasmic reticulum to Golgi. Similar results were obtained in experiments monitoring recombinant full-length FVIII. Oral betaine administration also increased FVIII and factor IX (FIX plasma levels in FVIII or FIX knockout mice following gene transfer. Moreover, in vitro and in vivo applications of betaine were also able to rescue a trafficking-defective FVIII mutant (FVIIIQ305P. We conclude that chemical chaperones such as betaine might represent a useful treatment concept for hemophilia and other diseases caused by deficient intracellular protein trafficking.

  4. Overproduction of the Escherichia coli Chaperones GroEL-GroES in Rhodococcus ruber Improves the Activity and Stability of Cell Catalysts Harboring a Nitrile Hydratase.

    Science.gov (United States)

    Tian, Yuxuan; Chen, Jie; Yu, Huimin; Shen, Zhongyao

    2016-02-01

    Three combinations of molecular chaperones from Escherichia coli (i.e., DnaK-DnaJ-GrpEGroEL- GroES, GroEL-GroES, and DnaK-DnaJ-GrpE) were overproduced in E. coli BL21, and their in vitro stabilizing effects on a nitrile hydratase (NHase) were assessed. The optimal gene combination, E. coli groEL-groES (ecgroEL-ES), was introduced into Rhodococcus ruber TH3. A novel engineered strain, R. ruber TH3G was constructed with the native NHase gene on its chromosome and the heterologous ecgroEL-ES genes in a shuttle plasmid. In R. ruber TH3G, NHase activity was enhanced 37.3% compared with the control, TH3. The in vivo stabilizing effect of ecGroEL-ES on the NHase was assessed using both acrylamide immersion and heat shock experiments. The inactivation behavior of the in vivo NHase after immersion in a solution of dynamically increased concentrations of acrylamide was particularly evident. When the acrylamide concentration was increased to 500 g/l (50%), the remaining NHase activity in TH3G was 38%, but in TH3, activity was reduced to 10%. Reactivation of the in vivo NHases after varying degrees of inactivation was further assessed. The activity of the reactivated NHase was more than 2-fold greater in TH3G than in TH3. The hydration synthesis of acrylamide catalyzed by the in vivo NHase was performed with continuous acrylonitrile feeding. The final concentration of acrylamide was 640 g/l when catalyzed by TH3G, compared with 490 g/l acrylamide by TH3. This study is the first to show that the chaperones ecGroEL-ES work well in Rhodococcus and simultaneously possess protein-folding assistance functions and the ability to stabilize and reactivate the native NHases. PMID:26562693

  5. The histone chaperone CAF-1 safeguards somatic cell identity.

    Science.gov (United States)

    Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Jung, Youngsook L; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee I; Euong Ang, Cheen; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin; Rathert, Philipp; Jude, Julian; Ferrari, Francesco; Blanco, Andres; Fellner, Michaela; Wenzel, Daniel; Zinner, Marietta; Vidal, Simon E; Bell, Oliver; Stadtfeld, Matthias; Chang, Howard Y; Almouzni, Genevieve; Lowe, Scott W; Rinn, John; Wernig, Marius; Aravin, Alexei; Shi, Yang; Park, Peter J; Penninger, Josef M; Zuber, Johannes; Hochedlinger, Konrad

    2015-12-10

    Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromatin assembly factor-1 (CAF-1) complex, including Chaf1a and Chaf1b, emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Optimal modulation of both CAF-1 and transcription factor levels increased reprogramming efficiency by several orders of magnitude and facilitated iPS cell formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 to be a novel regulator of somatic cell identity during transcription-factor-induced cell-fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting. PMID:26659182

  6. Mechanisms of Translocation of ER Chaperones to the Cell Surface and Immunomodulatory Roles in Cancer and Autoimmunity

    NARCIS (Netherlands)

    Wiersma, Valerie; Michalak, Marek; Abdullah, Trefa M; Bremer, Edwin; Eggleton, Paul

    2015-01-01

    Endoplasmic reticulum (ER) chaperones (e.g., calreticulin, heat shock proteins, and isomerases) perform a multitude of functions within the ER. However, many of these chaperones can translocate to the cytosol and eventually the surface of cells, particularly during ER stress induced by e.g., drugs,

  7. Oxidative stress induces monocyte necrosis with enrichment of cell-bound albumin and overexpression of endoplasmic reticulum and mitochondrial chaperones.

    Directory of Open Access Journals (Sweden)

    Haiping Tang

    Full Text Available In the present study, monocytes were treated with 5-azacytidine (azacytidine, gossypol or hydrogen peroxide to induce cell death through oxidative stress. A shift from apoptotic to necrotic cell death occurred when monocytes were treated with 100 µM azacytidine for more than 12 hours. Necrotic monocytes exhibited characteristics, including enrichment of cell-bound albumin and up-regulation of endoplasmic reticulum (ER- and mitochondrial-specific chaperones to protect mitochondrial integrity, which were not observed in other necrotic cells, including HUH-7, A2780, A549 and HOC1a. Our results show that the cell-bound albumin originates in the culture medium rather than from monocyte-derived hepatocytes, and that HSP60 is a potential binding partner of the cell-bound albumin. Proteomic analysis shows that HSP60 and protein disulfide isomerase are the most abundant up-regulated mitochondrial and ER-chaperones, and that both HSP60 and calreticulin are ubiquitinated in necrotic monocytes. In contrast, expression levels of the cytosolic chaperones HSP90 and HSP71 were down-regulated in the azacytidine-treated monocytes, concomitant with an increase in the levels of these chaperones in the cell culture medium. Collectively, our results demonstrates that chaperones from different organelles behave differently in necrotic monocytes, ER- and mitochondrial chaperones being retained and cytosolic and nuclear chaperones being released into the cell culture medium through the ruptured cell membrane. HSP60 may serve as a new target for development of myeloid leukemia treatment.

  8. Chaperone proteins identified from synthetic proteasome inhibitor-induced inclusions in PC12 cells by proteomic analysis

    Institute of Scientific and Technical Information of China (English)

    Xing'an Li; Yinjiu Zhang; Yihong Hu; Ming Chang; Tao Liu; Danping Wang; Yu Zhang; Lei Zhang; Linsen Hu

    2008-01-01

    Chaperone proteins are significant in Lewy bodies, but the profile of chaperone proteins is incompletely unraveled.Protcomic analysis is used to determine protein candidates for further study. Here, to identify potential chaperone proteins from agent-induced inclusions, we carried out proteomic analysis of artificially synthetic proteasome inhibitor (PSI)-induced inclusions formed in PC12 cells exposed to 10 μM PSI for 48 h. Using biochemical fractionation, 2-D electrophoresis, and identification through peptide mass fingerprints searched against multiple protein databases, we repeatedly identified eight reproducible chaperone proteins from the PSI-induced inclusions. Of these, 58 kDa glucose regulated protein, 75 kDa glucose regulated protein, and caldum-binding protein I were newly identified. The other five had been reported to be consistent components of Lewy bodies. These findings suggested that the three potential chaperone proteins might be recruited to PSI-induced inclusions in PC12 cells under proteasome inhibition.

  9. Age-Dependent Decrease in Chaperone Activity Impairs MANF Expression, Leading to Purkinje Cell Degeneration in Inducible SCA17 Mice

    Science.gov (United States)

    Yang, Su; Huang, Shanshan; Gaertig, Marta A.; Li, Xiao-Jiang; Li, Shihua

    2016-01-01

    SUMMARY Although protein-misfolding-mediated neurodegenerative diseases have been linked to aging, how aging contributes to selective neurodegeneration remains unclear. We established spinocerebellar ataxia 17 (SCA17) knockin mice that inducibly express one copy of mutant TATA box binding protein (TBP) at different ages by tamoxifen-mediated Cre recombination. We find that more mutant TBP accumulates in older mouse and that this accumulation correlates with age-related decreases in Hsc70 and chaperone activity. Consistently, older SCA17 mice experienced earlier neurological symptom onset and more severe Purkinje cell degeneration. Mutant TBP shows decreased association with XBP1s, resulting in the reduced transcription of mesencephalic astrocyte-derived neurotrophic factor (MANF), which is enriched in Purkinje cells. Expression of Hsc70 improves the TBP-XBP1s interaction and MANF transcription, and overexpression of MANF ameliorates mutant TBP-mediated Purkinje cell degeneration via protein kinase C (PKC)-dependent signaling. These findings suggest that the age-related decline in chaperone activity affects polyglutamine protein function that is important for the viability of specific types of neurons. PMID:24462098

  10. The histone chaperone CAF-1 safeguards somatic cell identity

    OpenAIRE

    Cheloufi, Sihem; Ninova, Maria; Aravin, Alexei

    2015-01-01

    Cellular differentiation involves profound remodelling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNA interference (RNAi) screens targeting chromatin factors during transcription-factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPS cells). Subunits of the chromat...

  11. The histone chaperone CAF-1 safeguards somatic cell identity

    OpenAIRE

    Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Youngsook L. Jung; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee I; Ang, Cheen Euong; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin

    2016-01-01

    Cellular differentiation involves profound remodeling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly ...

  12. The histone chaperone CAF-1 safeguards somatic cell identity

    OpenAIRE

    Cheloufi, Sihem; Elling, Ulrich; Hopfgartner, Barbara; Youngsook L. Jung; Murn, Jernej; Ninova, Maria; Hubmann, Maria; Badeaux, Aimee I; Ang, Cheen Euong; Tenen, Danielle; Wesche, Daniel J; Abazova, Nadezhda; Hogue, Max; Tasdemir, Nilgun; Brumbaugh, Justin

    2015-01-01

    Cellular differentiation involves profound remodeling of chromatic landscapes, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly ...

  13. Invariant chain induces B cell maturation in a process that is independent of its chaperonic activity

    Science.gov (United States)

    Matza, Didi; Lantner, Frida; Bogoch, Yoel; Flaishon, Liat; Hershkoviz, Rami; Shachar, Idit

    2002-01-01

    Early stages of B cell development take place in the bone marrow, resulting in formation of immature B cells, which migrate to the spleen for their final differentiation into mature cells. This final maturation step is essential for B cells to become responsive to antigens and to participate in the immune response. Previously, we showed that the MHC class II chaperone, invariant chain (Ii), controls the differentiation of B cells from the immature to the mature stage. In this study, by generating transgenic mice expressing truncated Ii lacking its luminal domain, we could dissect the chaperonin activity of Ii from its role in B cell maturation. We demonstrate in vivo that Ii N-terminal domain is directly involved in the maturation of B cells and is sufficient to promote B cell differentiation. PMID:11867743

  14. Heat shock protein 70 chaperoned alpha-fetoprotein in human hepatocellular carcinoma cell line BEL-7402

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ping Wang; Qiao-Xia Wang; Hai-Yan Li; Rui-Fen Chen

    2005-01-01

    AIM: To investigate the interaction between heat shock protein 70 (HSP70) and α-fetoprotein (AFP) in human hepatocellular carcinoma (HCC) cell line BEL7402.METHODS: The expression and localization of HSP70 and AFP in human HCC cell line BEL-7402 were determined by immunocytochemistry and indirect immunofluorescence cytochemical staining. The interaction between HSP70 and AFP in HCC cells was analyzed by immunoprecipitation and Western blot.RESULTS: Immunocytochemical staining detection showed that HCC cell BEL-7402 expressed a high level of HSP70 and AFP synchronously. Both were stained in cell plasma.AFP existed in the immunoprecipitate of anti-HSP70 mAb,while there was HSP70 in the immunoprecipitate of antiAFP mAb.CONCLUSION: HSP70 chaperones AFP in human HCCcell BEL-7402. The interaction between HSP70 and AFP in human HCC cell can be a new route to study the pathogenesis and immunotherapy of HCC.

  15. Protein polymer nanoparticles engineered as chaperones protect against apoptosis in human retinal pigment epithelial cells

    OpenAIRE

    Wang, Wan; Sreekumar, Parameswaran G.; Valluripalli, Vinod; Shi, Pu; Wang, Jiawei; Lin, Yi-An; Cui, Honggang; Kannan, Ram; Hinton, David R.; MacKay, J. Andrew

    2014-01-01

    αB-crystallin is a protein chaperone with anti-apoptotic and anti-inflammatory activity that is apically secreted in exosomes by polarized human retinal pigment epithelium. A 20 amino acid mini-peptide derived from residues 73-92 of αB-crystallin protects human retinal pigment epithelial (RPE) cells from oxidative stress, a process involved in the progression of age related macular degeneration (AMD). Unfortunately, due to its small size, its development as a therapeutic requires a robust con...

  16. Improving recombinant Rubisco biogenesis, plant photosynthesis and growth by coexpressing its ancillary RAF1 chaperone.

    Science.gov (United States)

    Whitney, Spencer M; Birch, Rosemary; Kelso, Celine; Beck, Jennifer L; Kapralov, Maxim V

    2015-03-17

    Enabling improvements to crop yield and resource use by enhancing the catalysis of the photosynthetic CO2-fixing enzyme Rubisco has been a longstanding challenge. Efforts toward realization of this goal have been greatly assisted by advances in understanding the complexities of Rubisco's biogenesis in plastids and the development of tailored chloroplast transformation tools. Here we generate transplastomic tobacco genotypes expressing Arabidopsis Rubisco large subunits (AtL), both on their own (producing tob(AtL) plants) and with a cognate Rubisco accumulation factor 1 (AtRAF1) chaperone (producing tob(AtL-R1) plants) that has undergone parallel functional coevolution with AtL. We show AtRAF1 assembles as a dimer and is produced in tob(AtL-R1) and Arabidopsis leaves at 10-15 nmol AtRAF1 monomers per square meter. Consistent with a postchaperonin large (L)-subunit assembly role, the AtRAF1 facilitated two to threefold improvements in the amount and biogenesis rate of hybrid L8(A)S8(t) Rubisco [comprising AtL and tobacco small (S) subunits] in tob(AtL-R1) leaves compared with tob(AtL), despite >threefold lower steady-state Rubisco mRNA levels in tob(AtL-R1). Accompanying twofold increases in photosynthetic CO2-assimilation rate and plant growth were measured for tob(AtL-R1) lines. These findings highlight the importance of ancillary protein complementarity during Rubisco biogenesis in plastids, the possible constraints this has imposed on Rubisco adaptive evolution, and the likely need for such interaction specificity to be considered when optimizing recombinant Rubisco bioengineering in plants. PMID:25733857

  17. The Cell Wall Polymer Lipoteichoic Acid Becomes Nonessential in Staphylococcus aureus Cells Lacking the ClpX Chaperone

    Science.gov (United States)

    Bowman, Lisa; Millership, Charlotte; Dupont Søgaard, Mia; Kaever, Volkhard; Siljamäki, Pia; Savijoki, Kirsi; Varmanen, Pekka; Nyman, Tuula A.

    2016-01-01

    ABSTRACT Lipoteichoic acid (LTA) is an important cell wall component of Gram-positive bacteria and a promising target for the development of vaccines and antimicrobial compounds against Staphylococcus aureus. Here we demonstrate that mutations in the conditionally essential ltaS (LTA synthase) gene arise spontaneously in an S. aureus mutant lacking the ClpX chaperone. A wide variety of ltaS mutations were selected, and among these, a substantial portion resulted in premature stop codons and other changes predicted to abolish LtaS synthesis. Consistent with this assumption, the clpX ltaS double mutants did not produce LTA, and genetic analyses confirmed that LTA becomes nonessential in the absence of the ClpX chaperone. In fact, inactivation of ltaS alleviated the severe growth defect conferred by the clpX deletion. Microscopic analyses showed that the absence of ClpX partly alleviates the septum placement defects of an LTA-depleted strain, while other phenotypes typical of LTA-negative S. aureus mutants, including increased cell size and decreased autolytic activity, are retained. In conclusion, our results indicate that LTA has an essential role in septum placement that can be bypassed by inactivating the ClpX chaperone. PMID:27507828

  18. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models.

    Science.gov (United States)

    Sanchez-Martinez, Alvaro; Beavan, Michelle; Gegg, Matthew E; Chau, Kai-Yin; Whitworth, Alexander J; Schapira, Anthony H V

    2016-01-01

    GBA gene mutations are the greatest cause of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase) but the mechanisms by which loss of GCase contributes to PD remain unclear. Inhibition of autophagy and the generation of endoplasmic reticulum (ER) stress are both implicated. Mutant GCase can unfold in the ER and be degraded via the unfolded protein response, activating ER stress and reducing lysosomal GCase. Small molecule chaperones that cross the blood brain barrier help mutant GCase refold and traffic correctly to lysosomes are putative treatments for PD. We treated fibroblast cells from PD patients with heterozygous GBA mutations and Drosophila expressing human wild-type, N370S and L444P GBA with the molecular chaperones ambroxol and isofagomine. Both chaperones increased GCase levels and activity, but also GBA mRNA, in control and mutant GBA fibroblasts. Expression of mutated GBA in Drosophila resulted in dopaminergic neuronal loss, a progressive locomotor defect, abnormal aggregates in the ER and increased levels of the ER stress reporter Xbp1-EGFP. Treatment with both chaperones lowered ER stress and prevented the loss of motor function, providing proof of principle that small molecule chaperones can reverse mutant GBA-mediated ER stress in vivo and might prove effective for treating PD. PMID:27539639

  19. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    International Nuclear Information System (INIS)

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury

  20. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Jeong, Jae-Hoon [Division of Radiotherapy, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Kang, Seongman [Division of Life Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Lim, Young-Bin, E-mail: yblim@kirams.re.kr [Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  1. GABA Acts as a Ligand Chaperone in the Early Secretory Pathway to Promote Cell Surface Expression of GABAA Receptors

    OpenAIRE

    Eshaq, Randa S.; Stahl, Letha D.; Stone, Randolph; Smith, Sheryl S.; Robinson, Lucy C.; Leidenheimer, Nancy J.

    2010-01-01

    GABA (γ-aminobutyric acid) is the primary inhibitory neurotransmitter in brain. The fast inhibitory effect of GABA is mediated through the GABAA receptor, a postsynaptic ligand-gated chloride channel. We propose that GABA can act as a ligand chaperone in the early secretory pathway to facilitate GABAA receptor cell surface expression. Forty-two hrs of GABA treatment increased the surface expression of recombinant receptors expressed in HEK 293 cells, an effect accompanied by an increase in GA...

  2. Do nucleic acids moonlight as molecular chaperones?

    Science.gov (United States)

    Docter, Brianne E.; Horowitz, Scott; Gray, Michael J.; Jakob, Ursula; Bardwell, James C.A.

    2016-01-01

    Organisms use molecular chaperones to combat the unfolding and aggregation of proteins. While protein chaperones have been widely studied, here we demonstrate that DNA and RNA exhibit potent chaperone activity in vitro. Nucleic acids suppress the aggregation of classic chaperone substrates up to 300-fold more effectively than the protein chaperone GroEL. Additionally, RNA cooperates with the DnaK chaperone system to refold purified luciferase. Our findings reveal a possible new role for nucleic acids within the cell: that nucleic acids directly participate in maintaining proteostasis by preventing protein aggregation. PMID:27105849

  3. Chaperoning ribosome assembly

    OpenAIRE

    Karbstein, Katrin

    2010-01-01

    Chaperones help proteins fold in all cellular compartments, and many associate directly with ribosomes, capturing nascent chains to assist their folding and prevent aggregation. In this issue, new data from Koplin et al. (2010. J. Cell Biol. doi: 10.1083/jcb.200910074) and Albanèse et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201001054) suggest that in addition to promoting protein folding, the chaperones ribosome-associated complex (RAC), nascent chain–associated complex (NAC), and Jjj1 also...

  4. Periplasmic expression of soluble single chain T cell receptors is rescued by the chaperone FkpA

    Directory of Open Access Journals (Sweden)

    Bogen Bjarne

    2010-02-01

    Full Text Available Abstract Background Efficient expression systems exist for antibody (Ab molecules, which allow for characterization of large numbers of individual Ab variants. In contrast, such expression systems have been lacking for soluble T cell receptors (TCRs. Attempts to generate bacterial systems have generally resulted in low yields and material which is prone to aggregation and proteolysis. Here we present an optimized periplasmic bacterial expression system for soluble single chain (sc TCRs. Results The effect of 1 over-expression of the periplasmic chaperon FkpA, 2 culture conditions and 3 molecular design was investigated. Elevated levels of FkpA allowed periplasmic soluble scTCR expression, presumably by preventing premature aggregation and inclusion body formation. Periplasmic expression enables disulphide bond formation, which is a prerequisite for the scTCR to reach its correct fold. It also enables quick and easy recovery of correctly folded protein without the need for time-consuming downstream processing. Expression without IPTG induction further improved the periplasmic expression yield, while addition of sucrose to the growth medium showed little effect. Shaker flask yield of mg levels of active purified material was obtained. The Vαβ domain orientation was far superior to the Vβα domain orientation regarding monomeric yield of functionally folded molecules. Conclusion The general expression regime presented here allows for rapid production of soluble scTCRs and is applicable for 1 high yield recovery sufficient for biophysical characterization and 2 high throughput screening of such molecules following molecular engineering.

  5. Regulation of the expression of chaperone gp96 in macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lutz Wolfram

    Full Text Available The chaperone function of the ER-residing heat shock protein gp96 plays an important role in protein physiology and has additionally important immunological functions due to its peptide-binding capacity. Low amounts of gp96 stimulate immunity; high quantities induce tolerance by mechanisms not fully understood. A lack of gp96 protein in intestinal macrophages (IMACs from Crohn`s disease (CD patients correlates with loss of tolerance against the host gut flora, leading to chronic inflammation. Since gp96 shows dose-dependent direction of immunological reactions, we studied primary IMACs and developed cell models to understand the regulation of gp96 expression. Induction of gp96-expression was higher in in vitro differentiated dendritic cells (i.v.DCs than in in vitro differentiated macrophages (i.v.MACs, whereas monocytes (MOs expressed only low gp96 levels. The highest levels of expression were found in IMACs. Lipopolysaccharide (LPS, muramyl dipeptide (MDP, tumour necrosis factor (TNF, and Interleukin (IL-4 induced gp96-expression, while IL12, IL-17, IL-23 and interferon (IFN-γ were not effective indicating that Th1 and Th17 cells are probably not involved in the induction of gp96. Furthermore, gp96 was able to induce its own expression. The ER-stress inducer tunicamycin increased gp96-expression in a concentration- and time-dependent manner. Both ulcerative colitis (UC and CD patients showed significantly elevated gp96 mRNA levels in intestinal biopsies which correlated positively with the degree of inflammation of the tissue. Since gp96 is highly expressed on the one hand upon stress induction as during inflammation and on the other hand possibly mediating tolerance, these results will help to understand the whether gp96 plays a role in the pathophysiology of inflammatory bowel disease (IBD.

  6. Chaperone-assisted thermostability engineering of a soluble T cell receptor using phage display

    DEFF Research Database (Denmark)

    Gunnarsen, Kristin S; Kristinsson, Solveig G; Justesen, Sune; Frigstad, Terje; Buus, Søren; Bogen, Bjarne; Sandlie, Inger; Løset, Geir Åge

    2013-01-01

    mutation scTCR phage libraries were prepared in E. coli over-expressing the periplasmic chaperone FkpA, and such over-expression during library preparation proved crucial for successful downstream selection. The thermostabilized scTCR(mut) variants selected were produced in high yields and isolated as...

  7. The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene.

    Directory of Open Access Journals (Sweden)

    Ana Paço

    Full Text Available The ClpB chaperone is known to be involved in bacterial stress response. Moreover, recent studies suggest that this protein has also a role in the chickpea-rhizobia symbiosis. In order to improve both stress tolerance and symbiotic performance of a chickpea microsymbiont, the Mesorhizobium mediterraneum UPM-Ca36T strain was genetically transformed with pPHU231 containing an extra-copy of the clpB gene. To investigate if the clpB-transformed strain displays an improved stress tolerance, bacterial growth was evaluated under heat and acid stress conditions. In addition, the effect of the extra-copies of the clpB gene in the symbiotic performance was evaluated using plant growth assays (hydroponic and pot trials. The clpB-transformed strain is more tolerant to heat shock than the strain transformed with pPHU231, supporting the involvement of ClpB in rhizobia heat shock tolerance. Both plant growth assays showed that ClpB has an important role in chickpea-rhizobia symbiosis. The nodulation kinetics analysis showed a higher rate of nodule appearance with the clpB-transformed strain. This strain also induced a greater number of nodules and, more notably, its symbiotic effectiveness increased ~60% at pH5 and 83% at pH7, compared to the wild-type strain. Furthermore, a higher frequency of root hair curling was also observed in plants inoculated with the clpB-transformed strain, compared to the wild-type strain. The superior root hair curling induction, nodulation ability and symbiotic effectiveness of the clpB-transformed strain may be explained by an increased expression of symbiosis genes. Indeed, higher transcript levels of the nodulation genes nodA and nodC (~3 folds were detected in the clpB-transformed strain. The improvement of rhizobia by addition of extra-copies of the clpB gene may be a promising strategy to obtain strains with enhanced stress tolerance and symbiotic effectiveness, thus contributing to their success as crop inoculants

  8. The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene.

    Science.gov (United States)

    Paço, Ana; Brígido, Clarisse; Alexandre, Ana; Mateos, Pedro F; Oliveira, Solange

    2016-01-01

    The ClpB chaperone is known to be involved in bacterial stress response. Moreover, recent studies suggest that this protein has also a role in the chickpea-rhizobia symbiosis. In order to improve both stress tolerance and symbiotic performance of a chickpea microsymbiont, the Mesorhizobium mediterraneum UPM-Ca36T strain was genetically transformed with pPHU231 containing an extra-copy of the clpB gene. To investigate if the clpB-transformed strain displays an improved stress tolerance, bacterial growth was evaluated under heat and acid stress conditions. In addition, the effect of the extra-copies of the clpB gene in the symbiotic performance was evaluated using plant growth assays (hydroponic and pot trials). The clpB-transformed strain is more tolerant to heat shock than the strain transformed with pPHU231, supporting the involvement of ClpB in rhizobia heat shock tolerance. Both plant growth assays showed that ClpB has an important role in chickpea-rhizobia symbiosis. The nodulation kinetics analysis showed a higher rate of nodule appearance with the clpB-transformed strain. This strain also induced a greater number of nodules and, more notably, its symbiotic effectiveness increased ~60% at pH5 and 83% at pH7, compared to the wild-type strain. Furthermore, a higher frequency of root hair curling was also observed in plants inoculated with the clpB-transformed strain, compared to the wild-type strain. The superior root hair curling induction, nodulation ability and symbiotic effectiveness of the clpB-transformed strain may be explained by an increased expression of symbiosis genes. Indeed, higher transcript levels of the nodulation genes nodA and nodC (~3 folds) were detected in the clpB-transformed strain. The improvement of rhizobia by addition of extra-copies of the clpB gene may be a promising strategy to obtain strains with enhanced stress tolerance and symbiotic effectiveness, thus contributing to their success as crop inoculants, particularly under

  9. HSF1-controlled and age-associated chaperone capacity in neurons and muscle cells of C. elegans.

    Directory of Open Access Journals (Sweden)

    Andreas Kern

    Full Text Available Protein stability under changing conditions is of vital importance for the cell and under the control of a fine-tuned network of molecular chaperones. Aging and age-related neurodegenerative diseases are directly associated with enhanced protein instability. Employing C. elegans expressing GFP-tagged luciferase as a reporter for evaluation of protein stability we show that the chaperoning strategy of body wall muscle cells and neurons is significantly different and that both are differently affected by aging. Muscle cells of young worms are largely resistant to heat stress, which is directly mediated by the stress response controlled through Heat Shock Transcription Factor 1. During recovery following heat stress the ability to refold misfolded proteins is missing. Young neurons are highly susceptible to chronic heat stress, but show a high potency to refold or disaggregate proteins during subsequent recovery. The particular proteome instability in neurons results from a delayed induction of the heat shock response. In aged neurons protein stability is increased during heat stress, whereas muscle cells show enhanced protein instability due to a deteriorated heat shock response. An efficient refolding activity is absent in both aged tissues. These results provide molecular insights into the differential protein stabilization capacity in different tissues and during aging.

  10. Chaperoning prions: the story unfolds

    OpenAIRE

    O'Connor, David; Jones, Gary

    2006-01-01

    Prions are infectious proteins that are responsible for a number of mammalian degenerative diseases. The discovery of prions in yeast has allowed detailed genetic analysis to be carried out to identify cellular factors involved in prion propagation. It is now clear that a complex relationship exists between molecular chaperones and prion propagation. Prions may actually have evolved to exploit the cell's chaperone machinery to ensure their own propaga...

  11. Targeting Molecular Chaperones for the Treatment of Cystic Fibrosis: Is It a Viable Approach?

    Science.gov (United States)

    Heard, Ashley; Thompson, Jake; Carver, Jessica; Bakey, Michelle; Wang, X Robert

    2015-01-01

    Cystic Fibrosis (CF) is largely caused by protein misfolding and the loss of function of a plasma membrane anion channel known as the cystic fibrosis transmembrane conductance regulator (CFTR). The most common CF-causing mutation, F508del, leads to severe conformational defect in CFTR. The cellular chaperone machinery plays an important role in CFTR biogenesis and quality control. Multiple attempts have been made to improve the cell surface functional expression of the mutant CFTR by modulating the expression of components of the cellular chaperone machinery. The efficacy of such an approach has been low largely due to the severe intrinsic folding defects of the F508del CFTR. Moreover, the impact of chaperone perturbation on the chaperone machinery itself and on other physiologically important proteins might lead to potentially severe side effects. Approaches aimed at disrupting chaperone-CFTR interactions show greater efficacy, and are compatible with small-molecule drug discovery and gene therapy. Combination between chaperone modulators and F508del correctors might further enhance potency and specificity. As molecular chaperones play important roles in regulating inflammation and immunity, they can be potential targets for controlling airway infection and inflammation in patients. If such effects can be synergized with chaperone-mediated regulation of CFTR biogenesis and quality control, more efficacious therapeutics will be developed to combat CF lung disease. PMID:25981601

  12. Chaperone-Mediated Autophagy Targets IFNAR1 for Lysosomal Degradation in Free Fatty Acid Treated HCV Cell Culture.

    Directory of Open Access Journals (Sweden)

    Ramazan Kurt

    Full Text Available Hepatic steatosis is a risk factor for both liver disease progression and an impaired response to interferon alpha (IFN-α-based combination therapy in chronic hepatitis C virus (HCV infection. Previously, we reported that free fatty acid (FFA-treated HCV cell culture induces hepatocellular steatosis and impairs the expression of interferon alpha receptor-1 (IFNAR1, which is why the antiviral activity of IFN-α against HCV is impaired.To investigate the molecular mechanism by which IFNAR1 expression is impaired in HCV cell culture with or without free fatty acid-treatment.HCV-infected Huh 7.5 cells were cultured with or without a mixture of saturated (palmitate and unsaturated (oleate long-chain free fatty acids (FFA. Intracytoplasmic fat accumulation in HCV-infected culture was visualized by oil red staining. Clearance of HCV in FFA cell culture treated with type I IFN (IFN-α and Type III IFN (IFN-λ was determined by Renilla luciferase activity, and the expression of HCV core was determined by immunostaining. Activation of Jak-Stat signaling in the FFA-treated HCV culture by IFN-α alone and IFN-λ alone was examined by Western blot analysis and confocal microscopy. Lysosomal degradation of IFNAR1 by chaperone-mediated autophagy (CMA in the FFA-treated HCV cell culture model was investigated.FFA treatment induced dose-dependent hepatocellular steatosis and lipid droplet accumulation in HCV-infected Huh-7.5 cells. FFA treatment of infected culture increased HCV replication in a concentration-dependent manner. Intracellular lipid accumulation led to reduced Stat phosphorylation and nuclear translocation, causing an impaired IFN-α antiviral response and HCV clearance. Type III IFN (IFN-λ, which binds to a separate receptor, induces Stat phosphorylation, and nuclear translocation as well as antiviral clearance in FFA-treated HCV cell culture. We show here that the HCV-induced autophagy response is increased in FFA-treated cell culture

  13. Proteomics displays cytoskeletal proteins and chaperones involvement in Hedyotis corymbosa-induced photokilling in skin cancer cells.

    Science.gov (United States)

    You, Bang-Jau; Wu, Yang-Chang; Wu, Chi-Yu; Bao, Bo-Ying; Chen, Mei-Yu; Chang, Yu-Hao; Lee, Hong-Zin

    2011-08-01

    Photodynamic therapy was found to be an effective therapy for local malignant tumors. This study demonstrated that 80 μg/ml Hedyotis corymbosa extracts with 0.8 J/cm(2) fluence dose caused M21 skin cancer cell death. Photoactivated H. corymbosa-induced M21 cell death is a typical apoptosis that is accompanied by nuclear condensation, externalization of phosphatidylserine and the changes in protein expression of apoptosis-related proteins, such as Bcl-2 and caspase family members. This study applied 2D electrophoresis to analyse the proteins involved in the photoactivated H. corymbosa-induced M21 cell apoptosis. We found 12 proteins to be markedly changed. According to the results of protein sequence analysis of these altered protein spots, we identified that the expression of cytoskeletal proteins and chaperones were involved in the photoactivated H. corymbosa-induced M21 cell apoptosis. We further demonstrated that photoactivated H. corymbosa caused a significant effect on the cytoskeleton distribution and mitochondrial activity in M21 cells. Based on the above findings, this study characterized the effects and mechanisms of the photoactivated H. corymbosa-induced apoptosis in M21 skin cancer cells. PMID:21569101

  14. Aqueous Extract of Paeonia lactiflora and Paeoniflorin as Aggregation Reducers Targeting Chaperones in Cell Models of Spinocerebellar Ataxia 3

    Directory of Open Access Journals (Sweden)

    Kuo-Hsuan Chang

    2013-01-01

    Full Text Available Spinocerebellar ataxia (SCA types 1, 2, 3, 6, 7, and 17 as well as Huntington’s disease are a group of neurodegenerative disorders caused by expanded CAG repeats encoding a long polyglutamine (polyQ tract in the respective proteins. Evidence has shown that the accumulation of intranuclear and cytoplasmic misfolded polyQ proteins leads to apoptosis and cell death. Thus suppression of aggregate formation is expected to inhibit a wide range of downstream pathogenic events in polyQ diseases. In this study, we established a high-throughput aggregation screening system using 293 ATXN3/Q75-GFP cells and applied this system to test the aqueous extract of Paeonia lactiflora (P. lactiflora and its constituents. We found that the aggregation can be significantly prohibited by P. lactiflora and its active compound paeoniflorin. Meanwhile, P. lactiflora and paeoniflorin upregulated HSF1 and HSP70 chaperones in the same cell models. Both of them further reduced the aggregation in neuronal differentiated SH-SY5Y ATXN3/Q75-GFP cells. Our results demonstrate how P. lactiflora and paeoniflorin are likely to work on polyQ-aggregation reduction and provide insight into the possible working mechanism of P. lactiflora in SCA3. We anticipate our paper to be a starting point for screening more potential herbs for the treatment of SCA3 and other polyQ diseases.

  15. The aqueous extract of Glycyrrhiza inflata can upregulate unfolded protein response-mediated chaperones to reduce tau misfolding in cell models of Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Chang KH

    2016-02-01

    Full Text Available Kuo-Hsuan Chang,1,* I-Cheng Chen,1,* Hsuan-Yuan Lin,2 Hsuan-Chiang Chen,2 Chih-Hsin Lin,1 Te-Hsien Lin,2 Yu-Ting Weng,1 Chih-Ying Chao,1 Yih-Ru Wu,1 Jung-Yaw Lin,2 Guey-Jen Lee-Chen,2 Chiung-Mei Chen1 1Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 2Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China *These authors contributed equally to this work Background: Alzheimer’s disease (AD and several neurodegenerative disorders known as tauopathies are characterized by misfolding and aggregation of tau protein. Although several studies have suggested the potential of traditional Chinese medicine (TCM as treatment for neurodegenerative diseases, the role of TCM in treating AD and tauopathies have not been well explored.Materials and methods: Tau protein was coupled to the DsRed fluorophore by fusing a pro-aggregation mutant of repeat domain of tau (ΔK280 tauRD with DsRed. The ΔK280 tauRD-DsRed fusion gene was then used to generate Tet-On 293 and SH-SY5Y cell clones as platforms to test the efficacy of 39 aqueous extracts of TCM in reducing tau misfolding and in neuroprotection.Results: Seven TCM extracts demonstrated a significant reduction in tau misfolding and reactive oxidative species with low cytotoxicity in the ΔK280 tauRD-DsRed 293 cell model. Glycyrrhiza inflata and Panax ginseng also demonstrated the potential to improve neurite outgrowth in the ΔK280 tauRD-DsRed SH-SY5Y neuronal cell model. G. inflata further rescued the upregulation of ERN2 (pro-apoptotic and downregulation of unfolded-protein-response-mediated chaperones ERP44, DNAJC3, and SERP1 in ΔK280 tauRD-DsRed 293 cells.Conclusion: This in vitro study provides evidence that G. inflata may be a novel therapeutic for AD and tauopathies. Future applications of G. inflata on animal models of AD and tauopathies are warranted to corroborate its effect of reducing misfolding and potential

  16. Dexamethasone regulates CFTR expression in Calu-3 cells with the involvement of chaperones HSP70 and HSP90.

    Directory of Open Access Journals (Sweden)

    Luiz Felipe M Prota

    Full Text Available BACKGROUND: Dexamethasone is widely used for pulmonary exacerbation in patients with cystic fibrosis, however, not much is known about the effects of glucocorticoids on the wild-type cystic fibrosis channel transmembrane regulator (CFTR. Our aim was to determine the effects of dexamethasone treatment on wild-type CFTR expression. METHODS AND RESULTS: Dose-response (1 nM to 10 µM and time course (3 to 48 h curves were generated for dexamethasone for mRNA expression in Calu-3 cells using a real-time PCR. Within 24 h, dexamethasone (10 nM showed a 0.3-fold decrease in CFTR mRNA expression, and a 3.2-fold increase in αENaC mRNA expression compared with control groups. Dexamethasone (10 nM induced a 1.97-fold increase in the total protein of wild-type CFTR, confirmed by inhibition by mifepristone. To access surface protein expression, biotinylation followed by Western blotting showed that dexamethasone treatment led to a 2.35-fold increase in the amount of CFTR in the cell surface compared with the untreated control groups. Once protein translation was inhibited with cycloheximide, dexamethasone could not increase the amount of CFTR protein. Protein stability was assessed by inhibition of protein synthesis with cycloheximide (50 µg/ml at different times in cells treated with dexamethasone and in untreated cells. Dexamethasone did not alter the degradation of wild-type CFTR. Assessment of the B band of CFTR within 15 min of metabolic pulse labeling showed a 1.5-fold increase in CFTR protein after treatment with dexamethasone for 24 h. Chaperone 90 (HSP90 binding to CFTR increased 1.55-fold after treatment with dexamethasone for 24 h, whereas chaperone 70 (HSP70 binding decreased 0.30 fold in an immunoprecipitation assay. CONCLUSION: Mature wild-type CFTR protein is regulated by dexamethasone post transcription, involving cotranslational mechanisms with HSP90 and HSP70, which enhances maturation and expression of wild-type CFTR.

  17. c-Abl Mediated Tyrosine Phosphorylation of Aha1 Activates Its Co-chaperone Function in Cancer Cells

    OpenAIRE

    Diana M. Dunn; Mark R. Woodford; Andrew W. Truman; Sandra M. Jensen; Jacqualyn Schulman; Tiffany Caza; Taylor C. Remillard; David Loiselle; Donald Wolfgeher; Brian S.J. Blagg; Lucas Franco; Timothy A. Haystead; Soumya Daturpalli; Matthias P. Mayer; Jane B. Trepel

    2015-01-01

    Summary The ability of Heat Shock Protein 90 (Hsp90) to hydrolyze ATP is essential for its chaperone function. The co-chaperone Aha1 stimulates Hsp90 ATPase activity, tailoring the chaperone function to specific “client” proteins. The intracellular signaling mechanisms directly regulating Aha1 association with Hsp90 remain unknown. Here, we show that c-Abl kinase phosphorylates Y223 in human Aha1 (hAha1), promoting its interaction with Hsp90. This, consequently, results in an increased Hsp90 ...

  18. Bcl-2 regulates HIF-1alpha protein stabilization in hypoxic melanoma cells via the molecular chaperone HSP90.

    Directory of Open Access Journals (Sweden)

    Daniela Trisciuoglio

    Full Text Available BACKGROUND: Hypoxia-Inducible Factor 1 (HIF-1 is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1alpha, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF-mediated tumour angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS: By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1alpha protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1alpha protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1alpha protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1alpha stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1alpha degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1alpha protein. We also showed that bcl-2, HIF-1alpha and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1alpha protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1alpha protein during hypoxia, and in particular the isoform HSP90beta is the main player in this phenomenon. CONCLUSIONS/SIGNIFICANCE: We identified the stabilization of HIF-1alpha protein as a mechanism through which bcl-2 induces the

  19. Bcl-2 Regulates HIF-1α Protein Stabilization in Hypoxic Melanoma Cells via the Molecular Chaperone HSP90

    Science.gov (United States)

    Trisciuoglio, Daniela; Gabellini, Chiara; Desideri, Marianna; Ziparo, Elio; Zupi, Gabriella; Del Bufalo, Donatella

    2010-01-01

    Background Hypoxia-Inducible Factor 1 (HIF-1) is a transcription factor that is a critical mediator of the cellular response to hypoxia. Enhanced levels of HIF-1α, the oxygen-regulated subunit of HIF-1, is often associated with increased tumour angiogenesis, metastasis, therapeutic resistance and poor prognosis. It is in this context that we previously demonstrated that under hypoxia, bcl-2 protein promotes HIF-1/Vascular Endothelial Growth Factor (VEGF)-mediated tumour angiogenesis. Methodology/Principal Findings By using human melanoma cell lines and their stable or transient derivative bcl-2 overexpressing cells, the current study identified HIF-1α protein stabilization as a key regulator for the induction of HIF-1 by bcl-2 under hypoxia. We also demonstrated that bcl-2-induced accumulation of HIF-1α protein during hypoxia was not due to an increased gene transcription or protein synthesis. In fact, it was related to a modulation of HIF-1α protein expression at a post-translational level, indeed its degradation rate was faster in the control lines than in bcl-2 transfectants. The bcl-2-induced HIF-1α stabilization in response to low oxygen tension conditions was achieved through the impairment of ubiquitin-dependent HIF-1α degradation involving the molecular chaperone HSP90, but it was not dependent on the prolyl hydroxylation of HIF-1α protein. We also showed that bcl-2, HIF-1α and HSP90 proteins form a tri-complex that may contribute to enhancing the stability of the HIF-1α protein in bcl-2 overexpressing clones under hypoxic conditions. Finally, by using genetic and pharmacological approaches we proved that HSP90 is involved in bcl-2-dependent stabilization of HIF-1α protein during hypoxia, and in particular the isoform HSP90β is the main player in this phenomenon. Conclusions/Significance We identified the stabilization of HIF-1α protein as a mechanism through which bcl-2 induces the activation of HIF-1 in hypoxic tumour cells involving the

  20. Enhanced recombinant protein production and differential expression of molecular chaperones in sf-caspase-1-repressed stable cells after baculovirus infection

    Directory of Open Access Journals (Sweden)

    Lai Yiu-Kay

    2012-11-01

    Full Text Available Abstract Background There are few studies that have examined the potential of RNA inference (RNAi to increase protein production in the baculovirus expression vector system (BEVS. Spodoptera frugiperda (fall armyworm (Sf-caspase-1-repressed stable cells exhibit resistance to apoptosis and enhancement of recombinant protein production. However, the mechanism of recombinant protein augmentation in baculovirus-infected Caspase-repressed insect cells has not been elucidated. Results In the current study, we utilized RNAi-mediated Sf-caspase-1-repressed stable cells to clarify how the resistance to apoptosis can enhance both intracellular (firefly luciferase and extracellular (secreted alkaline phosphatase [SEAP] recombinant protein production in BEVS. Since the expression of molecular chaperones is strongly associated with the maximal production of exogenous proteins in BEVS, the differential expression of molecular chaperones in baculovirus-infected stable cells was also analyzed in this study. Conclusion The data indicated that the retention of expression of molecular chaperones in baculovirus-infected Sf-caspase-1-repressed stable cells give the higher recombinant protein accumulation.

  1. Ric-3 chaperone-mediated stable cell-surface expression of the neuronal a7 nicotinic acetylcholine receptor in mammalian cells

    Institute of Scientific and Technical Information of China (English)

    Ana Sofia VALLfiS; Ana M ROCCAMO; Francisco J BARRANTES

    2009-01-01

    Aim: Studies of the a7-type neuronal nicotinic acetylcholine receptor (AChR), one of the receptor forms involved in many physiologically relevant processes in the central nervous system, have been hampered by the inability of this homomeric protein to assemble in most heterologous expression systems. In a recent study, it was shown that the chaperone Ric-3 is necessary for the maturation and functional expression of a7-type AChRs'11. The current work aims at obtaining and characterizing a cell line with high functional expression of the human a7 AChR.Methods: Ric-3 cDNA was incorporated into SHE-Pl-ha7 cells expressing the a7-type AChR. Functional studies were undertaken using single-channel patch-clamp recordings. Equilibrium and kinetic [125I]a-bungarotoxin binding assays, as well as fluorescence microscopy using fluorescent a-bungarotoxin, anti-a7 antibody, and GFP-a7 were performed on the new clone.Results: The human a7-type AChR was stably expressed in a new cell line, which we coined SHE-PI-ha7-Ric-3, by co-expression of the chaperone Ric-3. Cell-surface AChRs exhibited [125I]aBTX saturable binding with an apparent KD of about 55 nmol/L. Fluorescence microscopy revealed dispersed and micro-clustered AChR aggregates at the surface of SHE-PI-ha7-Ric-3 cells. Larger micron-sized clusters were observed in the absence of receptor-clustering proteins or upon aggregation with anti-a7 antibodies, hi contrast, chaperone-less SHE-PI-ha7 cells expressed only intracellular a.7 AChRs and failed to produce detectable single-channel currents.Conclusion: The production of a stable and functional cell line of neuroepithelial lineage with robust cell-surface expression of neuronal a7-type AChR, as reported here, constitutes an important advance in the study of homomeric receptors in mammalian cells.

  2. Inducible Hsp70 in the Regulation of Cancer Cell Survival: Analysis of Chaperone Induction, Expression and Activity

    Directory of Open Access Journals (Sweden)

    Elisa Zorzi

    2011-10-01

    Full Text Available Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs. However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more “addicted” to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70, and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells.

  3. Inducible Hsp70 in the Regulation of Cancer Cell Survival: Analysis of Chaperone Induction, Expression and Activity

    Energy Technology Data Exchange (ETDEWEB)

    Zorzi, Elisa [OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova (Italy); Bonvini, Paolo, E-mail: paolo.bonvini@unipd.it [OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova (Italy); Fondazione Città della Speranza, 36030 Monte di Malo, Vicenza (Italy)

    2011-10-21

    Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more “addicted” to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells.

  4. Inducible Hsp70 in the Regulation of Cancer Cell Survival: Analysis of Chaperone Induction, Expression and Activity

    International Nuclear Information System (INIS)

    Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more “addicted” to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells

  5. The chaperone DnaK controls the fractioning of functional protein between soluble and insoluble cell fractions in inclusion body-forming cells

    Directory of Open Access Journals (Sweden)

    Ventura Salvador

    2006-08-01

    Full Text Available Abstract Background The molecular mechanics of inclusion body formation is still far from being completely understood, specially regarding the occurrence of properly folded, protein species that exhibit natural biological activities. We have here comparatively explored thermally promoted, in vivo protein aggregation and the formation of bacterial inclusion bodies, from both structural and functional sides. Also, the status of the soluble and insoluble protein versions in both aggregation systems have been examined as well as the role of the main molecular chaperones GroEL and DnaK in the conformational quality of the target polypeptide. Results While thermal denaturation results in the formation of heterogeneous aggregates that are rather stable in composition, protein deposition as inclusion bodies renders homogenous but strongly evolving structures, which are progressively enriched in the main protein species while gaining native-like structure. Although both type of aggregates display common features, inclusion body formation but not thermal-induced aggregation involves deposition of functional polypeptides that confer biological activity to such particles, at expenses of the average conformational quality of the protein population remaining in the soluble cell fraction. In absence of DnaK, however, the activity and conformational nativeness of inclusion body proteins are dramatically impaired while the soluble protein version gains specific activity. Conclusion The chaperone DnaK controls the fractioning of active protein between soluble and insoluble cell fractions in inclusion body-forming cells but not during thermally-driven protein aggregation. This cell protein, probably through diverse activities, is responsible for the occurrence and enrichment in inclusion bodies of native-like, functional polypeptides, that are much less represented in other kind of protein aggregates.

  6. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    International Nuclear Information System (INIS)

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.

  7. An Endogenous Nanomineral Chaperones Luminal Antigen and Peptidoglycan to Intestinal Immune Cells

    Science.gov (United States)

    Powell, Jonathan J; Thomas-McKay, Emma; Thoree, Vinay; Robertson, Jack; Hewitt, Rachel E; Skepper, Jeremy N; Brown, Andy; Hernandez-Garrido, Juan Carlos; Midgley, Paul A; Gomez-Morilla, Inmaculada; Grime, Geoffrey W; Kirkby, Karen J; Mabbott, Neil A; Donaldson, David S; Williams, Ifor R; Rios, Daniel; Girardin, Stephen E; Haas, Carolin T; Bruggraber, Sylvaine FA; Laman, Jon D; Tanriver, Yakup; Lombardi, Giovanna; Lechler, Robert; Thompson, Richard P H; Pele, Laetitia C

    2015-01-01

    In humans and other mammals, it is known that calcium and phosphate ions are secreted from the distal small intestine into the lumen. However, why this secretion occurs is unclear. Here, we show that the process leads to the formation of amorphous magnesium-substituted calcium phosphate nanoparticles that trap soluble macromolecules, such as bacterial peptidoglycan and orally-fed protein antigens, in the lumen and transport them to immune cells of the intestinal tissue. The macromolecule-containing nanoparticles utilize epithelial M cells to enter Peyer’s patches - small areas of the intestine concentrated with particle-scavenging immune cells. In wild type mice, intestinal immune cells containing these naturally-formed nanoparticles expressed the immune tolerance-associated molecule ‘programmed death-ligand 1 (PD-L1)’, whereas in NOD1/2 double knock-out mice, which cannot recognize peptidoglycan, PD-L1 was undetected. Our results explain a role for constitutively formed calcium phosphate nanoparticles in the gut lumen and how this helps to shape intestinal immune homeostasis. PMID:25751305

  8. Gymnastics of molecular chaperones.

    Science.gov (United States)

    Mayer, Matthias P

    2010-08-13

    Molecular chaperones assist folding processes and conformational changes in many proteins. In order to do so, they progress through complex conformational cycles themselves. In this review, I discuss the diverse conformational dynamics of the ATP-dependent chaperones of the Hsp60, Hsp70, Hsp90, and Hsp100 families. PMID:20705236

  9. Chaperone-Targeting Cytotoxin and Endoplasmic Reticulum Stress-Inducing Drug Synergize to Kill Cancer Cells

    Directory of Open Access Journals (Sweden)

    Joseph M. Backer

    2009-11-01

    Full Text Available Diverse physiological and therapeutic insults that increase the amount of unfolded or misfolded proteins in the endoplasmic reticulum (ER induce the unfolded protein response, an evolutionarily conserved protective mechanism that manages ER stress. Glucose-regulated protein 78/immunoglobulin heavy-chain binding protein (GRP78/BiP is an ER-resident protein that plays a central role in the ER stress response and is the only known substrate of the proteolytic A subunit (SubA of a novel bacterial AB5 toxin. Here, we report that an engineered fusion protein, epidermal growth factor (EGF-SubA, combining EGF and SubA, is highly toxic to growing and confluent epidermal growth factor receptor-expressing cancer cells, and its cytotoxicity is mediated by a remarkably rapid cleavage of GRP78/BiP. Systemic delivery of EGF-SubA results in a significant inhibition of human breast and prostate tumor xenografts in mouse models. Furthermore, EGF-SubA dramatically increases the sensitivity of cancer cells to the ER stress-inducing drug thapsigargin, and vice versa, demonstrating the first example of mechanism-based synergism in the action of a cytotoxin and an ER-targeting drug.

  10. A platform to view huntingtin exon 1 aggregation flux in the cell reveals divergent influences from chaperones hsp40 and hsp70.

    Science.gov (United States)

    Ormsby, Angelique R; Ramdzan, Yasmin M; Mok, Yee-Foong; Jovanoski, Kristijan D; Hatters, Danny M

    2013-12-27

    Our capacity for tracking how misfolded proteins aggregate inside a cell and how different aggregation states impact cell biology remains enigmatic. To address this, we built a new toolkit that enabled the high throughput tracking of individual cells enriched with polyglutamine-expanded Htt exon 1 (Httex1) monomers, oligomers, and inclusions using biosensors of aggregation state and flow cytometry pulse shape analysis. Supplemented with gel filtration chromatography and fluorescence-adapted sedimentation velocity analysis of cell lysates, we collated a multidimensional view of Httex1 aggregation in cells with respect to time, polyglutamine length, expression levels, cell survival, and overexpression of protein quality control chaperones hsp40 (DNAJB1) and hsp70 (HSPA1A). Cell death rates trended higher for Neuro2a cells containing Httex1 in inclusions than with Httex1 dispersed through the cytosol at time points of expression over 2 days. hsp40 stabilized monomers and suppressed inclusion formation but did not otherwise change Httex1 toxicity. hsp70, however, had no major effect on aggregation of Httex1 but increased the survival rate of cells with inclusions. hsp40 and hsp70 also increased levels of a second bicistronic reporter of Httex1 expression, mKate2, and increased total numbers of cells in culture, suggesting these chaperones partly rectify Httex1-induced deficiencies in quality control and growth rates. Collectively, these data suggest that Httex1 overstretches the protein quality control resources and that the defects can be partly rescued by overexpression of hsp40 and hsp70. Importantly, these effects occurred in a pronounced manner for soluble Httex1, which points to Httex1 aggregation occurring subsequently to more acute impacts on the cell. PMID:24196953

  11. A Platform to View Huntingtin Exon 1 Aggregation Flux in the Cell Reveals Divergent Influences from Chaperones hsp40 and hsp70*

    Science.gov (United States)

    Ormsby, Angelique R.; Ramdzan, Yasmin M.; Mok, Yee-Foong; Jovanoski, Kristijan D.; Hatters, Danny M.

    2013-01-01

    Our capacity for tracking how misfolded proteins aggregate inside a cell and how different aggregation states impact cell biology remains enigmatic. To address this, we built a new toolkit that enabled the high throughput tracking of individual cells enriched with polyglutamine-expanded Htt exon 1 (Httex1) monomers, oligomers, and inclusions using biosensors of aggregation state and flow cytometry pulse shape analysis. Supplemented with gel filtration chromatography and fluorescence-adapted sedimentation velocity analysis of cell lysates, we collated a multidimensional view of Httex1 aggregation in cells with respect to time, polyglutamine length, expression levels, cell survival, and overexpression of protein quality control chaperones hsp40 (DNAJB1) and hsp70 (HSPA1A). Cell death rates trended higher for Neuro2a cells containing Httex1 in inclusions than with Httex1 dispersed through the cytosol at time points of expression over 2 days. hsp40 stabilized monomers and suppressed inclusion formation but did not otherwise change Httex1 toxicity. hsp70, however, had no major effect on aggregation of Httex1 but increased the survival rate of cells with inclusions. hsp40 and hsp70 also increased levels of a second bicistronic reporter of Httex1 expression, mKate2, and increased total numbers of cells in culture, suggesting these chaperones partly rectify Httex1-induced deficiencies in quality control and growth rates. Collectively, these data suggest that Httex1 overstretches the protein quality control resources and that the defects can be partly rescued by overexpression of hsp40 and hsp70. Importantly, these effects occurred in a pronounced manner for soluble Httex1, which points to Httex1 aggregation occurring subsequently to more acute impacts on the cell. PMID:24196953

  12. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES.

    Energy Technology Data Exchange (ETDEWEB)

    FLANAGAN,J.M.BEWLEY,M.C.

    2002-10-01

    aggregation and/or mislfolding. Thus it is not surprising that, in cells, the protein folding process is error prone and organisms have evolved ''editing'' or quality control (QC) systems to assist in the folding, maintenance and, when necessary, selective removal of damaged proteins. In fact, there is growing evidence that failure of these QC-systems contributes to a number of disease states (5-8). This chapter describes our current understanding of the nature and mechanisms of the protein quality control systems in the cytosol of bacteria. Parallel systems are exploited in the cytosol and mitochondria of eukaryotes to prevent the accumulation of misfolded proteins.

  13. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES.

    Energy Technology Data Exchange (ETDEWEB)

    FLANAGAN,J.M.; BEWLEY,M.C.

    2001-12-03

    /or misfolding. Thus it is not surprising that, in cells, the protein folding process is error prone and organisms have evolved ''editing'' or quality control (QC) systems to assist in the folding, maintenance and, when necessary, selective removal of damaged proteins. In fact, there is growing evidence that failure of these QC-systems contributes to a number of disease states (5-8). This chapter describes our current understanding of the nature and mechanisms of the protein quality control systems in the cytosol of bacteria. Parallel systems are exploited in the cytosol and mitochondria of eukaryotes to prevent the accumulation of misfolded proteins.

  14. PROTEIN QUALITY CONTROL IN BACTERIAL CELLS: INTEGRATED NETWORKS OF CHAPERONES AND ATP-DEPENDENT PROTEASES

    International Nuclear Information System (INIS)

    /or misfolding. Thus it is not surprising that, in cells, the protein folding process is error prone and organisms have evolved ''editing'' or quality control (QC) systems to assist in the folding, maintenance and, when necessary, selective removal of damaged proteins. In fact, there is growing evidence that failure of these QC-systems contributes to a number of disease states (5-8). This chapter describes our current understanding of the nature and mechanisms of the protein quality control systems in the cytosol of bacteria. Parallel systems are exploited in the cytosol and mitochondria of eukaryotes to prevent the accumulation of misfolded proteins

  15. The Role of Monocarboxylate Transporters and Their Chaperone CD147 in Lactate Efflux Inhibition and the Anticancer Effects of Terminalia chebula in Neuroblastoma Cell Line N2-A

    Science.gov (United States)

    Messeha, S. S.; Zarmouh, N. O.; Taka, E.; Gendy, S. G.; Shokry, G. R.; Kolta, M. G.; Soliman, K. F. A.

    2016-01-01

    Aims In the presence of oxygen, most of the synthesized pyruvate during glycolysis in the cancer cell of solid tumors is released away from the mitochondria to form lactate (Warburg Effect). To maintain cell homeostasis, lactate is transported across the cell membrane by monocarboxylate transporters (MCTs). The major aim of the current investigation is to identify novel compounds that inhibit lactate efflux that may lead to identifying effective targets for cancer treatment. Study Design In this study, 900 ethanol plant extracts were screened for their lactate efflux inhibition using neuroblastoma (N2-A) cell line. Additionally, we investigated the mechanism of inhibition for the most potent plant extract regarding monocarboxylate transporters expression, and consequences effects on viability, growth, and apoptosis. Methodology The potency of lactate efflux inhibition of ethanol plant extracts was evaluated in N2-A cells by measuring extracellular lactate levels. Caspase 3- activity and acridine orange/ethidium bromide staining were performed to assess the apoptotic effect. The antiproliferative effect was measured using WST assay. Western blotting was performed to quantify protein expression of MCTs and their chaperone CD147 in treated cells lysates. Results Terminalia chebula plant extract was the most potent lactate efflux inhibitor in N2-A cells among the 900 - tested plant extracts. The results obtained show that extract of Terminalia chebula fruits (TCE) significantly (P = 0.05) reduced the expression of the MCT1, MCT3, MCT4 and the chaperone CD147. The plant extract was more potent (IC50 of 3.59 ± 0.26 μg/ml) than the MCT standard inhibitor phloretin (IC50 76.54 ± 3.19 μg/ml). The extract also showed more potency and selective cytotoxicity in cancer cells than DI-TNC1 primary cell line (IC50 7.37 ± 0.28 vs. 17.35 ± 0.19 μg/ml). Moreover, TCE Inhibited N2-A cell growth (IG50 = 5.20 ± 0.30 μg/ml) and induced apoptosis at the 7.5 μg/ml concentration

  16. S-nitrosylation of the Mitochondrial Chaperone TRAP1 Sensitizes Hepatocellular Carcinoma Cells to Inhibitors of Succinate Dehydrogenase

    DEFF Research Database (Denmark)

    Rizza, Salvatore; Montagna, Costanza; Cardaci, Simone;

    2016-01-01

    . We find that hepatocyte GSNOR deficiency is characterized by mitochondrial alteration and by marked increases in succinate dehydrogenase (SDH) levels and activity. We find that this depends on the selective S-nitrosylation of Cys(501) in the mitochondrial chaperone TRAP1, which mediates its......-nitrosylation in HCC, a novel molecular target in SDH, and a first-in-class therapy to treat the disease. Cancer Res; 76(14); 1-13. ©2016 AACR....

  17. Oxidative modification of the molecular chaperone family in a PC12 cell model of Parkinson's disease induced by Z-lle-Glu(OtBu)-Ala-Leucinal

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Yimin Yang; Jing Bai; Ming Chang; Linsen Hu

    2011-01-01

    Previous studies have demonstrated that ubiquitin-proteasome system function is significantly decreased in the substantia nigra of Parkinson's disease patients.In the present study, proteasome inhibitor Z-Ile-Glu(OtBu)-Ala-Leucinal (PSI) was used to inhibit the function of the ubiquitin-proteasome system in PC12 cells to simulate Parkinson's disease.Oxidatively modified proteins were identified to determine pathogenesis of Parkinson's disease.Results demonstrated that 24 hours of 10 μmol/L PSI-treatment in PC12 cells simulated pathological characteristics of Parkinson's disease: neuronal degeneration and eosinophilic inclusion formation in neurons.In PSI-treated PC12 cells, three oxidative proteins and a molecular chaperone family member were detected: chaperonin containing t-complex polypeptide 1 subunit 3, glucose-regulated protein 58,and heat shock protein 70.This is the first study to demonstrate oxidative modification of a molecule family in a cell model of Parkinson's disease induced with PSI.

  18. The FNIP co-chaperones decelerate the Hsp90 chaperone cycle and enhance drug binding

    Science.gov (United States)

    Woodford, Mark R.; Dunn, Diana M.; Blanden, Adam R.; Capriotti, Dante; Loiselle, David; Prodromou, Chrisostomos; Panaretou, Barry; Hughes, Philip F.; Smith, Aaron; Ackerman, Wendi; Haystead, Timothy A.; Loh, Stewart N.; Bourboulia, Dimitra; Schmidt, Laura S.; Marston Linehan, W.; Bratslavsky, Gennady; Mollapour, Mehdi

    2016-01-01

    Heat shock protein-90 (Hsp90) is an essential molecular chaperone in eukaryotes involved in maintaining the stability and activity of numerous signalling proteins, also known as clients. Hsp90 ATPase activity is essential for its chaperone function and it is regulated by co-chaperones. Here we show that the tumour suppressor FLCN is an Hsp90 client protein and its binding partners FNIP1/FNIP2 function as co-chaperones. FNIPs decelerate the chaperone cycle, facilitating FLCN interaction with Hsp90, consequently ensuring FLCN stability. FNIPs compete with the activating co-chaperone Aha1 for binding to Hsp90, thereby providing a reciprocal regulatory mechanism for chaperoning of client proteins. Lastly, downregulation of FNIPs desensitizes cancer cells to Hsp90 inhibitors, whereas FNIPs overexpression in renal tumours compared with adjacent normal tissues correlates with enhanced binding of Hsp90 to its inhibitors. Our findings suggest that FNIPs expression can potentially serve as a predictive indicator of tumour response to Hsp90 inhibitors. PMID:27353360

  19. Molecular Chaperones of Leishmania: Central Players in Many Stress-Related and -Unrelated Physiological Processes

    Directory of Open Access Journals (Sweden)

    Jose M. Requena

    2015-01-01

    Full Text Available Molecular chaperones are key components in the maintenance of cellular homeostasis and survival, not only during stress but also under optimal growth conditions. Folding of nascent polypeptides is supported by molecular chaperones, which avoid the formation of aggregates by preventing nonspecific interactions and aid, when necessary, the translocation of proteins to their correct intracellular localization. Furthermore, when proteins are damaged, molecular chaperones may also facilitate their refolding or, in the case of irreparable proteins, their removal by the protein degradation machinery of the cell. During their digenetic lifestyle, Leishmania parasites encounter and adapt to harsh environmental conditions, such as nutrient deficiency, hypoxia, oxidative stress, changing pH, and shifts in temperature; all these factors are potential triggers of cellular stress. We summarize here our current knowledge on the main types of molecular chaperones in Leishmania and their functions. Among them, heat shock proteins play important roles in adaptation and survival of this parasite against temperature changes associated with its passage from the poikilothermic insect vector to the warm-blooded vertebrate host. The study of structural features and the function of chaperones in Leishmania biology is providing opportunities (and challenges for drug discovery and improving of current treatments against leishmaniasis.

  20. Molecular chaperones: The modular evolution of cellular networks

    Indian Academy of Sciences (India)

    Tamás Korcsmáros; István A Kovács; Máté S Szalay; Péter Csermely

    2007-04-01

    Molecular chaperones play a prominent role in signaling and transcriptional regulatory networks of the cell. Recent advances uncovered that chaperones act as genetic buffers stabilizing the phenotype of various cells and organisms and may serve as potential regulators of evolvability. Chaperones have weak links, connect hubs, are in the overlaps of network modules and may uncouple these modules during stress, which gives an additional protection for the cell at the network-level. Moreover, after stress chaperones are essential to re-build inter-modular contacts by their low affinity sampling of the potential interaction partners in different modules. This opens the way to the chaperone-regulated modular evolution of cellular networks, and helps us to design novel therapeutic and anti-aging strategies.

  1. Indole and synthetic derivative activate chaperone expression to reduce polyQ aggregation in SCA17 neuronal cell and slice culture models

    Directory of Open Access Journals (Sweden)

    Kung PJ

    2014-10-01

    Full Text Available Pin-Jui Kung,1,* Yu-Chen Tao,1,* Ho-Chiang Hsu,1 Wan-Ling Chen,1 Te-Hsien Lin,1 Donala Janreddy,2 Ching-Fa Yao,2 Kuo-Hsuan Chang,3 Jung-Yaw Lin,1 Ming-Tsan Su,1 Chung-Hsin Wu,1 Guey-Jen Lee-Chen,1 Hsiu-Mei Hsieh-Li1 1Department of Life Science, 2Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan; 3Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan *These authors contributed equally to this work Abstract: In spinocerebellar ataxia type 17 (SCA17, the expansion of a translated CAG repeat in the TATA box binding protein (TBP gene results in a long polyglutamine (polyQ tract in the TBP protein, leading to intracellular accumulation of aggregated TBP and cell death. The molecular chaperones act in preventing protein aggregation to ameliorate downstream harmful events. In this study, we used Tet-On SH-SY5Y cells with inducible SCA17 TBP/Q79-green fluorescent protein (GFP expression to test indole and synthetic derivative NC001-8 for neuroprotection. We found that indole and NC001-8 up-regulated chaperone expression to reduce polyQ aggregation in neuronal differentiated TBP/Q79 cells. The effects on promoting neurite outgrowth and on reduction of aggregation on Purkinje cells were also confirmed with cerebellar primary and slice cultures of SCA17 transgenic mice. Our results demonstrate how indole and derivative NC001-8 reduce polyQ aggregation to support their therapeutic potentials in SCA17 treatment. Keywords: spinocerebellar ataxia type 17, TATA box binding protein, polyQ aggregation, indole and derivative, therapeutics

  2. A genomewide analysis of genes for the heat shock protein 70 chaperone system in the ascidian Ciona intestinalis

    OpenAIRE

    Wada, Shuichi; Hamada, Mayuko; Satoh, Nori

    2006-01-01

    Molecular chaperones play crucial roles in various aspects of the biogenesis and maintenance of proteins in the cell. The heat shock protein 70 (HSP70) chaperone system, in which HSP70 proteins act as chaperones, is one of the major molecular chaperone systems conserved among a variety of organisms. To shed light on the evolutionary history of the constituents of the chordate HSP70 chaperone system and to identify all of the components of the HSP70 chaperone system in ascidians, we carried ou...

  3. A Solvent-Exposed Patch in Chaperone-Bound YopE Is Required for Translocation by the Type III Secretion System▿

    OpenAIRE

    Rodgers, Loren; Mukerjea, Romila; Birtalan, Sara; Friedberg, Devorah; Ghosh, Partho

    2010-01-01

    Most effector proteins of bacterial type III secretion (T3S) systems require chaperone proteins for translocation into host cells. Such effectors are bound by chaperones in a conserved and characteristic manner, with the chaperone-binding (Cb) region of the effector wound around the chaperone in a highly extended conformation. This conformation has been suggested to serve as a translocation signal in promoting the association between the chaperone-effector complex and a bacterial component re...

  4. Enhanced Transport Capabilities via Nanotechnologies: Impacting Bioefficacy, Controlled Release Strategies, and Novel Chaperones

    Directory of Open Access Journals (Sweden)

    Thomai Panagiotou

    2011-01-01

    side affects and providing improved therapeutic interventions. Innovative nanotechnology applications, such as simultaneous targeting, imaging and delivery to tumors, are now possible through use of novel chaperones. Other examples include nanoparticles attachment to T-cells, release from novel hydrogel implants, and functionalized encapsulants. Difficult tasks such as drug delivery to the brain via the blood brain barrier and/or the cerebrospinal fluid are now easier to accomplish.

  5. Lipid Chaperones and Metabolic Inflammation

    Directory of Open Access Journals (Sweden)

    Masato Furuhashi

    2011-01-01

    Full Text Available Over the past decade, a large body of evidence has emerged demonstrating an integration of metabolic and immune response pathways. It is now clear that obesity and associated disorders such as insulin resistance and type 2 diabetes are associated with a metabolically driven, low-grade, chronic inflammatory state, referred to as “metaflammation.” Several inflammatory cytokines as well as lipids and metabolic stress pathways can activate metaflammation, which targets metabolically critical organs and tissues including adipocytes and macrophages to adversely affect systemic homeostasis. On the other hand, inside the cell, fatty acid-binding proteins (FABPs, a family of lipid chaperones, as well as endoplasmic reticulum (ER stress, and reactive oxygen species derived from mitochondria play significant roles in promotion of metabolically triggered inflammation. Here, we discuss the molecular and cellular basis of the roles of FABPs, especially FABP4 and FABP5, in metaflammation and related diseases including obesity, diabetes, and atherosclerosis.

  6. Expression and variability of molecular chaperones in the sugarcane expressome.

    Science.gov (United States)

    Borges, Júlio C; Cagliari, Thiago C; Ramos, Carlos H I

    2007-04-01

    Molecular chaperones perform folding assistance in newly synthesized polypeptides preventing aggregation processes, recovering proteins from aggregates, among other important cellular functions. Thus their study presents great biotechnological importance. The present work discusses the mining for chaperone-related sequences within the sugarcane EST genome project database, which resulted in approximately 300 different sequences. Since molecular chaperones are highly conserved in most organisms studied so far, the number of sequences related to these proteins in sugarcane was very similar to the number found in the Arabidopsis thaliana genome. The Hsp70 family was the main molecular chaperone system present in the sugarcane expressome. However, many other relevant molecular chaperones systems were also present. A digital RNA blot analysis showed that 5'ESTs from all molecular chaperones were found in every sugarcane library, despite their heterogeneous expression profiles. The results presented here suggest the importance of molecular chaperones to polypeptide metabolism in sugarcane cells, based on their abundance and variability. Finally, these data have being used to guide more in deep analysis, permitting the choice of specific targets to study. PMID:16687190

  7. Structural features and interactions of substrates complexed with molecular chaperones

    OpenAIRE

    Ungelenk, Sophia Maria

    2015-01-01

    Protein misfolding and aggregation perturbs cellular functions and is involved in aging and numerous medical disorders. In cells, the first line of defense is the association of deleterious aggregating proteins with small Heat shock proteins (sHsp). These oligomeric, ATP-independent chaperones sequester misfolded proteins into complexes and facilitate subsequent substrate solubilization and refolding by ATP-dependent chaperones. The cytosol of S. cerevisiae contains two sHsps: Hsp42 is consti...

  8. Engineering of recombinant crystallization chaperones

    OpenAIRE

    Koide, Shohei

    2009-01-01

    The preparation of diffraction quality crystals remains the major bottleneck in macromolecular x-ray crystallography. A crystallization chaperone is an auxiliary protein, such as fragments of monoclonal antibodies, that binds to and increases the crystallization probability of a target molecule of interest. Such chaperones reduce conformational heterogeneity, mask counterproductive surfaces while extending surfaces predisposed to forming crystal contacts, and provide phasing information. Crys...

  9. Molecular chaperones and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Neurodegenerative diseases are characterized by the accumulation of intracellular or extracellular protein aggregates that result from conformational changes in proteins. These diseases may result from an imbalance between the production of misfolded proteins and normal chaperone capacity. Molecular chaperones provide a first line of defence against misfolded, aggregation-prone proteins and are, therefore, promising therapeutic targets for neurodegenerative diseases.

  10. Screening for Pharmacological Chaperones in Fabry Disease

    OpenAIRE

    Shin, Sang-Hoon; Murray, Gary J.; Kluepfel-Stahl, Stefanie; Cooney, Adele M.; Quirk, Jane M.; Schiffmann, Raphael; Brady, Roscoe O.; Kaneski, Christine R.

    2007-01-01

    As a prerequisite for full clinical trials of pharmacological chaperone therapy (PCT) for Fabry disease we developed a rapid screening assay for enhancement of endogenous α-galactosidase A (α-Gal A) in patient-derived cells. We used a T-cell based system to screen 11 mutations causing Fabry disease for enhanceability using 1- deoxygalactonojirimycin (DGJ). When patient derived T-cells were grown in the presence of DGJ α-Gal A activity increased to more than 50% of normal in several mutations ...

  11. Maintenance of structure and function of mitochondrial Hsp70 chaperones requires the chaperone Hep1

    Science.gov (United States)

    Sichting, Martin; Mokranjac, Dejana; Azem, Abdussalam; Neupert, Walter; Hell, Kai

    2005-01-01

    Hsp70 chaperones mediate folding of proteins and prevent their misfolding and aggregation. We report here on a new kind of Hsp70 interacting protein in mitochondria, Hep1. Hep1 is a highly conserved protein present in virtually all eukaryotes. Deletion of HEP1 results in a severe growth defect. Cells lacking Hep1 are deficient in processes that need the function of mitochondrial Hsp70s, such as preprotein import and biogenesis of proteins containing FeS clusters. In the mitochondria of these cells, Hsp70s, Ssc1 and Ssq1 accumulate as insoluble aggregates. We show that it is the nucleotide-free form of mtHsp70 that has a high tendency to self-aggregate. This process is efficiently counteracted by Hep1. We conclude that Hep1 acts as a chaperone that is necessary and sufficient to prevent self-aggregation and to thereby maintain the function of the mitochondrial Hsp70 chaperones. PMID:15719019

  12. Copper transporters and chaperones: Their function on angiogenesis and cellular signalling

    Indian Academy of Sciences (India)

    SR BHARATHI DEVI; DHIVYA M ALOYSIUS; KN SULOCHANA

    2016-09-01

    Copper, although known as a micronutrient, has a pivotal role in modulating the cellular metabolism. Many studieshave reported the role of copper in angiogenesis. Copper chaperones are intracellular proteins that mediate coppertrafficking to various cell organelles. However, the role and function of copper chaperones in relation to angiogenesishas to be further explored. The intracellular copper levels when in excess are deleterious and certain mutations ofcopper chaperones have been shown to induce cell death and influence various cellular metabolisms. The study ofthese chaperones will be helpful in understanding the players in the cascade of events in angiogenesis and their role incellular metabolic pathways. In this review we have briefly listed the copper chaperones associated with angiogenicand metabolic signalling and their function.

  13. High affinity binding of hydrophobic and autoantigenic regions of proinsulin to the 70 kDa chaperone DnaK

    OpenAIRE

    Schloot Nanette C; Fingberg Waltraud; Alloza Iraide; Vandenbroeck Koen; Blasius Elias; Siegenthaler Rahel K; Burkart Volker; Christen Philipp; Kolb Hubert

    2010-01-01

    Abstract Background Chaperones facilitate proper folding of peptides and bind to misfolded proteins as occurring during periods of cell stress. Complexes of peptides with chaperones induce peptide-directed immunity. Here we analyzed the interaction of (pre)proinsulin with the best characterized chaperone of the hsp70 family, bacterial DnaK. Results Of a set of overlapping 13-mer peptides of human preproinsulin high affinity binding to DnaK was found for the signal peptide and one further regi...

  14. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    Directory of Open Access Journals (Sweden)

    Gennady Verkhivker

    2013-11-01

    Full Text Available A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4 kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock kinase from the system during client loading (release stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.

  15. Dimerization and oligomerization of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, Charlotte S; Ryder, L Rebekka; Steinø, Anne; Højrup, Peter; Hansen, Jesper; Beyer, N Helena; Heegaard, Niels H H; Houen, Gunnar

    2003-01-01

    The chaperone calreticulin is a highly conserved eukaryotic protein mainly located in the endoplasmic reticulum. It contains a free cysteine SH group but does not form disulfide-bridged dimers under physiological conditions, indicating that the SH group may not be fully accessible in the native...... calreticulin was oligomerized. Thus, calreticulin shares the ability to self-oligomerize with other important chaperones such as GRP94 and HSP90, a property possibly associated with their chaperone activity....

  16. Plasma Etching Improves Solar Cells

    Science.gov (United States)

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  17. Evolutionary silence of the acid chaperone protein HdeB in enterohemorrhagic Escherichia coli O157:H7

    Science.gov (United States)

    Periplasmic chaperones HdeA and HdeB are known to be important for cell survival at low pH (pHShigella spp. Here we investigated the roles of these two acid chaperones in survival of various enterohemorrhagic E. coli (EHEC) following exposure to pH 2.0. Similar to K-12 strains, th...

  18. A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones

    International Nuclear Information System (INIS)

    Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella

  19. Insight into the assembly of chaperones

    Energy Technology Data Exchange (ETDEWEB)

    May, R.P. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France); Stegmann, R.; Manakova, E.; Roessle, M.; Hermann, T.; Heumann, H. [Max-Planck-Institut fuer Biochemie, Martinsried (Germany); Axmann, S.; Plueckthun, A. [Zurich Univ. (Switzerland); Wiedenmann, A. [HMI, Berlin (Germany)

    1997-04-01

    Chaperones are proteins that help other proteins (substrate proteins) to acquire a `good` conformation. The folding is a dynamic process and involves repetitive binding and release of the chaperone components and of the substrate protein. Small-angle neutron scattering is used to investigate the structural changes that appear to happen during the folding process. (author). 2 refs.

  20. Improved load-cell compensation

    Science.gov (United States)

    Egger, R. L.

    1977-01-01

    Improved bridge-compensation circuit saves considerable time in balancing bridge and wiring it for temperature compensation. Large bridge-balance compensation is made before temperature cycling and small adjustments are made with different type of wire.

  1. Integrated cell and process engineering for improved transient production of a "difficult-to-express" fusion protein by CHO cells.

    Science.gov (United States)

    Johari, Yusuf B; Estes, Scott D; Alves, Christina S; Sinacore, Marty S; James, David C

    2015-12-01

    Based on an optimized electroporation protocol, we designed a rapid, milliliter-scale diagnostic transient production assay to identify limitations in the ability of Chinese hamster ovary (CHO) cells to produce a model "difficult-to-express" homodimeric Fc-fusion protein, Sp35Fc, that exhibited very low volumetric titer and intracellular formation of disulfide-bonded oligomeric aggregates post-transfection. As expression of Sp35Fc induced an unfolded protein response in transfected host cells, we utilized the transient assay to compare, in parallel, multiple functionally diverse strategies to engineer intracellular processing of Sp35Fc in order to increase production and reduce aggregation as two discrete design objectives. Specifically, we compared the effect of (i) co-expression of ER-resident molecular chaperones (BiP, PDI, CypB) or active forms of UPR transactivators (ATF6c, XBP1s) at varying recombinant gene load, (ii) addition of small molecules known to act as chemical chaperones (PBA, DMSO, glycerol, betaine, TMAO) or modulate UPR signaling (PERK inhibitor GSK2606414) at varying concentration, (iii) a reduction in culture temperature to 32°C. Using this information, we designed a biphasic, Sp35Fc-specific transient manufacturing process mediated by lipofection that utilized CypB co-expression at an optimal Sp35Fc:CypB gene ratio of 5:1 to initially maximize transfected cell proliferation, followed by addition of a combination of PBA (0.5 mM) and glycerol (1% v/v) at the onset of stationary phase to maximize cell specific production and eliminate Sp35Fc aggregation. Using this optimal, engineered process transient Sp35Fc production was significantly increased sixfold over a 12 day production process with no evidence of disulfide-bonded aggregates. Finally, transient production in clonally derived sub-populations (derived from parental CHO host) screened for a heritably improved capability to produce Sp35Fc was also significantly improved by the optimized

  2. Heat shock protein 90: the cancer chaperone

    Indian Academy of Sciences (India)

    Len Neckers

    2007-04-01

    Heat shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of a number of conditionally activated and/or expressed signalling proteins, as well as multiple mutated, chimeric, and/or over-expressed signalling proteins, that promote cancer cell growth and/or survival. Hsp90 inhibitors are unique in that, although they are directed towards a specific molecular target, they simultaneously inhibit multiple cellular signalling pathways. By inhibiting nodal points in multiple overlapping survival pathways utilized by cancer cells, combination of an Hsp90 inhibitor with standard chemotherapeutic agents may dramatically increase the in vivo efficacy of the standard agent. Hsp90 inhibitors may circumvent the characteristic genetic plasticity that has allowed cancer cells to eventually evade the toxic effects of most molecularly targeted agents. The mechanism-based use of Hsp90 inhibitors, both alone and in combination with other drugs, should be effective toward multiple forms of cancer. Further, because Hsp90 inhibitors also induce Hsf-1-dependent expression of Hsp70, and because certain mutated Hsp90 client proteins are neurotoxic, these drugs display ameliorative properties in several neurodegenerative disease models, suggesting a novel role for Hsp90 inhibitors in treating multiple pathologies involving neurodegeneration.

  3. The chaperone like function of the nonhistone protein HMGB1

    Energy Technology Data Exchange (ETDEWEB)

    Osmanov, Taner; Ugrinova, Iva [Institute of Molecular Biology, Bulgarian Academy of Sciences (Bulgaria); Pasheva, Evdokia, E-mail: eva@bio21.bas.bg [Institute of Molecular Biology, Bulgarian Academy of Sciences (Bulgaria)

    2013-03-08

    Highlights: ► The HMGB1 protein strongly enhanced the formation of nucleosome particles. ► The target of HMGB1 action as a chaperone is the DNA not the histone octamer. ► The acetylation of HMGB1 decreases the stimulating effect of the protein. -- Abstract: Almost all essential nuclear processes as replication, repair, transcription and recombination require the chromatin template to be correctly unwound and than repackaged. The major strategy that the cell uses to overcome the nucleosome barrier is the proper removal of the histone octamer and subsequent deposition onto DNA. Important factors in this multi step phenomenon are the histone chaperones that can assemble nucleosome arrays in vitro in the absence of ATP. The nonhistone protein HMGB1 is a good candidate for a chaperone as its molecule consists of two DNA binding motives, Box’s A and B, and a long nonstructured C tail highly negatively charged. HMGB1 protein is known as a nuclear “architectural” factor for its property to bind preferentially to distorted DNA structures and was reported to kink the double helix. Our experiments show that in the classical stepwise dialysis method for nucleosome assembly the addition of HMGB1 protein stimulates more than two times the formation of middle-positioned nucleosomes. The stimulation effect persists in dialysis free experiment when the reconstitution is possible only in the presence of a chaperone. The addition of HMGB1 protein strongly enhanced the formation of a nucleosome in a dose dependant manner. Our results show that the target of HMGB1 action as a chaperone is the DNA fragment not the histone octamer. One possible explanation for the stimulating effect of HMGB1 is the “architectural” property of the protein to associate with the middle of the DNA fragment and to kink it. The acquired V shaped DNA structure is probably conformationals more favorable to wrap around the prefolded histone octamer. We tested also the role of the post

  4. Improved Zirconia Oxygen-Separation Cell

    Science.gov (United States)

    Walsh, John V.; Zwissler, James G.

    1988-01-01

    Cell structure distributes feed gas more evenly for more efficent oxygen production. Multilayer cell structure containing passages, channels, tubes, and pores help distribute pressure evenly over zirconia electrolytic membrane. Resulting more uniform pressure distribution expected to improve efficiency of oxygen production.

  5. WtsE, an AvrE-family effector protein from Pantoea stewartii subsp. stewartii, causes disease-associated cell death in corn and requires a chaperone protein for stability.

    Science.gov (United States)

    Ham, Jong Hyun; Majerczak, Doris R; Arroyo-Rodriguez, Angel S; Mackey, David M; Coplin, David L

    2006-10-01

    The pathogenicity of Pantoea stewartii subsp. stewartii to sweet corn and maize requires a Hrp type III secretion system. In this study, we genetically and functionally characterized a disease-specific (Dsp) effector locus, composed of wtsE and wtsF, that is adjacent to the hrp gene cluster. WtsE, a member of the AvrE family of effector proteins, was essential for pathogenesis on corn and was complemented by DspA/E from Erwinia amylovora. An intact C-terminus of WtsE, which contained a putative endoplasmic reticulum membrane retention signal, was important for function of WtsE. Delivery of WtsE into sweet corn leaves by an Escherichia coli strain carrying the hrp cluster of Erwinia chrysanthemi caused water-soaking and necrosis. WtsE-induced cell death was not inhibited by cycloheximide treatment, unlike the hypersensitive response caused by a known Avr protein, AvrRxol. WtsF, the putative chaperone of WtsE, was not required for secretion of WtsE from P. stewartii, and the virulence of wtsF mutants was reduced only at low inoculum concentrations. However, WtsF was required for full accumulation of WtsE within the bacteria at low temperatures. In contrast, WtsF was needed for efficient delivery of WtsE from E. coli via the Erwinia chrysanthemi Hrp system. PMID:17022173

  6. CrAgDb--a database of annotated chaperone repertoire in archaeal genomes.

    Science.gov (United States)

    Rani, Shikha; Srivastava, Abhishikha; Kumar, Manish; Goel, Manisha

    2016-03-01

    Chaperones are a diverse class of ubiquitous proteins that assist other cellular proteins in folding correctly and maintaining their native structure. Many different chaperones cooperate to constitute the 'proteostasis' machinery in the cells. It has been proposed earlier that archaeal organisms could be ideal model systems for deciphering the basic functioning of the 'protein folding machinery' in higher eukaryotes. Several chaperone families have been characterized in archaea over the years but mostly one protein at a time, making it difficult to decipher the composition and mechanistics of the protein folding system as a whole. In order to deal with these lacunae, we have developed a database of all archaeal chaperone proteins, CrAgDb (Chaperone repertoire in Archaeal genomes). The data have been presented in a systematic way with intuitive browse and search facilities for easy retrieval of information. Access to these curated datasets should expedite large-scale analysis of archaeal chaperone networks and significantly advance our understanding of operation and regulation of the protein folding machinery in archaea. Researchers could then translate this knowledge to comprehend the more complex protein folding pathways in eukaryotic systems. The database is freely available at http://14.139.227.92/mkumar/cragdb/. PMID:26862144

  7. Capturing a Dynamic Chaperone-Substrate Interaction Using NMR-Informed Molecular Modeling.

    Science.gov (United States)

    Salmon, Loïc; Ahlstrom, Logan S; Horowitz, Scott; Dickson, Alex; Brooks, Charles L; Bardwell, James C A

    2016-08-10

    Chaperones maintain a healthy proteome by preventing aggregation and by aiding in protein folding. Precisely how chaperones influence the conformational properties of their substrates, however, remains unclear. To achieve a detailed description of dynamic chaperone-substrate interactions, we fused site-specific NMR information with coarse-grained simulations. Our model system is the binding and folding of a chaperone substrate, immunity protein 7 (Im7), with the chaperone Spy. We first used an automated procedure in which NMR chemical shifts inform the construction of system-specific force fields that describe each partner individually. The models of the two binding partners are then combined to perform simulations on the chaperone-substrate complex. The binding simulations show excellent agreement with experimental data from multiple biophysical measurements. Upon binding, Im7 interacts with a mixture of hydrophobic and hydrophilic residues on Spy's surface, causing conformational exchange within Im7 to slow down as Im7 folds. Meanwhile, the motion of Spy's flexible loop region increases, allowing for better interaction with different substrate conformations, and helping offset losses in Im7 conformational dynamics that occur upon binding and folding. Spy then preferentially releases Im7 into a well-folded state. Our strategy has enabled a residue-level description of a dynamic chaperone-substrate interaction, improving our understanding of how chaperones facilitate substrate folding. More broadly, we validate our approach using two other binding partners, showing that this approach provides a general platform from which to investigate other flexible biomolecular complexes through the integration of NMR data with efficient computational models. PMID:27415450

  8. Peptide binding specificity of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Sandhu, N.; Duus, K.; Jorgensen, C.S.;

    2007-01-01

    Calreticulin is a molecular chaperone with specificity for polypeptides and N-linked monoglucosylated glycans. In order to determine the specificity of polypeptide binding, the interaction of calreticulin with polypeptides was investigated using synthetic peptides of different length and composit...

  9. Polypeptide binding properties of the chaperone calreticulin

    DEFF Research Database (Denmark)

    Jørgensen, C S; Heegaard, N H; Holm, A; Højrup, P; Houen, G

    2000-01-01

    Calreticulin is a highly conserved eukaryotic ubiquitious protein located mainly in the endoplasmic reticulum. Two major characteristics of calreticulin are its chaperone activity and its lectin properties, but its precise function in intracellular protein and peptide processing remains to be...

  10. Aging cellular networks: chaperones as major participants

    OpenAIRE

    Soti, Csaba; Csermely, Peter

    2006-01-01

    We increasingly rely on the network approach to understand the complexity of cellular functions. Chaperones (heat shock proteins) are key "networkers", which have among their functions to sequester and repair damaged protein. In order to link the network approach and chaperones with the aging process, we first summarize the properties of aging networks suggesting a "weak link theory of aging". This theory suggests that age-related random damage primarily affects the overwhelming majority of t...

  11. Improved biolistic transfection of hair cells.

    Directory of Open Access Journals (Sweden)

    Hongyu Zhao

    Full Text Available Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C and PMCA2 (ATP2B2; plasma-membrane Ca(2+-ATPase isoform 2 to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells.

  12. Modulation and elimination of yeast prions by protein chaperones and co-chaperones

    OpenAIRE

    Reidy, Michael; Masison, Daniel C.

    2011-01-01

    The yeast system has provided considerable insight into the biology of amyloid and prions. Here we focus on how alterations in abundance or function of protein chaperones and co-chaperones affect propagation of yeast prions. In spite of a considerable amount of information, a clear understanding of the molecular mechanisms underlying these effects remains wanting.

  13. Direct fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Farooque, M. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  14. Improved micromorph tandem cell performance through enhanced top cell currents

    Energy Technology Data Exchange (ETDEWEB)

    Platz, R.; Vaucher, N.P.; Fischer, D.; Meier, J.; Shah, A. [Univ. de Neuchatel (Switzerland). Inst. de Microtechnique

    1997-12-31

    Two approaches to increasing the current in the amorphous silicon top cell of an amorphous silicon/microcrystalline silicon (a-Si:H/{micro}c-Si:H) tandem cell are presented. The goal is to raise the stabilized efficiency of such cells. The deposition of the amorphous top cell at higher than standard substrate temperature is shown to reduce the optical gap of the i-layer and to increase the current which is generated with a given i-layer thickness. Furthermore, a selectively reflecting ZnO interface layer between the component cells is presented as a viable tool for enhancing the current generation in the top cell by selective reflection of light. The authors present a micromorph tandem cell containing the amorphous top cell deposited at high substrate temperature, and additionally the ZnO mirror layer. A top cell thickness of 150 nm is shown to be sufficient to provide a current density of 13mA/cm{sup 2} in the top cell. Finally, the influence of such thin top cells on the stabilized efficiency of the tandem cell is investigated by experiment and by means of semi-empirical modeling. Model and experiment confirm that such reduced-gap top cells, together with current enhancement due to the mirror layer, have a high potential for improving the stabilized efficiency of micromorph tandem cells.

  15. Improved Gene Targeting through Cell Cycle Synchronization.

    Directory of Open Access Journals (Sweden)

    Vasiliki Tsakraklides

    Full Text Available Gene targeting is a challenge in organisms where non-homologous end-joining is the predominant form of recombination. We show that cell division cycle synchronization can be applied to significantly increase the rate of homologous recombination during transformation. Using hydroxyurea-mediated cell cycle arrest, we obtained improved gene targeting rates in Yarrowia lipolytica, Arxula adeninivorans, Saccharomyces cerevisiae, Kluyveromyces lactis and Pichia pastoris demonstrating the broad applicability of the method. Hydroxyurea treatment enriches for S-phase cells that are active in homologous recombination and enables previously unattainable genomic modifications.

  16. Single Amino Acid Deletion in Kindlin-1 Results in Partial Protein Degradation Which Can Be Rescued by Chaperone Treatment.

    Science.gov (United States)

    Maier, Kristin; He, Yinghong; Esser, Philipp R; Thriene, Kerstin; Sarca, Daniela; Kohlhase, Jürgen; Dengjel, Jörn; Martin, Ludovic; Has, Cristina

    2016-05-01

    Kindler syndrome, a distinct type of epidermolysis bullosa, is a rare disorder caused by mutations in FERMT1, encoding kindlin-1. Most FERMT1 mutations lead to premature termination codons and absence of kindlin-1. Here we investigated the molecular and cellular consequences of a naturally occurring FERMT1 mutation, c.299_301del resulting in a single amino acid deletion, p.R100del. The mutation led to a 50% reduction of FERMT1 mRNA and 90% reduction of kindlin-1 protein in keratinocytes derived from the patient, as compared with control cells. The misfolded p.R100del kindlin-1 mutant was lysosomally degraded and launched a homeostatic unfolded protein response. Sodium-phenylbutyrate significantly increased kindlin-1 mRNA and protein levels and the area of mutant cells, acting as a chemical chaperone and probably also as a histone deacetylase inhibitor. In a recombinant system, low levels of wild-type or p.R100del mutant kindlin-1 were sufficient to improve the cellular phenotype in respect of spreading and proliferation as compared with kindlin-1 negative keratinocytes. The study of this hypomorphic mutation provides evidence that low amounts of kindlin-1 are sufficient to improve the epidermal architecture and Kindler syndrome cellular phenotype and proposes a personalized chaperone therapy for the patient. PMID:26827766

  17. Chaperoning the Chaperone: A Role for the Co-chaperone Cpr7 in Modulating Hsp90 Function in Saccharomyces cerevisiae

    OpenAIRE

    Zuehlke, Abbey D.; Johnson, Jill L.

    2012-01-01

    Heat-shock protein 90 (Hsp90) of Saccharomyces cerevisiae is an abundant essential eukaryotic molecular chaperone involved in the activation and stabilization of client proteins, including several transcription factors and oncogenic kinases. Hsp90 undergoes a complex series of conformational changes and interacts with partner co-chaperones such as Sba1, Cpr6, Cpr7, and Cns1 as it binds and hydrolyzes ATP. In the absence of nucleotide, Hsp90 is dimerized only at the carboxy-terminus. In the pr...

  18. AR-12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication.

    Science.gov (United States)

    Booth, Laurence; Roberts, Jane L; Ecroyd, Heath; Tritsch, Sarah R; Bavari, Sina; Reid, St Patrick; Proniuk, Stefan; Zukiwski, Alexander; Jacob, Abraham; Sepúlveda, Claudia S; Giovannoni, Federico; García, Cybele C; Damonte, Elsa; González-Gallego, Javier; Tuñón, María J; Dent, Paul

    2016-10-01

    We have recently demonstrated that AR-12 (OSU-03012) reduces the function and ATPase activities of multiple HSP90 and HSP70 family chaperones. Combined knock down of chaperones or AR-12 treatment acted to reduce the expression of virus receptors and essential glucosidase proteins. Combined knock down of chaperones or AR-12 treatment inactivated mTOR and elevated ATG13 S318 phosphorylation concomitant with inducing an endoplasmic reticulum stress response that in an eIF2α-dependent fashion increased Beclin1 and LC3 expression and autophagosome formation. Over-expression of chaperones prevented the reduction in receptor/glucosidase expression, mTOR inactivation, the ER stress response, and autophagosome formation. AR-12 reduced the reproduction of viruses including Mumps, Influenza, Measles, Junín, Rubella, HIV (wild type and protease resistant), and Ebola, an effect replicated by knock down of multiple chaperone proteins. AR-12-stimulated the co-localization of Influenza, EBV and HIV virus proteins with LC3 in autophagosomes and reduced viral protein association with the chaperones HSP90, HSP70, and GRP78. Knock down of Beclin1 suppressed drug-induced autophagosome formation and reduced the anti-viral protection afforded by AR-12. In an animal model of hemorrhagic fever virus, a transient exposure of animals to low doses of AR-12 doubled animal survival from ∼30% to ∼60% and suppressed liver damage as measured by ATL, GGT and LDH release. Thus through inhibition of chaperone protein functions; reducing the production, stability and processing of viral proteins; and stimulating autophagosome formation/viral protein degradation, AR-12 acts as a broad-specificity anti-viral drug in vitro and in vivo. We argue future patient studies with AR-12 are warranted. J. Cell. Physiol. 231: 2286-2302, 2016. © 2016 Wiley Periodicals, Inc. PMID:27187154

  19. PEM fuel cells performance improvements by CFD

    International Nuclear Information System (INIS)

    , efficiency and accuracy will become one of the most cost effective ways of assisting in the development of new fuel cell technologies. Fuel cell technology presents huge economical and environmental potential in the next generation of power systems, from small portable fuel cells to large residential power plants. In the development of this new technology, detailed and accurate CFD modeling can effectively guide the improvements in fuel cell design so that optimal flow and energy management within fuel cells may be achieved. A comprehensive fuel cell modeling capability, which accounts for the detailed processes of the chemistry, electrochemistry, electric transport, heat generation and material stresses in the fuel cell, as well as the validated fuel cell modeling methodology, has not yet been fully established, so more work is required. (authors)

  20. Inhibitors of the AAA+ Chaperone p97

    Directory of Open Access Journals (Sweden)

    Eli Chapman

    2015-02-01

    Full Text Available It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®, which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+ chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and

  1. Small intestinal mucosa expression of putative chaperone fls485

    Directory of Open Access Journals (Sweden)

    Raupach Kerstin

    2010-03-01

    Full Text Available Abstract Background Maturation of enterocytes along the small intestinal crypt-villus axis is associated with significant changes in gene expression profiles. fls485 coding a putative chaperone protein has been recently suggested as a gene involved in this process. The aim of the present study was to analyze fls485 expression in human small intestinal mucosa. Methods fls485 expression in purified normal or intestinal mucosa affected with celiac disease was investigated with a molecular approach including qRT-PCR, Western blotting, and expression strategies. Molecular data were corroborated with several in situ techniques and usage of newly synthesized mouse monoclonal antibodies. Results fls485 mRNA expression was preferentially found in enterocytes and chromaffine cells of human intestinal mucosa as well as in several cell lines including Rko, Lovo, and CaCo2 cells. Western blot analysis with our new anti-fls485 antibodies revealed at least two fls485 proteins. In a functional CaCo2 model, an increase in fls485 expression was paralleled by cellular maturation stage. Immunohistochemistry demonstrated fls485 as a cytosolic protein with a slightly increasing expression gradient along the crypt-villus axis which was impaired in celiac disease Marsh IIIa-c. Conclusions Expression and synthesis of fls485 are found in surface lining epithelia of normal human intestinal mucosa and deriving epithelial cell lines. An interdependence of enterocyte differentiation along the crypt-villus axis and fls485 chaperone activity might be possible.

  2. The Malarial Exported PFA0660w Is an Hsp40 Co-Chaperone of PfHsp70-x.

    Directory of Open Access Journals (Sweden)

    Michael O Daniyan

    Full Text Available Plasmodium falciparum, the human pathogen responsible for the most dangerous malaria infection, survives and develops in mature erythrocytes through the export of proteins needed for remodelling of the host cell. Molecular chaperones of the heat shock protein (Hsp family are prominent members of the exportome, including a number of Hsp40s and a Hsp70. PFA0660w, a type II Hsp40, has been shown to be exported and possibly form a complex with PfHsp70-x in the infected erythrocyte cytosol. However, the chaperone properties of PFA0660w and its interaction with human and parasite Hsp70s are yet to be investigated. Recombinant PFA0660w was found to exist as a monomer in solution, and was able to significantly stimulate the ATPase activity of PfHsp70-x but not that of a second plasmodial Hsp70 (PfHsp70-1 or a human Hsp70 (HSPA1A, indicating a potential specific functional partnership with PfHsp70-x. Protein binding studies in the presence and absence of ATP suggested that the interaction of PFA0660w with PfHsp70-x most likely represented a co-chaperone/chaperone interaction. Also, PFA0660w alone produced a concentration-dependent suppression of rhodanese aggregation, demonstrating its chaperone properties. Overall, we have provided the first biochemical evidence for the possible role of PFA0660w as a chaperone and as co-chaperone of PfHsp70-x. We propose that these chaperones boost the chaperone power of the infected erythrocyte, enabling successful protein trafficking and folding, and thereby making a fundamental contribution to the pathology of malaria.

  3. Multi-kinase inhibitors can associate with heat shock proteins through their NH2-termini by which they suppress chaperone function.

    Science.gov (United States)

    Booth, Laurence; Shuch, Brian; Albers, Thomas; Roberts, Jane L; Tavallai, Mehrad; Proniuk, Stefan; Zukiwski, Alexander; Wang, Dasheng; Chen, Ching-Shih; Bottaro, Don; Ecroyd, Heath; Lebedyeva, Iryna O; Dent, Paul

    2016-03-15

    We performed proteomic studies using the GRP78 chaperone-inhibitor drug AR-12 (OSU-03012) as bait. Multiple additional chaperone and chaperone-associated proteins were shown to interact with AR-12, including: GRP75, HSP75, BAG2; HSP27; ULK-1; and thioredoxin. AR-12 down-regulated in situ immuno-fluorescence detection of ATP binding chaperones using antibodies directed against the NH2-termini of the proteins but only weakly reduced detection using antibodies directed against the central and COOH portions of the proteins. Traditional SDS-PAGE and western blotting assessment methods did not exhibit any alterations in chaperone detection. AR-12 altered the sub-cellular distribution of chaperone proteins, abolishing their punctate speckled patterning concomitant with changes in protein co-localization. AR-12 inhibited chaperone ATPase activity, which was enhanced by sildenafil; inhibited chaperone - chaperone and chaperone - client interactions; and docked in silico with the ATPase domains of HSP90 and of HSP70. AR-12 combined with sildenafil in a GRP78 plus HSP27 -dependent fashion to profoundly activate an eIF2α/ATF4/CHOP/Beclin1 pathway in parallel with inactivating mTOR and increasing ATG13 phosphorylation, collectively resulting in formation of punctate toxic autophagosomes. Over-expression of [GRP78 and HSP27] prevented: AR-12 -induced activation of ER stress signaling and maintained mTOR activity; AR-12 -mediated down-regulation of thioredoxin, MCL-1 and c-FLIP-s; and preserved tumor cell viability. Thus the inhibition of chaperone protein functions by AR-12 and by multi-kinase inhibitors very likely explains why these agents have anti-tumor effects in multiple genetically diverse tumor cell types. PMID:26887051

  4. The Early Response to Acid Shock in Lactobacillus reuteri Involves the ClpL Chaperone and a Putative Cell Wall-Altering Esterase▿ †

    OpenAIRE

    Wall, Torun; Båth, Klara; Britton, Robert A.; Jonsson, Hans; Versalovic, James; Roos, Stefan

    2007-01-01

    To be able to function as a probiotic, bacteria have to survive the passage through the gastrointestinal tract. We have examined survival and gene expression of Lactobacillus reuteri ATCC 55730 after a sudden shift in environmental acidity to a pH close to the conditions in the human stomach. More than 80% of the L. reuteri cells survived at pH 2.7 for 1 h. A genomewide expression analysis experiment using microarrays displayed 72 differentially expressed genes at this pH. The early response ...

  5. Targeting the Diabetic Chaperome to Improve Peripheral Neuropathy.

    Science.gov (United States)

    Dobrowsky, Rick T

    2016-08-01

    The chaperome constitutes a broad family of molecular chaperones and co-chaperones that facilitate the folding, refolding, and degradation of the proteome. Heat shock protein 90 (Hsp90) promotes the folding of numerous oncoproteins to aid survival of malignant phenotypes, and small molecule inhibitors of the Hsp90 chaperone complex offer a viable approach to treat certain cancers. One therapeutic attribute of this approach is the selectivity of these molecules to target high affinity oncogenic Hsp90 complexes present in tumor cells, which are absent in nontransformed cells. This selectivity has given rise to the idea that disease may contribute to forming a stress chaperome that is functionally distinct in its ability to interact with small molecule Hsp90 modulators. Consistent with this premise, modulating Hsp90 improves clinically relevant endpoints of diabetic peripheral neuropathy but has little impact in nondiabetic nerve. The concept of targeting the "diabetic chaperome" to treat diabetes and its complications is discussed. PMID:27318486

  6. Endoplasmic reticulum chaperone glucose regulated protein 170-Pokemon complexes elicit a robust antitumor immune response in vivo.

    Science.gov (United States)

    Yuan, Bangqing; Xian, Ronghua; Wu, Xianqu; Jing, Junjie; Chen, Kangning; Liu, Guojun; Zhou, Zhenhua

    2012-07-01

    Previous evidence suggested that the stress protein grp170 can function as a highly efficient molecular chaperone, binding to large protein substrates and acting as a potent vaccine against specific tumors when purified from the same tumor. In addition, Pokemon can be found in almost all malignant tumor cells and is regarded to be a promising candidate for the treatment of tumors. However, the potential of the grp170-Pokemon chaperone complex has not been well described. In the present study, the natural chaperone complex between grp170 and the Pokemon was formed by heat shock, and its immunogenicity was detected by ELISPOT and (51)Cr-release assays in vitro and by tumor bearing models in vivo. Our results demonstrated that the grp170-Pokemon chaperone complex could elicit T cell responses as determined by ELISPOT and (51)Cr-release assays. In addition, immunized C57BL/6 mice were challenged with subcutaneous (s.c.) injection of Lewis cancer cells to induce primary tumors. Treatment of mice with the grp170-Pokemon chaperone complex also significantly inhibited tumor growth and prolonged the life span of tumor-bearing mice. Our results indicated that the grp170-Pokemon chaperone complex might represent a powerful approach to tumor immunotherapy and have significant potential for clinical application. PMID:22317751

  7. ATP-dependent molecular chaperones in plastids--More complex than expected.

    Science.gov (United States)

    Trösch, Raphael; Mühlhaus, Timo; Schroda, Michael; Willmund, Felix

    2015-09-01

    Plastids are a class of essential plant cell organelles comprising photosynthetic chloroplasts of green tissues, starch-storing amyloplasts of roots and tubers or the colorful pigment-storing chromoplasts of petals and fruits. They express a few genes encoded on their organellar genome, called plastome, but import most of their proteins from the cytosol. The import into plastids, the folding of freshly-translated or imported proteins, the degradation or renaturation of denatured and entangled proteins, and the quality-control of newly folded proteins all require the action of molecular chaperones. Members of all four major families of ATP-dependent molecular chaperones (chaperonin/Cpn60, Hsp70, Hsp90 and Hsp100 families) have been identified in plastids from unicellular algae to higher plants. This review aims not only at giving an overview of the most current insights into the general and conserved functions of these plastid chaperones, but also into their specific plastid functions. Given that chloroplasts harbor an extreme environment that cycles between reduced and oxidized states, that has to deal with reactive oxygen species and is highly reactive to environmental and developmental signals, it can be presumed that plastid chaperones have evolved a plethora of specific functions some of which are just about to be discovered. Here, the most urgent questions that remain unsolved are discussed, and guidance for future research on plastid chaperones is given. This article is part of a Special Issue entitled: Chloroplast Biogenesis. PMID:25596449

  8. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity

    Science.gov (United States)

    Mack, Korrie L.; Shorter, James

    2016-01-01

    Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector. PMID:27014702

  9. Chaperone binding at the ribosomal exit tunnel

    DEFF Research Database (Denmark)

    Kristensen, Ole; Gajhede, Michael

    2003-01-01

    The exit tunnel region of the ribosome is well established as a focal point for interaction between the components that guide the fate of nascent polypeptides. One of these, the chaperone trigger factor (TF), associates with the 50S ribosomal subunit through its N-terminal domain. Targeting of TF...

  10. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2004-08-01

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

  11. The co-chaperone p23 is degraded by caspases and the proteasome during apoptosis

    DEFF Research Database (Denmark)

    Mollerup, Jens; Berchtold, Martin Werner

    2005-01-01

    The heat shock protein 90 co-chaperone p23 has recently been shown to be up-regulated in cancer cells and down-regulated in atheroschlerotic plaques. We found that p23 is degraded during apoptosis induced by several stimuli, including Fas and TNFa-receptor activation as well as staurosporine...

  12. Cell line profiling to improve monoclonal antibody production.

    Science.gov (United States)

    Kang, Sohye; Ren, Da; Xiao, Gang; Daris, Kristi; Buck, Lynette; Enyenihi, Atim A; Zubarev, Roman; Bondarenko, Pavel V; Deshpande, Rohini

    2014-04-01

    Mammalian cell culture performance is influenced by both intrinsic (genetic) and extrinsic (media and process) factors. In this study, intrinsic capacity of various monoclonal antibody-producing Chinese Hamster Ovary (CHO) cell lines was compared by exposing them to the same culture condition. Microarray-based transcriptomics and LC-MS/MS shotgun proteomics technologies were utilized to obtain expression landscape of different cell lines. Specific transcripts and proteins correlating with productivity, growth rate and cell size have been identified. The proteomics analysis results showed a strong correlation between the intracellular protein expression levels of the recombinant DHFR and productivity. In contrast, neither the light chain nor the heavy chain of the recombinant monoclonal antibody showed correlation to productivity. Other top ranked proteins which demonstrated positive correlation to productivity included the adaptor protein complex subunits AP3D1and AP2B2, DNA repair protein DDB1 and the ER translocation complex component, SRPR. The subunits of molecular chaperone T-complex protein 1 and the regulator of mitochondrial one-carbon metabolism MTHFD2 showed negative correlation to productivity. The transcriptomics analysis has identified the regulators of calcium signaling, Tmem20 and Rcan1, as the top ranked genes displaying positive and negative correlation to productivity, respectively. For the second part of the study, the principal component analysis (PCA) was generated to view the underlying global structure of the expression data. A clear division and expression polarity was observed between the two distinct clusters of cell lines, independent of link to productivity or any other traits examined. The primary component of the PCA generated from either transcriptomics or proteomics data displayed a strong correlation to cell size and doubling time, while none of the main principal components showed correlation to productivity. Our findings suggest

  13. Chemical chaperone 4-phenylbutyrate prevents endoplasmic reticulum stress induced by T17M rhodopsin

    OpenAIRE

    Jiang, Haibo; Xiong, Siqi; Xia, Xiaobo

    2014-01-01

    Background Rhodopsin mutations are associated with the autosomal dominant form of retinitis pigmentosa. T17M mutation in rhodopsin predisposes cells to endoplasmic reticulum (ER) stress and induces cell death. This study aimed to examine whether chemical chaperone 4-phenylbutyrate prevents ER stress induced by rhodopsin T17M. Results ARPE-19 cells were transfected with myc-tagged wild-type (WT) and T17M rhodopsin constructs. Turnover of WT and T17M rhodopsin was measured by cycloheximide chas...

  14. An Expanding Range of Functions for the Copper Chaperone/Antioxidant Protein Atox1

    OpenAIRE

    Hatori, Yuta; Lutsenko, Svetlana

    2013-01-01

    Significance: Antioxidant protein 1 (Atox1 in human cells) is a copper chaperone for the copper export pathway with an essential role in cellular copper distribution. In vitro, Atox1 binds and transfers copper to the copper-transporting ATPases, stimulating their catalytic activity. Inactivation of Atox1 in cells inhibits maturation of secreted cuproenzymes as well as copper export from cells. Recent Advances: Accumulating data suggest that cellular functions of Atox1 are not limited to its c...

  15. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  16. Multiple functions of the histone chaperone Jun dimerization protein 2.

    Science.gov (United States)

    Tsai, Ming-Ho; Wuputra, Kenly; Lin, Yin-Chu; Lin, Chang-Shen; Yokoyama, Kazunari K

    2016-09-30

    The Jun dimerization protein 2 (JDP2) is part of the family of stress-responsible transcription factors such as the activation protein-1, and binds the 12-O-tetradecanoylphorbol-13-acetateresponse element and the cAMP response element. It also plays a role as a histone chaperone and participates in diverse processes, such as cell-cycle arrest, cell differentiation, apoptosis, senescence, and metastatic spread, and functions as an oncogene and anti-oncogene, and as a cellular reprogramming factor. However, the molecular mechanisms underlying these multiple functions of JDP2 have not been clarified. This review summarizes the structure and function of JDP2, highlighting the specific role of JDP2 in cellular-stress regulation and prevention. PMID:27041241

  17. The nucleotide exchange factors of Hsp70 molecular chaperone

    Directory of Open Access Journals (Sweden)

    Andreas eBracher

    2015-04-01

    Full Text Available Molecular chaperones of the Hsp70 family form an important hub in the cellular protein folding networks in bacteria and eukaryotes, connecting translation with the downstream machineries of protein folding and degradation. The Hsp70 folding cycle is driven by two types of cochaperones: J-domain proteins stimulate ATP hydrolysis by Hsp70, while nucleotide exchange factors (NEFs promote replacement of Hsp70-bound ADP with ATP. Bacteria and organelles of bacterial origin have only one known NEF type for Hsp70, GrpE. In contrast, a large diversity of Hsp70 NEFs has been discovered in the eukaryotic cell. These NEFs belong to the Hsp110/Grp170, HspBP1/Sil1 and BAG domain protein families. In this short review we compare the structures and molecular mechanisms of nucleotide exchange factors for Hsp70 and discuss how these cochaperones contribute to protein folding and quality control in the cell.

  18. Possible improvement of solar cell efficiency

    International Nuclear Information System (INIS)

    We present the development of a new solar cell prototype in order to improve photovoltaic efficiency. In this model we show that the material can have three successive incident ray absorptions instead of two currently, by varying the incidence angle, the aperture between the summits of two neighbouring pyramids and their height. This study concerns in particular the photovoltaic parameters such as the spectral response. This model was checked for angles varying between 54 and 60 deg and for pyramid heights between 5 and 10 μm. For these values of incidence angle, the apertures between the summits of two neighbouring pyramids varied respectively from 14.54 to 11.54 μm for a pyramid angle height of 10 μm

  19. Chaperones in hepatitis C virus infection

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    The hepatitis C virus (HCV) infects approximately 3% ofthe world population or more than 185 million peopleworldwide. Each year, an estimated 350000-500000deaths occur worldwide due to HCV-associated diseasesincluding cirrhosis and hepatocellular carcinoma. HCV isthe most common indication for liver transplantation inpatients with cirrhosis worldwide. HCV is an envelopedRNA virus classified in the genus Hepacivirus in theFlaviviridae family. The HCV viral life cycle in a cellcan be divided into six phases (1) binding and internalization;(2) cytoplasmic release and uncoating; (3)viral polyprotein translation and processing; (4) RNAgenome replication; (5) encapsidation (packaging) andassembly; and (6) virus morphogenesis (maturation)and secretion. Many host factors are involved in theHCV life cycle. Chaperones are an important group ofhost cytoprotective molecules that coordinate numerouscellular processes including protein folding, multimericprotein assembly, protein trafficking, and proteindegradation. All phases of the viral life cycle requirechaperone activity and the interaction of viral proteinswith chaperones. This review will present our currentknowledge and understanding of the role of chaperonesin the HCV life cycle. Analysis of chaperones in HCVinfection will provide further insights into viral/hostinteractions and potential therapeutic targets for bothHCV and other viruses.

  20. Oral administration of an HSP90 inhibitor, 17-DMAG, intervenes tumor-cell infiltration into multiple organs and improves survival period for ATL model mice

    International Nuclear Information System (INIS)

    In the peripheral blood leukocytes (PBLs) from the carriers of the human T-lymphotropic virus type-1 (HTLV-1) or the patients with adult T-cell leukemia (ATL), nuclear factor kappaB (NF-κB)-mediated antiapoptotic signals are constitutively activated primarily by the HTLV-1-encoded oncoprotein Tax. Tax interacts with the I κB kinase regulatory subunit NEMO (NF-κB essential modulator) to activate NF-κB, and this interaction is maintained in part by a molecular chaperone, heat-shock protein 90 (HSP90), and its co-chaperone cell division cycle 37 (CDC37). The antibiotic geldanamycin (GA) inhibits HSP90's ATP binding for its proper interaction with client proteins. Administration of a novel water-soluble and less toxic GA derivative, 17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride (17-DMAG), to Tax-expressing ATL-transformed cell lines, C8166 and MT4, induced significant degradation of Tax. 17-DMAG also facilitated growth arrest and cellular apoptosis to C8166 and MT4 and other ATL cell lines, although this treatment has no apparent effects on normal PBLs. 17-DMAG also downregulated Tax-mediated intracellular signals including the activation of NF-κB, activator protein 1 or HTLV-1 long terminal repeat in Tax-transfected HEK293 cells. Oral administration of 17-DMAG to ATL model mice xenografted with lymphomatous transgenic Lck-Tax (Lck proximal promoter-driven Tax transgene) cells or HTLV-1-producing tumor cells dramatically attenuated aggressive infiltration into multiple organs, inhibited de novo viral production and improved survival period. These observations identified 17-DMAG as a promising candidate for the prevention of ATL progression

  1. Antimyeloma Effects of the Heat Shock Protein 70 Molecular Chaperone Inhibitor MAL3-101

    Directory of Open Access Journals (Sweden)

    Marc J. Braunstein

    2011-01-01

    Full Text Available Multiple myeloma (MM is the second most common hematologic malignancy and remains incurable, primarily due to the treatment-refractory/resistant nature of the disease. A rational approach to this compelling challenge is to develop new drugs that act synergistically with existing effective agents. This approach will reduce drug concentrations, avoid treatment resistance, and also improve treatment effectiveness by targeting new and nonredundant pathways in MM. Toward this goal, we examined the antimyeloma effects of MAL3-101, a member of a new class of non-ATP-site inhibitors of the heat shock protein (Hsp 70 molecular chaperone. We discovered that MAL3-101 exhibited antimyeloma effects on MM cell lines in vitro and in vivo in a xenograft plasmacytoma model, as well as on primary tumor cells and bone marrow endothelial cells from myeloma patients. In combination with a proteasome inhibitor, MAL3-101 significantly potentiated the in vitro and in vivo antimyeloma effects. These data support a preclinical rationale for small molecule inhibition of Hsp70 function, either alone or in combination with other agents, as an effective therapeutic strategy for MM.

  2. Anti-diabetic effect of 3-hydroxy-2-naphthoic acid, an endoplasmic reticulum stress-reducing chemical chaperone.

    Science.gov (United States)

    Park, Sun-Mi; Choi, Jungsook; Nam, Tae-Gyu; Ku, Jin-Mo; Jeong, Kwiwan

    2016-05-15

    Lots of experimental and clinical evidences indicate that chronic exposure to saturated fatty acids and high level of glucose is implicated in insulin resistance, beta cell failure and ultimately type 2 diabetes. In this study, we set up cell-based experimental conditions to induce endoplasmic reticulum (ER) stress and insulin resistance using high concentration of palmitate (PA). Hydroxynaphthoic acids (HNAs) were formerly identified as novel chemical chaperones to resolve ER stress induced by tunicamycin. In this study, we found the compounds have the same suppressive effect on PA-induced ER stress in HepG2 cells. The representing compound, 3-HNA reduced PA-induced phosphorylation of JNK, IKKβ and IRS1 (S307) and restored insulin signaling cascade which involves insulin receptor β, IRS1 and Akt. The insulin sensitizing effect of 3-HNA was confirmed in 3T3-L1 adipocytes, where the compound augmented insulin signaling and glucose transporter 4 (GLUT4) membrane translocation. 3-HNA also protected the pancreatic beta cells from PA-induced apoptosis by reducing ER stress. Upon 3-HNA treatment to ob/ob mice at 150mg/kg/day dosage, the diabetic parameters including glucose tolerance and systemic insulin sensitivity were significantly improved. Postmortem examination showed that 3-HNA markedly reduced ER stress and insulin resistance in the liver tissues and it sensitized insulin signaling in the liver and the skeletal muscle. Our results demonstrated that 3-HNA can sensitize insulin signaling by coping with lipotoxicity-induced ER stress as a chemical chaperone and suggested it holds therapeutic potential for insulin resistance and type 2 diabetes. PMID:26983645

  3. Modulation of deregulated chaperone-mediated autophagy by a phosphopeptide.

    Science.gov (United States)

    Macri, Christophe; Wang, Fengjuan; Tasset, Inmaculada; Schall, Nicolas; Page, Nicolas; Briand, Jean-Paul; Cuervo, Ana Maria; Muller, Sylviane

    2015-01-01

    The P140 peptide, a 21-mer linear peptide (sequence 131-151) generated from the spliceosomal SNRNP70/U1-70K protein, contains a phosphoserine residue at position 140. It significantly ameliorates clinical manifestations in autoimmune patients with systemic lupus erythematosus and enhances survival in MRL/lpr lupus-prone mice. Previous studies showed that after P140 treatment, there is an accumulation of autophagy markers sequestosome 1/p62 and MAP1LC3-II in MRL/lpr B cells, consistent with a downregulation of autophagic flux. We now identify chaperone-mediated autophagy (CMA) as a target of P140 and demonstrate that its inhibitory effect on CMA is likely tied to its ability to alter the composition of HSPA8/HSC70 heterocomplexes. As in the case of HSPA8, expression of the limiting CMA component LAMP2A, which is increased in MRL/lpr B cells, is downregulated after P140 treatment. We also show that P140, but not the unphosphorylated peptide, uses the clathrin-dependent endo-lysosomal pathway to enter into MRL/lpr B lymphocytes and accumulates in the lysosomal lumen where it may directly hamper lysosomal HSPA8 chaperoning functions, and also destabilize LAMP2A in lysosomes as a result of its effect on HSP90AA1. This dual effect may interfere with the endogenous autoantigen processing and loading to major histocompatibility complex class II molecules and as a consequence, lead to lower activation of autoreactive T cells. These results shed light on mechanisms by which P140 can modulate lupus disease and exert its tolerogenic activity in patients. The unique selective inhibitory effect of the P140 peptide on CMA may be harnessed in other pathological conditions in which reduction of CMA activity would be desired. PMID:25719862

  4. Rapid induction of Alternative Lengthening of Telomeres by depletion of the histone chaperone ASF1

    OpenAIRE

    O'Sullivan, Roderick J; Arnoult, Nausica; Daniel H Lackner; Oganesian, Liana; Haggblom, Candy; Corpet, Armelle; Almouzni, Genevieve; Karlseder, Jan

    2014-01-01

    The mechanism of activation of the Alternative Lengthening of Telomeres (ALT) pathway of mammalian chromosome end maintenance has remained an unresolved issue. We have discovered that co-depletion of the histone chaperones ASF1a and ASF1b in human cells induced all hallmarks of ALT in both primary and cancer cells. These included the formation of ALT associated PML bodies (APBs), extra-chromosomal telomeric DNA species an elevated frequency of telomeric sister chromatid exchanges (t-SCE) even...

  5. Rescue of vasopressin V2 receptor mutants by chemical chaperones: specificity and mechanism.

    OpenAIRE

    Robben, J.H.; Sze, M.; Knoers, N.V.A.M.; Deen, P. M. T.

    2006-01-01

    Because missense mutations in genetic diseases of membrane proteins often result in endoplasmic reticulum (ER) retention of functional proteins, drug-induced rescue of their cell surface expression and understanding the underlying mechanism are of clinical value. To study this, we tested chemical chaperones and sarco(endo)plasmic reticulum Ca2+ ATPase pump inhibitors on Madin-Darby canine kidney cells expressing nine ER-retained vasopressin type-2 receptor (V2R) mutants involved in nephrogeni...

  6. Single molecule DNA interaction kinetics of retroviral nucleic acid chaperone proteins

    Science.gov (United States)

    Williams, Mark

    2010-03-01

    Retroviral nucleocapsid (NC) proteins are essential for several viral replication processes including specific genomic RNA packaging and reverse transcription. The nucleic acid chaperone activity of NC facilitates the latter process. In this study, we use single molecule biophysical methods to quantify the DNA interactions of wild type and mutant human immunodeficiency virus type 1 (HIV-1) NC and Gag and human T-cell leukemia virus type 1 (HTLV-1) NC. We find that the nucleic acid interaction properties of these proteins differ significantly, with HIV-1 NC showing rapid protein binding kinetics, significant duplex destabilization, and strong DNA aggregation, all properties that are critical components of nucleic acid chaperone activity. In contrast, HTLV-1 NC exhibits significant destabilization activity but extremely slow DNA interaction kinetics and poor aggregating capability, which explains why HTLV-1 NC is a poor nucleic acid chaperone. To understand these results, we developed a new single molecule method for quantifying protein dissociation kinetics, and applied this method to probe the DNA interactions of wild type and mutant HIV-1 and HTLV-1 NC. We find that mutations to aromatic and charged residues strongly alter the proteins' nucleic acid interaction kinetics. Finally, in contrast to HIV-1 NC, HIV-1 Gag, the nucleic acid packaging protein that contains NC as a domain, exhibits relatively slow binding kinetics, which may negatively impact its ability to act as a nucleic acid chaperone.

  7. Performance improvement of silicon solar cells by nanoporous silicon coating

    Directory of Open Access Journals (Sweden)

    Dzhafarov T. D.

    2012-04-01

    Full Text Available In the present paper the method is shown to improve the photovoltaic parameters of screen-printed silicon solar cells by nanoporous silicon film formation on the frontal surface of the cell using the electrochemical etching. The possible mechanisms responsible for observed improvement of silicon solar cell performance are discussed.

  8. Evidence for alternative quaternary structure in a bacterial Type III secretion system chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Barta, Michael L.; Zhang, Lingling; Picking, Wendy L.; Geisbrecht, Brian V. (UMKC); (OKLU)

    2010-10-05

    Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg) C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. In this study, we present the 3.3 {angstrom} crystal structure of an amino-terminally truncated form (residues 10-155, denoted IpgC10-155) of the class II chaperone IpgC from Shigella flexneri. Our structure demonstrates an alternative quaternary arrangement to that previously described for a carboxy-terminally truncated variant of IpgC (IpgC{sup 1-151}). Specifically, we observe a rotationally-symmetric 'head-to-head' dimerization interface that is far more similar to that previously described for SycD from Yersinia enterocolitica than to IpgC1-151. The IpgC structure presented here displays major differences in the amino terminal region, where extended coil-like structures are seen, as opposed to the short, ordered alpha helices and asymmetric dimerization interface seen within IpgC{sup 1-151}. Despite these differences, however, both modes of dimerization support chaperone activity, as judged by a copurification assay with a recombinant form of the translocator protein, IpaB. Conclusions: From primary to quaternary structure, these results presented here suggest that a symmetric dimerization interface is conserved across bacterial class II chaperones. In light of previous data which have described the structure and function of asymmetric dimerization, our results raise the possibility that class II chaperones may

  9. Evidence for alternative quaternary structure in a bacterial Type III secretion system chaperone

    Directory of Open Access Journals (Sweden)

    Picking Wendy L

    2010-07-01

    Full Text Available Abstract Background Type III secretion systems are a common virulence mechanism in many Gram-negative bacterial pathogens. These systems use a nanomachine resembling a molecular needle and syringe to provide an energized conduit for the translocation of effector proteins from the bacterial cytoplasm to the host cell cytoplasm for the benefit of the pathogen. Prior to translocation specialized chaperones maintain proper effector protein conformation. The class II chaperone, Invasion plasmid gene (Ipg C, stabilizes two pore forming translocator proteins. IpgC exists as a functional dimer to facilitate the mutually exclusive binding of both translocators. Results In this study, we present the 3.3 Å crystal structure of an amino-terminally truncated form (residues 10-155, denoted IpgC10-155 of the class II chaperone IpgC from Shigella flexneri. Our structure demonstrates an alternative quaternary arrangement to that previously described for a carboxy-terminally truncated variant of IpgC (IpgC1-151. Specifically, we observe a rotationally-symmetric "head-to- head" dimerization interface that is far more similar to that previously described for SycD from Yersinia enterocolitica than to IpgC1-151. The IpgC structure presented here displays major differences in the amino terminal region, where extended coil-like structures are seen, as opposed to the short, ordered alpha helices and asymmetric dimerization interface seen within IpgC1-151. Despite these differences, however, both modes of dimerization support chaperone activity, as judged by a copurification assay with a recombinant form of the translocator protein, IpaB. Conclusions From primary to quaternary structure, these results presented here suggest that a symmetric dimerization interface is conserved across bacterial class II chaperones. In light of previous data which have described the structure and function of asymmetric dimerization, our results raise the possibility that class II

  10. Functionalized Graphitic Supports for Improved Fuel Cell Catalyst Stability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) together with the University of Connecticut (UCONN) proposes to demonstrate the improved fuel cell catalyst support durability offered...

  11. Chaperone therapy for Krabbe disease: potential for late-onset GALC mutations.

    Science.gov (United States)

    Hossain, Mohammad Arif; Higaki, Katsumi; Saito, Seiji; Ohno, Kazuki; Sakuraba, Hitoshi; Nanba, Eiji; Suzuki, Yoshiyuki; Ozono, Keiichi; Sakai, Norio

    2015-09-01

    Krabbe disease is an autosomal recessive leukodystrophy caused by a deficiency of the galactocerebrosidase (GALC) enzyme. Hematopoietic stem cells transplantation is the only available treatment option for pre-symptomatic patients. We have previously reported the chaperone effect of N-octyl-4-epi-β-valienamine (NOEV) on mutant GM1 β-galactosidase proteins, and in a murine GM1-gangliosidosis model. In this study, we examined its chaperone effect on mutant GALC proteins. We found that NOEV strongly inhibited GALC activity in cell lysates of GALC-transfected COS1 cells. In vitro NOEV treatment stabilized GALC activity under heat denaturation conditions. We also examined the effect of NOEV on cultured COS1 cells expressing mutant GALC activity and human skin fibroblasts from Krabbe disease patients: NOEV significantly increased the enzyme activity of mutants of late-onset forms. Moreover, we confirmed that NOEV could enhance the maturation of GALC precursor to its mature active form. Model structural analysis showed NOEV binds to the active site of human GALC protein. These results, for the first time, provide clear evidence that NOEV is a chaperone with promising potential for patients with Krabbe disease resulting from the late-onset mutations. PMID:26108143

  12. Bioactive Metabolites from Chaetomium aureum: Structure Elucidation and Inhibition of the Hsp90 Machine Chaperoning Activity

    Science.gov (United States)

    Kabbaj, Fatima Zahra; Lu, Su; Faouzi, My El Abbés; Meddah, Bouchra; Proksch, Peter; Cherrah, Yahya; Altenbach, Hans-Josef; Aly, Amal H.; Chadli, Ahmed; Debbab, Abdessamad

    2014-01-01

    Chemical investigation of the EtOAc extract of the fungus Chaetomium aureum, an endophyte of the Moroccan medicinal plant Thymelaea lythroides, afforded one new resorcinol derivative named chaetorcinol, together with five known metabolites. The structures of the isolated compounds were determined on the basis of one- and two-dimensional NMR spectroscopy and high-resolution mass spectrometry as well as by comparison with the literature. All compounds were tested for their activity towards the Hsp90 chaperoning machine in vitro using the progesterone receptor (PR) and rabbit reticulocyte lysate (RRL). Among the isolated compounds, only sclerotiorin efficiently inhibited the Hsp90 machine chaperoning activity. However, sclerotiorin showed no cytotoxic effect on breast cancer Hs578T, MDA-MB-231 and prostate cancer LNCaP cell lines. Interestingly, deacetylation of sclerotiorin increased its cytotoxicity toward the tested cell lines over a period of 48h. PMID:25482429

  13. An improved hydrothermal diamond anvil cell

    Science.gov (United States)

    Li, Jiankang; Bassett, W. A.; Chou, I.-Ming; Ding, Xin; Li, Shenghu; Wang, Xinyan

    2016-05-01

    A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces. The HDAC-VT having three driver screws offers the advantage of greater control and stability even though it sacrifices some of the size of solid angle. The greater control allows better sealing of samples, while greater stability results in longer survival for anvils and ceramic parts. This improved design retains several beneficial features of the original HDAC-V as well. These include the small collar that surrounds the heater and sample chamber forming an Ar + H2 gas chamber to protect diamonds and their heating parts from being oxidized. Three linear ball bearings, when used, fit to the three posts prevent seizing that can result from deterioration of lubricant at high temperatures. Positioning the posts and bearings outside of the gas chamber as in HDAC-V also prevents seizing and possible deformation due to overheating. In order to control the heating rate precisely with computer software, we use Linkam T95 and have replaced the Linkam 1400XY heating stage with the HDAC-VT allowing the HDAC to be heated to 950 °C at a rate from 0.01 °C/min to 50 °C/min. We have used the HDAC-VT and Linkam T95 to observe in situ nucleation and growth of zabuyelite in aqueous fluid and to homogenize melt inclusions in quartz from three porphyry deposits in Shanxi, China.

  14. A Clp/Hsp100 Chaperone Functions in Myxococcus xanthus Sporulation and Self-Organization

    OpenAIRE

    Yan, Jinyuan; Garza, Anthony G.; Michael D. Bradley; Welch, Roy D.

    2012-01-01

    The Clp/Hsp100 proteins are chaperones that play a role in protein degradation and reactivation. In bacteria, they exhibit a high degree of pleiotropy, affecting both individual and multicellular phenotypes. In this article, we present the first characterization of a Clp/Hsp100 homolog in Myxococcus xanthus (MXAN_4832 gene locus). Deletion of MXAN_4832 causes defects in both swarming and aggregation related to cell motility and the production of fibrils, which are an important component of th...

  15. Structure of a Chaperone-Usher Pilus reveals the molecular basis of rod uncoiling

    OpenAIRE

    Hospenthal, M. K.; Redzej, A.; Dodson, K.; Ukleja, M.; Frenz, B.; Rodrigues, C; Hultgren, S. J.; DiMaio, F.; Egelman, E. H.; Waksman, G

    2016-01-01

    Summary Types 1 and P pili are prototypical bacterial cell-surface appendages playing essential roles in mediating adhesion of bacteria to the urinary tract. These pili, assembled by the chaperone-usher pathway, are polymers of pilus subunits assembling into two parts: a thin, short tip fibrillum at the top, mounted on a long pilus rod. The rod adopts a helical quaternary structure and is thought to play essential roles: its formation may drive pilus extrusion by preventing backsliding of the...

  16. The Hsp90 Chaperone Complex Regulates GDI-dependent Rab Recycling

    OpenAIRE

    Chen, Christine Y.; Balch, William E.

    2006-01-01

    Rab GTPase regulated hubs provide a framework for an integrated coding system, the membrome network, that controls the dynamics of the specialized exocytic and endocytic membrane architectures found in eukaryotic cells. Herein, we report that Rab recycling in the early exocytic pathways involves the heat-shock protein (Hsp)90 chaperone system. We find that Hsp90 forms a complex with guanine nucleotide dissociation inhibitor (GDI) to direct recycling of the client substrate Rab1 required for e...

  17. Multispectral fingerprinting for improved in vivo cell dynamics analysis

    Directory of Open Access Journals (Sweden)

    Cooper Cameron HJ

    2010-09-01

    Full Text Available Abstract Background Tracing cell dynamics in the embryo becomes tremendously difficult when cell trajectories cross in space and time and tissue density obscure individual cell borders. Here, we used the chick neural crest (NC as a model to test multicolor cell labeling and multispectral confocal imaging strategies to overcome these roadblocks. Results We found that multicolor nuclear cell labeling and multispectral imaging led to improved resolution of in vivo NC cell identification by providing a unique spectral identity for each cell. NC cell spectral identity allowed for more accurate cell tracking and was consistent during short term time-lapse imaging sessions. Computer model simulations predicted significantly better object counting for increasing cell densities in 3-color compared to 1-color nuclear cell labeling. To better resolve cell contacts, we show that a combination of 2-color membrane and 1-color nuclear cell labeling dramatically improved the semi-automated analysis of NC cell interactions, yet preserved the ability to track cell movements. We also found channel versus lambda scanning of multicolor labeled embryos significantly reduced the time and effort of image acquisition and analysis of large 3D volume data sets. Conclusions Our results reveal that multicolor cell labeling and multispectral imaging provide a cellular fingerprint that may uniquely determine a cell's position within the embryo. Together, these methods offer a spectral toolbox to resolve in vivo cell dynamics in unprecedented detail.

  18. Conserved C-terminal nascent peptide binding domain of HYPK facilitates its chaperone-like activity

    Indian Academy of Sciences (India)

    Swasti Raychaudhuri; Rachana Banerjee; Subhasish Mukhopadhyay; Nitai P Bhattacharyya

    2014-09-01

    Human HYPK (Huntingtin Yeast-two-hybrid Protein K) is an intrinsically unstructured chaperone-like protein with no sequence homology to known chaperones. HYPK is also known to be a part of ribosome-associated protein complex and present in polysomes. The objective of the present study was to investigate the evolutionary influence on HYPK primary structure and its impact on the protein’s function. Amino acid sequence analysis revealed 105 orthologs of human HYPK from plants, lower invertebrates to mammals. C-terminal part of HYPK was found to be particularly conserved and to contain nascent polypeptide-associated alpha subunit (NPAA) domain. This region experiences highest selection pressure, signifying its importance in the structural and functional evolution. NPAA domain of human HYPK has unique amino acid composition preferring glutamic acid and happens to be more stable from a conformational point of view having higher content of -helices than the rest. Cell biology studies indicate that overexpressed C-terminal human HYPK can interact with nascent proteins, co-localizes with huntingtin, increases cell viability and decreases caspase activities in Huntington’s disease (HD) cell culture model. This domain is found to be required for the chaperone-like activity of HYPK in vivo. Our study suggested that by virtue of its flexibility and nascent peptide binding activity, HYPK may play an important role in assisting protein (re)folding.

  19. Histone Chaperone HIRA in Regulation of Transcription Factor RUNX1.

    Science.gov (United States)

    Majumder, Aditi; Syed, Khaja Mohieddin; Joseph, Sunu; Scambler, Peter J; Dutta, Debasree

    2015-05-22

    RUNX1 (Runt-related transcription factor 1) is indispensable for the generation of hemogenic endothelium. However, the regulation of RUNX1 during this developmental process is poorly understood. We investigated the role of the histone chaperone HIRA (histone cell cycle regulation-defective homolog A) from this perspective and report that HIRA significantly contributes toward the regulation of RUNX1 in the transition of differentiating mouse embryonic stem cells from hemogenic to hematopoietic stage. Direct interaction of HIRA and RUNX1 activates the downstream targets of RUNX1 implicated in generation of hematopoietic stem cells. At the molecular level, HIRA-mediated incorporation of histone H3.3 variant within the Runx1 +24 mouse conserved noncoding element is essential for the expression of Runx1 during endothelial to hematopoietic transition. An inactive chromatin at the intronic enhancer of Runx1 in absence of HIRA significantly repressed the transition of cells from hemogenic to hematopoietic fate. We expect that the HIRA-RUNX1 axis might open up a novel approach in understanding leukemogenesis in future. PMID:25847244

  20. A simple tool to improve pluripotent stem cell differentiation

    OpenAIRE

    Chetty, Sundari; Pagliuca, Felicia Walton; Honore, Christian; Kweudjeu, Anastasie; Rezania, Alireza; Melton, Douglas A.

    2013-01-01

    We develop a method to overcome previously documented restrictions on the differentiation propensities of pluripotent stem cells. Culturing pluripotent stem cells in dimethylsulfoxide (DMSO) activates the retinoblastoma protein, increases the proportion of cells in the early G1 phase of the cell cycle, and subsequently improves their competency for directed differentiation into multiple lineages in more than 25 stem cell lines. DMSO treatment also promotes terminal differentiation into functi...

  1. Didymium compound improves nickel-cadmium cell

    Science.gov (United States)

    1965-01-01

    Nickel electrodes impregnated with an additive solution of didymium hydrate and nitric acid mixed with nickel nitrate increases ampere-hour capacity of cells and does not affect the voltage characteristics.

  2. Organic Solar Cells Performances Improvement Induced by Interface Buffer Layers

    OpenAIRE

    Bernède, J. C.; Godoy, A.; Cattin, L; Diaz, F. R.; MORSLI, M; Valle, M. A. del

    2010-01-01

    In the last 22 years that have elapsed since the pioneering work of Tang [Tang, Appl. Phys. Lett., 1986], significant improvement in the fundamental understanding and cells construction have led to efficiencies higher than 6%. The new concept of polymer:fullerene BHJ solar cells has allowed dramatic improvements in devices efficiency. It has induced a healthy competition with the multi-heterojunction devices base on small organic molecules, which induces significant progress in both cells fam...

  3. Stem Cell Imaging: Tools to Improve Cell Delivery and Viability

    Science.gov (United States)

    Wang, Junxin; Jokerst, Jesse V.

    2016-01-01

    Stem cell therapy (SCT) has shown very promising preclinical results in a variety of regenerative medicine applications. Nevertheless, the complete utility of this technology remains unrealized. Imaging is a potent tool used in multiple stages of SCT and this review describes the role that imaging plays in cell harvest, cell purification, and cell implantation, as well as a discussion of how imaging can be used to assess outcome in SCT. We close with some perspective on potential growth in the field. PMID:26880997

  4. Principles of Quantitative Estimation of the Chaperone-Like Activity

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Molecular chaperones are able to interact with unfolded states of the protein molecule preventing their aggregation and facilitating folding of the polypeptide chain into the native structure. An understanding of the mechanism of protein aggregation is required to estimate the efficiency of action of chaperones in the test-systems based on the suppression of aggregation of protein substrates. The kinetic regimes of aggregation of proteins are discussed. The analysis of the aggregation kinetics of proteins shows that after passing the lag phase, aggregation follows, as a rule, first order kinetics. The quantitative characterization methods of the ability of chaperones to prevent aggregation of protein substrates have been elaborated.

  5. TRP and Rhodopsin Transport Depends on Dual XPORT ER Chaperones Encoded by an Operon

    Directory of Open Access Journals (Sweden)

    Zijing Chen

    2015-10-01

    Full Text Available TRP channels and G protein-coupled receptors (GPCRs play critical roles in sensory reception. However, the identities of the chaperones that assist GPCRs in translocating from the endoplasmic reticulum (ER are limited, and TRP ER chaperones are virtually unknown. The one exception for TRPs is Drosophila XPORT. Here, we show that the xport locus is bicistronic and encodes unrelated transmembrane proteins, which enable the signaling proteins that initiate and culminate phototransduction, rhodopsin 1 (Rh1 and TRP, to traffic to the plasma membrane. XPORT-A and XPORT-B are ER proteins, and loss of either has a profound impact on TRP and Rh1 targeting to the light-sensing compartment of photoreceptor cells. XPORT-B complexed in vivo with the Drosophila homolog of the mammalian HSP70 protein, GRP78/BiP, which, in turn, associated with Rh1. Our work highlights a coordinated network of chaperones required for the biosynthesis of the TRP channel and rhodopsin in Drosophila photoreceptor cells.

  6. TRP and Rhodopsin Transport Depends on Dual XPORT ER Chaperones Encoded by an Operon.

    Science.gov (United States)

    Chen, Zijing; Chen, Hsiang-Chin; Montell, Craig

    2015-10-20

    TRP channels and G protein-coupled receptors (GPCRs) play critical roles in sensory reception. However, the identities of the chaperones that assist GPCRs in translocating from the endoplasmic reticulum (ER) are limited, and TRP ER chaperones are virtually unknown. The one exception for TRPs is Drosophila XPORT. Here, we show that the xport locus is bicistronic and encodes unrelated transmembrane proteins, which enable the signaling proteins that initiate and culminate phototransduction, rhodopsin 1 (Rh1) and TRP, to traffic to the plasma membrane. XPORT-A and XPORT-B are ER proteins, and loss of either has a profound impact on TRP and Rh1 targeting to the light-sensing compartment of photoreceptor cells. XPORT-B complexed in vivo with the Drosophila homolog of the mammalian HSP70 protein, GRP78/BiP, which, in turn, associated with Rh1. Our work highlights a coordinated network of chaperones required for the biosynthesis of the TRP channel and rhodopsin in Drosophila photoreceptor cells. PMID:26456832

  7. A novel protease activity assay using a protease-responsive chaperone protein

    International Nuclear Information System (INIS)

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  8. Technological Improvements in the DARHT II Accelerator Cells

    CERN Document Server

    Prichard, Benjamin A; Bieniosek, Frank; Briggs, Richard J; Chow, Ken; Fawley, William M; Genoni, Thomas E; Henestroza, Enrique; Hughes, Thomas P; Kang, Mike; Nielsen, Kurt; Reginato, Lou; Waldron, William

    2005-01-01

    DARHT employs two perpendicular electron Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. The second axis, DARHT II, features an 18 MeV, 2-kA, 2-microsecond accelerator. DARHT II accelerator cells have undergone a series of test and modeling efforts to fully understand their sub par performance. These R&D efforts have led to a better understanding of Linear Induction Accelerator physics for the unique DARHT II design. Specific improvements have been identified and tested. Improvements in the cell oil region, the cell vacuum region, and the PFNs have been implemented in the prototype units that have doubled the cell's performance. A series of prototype acceptance test are underway on a number of prototype units to demonstrate that the required cell lifetime is met at the improved performance levels. Early acceptance tests indicate that the lifetime requirements are being exceeded. The shortcomings of the previous design are summarized. The improvements to...

  9. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone.

    Directory of Open Access Journals (Sweden)

    Hongjie Xia

    2015-07-01

    Full Text Available RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71, which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3'-to-5' unwinds RNA helices in an adenosine triphosphate (ATP-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16, another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings

  10. The F4 fimbrial chaperone FaeE is stable as a monomer that does not require self-capping of its pilin-interactive surfaces.

    Science.gov (United States)

    Van Molle, Inge; Moonens, Kristof; Buts, Lieven; Garcia-Pino, Abel; Panjikar, Santosh; Wyns, Lode; De Greve, Henri; Bouckaert, Julie

    2009-05-01

    Many Gram-negative bacteria use the chaperone-usher pathway to express adhesive surface structures, such as fimbriae, in order to mediate attachment to host cells. Periplasmic chaperones are required to shuttle fimbrial subunits or pilins through the periplasmic space in an assembly-competent form. The chaperones cap the hydrophobic surface of the pilins through a donor-strand complementation mechanism. FaeE is the periplasmic chaperone required for the assembly of the F4 fimbriae of enterotoxigenic Escherichia coli. The FaeE crystal structure shows a dimer formed by interaction between the pilin-binding interfaces of the two monomers. Dimerization and tetramerization have been observed previously in crystal structures of fimbrial chaperones and have been suggested to serve as a self-capping mechanism that protects the pilin-interactive surfaces in solution in the absence of the pilins. However, thermodynamic and biochemical data show that FaeE occurs as a stable monomer in solution. Other lines of evidence indicate that self-capping of the pilin-interactive interfaces is not a mechanism that is conservedly applied by all periplasmic chaperones, but is rather a case-specific solution to cap aggregation-prone surfaces. PMID:19390146

  11. Optimizing autologous cell grafts to improve stem cell gene therapy.

    Science.gov (United States)

    Psatha, Nikoletta; Karponi, Garyfalia; Yannaki, Evangelia

    2016-07-01

    Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts. PMID:27106799

  12. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice

    Directory of Open Access Journals (Sweden)

    Mohammadreza Gholami

    2014-02-01

    Conclusion: Administration of melatonin (20 mg/kg simultaneously with transplantation of spermatogonial stem cells in azoospermia mouse testis increases the efficiency of transplantation and improves structural properties of the testes tissue.

  13. The use of a chaperone in obstetrical and gynaecological practice.

    LENUS (Irish Health Repository)

    Afaneh, I

    2010-05-01

    The aim of this study was to assess the use of a chaperone in obstetrical and gynaecological practice in Ireland and to explore patients\\' opinions. Two questionnaires were designed; one for patients and the other one was sent to 145 gynaecologists in Ireland. One hundred and fifty two women took part in this survey of whom 74 were gynaecological and 78 were obstetric patients. Ninety five (65%) patients felt no need for a chaperone during a vaginal examination (VE) by a male doctor. On the other hand 34 (23%) participating women would request a chaperone if being examined by a female doctor. Among clinicians 116 (80%) responded by returning the questionnaire. Overall 60 (52%) always used a chaperone in public practice, in contrast to 24 (27%) in private practice. The study demonstrated that most patients do not wish to have a chaperone during a VE but a small proportion would still request one regardless of the examiner\\'s gender. Patients should be offered the choice of having a chaperone and their opinion should be respected and documented.

  14. The use of a chaperone in obstetrical and gynaecological practice.

    LENUS (Irish Health Repository)

    Afaneh, I

    2012-02-01

    The aim of this study was to assess the use of a chaperone in obstetrical and gynaecological practice in Ireland and to explore patients\\' opinions. Two questionnaires were designed; one for patients and the other one was sent to 145 gynaecologists in Ireland. One hundred and fifty two women took part in this survey of whom 74 were gynaecological and 78 were obstetric patients. Ninety five (65%) patients felt no need for a chaperone during a vaginal examination (VE) by a male doctor. On the other hand 34 (23%) participating women would request a chaperone if being examined by a female doctor. Among clinicians 116 (80%) responded by returning the questionnaire. Overall 60 (52%) always used a chaperone in public practice, in contrast to 24 (27%) in private practice. The study demonstrated that most patients do not wish to have a chaperone during a VE but a small proportion would still request one regardless of the examiner\\'s gender. Patients should be offered the choice of having a chaperone and their opinion should be respected and documented.

  15. Chaperoning Roles of Macromolecules Interacting with Proteins in Vivo

    Directory of Open Access Journals (Sweden)

    Baik L. Seong

    2011-03-01

    Full Text Available The principles obtained from studies on molecular chaperones have provided explanations for the assisted protein folding in vivo. However, the majority of proteins can fold without the assistance of the known molecular chaperones, and little attention has been paid to the potential chaperoning roles of other macromolecules. During protein biogenesis and folding, newly synthesized polypeptide chains interact with a variety of macromolecules, including ribosomes, RNAs, cytoskeleton, lipid bilayer, proteolytic system, etc. In general, the hydrophobic interactions between molecular chaperones and their substrates have been widely believed to be mainly responsible for the substrate stabilization against aggregation. Emerging evidence now indicates that other features of macromolecules such as their surface charges, probably resulting in electrostatic repulsions, and steric hindrance, could play a key role in the stabilization of their linked proteins against aggregation. Such stabilizing mechanisms are expected to give new insights into our understanding of the chaperoning functions for de novo protein folding. In this review, we will discuss the possible chaperoning roles of these macromolecules in de novo folding, based on their charge and steric features.

  16. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    Energy Technology Data Exchange (ETDEWEB)

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A. (McMaster U.); (Melbourne); (Toronto); (Deakin); (HWMRI)

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  17. Molecular functions of the histone acetyltransferase chaperone complex Rtt109-Vps75

    Energy Technology Data Exchange (ETDEWEB)

    Berndsen, Christopher E; Tsubota, Toshiaki; Lindner, Scott E; Lee, Susan; Holton, James M; Kaufman, Paul D; Keck, James L; Denu, John M [UMASS, MED; (UCB); (UW-MED)

    2010-01-12

    Histone acetylation and nucleosome remodeling regulate DNA damage repair, replication and transcription. Rtt109, a recently discovered histone acetyltransferase (HAT) from Saccharomyces cerevisiae, functions with the histone chaperone Asf1 to acetylate lysine K56 on histone H3 (H3K56), a modification associated with newly synthesized histones. In vitro analysis of Rtt109 revealed that Vps75, a Nap1 family histone chaperone, could also stimulate Rtt109-dependent acetylation of H3K56. However, the molecular function of the Rtt109-Vps75 complex remains elusive. Here we have probed the molecular functions of Vps75 and the Rtt109-Vps75 complex through biochemical, structural and genetic means. We find that Vps75 stimulates the kcat of histone acetylation by {approx}100-fold relative to Rtt109 alone and enhances acetylation of K9 in the H3 histone tail. Consistent with the in vitro evidence, cells lacking Vps75 showed a substantial reduction (60%) in H3K9 acetylation during S phase. X-ray structural, biochemical and genetic analyses of Vps75 indicate a unique, structurally dynamic Nap1-like fold that suggests a potential mechanism of Vps75-dependent activation of Rtt109. Together, these data provide evidence for a multifunctional HAT-chaperone complex that acetylates histone H3 and deposits H3-H4 onto DNA, linking histone modification and nucleosome assembly.

  18. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein

    Science.gov (United States)

    Sleiman, Dona; Bernacchi, Serena; Xavier Guerrero, Santiago; Brachet, Franck; Larue, Valéry; Paillart, Jean-Christophe; Tisné, Carine

    2014-01-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55Gag, reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNALys3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity. PMID:25144404

  19. The DNAJA2 Substrate Release Mechanism Is Essential for Chaperone-mediated Folding*

    Science.gov (United States)

    Baaklini, Imad; Wong, Michael J. H.; Hantouche, Christine; Patel, Yogita; Shrier, Alvin; Young, Jason C.

    2012-01-01

    DNAJA1 (DJA1/Hdj2) and DNAJA2 (DJA2) are the major J domain partners of human Hsp70/Hsc70 chaperones. Although they have overall similarity with the well characterized type I co-chaperones from yeast and bacteria, they are biologically distinct, and their functional mechanisms are poorly characterized. We identified DJA2-specific activities in luciferase folding and repression of human ether-a-go-go-related gene (HERG) trafficking that depended on its expression levels in cells. Mutations in different internal domains of DJA2 abolished these effects. Using purified proteins, we addressed the mechanistic defects. A mutant lacking the region between the zinc finger motifs (DJA2-Δm2) was able to bind substrate similar to wild type but was incapable of releasing substrate during its transfer to Hsc70. The equivalent mutation in DJA1 also abolished its substrate release. A DJA2 mutant (DJA-221), which had its C-terminal dimerization region replaced by that of DJA1, was inactive but retained its ability to release substrate. The release mechanism required the J domain and ATP hydrolysis by Hsc70, although the nucleotide dependence diverged between DJA2 and DJA1. Limited proteolysis suggested further conformational differences between the two wild-type co-chaperones and the mutants. Our results demonstrate an essential role of specific DJA domains in the folding mechanism of Hsc70. PMID:23091061

  20. The DNAJA2 substrate release mechanism is essential for chaperone-mediated folding.

    Science.gov (United States)

    Baaklini, Imad; Wong, Michael J H; Hantouche, Christine; Patel, Yogita; Shrier, Alvin; Young, Jason C

    2012-12-01

    DNAJA1 (DJA1/Hdj2) and DNAJA2 (DJA2) are the major J domain partners of human Hsp70/Hsc70 chaperones. Although they have overall similarity with the well characterized type I co-chaperones from yeast and bacteria, they are biologically distinct, and their functional mechanisms are poorly characterized. We identified DJA2-specific activities in luciferase folding and repression of human ether-a-go-go-related gene (HERG) trafficking that depended on its expression levels in cells. Mutations in different internal domains of DJA2 abolished these effects. Using purified proteins, we addressed the mechanistic defects. A mutant lacking the region between the zinc finger motifs (DJA2-Δm2) was able to bind substrate similar to wild type but was incapable of releasing substrate during its transfer to Hsc70. The equivalent mutation in DJA1 also abolished its substrate release. A DJA2 mutant (DJA-221), which had its C-terminal dimerization region replaced by that of DJA1, was inactive but retained its ability to release substrate. The release mechanism required the J domain and ATP hydrolysis by Hsc70, although the nucleotide dependence diverged between DJA2 and DJA1. Limited proteolysis suggested further conformational differences between the two wild-type co-chaperones and the mutants. Our results demonstrate an essential role of specific DJA domains in the folding mechanism of Hsc70. PMID:23091061

  1. Enhanced and sustained CD8+ T cell responses with an adenoviral vector-based hepatitis C virus vaccine encoding NS3 linked to the MHC class II chaperone protein invariant chain

    DEFF Research Database (Denmark)

    Mikkelsen, Marianne; Holst, Peter Johannes; Bukh, Jens;

    2011-01-01

    Potent and broad cellular immune responses against the nonstructural (NS) proteins of hepatitis C virus (HCV) are associated with spontaneous viral clearance. In this study, we have improved the immunogenicity of an adenovirus (Ad)-based HCV vaccine by fusing NS3 from HCV (Strain J4; Genotype 1b...... memory. Functionally, the AdIiNS3-vaccinated mice had a significantly increased cytotoxic capacity compared with the AdNS3 group. The AdIiNS3-induced CD8(+) T cells protected mice from infection with recombinant vaccinia virus expressing HCV NS3 of heterologous 1b strains, and studies in knockout mice...... demonstrated that this protection was mediated primarily through IFN-¿ production. On the basis of these promising results, we suggest that this vaccination technology should be evaluated further in the chimpanzee HCV challenge model....

  2. Nanoscale dimples for improved absorption in organic solar cells

    DEFF Research Database (Denmark)

    Goszczak, Arkadiusz Jaroslaw; Rubahn, Horst-Günter; Madsen, Morten

    Organic solar cells (OSC’s) have attracted much attention in the past years due to their potential low-cost, light-weight and mechanical flexibility. A method for improving the power conversion efficiencies of the devices is by incorporating structured electrodes in the solar cell architecture...... ordered and discorded dimple arrangement and their contribution to light management is presented. Such dimples can later be employed to fabricate nanostructured electrodes in P3HT/PCBM organic solar cells....

  3. Acetylation Targets the M2 Isoform of Pyruvate Kinase for Degradation through Chaperone-Mediated Autophagy and Promotes Tumor Growth

    Science.gov (United States)

    Lv, Lei; Li, Dong; Zhao, Di; Lin, Ruiting; Chu, Yajing; Zhang, Heng; Zha, Zhengyu; Liu, Ying; Li, Zi; Xu, Yanping; Wang, Gang; Huang, Yiran; Xiong, Yue; Guan, Kun-Liang; Lei, Qun-Ying

    2016-01-01

    SUMMARY Most tumor cells take up more glucose than normal cells but metabolize glucose via glycolysis even in the presence of normal levels of oxygen, a phenomenon known as the Warburg effect. Tumor cells commonly express the embryonic M2 isoform of pyruvate kinase (PKM2) that may contribute to the metabolism shift from oxidative phosphorylation to aerobic glycolysis and tumorigenesis. Here we show that PKM2 is acetylated on lysine 305 and that this acetylation is stimulated by high glucose concentration. PKM2 K305 acetylation decreases PKM2 enzyme activity and promotes its lysosomal-dependent degradation via chaperone-mediated autophagy (CMA). Acetylation increases PKM2 interaction with HSC70, a chaperone for CMA, and association with lysosomes. Ectopic expression of an acetylation mimetic K305Q mutant accumulates glycolytic intermediates and promotes cell proliferation and tumor growth. These results reveal an acetylation regulation of pyruvate kinase and the link between lysine acetylation and CMA. PMID:21700219

  4. Ciprofloxacin Improves the Stemness of Human Dermal Papilla Cells

    Directory of Open Access Journals (Sweden)

    Chayanin Kiratipaiboon

    2016-01-01

    Full Text Available Improvement in the expansion method of adult stem cells may augment their use in regenerative therapy. Using human dermal papilla cell line as well as primary dermal papilla cells as model systems, the present study demonstrated that ciprofloxacin treatment could prevent the loss of stemness during culture. Clonogenicity and stem cell markers of dermal papilla cells were shown to gradually decrease in the culture in a time-dependent manner. Treatment of the cells with nontoxic concentrations of ciprofloxacin could maintain both stem cell morphology and clonogenicity, as well as all stem cells markers. We found that ciprofloxacin exerted its effect through ATP-dependent tyrosine kinase/glycogen synthase kinase3β dependent mechanism which in turn upregulated β-catenin. Besides, ciprofloxacin was shown to induce epithelial-mesenchymal transition in DPCs as the transcription factors ZEB1 and Snail were significantly increased. Furthermore, the self-renewal proteins of Wnt/β-catenin pathway, namely, Nanog and Oct-4 were significantly upregulated in the ciprofloxacin-treated cells. The effects of ciprofloxacin in preserving stem cell features were confirmed in the primary dermal papilla cells directly obtained from human hair follicles. Together, these results revealed a novel application of ciprofloxacin for stem cell maintenance and provided the underlying mechanisms that are responsible for the stemness in dermal papilla cells.

  5. Formation of nanofilms on cell surfaces to improve the insertion efficiency of a nanoneedle into cells

    Energy Technology Data Exchange (ETDEWEB)

    Amemiya, Yosuke [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Kawano, Keiko [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-26 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Matsusaki, Michiya; Akashi, Mitsuru [Department of Applied Chemistry, Graduate School of Engineering Science, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nakamura, Noriyuki [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-26 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Nakamura, Chikashi, E-mail: chikashi-nakamura@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562 (Japan); Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-26 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer We examined the insertion efficiency of nanoneedles into fibroblast and neural cells. Black-Right-Pointing-Pointer Nanofilms formed on cell surfaces improved the insertion efficiency of nanoneedles. Black-Right-Pointing-Pointer Nanofilms improved the insertion efficiency even in Y27632-treated cells. -- Abstract: A nanoneedle, an atomic force microscope (AFM) tip etched to 200 nm in diameter and 10 {mu}m in length, can be inserted into cells with the aid of an AFM and has been used to introduce functional molecules into cells and to analyze intracellular information with minimal cell damage. However, some cell lines have shown low insertion efficiency of the nanoneedle. Improvement in the insertion efficiency of a nanoneedle into such cells is a significant issue for nanoneedle-based cell manipulation and analysis. Here, we have formed nanofilms composed of extracellular matrix molecules on cell surfaces and found that the formation of the nanofilms improved insertion efficiency of a nanoneedle into fibroblast and neural cells. The nanofilms were shown to improve insertion efficiency even in cells in which the formation of actin stress fibers was inhibited by the ROCK inhibitor Y27632, suggesting that the nanofilms with the mesh structure directly contributed to the improved insertion efficiency of a nanoneedle.

  6. Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target

    Science.gov (United States)

    Asim, Mohammad; Massie, Charles E.; Orafidiya, Folake; Pértega-Gomes, Nelma; Warren, Anne Y.; Esmaeili, Mohsen; Selth, Luke A.; Zecchini, Heather I.; Luko, Katarina; Qureshi, Arham; Baridi, Ajoeb; Menon, Suraj; Madhu, Basetti; Escriu, Carlos; Lyons, Scott; Vowler, Sarah L.; Zecchini, Vincent R.; Shaw, Greg; Hessenkemper, Wiebke; Russell, Roslin; Mohammed, Hisham; Stefanos, Niki; Lynch, Andy G.; Grigorenko, Elena; D’Santos, Clive; Taylor, Chris; Lamb, Alastair; Sriranjan, Rouchelle; Yang, Jiali; Stark, Rory; Dehm, Scott M.; Rennie, Paul S.; Carroll, Jason S.; Griffiths, John R.; Tavaré, Simon; Mills, Ian G.; McEwan, Iain J.; Baniahmad, Aria; Tilley, Wayne D.; Neal, David E.

    2016-01-01

    Background: The androgen receptor (AR) is a major drug target in prostate cancer (PCa). We profiled the AR-regulated kinome to identify clinically relevant and druggable effectors of AR signaling. Methods: Using genome-wide approaches, we interrogated all AR regulated kinases. Among these, choline kinase alpha (CHKA) expression was evaluated in benign (n = 195), prostatic intraepithelial neoplasia (PIN) (n = 153) and prostate cancer (PCa) lesions (n = 359). We interrogated how CHKA regulates AR signaling using biochemical assays and investigated androgen regulation of CHKA expression in men with PCa, both untreated (n = 20) and treated with an androgen biosynthesis inhibitor degarelix (n = 27). We studied the effect of CHKA inhibition on the PCa transcriptome using RNA sequencing and tested the effect of CHKA inhibition on cell growth, clonogenic survival and invasion. Tumor xenografts (n = 6 per group) were generated in mice using genetically engineered prostate cancer cells with inducible CHKA knockdown. Data were analyzed with χ2 tests, Cox regression analysis, and Kaplan-Meier methods. All statistical tests were two-sided. Results: CHKA expression was shown to be androgen regulated in cell lines, xenografts, and human tissue (log fold change from 6.75 to 6.59, P = .002) and was positively associated with tumor stage. CHKA binds directly to the ligand-binding domain (LBD) of AR, enhancing its stability. As such, CHKA is the first kinase identified as an AR chaperone. Inhibition of CHKA repressed the AR transcriptional program including pathways enriched for regulation of protein folding, decreased AR protein levels, and inhibited the growth of PCa cell lines, human PCa explants, and tumor xenografts. Conclusions: CHKA can act as an AR chaperone, providing, to our knowledge, the first evidence for kinases as molecular chaperones, making CHKA both a marker of tumor progression and a potential therapeutic target for PCa. PMID:26657335

  7. Structural and biochemical characterization of SrcA, a multi-cargo type III secretion chaperone in Salmonella required for pathogenic association with a host.

    Directory of Open Access Journals (Sweden)

    Colin A Cooper

    2010-02-01

    Full Text Available Many Gram-negative bacteria colonize and exploit host niches using a protein apparatus called a type III secretion system (T3SS that translocates bacterial effector proteins into host cells where their functions are essential for pathogenesis. A suite of T3SS-associated chaperone proteins bind cargo in the bacterial cytosol, establishing protein interaction networks needed for effector translocation into host cells. In Salmonella enterica serovar Typhimurium, a T3SS encoded in a large genomic island (SPI-2 is required for intracellular infection, but the chaperone complement required for effector translocation by this system is not known. Using a reverse genetics approach, we identified a multi-cargo secretion chaperone that is functionally integrated with the SPI-2-encoded T3SS and required for systemic infection in mice. Crystallographic analysis of SrcA at a resolution of 2.5 A revealed a dimer similar to the CesT chaperone from enteropathogenic E. coli but lacking a 17-amino acid extension at the carboxyl terminus. Further biochemical and quantitative proteomics data revealed three protein interactions with SrcA, including two effector cargos (SseL and PipB2 and the type III-associated ATPase, SsaN, that increases the efficiency of effector translocation. Using competitive infections in mice we show that SrcA increases bacterial fitness during host infection, highlighting the in vivo importance of effector chaperones for the SPI-2 T3SS.

  8. Improved Cell Culture Method for Growing Contracting Skeletal Muscle Models

    Science.gov (United States)

    Marquette, Michele L.; Sognier, Marguerite A.

    2013-01-01

    An improved method for culturing immature muscle cells (myoblasts) into a mature skeletal muscle overcomes some of the notable limitations of prior culture methods. The development of the method is a major advance in tissue engineering in that, for the first time, a cell-based model spontaneously fuses and differentiates into masses of highly aligned, contracting myotubes. This method enables (1) the construction of improved two-dimensional (monolayer) skeletal muscle test beds; (2) development of contracting three-dimensional tissue models; and (3) improved transplantable tissues for biomedical and regenerative medicine applications. With adaptation, this method also offers potential application for production of other tissue types (i.e., bone and cardiac) from corresponding precursor cells.

  9. Evaluation of structure, chaperone-like activity and protective ability of peroxynitrite modified human α-Crystallin subunits against copper-mediated ascorbic acid oxidation.

    Science.gov (United States)

    Ghahramani, Maryam; Yousefi, Reza; Khoshaman, Kazem; Moghadam, Sogand Sasan; Kurganov, Boris I

    2016-06-01

    The copper-catalyzed oxidation of ascorbic acid (ASA) to dehydroascorbate (DHA) and hydrogen peroxide plays a central role in pathology of cataract diseases during ageing and in diabetic patients. In the current study, the structural feature, chaperone-like activity and protective ability of peroxynitrite (PON) modified αA- and αB-Crystallin (Cry) against copper-mediated ASA oxidation were studied using different spectroscopic measurements and gel mobility shift assay. Upon PON modification, additional to protein structural alteration, the contents of nitrotyrosine, nitrotryptophan, dityrosine and carbonyl groups were significantly increased. Moreover, αB-Cry demonstrates significantly larger capacity for PON modification than αA-Cry. Also, based on the extent of PON modification, these proteins may display an improved chaperone-like activity and enhanced protective ability against copper-mediated ASA oxidation. In the presence of copper ions, chaperone-like activity of both native and PON-modified α-Cry subunits were appreciably improved. Additionally, binding of copper ions to native and PON-modified proteins results in the significant reduction of their solvent exposed hydrophobic patches. Overall, the increase in chaperone-like activity/ASA protective ability of PON-modified α-Cry and additional enhancement of its chaperoning action with copper ions appear to be an important defense mechanism offered by this protein. PMID:26896727

  10. Hsp70-Hsp40 chaperone complex functions in controlling polarized growth by repressing Hsf1-driven heat stress-associated transcription.

    Directory of Open Access Journals (Sweden)

    Aleksandar Vjestica

    Full Text Available How the molecular mechanisms of stress response are integrated at the cellular level remains obscure. Here we show that the cellular polarity machinery in the fission yeast Schizosaccharomyces pombe undergoes dynamic adaptation to thermal stress resulting in a period of decreased Cdc42 activity and altered, monopolar growth. Cells where the heat stress-associated transcription was genetically upregulated exhibit similar growth patterning in the absence of temperature insults. We identify the Ssa2-Mas5/Hsp70-Hsp40 chaperone complex as repressor of the heat shock transcription factor Hsf1. Cells lacking this chaperone activity constitutively activate the heat-stress-associated transcriptional program. Interestingly, they also exhibit intermittent monopolar growth within a physiological temperature range and are unable to adapt to heat stress. We propose that by negatively regulating the heat stress-associated transcription, the Ssa2-Mas5 chaperone system could optimize cellular growth under different temperature regiments.

  11. An improved simulated annealing algorithm for standard cell placement

    Science.gov (United States)

    Jones, Mark; Banerjee, Prithviraj

    1988-01-01

    Simulated annealing is a general purpose Monte Carlo optimization technique that was applied to the problem of placing standard logic cells in a VLSI ship so that the total interconnection wire length is minimized. An improved standard cell placement algorithm that takes advantage of the performance enhancements that appear to come from parallelizing the uniprocessor simulated annealing algorithm is presented. An outline of this algorithm is given.

  12. Continued SOFC cell and stack technology and improved production methods

    Energy Technology Data Exchange (ETDEWEB)

    Wandel, M.; Brodersen, K.; Phair, J. (and others)

    2009-05-15

    Within this project significant results are obtained on a number of very diverse areas ranging from development of cell production, metallic creep in interconnect to assembling and test of stacks with foot print larger than 500 cm2. Out of 38 milestones 28 have been fulfilled and 10 have been partly fulfilled. This project has focused on three main areas: 1) The continued cell development and optimization of manufacturing processes aiming at production of large foot-print cells, improving cell performance and development environmentally more benign production methods. 2) Stack technology - especially stacks with large foot print and improving the stack design with respect to flow geometry and gas leakages. 3) Development of stack components with emphasis on sealing (for 2G as well as 3G), interconnect (coat, architecture and creep) and test development. Production of cells with a foot print larger than 500 cm2 is very difficult due to the brittleness of the cells and great effort has been put into this topic. Eight cells were successfully produced making it possible to assemble and test a real stack thereby giving valuable results on the prospects of stacks with large foot print. However, the yield rate is very low and a significant development to increase this yield lies ahead. Several lessons were learned on the stack level regarding 'large foot print' stacks. Modelling studies showed that the width of the cell primarily is limited by production and handling of the cell whereas the length (in the flow direction) is limited by e.g. pressure drop and necessary manifolding. The optimal cell size in the flow direction was calculated to be between approx20 cm and < 30 cm. From an economical point of view the production yield is crucial and stacks with large foot print cell area are only feasible if the cell production yield is significantly enhanced. Co-casting has been pursued as a production technique due to the possibilities in large scale production

  13. Chaperone-like activities of different molecular forms of beta-casein. Importance of polarity of N-terminal hydrophilic domain.

    Science.gov (United States)

    Yousefi, Reza; Shchutskaya, Yulia Y; Zimny, Jaroslaw; Gaudin, Jean-Charles; Moosavi-Movahedi, Ali A; Muronetz, Vladimir I; Zuev, Yuriy F; Chobert, Jean-Marc; Haertlé, Thomas

    2009-08-01

    As a member of intrinsically unstructured protein family, beta-casein (beta-CN) contains relatively high amount of prolyl residues, adopts noncompact and flexible structure and exhibits chaperone-like activity in vitro. Like many chaperones, native beta-CN does not contain cysteinyl residues and exhibits strong tendencies for self-association. The chaperone-like activities of three recombinant beta-CNs wild type (WT) beta-CN, C4 beta-CN (with cysteinyl residue in position 4) and C208 beta-CN (with cysteinyl residue in position 208), expressed and purified from E. coli, which, consequently, lack the phosphorylated residues, were examined and compared with that of native beta-CN using insulin and alcohol dehydrogenase as target/substrate proteins. The dimers (beta-CND) of C4-beta-CN and C208 beta-CN were also studied and their chaperone-like activities were compared with those of their monomeric forms. Lacking phosphorylation, WT beta-CN, C208 beta-CN, C4 beta-CN and C4 beta-CND exhibited significantly lower chaperone-like activities than native beta-CN. Dimerization of C208 beta-CN with two distal hydrophilic domains considerably improved its chaperone-like activity in comparison with its monomeric form. The obtained results demonstrate the significant role played by the polar contributions of phosphorylated residues and N-terminal hydrophilic domain as important functional elements in enhancing the chaperone-like activity of native beta-CN. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 623-632, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com. PMID:19322774

  14. Improved Membrane Materials for PEM Fuel Cell Application

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  15. High affinity binding of hydrophobic and autoantigenic regions of proinsulin to the 70 kDa chaperone DnaK

    Directory of Open Access Journals (Sweden)

    Schloot Nanette C

    2010-11-01

    Full Text Available Abstract Background Chaperones facilitate proper folding of peptides and bind to misfolded proteins as occurring during periods of cell stress. Complexes of peptides with chaperones induce peptide-directed immunity. Here we analyzed the interaction of (preproinsulin with the best characterized chaperone of the hsp70 family, bacterial DnaK. Results Of a set of overlapping 13-mer peptides of human preproinsulin high affinity binding to DnaK was found for the signal peptide and one further region in each proinsulin domain (A- and B-chain, C-peptide. Among the latter, peptides covering most of the B-chain region B11-23 exhibited strongest binding, which was in the range of known high-affinity DnaK ligands, dissociation equilibrium constant (K'd of 2.2 ± 0.4 μM. The B-chain region B11-23 is located at the interface between two insulin molecules and not accessible in insulin oligomers. Indeed, native insulin oligomers showed very low DnaK affinity (K'd 67.8 ± 20.8 μM whereas a proinsulin molecule modified to prevent oligomerization showed good binding affinity (K'd 11.3 ± 7.8 μM. Conclusions Intact insulin only weakly interacts with the hsp70 chaperone DnaK whereas monomeric proinsulin and peptides from 3 distinct proinsulin regions show substantial chaperone binding. Strongest binding was seen for the B-chain peptide B 11-23. Interestingly, peptide B11-23 represents a dominant autoantigen in type 1 diabetes.

  16. In vivo Study of the Histone Chaperone Activity of Nucleolin by FRAP.

    Science.gov (United States)

    Gaume, Xavier; Monier, Karine; Argoul, Françoise; Mongelard, Fabien; Bouvet, Philippe

    2011-01-01

    Nucleolin is a major nucleolar protein involved in various aspects of ribosome biogenesis such as regulation of polymerase I transcription, pre-RNA maturation, and ribosome assembly. Nucleolin is also present in the nucleoplasm suggesting that its functions are not restricted to nucleoli. Nucleolin possesses, in vitro, chromatin co-remodeler and histone chaperone activities which could explain numerous functions of nucleolin related to the regulation of gene expression. The goal of this report was to investigate the consequences of nucleolin depletion on the dynamics of histones in live cells. Changes in histone dynamics occurring in nucleolin silenced cells were measured by FRAP experiments on eGFP-tagged histones (H2B, H4, and macroH2A). We found that nuclear histone dynamics was impacted in nucleolin silenced cells; in particular we measured higher fluorescence recovery kinetics for macroH2A and H2B but not for H4. Interestingly, we showed that nucleolin depletion also impacted the dissociation constant rate of H2B and H4. Thus, in live cells, nucleolin could play a role in chromatin accessibility by its histone chaperone and co-remodeling activities. PMID:21403913

  17. In vivo Study of the Histone Chaperone Activity of Nucleolin by FRAP

    Directory of Open Access Journals (Sweden)

    Xavier Gaume

    2011-01-01

    Full Text Available Nucleolin is a major nucleolar protein involved in various aspects of ribosome biogenesis such as regulation of polymerase I transcription, pre-RNA maturation, and ribosome assembly. Nucleolin is also present in the nucleoplasm suggesting that its functions are not restricted to nucleoli. Nucleolin possesses, in vitro, chromatin co-remodeler and histone chaperone activities which could explain numerous functions of nucleolin related to the regulation of gene expression. The goal of this report was to investigate the consequences of nucleolin depletion on the dynamics of histones in live cells. Changes in histone dynamics occurring in nucleolin silenced cells were measured by FRAP experiments on eGFP-tagged histones (H2B, H4, and macroH2A. We found that nuclear histone dynamics was impacted in nucleolin silenced cells; in particular we measured higher fluorescence recovery kinetics for macroH2A and H2B but not for H4. Interestingly, we showed that nucleolin depletion also impacted the dissociation constant rate of H2B and H4. Thus, in live cells, nucleolin could play a role in chromatin accessibility by its histone chaperone and co-remodeling activities.

  18. Review: The HSP90 molecular chaperone-an enigmatic ATPase.

    Science.gov (United States)

    Pearl, Laurence H

    2016-08-01

    The HSP90 molecular chaperone is involved in the activation and cellular stabilization of a range of 'client' proteins, of which oncogenic protein kinases and nuclear steroid hormone receptors are of particular biomedical significance. Work over the last two decades has revealed a conformational cycle critical to the biological function of HSP90, coupled to an inherent ATPase activity that is regulated and manipulated by many of the co-chaperones proteins with which it collaborates. Pharmacological inhibition of HSP90 ATPase activity results in degradation of client proteins in vivo, and is a promising target for development of new cancer therapeutics. Despite this, the actual function that HSP90s conformationally-coupled ATPase activity provides in its biological role as a molecular chaperone remains obscure. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 594-607, 2016. PMID:26991466

  19. Chaperone-assisted translocation of flexible polymers in three dimensions

    CERN Document Server

    Suhonen, P M

    2016-01-01

    Polymer translocation through a nanometer-scale pore assisted by chaperones binding to the polymer is a process encountered in vivo for proteins. Studying the relevant models by computer simulations is computationally demanding. Accordingly, previous studies are either for stiff polymers in three dimensions or flexible polymers in two dimensions. Here, we study chaperone-assisted translocation of flexible polymers in three dimensions using Langevin dynamics. We show that differences in binding mechanisms, more specifically, whether a chaperone can bind to a single or multiple sites on the polymer, lead to substantial differences in translocation dynamics in three dimensions. We show that the single-binding mode leads to dynamics that is very much like that in the constant-force driven translocation and accordingly mainly determined by tension propagation on the cis side. We obtain $\\beta \\approx 1.26$ for the exponent for the scaling of the translocation time with polymer length. This fairly low value can be ...

  20. Pathways of allosteric regulation in Hsp70 chaperones.

    Science.gov (United States)

    Kityk, Roman; Vogel, Markus; Schlecht, Rainer; Bukau, Bernd; Mayer, Matthias P

    2015-01-01

    Central to the protein folding activity of Hsp70 chaperones is their ability to interact with protein substrates in an ATP-controlled manner, which relies on allosteric regulation between their nucleotide-binding (NBD) and substrate-binding domains (SBD). Here we dissect this mechanism by analysing mutant variants of the Escherichia coli Hsp70 DnaK blocked at distinct steps of allosteric communication. We show that the SBD inhibits ATPase activity by interacting with the NBD through a highly conserved hydrogen bond network, and define the signal transduction pathway that allows bound substrates to trigger ATP hydrolysis. We identify variants deficient in only one direction of allosteric control and demonstrate that ATP-induced substrate release is more important for chaperone activity than substrate-stimulated ATP hydrolysis. These findings provide evidence of an unexpected dichotomic allostery mechanism in Hsp70 chaperones and provide the basis for a comprehensive mechanical model of allostery in Hsp70s. PMID:26383706

  1. Targeting Human Dendritic Cell Subsets for Improved Vaccines

    Science.gov (United States)

    Ueno, Hideki; Klechevsky, Eynav; Schmitt, Nathalie; Ni, Ling; Flamar, Anne-Laure; Zurawski, Sandra; Zurawski, Gerard; Palucka, Karolina; Banchereau, Jacques; Oh, SangKon

    2011-01-01

    Summary Dendritic cells (DCs) were discovered in 1973 by Ralph Steinman as a previously undefined cell type in the mouse spleen and are now recognized as a group of related cell populations that induce and regulate adaptive immune responses. Studies of the past decade show that, both in mice and humans, DCs are composed of subsets that differ in their localization, phenotype, and functions. These progresses in our understanding of DC biology provide a new framework for improving human health. In this review, we discuss human DC subsets in the context of their medical applications, with a particular focus on DC targeting. PMID:21277223

  2. IMHEX fuel cell repeat component manufacturing continuous improvement accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Jakaitis, L.A.; Petraglia, V.J.; Bryson, E.S. [M-C Power Corp., Burr Ridge, IL (United States)] [and others

    1996-12-31

    M-C Power is taking a power generation technology that has been proven in the laboratory and is making it a commercially competitive product. There are many areas in which this technology required scale up and refinement to reach the market entry goals for the IMHEX{reg_sign} molten carbonate fuel cell power plant. One of the primary areas that needed to be addressed was the manufacturing of the fuel cell stack. Up to this point, the fuel cell stack and associated components were virtually hand made for each system to be tested. M-C Power has now continuously manufactured the repeat components for three 250 kW stacks. M-C Power`s manufacturing strategy integrated both evolutionary and revolutionary improvements into its comprehensive commercialization effort. M-C Power`s objectives were to analyze and continuously improve stack component manufacturing and assembly techniques consistent with established specifications and commercial scale production requirements. Evolutionary improvements are those which naturally occur as the production rates are increased and experience is gained. Examples of evolutionary (learning curve) improvements included reducing scrap rates and decreasing raw material costs by buying in large quantities. Revolutionary improvements result in significant design and process changes to meet cost and performance requirements of the market entry system. Revolutionary changes often involve identifying new methods and developing designs to accommodate the new process. Based upon our accomplishments, M-C Power was able to reduce the cost of continuously manufactured fuel cell repeat components from the first to third 250 kW stack by 63%. This paper documents the continuous improvement accomplishments realized by M-C Power during IMHEX{reg_sign} fuel cell repeat component manufacturing.

  3. Enhanced expression of membrane proteins in E. coli with a PBAD promoter mutant: synergies with chaperone pathway engineering strategies

    Directory of Open Access Journals (Sweden)

    Nannenga Brent L

    2011-12-01

    Full Text Available Abstract Background Membrane proteins (MPs populate 20-30% of genomes sequenced to date and hold potential as therapeutic targets as well as for practical applications in bionanotechnology. However, MP toxicity and low yields in normally robust expression hosts such as E. coli has curtailed progress in our understanding of their structure and function. Results Using the seven transmembrane segments H. turkmenica deltarhodopsin (HtdR as a reporter, we isolated a spontaneous mutant in the arabinose-inducible PBAD promoter leading to improved cell growth and a twofold increase in the recovery of active HtdR at 37°C. A single transversion in a conserved region of the cyclic AMP receptor protein binding site caused the phenotype by reducing htdR transcript levels by 65%. When the mutant promoter was used in conjunction with a host lacking the molecular chaperone Trigger Factor (Δtig cells, toxicity was further suppressed and the amount of correctly folded HtdR was 4-fold that present in the membranes of control cells. More importantly, while improved growth barely compensated for the reduction in transcription rates when another polytopic membrane protein (N. pharonis sensory rhodopsin II was expressed under control of the mutant promoter in wild type cells, a 4-fold increase in productivity could be achieved in a Δtig host. Conclusions Our system, which combines a downregulated version of the tightly repressed PBAD promoter with a TF-deficient host may prove a valuable alternative to T7-based expression for the production of membrane proteins that have so far remained elusive targets.

  4. Identification of peptides in human Hsp20 and Hsp27 that possess molecular chaperone and anti-apoptotic activities

    Science.gov (United States)

    Nahomi, Rooban B.; DiMauro, Michael A.; Wang, Benlian; Nagaraj, Ram H.

    2015-01-01

    Previous studies have identified peptides in the ‘crystallin-domain’ of the small heat-shock protein (sHSP) α-crystallin with chaperone and anti-apoptotic activities. We found that peptides in heat-shock protein Hsp20 (G71HFSVLLDVKHFSPEEIAVK91) and Hsp27 (D93RWRVSLDVNHFAPDELTVK113) with sequence homology to α-crystallin also have robust chaperone and anti-apoptotic activities. Both peptides inhibited hyperthermic and chemically induced aggregation of client proteins. The scrambled peptides of Hsp20 and Hsp27 showed no such effects. The chaperone activities of the peptides were better than those from αA- and αB-crystallin. HeLa cells took up the FITC-conjugated Hsp20 peptide and, when the cells were thermally stressed, the peptide was translocated from the cytoplasm to the nucleus. The two peptides inhibited apoptosis in HeLa cells by blocking cytochrome c release from the mitochondria and caspase-3 activation. We found that scrambling the last four amino acids in the two peptides (KAIV in Hsp20 and KTLV in Hsp27) made them unable to enter cells and ineffective against stress-induced apoptosis. Intraperitoneal injection of the peptides prevented sodium-selenite-induced cataract formation in rats by inhibiting protein aggregation and oxidative stress. Our study has identified peptides from Hsp20 and Hsp27 that may have therapeutic benefit in diseases where protein aggregation and apoptosis are contributing factors. PMID:25332102

  5. Fabrication approaches for plasmon-improved photovoltaic cells

    DEFF Research Database (Denmark)

    Gritti, Claudia; Malureanu, Radu; Kardynal, B.;

    During this talk we will present various fabrication approaches to improve the performance of photovoltaic (PV) cells by using metallic nanoparticles in order to generate photocurrent below the bandgap. This effect is possible due to the generation of surface plasmon polaritons (SPPs) in optimized...

  6. Interplay between Molecular Chaperones and the Ubiquitin-Proteasome System in Targeting of Misfolded Proteins for Degradation

    DEFF Research Database (Denmark)

    Poulsen, Esben Guldahl

    have been used, both in the yeast model organism S. pombe and in mammalian tissue culture cells. The articles included in this thesis cover four studies. The first study was focused on finding the specific UPS components involved in degradation of ubiquitin-fusion proteins and misframed ubiquitin. This...... involved in the specific degradation pathway were identified. This work had its origin in epistasis mapping of two Hsp70 co-chaperone proteins, which also formed the basis for the fourth study. In this final study, the Hsp70 co-chaperones were overexpressed in S. pombe. This led to a cell growth defect...... which, by RNA sequencing, was shown to be caused by a broad cellular stress response. In addition to these studies, this thesis contains a review article, covering the protein quality control systems active in the nucleus of yeast model systems and higher eukaryotes. In conjunction with the first study...

  7. Improvement of Pyroelectric Cells for Thermal Energy Harvesting

    Directory of Open Access Journals (Sweden)

    Jing-Chih Ciou

    2012-01-01

    Full Text Available This study proposes trenching piezoelectric (PZT material in a thicker PZT pyroelectric cell to improve the temperature variation rate to enhance the efficiency of thermal energy-harvesting conversion by pyroelectricity. A thicker pyroelectric cell is beneficial in generating electricity pyroelectrically, but it hinders rapid temperature variations. Therefore, the PZT sheet was fabricated to produce deeper trenches to cause lateral temperature gradients induced by the trenched electrode, enhancing the temperature variation rate under homogeneous heat irradiation. When the trenched electrode type with an electrode width of 200 μm and a cutting depth of 150 μm was used to fabricate a PZT pyroelectric cell with a 200 μm thick PZT sheet, the temperature variation rate was improved by about 55%. Therefore, the trenched electrode design did indeed enhance the temperature variation rate and the efficiency of pyroelectric energy converters.

  8. Improvement of pyroelectric cells for thermal energy harvesting.

    Science.gov (United States)

    Hsiao, Chun-Ching; Siao, An-Shen; Ciou, Jing-Chih

    2012-01-01

    This study proposes trenching piezoelectric (PZT) material in a thicker PZT pyroelectric cell to improve the temperature variation rate to enhance the efficiency of thermal energy-harvesting conversion by pyroelectricity. A thicker pyroelectric cell is beneficial in generating electricity pyroelectrically, but it hinders rapid temperature variations. Therefore, the PZT sheet was fabricated to produce deeper trenches to cause lateral temperature gradients induced by the trenched electrode, enhancing the temperature variation rate under homogeneous heat irradiation. When the trenched electrode type with an electrode width of 200 μm and a cutting depth of 150 μm was used to fabricate a PZT pyroelectric cell with a 200 μm thick PZT sheet, the temperature variation rate was improved by about 55%. Therefore, the trenched electrode design did indeed enhance the temperature variation rate and the efficiency of pyroelectric energy converters. PMID:22368484

  9. Efficiency improvements in GaAs-on-Si solar cells

    Science.gov (United States)

    Vernon, S. M.; Tobin, S. P.; Haven, V. E.; Bajgar, C.; Dixon, T. M.

    The thermal cycle growth (TCG) method is shown to be effective in improving GaAs/Si photovoltaic performance. Transmission electron microscope studies revealed that dislocation densities were reduced by approximately an order of magnitude and minority-carrier lifetimes increased by more than a factor of two. The efficiency of GaAs-on-Si cells were increased from 11.2 percent to 17.6 percent (one-sun) and from 13.9 percent to 18.5 percent (concentrated light) by use of the TCG technique. Improvements in basic GaAs cell growth and processing technology were also responsible for a portion of these increases, as GaAs/GaAs control cell efficiencies climbed from 21.3 to 24.3 percent over the span of these experiments.

  10. PpiD is a player in the network of periplasmic chaperones in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Behrens-Kneip Susanne

    2010-09-01

    Full Text Available Abstract Background The inner membrane-anchored periplasmic folding factor PpiD is described as a parvulin-like peptidyl prolyl isomerase (PPIase that assists in the maturation of the major beta-barrel outer membrane proteins (OMPs of Escherichia coli. More recent work however, calls these findings into question. Here, we re-examined the role of PpiD in the E. coli periplasm by analyzing its functional interplay with other folding factors that influence OMP maturation as well as general protein folding in the periplasmic compartment of the cell, such as SurA, Skp, and DegP. Results The analysis of the effects of both deletion and overexpression of ppiD on cell envelope phenotypes revealed that PpiD in contrast to prior observations plays only a minor role, if any, in the maturation of OMPs and cannot compensate for the lack of SurA in the periplasm. On the other hand, our results show that overproduction of PpiD rescues a surA skp double mutant from lethality. In the presence of increased PpiD levels surA skp cells show reduced activities of both the SigmaE-dependent and the Cpx envelope stress responses, and contain increased amounts of folded species of the major OMP OmpA. These effects require the anchoring of PpiD in the inner membrane but are independent of its parvulin-like PPIase domain. Moreover, a PpiD protein lacking the PPIase domain also complements the growth defects of an fkpA ppiD surA triple PPIase mutant and exhibits chaperone activity in vitro. In addition, PpiD appears to collaborate with DegP, as deletion of ppiD confers a temperature-dependent conditional synthetic phenotype in a degP mutant. Conclusions This study provides first direct evidence that PpiD functions as a chaperone and contributes to the network of periplasmic chaperone activities without being specifically involved in OMP maturation. Consistent with previous work, our data support a model in which the chaperone function of PpiD is used to aid in the early

  11. Acid-Denatured Green Fluorescent Protein (GFP as Model Substrate to Study the Chaperone Activity of Protein Disulfide Isomerase

    Directory of Open Access Journals (Sweden)

    Marco A. Ramos

    2011-07-01

    Full Text Available Green fluorescent protein (GFP has been widely used in several molecular and cellular biology applications, since it is remarkably stable in vitro and in vivo. Interestingly, native GFP is resistant to the most common chemical denaturants; however, a low fluorescence signal has been observed after acid-induced denaturation. Furthermore, this acid-denatured GFP has been used as substrate in studies of the folding activity of some bacterial chaperones and other chaperone-like molecules. Protein disulfide isomerase enzymes, a family of eukaryotic oxidoreductases that catalyze the oxidation and isomerization of disulfide bonds in nascent polypeptides, play a key role in protein folding and it could display chaperone activity. However, contrasting results have been reported using different proteins as model substrates. Here, we report the further application of GFP as a model substrate to study the chaperone activity of protein disulfide isomerase (PDI enzymes. Since refolding of acid-denatured GFP can be easily and directly monitored, a simple micro-assay was used to study the effect of the molecular participants in protein refolding assisted by PDI. Additionally, the effect of a well-known inhibitor of PDI chaperone activity was also analyzed. Because of the diversity their functional activities, PDI enzymes are potentially interesting drug targets. Since PDI may be implicated in the protection of cells against ER stress, including cancer cells, inhibitors of PDI might be able to enhance the efficacy of cancer chemotherapy; furthermore, it has been demonstrated that blocking the reductive cleavage of disulfide bonds of proteins associated with the cell surface markedly reduces the infectivity of the human immunodeficiency virus. Although several high-throughput screening (HTS assays to test PDI reductase activity have been described, we report here a novel and simple micro-assay to test the chaperone activity of PDI enzymes, which is amenable for

  12. Structural biology studies of CagA from Helicobacter pylori and histone chaperone CIA/ASF1

    International Nuclear Information System (INIS)

    Crystal structures of proteins and their complexes have become critical information for molecular-based life science. Biochemical and biological analysis based on tertiary structural information is a powerful tool to unveil complex molecular processes in the cell. Here, we present two examples of the structure-based life science study, structural biology studies of CagA, an effector protein from Helicobacter pylori, and histone chaperone CIA/ASF1, which is involved in transcription initiation. (author)

  13. Placental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants

    OpenAIRE

    Yung, H. W.; Alaes-Katjavivi, P.; Jones, C.J.P.; El-Bacha, T.; Golic, M.; A.C. Staff; Burton, G J

    2016-01-01

    AIMS/HYPOTHESIS: The aim of this work was to determine whether placental endoplasmic reticulum (ER) stress may contribute to the pathophysiology of gestational diabetes mellitus (GDM) and to test the efficacy of chemical chaperones and antioxidant vitamins in ameliorating that stress in a trophoblast-like cell line in vitro. METHODS: Placental samples were obtained from women suffering from GDM and from normoglycaemic controls and were frozen immediately. Women with GDM had 2 h serum glucose ...

  14. Chaperone-assisted translocation of flexible polymers in three dimensions

    Science.gov (United States)

    Suhonen, P. M.; Linna, R. P.

    2016-01-01

    Polymer translocation through a nanometer-scale pore assisted by chaperones binding to the polymer is a process encountered in vivo for proteins. Studying the relevant models by computer simulations is computationally demanding. Accordingly, previous studies are either for stiff polymers in three dimensions or flexible polymers in two dimensions. Here, we study chaperone-assisted translocation of flexible polymers in three dimensions using Langevin dynamics. We show that differences in binding mechanisms, more specifically, whether a chaperone can bind to a single site or multiple sites on the polymer, lead to substantial differences in translocation dynamics in three dimensions. We show that the single-binding mode leads to dynamics that is very much like that in the constant-force driven translocation and accordingly mainly determined by tension propagation on the cis side. We obtain β ≈1.26 for the exponent for the scaling of the translocation time with polymer length. This fairly low value can be explained by the additional friction due to binding particles. The multiple-site binding leads to translocation the dynamics of which is mainly determined by the trans side. For this process we obtain β ≈1.36 . This value can be explained by our derivation of β =4 /3 for constant-bias translocation, where translocated polymer segments form a globule on the trans side. Our results pave the way for understanding and utilizing chaperone-assisted translocation where variations in microscopic details lead to rich variations in the emerging dynamics.

  15. Hsp100/ClpB Chaperone Function and Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Vierling, Elizabeth [University of Massachusetts

    2015-01-27

    The supported research investigated the mechanism of action of a unique class of molecular chaperones in higher plants, the Hsp100/ClpB proteins, with the ultimate goal of defining how these chaperones influence plant growth, development, stress tolerance and productivity. Molecular chaperones are essential effectors of cellular “protein quality control”, which comprises processes that ensure the proper folding, localization, activation and turnover of proteins. Hsp100/ClpB proteins are required for temperature acclimation in plants, optimal seed yield, and proper chloroplast development. The model plant Arabidopsis thaliana and genetic and molecular approaches were used to investigate two of the three members of the Hsp100/ClpB proteins in plants, cytosolic AtHsp101 and chloroplast-localized AtClpB-p. Investigating the chaperone activity of the Hsp100/ClpB proteins addresses DOE goals in that this activity impacts how “plants generate and assemble components” as well as “allowing for their self repair”. Additionally, Hsp100/ClpB protein function in plants is directly required for optimal “utilization of biological energy” and is involved in “mechanisms that control the architecture of energy transduction systems”.

  16. Radiation improves gene transfer into human ovarian carcinoma cells

    International Nuclear Information System (INIS)

    Purpose/Objective: Poor gene transfer is the major stumbling block to successful gene therapy today. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. During studies to quantitate radiation activated recombination, we also found that both plasmid and adenoviral vector transduction could be increased by irradiation. The studies presented here describe the effects of irradiation on gene transduction efficiency (both transient and stable transduction) in several human ovarian carcinoma lines, as a prelude to in vivo animal studies. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human ovarian carcinoma cell lines (SKOV3, CAOV3 and PA1). Either irradiated or unirradiated cells were transfected with pRSVZ plasmid (containing a LacZ expression cassette) in either the supercoiled and linearized (XmnI) forms and β-galactosidase expression followed with time. Transfection efficiency was measured by flow cytometry following FDG staining at 0, 48, and 96 hours after irradiation. FDG is converted to a fluorescent metabolite by LacZ, and thus reflects the transfection efficiency of the LacZ containing vector. Vector quantitation was also performed by southern hybridization. Stable transduction efficiency was measured 14 -35 days after irradiation. Optimization of the time of irradiation with respect to transfection was performed. Since cells demonstrated increased stable recombination for as long as 96 hours after irradiation, continuous low dose rate and multiple radiation fractions were also tested. These experiments were repeated using the Ad5CMVlacZ. Dividing cells were exposed to Ad5CMVlacZ at an MOI of 0.1,1,5,10 and 100 to determine optimum transfection concentration. Transduction efficiency was again measured at various intervals to determine the radiation dose and interval post transfection which provides the maximum increase in transfection

  17. Pharmacological chaperones as a potential therapeutic option in methylmalonic aciduria cblB type.

    Science.gov (United States)

    Jorge-Finnigan, Ana; Brasil, Sandra; Underhaug, Jarl; Ruíz-Sala, Pedro; Merinero, Begoña; Banerjee, Ruma; Desviat, Lourdes R; Ugarte, Magdalena; Martinez, Aurora; Pérez, Belén

    2013-09-15

    Methylmalonic aciduria (MMA) cblB type is caused by mutations in the MMAB gene. This encodes the enzyme ATP:cob(I)alamin adenosyltransferase (ATR), which converts reduced cob(I)alamin to an active adenosylcobalamin cofactor. We recently reported the presence of destabilizing pathogenic mutations that retain some residual ATR activity. The aim of the present study was to seek pharmacological chaperones as a tailored therapy for stabilizing the ATR protein. High-throughput ligand screening of over 2000 compounds was performed; six were found to enhance the thermal stability of purified recombinant ATR. Further studies using a well-established bacterial system in which the recombinant ATR protein was expressed in the presence of these six compounds, showed them all to increase the stability of the wild-type ATR and the p.Ile96Thr mutant proteins. Compound V (N-{[(4-chlorophenyl)carbamothioyl]amino}-2-phenylacetamide) significantly increased this stability and did not act as an inhibitor of the purified protein. Importantly, compound V increased the activity of ATR in patient-derived fibroblasts harboring the destabilizing p.Ile96Thr mutation in a hemizygous state to within control range. When cobalamin was coadministrated with compound V, mutant ATR activity further improved. Oral administration of low doses of compound V to C57BL/6J mice for 12 days, led to increase in steady-state levels of ATR protein in liver and brain (disease-relevant organs). These results hold promise for the clinical use of pharmacological chaperones in MMA cblB type patients harboring chaperone-responsive mutations. PMID:23674520

  18. Heterologous gln/asn-rich proteins impede the propagation of yeast prions by altering chaperone availability.

    Directory of Open Access Journals (Sweden)

    Zi Yang

    Full Text Available Prions are self-propagating conformations of proteins that can cause heritable phenotypic traits. Most yeast prions contain glutamine (Q/asparagine (N-rich domains that facilitate the accumulation of the protein into amyloid-like aggregates. Efficient transmission of these infectious aggregates to daughter cells requires that chaperones, including Hsp104 and Sis1, continually sever the aggregates into smaller "seeds." We previously identified 11 proteins with Q/N-rich domains that, when overproduced, facilitate the de novo aggregation of the Sup35 protein into the [PSI(+] prion state. Here, we show that overexpression of many of the same 11 Q/N-rich proteins can also destabilize pre-existing [PSI(+] or [URE3] prions. We explore in detail the events leading to the loss (curing of [PSI(+] by the overexpression of one of these proteins, the Q/N-rich domain of Pin4, which causes Sup35 aggregates to increase in size and decrease in transmissibility to daughter cells. We show that the Pin4 Q/N-rich domain sequesters Hsp104 and Sis1 chaperones away from the diffuse cytoplasmic pool. Thus, a mechanism by which heterologous Q/N-rich proteins impair prion propagation appears to be the loss of cytoplasmic Hsp104 and Sis1 available to sever [PSI(+].

  19. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    Science.gov (United States)

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. PMID:26722004

  20. The role of Vif oligomerization and RNA chaperone activity in HIV-1 replication.

    Science.gov (United States)

    Batisse, Julien; Guerrero, Santiago; Bernacchi, Serena; Sleiman, Dona; Gabus, Caroline; Darlix, Jean-Luc; Marquet, Roland; Tisné, Carine; Paillart, Jean-Christophe

    2012-11-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells that involve most natural HIV-1 target cells. Vif counteracts the packaging of two cellular cytidine deaminases named APOBEC3G (A3G) and A3F by diverse mechanisms including the recruitment of an E3 ubiquitin ligase complex and the proteasomal degradation of A3G/A3F, the inhibition of A3G mRNA translation or by a direct competition mechanism. In addition, Vif appears to be an active partner of the late steps of viral replication by participating in virus assembly and Gag processing, thus regulating the final stage of virion formation notably genomic RNA dimerization and by inhibiting the initiation of reverse transcription. Vif is a small pleiotropic protein with multiple domains, and recent studies highlighted the importance of Vif conformation and flexibility in counteracting A3G and in binding RNA. In this review, we will focus on the oligomerization and RNA chaperone properties of Vif and show that the intrinsic disordered nature of some Vif domains could play an important role in virus assembly and replication. Experimental evidence demonstrating the RNA chaperone activity of Vif will be presented. PMID:22728817

  1. The Hsp110 molecular chaperone stabilizes apolipoprotein B from endoplasmic reticulum-associated degradation (ERAD).

    Science.gov (United States)

    Hrizo, Stacy L; Gusarova, Viktoria; Habiel, David M; Goeckeler, Jennifer L; Fisher, Edward A; Brodsky, Jeffrey L

    2007-11-01

    Apolipoprotein B (apoB) is the most abundant protein in low density lipoproteins and plays key roles in cholesterol homeostasis. The co-translational degradation of apoB is controlled by fatty acid levels in the endoplasmic reticulum (ER) and is mediated by the proteasome. To define the mechanism of apoB degradation, we employed a cell-free system in which proteasome-dependent degradation is recapitulated with yeast cytosol, and we developed an apoB yeast expression system. We discovered that a yeast Hsp110, Sse1p, associates with and stabilizes apoB, which contrasts with data indicating that select Hsp70s and Hsp90s facilitate apoB degradation. However, the Ssb Hsp70 chaperones have no effect on apoB turnover. To determine whether our results are relevant in mammalian cells, Hsp110 was overexpressed in hepatocytes, and enhanced apoB secretion was observed. This study indicates that chaperones within distinct complexes can play unique roles during ER-associated degradation (ERAD), establishes a role for Sse1/Hsp110 in ERAD, and identifies Hsp110 as a target to lower cholesterol. PMID:17823116

  2. Improved Single-Source Precursors for Solar-Cell Absorbers

    Science.gov (United States)

    Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius

    2007-01-01

    Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).

  3. Purification, crystallization and preliminary X-ray diffraction analysis of the histone chaperone cia1 from fission yeast

    International Nuclear Information System (INIS)

    The histone chaperone cia1 from fission yeast has been overexpressed in E. coli, purified and crystallized using the vapour-diffusion method. In fission yeast, cia1+ is an essential gene that encodes a histone chaperone, a homologue of human CIA (CCG1-interacting factor A) and budding yeast Asf1p (anti-silencing function-1), which both facilitate nucleosome assembly by interacting with the core histones H3/H4. The conserved domain (residues 1–161) of the cia1+-encoded protein was expressed in Escherichia coli, purified to near-homogeneity and crystallized by the sitting-drop vapour-diffusion method. The protein was crystallized in the monoclinic space group C2, with unit-cell parameters a = 79.16, b = 40.53, c = 69.79 Å, β = 115.93° and one molecule per asymmetric unit. The crystal diffracted to beyond 2.10 Å resolution using synchrotron radiation

  4. Improved Electrodes and Electrolytes for Dye-Based Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Harry R. Allcock; Thomas E. Mallouk; Mark W. Horn

    2011-10-26

    The most important factor in limiting the stability of dye-sensitized solar cells is the use of volatile liquid solvents in the electrolytes, which causes leakage during extended operation especially at elevated temperatures. This, together with the necessary complex sealing of the cells, seriously hampers the industrial-scale manufacturing and commercialization feasibilities of DSSCs. The objective of this program was to bring about a significant improvement in the performance and longevity of dye-based solar cells leading to commercialization. This had been studied in two ways first through development of low volatility solid, gel or liquid electrolytes, second through design and fabrication of TiO2 sculptured thin film electrodes.

  5. Methods to Improve Adoptive T-Cell Therapy for Melanoma

    DEFF Research Database (Denmark)

    Donia, Marco; Hansen, Morten; Sendrup, Sarah L;

    2013-01-01

    Further development of adoptive T-cell therapy (ACT) with autologous tumor-infiltrating lymphocytes (TILs) has the potential to markedly change the long-term prognosis of patients with metastatic melanoma, and modifications of the original protocol that can improve its clinical efficacy are highly...... desirable. In this study, we demonstrated that a high in vitro tumor reactivity of infusion products was associated with clinical responses upon adoptive transfer. In addition, we systematically characterized the responses of a series of TIL products to relevant autologous short term-cultured melanoma cell...... lines from 12 patients. We provide evidence that antitumor reactivity of both CD8(+) and CD4(+) T cells could be enhanced in most TIL products by autologous melanoma sensitization by pretreatment with low-dose IFN-γ. IFN-γ selectively enhanced responses to tumor-associated antigens other than melanoma...

  6. Lactic acid induces aberrant amyloid precursor protein processing by promoting its interaction with endoplasmic reticulum chaperone proteins.

    Directory of Open Access Journals (Sweden)

    Yiwen Xiang

    Full Text Available BACKGROUND: Lactic acid, a natural by-product of glycolysis, is produced at excess levels in response to impaired mitochondrial function, high-energy demand, and low oxygen availability. The enzyme involved in the production of β-amyloid peptide (Aβ of Alzheimer's disease, BACE1, functions optimally at lower pH, which led us to investigate a potential role of lactic acid in the processing of amyloid precursor protein (APP. METHODOLOGY/PRINCIPAL FINDINGS: Lactic acid increased levels of Aβ40 and 42, as measured by ELISA, in culture medium of human neuroblastoma cells (SH-SY5Y, whereas it decreased APP metabolites, such as sAPPα. In cell lysates, APP levels were increased and APP was found to interact with ER-chaperones in a perinuclear region, as determined by co-immunoprecipitation and fluorescence microscopy studies. Lactic acid had only a very modest effect on cellular pH, did increase the levels of ER chaperones Grp78 and Grp94 and led to APP aggregate formation reminiscent of aggresomes. CONCLUSIONS/SIGNIFICANCE: These findings suggest that sustained elevations in lactic acid levels could be a risk factor in amyloidogenesis related to Alzheimer's disease through enhanced APP interaction with ER chaperone proteins and aberrant APP processing leading to increased generation of amyloid peptides and APP aggregates.

  7. New crystal structure of the proteasome-dedicated chaperone Rpn14 at 1.6 Å resolution

    International Nuclear Information System (INIS)

    A new crystal structure of yeast Rpn14 with an E384A mutation was determined at 1.6 Å resolution. The improved high-resolution structure provides a framework for understanding proteasome assembly. The 26S proteasome is an ATP-dependent protease responsible for selective degradation of polyubiquitylated proteins. Recent studies have suggested that proteasome assembly is a highly ordered multi-step process assisted by specific chaperones. Rpn14, an assembly chaperone for ATPase-ring formation, specifically recognizes the ATPase subunit Rpt6. The structure of Rpn14 at 2.0 Å resolution in space group P64 has previously been reported, but the detailed mechanism of Rpn14 function remains unclear. Here, a new crystal structure of Rpn14 with an E384A mutation is presented in space group P21 at 1.6 Å resolution. This high-resolution structure provides a framework for understanding proteasome assembly

  8. Astaxanthin Improves Stem Cell Potency via an Increase in the Proliferation of Neural Progenitor Cells

    OpenAIRE

    Yung-Hyun Choi; Byung-Woo Kim; Woobong Choi; Jong-Hwan Lee; Wun-Jae Kim; Soo-Wan Nam; Jeong-Hwan Kim

    2010-01-01

    The present study was designed to investigate the question of whether or not astaxanthin improves stem cell potency via an increase in proliferation of neural progenitor cells (NPCs). Treatment with astaxanthin significantly increased proliferation and colony formation of NPCs. For identification of possible activated signaling molecules involved in active cell proliferation occurring after astaxanthin treatment, total protein levels of several proliferation-related proteins, and expression l...

  9. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    International Nuclear Information System (INIS)

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines

  10. Cysteine modified polyaniline films improve biocompatibility for two cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Yslas, Edith I., E-mail: eyslas@exa.unrc.edu.ar [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Cavallo, Pablo; Acevedo, Diego F.; Barbero, César A. [Departamento de Química, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina); Rivarola, Viviana A. [Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, Agencia Postal Nro3, X580BYA Río Cuarto (Argentina)

    2015-06-01

    This work focuses on one of the most exciting application areas of conjugated conducting polymers, which is cell culture and tissue engineering. To improve the biocompatibility of conducting polymers we present an easy method that involves the modification of the polymer backbone using L-cysteine. In this publication, we show the synthesis of polyaniline (PANI) films supported onto Polyethylene terephthalate (PET) films, and modified using cysteine (PANI-Cys) in order to generate a biocompatible substrate for cell culture. The PANI-Cys films are characterized by Fourier Transform infrared and UV–visible spectroscopy. The changes in the hydrophilicity of the polymer films after and before the modification were tested using contact angle measurements. After modification the contact angle changes from 86° ± 1 to 90° ± 1, suggesting a more hydrophylic surface. The adhesion properties of LM2 and HaCaT cell lines on the surface of PANI-Cys films in comparison with tissue culture plastic (TCP) are studied. The PANI-Cys film shows better biocompatibility than PANI film for both cell lines. The cell morphologies on the TCP and PANI-Cys film were examined by florescence and Atomic Force Microscopy (AFM). Microscopic observations show normal cellular behavior when PANI-Cys is used as a substrate of both cell lines (HaCaT and LM2) as when they are cultured on TCP. The ability of these PANI-Cys films to support cell attachment and growth indicates their potential use as biocompatible surfaces and in tissue engineering. - Highlights: • A new surface PANI-Cys was produced on films of polyethylene terephthalate. • The relationship between surface characteristics and biocompatibility is analyzed. • The PANI-Cys film presents good biocompatibility for two cell lines.

  11. Improved Cathode Structure for a Direct Methanol Fuel Cell

    Science.gov (United States)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been

  12. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    Science.gov (United States)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  13. Binding of 3,4,5,6-Tetrahydroxyazepanes to the Acid-[beta]-glucosidase Active Site: Implications for Pharmacological Chaperone Design for Gaucher Disease

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, Susan D.; Tan, Yun Lei; Grimster, Neil P.; Yu, Zhanqian; Powers, Evan T.; Kelly, Jeffery W.; Lieberman, Raquel L. (Scripps); (GIT)

    2013-03-07

    Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-{beta}-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.

  14. Drug Development in Conformational Diseases: A Novel Family of Chemical Chaperones that Bind and Stabilise Several Polymorphic Amyloid Structures.

    Directory of Open Access Journals (Sweden)

    Marquiza Sablón-Carrazana

    chaperones are able to protect and recondition the cerebellar granule cells (CGC from the cytotoxicity produced by the hIAPP20-29 fragment or by a low potassium medium, regardless of their capacity for accelerating or inhibiting in vitro formation of fibers. In vivo animal experiments are required to study the impact of chemical chaperones in cognitive and metabolic syndromes.

  15. Ultrasonic radiation to enable improvement of direct methanol fuel cell.

    Science.gov (United States)

    Wu, Chaoqun; Wu, Jiang; Luo, Hao; Wang, Sanwu; Chen, Tao

    2016-03-01

    To improve DMFC (direct methanol fuel cell) performance, a new method using ultrasonic radiation is proposed and a novel DMFC structure is designed and fabricated in the present paper. Three ultrasonic transducers (piezoelectric transducer, PZT) are integrated in the flow field plate to form the ultrasonic field in the liquid fuel. Ultrasonic frequency, acoustic power, and methanol concentration have been considered as variables in the experiments. With the help of ultrasonic radiation, the maximum output power and limiting current of cell can be independently increased by 30.73% and 40.54%, respectively. The best performance of DMFC is obtained at the condition of ultrasonic radiation (30 kHz and 4 W) fed with 2M methanol solution, because both its limiting current and output power reach their maximum value simultaneously (222 mA and 33.6 mW, respectively) under this condition. These results conclude that ultrasonic can be an alternative choice for improving the cell performance, and can facilitate a guideline for the optimization of DMFC. PMID:26585016

  16. Improving translation success of cell-based therapies in orthopaedics.

    Science.gov (United States)

    Bara, Jennifer J; Herrmann, Marietta; Evans, Christopher H; Miclau, Theodore; Ratcliffe, Anthony; Richards, R Geoff

    2016-01-01

    There is a clear discrepancy between the growth of cell therapy and tissue engineering research in orthopaedics over the last two decades and the number of approved clinical therapies and products available to patients. At the 2015 annual meeting of the Orthopaedic Research Society, a workshop was held to highlight important considerations from the perspectives of an academic scientist, clinical researcher, and industry representative with the aim of helping researchers to successfully translate their ideas into clinical and commercial reality. Survey data acquired from workshop participants indicated an overall positive opinion on the future potential of cell-based therapies to make a significant contribution to orthopaedic medicine. The survey also indicated an agreement on areas requiring improvement in the development of new therapies, specifically; increased support for fundamental research and education and improved transparency of regulatory processes. This perspectives article summarises the content and conclusions of the workshop and puts forward suggestions on how translational success of cell-based therapies in orthopaedics may be achieved. PMID:26403666

  17. The Role of Histidine-Proline-Rich Glycoprotein as Zinc Chaperone for Skeletal Muscle AMP Deaminase

    Directory of Open Access Journals (Sweden)

    Maria Ranieri-Raggi

    2014-05-01

    Full Text Available Metallochaperones function as intracellular shuttles for metal ions. At present, no evidence for the existence of any eukaryotic zinc-chaperone has been provided although metallochaperones could be critical for the physiological functions of Zn2+ metalloenzymes. We propose that the complex formed in skeletal muscle by the Zn2+ metalloenzyme AMP deaminase (AMPD and the metal binding protein histidine-proline-rich glycoprotein (HPRG acts in this manner. HPRG is a major plasma protein. Recent investigations have reported that skeletal muscle cells do not synthesize HPRG but instead actively internalize plasma HPRG. X-ray absorption spectroscopy (XAS performed on fresh preparations of rabbit skeletal muscle AMPD provided evidence for a dinuclear zinc site in the enzyme compatible with a (μ-aqua(μ-carboxylatodizinc(II core with two histidine residues at each metal site. XAS on HPRG isolated from the AMPD complex showed that zinc is bound to the protein in a dinuclear cluster where each Zn2+ ion is coordinated by three histidine and one heavier ligand, likely sulfur from cysteine. We describe the existence in mammalian HPRG of a specific zinc binding site distinct from the His-Pro-rich region. The participation of HPRG in the assembly and maintenance of skeletal muscle AMPD by acting as a zinc chaperone is also demonstrated.

  18. Contributions of chaperone and glycosyltransferase activities of O-fucosyltransferase 1 to Notch signaling

    Directory of Open Access Journals (Sweden)

    Irvine Kenneth D

    2008-01-01

    Full Text Available Abstract Background O-fucosyltransferase1 (OFUT1 is a conserved ER protein essential for Notch signaling. OFUT1 glycosylates EGF domains, which can then be further modified by the N-acetylglucosaminyltransferase Fringe. OFUT1 also possesses a chaperone activity that promotes the folding and secretion of Notch. Here, we investigate the respective contributions of these activities to Notch signaling in Drosophila. Results We show that expression of an isoform lacking fucosyltransferase activity, Ofut1R245A, rescues the requirement for Ofut1 in embryonic neurogenesis. Lack of requirement for O-fucosylation is further supported by the absence of embryonic phenotypes in Gmd mutants, which lack all forms of fucosylation. Requirements for O-fucose during imaginal development were evaluated by characterizing clones of cells expressing only Ofut1R245A. These clones phenocopy fringe mutant clones, indicating that the absence of O-fucose is functionally equivalent to the absence of elongated O-fucose. Conclusion Our results establish that Notch does not need to be O-fucosylated for fringe-independent Notch signaling in Drosophila; the chaperone activity of OFUT1 is sufficient for the generation of functional Notch.

  19. Phosphorylation-mediated control of histone chaperone ASF1 levels by Tousled-like kinases.

    Directory of Open Access Journals (Sweden)

    Maxim Pilyugin

    Full Text Available Histone chaperones are at the hub of a diverse interaction networks integrating a plethora of chromatin modifying activities. Histone H3/H4 chaperone ASF1 is a target for cell-cycle regulated Tousled-like kinases (TLKs and both proteins cooperate during chromatin replication. However, the precise role of post-translational modification of ASF1 remained unclear. Here, we identify the TLK phosphorylation sites for both Drosophila and human ASF1 proteins. Loss of TLK-mediated phosphorylation triggers hASF1a and dASF1 degradation by proteasome-dependent and independent mechanisms respectively. Consistent with this notion, introduction of phosphorylation-mimicking mutants inhibits hASF1a and dASF1 degradation. Human hASF1b is also targeted for proteasome-dependent degradation, but its stability is not affected by phosphorylation indicating that other mechanisms are likely to be involved in control of hASF1b levels. Together, these results suggest that ASF1 cellular levels are tightly controlled by distinct pathways and provide a molecular mechanism for post-translational regulation of dASF1 and hASF1a by TLK kinases.

  20. Mechanism of Nucleic Acid Chaperone Function of Retroviral Nuceleocapsid (NC) Proteins

    Science.gov (United States)

    Rouzina, Ioulia; Vo, My-Nuong; Stewart, Kristen; Musier-Forsyth, Karin; Cruceanu, Margareta; Williams, Mark

    2006-03-01

    Recent studies have highlighted two main activities of HIV-1 NC protein contributing to its function as a universal nucleic acid chaperone. Firstly, it is the ability of NC to weakly destabilize all nucleic acid,(NA), secondary structures, thus resolving the kinetic traps for NA refolding, while leaving the annealed state stable. Secondly, it is the ability of NC to aggregate NA, facilitating the nucleation step of bi-molecular annealing by increasing the local NA concentration. In this work we use single molecule DNA stretching and gel-based annealing assays to characterize these two chaperone activities of NC by using various HIV-1 NC mutants and several other retroviral NC proteins. Our results suggest that two NC functions are associated with its zinc fingers and cationic residues, respectively. NC proteins from other retroviruses have similar activities, although expressed to a different degree. Thus, NA aggregating ability improves, and NA duplex destabilizing activity decreases in the sequence: MLV NC, HIV NC, RSV NC. In contrast, HTLV NC protein works very differently from other NC proteins, and similarly to typical single stranded NA binding proteins. These features of retroviral NCs co-evolved with the structure of their genomes.

  1. Chaperone use during intimate examinations in primary care: postal survey of family physicians

    Directory of Open Access Journals (Sweden)

    Upshur Ross EG

    2005-12-01

    Full Text Available Abstract Background Physicians have long been advised to have a third party present during certain parts of a physical examination; however, little is known about the frequency of chaperone use for those specific intimate examinations regularly performed in primary care. We aimed to determine the frequency of chaperone use among family physicians across a variety of intimate physical examinations for both male and female patients, and also to identify the factors associated with chaperone use. Methods Questionnaires were mailed to a randomly selected sample of 500 Ontario members of the College of Family Physicians of Canada. Participants were asked about their use of chaperones when performing a variety of intimate examinations, namely female pelvic, breast, and rectal exams and male genital and rectal exams. Results 276 of 500 were returned (56%, of which 257 were useable. Chaperones were more commonly used with female patients than with males (t = 9.09 [df = 249], p Conclusion Clinical practice concerning the use of chaperones during intimate exams continues to be discordant with the recommendations of medical associations and medico-legal societies. Chaperones are used by only a minority of Ontario family physicians. Chaperone use is higher for examinations of female patients than of male patients and is highest for female pelvic exams. The availability of a nurse in the clinic to act as a chaperone is associated with more frequent use of chaperones.

  2. Berkeley Lab Sheds Light on Improving Solar Cell Efficiency

    International Nuclear Information System (INIS)

    Typical manufacturing methods produce solar cells with an efficiency of 12-15%; and 14% efficiency is the bare minimum for achieving a profit. In work performed at the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley, CA, 5 10-486-577 1)--a US Department of Energy national laboratory that conducts unclassified scientific research and is managed by the University of California--scientist Scott McHugo has obtained keen insights into the impaired performance of solar cells manufactured from polycrystalline silicon. The solar cell market is potentially vast, according to Berkeley Lab. Lightweight solar panels are highly beneficial for providing electrical power to remote locations in developing nations, since there is no need to build transmission lines or truck-in generator fuel. Moreover, industrial nations confronted with diminishing resources have active programs aimed at producing improved, less expensive solar cells. 'In a solar cell, there is a junction between p-type silicon and an n-type layer, such as diffused-in phosphorous', explained McHugo, who is now with Berkeley Lab's Accelerator and Fusion Research Division. 'When sunlight is absorbed, it frees electrons, which start migrating in a random-walk fashion toward that junction. If the electrons make it to the junction; they contribute to the cell's output of electric current. Often, however, before they reach the junction, they recombine at specific sites in the crystal' (and, therefore, cannot contribute to current output). McHugo scrutinized a map of a silicon wafer in which sites of high recombination appeared as dark regions. Previously, researchers had shown that such phenomena occurred not primarily at grain boundaries in the polycrystalline material, as might be expected, but more often at dislocations in the crystal. However, the dislocations themselves were not the problem. Using a unique heat treatment technique, McHugo performed electrical measurements to investigate the material

  3. Metal chaperones: a holistic approach to the treatment of AD

    Directory of Open Access Journals (Sweden)

    PaulAnthonyAdlard

    2012-03-01

    Full Text Available As the burden of proof for the role of metal ion dysregulation in the pathogenesis of multiple CNS disorders grows, it has become important to more precisely identify and differentiate the biological effects of various pharmacological modulators of metal ion homeostasis. This is particularly evident in disorders such as Alzheimer’s disease, where the use of metal chaperones (that transport metals, as opposed to chelators (which exclude metals from biological interactions, may prove to be the first truly disease modifying approach for this condition. The purpose of this mini-review is to highlight the emerging notion that metal chaperones, such as PBT2 (Prana Biotechnology, modulate a variety of critical pathways affecting key aspects of the AD cascade to provide a more “holistic” approach to the treatment of this disease.

  4. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein. Importance of the C-terminal unstructured tail.

    Science.gov (United States)

    Sleiman, Dona; Bernacchi, Serena; Xavier Guerrero, Santiago; Brachet, Franck; Larue, Valéry; Paillart, Jean-Christophe; Tisne, Carine

    2014-01-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55(Gag), reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNA(Lys) 3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity. PMID:25144404

  5. BtcA, A class IA type III chaperone, interacts with the BteA N-terminal domain through a globular/non-globular mechanism.

    Directory of Open Access Journals (Sweden)

    Chen Guttman

    Full Text Available Bordetella pertussis, the etiological agent of "whooping cough" disease, utilizes the type III secretion system (T3SS to deliver a 69 kDa cytotoxic effector protein, BteA, directly into the host cells. As with other T3SS effectors, prior to its secretion BteA binds BtcA, a 13.9 kDa protein predicted to act as a T3SS class IA chaperone. While this interaction had been characterized for such effector-chaperone pairs in other pathogens, it has yet to be fully investigated in Bordetella. Here we provide the first biochemical proof that BtcA is indeed a class IA chaperone, responsible for the binding of BteA's N-terminal domain. We bring forth extensive evidence that BtcA binds its substrate effector through a dual-interface binding mechanism comprising of non-globular and bi-globular interactions at a moderate micromolar level binding affinity. We demonstrate that the non-globular interactions involve the first 31 N-terminal residues of BteA287 and their removal leads to destabilization of the effector-chaperone complex and lower binding affinities to BtcA. These findings represent an important first step towards a molecular understanding of BteA secretion and cell entry.

  6. Enhancement of soluble expression of codon-optimized Thermomicrobium roseum sarcosine oxidase in Escherichia coli via chaperone co-expression.

    Science.gov (United States)

    Tong, Yanjun; Feng, Shoushuai; Xin, Yu; Yang, Hailin; Zhang, Ling; Wang, Wu; Chen, Wei

    2016-01-20

    The codon-optimized sarcosine oxidase from Thermomicrobium roseum (TrSOX) was successfully expressed in Escherichia coli and its soluble expression was significantly enhanced via the co-expression of chaperones. With the assistance of whole-genome analysis of T. roseum DSM 5159, the sox gene was predicated and its sequence was optimized based on the codon bias of E. coli. The TrSOX gene was successfully constructed in the pET28a plasmid. After induction with IPTG for 8h, SDS-PAGE analysis of crude enzyme solutions showed a significant 43 kDa protein band, indicating SOX was successfully expressed in E. coli. However, the dark band corresponding to the intracellular insoluble fraction indicated that most of TrSOX enzyme existed in the inactive form in "inclusion bodies" owing to the "hot spots" of TrSOX. Furthermore, the co-expression of five different combinations of chaperones indicated that the soluble expression of TrSOX was greatly improved by the co-expression of molecular chaperones GroES-GroEL and DnaK-DnaJ-GrpE-GroES-GroEL. Additionally, the analysis of intramolecular forces indicated that the hydrophobic amino acids, hydrogen bonds, and ionic bonds were favorable for enhancing the interaction and stability of TrSOX secondary structure. This study provides a novel strategy for enhancing the soluble expression of TrSOX in E. coli. PMID:26626227

  7. Chaperone-assisted translocation of flexible polymers in three dimensions.

    Science.gov (United States)

    Suhonen, P M; Linna, R P

    2016-01-01

    Polymer translocation through a nanometer-scale pore assisted by chaperones binding to the polymer is a process encountered in vivo for proteins. Studying the relevant models by computer simulations is computationally demanding. Accordingly, previous studies are either for stiff polymers in three dimensions or flexible polymers in two dimensions. Here, we study chaperone-assisted translocation of flexible polymers in three dimensions using Langevin dynamics. We show that differences in binding mechanisms, more specifically, whether a chaperone can bind to a single site or multiple sites on the polymer, lead to substantial differences in translocation dynamics in three dimensions. We show that the single-binding mode leads to dynamics that is very much like that in the constant-force driven translocation and accordingly mainly determined by tension propagation on the cis side. We obtain β≈1.26 for the exponent for the scaling of the translocation time with polymer length. This fairly low value can be explained by the additional friction due to binding particles. The multiple-site binding leads to translocation the dynamics of which is mainly determined by the trans side. For this process we obtain β≈1.36. This value can be explained by our derivation of β=4/3 for constant-bias translocation, where translocated polymer segments form a globule on the trans side. Our results pave the way for understanding and utilizing chaperone-assisted translocation where variations in microscopic details lead to rich variations in the emerging dynamics. PMID:26871100

  8. On the facultative requirement of the bacterial RNA chaperone, Hfq.

    OpenAIRE

    Jousselin, Ambre; Metzinger, Laurent; Felden, Brice

    2009-01-01

    The pleiotropic post-transcriptional regulator Hfq is an RNA chaperone that facilitates pairing interactions between small regulatory RNAs (sRNAs) and their mRNA targets in several bacteria. However, this classical pattern, derived from the Escherichia coli model, is not applicable to the whole bacterial kingdom. In this article we discuss the facultative requirement for Hfq for sRNA-mRNA duplex formation among bacteria and the specific features of the Hfq protein and RNA duplexes that might ...

  9. Chaperone-mediated assembly of centromeric chromatin in vitro

    OpenAIRE

    Furuyama, Takehito; Dalal, Yamini; Henikoff, Steven

    2006-01-01

    Every eukaryotic chromosome requires a centromere for attachment to spindle microtubules for chromosome segregation. Although centromeric DNA sequences vary greatly among species, centromeres are universally marked by the presence of a centromeric histone variant, centromeric histone 3 (CenH3), which replaces canonical histone H3 in centromeric nucleosomes. Conventional chromatin is maintained in part by histone chaperone complexes, which deposit the S phase-limited (H3) and constitutive (H3....

  10. Pathways of allosteric regulation in Hsp70 chaperones

    OpenAIRE

    Kityk, Roman; Vogel, Markus; Schlecht, Rainer; Bukau, Bernd; Mayer, Matthias P

    2015-01-01

    Central to the protein folding activity of Hsp70 chaperones is their ability to interact with protein substrates in an ATP-controlled manner, which relies on allosteric regulation between their nucleotide-binding (NBD) and substrate-binding domains (SBD). Here we dissect this mechanism by analysing mutant variants of the Escherichia coli Hsp70 DnaK blocked at distinct steps of allosteric communication. We show that the SBD inhibits ATPase activity by interacting with the NBD through a highly ...

  11. Crystal Structures of Cisplatin Bound to a Human Copper Chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Boal, Amie K.; Rosenzweig, Amy C.; (NWU)

    2010-08-16

    Copper trafficking proteins, including the chaperone Atox1 and the P{sub 1B}-type ATPase ATP7B, have been implicated in cellular resistance to the anticancer drug cisplatin. We have determined two crystal structures of cisplatin-Atox1 adducts that reveal platinum coordination by the conserved CXXC copper-binding motif. Direct interaction of cisplatin with this functionally relevant site has significant implications for understanding the molecular basis for resistance mediated by copper transport pathways.

  12. Site-directed mutations in the C-terminal extension of human alphaB-crystallin affect chaperone function and block amyloid fibril formation.

    Directory of Open Access Journals (Sweden)

    Teresa M Treweek

    Full Text Available BACKGROUND: Alzheimer's, Parkinson's and Creutzfeldt-Jakob disease are associated with inappropriate protein deposition and ordered amyloid fibril assembly. Molecular chaperones, including alphaB-crystallin, play a role in the prevention of protein deposition. METHODOLOGY/PRINCIPAL FINDINGS: A series of site-directed mutants of the human molecular chaperone, alphaB-crystallin, were constructed which focused on the flexible C-terminal extension of the protein. We investigated the structural role of this region as well as its role in the chaperone function of alphaB-crystallin under different types of protein aggregation, i.e. disordered amorphous aggregation and ordered amyloid fibril assembly. It was found that mutation of lysine and glutamic acid residues in the C-terminal extension of alphaB-crystallin resulted in proteins that had improved chaperone activity against amyloid fibril forming target proteins compared to the wild-type protein. CONCLUSIONS/SIGNIFICANCE: Together, our results highlight the important role of the C-terminal region of alphaB-crystallin in regulating its secondary, tertiary and quaternary structure and conferring thermostability to the protein. The capacity to genetically modify alphaB-crystallin for improved ability to block amyloid fibril formation provides a platform for the future use of such engineered molecules in treatment of diseases caused by amyloid fibril formation.

  13. The mitochondrial chaperone protein TRAP1 mitigates α-Synuclein toxicity.

    Directory of Open Access Journals (Sweden)

    Erin K Butler

    2012-02-01

    Full Text Available Overexpression or mutation of α-Synuclein is associated with protein aggregation and interferes with a number of cellular processes, including mitochondrial integrity and function. We used a whole-genome screen in the fruit fly Drosophila melanogaster to search for novel genetic modifiers of human [A53T]α-Synuclein-induced neurotoxicity. Decreased expression of the mitochondrial chaperone protein tumor necrosis factor receptor associated protein-1 (TRAP1 was found to enhance age-dependent loss of fly head dopamine (DA and DA neuron number resulting from [A53T]α-Synuclein expression. In addition, decreased TRAP1 expression in [A53T]α-Synuclein-expressing flies resulted in enhanced loss of climbing ability and sensitivity to oxidative stress. Overexpression of human TRAP1 was able to rescue these phenotypes. Similarly, human TRAP1 overexpression in rat primary cortical neurons rescued [A53T]α-Synuclein-induced sensitivity to rotenone treatment. In human (nonneuronal cell lines, small interfering RNA directed against TRAP1 enhanced [A53T]α-Synuclein-induced sensitivity to oxidative stress treatment. [A53T]α-Synuclein directly interfered with mitochondrial function, as its expression reduced Complex I activity in HEK293 cells. These effects were blocked by TRAP1 overexpression. Moreover, TRAP1 was able to prevent alteration in mitochondrial morphology caused by [A53T]α-Synuclein overexpression in human SH-SY5Y cells. These results indicate that [A53T]α-Synuclein toxicity is intimately connected to mitochondrial dysfunction and that toxicity reduction in fly and rat primary neurons and human cell lines can be achieved using overexpression of the mitochondrial chaperone TRAP1. Interestingly, TRAP1 has previously been shown to be phosphorylated by the serine/threonine kinase PINK1, thus providing a potential link of PINK1 via TRAP1 to α-Synuclein.

  14. Surface modification of semiconductor photoelectrode for improved solar cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Mridula [Department of Chemistry, C.M.P. Degree College, University of Allahabad, Allahabad (India); Pandey, Kamlesh [National Centre of Experimental Mineralogy and Petrology, University of Allahabad, Allahabad (India); Kumar, Shiv Datt [Department of Mathematics, Motilal Nehru National Institute of Technology, Allahabad (India)

    2007-11-06

    The investigation is focused on the synthesis of nanostructured TiO{sub 2}-CuO admixed photoelectrode and its use as a photoelectrode of high-efficiency PEC solar cells for hydrogen production. TiO{sub 2}, in the nanostructured form, has been prepared by hydrolysis of titanium(IV) isopropoxide solution. An improvement in the nanostructured TiO{sub 2} photoelectrode carried out in the present work corresponds to admixing CuO to improve the spectral response. In the present study, photo-electrochemical (PEC) and hydrogen evolution characteristics of new types of ns-TiO{sub 2}-CuO admixed/Ti septum-based semiconductor septum photo-electrochemical (SC-SEP PEC) solar cell has been studied. The CuO admixed ns-TiO{sub 2} exhibited a high photocurrent and photovoltage of 18.6 mA/cm{sup 2} and 680 mV, respectively. The ns-TiO{sub 2}-CuO electrode exhibited a higher hydrogen gas evolution rate of 14.00 l/h m{sup 2}. (author)

  15. Improved Wide Operating Temperature Range of Li-Ion Cells

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2013-01-01

    Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.

  16. Improvement of Cell Survival During Human Pluripotent Stem Cell Definitive Endoderm Differentiation.

    Science.gov (United States)

    Wang, Han; Luo, Xie; Yao, Li; Lehman, Donna M; Wang, Pei

    2015-11-01

    Definitive endoderm (DE) is a vital precursor for internal organs such as liver and pancreas. Efficient protocol to differentiate human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) to DE is essential for regenerative medicine and for modeling diseases; yet, poor cell survival during DE differentiation remains unsolved. In this study, our use of B27 supplement in modified differentiation protocols has led to a substantial improvement. We used an SOX17-enhanced green fluorescent protein (eGFP) reporter hESC line to compare and modify established DE differentiation protocols. Both total live cell numbers and the percentages of eGFP-positive cells were used to assess differentiation efficiency. Among tested protocols, three modified protocols with serum-free B27 supplement were developed to generate a high number of DE cells. Massive cell death was avoided during DE differentiation and the percentage of DE cells remained high. When the resulting DE cells were further differentiated toward the pancreatic lineage, the expression of pancreatic-specific markers was significantly increased. Similar high DE differentiation efficiency was observed in H1 hESCs and iPSCs through the modified protocols. In B27 components, bovine serum albumin was found to facilitate DE differentiation and cell survival. Using our modified DE differentiation protocols, satisfactory quantities of quality DE can be produced as primary material for further endoderm lineage differentiation. PMID:26132288

  17. Efficient decellularization of whole porcine kidneys improves reseeded cell behavior.

    Science.gov (United States)

    Poornejad, Nafiseh; Momtahan, Nima; Salehi, Amin S M; Scott, Daniel R; Fronk, Cory A; Roeder, Beverly L; Reynolds, Paul R; Bundy, Bradley C; Cook, Alonzo D

    2016-01-01

    Combining patient-specific cells with the appropriate scaffold to create functional kidneys is a promising technology to provide immunocompatible kidneys for the 100 000+  patients on the organ waiting list. For proper recellularization to occur, the scaffold must possess the critical microstructure and an intact vascular network. Detergent perfusion through the vasculature of a kidney is the preferred method of decellularization; however, harsh detergents could be damaging to the microstructure of the renal tissue and may undesirably solubilize the endogenous growth and signaling factors. In this study, automated decellularization of whole porcine kidneys was performed using an improved method that combined physical and chemical steps to efficiently remove cellular materials while producing minimal damage to the collagenous extracellular matrix (ECM). Freezing/thawing, incremental increases in flow rate under constant pressure, applying osmotic shock to the cellular membranes, and low concentrations of the detergent sodium dodecyl sulfate (SDS) were factors used to decrease SDS exposure time during the decellularization process from 36 to 5 h, which preserved the microstructure while still removing 99% of the DNA. The well-preserved glycosaminoglycans (GAGs) and collagen fibers enhanced cell-ECM interactions. Human renal cortical tubular epithelium (RCTE) cells grew more rapidly when cultured on the ECM obtained from the improved decellularization process and also demonstrated more in vivo-like gene expression patterns. The optimized, automated process that resulted from this work is now used routinely in our laboratory to rapidly decellularize porcine kidneys and could be adapted to other large organs (e.g. heart, liver, and lung). PMID:26963774

  18. Targeting dendritic cells for improved HIV-1 vaccines.

    Science.gov (United States)

    Smed-Sörensen, Anna; Loré, Karin

    2013-01-01

    As dendritic cells (DCs) have the unique capacity to activate antigen-naive T cells they likely play a critical role in eliciting immune responses to vaccines. DCs are therefore being explored as attractive targets for vaccines, but understanding the interaction of DCs and clinically relevant vaccine antigens and adjuvants is a prerequisite. The HIV-1/AIDS epidemic continues to be a significant health problem, and despite intense research efforts over the past 30 years a protective vaccine has not yet been developed. A common challenge in vaccine design is to find a vaccine formulation that best shapes the immune response to protect against and/or control the given pathogen. Here, we discuss the importance of understanding the diversity, anatomical location and function of different human DC subsets in order to identify the optimal target cells for an HIV-1 vaccine. We review human DC interactions with some of the HIV-1 vaccine antigen delivery vehicles and adjuvants currently utilized in preclinical and clinical studies. Specifically, the effects of distinctly different vaccine adjuvants in terms of activation of DCs and improving DC function and vaccine efficacy are discussed. The susceptibility and responses of DCs to recombinant adenovirus vectors are reviewed, as well as the strategy of directly targeting DCs by using DC marker-specific monoclonal antibodies coupled to an antigen. PMID:22975879

  19. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus.

    Science.gov (United States)

    Rodig, Scott J; Cheng, Jingwei; Wardzala, Jacek; DoRosario, Andrew; Scanlon, Jessica J; Laga, Alvaro C; Martinez-Fernandez, Alejandro; Barletta, Justine A; Bellizzi, Andrew M; Sadasivam, Subhashini; Holloway, Dustin T; Cooper, Dylan J; Kupper, Thomas S; Wang, Linda C; DeCaprio, James A

    2012-12-01

    A human polyomavirus was recently discovered in Merkel cell carcinoma (MCC) specimens. The Merkel cell polyomavirus (MCPyV) genome undergoes clonal integration into the host cell chromosomes of MCC tumors and expresses small T antigen and truncated large T antigen. Previous studies have consistently reported that MCPyV can be detected in approximately 80% of all MCC tumors. We sought to increase the sensitivity of detection of MCPyV in MCC by developing antibodies capable of detecting large T antigen by immunohistochemistry. In addition, we expanded the repertoire of quantitative PCR primers specific for MCPyV to improve the detection of viral DNA in MCC. Here we report that a novel monoclonal antibody detected MCPyV large T antigen expression in 56 of 58 (97%) unique MCC tumors. PCR analysis specifically detected viral DNA in all 60 unique MCC tumors tested. We also detected inactivating point substitution mutations of TP53 in the two MCC specimens that lacked large T antigen expression and in only 1 of 56 tumors positive for large T antigen. These results indicate that MCPyV is present in MCC tumors more frequently than previously reported and that mutations in TP53 tend to occur in MCC tumors that fail to express MCPyV large T antigen. PMID:23114601

  20. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus

    Science.gov (United States)

    Rodig, Scott J.; Cheng, Jingwei; Wardzala, Jacek; DoRosario, Andrew; Scanlon, Jessica J.; Laga, Alvaro C.; Martinez-Fernandez, Alejandro; Barletta, Justine A.; Bellizzi, Andrew M.; Sadasivam, Subhashini; Holloway, Dustin T.; Cooper, Dylan J.; Kupper, Thomas S.; Wang, Linda C.; DeCaprio, James A.

    2012-01-01

    A human polyomavirus was recently discovered in Merkel cell carcinoma (MCC) specimens. The Merkel cell polyomavirus (MCPyV) genome undergoes clonal integration into the host cell chromosomes of MCC tumors and expresses small T antigen and truncated large T antigen. Previous studies have consistently reported that MCPyV can be detected in approximately 80% of all MCC tumors. We sought to increase the sensitivity of detection of MCPyV in MCC by developing antibodies capable of detecting large T antigen by immunohistochemistry. In addition, we expanded the repertoire of quantitative PCR primers specific for MCPyV to improve the detection of viral DNA in MCC. Here we report that a novel monoclonal antibody detected MCPyV large T antigen expression in 56 of 58 (97%) unique MCC tumors. PCR analysis specifically detected viral DNA in all 60 unique MCC tumors tested. We also detected inactivating point substitution mutations of TP53 in the two MCC specimens that lacked large T antigen expression and in only 1 of 56 tumors positive for large T antigen. These results indicate that MCPyV is present in MCC tumors more frequently than previously reported and that mutations in TP53 tend to occur in MCC tumors that fail to express MCPyV large T antigen. PMID:23114601

  1. Development of improved cathodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, H.U.

    1991-03-01

    The University of Missouri-Rolla conducted a 17 month research program focused on the development and evaluation of improved cathode materials for solid oxide fuel cells (SOFC). The objectives of this program were: (1) the development of cathode materials of improved stability in reducing environments; and (2) the development of cathode materials with improved electrical conductivity. The program was successful in identifying some potential candidate materials: Air sinterable (La,Ca)(Cr,Co)O{sub 3} compositions were developed and found to be more stable than La{sub .8}Sr{sub .2}MnO{sub 3} towards reduction. Their conductivity at 1000{degrees}C ranged between 30 to 60 S/cm. Compositions within the (Y,Ca)(Cr,Co,Mn)O{sub 3} system were developed and found to have higher electrical conductivity than La{sub .8}Sr{sub .2}MnO{sub 3} and preliminary results suggest that their stability towards reduction is superior.

  2. Zinc-L-carnosine binds to molecular chaperone HSP70 and inhibits the chaperone activity of the protein.

    Science.gov (United States)

    Haga, Asami; Okamoto, Tomoya; Yamada, Shintaroh; Kubota, Toshihiko; Sanpei, Ann; Takahashi, Shota; Nakayama, Masahiro; Nagai, Miki; Otaka, Michiro; Miyazaki, Toshio; Nunomura, Wataru; Grave, Ewa; Itoh, Hideaki

    2013-09-01

    In this study, we have investigated the specific binding proteins of Zinc-L-carnosine (Polaprezinc) using Polaprezinc-affinity column chromatography in vitro. A protein having a 70-kDa molecular mass was eluted by the linear gradient of 0-1.0 mM Polaprezinc from the affinity column and the protein was identified as the molecular chaperone HSP70 by immunoblotting. The chaperone activity of HSP70 was completely suppressed by Polaprezinc. The ATPase activity of HSP70 was affected to some extent by the reagent. In the circular dichroism (CD) spectrum, the secondary structure of HSP70 was changed in the presence of Polaprezinc, i.e. it decreased in the α-helix. We have determined the Polaprezinc-binding domain of HSP70 by using recombinant HSP70N- and C-domains. Although Polaprezinc could bind to both the N-terminal and the C-terminal of HSP70, the HSP70N-domain has a high affinity to the drug. Regarding the peptide cleavage of the HSP70N- and C-domains with proteinase K, the intact HSP70N still remained in the presence of Polaprezinc. On the other hand, the quantity of the intact C-domain slightly decreased under the same conditions along with the newly digested small peptides appeared. It has been suggested that Polaprezinc binds to HSP70 especially in the N-domains, suppresses the chaperone activity and delays an ATPase activities of HSP70. PMID:23687308

  3. Conformational Selection Underlies Recognition of a Molybdoenzyme by Its Dedicated Chaperone

    OpenAIRE

    Lorenzi, Magali; Sylvi, Léa; Gerbaud, Guillaume; Mileo, Elisabetta; Halgand, Frédéric; Walburger, Anne; Vezin, Hervé; Belle, Valérie; Guigliarelli, Bruno; Magalon, Axel

    2012-01-01

    Molecular recognition is central to all biological processes. Understanding the key role played by dedicated chaperones in metalloprotein folding and assembly requires the knowledge of their conformational ensembles. In this study, the NarJ chaperone dedicated to the assembly of the membrane-bound respiratory nitrate reductase complex NarGHI, a molybdenum-iron containing metalloprotein, was taken as a model of dedicated chaperone. The combination of two techniques ie site-directed spin labeli...

  4. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes

    DEFF Research Database (Denmark)

    Hirano, Y.; Hayashi, H.; Iemura, S.; Hendil, K. B.; Niwa, S.; Kishimoto, T.; Natsume, T.; Tanaka, K.; Murata, S.

    2006-01-01

    proteasomes is assisted by proteasome-specific chaperones, named PAC1, PAC2, and hUmp1, but the details are still unknown. Here, we report the identification of a chaperone, designated PAC3, as a component of a rings. Although it can intrinsically bind directly to both a and ß subunits, PAC3 dissociates...... describe a cooperative system of multiple chaperones involved in the correct assembly of mammalian 20S proteasomes....

  5. Improved retroviral suicide gene transfer in colon cancer cell lines after cell synchronization with methotrexate

    Directory of Open Access Journals (Sweden)

    Nordlinger Bernard

    2011-10-01

    Full Text Available Abstract Background Cancer gene therapy by retroviral vectors is mainly limited by the level of transduction. Retroviral gene transfer requires target cell division. Cell synchronization, obtained by drugs inducing a reversible inhibition of DNA synthesis, could therefore be proposed to precondition target cells to retroviral gene transfer. We tested whether drug-mediated cell synchronization could enhance the transfer efficiency of a retroviral-mediated gene encoding herpes simplex virus thymidine kinase (HSV-tk in two colon cancer cell lines, DHDK12 and HT29. Methods Synchronization was induced by methotrexate (MTX, aracytin (ara-C or aphidicolin. Gene transfer efficiency was assessed by the level of HSV-TK expression. Transduced cells were driven by ganciclovir (GCV towards apoptosis that was assessed using annexin V labeling by quantitative flow cytometry. Results DHDK12 and HT29 cells were synchronized in S phase with MTX but not ara-C or aphidicolin. In synchronized DHDK12 and HT29 cells, the HSV-TK transduction rates were 2 and 1.5-fold higher than those obtained in control cells, respectively. Furthermore, the rate of apoptosis was increased two-fold in MTX-treated DHDK12 cells after treatment with GCV. Conclusions Our findings indicate that MTX-mediated synchronization of target cells allowed a significant improvement of retroviral HSV-tk gene transfer, resulting in an increased cell apoptosis in response to GCV. Pharmacological control of cell cycle may thus be a useful strategy to optimize the efficiency of retroviral-mediated cancer gene therapy.

  6. Two for the Price of One: A Neuroprotective Chaperone Kit within NAD Synthase Protein NMNAT2.

    Directory of Open Access Journals (Sweden)

    Angela Lavado-Roldán

    2016-07-01

    Full Text Available One of the most fascinating properties of the brain is the ability to function smoothly across decades of a lifespan. Neurons are nondividing mature cells specialized in fast electrical and chemical communication at synapses. Often, neurons and synapses operate at high levels of activity through sophisticated arborizations of long axons and dendrites that nevertheless stay healthy throughout years. On the other hand, aging and activity-dependent stress strike onto the protein machineries turning proteins unfolded and prone to form pathological aggregates associated with neurodegeneration. How do neurons protect from those insults and remain healthy for their whole life? Ali and colleagues now present a molecular mechanism by which the enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2 acts not only as a NAD synthase involved in axonal maintenance but as a molecular chaperone helping neurons to overcome protein unfolding and protein aggregation.

  7. Quantify and improve PEM fuel cell durability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grahl-Madsen, L.; Odgaard, M.; Munksgaard Nielsen, R. (IRD Fuel Cell A/S, Svendborg (Denmark)); Li, Q.; Jensen, Jens Oluf (Technical Univ. of Denmark, Dept. of Chemistry, Kgs. Lyngby (Denmark)); Andersen, Shuang Ma; Speder, J.; Skou, E. (Syddansk Univ. (SDU), Odense (Denmark))

    2010-07-01

    approx 4,000 hours of operation correspond to a loss of catalytic active area of 58% for the anode and 69% for the cathode respectively, and the MEA can be expected to perform equivalent to MEAs with less than half the catalyst loating. DMFC durability tests were carried out on both Nafion and Hydrocarbon membrane based MEAs using different electrode designs. Several single DMFC cells and stacks have been tested up to 3,000 hours. The degradation rates found for both single cells and stacks were in the range between 10-90 muV/hours per cell, depending on the MEA configuration. Certain performance losses incurred by the cell during the steady-state operation were recovered, fully or in part, after the regular OCV hold. Regeneration of the Pt-catalyst particles include electro-reduction of the surface PtO that gradually forms over time, surface electro-oxidation of adsorbed poisons (namely CO formed from methanol crossover), and chemical reduction of PtO and/or PtOH via crossover methanol. The HT PEM FC results indicate that a degradation rate of approx 5 muV/h for HT PEM FC can be expected under continuous operation with hydrogen and air at 150-160 C, corresponding to a lifetime of 12,000 hours before 10% performance loss. This lifetime is somewhat shorter than aimed at in the national Danish HT PEM Road map (2009: 20,000 h), but it is in this context important to remember the limited knowledge on HT PEM lifetime at the time of the roadmap definition in 2008. The accelerated durability test with potential cycling showed significant catalyst degradation, primarily due to the corrosion of carbon supports, which triggers the platinum sintering/agglomeration. Modified catalyst supports in form of graphite or carbon nanotubes improve the catalyst and therefore the PBI cell durability. (LN)

  8. Genomic organization of ATOX1, a human copper chaperone

    Directory of Open Access Journals (Sweden)

    Kaler Stephen G

    2003-02-01

    Full Text Available Abstract Background Copper is an essential trace element that plays a critical role in the survival of all living organisms. Menkes disease and occipital horn syndrome (OHS are allelic disorders of copper transport caused by defects in a X-linked gene (ATP7A that encodes a P-type ATPase that transports copper across cellular membranes, including the trans-Golgi network. Genetic studies in yeast recently revealed a new family of cytoplasmic proteins called copper chaperones which bind copper ions and deliver them to specific cellular pathways. Biochemical studies of the human homolog of one copper chaperone, ATOX1, indicate direct interaction with the Menkes/OHS protein. Although no disease-associated mutations have been reported in ATOX1, mice with disruption of the ATOX1 locus demonstrate perinatal mortality similar to that observed in the brindled mice (Mobr, a mouse model of Menkes disease. The cDNA sequence for ATOX1 is known, and the genomic organization has not been reported. Results We determined the genomic structure of ATOX1. The gene contains 4 exons spanning a genomic distance of approximately 16 kb. The translation start codon is located in the 3' end of exon 1 and the termination codon in exon 3. We developed a PCR-based assay to amplify the coding regions and splice junctions from genomic DNA. We screened for ATOX1 mutations in two patients with classical Menkes disease phenotypes and one individual with occipital horn syndrome who had no alterations detected in ATP7A, as well as an adult female with chronic anemia, low serum copper and evidence of mild dopamine-beta-hydroxylase deficiency and no alterations in the ATOX1 coding or splice junction sequences were found. Conclusions In this study, we characterized the genomic structure of the human copper chaperone ATOX1 to facilitate screening of this gene from genomic DNA in patients whose clinical or biochemical phenotypes suggest impaired copper transport.

  9. Low-power millimeter wave radiations do not alter stress-sensitive gene expression of chaperone proteins.

    Science.gov (United States)

    Zhadobov, M; Sauleau, R; Le Coq, L; Debure, L; Thouroude, D; Michel, D; Le Dréan, Y

    2007-04-01

    This article reports experimental results on the influence of low-power millimeter wave (MMW) radiation at 60 GHz on a set of stress-sensitive gene expression of molecular chaperones, namely clusterin (CLU) and HSP70, in a human brain cell line. Selection of the exposure frequency is determined by its near-future applications for the new broadband civil wireless communication systems including wireless local area networks (WLAN) for domestic and professional uses. Frequencies around 60 GHz are strongly attenuated in the earth's atmosphere and such radiations represent a new environmental factor. An exposure system operating in V-band (50-75 GHz) was developed for cell exposure. U-251 MG glial cell line was sham-exposed or exposed to MMW radiation for different durations (1-33 h) and two different power densities (5.4 microW/cm(2) or 0.54 mW/cm(2)). As gene expression is a multiple-step process, we analyzed chaperone proteins induction at different levels. First, using luciferase reporter gene, we investigated potential effect of MMWs on the activation of transcription factors (TFs) and gene promoter activity. Next, using RT-PCR and Western blot assays, we verified whether MMW exposure could alter RNA accumulation, translation, or protein stability. Experimental data demonstrated the absence of significant modifications in gene transcription, mRNA, and protein amount for the considered stress-sensitive genes for the exposure durations and power densities investigated. The main results of this study suggest that low-power 60 GHz radiation does not modify stress-sensitive gene expression of chaperone proteins. PMID:17080454

  10. Massive MIMO and Small Cells: Improving Energy Efficiency by Optimal Soft-Cell Coordination

    OpenAIRE

    Bjornson, Emil; Kountouris, Marios; Debbah, Merouane

    2013-01-01

    To improve the cellular energy efficiency, without sacrificing quality-of-service (QoS) at the users, the network topology must be densified to enable higher spatial reuse. We analyze a combination of two densification approaches, namely "massive" multiple-input multiple-output (MIMO) base stations and small-cell access points. If the latter are operator-deployed, a spatial soft-cell approach can be taken where the multiple transmitters serve the users by joint non-coherent multiflow beamform...

  11. Purification, crystallization and preliminary X-ray diffraction analysis of the Escherichia coli common pilus chaperone EcpB

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, James A.; Diallo, Mamou; Matthews, Steve J., E-mail: s.j.matthews@imperial.ac.uk [Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)

    2015-05-20

    In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher pathway that plays a major role in both early biofilm formation and host-cell adhesion. Initial attempts at crystallizing the chaperone EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. This is the first time that this refolding strategy has been used to purify CU chaperones. Pili are key cell-surface components that allow the attachment of bacteria to both biological and abiotic solid surfaces, whilst also mediating interactions between themselves. In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher (CU) pathway that plays a major role in both early biofilm formation and host-cell adhesion. The chaperone EcpB is involved in the biogenesis of the filament, which is composed of EcpA and EcpD. Initial attempts at crystallizing EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.4 Å resolution. These crystals belonged to the trigonal space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 62.65, c = 121.14 Å and one monomer in the asymmetric unit. Molecular replacement was unsuccessful, but selenomethionine-substituted protein and heavy-atom derivatives are being prepared for phasing. The three-dimensional structure of EcpB will provide invaluable information on the subtle mechanistic differences in biogenesis between the alternative and classical CU pathways. Furthermore, this is the first time that this refolding strategy has been used to purify CU chaperones, and it

  12. Regulation and Recovery of Functions of Saccharomyces cerevisiae Chaperone BiP/Kar2p after Thermal Insult

    OpenAIRE

    Seppä, Laura; Makarow, Marja

    2005-01-01

    We described earlier a novel mode of regulation of Hsp104, a cytosolic chaperone directly involved in the refolding of heat-denatured proteins, and designated it delayed upregulation, or DUR. When Saccharomyces cerevisiae cells grown at the physiological temperature of 24°C, preconditioned at 37°C, and treated briefly at 50°C were shifted back to 24°C, Hsp104 expression was strongly induced after 2.5 h of recovery and returned back to normal after 5 h. Here we show that the endoplasmic reticu...

  13. Purification, crystallization and preliminary X-ray diffraction analysis of the Escherichia coli common pilus chaperone EcpB

    International Nuclear Information System (INIS)

    In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher pathway that plays a major role in both early biofilm formation and host-cell adhesion. Initial attempts at crystallizing the chaperone EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. This is the first time that this refolding strategy has been used to purify CU chaperones. Pili are key cell-surface components that allow the attachment of bacteria to both biological and abiotic solid surfaces, whilst also mediating interactions between themselves. In Escherichia coli, the common pilus (Ecp) belongs to an alternative chaperone–usher (CU) pathway that plays a major role in both early biofilm formation and host-cell adhesion. The chaperone EcpB is involved in the biogenesis of the filament, which is composed of EcpA and EcpD. Initial attempts at crystallizing EcpB using natively purified protein from the bacterial periplasm were not successful; however, after the isolation of EcpB under denaturing conditions and subsequent refolding, crystals were obtained at pH 8.0 using the sitting-drop method of vapour diffusion. Diffraction data have been processed to 2.4 Å resolution. These crystals belonged to the trigonal space group P3121 or P3221, with unit-cell parameters a = b = 62.65, c = 121.14 Å and one monomer in the asymmetric unit. Molecular replacement was unsuccessful, but selenomethionine-substituted protein and heavy-atom derivatives are being prepared for phasing. The three-dimensional structure of EcpB will provide invaluable information on the subtle mechanistic differences in biogenesis between the alternative and classical CU pathways. Furthermore, this is the first time that this refolding strategy has been used to purify CU chaperones, and it could be

  14. Hydroimidazolone modification of the conserved Arg12 in small heat shock proteins: studies on the structure and chaperone function using mutant mimics.

    Directory of Open Access Journals (Sweden)

    Ram H Nagaraj

    Full Text Available Methylglyoxal (MGO is an α-dicarbonyl compound present ubiquitously in the human body. MGO reacts with arginine residues in proteins and forms adducts such as hydroimidazolone and argpyrimidine in vivo. Previously, we showed that MGO-mediated modification of αA-crystallin increased its chaperone function. We identified MGO-modified arginine residues in αA-crystallin and found that replacing such arginine residues with alanine residues mimicked the effects of MGO on the chaperone function. Arginine 12 (R12 is a conserved amino acid residue in Hsp27 as well as αA- and αB-crystallin. When treated with MGO at or near physiological concentrations (2-10 µM, R12 was modified to hydroimidazolone in all three small heat shock proteins. In this study, we determined the effect of arginine substitution with alanine at position 12 (R12A to mimic MGO modification on the structure and chaperone function of these proteins. Among the three proteins, the R12A mutation improved the chaperone function of only αA-crystallin. This enhancement in the chaperone function was accompanied by subtle changes in the tertiary structure, which increased the thermodynamic stability of αA-crystallin. This mutation induced the exposure of additional client protein binding sites on αA-crystallin. Altogether, our data suggest that MGO-modification of the conserved R12 in αA-crystallin to hydroimidazolone may play an important role in reducing protein aggregation in the lens during aging and cataract formation.

  15. Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity

    Science.gov (United States)

    2016-01-01

    ABSTRACT Chaperones and co-chaperones enable protein folding and degradation, safeguarding the proteome against proteotoxic stress. Chaperones display dynamic responses to exogenous and endogenous stressors and thus constitute a key component of the proteostasis network (PN), an intricately regulated network of quality control and repair pathways that cooperate to maintain cellular proteostasis. It has been hypothesized that aging leads to chronic stress on the proteome and that this could underlie many age-associated diseases such as neurodegeneration. Understanding the dynamics of chaperone function during aging and disease-related proteotoxic stress could reveal specific chaperone systems that fail to respond to protein misfolding. Through the use of suppressor and enhancer screens, key chaperones crucial for proteostasis maintenance have been identified in model organisms that express misfolded disease-related proteins. This review provides a literature-based analysis of these genetic studies and highlights prominent chaperone modifiers of proteotoxicity, which include the HSP70-HSP40 machine and small HSPs. Taken together, these studies in model systems can inform strategies for therapeutic regulation of chaperone functionality, to manage aging-related proteotoxic stress and to delay the onset of neurodegenerative diseases. PMID:27491084

  16. Natural products triptolide, celastrol, and withaferin A inhibit the chaperone activity of peroxiredoxin i

    NARCIS (Netherlands)

    Zhao, Qian; Ding, Yu; Deng, Zhangshuang; Lee, On Yi; Gao, Peng; Chen, Pin; Rose, Rebecca J.; Zhao, Hong; Zhang, Zhehao; Tao, Xin Pei; Heck, Albert J R; Kao, Richard; Yang, Dan

    2015-01-01

    Peroxiredoxin I (Prx I) plays an important role in cancer development and inflammation. It is a dual-functional protein which acts as both an antioxidant enzyme and a molecular chaperone. While there have been intensive studies on its peroxidase activity, Prx I's chaperone activity remains elusive,

  17. Effect of leucine-to-methionine substitutions on the diffraction quality of histone chaperone SET/TAF-Iβ/INHAT crystals

    International Nuclear Information System (INIS)

    The combination of leucine-to-methionine substitutions and optimization of cryoconditions improved the resolution of histone chaperone SET/TAF-Iβ/INHAT crystals from around 5.5 to 2.3 Å without changing the crystallization conditions, allowing successful structure determination of SET/TAF-Iβ/INHAT by the multiwavelength anomalous diffraction method. One of the most frequent problems in crystallization is poor quality of the crystals. In order to overcome this obstacle several methods have been utilized, including amino-acid substitutions of the target protein. Here, an example is presented of crystal-quality improvement by leucine-to-methionine substitutions. A variant protein with three amino-acid substitutions enabled improvement of the crystal quality of the histone chaperone SET/TAF-Iβ/INHAT when combined with optimization of the cryoconditions. This procedure improved the resolution of the SET/TAF-Iβ/INHAT crystals from around 5.5 to 2.3 Å without changing the crystallization conditions

  18. Electrochemical Cell with Improved Water or Gas Management

    Science.gov (United States)

    Smith, William F. (Inventor); McElroy, James F. (Inventor); LaGrange, Jay W. (Inventor)

    2015-01-01

    An electrochemical cell having a water/gas porous separator prepared from a polymeric material and one or more conductive cell components that pass through, or are located in close proximity to, the water/gas porous separator, is provided. The inventive cell provides a high level of in-cell electrical conductivity.

  19. Kinetic analysis reveals the diversity of microscopic mechanisms through which molecular chaperones suppress amyloid formation

    Science.gov (United States)

    Arosio, Paolo; Michaels, Thomas C. T.; Linse, Sara; Månsson, Cecilia; Emanuelsson, Cecilia; Presto, Jenny; Johansson, Jan; Vendruscolo, Michele; Dobson, Christopher M.; Knowles, Tuomas P. J.

    2016-03-01

    It is increasingly recognized that molecular chaperones play a key role in modulating the formation of amyloid fibrils, a process associated with a wide range of human disorders. Understanding the detailed mechanisms by which they perform this function, however, has been challenging because of the great complexity of the protein aggregation process itself. In this work, we build on a previous kinetic approach and develop a model that considers pairwise interactions between molecular chaperones and different protein species to identify the protein components targeted by the chaperones and the corresponding microscopic reaction steps that are inhibited. We show that these interactions conserve the topology of the unperturbed reaction network but modify the connectivity weights between the different microscopic steps. Moreover, by analysing several protein-molecular chaperone systems, we reveal the striking diversity in the microscopic mechanisms by which molecular chaperones act to suppress amyloid formation.

  20. Cell therapy strategies and improvements for muscular dystrophy

    OpenAIRE

    Quattrocelli, Mattia; Cassano, Marco; Crippa, Stefania; Perini, Ilaria; Sampaolesi, Maurilio

    2010-01-01

    Understanding stem cell commitment and differentiation is a critical step towards clinical translation of cell therapies. In past few years, several cell types have been characterized and transplanted in animal models for different diseased tissues, eligible for a cell-mediated regeneration. Skeletal muscle damage is a challenge for cell- and gene-based therapeutical approaches, given the unique architecture of the tissue and the clinical relevance of acute damages or dystrophies. In this rev...

  1. Bovine leukemia virus nucleocapsid protein is an efficient nucleic acid chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Qualley, Dominic F., E-mail: dqualley@berry.edu; Sokolove, Victoria L.; Ross, James L.

    2015-03-13

    Nucleocapsid proteins (NCs) direct the rearrangement of nucleic acids to form the most thermodynamically stable structure, and facilitate many steps throughout the life cycle of retroviruses. NCs bind strongly to nucleic acids (NAs) and promote NA aggregation by virtue of their cationic nature; they also destabilize the NA duplex via highly structured zinc-binding motifs. Thus, they are considered to be NA chaperones. While most retroviral NCs are structurally similar, differences are observed both within and between retroviral genera. In this work, we compare the NA binding and chaperone activity of bovine leukemia virus (BLV) NC to that of two other retroviral NCs: human immunodeficiency virus type 1 (HIV-1) NC, which is structurally similar to BLV NC but from a different retrovirus genus, and human T-cell leukemia virus type 1 (HTLV-1) NC, which possesses several key structural differences from BLV NC but is from the same genus. Our data show that BLV and HIV-1 NCs bind to NAs with stronger affinity in relation to HTLV-1 NC, and that they also accelerate the annealing of complementary stem-loop structures to a greater extent. Analysis of kinetic parameters derived from the annealing data suggests that while all three NCs stimulate annealing by a two-step mechanism as previously reported, the relative contributions of each step to the overall annealing equilibrium are conserved between BLV and HIV-1 NCs but are different for HTLV-1 NC. It is concluded that while BLV and HTLV-1 belong to the same genus of retroviruses, processes that rely on NC may not be directly comparable. - Highlights: • BLV NC binds strongly to DNA and RNA. • BLV NC promotes mini-TAR annealing as well as HIV-1 NC. • Annealing kinetics suggest a low degree of similarity between BLV NC and HTLV-1 NC.

  2. Bovine leukemia virus nucleocapsid protein is an efficient nucleic acid chaperone

    International Nuclear Information System (INIS)

    Nucleocapsid proteins (NCs) direct the rearrangement of nucleic acids to form the most thermodynamically stable structure, and facilitate many steps throughout the life cycle of retroviruses. NCs bind strongly to nucleic acids (NAs) and promote NA aggregation by virtue of their cationic nature; they also destabilize the NA duplex via highly structured zinc-binding motifs. Thus, they are considered to be NA chaperones. While most retroviral NCs are structurally similar, differences are observed both within and between retroviral genera. In this work, we compare the NA binding and chaperone activity of bovine leukemia virus (BLV) NC to that of two other retroviral NCs: human immunodeficiency virus type 1 (HIV-1) NC, which is structurally similar to BLV NC but from a different retrovirus genus, and human T-cell leukemia virus type 1 (HTLV-1) NC, which possesses several key structural differences from BLV NC but is from the same genus. Our data show that BLV and HIV-1 NCs bind to NAs with stronger affinity in relation to HTLV-1 NC, and that they also accelerate the annealing of complementary stem-loop structures to a greater extent. Analysis of kinetic parameters derived from the annealing data suggests that while all three NCs stimulate annealing by a two-step mechanism as previously reported, the relative contributions of each step to the overall annealing equilibrium are conserved between BLV and HIV-1 NCs but are different for HTLV-1 NC. It is concluded that while BLV and HTLV-1 belong to the same genus of retroviruses, processes that rely on NC may not be directly comparable. - Highlights: • BLV NC binds strongly to DNA and RNA. • BLV NC promotes mini-TAR annealing as well as HIV-1 NC. • Annealing kinetics suggest a low degree of similarity between BLV NC and HTLV-1 NC

  3. Degradation of AF1Q by chaperone-mediated autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Peng; Ji, Min; Lu, Fei; Zhang, Jingru [Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China); Li, Huanjie; Cui, Taixing; Li Wang, Xing [Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: tangdq@sdu.edu.cn [Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China); Center for Stem Cell and Regenerative Medicine, The Second Hospital of Shandong University, Jinan 250033 (China); Ji, Chunyan, E-mail: jichunyan@sdu.edu.cn [Department of Hematology, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan 250012 (China)

    2014-09-10

    AF1Q, a mixed lineage leukemia gene fusion partner, is identified as a poor prognostic biomarker for pediatric acute myeloid leukemia (AML), adult AML with normal cytogenetic and adult myelodysplastic syndrome. AF1Q is highly regulated during hematopoietic progenitor differentiation and development but its regulatory mechanism has not been defined clearly. In the present study, we used pharmacological and genetic approaches to influence chaperone-mediated autophagy (CMA) and explored the degradation mechanism of AF1Q. Pharmacological inhibitors of lysosomal degradation, such as chloroquine, increased AF1Q levels, whereas activators of CMA, including 6-aminonicotinamide and nutrient starvation, decreased AF1Q levels. AF1Q interacts with HSPA8 and LAMP-2A, which are core components of the CMA machinery. Knockdown of HSPA8 or LAMP-2A increased AF1Q protein levels, whereas overexpression showed the opposite effect. Using an amino acid deletion AF1Q mutation plasmid, we identified that AF1Q had a KFERQ-like motif which was recognized by HSPA8 for CMA-dependent proteolysis. In conclusion, we demonstrate for the first time that AF1Q can be degraded in lysosomes by CMA. - Highlights: • Chaperone-mediated autophagy (CMA) is involved in the degradation of AF1Q. • Macroautophagy does not contribute to the AF1Q degradation. • AF1Q has a KFERQ-like motif that is recognized by CMA core components.

  4. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.

    Science.gov (United States)

    Stauss, Hans J; Thomas, Sharyn; Cesco-Gaspere, Michela; Hart, Daniel P; Xue, Shao-An; Holler, Angelika; King, Judy; Wright, Graham; Perro, Mario; Pospori, Constantina; Morris, Emma

    2008-01-01

    Adoptive transfer of antigen-specific T lymphocytes is an attractive form of immunotherapy for haematological malignancies and cancer. The difficulty of isolating antigen-specific T lymphocytes for individual patients limits the more widespread use of adoptive T cell therapy. The demonstration that cloned T cell receptor (TCR) genes can be used to produce T lymphocyte populations of desired specificity offers new opportunities for antigen-specific T cell therapy. The first trial in humans demonstrated that TCR gene-modified T cells persisted for an extended time period and reduced tumor burden in some patients. The WT1 protein is an attractive target for immunotherapy of leukemia and solid cancer since elevated expression has been demonstrated in AML, CML, MDS and in breast, colon and ovarian cancer. In the past, we have isolated high avidity CTL specific for a WT1-derived peptide presented by HLA-A2 and cloned the TCR alpha and beta genes of a WT1-specific CTL line. The genes were inserted into retroviral vectors for transduction of human peripheral blood T lymphocytes of leukemia patients and normal donors. The treatment of leukemia-bearing NOD/SCID mice with T cells transduced with the WT1-specific TCR eliminated leukemia cells in the bone marrow of most mice, while treatment with T cells transduced with a TCR of irrelevant specificity did not diminish the leukemia burden. In order to improve the safety and efficacy of TCR gene therapy, we have developed lentiviral TCR gene transfer. In addition, we employed strategies to enhance TCR expression while avoiding TCR mis-pairing. It may be possible to generate dominant TCR constructs that can suppress the expression of the endogenous TCR on the surface of transduced T cells. The development of new TCR gene constructs holds great promise for the safe and effective delivery of TCR gene therapy for the treatment of malignancies. PMID:17855129

  5. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery

    Science.gov (United States)

    Boulon, Séverine; Marmier-Gourrier, Nathalie; Pradet-Balade, Bérengère; Wurth, Laurence; Verheggen, Céline; Jády, Beáta E.; Rothé, Benjamin; Pescia, Christina; Robert, Marie-Cécile; Kiss, Tamás; Bardoni, Barbara; Krol, Alain; Branlant, Christiane; Allmang, Christine; Bertrand, Edouard; Charpentier, Bruno

    2008-01-01

    RNA-binding proteins of the L7Ae family are at the heart of many essential ribonucleoproteins (RNPs), including box C/D and H/ACA small nucleolar RNPs, U4 small nuclear RNP, telomerase, and messenger RNPs coding for selenoproteins. In this study, we show that Nufip and its yeast homologue Rsa1 are key components of the machinery that assembles these RNPs. We observed that Rsa1 and Nufip bind several L7Ae proteins and tether them to other core proteins in the immature particles. Surprisingly, Rsa1 and Nufip also link assembling RNPs with the AAA + adenosine triphosphatases hRvb1 and hRvb2 and with the Hsp90 chaperone through two conserved adaptors, Tah1/hSpagh and Pih1. Inhibition of Hsp90 in human cells prevents the accumulation of U3, U4, and telomerase RNAs and decreases the levels of newly synthesized hNop58, hNHP2, 15.5K, and SBP2. Thus, Hsp90 may control the folding of these proteins during the formation of new RNPs. This suggests that Hsp90 functions as a master regulator of cell proliferation by allowing simultaneous control of cell signaling and cell growth. PMID:18268104

  6. N-terminal arm of orchardgrass Hsp17.2 (DgHsp17.2) is essential for both in vitro chaperone activity and in vivo thermotolerance in yeast.

    Science.gov (United States)

    Cha, Joon-Yung; Lee, Sang-Hoon; Seo, Kyung Hye; Choi, Young Jin; Cheong, Mi Sun; Son, Daeyoung

    2016-02-01

    Small heat shock proteins are well-known to function as chaperone in the protection of proteins and subcellular structures against stress-induced denaturation in many cell compartments. Irrespective of such general functional assignment, a proof of function in a living organism is missing. Here, we used heat-induced orchardgrass small Hsp17.2 (DgHsp17.2). Its function in in vitro chaperone properties has shown in protecting the model substrate, malate dehydrogenase (MDH) and citrate synthase (CS). Overexpression of DgHsp17.2 triggering strong chaperone activity enhanced in vivo thermotolerance of yeast cells. To identify the functional domain on DgHsp17.2 and correlationship between in vitro chaperone property and in vivo thermotolerance, we generated truncation mutants of DgHsp17.2 and showed essentiality of the N-terminal arm of DgHsp17.2 for the chaperone function. In addition, beyond for acquisition of thermotolerance irrespective of sequences are diverse among the small Hsps. However, any truncation mutants of DgHsp17.2 did not exhibit strong interaction with orchardgrass heat shock protein 70 (DgHsp70) different from mature DgHsp17.2, indicating that full-length DgHsp17.2 is necessary for cooperating with Hsp70 protein. Our study indicates that the N-terminal arm of DgHsp17.2 is an important region for chaperone activity and thermotolerance. PMID:26724757

  7. Minimal RED Cell Pairs Markedly Improve Electrode Kinetics and Power Production in Microbial Reverse Electrodialysis Cells

    KAUST Repository

    Cusick, Roland D.

    2013-12-17

    Power production from microbial reverse electrodialysis cell (MRC) electrodes is substantially improved compared to microbial fuel cells (MFCs) by using ammonium bicarbonate (AmB) solutions in multiple RED cell pair stacks and the cathode chamber. Reducing the number of RED membranes pairs while maintaining enhanced electrode performance could help to reduce capital costs. We show here that using only a single RED cell pair (CP), created by operating the cathode in concentrated AmB, dramatically increased power production normalized to cathode area from both acetate (Acetate: from 0.9 to 3.1 W/m 2-cat) and wastewater (WW: 0.3 to 1.7 W/m2), by reducing solution and charge transfer resistances at the cathode. A second RED cell pair increased RED stack potential and reduced anode charge transfer resistance, further increasing power production (Acetate: 4.2 W/m2; WW: 1.9 W/m2). By maintaining near optimal electrode power production with fewer membranes, power densities normalized to total membrane area for the 1-CP (Acetate: 3.1 W/m2-mem; WW: 1.7 W/m2) and 2-CP (Acetate: 1.3 W/m2-mem; WW: 0.6 W/m2) reactors were much higher than previous MRCs (0.3-0.5 W/m2-mem with acetate). While operating at peak power, the rate of wastewater COD removal, normalized to reactor volume, was 30-50 times higher in 1-CP and 2-CP MRCs than that in a single chamber MFC. These findings show that even a single cell pair AmB RED stack can significantly enhance electrical power production and wastewater treatment. © 2013 American Chemical Society.

  8. Balsamic Vinegar Improves High Fat-Induced Beta Cell Dysfunction via Beta Cell ABCA1

    Directory of Open Access Journals (Sweden)

    Hannah Seok

    2012-08-01

    Full Text Available BackgroundThe aim of this study was to investigate the effects of balsamic vinegar on β-cell dysfunction.MethodsIn this study, 28-week-old Otsuka Long-Evans Tokushima Fatty (OLETF rats were fed a normal chow diet or a high-fat diet (HFD and were provided with tap water or dilute balsamic vinegar for 4 weeks. Oral glucose tolerance tests and histopathological analyses were performed thereafter.ResultsIn rats fed both the both chow diet and the HFD, the rats given balsamic vinegar showed increased insulin staining in islets compared with tap water administered rats. Balsamic vinegar administration also increased β-cell ATP-binding cassette transporter subfamily A member 1 (ABCA1 expression in islets and decreased cholesterol levels.ConclusionThese findings provide the first evidence for an anti-diabetic effect of balsamic vinegar through improvement of β-cell function via increasing β-cell ABCA1 expression.

  9. Munc18-1 is a molecular chaperone for α-synuclein, controlling its self-replicating aggregation.

    Science.gov (United States)

    Chai, Ye Jin; Sierecki, Emma; Tomatis, Vanesa M; Gormal, Rachel S; Giles, Nichole; Morrow, Isabel C; Xia, Di; Götz, Jürgen; Parton, Robert G; Collins, Brett M; Gambin, Yann; Meunier, Frédéric A

    2016-09-12

    Munc18-1 is a key component of the exocytic machinery that controls neurotransmitter release. Munc18-1 heterozygous mutations cause developmental defects and epileptic phenotypes, including infantile epileptic encephalopathy (EIEE), suggestive of a gain of pathological function. Here, we used single-molecule analysis, gene-edited cells, and neurons to demonstrate that Munc18-1 EIEE-causing mutants form large polymers that coaggregate wild-type Munc18-1 in vitro and in cells. Surprisingly, Munc18-1 EIEE mutants also form Lewy body-like structures that contain α-synuclein (α-Syn). We reveal that Munc18-1 binds α-Syn, and its EIEE mutants coaggregate α-Syn. Likewise, removal of endogenous Munc18-1 increases the aggregative propensity of α-Syn(WT) and that of the Parkinson's disease-causing α-Syn(A30P) mutant, an effect rescued by Munc18-1(WT) expression, indicative of chaperone activity. Coexpression of the α-Syn(A30P) mutant with Munc18-1 reduced the number of α-Syn(A30P) aggregates. Munc18-1 mutations and haploinsufficiency may therefore trigger a pathogenic gain of function through both the corruption of native Munc18-1 and a perturbed chaperone activity for α-Syn leading to aggregation-induced neurodegeneration. PMID:27597756

  10. Effect of heterologous expression of molecular chaperone DnaK from Tetragenococcus halophilus on salinity adaptation of Escherichia coli.

    Science.gov (United States)

    Sugimoto, Shinya; Nakayama, Jiro; Fukuda, Daisuke; Sonezaki, Shino; Watanabe, Maki; Tosukhowong, Amonlaya; Sonomoto, Kenji

    2003-01-01

    Molecular chaperone DnaK of halophilic Tetragenococcus halophilus JCM5888 was characterized under salinity conditions both in vitro and in vivo. The dnaK gene was cloned into an expression vector and transformed into Escherichia coli. The DnaK protein obtained from the recombinant E. coli showed a significantly higher refolding activity of denatured lactate dehydrogenase than that from non-halophilic Lactococcus lactis under NaCl concentrations higher than 1 M. E. coli without the overexpression of DnaK exhibited a growth profile with a prolonged lag phase and suppressed maximum cell density in Luria-Bertani medium containing 5% (0.86 M) NaCl. On the contrary, the overexpression of T. halophilus DnaK greatly shortened this prolonged lag phase with no effect on maximum growth, while that of L. lactis DnaK decreased maximum growth. The amount of protein aggregates was increased by salt stress in the E. coli cells, while this aggregation was greatly suppressed by the overexpression of T, halophilus DnaK. These results suggest that heterologous overexpression of T. halophilus DnaK, via its chaperone activity, promotes salinity adaptation of E. coli. PMID:16233497

  11. Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus

    OpenAIRE

    Scott J Rodig; Cheng, Jingwei; Wardzala, Jacek; Dorosario, Andrew; Scanlon, Jessica J.; Laga, Alvaro C.; Martinez-Fernandez, Alejandro; Barletta, Justine A.; Bellizzi, Andrew M.; Sadasivam, Subhashini; Holloway, Dustin T.; Cooper, Dylan J.; Kupper, Thomas S.; Wang, Linda C; DeCaprio, James A.

    2012-01-01

    A human polyomavirus was recently discovered in Merkel cell carcinoma (MCC) specimens. The Merkel cell polyomavirus (MCPyV) genome undergoes clonal integration into the host cell chromosomes of MCC tumors and expresses small T antigen and truncated large T antigen. Previous studies have consistently reported that MCPyV can be detected in approximately 80% of all MCC tumors. We sought to increase the sensitivity of detection of MCPyV in MCC by developing antibodies capable of detecting large T...

  12. QUALITY IMPROVEMENT OF CARS BY MEANS OF FUEL CELLS UTILIZATION

    OpenAIRE

    Мілованова, В.В.

    2015-01-01

    A review of the existing types of fuel cells, their advantages and disadvantages, as well as the prospects for their use in the automotive industry has been carried out in the paper. General problems that make it difficult to launch fuel cell vehicles in series production are analyzed, some suggestions for dealing with them are proposed. Examples of application of fuel cells in cars today and a forecast of development of these technologies in the future are given.

  13. Dehydroepiandrosterone inhibits cell proliferation and improves viability by regulating S phase and mitochondrial permeability in primary rat Leydig cells

    Science.gov (United States)

    LIU, LIN; WANG, DIAN; LI, LONGLONG; DING, XIAO; MA, HAITIAN

    2016-01-01

    Dehydroepiandrosterone (DHEA) is widely used as a nutritional supplement and exhibits putative anti-aging properties. However, the molecular basis of the actions of DHEA, particularly on the biological characteristics of target cells, remain unclear. The aim of the current study was to investigate the effects of DHEA on cell viability, cell proliferation, cell cycle and mitochondrial function in primary rat Leydig cells. Adult Leydig cells were purified by Percoll gradient centrifugation, and cell proliferation was detected using a Click-iT® EdU Assay kit and cell cycle assessment performed using flow cytometry. Mitochondrial membrane potential was detected using JC-1 staining assay. The results of the current study demonstrate that DHEA decreased cell proliferation in a dose-dependent manner, whereas it improved cell viability in a time-dependent and dose-dependent manner. Flow cytometry analysis demonstrated that DHEA treatment increased the S phase cell population and decreased the G2/M cell population. Cyclin A and CDK2 mRNA levels were decreased in primary rat Leydig cells following DHEA treatment. DHEA treatment decreased the transmembrane electrical gradient in primary Leydig cells, whereas treatment significantly increased succinate dehydrogenase activity. These results indicated that DHEA inhibits primary rat Leydig cell proliferation by decreasing cyclin mRNA level, whereas it improves cells viability by modulating the permeability of the mitochondrial membrane and succinate dehydrogenase activity. These findings may demonstrate an important molecular mechanism by which DHEA activity is mediated. PMID:27220727

  14. Quercetin mediated reduction of angiogenic markers and chaperones in DLA-induced solid tumours.

    Science.gov (United States)

    Anand, Kushi; Asthana, Pallavi; Kumar, Anup; Ambasta, Rashmi K; Kumar, Pravir

    2011-01-01

    Diet-derived flavonoids, in particular quercetin, may play advantageous roles by preventing or/and inhibiting oncogenesis. Evidence suggests that quercetin can elicit various properties depending on the cell type. The aim of this study was to evaluate its effects on Dalton's lymphoma ascites (DLA) induced solid tumours and to identify the target(s) of action. We addressed this question by inducing subcutaneous solid tumours in Swiss albino mice and investigated whether the quercetin affects essential biological processes that are responsible for tumour growth, morphology, angiogenesis and apoptosis. We also studied influence on several heat shock proteins (HSPs). Our findings demonstrate that intra-tumour administration of quercetin results in decreased volume/weight. Furthermore, we demonstrate that quercetin promotes apoptosis of cancer cells by down-regulating the levels of Hsp90 and Hsp70. Depletion of these two chaperones by quercetin might result in triggering of caspase-3 in treated tumours. Moreover, it also down-regulated the expression of major key angiogenic or pro-angiogenic factors, like HIF-1α and VEGF In addition, H and E staining together with immunofluorescence of fixed tumour tissue provided evidence in support of increased cell death in quercetin-treated mice. PMID:22393949

  15. Cardiomyocyte ryanodine receptor degradation by chaperone-mediated autophagy

    Science.gov (United States)

    Pedrozo, Zully; Torrealba, Natalia; Fernández, Carolina; Gatica, Damian; Toro, Barbra; Quiroga, Clara; Rodriguez, Andrea E.; Sanchez, Gina; Gillette, Thomas G.; Hill, Joseph A.; Donoso, Paulina; Lavandero, Sergio

    2013-01-01

    Time for primary review: 15 days Aims Chaperone-mediated autophagy (CMA) is a selective mechanism for the degradation of soluble cytosolic proteins bearing the sequence KFERQ. These proteins are targeted by chaperones and delivered to lysosomes where they are translocated into the lysosomal lumen and degraded via the lysosome-associated membrane protein type 2A (LAMP-2A). Mutations in LAMP2 that inhibit autophagy result in Danon disease characterized by hypertrophic cardiomyopathy. The ryanodine receptor type 2 (RyR2) plays a key role in cardiomyocyte excitation–contraction and its dysfunction can lead to cardiac failure. Whether RyR2 is degraded by CMA is unknown. Methods and results To induce CMA, cultured neonatal rat cardiomyocytes were treated with geldanamycin (GA) to promote protein degradation through this pathway. GA increased LAMP-2A levels together with its redistribution and colocalization with Hsc70 in the perinuclear region, changes indicative of CMA activation. The inhibition of lysosomes but not proteasomes prevented the loss of RyR2. The recovery of RyR2 content after incubation with GA by siRNA targeting LAMP-2A suggests that RyR2 is degraded via CMA. In silico analysis also revealed that the RyR2 sequence harbours six KFERQ motifs which are required for the recognition Hsc70 and its degradation via CMA. Our data suggest that presenilins are involved in RyR2 degradation by CMA. Conclusion These findings are consistent with a model in which oxidative damage of the RyR2 targets it for turnover by presenilins and CMA, which could lead to removal of damaged or leaky RyR2 channels. PMID:23404999

  16. Phosphorylation Dependence of Hsp27 Multimeric Size and Molecular Chaperone Function*

    OpenAIRE

    Hayes, David; Napoli, Vanessa; Mazurkie, Andrew; Stafford, Walter F.; Graceffa, Philip

    2009-01-01

    The molecular chaperone Hsp27 exists as a distribution of large oligomers that are disassembled by phosphorylation at Ser-15, -78, and -82. It is controversial whether the unphosphorylated Hsp27 or the widely used triple Ser-to-Asp phospho-mimic mutant is the more active molecular chaperone in vitro. This question was investigated here by correlating chaperone activity, as measured by the aggregation of reduced insulin or α-lactalbumin, with Hsp27 self-association as monitored by analytical u...

  17. Exploiting human memory B cell heterogeneity for improved vaccine efficacy

    Directory of Open Access Journals (Sweden)

    Noel Thomas Pauli

    2011-12-01

    Full Text Available The major goal in vaccination is establishment of long-term, prophylactic humoral memory to a pathogen. Two major components to long-lived humoral memory are plasma cells for the production of specific immunoglobulin and memory B cells that survey for their specific antigen in the periphery for later affinity maturation, proliferation, and differentiation. The study of human B cell memory has been aided by the discovery of a general marker for B cell memory, expression of CD27; however, new data suggests the existence of CD27- memory B cells as well. These recently described non-canonical memory populations have increasingly pointed to the heterogeneity of the memory compartment. The novel B memory subsets in humans appear to have unique origins, localization, and functions compared to what was considered to be a classical memory B cell. In this article, we review the known B cell memory subsets, the establishment of B cell memory in vaccination and infection, and how understanding these newly described subsets can inform vaccine design and disease treatment.

  18. Topology optimization for improving the performance of solar cells

    NARCIS (Netherlands)

    Gupta, D.K.; Langelaar, M.; Keulen, F. van; Barink, M.

    2014-01-01

    This work introduces the application of Topology Optimization (TO) to design optimal front metallization patterns for solar cells and increase their power output. A challenging aspect of the solar cell electrode design problem is the strong nonlinear relation between the active layer current and the

  19. Improved genetic manipulation of human embryonic stem cells.

    NARCIS (Netherlands)

    Braam, S.R.; Denning, C.; van den Brink, S.; Kats, P.; Hochstenbach, R.; Passier, R.; Mummery, C.L.

    2008-01-01

    Low efficiency of transfection limits the ability to genetically manipulate human embryonic stem cells (hESCs), and differences in cell derivation and culture methods require optimization of transfection protocols. We transiently transferred multiple independent hESC lines with different growth requ

  20. Improved infiltration of stem cells on electrospun nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Shabani, Iman [Polymer Engineering Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Department of Stem Cells and Tissue Engineering, Stem Cell Technology Co. Ltd., Tehran (Iran, Islamic Republic of); Haddadi-Asl, Vahid [Polymer Engineering Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Seyedjafari, Ehsan [Department of Biotechnology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Department of Stem Cells and Tissue Engineering, Stem Cell Technology Co. Ltd., Tehran (Iran, Islamic Republic of); Babaeijandaghi, Farshad [Department of Stem Cells and Tissue Engineering, Stem Cell Technology Co. Ltd., Tehran (Iran, Islamic Republic of); Faculty of Medicine, Tehran University of Medical Science, Tehran (Iran, Islamic Republic of); Soleimani, Masoud, E-mail: soleim_m@modares.ac.ir [Hematology Department, Faculty of Medical Science, Tarbiat Modares University, P.O. Box 14115-111, Tehran (Iran, Islamic Republic of)

    2009-04-24

    Nanofibrous scaffolds have been recently used in the field of tissue engineering because of their nano-size structure which promotes cell attachment, function, proliferation and infiltration. In this study, nanofibrous polyethersulfone (PES) scaffolds was prepared via electrospinning. The scaffolds were surface modified by plasma treatment and collagen grafting. The surface changes then investigated by contact angle measurements and FTIR-ATR. The results proved grafting of the collagen on nanofibers surface and increased hydrophilicity after plasma treatment and collagen grafting. The cell interaction study was done using stem cells because of their ability to differentiate to different kinds of cell lines. The cells had normal morphology on nanofibers and showed very high infiltration through collagen grafted PES nanofibers. This infiltration capability is very useful and needed to make 3D scaffolds in tissue engineering.

  1. Improved infiltration of stem cells on electrospun nanofibers

    International Nuclear Information System (INIS)

    Nanofibrous scaffolds have been recently used in the field of tissue engineering because of their nano-size structure which promotes cell attachment, function, proliferation and infiltration. In this study, nanofibrous polyethersulfone (PES) scaffolds was prepared via electrospinning. The scaffolds were surface modified by plasma treatment and collagen grafting. The surface changes then investigated by contact angle measurements and FTIR-ATR. The results proved grafting of the collagen on nanofibers surface and increased hydrophilicity after plasma treatment and collagen grafting. The cell interaction study was done using stem cells because of their ability to differentiate to different kinds of cell lines. The cells had normal morphology on nanofibers and showed very high infiltration through collagen grafted PES nanofibers. This infiltration capability is very useful and needed to make 3D scaffolds in tissue engineering.

  2. Using Cell Phones to Improve Language Skills: The Hadeda Project

    Science.gov (United States)

    Butgereit, Laurie; Botha, Adele; van Niekerk, Daniel

    Language skills are essential for education and economic development. Many countries (especially in Africa) have more than one official language and even more unofficial languages. Being able to express oneself effectively in the written word is required for tertiary education. Unfortunately, cell phones are often blamed for the degradation of language skills. There have been many studies blaming cell phone usage and instant messaging as being responsible for the the lack of language skills of children, teenagers, and young adults. Hadeda is a facility where teachers and parents can create spelling lists for pupils and children using either a cell phone or an internet based workstation. Hadeda then generates a fun and enjoyable cell phone midlet (computer program) which pupils and children can download onto their personal cell phone. Hadeda pronounces the words with electronic voices and the pupils and children can then practice their spelling on a medium they enjoy.

  3. Improved Activation toward Primary Colorectal Cancer Cells by Antigen-Specific Targeting Autologous Cytokine-Induced Killer Cells

    Directory of Open Access Journals (Sweden)

    Claudia Schlimper

    2012-01-01

    Full Text Available Adoptive therapy of malignant diseases with cytokine-induced killer (CIK cells showed promise in a number of trials; the activation of CIK cells from cancer patients towards their autologous cancer cells still needs to be improved. Here, we generated CIK cells ex vivo from blood lymphocytes of colorectal cancer patients and engineered those cells with a chimeric antigen receptor (CAR with an antibody-defined specificity for carcinoembryonic antigen (CEA. CIK cells thereby gained a new specificity as defined by the CAR and showed increase in activation towards CEA+ colon carcinoma cells, but less in presence of CEA− cells, indicated by increased secretion of proinflammatory cytokines. Redirected CIK activation was superior by CAR-mediated CD28-CD3ζ than CD3ζ signaling only. CAR-engineered CIK cells from colon carcinoma patients showed improved activation against their autologous, primary carcinoma cells from biopsies resulting in more efficient tumour cell lysis. We assume that adoptive therapy with CAR-modified CIK cells shows improved selectivity in targeting autologous tumour lesions.

  4. Shear stress-induced improvement of red blood cell deformability

    OpenAIRE

    Meram, Ece; Yılmaz, Bahar D.; Bas, Ceren; Atac, Nazlı; Yalçın, Ö.; Başkurt, Oguz K.; Meiselman, Herbert J.

    2013-01-01

    Classically, it is known that red blood cell (RBC) deformability is determined by the geometric and material properties of these cells. Experimental evidence accumulated during the last decade has introduced the concept of active regulation of RBC deformability. This regulation is mainly related to altered associations between membrane skeletal proteins and integral proteins, with the latter serving to anchor the skeleton to the lipid matrix. It has been hypothesized that shear stress induces...

  5. Efficiency improvement of silicon nanostructure-based solar cells

    Science.gov (United States)

    Huang, Bohr-Ran; Yang, Ying-Kan; Yang, Wen-Luh

    2014-01-01

    Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ∼181.1% and a decrease in reflectivity of ∼144.3%. The performance of the SNS-based solar cells was found to be optimized (∼11.86%) in an SNS with a length of ∼300 nm, an aspect ratio of ∼5, surface coverage of ∼84.9% and a reflectivity of ∼6.1%. The ∼16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production.

  6. Efficiency improvement of silicon nanostructure-based solar cells

    International Nuclear Information System (INIS)

    Solar cells based on a high-efficiency silicon nanostructure (SNS) were developed using a two-step metal-assisted electroless etching (MAEE) technique, phosphorus silicate glass (PSG) doping and screen printing. This process was used to produce solar cells with a silver nitrate (AgNO3) etching solution in different concentrations. Compared to cells produced using the single MAEE technique, SNS-based solar cells produced with the two-step MAEE technique showed an increase in silicon surface coverage of ∼181.1% and a decrease in reflectivity of ∼144.3%. The performance of the SNS-based solar cells was found to be optimized (∼11.86%) in an SNS with a length of ∼300 nm, an aspect ratio of ∼5, surface coverage of ∼84.9% and a reflectivity of ∼6.1%. The ∼16.8% increase in power conversion efficiency (PCE) for the SNS-based solar cell indicates good potential for mass production. (paper)

  7. Surface Modification of Semiconductor Photo Electrochemical Solar Cell for Improved Solar Cell Performance

    International Nuclear Information System (INIS)

    In the present paper, photo-electro chemical and hydrogen evolution characteristics of a new type of TiO2(ns) and TiO2(ns) - WO3 admixed/Ti septum based semiconductor-septum photo electrochemical (SC-SEP, PEC) solar cell have been studied. The SC-SEP cell in the configuration of SCE/1M NaOH/TiO2(ns)/Ti/H2SO4 + K2SO4/PtCE, PtWE showed the photo voltage and photo-current of 0.72 V and 8.6 mA/cm2, whereas the SC-SEP cell employing WO3 admixed TiO2(ns) photoelectrode and having the configuration: SCE/1M NaOH/TiO2(ns) - WO3/Ti/H2HO4 + K2SO4/PtCE, PtWE, showed the photo-voltage and photo-current of 0.96V and 15.6 mA/cm2 respectively. The hydrogen gas evolution for the SC - SEP cell based on TiO2/Ti photoelectrode was found to be 8.2 l/h/m2, on the other hand the WO3 modified TiO2(ns) exhibited a higher hydrogen gas evolution rate of 13.8 l/h/m2. The better performance of the new photoelectrode is thought to be due to improved spectral response and catalytic activity of WO3 for the hydrogen gas evolution kinetics. (author)

  8. The histone chaperones Vps75 and Nap1 form ring-like, tetrameric structures in solution

    Science.gov (United States)

    Bowman, Andrew; Hammond, Colin M.; Stirling, Andrew; Ward, Richard; Shang, Weifeng; El-Mkami, Hassane; Robinson, David A.; Svergun, Dmitri I.; Norman, David G.; Owen-Hughes, Tom

    2014-01-01

    NAP-1 fold histone chaperones play an important role in escorting histones to and from sites of nucleosome assembly and disassembly. The two NAP-1 fold histone chaperones in budding yeast, Vps75 and Nap1, have previously been crystalized in a characteristic homodimeric conformation. In this study, a combination of small angle X-ray scattering, multi angle light scattering and pulsed electron–electron double resonance approaches were used to show that both Vps75 and Nap1 adopt ring-shaped tetrameric conformations in solution. This suggests that the formation of homotetramers is a common feature of NAP-1 fold histone chaperones. The tetramerisation of NAP-1 fold histone chaperones may act to shield acidic surfaces in the absence of histone cargo thus providing a ‘self-chaperoning’ type mechanism. PMID:24688059

  9. Specificity of Lipoprotein Chaperones for the Characteristic Lipidated Structural Motifs of their Cognate Lipoproteins.

    Science.gov (United States)

    Mejuch, Tom; van Hattum, Hilde; Triola, Gemma; Jaiswal, Mamta; Waldmann, Herbert

    2015-11-01

    Lipoprotein-binding chaperones mediate intracellular transport of lipidated proteins and determine their proper localisation and functioning. Understanding of the exact structural parameters that determine recognition and transport by different chaperones is of major interest. We have synthesised several lipid-modified peptides, representative of different lipoprotein classes, and have investigated their binding to the relevant chaperones PDEδ, UNC119a, UNC119b, and galectins-1 and -3. Our results demonstrate that PDEδ recognises S-isoprenylated C-terminal peptidic structures but not N-myristoylated peptides. In contrast, UNC119 proteins bind only mono-N-myristoylated, but do not recognise doubly lipidated and S-isoprenylated peptides at the C terminus. For galectins-1 and -3, neither binding to N-acylated, nor to C-terminally prenylated peptides could be determined. These results shed light on the specificity of the chaperone-mediated cellular lipoprotein transport systems. PMID:26503308

  10. Histone chaperones FACT and Spt6 prevent histone variants from turning into histone deviants.

    Science.gov (United States)

    Jeronimo, Célia; Robert, François

    2016-05-01

    Histone variants are specialized histones which replace their canonical counterparts in specific nucleosomes. Together with histone post-translational modifications and DNA methylation, they contribute to the epigenome. Histone variants are incorporated at specific locations by the concerted action of histone chaperones and ATP-dependent chromatin remodelers. Recent studies have shown that the histone chaperone FACT plays key roles in preventing pervasive incorporation of two histone variants: H2A.Z and CenH3/CENP-A. In addition, Spt6, another histone chaperone, was also shown to be important for appropriate H2A.Z localization. FACT and Spt6 are both associated with elongating RNA polymerase II. Based on these two examples, we propose that the establishment and maintenance of histone variant genomic distributions depend on a transcription-coupled epigenome editing (or surveillance) function of histone chaperones. PMID:26990181

  11. Transcriptional activation of endoplasmic reticulum chaperone GRP78 by HCMV IE1-72 protein

    Institute of Scientific and Technical Information of China (English)

    Derick Shi-Chen Ou; Sung-Bau Lee; Chi-Shuen Chu; Liang-Hao Chang; Bon-chu Chung; Li-Jung Juan

    2011-01-01

    Glucose-regulated protein 78 (GRP78), a key regulator of endoplasmic reticulum (ER) stress, facilitates cancer cell growth and viral replication. The mechanism leading to grp78 gene activation during viral infection is largely unknown, in this study, we show that the immediate-early 1 (IE1-72) protein of the human cytomegalovirus (HCMV) is essential for HCMV-mediated GRP78 activation. IE1-72 upregulated grp 78 gene expression depending on the ATPbinding site, the zinc-finger domain and the putative leucine-zipper motif of IE1-72, as well as the ER stress response elements (ERSEs) on the grp78 promoter. The purified IE1-72 protein bound to the CCAAT box within ERSE in vitro, whereas deletion mutants of IE1-72 deficient in grp78 promoter stimulation failed to do so. Moreover, IE1-72 binding to the grp78 promoter in infected cells accompanied the recruitment of TATA box-binding protein-associated factor 1 (TAF1), a histone acetyltransferase, and the increased level of acetylated histone H4, an indicator of activestate chromatin. These results provide evidence that HCMV IE1-72 activates grp78 gene expression through direct promoter binding and modulation of the local chromatin structure, indicating an active viral mechanism of cellular chaperone induction for viral growth.

  12. Identification of New Potential Interaction Partners for Human Cytoplasmic Copper Chaperone Atox1: Roles in Gene Regulation?

    Directory of Open Access Journals (Sweden)

    Helena Öhrvik

    2015-07-01

    Full Text Available The human copper (Cu chaperone Atox1 delivers Cu to P1B type ATPases in the Golgi network, for incorporation into essential Cu-dependent enzymes. Atox1 homologs are found in most organisms; it is a 68-residue ferredoxin-fold protein that binds Cu in a conserved surface-exposed Cys-X-X-Cys (CXXC motif. In addition to its well-documented cytoplasmic chaperone function, in 2008 Atox1 was suggested to have functionality in the nucleus. To identify new interactions partners of Atox1, we performed a yeast two-hybrid screen with a large human placenta library of cDNA fragments using Atox1 as bait. Among 98 million fragments investigated, 25 proteins were found to be confident interaction partners. Nine of these were uncharacterized proteins, and the remaining 16 proteins were analyzed by bioinformatics with respect to cell localization, tissue distribution, function, sequence motifs, three-dimensional structures and interaction networks. Several of the hits were eukaryotic-specific proteins interacting with DNA or RNA implying that Atox1 may act as a modulator of gene regulation. Notably, because many of the identified proteins contain CXXC motifs, similarly to the Cu transport reactions, interactions between these and Atox1 may be mediated by Cu.

  13. Improving the development of early bovine somatic-cell nuclear transfer embryos by treating adult donor cells with vitamin C.

    Science.gov (United States)

    Chen, Huanhuan; Zhang, Lei; Guo, Zekun; Wang, Yongsheng; He, Rongjun; Qin, Yumin; Quan, Fusheng; Zhang, Yong

    2015-11-01

    Vitamin C (Vc) has been widely studied in cell and embryo culture, and has recently been demonstrated to promote cellular reprogramming. The objective of this study was to identify a suitable Vc concentration that, when used to treat adult bovine fibroblasts serving as donor cells for nuclear transfer, improved donor-cell physiology and the developmental potential of the cloned embryos that the donor nuclei were used to create. A Vc concentration of 0.15 mM promoted cell proliferation and increased donor-cell 5-hydroxy methyl cytosine levels 2.73-fold (P DNA methylation levels in donor cells, and improves the developmental competence of bovine somatic-cell nuclear transfer embryos. PMID:26212732

  14. Effect of cooperation of chaperones and gene dosage on the expression of porcine PGLYRP-1 in Pichia pastoris.

    Science.gov (United States)

    Yang, Jun; Lu, Zhipeng; Chen, Jiawei; Chu, Pinpin; Cheng, Qingmei; Liu, Jie; Ming, Feiping; Huang, Chaoyuan; Xiao, Anji; Cai, Haiming; Zhang, Linghua

    2016-06-01

    Mammalian peptidoglycan recognition proteins (PGLYRPs) are highly conserved pattern-recognition molecules of the innate immune system with considerable bactericidal activity, which manifest their potential values for the application to food and pharmaceutical industry. However, the effective expression of porcine PGLYRP-1 in Pichia pastoris has not been reported so far. In this study, expression in P. pastoris was explored as an efficient way to produce functional porcine PGLYRP-1. Cooperation of chaperones co-expression and gene dosage (including protein disulfide isomerase (PDI)/binding protein (BiP) and pglyrp-1) were used to enhance functional expression of antimicrobial protein in P. pastoris. Overexpression of PDI was certainly able to increase secretion level of PGLYRP-1 protein because the increase in secreted PGLYRP-1 secretion was correlated with the copy numbers of PDI in high copy pglyrp-1 clones. However, co-expression of BiP was proved to be detrimental to PGLYRP-1 secretion. In addition, we also found that excessive expression of PDI and/or BiP could decrease the mRNA expression of pglyrp-1 gene. This showed that PDI and BiP as the target genes of unfolded protein response (UPR) might regulate the transcription of the target protein. These data demonstrated for the first time that the combination of chaperones and gene dosages could improve the yield of PGLYRP-1, which could facilitate the application to food and pharmaceutical industry. PMID:26883349

  15. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  16. The histone chaperones Vps75 and Nap1 form ring-like, tetrameric structures in solution

    OpenAIRE

    Bowman, A.; Hammond, C. M.; Stirling, A.; Ward, R.; Shang, W.; El-Mkami, H.; Robinson, D A; Svergun, Dmitri; Norman, D. G.; Owen-Hughes, T.

    2014-01-01

    MRC [G1100021]; Wellcome Senior Fellowship [095062]. Source of open access funding: The Wellcome Trust [094090]. NAP-1 fold histone chaperones play an important role in escorting histones to and from sites of nucleosome assembly and disassembly. The two NAP-1 fold histone chaperones in budding yeast, Vps75 and Nap1, have previously been crystalized in a characteristic homodimeric conformation. In this study, a combination of small angle X-ray scattering, multi angle light scattering and pu...

  17. Quantifying the role of chaperones in protein translocation by computational modeling

    OpenAIRE

    Assenza, Salvatore; De Los Rios, Paolo; Barducci, Alessandro

    2015-01-01

    The molecular chaperone Hsp70 plays a central role in the import of cytoplasmic proteins into organelles, driving their translocation by binding them from the organellar interior. Starting from the experimentally-determined structure of the E. coli Hsp70, we computed, by means of molecular simulations, the effective free-energy profile for substrate translocation upon chaperone binding. We then used the resulting free energy to quantitatively characterize the kinetics of the import process, w...

  18. Quantifying the role of chaperones in protein translocation by computational modelling

    OpenAIRE

    Assenza, Salvatore; Rios, Paolo De Los; Barducci, Alessandro

    2014-01-01

    The molecular chaperone Hsp70 plays a central role in the import of cytoplasmic proteins into organelles, driving their translocation by binding them from the organellar interior. Starting from the experimentally-determined structure of the \\textit{E. coli} Hsp70, we computed, by means of molecular simulations, the effective free-energy profile for substrate translocation upon chaperone binding. We then used the resulting free energy to quantitatively characterize the kinetics of the import p...

  19. Enhancement of Chaperone Activity of Plant-Specific Thioredoxin through γ-Ray Mediated Conformational Change

    Directory of Open Access Journals (Sweden)

    Seung Sik Lee

    2015-11-01

    Full Text Available AtTDX, a thioredoxin-like plant-specific protein present in Arabidospis is a thermo-stable and multi-functional enzyme. This enzyme is known to act as a thioredoxin and as a molecular chaperone depending upon its oligomeric status. The present study examines the effects of γ-irradiation on the structural and functional changes of AtTDX. Holdase chaperone activity of AtTDX was increased and reached a maximum at 10 kGy of γ-irradiation and declined subsequently in a dose-dependent manner, together with no effect on foldase chaperone activity. However, thioredoxin activity decreased gradually with increasing irradiation. Electrophoresis and size exclusion chromatography analysis showed that AtTDX had a tendency to form high molecular weight (HMW complexes after γ-irradiation and γ-ray-induced HMW complexes were tightly associated with a holdase chaperone activity. The hydrophobicity of AtTDX increased with an increase in irradiation dose till 20 kGy and thereafter decreased further. Analysis of the secondary structures of AtTDX using far UV-circular dichroism spectra revealed that the irradiation remarkably increased the exposure of β-sheets and random coils with a dramatic decrease in α-helices and turn elements in a dose-dependent manner. The data of the present study suggest that γ-irradiation may be a useful tool for increasing holdase chaperone activity without adversely affecting foldase chaperone activity of thioredoxin-like proteins.

  20. Novel and improved yeast cell factories for biosustainable processes

    DEFF Research Database (Denmark)

    Workman, Mhairi

    2014-01-01

    with relevant applications as cell factories (including Pichia spp. and Yarrowia lipolytica) and other less well characterized strains (e.g. Pachysolen tannophilus). This presentation will address how we evaluate cellular performance with a view to utilizing yeast species in industrial biotechnology...

  1. Universal Stress Protein exhibits a redox-dependent chaperone function in Arabidopsis and enhances plant tolerance to heat shock and oxidative stress

    Directory of Open Access Journals (Sweden)

    Jung eYoung Jun

    2015-12-01

    Full Text Available Although a wide range of physiological information on Universal Stress Proteins (USPs is available from many organisms, their biochemical and molecular functions remain unidentified. The biochemical function of AtUSP (At3g53990 from Arabidopsis thaliana was therefore investigated. Plants over-expressing AtUSP showed a strong resistance to heat shock and oxidative stress, compared with wild-type and Atusp knock-out plants, confirming the crucial role of AtUSP in stress tolerance. AtUSP was present in a variety of structures including monomers, dimers, trimers, and oligomeric complexes, and switched in response to external stresses from low molecular weight (LMW species to high molecular weight (HMW complexes. AtUSP exhibited a strong chaperone function under stress conditions in particular, and this activity was significantly increased by heat treatment. Chaperone activity of AtUSP was critically regulated by the redox status of cells and accompanied by structural changes to the protein. Over-expression of AtUSP conferred a strong tolerance to heat shock and oxidative stress upon Arabidopsis, primarily via its chaperone function.

  2. A pH Switch Regulates the Inverse Relationship between Membranolytic and Chaperone-like Activities of HSP-1/2, a Major Protein of Horse Seminal Plasma.

    Science.gov (United States)

    Kumar, C Sudheer; Swamy, Musti J

    2016-07-01

    HSP-1/2, a major protein of horse seminal plasma binds to choline phospholipids present on the sperm plasma membrane and perturbs its structure by intercalating into the hydrophobic core, which results in an efflux of choline phospholipids and cholesterol, an important event in sperm capacitation. HSP-1/2 also exhibits chaperone-like activity (CLA) in vitro and protects target proteins against various kinds of stress. In the present study we show that HSP-1/2 exhibits destabilizing activity toward model supported and cell membranes. The membranolytic activity of HSP-1/2 is found to be pH dependent, with lytic activity being high at mildly acidic pH (6.0-6.5) and low at mildly basic pH (8.0-8.5). Interestingly, the CLA is also found to be pH dependent, with high activity at mildly basic pH and low activity at mildly acidic pH. Taken together the present studies demonstrate that the membranolytic and chaperone-like activities of HSP-1/2 have an inverse relationship and are regulated via a pH switch, which is reversible. The higher CLA observed at mildly basic pH could be correlated to an increase in surface hydrophobicity of the protein. To the best of our knowledge, this is the first study reporting regulation of two different activities of a chaperone protein by a pH switch. PMID:27292547

  3. Modular Approach for Continuous Cell-Level Balancing to Improve Performance of Large Battery Packs: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Muneed ur Rehman, M.; Evzelman, M.; Hathaway, K.; Zane, R.; Plett, G. L.; Smith, K.; Wood, E.; Maksimovic, D.

    2014-10-01

    Energy storage systems require battery cell balancing circuits to avoid divergence of cell state of charge (SOC). A modular approach based on distributed continuous cell-level control is presented that extends the balancing function to higher level pack performance objectives such as improving power capability and increasing pack lifetime. This is achieved by adding DC-DC converters in parallel with cells and using state estimation and control to autonomously bias individual cell SOC and SOC range, forcing healthier cells to be cycled deeper than weaker cells. The result is a pack with improved degradation characteristics and extended lifetime. The modular architecture and control concepts are developed and hardware results are demonstrated for a 91.2-Wh battery pack consisting of four series Li-ion battery cells and four dual active bridge (DAB) bypass DC-DC converters.

  4. Solid-State NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate its potential to investigate cell surface in intact cells. Using Bacillus subtilis bacterial cells as an example, it is shown that the polarizing agent 1-(TEMPO-4-oxy)-3-(TEMPO-4-amino)propan-2-ol (TOTAPOL) has a strong binding affinity to cell wall polymers (peptidoglycan). This particular interaction is thoroughly investigated with a systematic study on extracted cell wall materials, disrupted cells, and entire cells, which proved that TOTAPOL is mainly accumulating in the cell wall. This property is used on one hand to selectively enhance or suppress cell wall signals by controlling radical concentrations and on the other hand to improve spectral resolution by means of a difference spectrum. Comparing DNP-enhanced and conventional solid-state NMR, an absolute sensitivity ratio of 24 was obtained on the entire cell sample. This important increase in sensitivity together with the possibility of enhancing specifically cell wall signals and improving resolution really opens new avenues for the use of DNP-enhanced solid-state NMR as an on-cell investigation tool. (authors)

  5. The Salmonella type III effector SspH2 specifically exploits the NLR co-chaperone activity of SGT1 to subvert immunity.

    Directory of Open Access Journals (Sweden)

    Amit P Bhavsar

    Full Text Available To further its pathogenesis, S. Typhimurium delivers effector proteins into host cells, including the novel E3 ubiquitin ligase (NEL effector SspH2. Using model systems in a cross-kingdom approach we gained further insight into the molecular function of this effector. Here, we show that SspH2 modulates innate immunity in both mammalian and plant cells. In mammalian cell culture, SspH2 significantly enhanced Nod1-mediated IL-8 secretion when transiently expressed or bacterially delivered. In addition, SspH2 also enhanced an Rx-dependent hypersensitive response in planta. In both of these nucleotide-binding leucine rich repeat receptor (NLR model systems, SspH2-mediated phenotypes required its catalytic E3 ubiquitin ligase activity and interaction with the conserved host protein SGT1. SGT1 has an essential cell cycle function and an additional function as an NLR co-chaperone in animal and plant cells. Interaction between SspH2 and SGT1 was restricted to SGT1 proteins that have NLR co-chaperone function and accordingly, SspH2 did not affect SGT1 cell cycle functions. Mechanistic studies revealed that SspH2 interacted with, and ubiquitinated Nod1 and could induce Nod1 activity in an agonist-independent manner if catalytically active. Interestingly, SspH2 in vitro ubiquitination activity and protein stability were enhanced by SGT1. Overall, this work adds to our understanding of the sophisticated mechanisms used by bacterial effectors to co-opt host pathways by demonstrating that SspH2 can subvert immune responses by selectively exploiting the functions of a conserved host co-chaperone.

  6. An Improved Ghost-cell Immersed Boundary Method for Compressible Inviscid Flow Simulations

    KAUST Repository

    Chi, Cheng

    2015-05-01

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. In addition, a shock sensor is in- troduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently. The improved ghost-cell method is validated against five test cases: (a) double Mach reflections on a ramp, (b) supersonic flows in a wind tunnel with a forward- facing step, (c) supersonic flows over a circular cylinder, (d) smooth Prandtl-Meyer expansion flows, and (e) steady shock-induced combustion over a wedge. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Implementation of the improved ghost-cell method in reacting Euler flows further validates its general applicability for compressible flow simulations.

  7. Mesenchymal stem cells improve cardiac conduction by upregulation of connexin 43 through paracrine signaling

    OpenAIRE

    Mureli, Shwetha; Gans, Christopher P.; Bare, Dan J; Geenen, David L.; Kumar, Nalin M.; Banach, Kathrin

    2012-01-01

    Mesenchymal stem cells (MSCs) were shown to improve cell survival and alleviate cardiac arrhythmias when transplanted into cardiac tissue; however, little is known about the mechanism by which MSCs modify the electrophysiological properties of cardiac tissue. We aimed to distinguish the influence of cell-cell coupling between myocytes and MSCs from that of MSC-derived paracrine factors on the spontaneous activity and conduction velocity (θ) of multicellular cardiomyocyte preparations. HL-1 ce...

  8. Research on Analysis Method of Traffic Congestion Mechanism Based on Improved Cell Transmission Model

    OpenAIRE

    Hongzhao Dong; Shuai Ma; Mingfei Guo; Dongxu Liu

    2012-01-01

    To analyze the spreading regularity of the initial traffic congestion, the improved cell transmission model (CTM) is proposed to describe the evolution mechanism of traffic congestion in regional road grid. Ordinary cells and oriented cells are applied to render the crowd roads and their adjacent roads. Therefore the traffic flow could be simulated by these cells. Resorting to the proposed model, the duration of the initial traffic congestion could be predicted and the subsequent secondary co...

  9. Transplantation of mesenchymal stem cells improves type 1 diabetes mellitus.

    Science.gov (United States)

    Li, Lisha; Li, Furong; Gao, Feng; Yang, Yali; Liu, Yuanyuan; Guo, Pingping; Li, Yulin

    2016-05-01

    Bone-marrow-derived stem cells can regenerate pancreatic tissue in a model of type 1 diabetes mellitus. Mesenchymal stem cells (MSCs) form the main part of bone marrow. We show that the intrapancreatic transplantation of MSCs elevates serum insulin and C-peptide, while decreasing blood glucose. MSCs engrafted into the damaged rat pancreas become distributed into the blood vessels, acini, ducts, and islets. Renascent islets, islet-like clusters, and a small number of MSCs expressing insulin protein have been observed in the pancreas of diabetic rats. Intrapancreatic transplantation of MSCs triggers a series of molecular and cellular events, including differentiation towards the pancreas directly and the provision of a niche to start endogenous pancreatic regeneration, which ameliorates hypoinsulinemia and hyperglycemia caused by streptozotocin. These data establish the many roles of MSCs in the restoration of the function of an injured organ. PMID:26650464

  10. Stem Cell-Based Therapeutics to Improve Wound Healing

    OpenAIRE

    Hu, Michael S.; Tripp Leavitt; Samir Malhotra; Dominik Duscher; Pollhammer, Michael S.; Walmsley, Graham G.; Zeshaan N. Maan; Alexander T. M. Cheung; Manfred Schmidt; Georg M. Huemer; Longaker, Michael T.; Peter Lorenz, H.

    2015-01-01

    Issues surrounding wound healing have garnered deep scientific interest as well as booming financial markets invested in novel wound therapies. Much progress has been made in the field, but it is unsurprising to find that recent successes reveal new challenges to be addressed. With regard to wound healing, large tissue deficits, recalcitrant wounds, and pathological scar formation remain but a few of our most pressing challenges. Stem cell-based therapies have been heralded as a promising mea...

  11. Improved assay for surface hydrophobic avidity of Candida albicans cells.

    OpenAIRE

    Hazen, K C; LeMelle, W G

    1990-01-01

    A simple method that distinguishes among hydrophobic avidity levels of highly hydrophobic isolates of the pathogenic fungus Candida albicans is described. This method involves mixing polystyrene microspheres at different concentrations with a constant concentration of yeast cells and plotting the data in accordance with the Langmuir isotherm equation. A 10-fold difference between the C. albicans isolates with the lowest and highest avidity (KH) values was found. This method may also demonstra...

  12. Improving the performance of solid oxide fuel cell systems

    OpenAIRE

    Halinen, Matias

    2015-01-01

    Solid oxide fuel cell (SOFC) systems can provide power production at a high electrical efficiency and with very low emissions. Furthermore, they retain their high electrical efficiency over a wide range of output power and offer good fuel flexibility, which makes them well suited for a range of applications. Currently SOFC systems are under investigation by researchers as well as being developed by industrial manufacturers. The first commercial SOFC systems have been on the market for some...

  13. Stem cell transplantation improves aging-related diseases

    OpenAIRE

    Ikehara, Susumu; LI Ming

    2014-01-01

    Aging is a complex process of damage accumulation, and has been viewed as experimentally and medically intractable. The number of patients with age-associated diseases such as type 2 diabetes mellitus (T2DM), osteoporosis, Alzheimer's disease (AD), Parkinson's disease, atherosclerosis, and cancer has increased recently. Aging-related diseases are related to a deficiency of the immune system, which results from an aged thymus and bone marrow cells. Intra bone marrow-bone marrow transplantation...

  14. Improvement of fitting method of multiband parameters for cell calculations

    International Nuclear Information System (INIS)

    To accurately perform cell calculations of nuclear reactors, a new fitting procedure has been developed for calculating multiband parameters, which are necessary for effective cross section calculations. By using the new fitting procedure, the error of multiband parameters becomes always zero. Reactor cell calculations have been performed to compare the effective cross sections and the infinite multiplication factors etc. calculated using the multiband parameters obtained by the new and the conventional fitting procedures by using the cross section set based on the JENDL-3.1 library with 107 energy groups. It is found that there is a small difference of the calculational results between the two fitting procedures and it is found from burnup calculations that the difference of the infinite multiplication factors is not dependent on the burnup period up to about 30 GWd/t. The onion skin effect can be exactly treated by dividing a fuel pellet to multiple regions and by using the multiband method. Thus the difference of burnup properties between two fitting procedures are investigated for the divided and the undivided fueled cells. The total inventory of Pu, Am etc. at the divided case is almost the same to the undivided case at the end of the burnup period. However it is found that the radial distribution of atomic density is slightly different between the two fitting procedures. (author)

  15. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    Science.gov (United States)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  16. FKBP immunophilins and Alzheimer's disease: A chaperoned affair

    Indian Academy of Sciences (India)

    Weihuan Cao; Mary Konsolaki

    2011-08-01

    The FK506-binding protein (FKBP) family of immunophilins consists of proteins with a variety of protein–protein interaction domains and versatile cellular functions. Analysis of the functions of immunophilins has been the focus of studies in recent years and has led to the identification of various molecular pathways in which FKBPs play an active role. All FKBPs contain a domain with prolyl cis/trans isomerase (PPIase) activity. Binding of the immunosuppressant molecule FK506 to this domain inhibits their PPIase activity while mediating immune suppression through inhibition of calcineurin. The larger members, FKBP51 and FKBP52, interact with Hsp90 and exhibit chaperone activity that is shown to regulate steroid hormone signalling. From these studies it is clear that FKBP proteins are expressed ubiquitously but show relatively high levels of expression in the nervous system. Consistent with this expression, FKBPs have been implicated with both neuroprotection and neurodegeneration. This review will focus on recent studies involving FKBP immunophilins in Alzheimer’s-disease-related pathways.

  17. Mechanism of Amyloidogenesis of a Bacterial AAA+ Chaperone.

    Science.gov (United States)

    Chan, Sze Wah Samuel; Yau, Jason; Ing, Christopher; Liu, Kaiyin; Farber, Patrick; Won, Amy; Bhandari, Vaibhav; Kara-Yacoubian, Nareg; Seraphim, Thiago V; Chakrabarti, Nilmadhab; Kay, Lewis E; Yip, Christopher M; Pomès, Régis; Sharpe, Simon; Houry, Walid A

    2016-07-01

    Amyloids are fibrillar protein superstructures that are commonly associated with diseases in humans and with physiological functions in various organisms. The precise mechanisms of amyloid formation remain to be elucidated. Surprisingly, we discovered that a bacterial Escherichia coli chaperone-like ATPase, regulatory ATPase variant A (RavA), and specifically the LARA domain in RavA, forms amyloids under acidic conditions at elevated temperatures. RavA is involved in modulating the proper assembly of membrane respiratory complexes. LARA contains an N-terminal loop region followed by a β-sandwich-like folded core. Several approaches, including nuclear magnetic resonance spectroscopy and molecular dynamics simulations, were used to determine the mechanism by which LARA switches to an amyloid state. These studies revealed that the folded core of LARA is amyloidogenic and is protected by its N-terminal loop. At low pH and high temperatures, the interaction of the N-terminal loop with the folded core is disrupted, leading to amyloid formation. PMID:27265850

  18. RNA-binding properties and RNA chaperone activity of human peroxiredoxin 1

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-Hee; Lee, Jeong-Mi; Lee, Hae Na; Kim, Eun-Kyung; Ha, Bin [Lee Gil Ya Cancer and Diabetes Institute, Gachon University (Korea, Republic of); Ahn, Sung-Min, E-mail: smahn@gachon.ac.kr [Lee Gil Ya Cancer and Diabetes Institute, Gachon University (Korea, Republic of); Department of Translational Medicine, Gachon University Gil Hospital, Incheon (Korea, Republic of); Jang, Ho Hee, E-mail: hhjang@gachon.ac.kr [Lee Gil Ya Cancer and Diabetes Institute, Gachon University (Korea, Republic of); Lee, Sang Yeol [Division of Applied Life Sciences (Brain Korea 21 program), Gyeongsang National University, Jinju 660-701 (Korea, Republic of)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer hPrx1 has RNA-binding properties. Black-Right-Pointing-Pointer hPrx1 exhibits helix-destabilizing activity. Black-Right-Pointing-Pointer Cold stress increases hPrx1 level in the nuclear fraction. Black-Right-Pointing-Pointer hPrx1 enhances the viability of cells exposed to cold stress. -- Abstract: Human peroxiredoxin 1 (hPrx1), a member of the peroxiredoxin family, detoxifies peroxide substrates and has been implicated in numerous biological processes, including cell growth, proliferation, differentiation, apoptosis, and redox signaling. To date, Prx1 has not been implicated in RNA metabolism. Here, we investigated the ability of hPrx1 to bind RNA and act as an RNA chaperone. In vitro, hPrx1 bound to RNA and DNA, and unwound nucleic acid duplexes. hPrx1 also acted as a transcription anti-terminator in an assay using an Escherichia coli strain containing a stem-loop structure upstream of the chloramphenicol resistance gene. The overall cellular level of hPrx1 expression was not increased at low temperatures, but the nuclear level of hPrx1 was increased. In addition, hPrx1 overexpression enhanced the survival of cells exposed to cold stress, whereas hPrx1 knockdown significantly reduced cell survival under the same conditions. These findings suggest that hPrx1 may perform biological functions as a RNA-binding protein, which are distinctive from known functions of hPrx1 as a reactive oxygen species scavenger.

  19. RNA-binding properties and RNA chaperone activity of human peroxiredoxin 1

    International Nuclear Information System (INIS)

    Highlights: ► hPrx1 has RNA-binding properties. ► hPrx1 exhibits helix-destabilizing activity. ► Cold stress increases hPrx1 level in the nuclear fraction. ► hPrx1 enhances the viability of cells exposed to cold stress. -- Abstract: Human peroxiredoxin 1 (hPrx1), a member of the peroxiredoxin family, detoxifies peroxide substrates and has been implicated in numerous biological processes, including cell growth, proliferation, differentiation, apoptosis, and redox signaling. To date, Prx1 has not been implicated in RNA metabolism. Here, we investigated the ability of hPrx1 to bind RNA and act as an RNA chaperone. In vitro, hPrx1 bound to RNA and DNA, and unwound nucleic acid duplexes. hPrx1 also acted as a transcription anti-terminator in an assay using an Escherichia coli strain containing a stem–loop structure upstream of the chloramphenicol resistance gene. The overall cellular level of hPrx1 expression was not increased at low temperatures, but the nuclear level of hPrx1 was increased. In addition, hPrx1 overexpression enhanced the survival of cells exposed to cold stress, whereas hPrx1 knockdown significantly reduced cell survival under the same conditions. These findings suggest that hPrx1 may perform biological functions as a RNA-binding protein, which are distinctive from known functions of hPrx1 as a reactive oxygen species scavenger.

  20. Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating

    OpenAIRE

    Yu, Xuegong; Wang, Dong; Lei, Dong; Li, Genhu; Yang, Deren

    2012-01-01

    An efficient antireflection coating is critical for the improvement of silicon solar cell performance via increased light coupling. Here, we have grown well-aligned ZnO nanowhisker (NW) arrays on Czochralski silicon solar cells by a seeding-growth two-step process. It is found that the ZnO NWs have a great effect on the macroscopic antireflection effect and, therefore, improves the solar cell performance. The ZnO NW array-coated solar cells display a broadband reflection suppression from 500 ...

  1. Improving solid oxide fuel cell performance by a single-step co-firing process

    Science.gov (United States)

    Dai, Hailu; Chen, Han; He, Shoucheng; Cai, Guifan; Guo, Lucun

    2015-07-01

    Solid oxide fuel cells (SOFCs) with Sm0.2Ce0.8O2-δ (SDC) as the electrolyte are successfully prepared by a single-step co-firing process with the sintering temperature as low as 1100 °C. Different from the conventional SOFC preparation procedure that involves multistep firing processes, the single-step co-firing preparation procedure simplifies the fuel cell preparation procedure and additionally improves the fuel cell performance. The cell prepared by the single-step process exhibits the maximum power density of 289 mW cm-2 at 700 °C, while the cell prepared by the conventional method is only 211 mW cm-2, with an increase of 37% been achieved. The impedance analysis reveals that the single co-firing procedure not only improves the contact between the electrolyte and electrodes, but also lowers the cell polarization resistance, thus leading to a better fuel cell performance.

  2. Improving the performance of conventional and column froth flotation cells

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, B.J. [CQ Inc., Homer City, PA (United States)

    1995-11-01

    Many existing mining operations hover on the brink of producing competitively priced fuel with marginally acceptable sulfur levels. To remain competitive, these operations need to improve the yield of their coal processing facilities, lower the sulfur content of their clean coal, or lower the ash content of their clean coal. Fine coal cleaning processes offer the best opportunity for coal producers to increase their yield of high quality product. Over 200 coal processing plants in the U.S. already employ some type of conventional or column flotation device to clean fines. an increase in efficiency in these existing circuits could be the margin required to make these coal producers competitive.

  3. Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum

    OpenAIRE

    1995-01-01

    Before secretion, newly synthesized thyroglobulin (Tg) folds via a series of intermediates: disulfide-linked aggregates and unfolded monomers-->folded monomers-->dimers. Immediately after synthesis, very little Tg associated with calnexin (a membrane-bound molecular chaperone in the ER), while a larger fraction bound BiP (a lumenal ER chaperone); dissociation from these chaperones showed superficially similar kinetics. Calnexin might bind selectively to carbohydrates within glycoproteins, or ...

  4. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  5. Improving therapy of chronic lymphocytic leukemia with chimeric antigen receptor T cells.

    Science.gov (United States)

    Fraietta, Joseph A; Schwab, Robert D; Maus, Marcela V

    2016-04-01

    Adoptive cell immunotherapy for the treatment of chronic lymphocytic leukemia (CLL) has heralded a new era of synthetic biology. The infusion of genetically engineered, autologous chimeric antigen receptor (CAR) T cells directed against CD19 expressed by normal and malignant B cells represents a novel approach to cancer therapy. The results of recent clinical trials of CAR T cells in relapsed and refractory CLL have demonstrated long-term disease-free remissions, underscoring the power of harnessing and redirecting the immune system against cancer. This review will briefly summarize T-cell therapies in development for CLL disease. We discuss the role of T-cell function and phenotype, T-cell culture optimization, CAR design, and approaches to potentiate the survival and anti-tumor effects of infused lymphocytes. Future efforts will focus on improving the efficacy of CAR T cells for the treatment of CLL and incorporating adoptive cell immunotherapy into standard medical management of CLL. PMID:27040708

  6. Durable, Low-cost, Improved Fuel Cell Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Chris Roger; David Mountz; Wensheng He; Tao Zhang

    2011-03-17

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton

  7. Reducing macrophages to improve bone marrow stromal cell survival in the contused spinal cord.

    NARCIS (Netherlands)

    Ritfeld, G.J.; Nandoe Tewarie, R.D.S.; Rahiem, S.T.; Hurtado, A.; Roos, R.A.; Grotenhuis, A.; Oudega, M.

    2010-01-01

    We tested whether reducing macrophage infiltration would improve the survival of allogeneic bone marrow stromal cells (BMSC) transplanted in the contused adult rat thoracic spinal cord. Treatment with cyclosporine, minocycline, or methylprednisolone all resulted in a significant decrease in macropha

  8. Molecular and biochemical characterization of a unique mutation in CCS, the human copper chaperone to superoxide dismutase

    DEFF Research Database (Denmark)

    Huppke, Peter; Brendel, Cornelia; Korenke, Georg Christoph; Marquardt, Iris; Donsante, Anthony; Yi, Ling; Hicks, Julia D; Steinbach, Peter J; Wilson, Callum; Elpeleg, Orly; Møller, Lisbeth Birk; Christodoulou, John; Kaler, Stephen G; Gärtner, Jutta

    2012-01-01

    Copper (Cu) is a trace metal that readily gains and donates electrons, a property that renders it desirable as an enzyme cofactor but dangerous as a source of free radicals. To regulate cellular Cu metabolism, an elaborate system of chaperones and transporters has evolved, although no human Cu...... chaperone mutations have been described to date. We describe a child from a consanguineous family who inherited homozygous mutations in the SLC33A1, encoding an acetyl CoA transporter, and in CCS, encoding the Cu chaperone for superoxide dismutase. The CCS mutation, p.Arg163Trp, predicts substitution of a...... gene coding for a Cu chaperone....

  9. IL-12 directs further maturation of ex vivo differentiated NK cells with improved therapeutic potential.

    Directory of Open Access Journals (Sweden)

    Dorit Lehmann

    Full Text Available The possibility to modulate ex vivo human NK cell differentiation towards specific phenotypes will contribute to a better understanding of NK cell differentiation and facilitate tailored production of NK cells for immunotherapy. In this study, we show that addition of a specific low dose of IL-12 to an ex vivo NK cell differentiation system from cord blood CD34(+ stem cells will result in significantly increased proportions of cells with expression of CD62L as well as KIRs and CD16 which are preferentially expressed on mature CD56(dim peripheral blood NK cells. In addition, the cells displayed decreased expression of receptors such as CCR6 and CXCR3, which are typically expressed to a lower extent by CD56(dim than CD56(bright peripheral blood NK cells. The increased number of CD62L and KIR positive cells prevailed in a population of CD33(+NKG2A(+ NK cells, supporting that maturation occurs via this subtype. Among a series of transcription factors tested we found Gata3 and TOX to be significantly downregulated, whereas ID3 was upregulated in the IL-12-modulated ex vivo NK cells, implicating these factors in the observed changes. Importantly, the cells differentiated in the presence of IL-12 showed enhanced cytokine production and cytolytic activity against MHC class I negative and positive targets. Moreover, in line with the enhanced CD16 expression, these cells exhibited improved antibody-dependent cellular cytotoxicity for B-cell leukemia target cells in the presence of the clinically applied antibody rituximab. Altogether, these data provide evidence that IL-12 directs human ex vivo NK cell differentiation towards more mature NK cells with improved properties for potential cancer therapies.

  10. The use of Electrolyte Additives to Improve the High Temperature Resilience of Li-Ion Cells

    Science.gov (United States)

    Smart, Marshall C.; Lucht, B. L.; Ratnakumar, Bugga V.

    2007-01-01

    This viewgraph presentation reviews the use of electrolyte additves to improve the resillience of Lithium ion cells. The objective of this work is to identify lithium-ion electrolytes, which will lead to Li-ion cells with a wide operational temperature range (+60 to -60 C), and to develop Li-ion electrolytes which result in cells that display improved high temperature resilience. Significant improvement in the high temperature resilience of Li-ion cells containing these additives was observed, with the most dramatic benefit being displayed by addition of DMAc. When the electrochemical properties of the individual electrodes were analyzed, the degradation of the anode kinetics was slowed most dramatically by the incorporation of DMAc into the electrolytes. Whereas, the greatest retention in the cathode kinetics was observed in the cell containing the electrolyte with VC added.

  11. Improved Structure and Function in Autosomal Recessive Polycystic Rat Kidneys with Renal Tubular Cell Therapy.

    Directory of Open Access Journals (Sweden)

    K J Kelly

    Full Text Available Autosomal recessive polycystic kidney disease is a truly catastrophic monogenetic disease, causing death and end stage renal disease in neonates and children. Using PCK female rats, an orthologous model of autosomal recessive polycystic kidney disease harboring mutant Pkhd1, we tested the hypothesis that intravenous renal cell transplantation with normal Sprague Dawley male kidney cells would improve the polycystic kidney disease phenotype. Cytotherapy with renal cells expressing wild type Pkhd1 and tubulogenic serum amyloid A1 had powerful and sustained beneficial effects on renal function and structure in the polycystic kidney disease model. Donor cell engraftment and both mutant and wild type Pkhd1 were found in treated but not control PCK kidneys 15 weeks after the final cell infusion. To examine the mechanisms of global protection with a small number of transplanted cells, we tested the hypothesis that exosomes derived from normal Sprague Dawley cells can limit the cystic phenotype of PCK recipient cells. We found that renal exosomes originating from normal Sprague Dawley cells carried and transferred wild type Pkhd1 mRNA to PCK cells in vivo and in vitro and restricted cyst formation by cultured PCK cells. The results indicate that transplantation with renal cells containing wild type Pkhd1 improves renal structure and function in autosomal recessive polycystic kidney disease and may provide an intra-renal supply of normal Pkhd1 mRNA.

  12. An improved ghost-cell immersed boundary method for compressible flow simulations

    KAUST Repository

    Chi, Cheng

    2016-05-20

    This study presents an improved ghost-cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work ghost cells are mirrored through the boundary described using a level-set method to farther image points, incorporating a higher-order extra/interpolation scheme for the ghost cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement (AMR) is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost-cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl-Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward-facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost-cell method can reach the accuracy of second order in L1 norm and higher than first order in L∞ norm. Direct comparisons against the cut-cell method demonstrate that the improved ghost-cell method is almost equally accurate with better efficiency for boundary representation in high-fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.

  13. ERC product improvement activities for direct fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bentley, C.; Carlson, G.; Doyon, J. [and others

    1995-08-01

    This program is designed to advance the carbonate fuel cell technology from the current power plant demonstration status to the commercial design in an approximately five-year period. The specific objectives which will allow attainment of the overall program goal are: (1) Define market-responsive power plant requirements and specifications, (2) Establish the design for a multifuel, low-cost, modular, market-responsive power plant, (3) Resolve power plant manufacturing issues and define the design for the commercial manufacturing facility, (4) Define the stack and BOP equipment packaging arrangement and define module designs, (5) Acquire capability to support developmental testing of stacks and BOP equipment as required to prepare for commercial design, and (6) Resolve stack and BOP equipment technology issues and design, build, and field test a modular commercial prototype power plant to demonstrate readiness for commercial entry. A seven-task program, dedicated to attaining objective(s) in the areas noted above, was initiated in December 1994. Accomplishments of the first six months are discussed in this paper.

  14. Design of improved fuel cell controller for distributed generation systems

    Energy Technology Data Exchange (ETDEWEB)

    Olsen Berenguer, F.A. [Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste, 1109, J5400ARL San Juan (Argentina); Molina, M.G. [CONICET, Instituto de Energia Electrica, Universidad Nacional de San Juan, Av. Libertador San Martin Oeste, 1109, J5400ARL San Juan (Argentina)

    2010-06-15

    The world has been undergoing a deregulation process which allowed competition in the electricity generation sector. This situation is bringing the opportunity for electricity users to generate power by using small-scale generation systems with emerging technologies, allowing the development of distributed generation (DG). A fuel cell power plant (FCPP) is a distributed generation technology with a rapid development because it has promising characteristics, such as low pollutant emissions, silent operation, high efficiency and long lifetime because of its small number of moving parts. The power conditioning system (PCS) is the interface that allows the effective connection to the electric power system. With the appropriate topology of the PCS and its control system design, the FCPP unit is capable of simultaneously performing both instantaneous active and reactive power flow control. This paper describes the design and implementation of a novel high performance PCS of an FCPP and its controller, for applications in distributed generation systems. A full detailed model of the FCPP is derived and a new three-level control scheme is designed. The dynamic performance of the proposed system is validated by digital simulation in SimPowerSystems (SPS) of MATLAB/Simulink. (author)

  15. Targeting HIV-1 Envelope Glycoprotein Trimers to B Cells by Using APRIL Improves Antibody Responses

    OpenAIRE

    Melchers M; Bontjer I; Tong T; Chung NP; Klasse PJ; Eggink D; Montefiori DC; Gentile M; Cerutti A; Olson WC; Berkhout B; Binley JM; Moore JP; Sanders RW

    2012-01-01

    An HIV-1 vaccine remains elusive, in part because various factors limit the quantity and quality of the antibodies raised against the viral envelope glycoprotein complex (Env). We hypothesized that targeting Env vaccines directly to B cells, by fusing them to molecules that bind and activate these cells, would improve Env-specific antibody responses. Therefore, we fused trimeric Env gp140 to A PRoliferation-Inducing Ligand (APRIL), B-cell Activating Factor (BAFF), and CD40 Ligand (CD40L). The...

  16. Efficiency Improvement of Heterojunction Polymer Photovoltaic Cells through Controlling the Morphology of the Polymer Film

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Results Polymer photovoltaic cells, which provide clean and renewable energy sources, have gained more and more attention. Polymer photovoltaic cells have the advantage of low fabrication cost and high mechanical flexibility. Polymers can be processed through a solution process, so that a homogeneous polymer film could be readily prepared in a large area. Recently, the light-to-electricity conversion efficiency of the polymer photovoltaic cells was improved significantly[1-2]. Polymer donor and organi...

  17. Improved photobiological H2 production in engineered green algal cells.

    Science.gov (United States)

    Kruse, Olaf; Rupprecht, Jens; Bader, Klaus-Peter; Thomas-Hall, Skye; Schenk, Peer Martin; Finazzi, Giovanni; Hankamer, Ben

    2005-10-01

    Oxygenic photosynthetic organisms use solar energy to split water (H2O) into protons (H+), electrons (e-), and oxygen. A select group of photosynthetic microorganisms, including the green alga Chlamydomonas reinhardtii, has evolved the additional ability to redirect the derived H+ and e- to drive hydrogen (H2) production via the chloroplast hydrogenases HydA1 and A2 (H2 ase). This process occurs under anaerobic conditions and provides a biological basis for solar-driven H2 production. However, its relatively poor yield is a major limitation for the economic viability of this process. To improve H2 production in Chlamydomonas, we have developed a new approach to increase H+ and e- supply to the hydrogenases. In a first step, mutants blocked in the state 1 transition were selected. These mutants are inhibited in cyclic e- transfer around photosystem I, eliminating possible competition for e- with H2ase. Selected strains were further screened for increased H2 production rates, leading to the isolation of Stm6. This strain has a modified respiratory metabolism, providing it with two additional important properties as follows: large starch reserves (i.e. enhanced substrate availability), and a low dissolved O2 concentration (40% of the wild type (WT)), resulting in reduced inhibition of H2ase activation. The H2 production rates of Stm6 were 5-13 times that of the control WT strain over a range of conditions (light intensity, culture time, +/- uncoupler). Typically, approximately 540 ml of H2 liter(-1) culture (up to 98% pure) were produced over a 10-14-day period at a maximal rate of 4 ml h(-1) (efficiency = approximately 5 times the WT). Stm6 therefore represents an important step toward the development of future solar-powered H2 production systems. PMID:16100118

  18. A Quantitative Characterization of Nucleoplasmin/Histone Complexes Reveals Chaperone Versatility.

    Science.gov (United States)

    Fernández-Rivero, Noelia; Franco, Aitor; Velázquez-Campoy, Adrian; Alonso, Edurne; Muga, Arturo; Prado, Adelina

    2016-01-01

    Nucleoplasmin (NP) is an abundant histone chaperone in vertebrate oocytes and embryos involved in storing and releasing maternal histones to establish and maintain the zygotic epigenome. NP has been considered a H2A-H2B histone chaperone, and recently it has been shown that it can also interact with H3-H4. However, its interaction with different types of histones has not been quantitatively studied so far. We show here that NP binds H2A-H2B, H3-H4 and linker histones with Kd values in the subnanomolar range, forming different complexes. Post-translational modifications of NP regulate exposure of the polyGlu tract at the disordered distal face of the protein and induce an increase in chaperone affinity for all histones. The relative affinity of NP for H2A-H2B and linker histones and the fact that they interact with the distal face of the chaperone could explain their competition for chaperone binding, a relevant process in NP-mediated sperm chromatin remodelling during fertilization. Our data show that NP binds H3-H4 tetramers in a nucleosomal conformation and dimers, transferring them to DNA to form disomes and tetrasomes. This finding might be relevant to elucidate the role of NP in chromatin disassembly and assembly during replication and transcription. PMID:27558753

  19. Improved performance in GaInNAs solar cells by hydrogen passivation

    International Nuclear Information System (INIS)

    The effect of UV-activated hydrogenation on the performance of GaInNAs solar cells is presented. A proof-of-principle investigation was performed on non-optimum GaInNAs cells, which allowed a clearer investigation of the role of passivation on the intrinsic nitrogen-related defects in these materials. Upon optimized hydrogenation of GaInNAs, a significant reduction in the presence of defect and impurity based luminescence is observed as compared to that of unpassivated reference material. This improvement in the optical properties is directly transferred to an improved performance in solar cell operation, with a more than two-fold improvement in the external quantum efficiency and short circuit current density upon hydrogenation. Temperature dependent photovoltaic measurements indicate a strong contribution of carrier localization and detrapping processes, with non-radiative processes dominating in the reference materials, and evidence for additional strong radiative losses in the hydrogenated solar cells

  20. Improved performance in GaInNAs solar cells by hydrogen passivation

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, M.; Whiteside, V. R.; Keay, J. C.; Meleco, A.; Sellers, I. R. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St., Norman, Oklahoma 73019 (United States); Hossain, K.; Golding, T. D. [Amethyst Research Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); Leroux, M.; Al Khalfioui, M. [CRHEA-CNRS, Rue Bernard Gregory, Valbonne 06560 (France)

    2015-04-06

    The effect of UV-activated hydrogenation on the performance of GaInNAs solar cells is presented. A proof-of-principle investigation was performed on non-optimum GaInNAs cells, which allowed a clearer investigation of the role of passivation on the intrinsic nitrogen-related defects in these materials. Upon optimized hydrogenation of GaInNAs, a significant reduction in the presence of defect and impurity based luminescence is observed as compared to that of unpassivated reference material. This improvement in the optical properties is directly transferred to an improved performance in solar cell operation, with a more than two-fold improvement in the external quantum efficiency and short circuit current density upon hydrogenation. Temperature dependent photovoltaic measurements indicate a strong contribution of carrier localization and detrapping processes, with non-radiative processes dominating in the reference materials, and evidence for additional strong radiative losses in the hydrogenated solar cells.

  1. The RNA chaperone Hfq is involved in stress tolerance and virulence in uropathogenic Proteus mirabilis.

    Directory of Open Access Journals (Sweden)

    Min-Cheng Wang

    Full Text Available Hfq is a bacterial RNA chaperone involved in the riboregulation of diverse genes via small noncoding RNAs. Here, we show that Hfq is critical for the uropathogenic Proteus mirabilis to effectively colonize the bladder and kidneys in a murine urinary tract infection (UTI model and to establish burned wound infection of the rats. In this regard, we found the hfq mutant induced higher IL-8 and MIF levels of uroepithelial cells and displayed reduced intra-macrophage survival. The loss of hfq affected bacterial abilities to handle H2O2 and osmotic pressures and to grow at 50 °C. Relative to wild-type, the hfq mutant had reduced motility, fewer flagella and less hemolysin expression and was less prone to form biofilm and to adhere to and invade uroepithelial cells. The MR/P fimbrial operon was almost switched to the off phase in the hfq mutant. In addition, we found the hfq mutant exhibited an altered outer membrane profile and had higher RpoE expression, which indicates the hfq mutant may encounter increased envelope stress. With the notion of envelope disturbance in the hfq mutant, we found increased membrane permeability and antibiotic susceptibilities in the hfq mutant. Finally, we showed that Hfq positively regulated the RpoS level and tolerance to H2O2 in the stationary phase seemed largely mediated through the Hfq-dependent RpoS expression. Together, our data indicate that Hfq plays a critical role in P. mirabilis to establish UTIs by modulating stress responses, surface structures and virulence factors. This study suggests Hfq may serve as a scaffold molecule for development of novel anti-P. mirabilis drugs and P. mirabilis hfq mutant is a vaccine candidate for preventing UTIs.

  2. Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: improving the efficiency of cell line generation.

    Science.gov (United States)

    Porter, Alison J; Racher, Andrew J; Preziosi, Richard; Dickson, Alan J

    2010-01-01

    Transfectants with a wide range of cellular phenotypes are obtained during the process of cell line generation. For the successful manufacture of a therapeutic protein, a means is required to identify a cell line with desirable growth and productivity characteristics from this phenotypically wide-ranging transfectant population. This identification process is on the critical path for first-in-human studies. We have stringently examined a typical selection strategy used to isolate cell lines suitable for cGMP manufacturing. One-hundred and seventy-five transfectants were evaluated as they progressed through the different assessment stages of the selection strategy. High producing cell lines, suitable for cGMP manufacturing, were identified. However, our analyses showed that the frequency of isolation of the highest producing cell lines was low and that ranking positions were not consistent between each assessment stage, suggesting that there is potential to improve upon the strategy. Attempts to increase the frequency of isolation of the 10 highest producing cell lines, by in silico analysis of alternative selection strategies, were unsuccessful. We identified alternative strategies with similar predictive capabilities to the typical selection strategy. One alternate strategy required fewer cell lines to be progressed at the assessment stages but the stochastic nature of the models means that cell line numbers are likely to change between programs. In summary, our studies illuminate the potential for improvement to this and future selection strategies, based around use of assessments that are more informative or that reduce variance, paving the way to improved efficiency of generation of manufacturing cell lines. PMID:20623584

  3. Structural basis for proteasome formation controlled by an assembly chaperone nas2.

    Science.gov (United States)

    Satoh, Tadashi; Saeki, Yasushi; Hiromoto, Takeshi; Wang, Ying-Hui; Uekusa, Yoshinori; Yagi, Hirokazu; Yoshihara, Hidehito; Yagi-Utsumi, Maho; Mizushima, Tsunehiro; Tanaka, Keiji; Kato, Koichi

    2014-05-01

    Proteasome formation does not occur due to spontaneous self-organization but results from a highly ordered process assisted by several assembly chaperones. The assembly of the proteasome ATPase subunits is assisted by four client-specific chaperones, of which three have been structurally resolved. Here, we provide the structural basis for the working mechanisms of the last, hereto structurally uncharacterized assembly chaperone, Nas2. We revealed that Nas2 binds to the Rpt5 subunit in a bivalent mode: the N-terminal helical domain of Nas2 masks the Rpt1-interacting surface of Rpt5, whereas its C-terminal PDZ domain caps the C-terminal proteasome-activating motif. Thus, Nas2 operates as a proteasome activation blocker, offering a checkpoint during the formation of the 19S ATPase prior to its docking onto the proteolytic 20S core particle. PMID:24685148

  4. Chaperone Hsp27 inhibits translation during heat shock by binding eIF4G and facilitating dissociation of cap-initiation complexes

    OpenAIRE

    Cuesta, Rafael; Laroia, Gaurav; Schneider, Robert J.

    2000-01-01

    Inhibition of protein synthesis during heat shock limits accumulation of unfolded proteins that might damage eukaryotic cells. We demonstrate that chaperone Hsp27 is a heat shock-induced inhibitor of cellular protein synthesis. Translation of most mRNAs requires formation of a cap-binding initiation complex known as eIF4F, consisting of factors eIF4E, eIF4A, eIF4E kinase Mnk1, poly(A)-binding protein, and adaptor protein eIF4G. Hsp27 specifically bound eIF4G during heat shock, preventing asse...

  5. Improving the Quality of the Deteriorated Regions of Multicrystalline Silicon Ingots during General Solar Cell Processes

    Institute of Scientific and Technical Information of China (English)

    WU Shan-Shan; WANG Lei; YANG De-Ren

    2011-01-01

    @@ The behavior of wafers and solar cells from the border of a multicrystalline silicon(mc-Si)ingot, which contain deteriorated regions, is investigated.It is found that the diffusion length distribution of minority carriers in the cells is uniform, and high efficiency of the solar cells(about 16%)is achieved.It is considered that the quality of the deteriorated regions could be improved to be similar to that of adjacent regions.Moreover, it is indicated that during general solar cell fabrication, phosphorus gettering and hydrogen passivation could significantly improve the quality of deteriorated regions, while aluminum gettering by RTP could not.Therefore, it is suggested that the border of a me-Si ingot could be used to fabricate high efficiency solar cells, which will increase me-Si utilization effectively.%The behavior of wafers and solar cells from the border of a multicrystalline silicon (mc-Si) ingot, which contain deteriorated regions, is investigated. It is found that the diffusion length distribution of minority carriers in the cells is uniform, and high efficiency of the solar cells (about 16%) is achieved. It is considered that the quality of the deteriorated regions could be improved to be similar to that of adjacent regions. Moreover, it is indicated that during general solar cell fabrication, phosphorus gettering and hydrogen passivation could significantly improve the quality of deteriorated regions, while aluminum gettering by RTP could not. Therefore, it is suggested that the border of a mc-Si ingot could be used to fabricate high efficiency solar cells, which will increase mc-Si utilization effectively.

  6. Cell cycle is disturbed in mucopolysaccharidosis type II fibroblasts, and can be improved by genistein.

    Science.gov (United States)

    Moskot, Marta; Gabig-Cimińska, Magdalena; Jakóbkiewicz-Banecka, Joanna; Węsierska, Magdalena; Bocheńska, Katarzyna; Węgrzyn, Grzegorz

    2016-07-01

    Mucopolysaccharidoses (MPSs) are inherited metabolic diseases caused by mutations resulting in deficiency of one of enzymes involved in degradation of glycosaminoglycans (GAGs). These compounds accumulate in cells causing their dysfunctions. Genistein is a molecule previously found to both modify GAG metabolism and modulate cell cycle. Therefore, we investigated whether the cell cycle is affected in MPS cells and if genistein can influence this process. Fibroblasts derived from patients suffering from MPS types I, II, IIIA and IIIB, as well as normal human fibroblasts (the HDFa cell line) were investigated. MTT assay was used for determination of cell proliferation, and the cell cycle was analyzed by using the MUSE® Cell Analyzer. While effects of genistein on cell proliferation were similar in both normal and MPS fibroblasts, fractions of cells in the G0/G1 phase were higher, and number of cells entering the S and G2/M phases was considerably lower in MPS II fibroblasts relative to control cells. Somewhat similar tendency, though significantly less pronounced, could be noted in MPS I, but only at longer times of incubation. However, this was not observed in MPS IIIA and MPS IIIB fibroblasts. Genistein (5, 7-dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) was found to be able to partially correct the disturbances in the MPS II cell cycle, and to some extent in MPS I, at higher concentrations of this compound. The tendency to increase the fractions of cells entering the S and G2/M phases was also observed in MPS IIIA and IIIB fibroblasts treated with genistein. In conclusion, this is the first report indicating that the cell cycle can be impaired in MPS cells. The finding that genistein can improve the MPS II (and to some extent also MPS I) cell cycle provides an input to our knowledge on the molecular mechanisms of action of this compound. PMID:27016302

  7. Improved antibody production in Chinese hamster ovary cells by ATF4 overexpression

    OpenAIRE

    Haredy, Ahmad M.; Nishizawa, Akitoshi; Honda, Kohsuke; Ohya, Tomoshi; Ohtake, Hisao; Omasa, Takeshi

    2013-01-01

    To improve antibody production in Chinese hamster ovary (CHO) cells, the humanized antibody-producing CHO DP-12-SF cell line was transfected with the gene encoding activating transcription factor 4 (ATF4), a central factor in the unfolded protein response. Overexpression of ATF4 significantly enhanced the production of antibody in the CHO DP-12-SF cell line. The specific IgG production rate of in the ATF4-overexpressing CHO-ATF4-16 cells was approximately 2.4 times that of the parental host c...

  8. Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines.

    Science.gov (United States)

    Romand, Sandrine; Jostock, Thomas; Fornaro, Mara; Schmidt, Joerg; Ritter, Anett; Wilms, Burkhard; Laux, Holger

    2016-05-01

    Chinese Hamster Ovary (CHO) cells are widely used for the large-scale production of recombinant biopharmaceuticals. However, attempts to express IGF-1 (a mutated human Insulin-like growth factor 1 Ea peptide (hIGF-1Ea mut)) in CHO cells resulted in poor cell growth and low productivity (0.1-0.2 g/L). Human IGF-1 variants negatively impacted CHO cell growth via the IGF-1 receptor (IGF-1R). Therefore knockout (KO) of the IGF-1R gene in two different CHO cell lines as well as knockdown (KD) of IGF-1R in one CHO cell line were performed. These cell line engineering approaches decreased significantly the hIGF-1 mediated cell growth inhibition and increased productivity of both KO CHO cell lines as well as of the KD CHO cell line. A productivity increase of 10-fold at pool level and sevenfold at clone level was achieved, resulting in a titer of 1.3 g/L. This data illustrate that cell line engineering approaches are powerful tools to improve the yields of recombinant proteins which are difficult to produce in CHO cells. Biotechnol. Bioeng. 2016;113: 1094-1101. © 2015 Wiley Periodicals, Inc. PMID:26523469

  9. High level accumulation of soluble diphtheria toxin mutant (CRM197) with co-expression of chaperones in recombinant Escherichia coli.

    Science.gov (United States)

    Mahamad, Pornpimol; Boonchird, Chuenchit; Panbangred, Watanalai

    2016-07-01

    CRM197 is the diphtheria toxin mutant used in many conjugate vaccines. A fusion CRM197 (fCRM197) containing all the tags conferred by the pET32a vector was produced as a soluble protein in Escherichia coli co-expressing several chaperone proteins in conjunction with low temperature cultivation. Trigger factor (Tf) enhanced formation of soluble fCRM197 (150.69 ± 8.95 μg/mL) to a greater degree than other chaperones when fCRM197 expression was induced at 25 °C for 12 h. However, prolonged cultivation resulted in a progressive reduction of fCRM197 accumulation. In contrast, at 15 °C cells, with or without Tf, fCRM197 accumulated to the highest level at 48 h (153.70 ± 13.14 μg/mL and 150.07 ± 8.13 μg/mL, respectively). Transmission electron microscopy (TEM) demonstrated that the formation of inclusion protein as well as cell lysis was reduced in cultures grown at 15 °C. Cell viability was substantially reduced in cells expressing Tf, compared to cultures without Tf, when fCRM197 was induced at 25 °C. The viability of Tf-expressing cells was enhanced when cultured at 15 °C. Both purified fCRM197 and CRM197 efficiently digested lambda DNA (λDNA) at 37 °C (92.78 and 97.45 %, respectively). Digestion efficiency of fCRM197 and CRM197 was reduced at 25 °C (80.80 and 62.73 %, respectively) and at 15 °C (7.34 and 24.79 %, respectively). These results demonstrating nuclease activity, enhanced cell lysis, and reduced cell viability are consistent with the finding of lower fCRM197 yield when cultivation and induction times were prolonged at 25 °C. The present work provides a procedure for the high-level production of soluble fCRM197 using E. coli as a heterologous host. PMID:27020286

  10. Enhanced Erbium-Doped Ceria Nanostructure Coating to Improve Solar Cell Performance

    Directory of Open Access Journals (Sweden)

    Nader Shehata

    2015-11-01

    Full Text Available This paper discusses the effect of adding reduced erbium-doped ceria nanoparticles (REDC NPs as a coating on silicon solar cells. Reduced ceria nanoparticles doped with erbium have the advantages of both improving conductivity and optical conversion of solar cells. Oxygen vacancies in ceria nanoparticles reduce Ce4+ to Ce3+ which follow the rule of improving conductivity of solar cells through the hopping mechanism. The existence of Ce3+ helps in the down-conversion from 430 nm excitation to 530 nm emission. The erbium dopant forms energy levels inside the low-phonon ceria host to up-convert the 780 nm excitations into green and red emissions. When coating reduced erbium-doped ceria nanoparticles on the back side of a solar cell, a promising improvement in the solar cell efficiency has been observed from 15% to 16.5% due to the mutual impact of improved electric conductivity and multi-optical conversions. Finally, the impact of the added coater on the electric field distribution inside the solar cell has been studied.

  11. THE IMPROVEMENT OF INFARCTED MYOCARDIAL CONTRACTILE FORCE AFTER AUTOLOGOUS SKELETAL MUSCLE SATELLITE CELL IMPLANTATION

    Institute of Scientific and Technical Information of China (English)

    钟竑; 朱洪生; 张臻

    2002-01-01

    Objective To study the improvement of infarcted myocardial contractile force after autologous skeletal muscle satellite cell implantation via intracoronary arterial perfusion. Methods Skeletal muscle cells were harvested from gluteus max of adult mongrel dogs and the cells were cultured and expanded before being labeled with DAPI (4, 6-diamidino-2-phenylindone). The labeled cells were then implanted into the acute myocardial infarct site via the ligated left anterior descending (LAD) coronary artery. Specimens were taken at 2nd, 4th, 8th week after myoblast implantation for histologic and contractile force evaluation, respectively. Results The satellite cells with fluorescence had been observed in the infarct site and also in papi-llary muscle with consistent oriented direction of host myocardium. A portion of the implanted cells had differen-tiated into muscle fibers. Two weeks after implantation, the myocardial contractile force showed no significant difference between the cell implant group and control group. At 4 and 8 week, the contractile force in the cell implant group was better than that in control group. Conclusion The skeletal muscle satellite cells, implanted into infarct myocardium by intracoronary arterial perfusion, could disseminate through the entire infarcted zone with myocardial regeneration and improve the contractile function of the infarcted myocardium.

  12. Liposomal Nanomedicine with Short Chain Sphingolipids Modulate Tumor Cell Membrane Permeability Modulate Tumor Cell Membrane Permeability and Improve Chemotherapy

    NARCIS (Netherlands)

    L.R.C. Pedrosa (Lília R. Cordeiro)

    2014-01-01

    markdownabstract__Abstract__ Chapter 6 discusses the significance of the results described in this thesis and future perspectives. The main goal of the thesis was the application of SCS enriched liposomes to improve chemotherapy outcome, by enhancing drug bioavailability in target tumor cells. De

  13. Cloning, expression and nuclear localization of human NPM3, a member of the nucleophosmin/nucleoplasmin family of nuclear chaperones

    Directory of Open Access Journals (Sweden)

    Ganguly Amit

    2001-11-01

    Full Text Available Abstract Background Studies suggest that the related proteins nucleoplasmin and nucleophosmin (also called B23, NO38 or numatrin are nuclear chaperones that mediate the assembly of nucleosomes and ribosomes, respectively, and that these activities are accomplished through the binding of basic proteins via their acidic domains. Recently discovered and less well characterized members of this family of acidic phosphoproteins include mouse nucleophosmin/nucleoplasmin 3 (Npm3 and Xenopus NO29. Here we report the cloning and initial characterization of the human ortholog of Npm3. Results Human genomic and cDNA clones of NPM3 were isolated and sequenced. NPM3 lies 5.5 kb upstream of FGF8 and thus maps to chromosome 10q24-26. In addition to amino acid similarities, NPM3 shares many physical characteristics with the nucleophosmin/nucleoplasmin family, including an acidic domain, multiple potential phosphorylation sites and a putative nuclear localization signal. Comparative analyses of 14 members of this family from various metazoans suggest that Xenopus NO29 is a candidate ortholog of human and mouse NPM3, and they further group both proteins closer with the nucleoplasmins than with the nucleophosmins. Northern blot analysis revealed that NPM3 was strongly expressed in all 16 human tissues examined, with especially robust expression in pancreas and testis; lung displayed the lowest level of expression. An analysis of subcellular fractions of NIH3T3 cells expressing epitope-tagged NPM3 revealed that NPM3 protein was localized solely in the nucleus. Conclusions Human NPM3 is an abundant and widely expressed protein with primarily nuclear localization. These biological activities, together with its physical relationship to the chaparones nucleoplasmin and nucleophosmin, are consistent with the proposed function of NPM3 as a molecular chaperone functioning in the nucleus.

  14. Hydrophobic Organic Hole Transporters for Improved Moisture Resistance in Metal Halide Perovskite Solar Cells.

    Science.gov (United States)

    Leijtens, Tomas; Giovenzana, Tommaso; Habisreutinger, Severin N; Tinkham, Jonathan S; Noel, Nakita K; Kamino, Brett A; Sadoughi, Golnaz; Sellinger, Alan; Snaith, Henry J

    2016-03-01

    Solar cells based on organic-inorganic perovskite semiconductor materials have recently made rapid improvements in performance, with the best cells performing at over 20% efficiency. With such rapid progress, questions such as cost and solar cell stability are becoming increasingly important to address if this new technology is to reach commercial deployment. The moisture sensitivity of commonly used organic-inorganic metal halide perovskites has especially raised concerns. Here, we demonstrate that the hygroscopic lithium salt commonly used as a dopant for the hole transport material in perovskite solar cells makes the top layer of the devices hydrophilic and causes the solar cells to rapidly degrade in the presence of moisture. By using novel, low cost, and hydrophobic hole transporters in conjunction with a doping method incorporating a preoxidized salt of the respective hole transporters, we are able to prepare efficient perovskite solar cells with greatly enhanced water resistance. PMID:26859777

  15. A general method to improve fluorophores for live-cell and single-molecule microscopy.

    Science.gov (United States)

    Grimm, Jonathan B; English, Brian P; Chen, Jiji; Slaughter, Joel P; Zhang, Zhengjian; Revyakin, Andrey; Patel, Ronak; Macklin, John J; Normanno, Davide; Singer, Robert H; Lionnet, Timothée; Lavis, Luke D

    2015-03-01

    Specific labeling of biomolecules with bright fluorophores is the keystone of fluorescence microscopy. Genetically encoded self-labeling tag proteins can be coupled to synthetic dyes inside living cells, resulting in brighter reporters than fluorescent proteins. Intracellular labeling using these techniques requires cell-permeable fluorescent ligands, however, limiting utility to a small number of classic fluorophores. Here we describe a simple structural modification that improves the brightness and photostability of dyes while preserving spectral properties and cell permeability. Inspired by molecular modeling, we replaced the N,N-dimethylamino substituents in tetramethylrhodamine with four-membered azetidine rings. This addition of two carbon atoms doubles the quantum efficiency and improves the photon yield of the dye in applications ranging from in vitro single-molecule measurements to super-resolution imaging. The novel substitution is generalizable, yielding a palette of chemical dyes with improved quantum efficiencies that spans the UV and visible range. PMID:25599551

  16. Improving the Response of a Load Cell by Using Optimal Filtering

    Directory of Open Access Journals (Sweden)

    Wilmar Hernandez

    2006-07-01

    Full Text Available Load cells are transducers used to measure force or weight. Despite the fact thatthere is a wide variety of load cells, most of these transducers that are used in the weighingindustry are based on strain gauges. In this paper, an s-beam load cell based on strain gaugeswas suitably assembled to the mechanical structure of several seats of a bus underperformance tests and used to measure the resistance of their mechanical structure to tensionforces applied horizontally to the seats being tested. The load cell was buried in a broad-band noise background where the unwanted information and the relevant signal sometimesshare a very similar frequency spectrum and its performance was improved by using arecursive least-squares (RLS lattice algorithm. The experimental results are satisfactoryand a significant improvement in the signal-to-noise ratio at the system output of 27 dB wasachieved, which is a good performance factor for judging the quality of the system.

  17. Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Hansen, Henning Gram; Nilsson, Claes Nymand; Lund, Anne Mathilde;

    2015-01-01

    Chinese hamster ovary (CHO) cells are widely used as cell factories for the production of biopharmaceuticals. In contrast to the highly optimized production processes for monoclonal antibody (mAb)-based biopharmaceuticals, improving productivity of non-mAb therapeutic glycoproteins is more likely...... consists of four techniques compatible with 96-well microplates: lipid-based transient transfection, cell cultivation in microplates, cell counting and antibody-independent product titer determination based on split-GFP complementation. We were able to demonstrate growth profiles and volumetric...... to reduce production costs significantly. The aim of this study was to establish a versatile target gene screening platform for improving productivity for primarily non-mAb glycoproteins with complete interchangeability of model proteins and target genes using transient expression. The platform...

  18. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    International Nuclear Information System (INIS)

    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation

  19. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Barenghi, R. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Farkas, B.; Romano, I. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scaglione, S. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Brandi, F. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, 56124-Pisa (Italy)

    2014-11-01

    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation.

  20. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    Science.gov (United States)

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  1. Immunomodulation of Selective Naive T Cell Functions by p110δ Inactivation Improves the Outcome of Mismatched Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Jean-Marc Doisne

    2015-02-01

    Full Text Available Allogeneic hematopoietic stem cell transplantation (HSCT can treat certain hematologic malignancies due to the graft versus leukemia (GvL effect but is complicated by graft versus host disease (GvHD. Expression of the p110δ catalytic subunit of the phosphoinositide 3-kinase pathway is restricted to leukocytes, where it regulates proliferation, migration, and cytokine production. Here, in a mouse model of fully mismatched hematopoietic cell transplantation (HCT, we show that genetic inactivation of p110δ in T cells leads to milder GvHD, whereas GvL is preserved. Inactivation of p110δ in human lymphocytes reduced T cell allorecognition. We demonstrate that both allostimulation and granzyme B expression were dependent on p110δ in naive T cells, which are the main mediators of GvHD, whereas memory T cells were unaffected. Strikingly, p110δ is not mandatory for either naive or memory T cells to mediate GvL. Therefore, immunomodulation of selective naive T cell functions by p110δ inactivation improves the outcome of allogeneic HSCT.

  2. Manipulating Light to Understand and Improve Solar Cells (494th Brookhaven Lecture)

    Energy Technology Data Exchange (ETDEWEB)

    Eisaman, Matthew [BNL, Sustainable Energy Technologies Department

    2014-04-16

    Energy consumption around the world is projected to approximately triple by the end of the century, according to the 2005 Report from the U.S. Department of Energy's Basic Energy Sciences Workshop on Solar Energy Utilization. Much will change in those next 86 years, but for all the power the world needs—for everything from manufacturing and transportation to air conditioning and charging cell phone batteries—improved solar cells will be crucial to meet this future energy demand with renewable energy sources. At Brookhaven Lab, scientists are probing solar cells and exploring variations within the cells—variations that are so small they are measured in billionths of a meter—in order to make increasingly efficient solar cells and ultimately help reduce the overall costs of deploying solar power plants. Dr. Eisaman will discuss DOE's Sunshot Initiative, which aims to reduce the cost of solar cell-generated electricity by 2020. He will also discuss how he and collaborators at Brookhaven Lab are probing different material compositions within solar cells, measuring how efficiently they collect electrical charge, helping to develop a new class of solar cells, and improving solar-cell manufacturing processes.

  3. An improved method for isolation of epithelial and stromal cells from the human endometrium.

    Science.gov (United States)

    Masuda, Ayako; Katoh, Noriko; Nakabayashi, Kazuhiko; Kato, Kiyoko; Sonoda, Kenzo; Kitade, Mari; Takeda, Satoru; Hata, Kenichiro; Tomikawa, Junko

    2016-04-22

    We aimed to improve the efficiency of isolating endometrial epithelial and stromal cells (EMECs and EMSCs) from the human endometrium. We revealed by immunohistochemical staining that the large tissue fragments remaining after collagenase treatment, which are usually discarded after the first filtration in the conventional protocol, consisted of glandular epithelial and stromal cells. Therefore, we established protease treatment and cell suspension conditions to dissociate single cells from the tissue fragments and isolated epithelial (EPCAM-positive) and stromal (CD13-positive) cells by fluorescence-activated cell sorting. Four independent experiments showed that, on average, 1.2 × 10(6) of EMECs and 2.8 × 10(6) EMSCs were isolated from one hysterectomy specimen. We confirmed that the isolated cells presented transcriptomic features highly similar to those of epithelial and stromal cells obtained by the conventional method. Our improved protocol facilitates future studies to better understand the molecular mechanisms underlying the dynamic changes of the endometrium during the menstrual cycle. PMID:26853786

  4. Improvement of a Si solar cell efficiency using pure and Fe3+ doped PVA films

    Science.gov (United States)

    Khalifa, N.; Kaouach, H.; Chtourou, R.

    2015-07-01

    One of the most important key driving the economic viability of solar cells is the high efficiency. This research focuses on the enhancement of commercial Si solar cell performance by deposing a pure and Fe3+ doped polyvinyl alcohol (PVA) layer on the top of the Si wafer of the considered cells. The use of such polymer to improve solar cells efficiency is actually a first. The authors will rely on the optical characteristics of the pure and doped PVA films including absorption and emission properties to justify the effect on Si cells. Commercial monocrystalline silicon solar cells of 15 cm2 (0.49 V/460 mA) are used in this work. Films of almost 80 μm of the ferric polymer are deposed on the cells. Films with the same thickness are characterized by UV-Vis spectroscopy and photoluminescent emission of the films is then investigated. The electrical properties of the cells with and without the organometallic layer are evaluated. It will be deduced an important improvement of all electrical parameters, including short-circuit current, open-circuit voltage, fill factor and spatially the conversion efficiency by almost 3%.

  5. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  6. The RNA chaperone Hfq impacts growth, metabolism and production of virulence factors in Yersinia enterocolitica.

    Science.gov (United States)

    Kakoschke, Tamara; Kakoschke, Sara; Magistro, Giuseppe; Schubert, Sören; Borath, Marc; Heesemann, Jürgen; Rossier, Ombeline

    2014-01-01

    To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at the post-transcriptional level, e.g. by small RNAs (sRNAs) which modulate mRNA stability and translation. The conserved RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis, mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity, indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of two virulence factors in Y. enterocolitica, namely urease and yersiniabactin. PMID:24454955

  7. The RNA chaperone Hfq impacts growth, metabolism and production of virulence factors in Yersinia enterocolitica.

    Directory of Open Access Journals (Sweden)

    Tamara Kakoschke

    Full Text Available To adapt to changes in environmental conditions, bacteria regulate their gene expression at the transcriptional but also at the post-transcriptional level, e.g. by small RNAs (sRNAs which modulate mRNA stability and translation. The conserved RNA chaperone Hfq mediates the interaction of many sRNAs with their target mRNAs, thereby playing a global role in fine-tuning protein production. In this study, we investigated the significance of Hfq for the enteropathogen Yersina enterocolitica serotype O:8. Hfq facilitated optimal growth in complex and minimal media. Our comparative protein analysis of parental and hfq-negative strains suggested that Hfq promotes lipid metabolism and transport, cell redox homeostasis, mRNA translation and ATP synthesis, and negatively affects carbon and nitrogen metabolism, transport of siderophore and peptides and tRNA synthesis. Accordingly, biochemical tests indicated that Hfq represses ornithine decarboxylase activity, indole production and utilization of glucose, mannitol, inositol and 1,2-propanediol. Moreover, Hfq repressed production of the siderophore yersiniabactin and its outer membrane receptor FyuA. In contrast, hfq mutants exhibited reduced urease production. Finally, strains lacking hfq were more susceptible to acidic pH and oxidative stress. Unlike previous reports in other Gram-negative bacteria, Hfq was dispensable for type III secretion encoded by the virulence plasmid. Using a chromosomally encoded FLAG-tagged Hfq, we observed increased production of Hfq-FLAG in late exponential and stationary phases. Overall, Hfq has a profound effect on metabolism, resistance to stress and modulates the production of two virulence factors in Y. enterocolitica, namely urease and yersiniabactin.

  8. ADP-ribosylation factor 6 mediates E-cadherin recovery by chemical chaperones.

    Directory of Open Access Journals (Sweden)

    Joana Figueiredo

    Full Text Available E-cadherin plays a powerful tumor suppressor role. Germline E-cadherin mutations justify 30% of Hereditary Diffuse Gastric Cancer (HDGC and missense mutations are found in 30% of these families. We found possible to restore in vitro mutant E-cadherin associated to HDGC syndrome by using Chemical Chaperones (CCs. Herein, our aim was to disclose the molecular mechanisms underlying the CCs effects in E-cadherin regulation. Using cells stably expressing WT E-cadherin or two HDGC-associated missense mutations, we show that upon DMSO treatment, not only mutant E-cadherin is restored and stabilized at the plasma membrane (PM, but also Arf6 and PIPKIγ expressions are altered. We show that modulation of Arf6 expression partially mimics the effect of CCs, suggesting that the cellular effects observed upon CCs treatment are mediated by Arf6. Further, we show that E-cadherin expression recovery is specifically linked to Arf6 due to its role on endocytosis and recycling pathways. Finally, we demonstrated that, as DMSO, several others CCs are able to modulate the trafficking machinery through an Arf6 dependent mechanism. Interestingly, the more effective compounds in E-cadherin recovery to PM are those that simultaneously inhibit Arf6 and stimulate PIPKIγ expression and binding to E-cadherin. Here, we present the first evidence of a direct influence of CCs in cellular trafficking machinery and we show that this effect is of crucial importance in the context of juxtamembrane E-cadherin missense mutations associated to HDGC. We propose that this influence should be taken into account when exploring the therapeutic potential of this type of chemicals in genetic diseases associated to protein-misfolding.

  9. Sex, Scavengers, and Chaperones: Transcriptome Secrets of Divergent Symbiodinium Thermal Tolerances.

    Science.gov (United States)

    Levin, Rachel A; Beltran, Victor H; Hill, Ross; Kjelleberg, Staffan; McDougald, Diane; Steinberg, Peter D; van Oppen, Madeleine J H

    2016-09-01

    Corals rely on photosynthesis by their endosymbiotic dinoflagellates (Symbiodinium spp.) to form the basis of tropical coral reefs. High sea surface temperatures driven by climate change can trigger the loss of Symbiodinium from corals (coral bleaching), leading to declines in coral health. Different putative species (genetically distinct types) as well as conspecific populations of Symbiodinium can confer differing levels of thermal tolerance to their coral host, but the genes that govern dinoflagellate thermal tolerance are unknown. Here we show physiological and transcriptional responses to heat stress by a thermo-sensitive (physiologically susceptible at 32 °C) type C1 Symbiodinium population and a thermo-tolerant (physiologically healthy at 32 °C) type C1 Symbiodinium population. After nine days at 32 °C, neither population exhibited physiological stress, but both displayed up-regulation of meiosis genes by ≥ 4-fold and enrichment of meiosis functional gene groups, which promote adaptation. After 13 days at 32 °C, the thermo-sensitive population suffered a significant decrease in photosynthetic efficiency and increase in reactive oxygen species (ROS) leakage from its cells, whereas the thermo-tolerant population showed no signs of physiological stress. Correspondingly, only the thermo-tolerant population demonstrated up-regulation of a range of ROS scavenging and molecular chaperone genes by ≥ 4-fold and enrichment of ROS scavenging and protein-folding functional gene groups. The physiological and transcriptional responses of the Symbiodinium populations to heat stress directly correlate with the bleaching susceptibilities of corals that harbored these same Symbiodinium populations. Thus, our study provides novel, foundational insights into the molecular basis of dinoflagellate thermal tolerance and coral bleaching. PMID:27301593

  10. Interlaced semi-ellipsoid nanostructures for improving light trapping of ultrathin crystalline silicon solar cells

    Science.gov (United States)

    Gao, Ge; Li, Juntao; Wang, Xuehua

    2015-10-01

    Ultrathin crystalline silicon (c-Si) solar cells, which are of several micrometers thick, have attracted much attention in recent years, since it can greatly save raw materials than the traditional ones. To enhance the absorption, as well as to improve the cell efficiency, of the ultrathin c-Si, light trapping nanostructures are used to increase the effective absorption length to close to the 4n2 of the materials thickness, which is determined by the Lambertian limit. Here, we propose a novel interlaced semi-ellipsoid nanostructures (ISENs) to improve the performance of ultrathin c-Si solar cells. In this structure, the large and small periods in x and y direction can improve the light trapping capability at long and short wavelengths respectively. Meanwhile, the graded refractive index of the surface can act as the antireflection coating. By optimizing the ISENs, the short circuit current density of 30.15mA/cm2 was achieved by simulations for a 2 μm thick c-Si solar cell with rx = 500 nm, ry = 200 nm, rz= 550 nm and without antireflection coating and metal back reflector. The absorption is close to 87% of the Lambertian limit with equivalent thickness. We expect this structure can be fabricated by low cost nanosphere lithography technology and used to improve the efficiency of the ultrathin c-Si solar cells.

  11. Low dose of corticosterone treatment with exercise increases hippocampal cell proliferation, and improves cognition

    Institute of Scientific and Technical Information of China (English)

    Suk-Yu Yau; Jada Chia-Di Lee; Benson Wui-Man Lau; Tatia M.C. Lee; Yick-Pang Ching; Siu-Wa Tang; Kwok-Fai So

    2011-01-01

    Intermediate level of stress is beneficial for brain functions, whereas extreme low level or high level of stress is deleterious. We have previously shown that chronic exposure to high doses of corticosterone (CORT) suppressed hippocampal plasticity and physical exercise in terms of running counteracted the detrimental effects of CORT treatment. We aimed to study whether a mild stress, that mimicked by a treatment with low CORT dose, improved hippocampal plasticity in terms of hippocampal cell proliferation and dendritic remodeling, and to examine whether running with CORT treatment showed an additive effect on improving hippocampal plasticity. The rats were treated with 20 mg/kg CORT for 14 days with or without running, followed by Morris water maze test or forced swim test. The hippocampal proliferating cells was labeled by intraperitoneal injection of 5-bromo-2'-deoxyuridine. The dendritic morphology was analyzed using Golgi staining method. Treatment with 20 mg/kg CORT alone yielded a higher number of hippocampal cell proliferation and significantly increased dendritic branching compared to vehicle-treated non-runners, but had no behavioral effects. In contrast, CORT treatment with running showed an additive increase in hippocampal cell proliferation and dendritic remodeling that was associated with improved spatial learning and decreased depression-like behavior; however, there was no additive improvement in behavior compared to vehicle-treated runners. These findings suggest that mild stress does not always cause detrimental effect on the brain, and combining mild stress with running could promote hippocampal plasticity via inducing cell proliferation and dendritic remodeling.

  12. Does adipose tissue-derived stem cell therapy improve graft quality in freshly grafted ovaries?

    OpenAIRE

    Damous, Luciana L.; Nakamuta, Juliana S.; Saturi de Carvalho, Ana ET; Carvalho, Katia Candido; Soares-Jr, José Maria; Simões, Manuel Jesus; Krieger, José Eduardo; Baracat, Edmund Chada

    2015-01-01

    Background A major concern in ovarian transplants is substantial follicle loss during the initial period of hypoxia. Adipose tissue-derived stem cells (ASCs) have been employed to improve angiogenesis when injected into ischemic tissue. This study evaluated the safety and efficacy of adipose tissue-derived stem cells (ASCs) therapy in the freshly grafted ovaries 30 days after injection. Methods Rat ASCs (rASCs) obtained from transgenic rats expressing green fluorescent protein (GFP)-(5 × 104 ...

  13. Improvement of Biodesulfurization Rate by Assembling Nanosorbents on the Surfaces of Microbial Cells

    OpenAIRE

    Guobin, S.; Huaiying, Z.; Weiquan, C.; Jianmin, X.; Huizhou, L.

    2005-01-01

    To improve biodesulfurization rate is a key to industrialize biodesulfurization technology. The biodesulfurization rate is partially affected by transfer rate of substrates from organic phase to microbial cell. In this study, γ-Al2O3 nanosorbents, which had the ability to selectively adsorb dibenzothiophene (DBT) from organic phase, were assembled on the surfaces of Pseudomonas delafieldii R-8 cell, a desulfurization strain. γ-Al2O3 nanosorbents have the ability to adsorb DBT from oil phase, ...

  14. Room temperature electrocompetent bacterial cells improve DNA transformation and recombineering efficiency

    OpenAIRE

    Qiang Tu; Jia Yin; Jun Fu; Jennifer Herrmann; Yuezhong Li; Yulong Yin; Francis Stewart, A.; Rolf Müller; Youming Zhang

    2016-01-01

    Bacterial competent cells are essential for cloning, construction of DNA libraries, and mutagenesis in every molecular biology laboratory. Among various transformation methods, electroporation is found to own the best transformation efficiency. Previous electroporation methods are based on washing and electroporating the bacterial cells in ice-cold condition that make them fragile and prone to death. Here we present simple temperature shift based methods that improve DNA transformation and re...

  15. Enhancing Angiogenesis Alleviates Hypoxia and Improves Engraftment of Enteric Cells in Polycaprolactone Scaffolds

    OpenAIRE

    Singh, Shivani; Wu, Benjamin M.; Dunn, James C.Y.

    2012-01-01

    We examined whether expediting angiogenesis in porous polycaprolactone (PCL) scaffolds could reduce hypoxia and consequently improve the survival of transplanted enteric cells. To accelerate angiogenesis, we delivered vascular endothelial growth factor (VEGF) using PCL scaffolds with surface cross-linked heparin. The scaffold fabrication and characterization has been reported in our previous study. Enteric cells, isolated from intestinal tissue of neonatal mice and expanded in vitro for 10 da...

  16. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation

    OpenAIRE

    Chetty, Sundari; Engquist, Elise N.; Mehanna, Elie; Lui, Kathy O.; Tsankov, Alexander M.; Douglas A Melton

    2015-01-01

    Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein ...

  17. Closed-Cell Aluminum Foam of Improved Sound Absorption Ability: Manufacture and Properties

    OpenAIRE

    Alexandra Byakova; Svyatoslav Gnyloskurenko; Yuriy Bezimyanniy; Takashi Nakamura

    2014-01-01

    The paper presents a new method for the production of the closed-cell Al foams of improved sound absorbing ability. Final heat treatment procedure including heating below the solidus temperature followed by water quenching is proposed as an alternative method to machining, which is used commonly for improvement of the sound absorption coefficient. Several kinds of foams based on AlZnMg-alloys comprising brittle eutectic domains of interdendritic redundant phase have been produced by the Alpor...

  18. Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Thomsen, Preben Dybdahl; Betts, Dean H.

    2009-01-01

      BACKGROUND AIMS: A robust methodology for the isolation of cord blood-derived multipotent mesenchymal stromal cells (CB-MSCs) from fresh umbilical cord blood has not been reported in any species. The objective of this study was to improve the isolation procedure for equine CB-MSCs. METHODS: Pre......Cyte-EQ medium is superior to Ficoll-Paque PREMIUM density medium for the isolation of putative equine CB MSC and that MSC-qualified FBS may improve the isolation efficiency....

  19. Surface Texturing with Hemispherical Cavities to Improve Efficiency in Silicon Solar Cells

    OpenAIRE

    De Lima Monteiro, D.W.; F. P. Honorato; R. F. de Oliveira Costa; L.P. Salles

    2012-01-01

    Improvement of solar-cell efficiency at a minimum possible cost addition is constantly sought, and this is often achieved at incremental percentage steps. Among a number of alternatives, antireflective coatings and surface texturing are the most prominent. This paper presents an alternative texturing method of crystalline silicon in an attempt to improve the efficiency of photon transmission through the surface and collection in the bulk. The method relies on anisotropic etching of bulk silic...

  20. Ceruloplasmin reduces DNA double strand breaks and improves cell survival in lymphoblastoid cells

    International Nuclear Information System (INIS)

    Full text: Ionizing radiation through oxidative free radical production causes dose-dependent oxidative damage to biological macromolecules. To reduce the oxidative stress from ionizing radiation, use of antioxidants has been suggested as a prophylactic and early remedy of pathogenic therapy. Ceruloplasmin (Cp), a plasma protein produced by the liver, belongs to a class of multi copper ferroxidases known for their role in iron metabolism in vertebrates, including humans. Functions of Cp include copper transport, ferroxidase and aminooxidase activities. Serum Cp concentration fluctuates during inflammation, infection, trauma and irradiation. The role of Cp as an antioxidant after irradiation is not fully understood. Our aim was to investigate the radioprotective efficacy of Cp. We studied the effect of ceruloplasmin on the in-vitro radiosensitivity of lymphoblastoid cells lines after gamma-ray irradiation. We used radiosensitive cell lines LB0003, LB0004 and LB 0005, established from individuals who developed late radiation necrosis following curative radiotherapy and non-sensitive cell lines Masci and LB0001 as controls. The cell lines were irradiated with doses from 0 - 60 Gy. Genomic DNA was extracted at 0 - 24h after irradiation and subjected to PFGE to analyse the initial quantity of DNA DSBs and the quantity of unrepaired DSBs to evaluate the kinetics of DSB rejoining. Human Cp (0.05 or 0.5mg/ml) was added to cell cultures 30 min before or 5 min after irradiation. In the presence of Cp cell survival was increased and the level of DBSs reduced demonstrating its radioprotective effect and the potential mechanism of its protection against radiation effects. Its radioprotective efficacy on dose and time of administration of Cp. The radiosensitive cell lines differ from controls by kinetics of DSBs repair. Importantly, in presence of ceruloplasmin the level of DNA DSB was reduced and the kinetics of DNA DSB repair became comparable to that in controls

  1. Improved Method for Linear B-Cell Epitope Prediction Using Antigen’s Primary Sequence

    OpenAIRE

    Singh, Harinder; Ansari, Hifzur Rahman; Gajendra P. S. Raghava

    2013-01-01

    One of the major challenges in designing a peptide-based vaccine is the identification of antigenic regions in an antigen that can stimulate B-cell’s response, also called B-cell epitopes. In the past, several methods have been developed for the prediction of conformational and linear (or continuous) B-cell epitopes. However, the existing methods for predicting linear B-cell epitopes are far from perfection. In this study, an attempt has been made to develop an improved method for predicting ...

  2. Qui est le loup dans Le Petit Chaperon rouge de Charles Perrault

    OpenAIRE

    Benoit, Jean-Louis

    2009-01-01

    Le Petit Chaperon rouge de Perrault se présente comme un conte folklorique traditionnel. Quelques altérations signalent un changement de registre. La distance ironique de l'auteur lui donne un sens second. L'auteur s'amuse à proposer plusieurs chemins de lecture aux enfants et aux adultes.

  3. Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis.

    Science.gov (United States)

    Fragkostefanakis, Sotirios; Simm, Stefan; Paul, Puneet; Bublak, Daniela; Scharf, Klaus-Dieter; Schleiff, Enrico

    2015-04-01

    Heat shock proteins (Hsps) are molecular chaperones primarily involved in maintenance of protein homeostasis. Their function has been best characterized in heat stress (HS) response during which Hsps are transcriptionally controlled by HS transcription factors (Hsfs). The role of Hsfs and Hsps in HS response in tomato was initially examined by transcriptome analysis using the massive analysis of cDNA ends (MACE) method. Approximately 9.6% of all genes expressed in leaves are enhanced in response to HS, including a subset of Hsfs and Hsps. The underlying Hsp-Hsf networks with potential functions in stress responses or developmental processes were further explored by meta-analysis of existing microarray datasets. We identified clusters with differential transcript profiles with respect to abiotic stresses, plant organs and developmental stages. The composition of two clusters points towards two major chaperone networks. One cluster consisted of constitutively expressed plastidial chaperones and other genes involved in chloroplast protein homeostasis. The second cluster represents genes strongly induced by heat, drought and salinity stress, including HsfA2 and many stress-inducible chaperones, but also potential targets of HsfA2 not related to protein homeostasis. This observation attributes a central regulatory role to HsfA2 in controlling different aspects of abiotic stress response and tolerance in tomato. PMID:25124075

  4. Chaperone driven polymer translocation through Nanopore: spatial distribution and binding energy

    CERN Document Server

    Abdolvahab, Rouhollah Haji

    2016-01-01

    Chaperones are binding proteins which work as a driving force to bias the biopolymer translocation by binding to it near the pore and preventing its backsliding. Chaperones may have different spatial distribution. Recently we show the importance of their spatial distribution in translocation and how it effects on sequence dependency of the translocation time. Here we focus on homopolymers and exponential distribution. As a result of the exponential distribution of chaperones, energy dependency of the translocation time will changed and one see a minimum in translocation time versus effective energy curve. The same trend can be seen in scaling exponent of time versus polymer length, $\\beta$ ($T\\sim\\beta$). Interestingly in some special cases e.g. chaperones of size $\\lambda=6$ and with exponential distribution rate of $\\alpha=5$, the minimum reaches even to amount of less than $1$ ($\\beta<1$). We explain the possibility of this rare result and base on a theoretical discussion we show that by taking into acc...

  5. Fibronectin-Alginate microcapsules improve cell viability and protein secretion of encapsulated Factor IX-engineered human mesenchymal stromal cells.

    Science.gov (United States)

    Sayyar, Bahareh; Dodd, Megan; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna; Hortelano, Gonzalo

    2015-01-01

    Continuous delivery of proteins by engineered cells encapsu-lated in biocompatible polymeric microcapsules is of considerable therapeutic potential. However, this technology has not lived up to expectations due to inadequate cell--matrix interactions and subsequent cell death. In this study we hypoth-esize that the presence of fibronectin in an alginate matrix may enhance the viability and functionality of encapsulated human cord blood-derived mesenchymal stromal cells (MSCs) expressing the human Factor IX (FIX) gene. MSCs were encapsulated in alginate-PLL microcapsules containing 10, 100, or 500 μg/ml fibronectin to ameliorate cell survival. MSCs in microcapsules with 100 and 500 μg/ml fibronectin demonstrated improved cell viability and proliferation and higher FIX secretion compared to MSCs in non-supplemented microcapsules. In contrast, 10 μg/ml fibronectin did not significantly affect the viability and protein secretion from the encapsulated cells. Differentiation studies demonstrated osteogenic (but not chondrogenic or adipogenic) differentiation capability and efficient FIX secretion of the enclosed MSCs in the fibronectin-alginate suspension culture. Thus, the use of recombinant MSCs encapsulated in fibronectin-alginate microcapsules in basal or osteogenic cultures may be of practical use in the treatment of hemophilia B. PMID:24564349

  6. Improved method and apparatus for electrostatically sorting biological cells. [DOE patent application

    Science.gov (United States)

    Merrill, J.T.

    An improved method of sorting biological cells in a conventional cell sorter apparatus includes generating a fluid jet containing cells to be sorted, measuring the distance between the centers of adjacent droplets in a zone thereof defined at the point where the fluid jet separates into descrete droplets, setting the distance between the center of a droplet in said separation zone and the position along said fluid jet at which the cell is optically sensed for specific characteristics to be an integral multiple of said center-to-center distance, and disabling a charger from electrically charging a specific droplet if a cell is detected by the optical sensor in a position wherein it will be in the neck area between droplets during droplet formation rather than within a predetermined distance from the droplet center.

  7. Improvement of Biodesulfurization Rate by Assembling Nanosorbents on the Surfaces of Microbial Cells

    Science.gov (United States)

    Guobin, S.; Huaiying, Z.; Weiquan, C.; Jianmin, X.; Huizhou, L.

    2005-01-01

    To improve biodesulfurization rate is a key to industrialize biodesulfurization technology. The biodesulfurization rate is partially affected by transfer rate of substrates from organic phase to microbial cell. In this study, γ-Al2O3 nanosorbents, which had the ability to selectively adsorb dibenzothiophene (DBT) from organic phase, were assembled on the surfaces of Pseudomonas delafieldii R-8 cell, a desulfurization strain. γ-Al2O3 nanosorbents have the ability to adsorb DBT from oil phase, and the rate of adsorption was far higher than that of biodesulfurization. Thus, DBT can be quickly transferred to the biocatalyst surface where nanosorbents were located, which quickened DBT transfer from organic phase to biocatalyst surface and resulted in the increase of biodesulfurization rate. The desulfurization rate of the cells assembled with nanosorbents was approximately twofold higher than that of original cells. The cells assembled with nanosorbents were observed by a transmission electron microscope. PMID:16258046

  8. Improved carrier extraction of solar cell using transparent current spreading layer

    International Nuclear Information System (INIS)

    An as-deposited ultra thin metal film was fine-etched to a mesh with average optical transmittance of 70.83%. When this metal mesh was applied to the fabrication of solar cell, it was transparent and conductive to be used as a current-spreading layer. Such a current-spreading layer was good for the carrier extraction of illuminated solar cell. Then the non-uniform two-dimensional current flow on the resistive central emitter region of solar cell can be reduced efficiently by this metal mesh. The metal mesh integrated solar cell can result in improvements of 26.15% for short-circuit current and 30% for the conversion efficiency, respectively. - Highlights: • An as-deposited thin metal thin film is fine-etched to a transparent mesh. • A transparent metal mesh acts as a current-spreading layer for solar cells. • A transparent metal mesh allows photons going through and carriers conducting

  9. Improved performance of silicon nanowire/cadmium telluride quantum dots/organic hybrid solar cells

    International Nuclear Information System (INIS)

    Highlights: • We introduce an intermediate cadmium telluride quantum dots (CdTe QDs) layer between the organic with silicon nanowires of hybrid solar cells as a down-shifting layer. • The hybrid solar cell got the maximum short circuit current density of 33.5 mA/cm2, getting an increase of 15.1% comparing to solar cell without CdTe QDs. • The PCE of the hybrid solar cells with CdTe QDs layer increases 28.8%. - Abstract: We fabricated silicon nanowire/cadmium telluride quantum dots (CdTe QDs)/organic hybrid solar cells and investigated their structure and electrical properties. Transmission electron microscope revealed that CdTe QDs were uniformly distributed on the surface of the silicon nanowires, which made PEDOT:PSS easily filled the space between SiNWs. The current density–voltage (J–V) characteristics of hybrid solar cells were investigated both in dark and under illumination. The result shows that the performance of the hybrid solar cells with CdTe QDs layer has an obvious improvement. The optimal short-circuit current density (Jsc) of solar cells with CdTe QDs layer can reach 33.5 mA/cm2. Compared with the solar cells without CdTe QDs, Jsc has an increase of 15.1%. Power conversion efficiency of solar cells also increases by 28.8%. The enhanced performance of the hybrid solar cells with CdTe QDs layers are ascribed to down-shifting effect of CdTe QDs and the modification of the silicon nanowires surface with CdTe QDs. The result of our experiments suggests that hybrid solar cells with CdTe QDs modified are promising candidates for solar cell application

  10. Adult neural precursor cells form connexin-dependent networks that improve their survival.

    Science.gov (United States)

    Ravella, Ajaya; Ringstedt, Thomas; Brion, Jean-Pierre; Pandolfo, Massimo; Herlenius, Eric

    2015-10-21

    Establishment of cellular networks and calcium homeostasis are essential for embryonic stem cell proliferation and differentiation. We also hypothesized that adult neural progenitor cells form functional cellular networks relevant for their development. We isolated neuronal progenitor cells from the subventricular zone of 5-week-old mice to investigate the role of gap junctions, calcium homeostasis, and cellular networks in cell differentiation and survival. Western blotting and reverse transcription-PCR showed that the cells expressed the gap junction components connexin 26, 36, 43, and 45, and that expression of connexin 43 increased in early (8 days) differentiated cells. Transmission electron microscopy and immunocytochemistry also indicated that gap junctions were present. Scrape-loading experiments showed dye transfer between cells that could be prevented by gapjunction blockers; thus, functional intercellular gap junctions had been established. However, dye transfer was four times stronger in differentiated cultures, correlating with the increased connexin 43 expression. During time-lapse calcium imaging, both differentiated and undifferentiated cultures showed spontaneous calcium activity that was reduced by gap junction blockers. Cross-correlation analysis of the calcium recordings showed that the cells were interconnected through gap junctions and that the early-differentiated cells were organized in small-world networks. Gap junction blockers did not affect proliferation and differentiation, but resulted in twice as many apoptotic cells. mRNAi knockdown of connexin 43 also doubled the number of apoptotic cells. We conclude that adult neural progenitor cells form networks in vitro that are strengthened during early differentiation by increased expression of connexin 43. The networks are functional and improve cell survival. PMID:26351758

  11. Platinum nanoparticle interlayer promoted improvement in photovoltaic performance of silicon/PEDOT:PSS hybrid solar cells

    International Nuclear Information System (INIS)

    Inorganic–organic hybrid solar cells have attracted considerable interest in recent years for their low production cost, good mechanical flexibility and ease of processing of polymer films over a large area. Particularly, silicon/conducting polymer hybrid solar cells are extensively investigated and widely believed to be a low-cost alternative to the crystalline silicon solar cells. However, the power conversion efficiency of silicon/conducting polymer solar cells remains low in case hydrogen-terminated silicon is used. In this paper, we report that by introducing a platinum nanoparticle interlayer between the hydrogen-terminated silicon and the conducting polymer poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonate), namely PEDOT:PSS, the power conversion efficiency of the resulting Si/PEDOT:PSS hybrid solar cells can be improved by a factor of 2–3. The possible mechanism responsible for the improvement has been investigated using different techniques including impedance spectroscopy, Mott–Schottky analysis and intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). The results show that with a platinum nanoparticle interlayer, both the series resistance and charge transport/transfer resistance of the Si/PEDOT:PSS hybrid solar cells are reduced leading to an increased short circuit current density, and the built-in voltage at the space charge region is raised facilitating electron-hole separation. Moreover, the lifetime of charge carriers in the Si/PEDOT:PSS solar cells is extended, namely, the recombination is effectively suppressed which also contributes to the improvement of photovoltaic performance. - Graphical abstract: A platinum nanoparticle interlayer electrolessly deposited between the n-Si:H and PEDOT:PSS can markedly improve the photovoltaic performance of the resulting Si/PEDOT:PSS hybrid solar cells. - Highlights: • A Pt nanoparticle layer is introduced between the Si and PEDOT:PSS in hybrid cells. • The Pt interlayer

  12. Platinum nanoparticle interlayer promoted improvement in photovoltaic performance of silicon/PEDOT:PSS hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xiao-Qing; Liu, L.F., E-mail: lifeng.liu@inl.int

    2015-01-15

    Inorganic–organic hybrid solar cells have attracted considerable interest in recent years for their low production cost, good mechanical flexibility and ease of processing of polymer films over a large area. Particularly, silicon/conducting polymer hybrid solar cells are extensively investigated and widely believed to be a low-cost alternative to the crystalline silicon solar cells. However, the power conversion efficiency of silicon/conducting polymer solar cells remains low in case hydrogen-terminated silicon is used. In this paper, we report that by introducing a platinum nanoparticle interlayer between the hydrogen-terminated silicon and the conducting polymer poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonate), namely PEDOT:PSS, the power conversion efficiency of the resulting Si/PEDOT:PSS hybrid solar cells can be improved by a factor of 2–3. The possible mechanism responsible for the improvement has been investigated using different techniques including impedance spectroscopy, Mott–Schottky analysis and intensity modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS). The results show that with a platinum nanoparticle interlayer, both the series resistance and charge transport/transfer resistance of the Si/PEDOT:PSS hybrid solar cells are reduced leading to an increased short circuit current density, and the built-in voltage at the space charge region is raised facilitating electron-hole separation. Moreover, the lifetime of charge carriers in the Si/PEDOT:PSS solar cells is extended, namely, the recombination is effectively suppressed which also contributes to the improvement of photovoltaic performance. - Graphical abstract: A platinum nanoparticle interlayer electrolessly deposited between the n-Si:H and PEDOT:PSS can markedly improve the photovoltaic performance of the resulting Si/PEDOT:PSS hybrid solar cells. - Highlights: • A Pt nanoparticle layer is introduced between the Si and PEDOT:PSS in hybrid cells. • The Pt interlayer

  13. A stress-responsive late embryogenesis abundant protein 7 (CsLEA7) of tea [Camellia sinensis (L.) O. Kuntze] encodes for a chaperone that imparts tolerance to Escherichia coli against stresses.

    Science.gov (United States)

    Paul, Asosii; Singh, Sewa; Sharma, Shweta; Kumar, Sanjay

    2014-11-01

    The present study characterized CsLEA7, a group 7 late embryogenesis abundant (LEA) gene, from tea [Camellia sinensis (L.) O. Kuntze]. The gene had an open reading frame of 462 base pairs encoding 153 amino acids with calculated molecular weight of 16.63 kDa and an isoelectric point (pI) of 4.93. Analysis revealed CsLEA7 to be an intrinsically ordered protein consisting of nine β-strands and two α-helices. CsLEA7 expressed ubiquitously in all the tissues analyzed with highest level of transcripts in mature leaf as compared to in flower bud, younger leaves, stem and fruit. Expression was the least in root tissue. CsLEA7 exhibited up-regulation in response to low temperature, polyethylene glycol-8000, sodium chloride and hydrogen peroxide in tea. Analysis of the promoter of CsLEA7 revealed a core promoter element and distinct cis-acting regulatory elements regulating gene expression under abiotic stresses. CsLEA7 exhibited chaperonic activity as evinced by protection to malate dehydrogenase against heat denaturation assay. Recombinant Escherichia coli cells producing CsLEA7 exhibited improved tolerance against diverse cues: polyethylene glycol-8000, sodium chloride, hydrogen peroxide and low temperature signifying its role in imparting stress tolerance. PMID:25052187

  14. A Src inhibitor regulates the cell cycle of human pluripotent stem cells and improves directed differentiation.

    Science.gov (United States)

    Chetty, Sundari; Engquist, Elise N; Mehanna, Elie; Lui, Kathy O; Tsankov, Alexander M; Melton, Douglas A

    2015-09-28

    Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation. PMID:26416968

  15. Surface modification of hydrophobic polymers for improvement of endothelial cell-surface interactions

    NARCIS (Netherlands)

    Dekker, A.; Reitsma, K.; Beugeling, T.; Bantjes, A.; Feijen, J.; Kirkpatrick, C.J.; Aken, van W.G.

    1992-01-01

    The aim of this study is to improve the interaction of endothelial cells with polymers used in vascular prostheses. Polytetrafluoroethylene (PTFE; Teflon) films were treated by means of nitrogen and oxygen plasmas. Depending on the plasma exposure time, modified PTFE surfaces showed water-contact an

  16. Solid oxide fuel cell systems with hot zones having improved reactant distribution

    Energy Technology Data Exchange (ETDEWEB)

    Poshusta, Joseph C.; Booten, Charles W.; Martin, Jerry L.

    2016-05-17

    A Solid Oxide Fuel Cell (SOFC) system having a hot zone with a center cathode air feed tube for improved reactant distribution, a CPOX reactor attached at the anode feed end of the hot zone with a tail gas combustor at the opposing end for more uniform heat distribution, and a counter-flow heat exchanger for efficient heat retention.

  17. Improved quality of optical coherence tomography imaging of basal cell carcinomas using speckle reduction

    DEFF Research Database (Denmark)

    Mogensen, Mette; Jørgensen, Thomas Martini; Thrane, Lars;

    2010-01-01

    suggests a method for improving OCT image quality for skin cancer imaging. EXPERIMENTAL DESIGN: OCT is an optical imaging method analogous to ultrasound. Two basal cell carcinomas (BCC) were imaged using an OCT speckle reduction technique (SR-OCT) based on repeated scanning by altering the distance between...

  18. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model

    Science.gov (United States)

    Ma, Li-bing; He, Xiao-ning; Si, Wan-tong; Zheng, Yue-Mao

    2016-01-01

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos. PMID:26243608

  19. Improved development of somatic cell cloned bovine embryos by a mammary gland epithelia cells in vitro model.

    Science.gov (United States)

    He, Xiao-Ying; Ma, Li-Bing; He, Xiao-Ning; Si, Wan-Tong; Zheng, Yue-Mao

    2016-06-30

    Previous studies have established a bovine mammary gland epithelia cells in vitro model by the adenovirus-mediated telomerase (hTERT-bMGEs). The present study was conducted to confirm whether hTERT-bMGEs were effective target cells to improve the efficiency of transgenic expression and somatic cell nuclear transfer (SCNT). To accomplish this, a mammary-specific vector encoding human lysozyme and green fluorescent protein was used to verify the transgenic efficiency of hTERT-bMGEs, and untreated bovine mammary gland epithelial cells (bMGEs) were used as a control group. The results showed that the hTERT-bMGEs group had much higher transgenic efficiency and protein expression than the bMGEs group. Furthermore, the nontransgenic and transgenic hTERT-bMGEs were used as donor cells to evaluate the efficiency of SCNT. There were no significant differences in rates of cleavage or blastocysts or hatched blastocysts of cloned embryos from nontransgenic hTERT-bMGEs at passage 18 and 28 groups (82.8% vs. 81.9%, 28.6% vs. 24.8%, 58.6% vs. 55.3%, respectively) and the transgenic group (80.8%, 26.5% and 53.4%); however, they were significantly higher than the bMGEs group (71.2%, 12.8% and 14.8%), (p < 0.05). We confirmed that hTERT-bMGEs could serve as effective target cells for improving development of somatic cell cloned cattle embryos. PMID:26243608

  20. An Improved Algorithm of Congruent Matching Cells (CMC) Method for Firearm Evidence Identifications.

    Science.gov (United States)

    Tong, Mingsi; Song, John; Chu, Wei

    2015-01-01

    The Congruent Matching Cells (CMC) method was invented at the National Institute of Standards and Technology (NIST) for firearm evidence identifications. The CMC method divides the measured image of a surface area, such as a breech face impression from a fired cartridge case, into small correlation cells and uses four identification parameters to identify correlated cell pairs originating from the same firearm. The CMC method was validated by identification tests using both 3D topography images and optical images captured from breech face impressions of 40 cartridge cases fired from a pistol with 10 consecutively manufactured slides. In this paper, we discuss the processing of the cell correlations and propose an improved algorithm of the CMC method which takes advantage of the cell correlations at a common initial phase angle and combines the forward and backward correlations to improve the identification capability. The improved algorithm is tested by 780 pairwise correlations using the same optical images and 3D topography images as the initial validation. PMID:26958441

  1. Metallization improvement on fabrication of interdigitated backside and double sided buried contact solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiun-Hua; Cotter, Jeffrey E. [Center of Excellence for Advanced Silicon Photovoltaics and Photonics, University of New South Wales, Sydney NSW 2052 (Australia)

    2005-04-01

    Metallization based on electroless metal plating of nickel and copper is a simple, cost-effective process used in the fabrication of Buried Contact silicon solar cells. Whereas the electroless Ni-Cu metallization scheme works well for metal deposition on early Buried Contact solar cells, in which deposition was required only on phosphorus diffused contact regions, more care is required for advanced Buried Contact solar cell designs that require simultaneous deposition on to both phosphorus and boron diffused contact regions. In this paper, we examine two key issues related to the metallization in these solar cells. Firstly we demonstrate an improved buffered hydrofluoric acid etch process for simultaneous removal of borosilicate and borophosphosilicate glasses from the contact regions prior to electroless deposition of nickel with good etch selectivity against silicon dioxide masking films. Secondly, we demonstrate an improved process for nucleation of the nickel layer on both phosphorus and boron diffused contact areas based on immersion palladium chloride activation of the plating surfaces. N-type double-sided buried contact solar cells metallized by processing introduced in this study show improvement on absolute efficiency of more than 3%.

  2. Improvement of pentathiophene/fullerene planar heterojunction photovoltaic cells by improving the organic films morphology through the anode buffer bilayer

    Science.gov (United States)

    El Jouad, Zouhair; Cattin, Linda; Martinez, Francisco; Neculqueo, Gloria; Louarn, Guy; Addou, Mohammed; Predeep, Padmanabhan; Manuvel, Jayan; Bernède, Jean-Christian

    2016-05-01

    Organic photovoltaic cells (OPVCs) are based on a heterojunction electron donor (ED)/electron acceptor (EA). In the present work, the electron donor which is also the absorber of light is pentathiophene. The typical cells were ITO/HTL/pentathiophene/fullerene/Alq3/Al with HTL (hole transport layer) = MoO3, CuI, MoO3/CuI. After optimisation of the pentathiophene thickness, 70 nm, the highest efficiency, 0.81%, is obtained with the bilayer MoO3/CuI as HTL. In order to understand these results the pentathiophene films deposited onto the different HTLs were characterized by scanning electron microscopy, atomic force microscopy, X-rays diffraction, optical absorption and electrical characterization. It is shown that CuI improves the conductivity of the pentathiophene layer through the modification of the film structure, while MoO3 decreases the leakage current. Using the bilayer MoO3/CuI allows cumulating the advantages of each layer. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  3. A structural comparison of Listeria monocytogenes protein chaperones PrsA1 and PrsA2 reveals molecular features required for virulence.

    Science.gov (United States)

    Cahoon, Laty A; Freitag, Nancy E; Prehna, Gerd

    2016-07-01

    Listeria monocytogenes is a Gram-positive environmental bacterium that lives within soil but transitions into a pathogen upon contact with a mammalian host. The transition of L. monocytogenes from soil dweller to cytosolic pathogen is dependent upon secreted virulence factors that mediate cell invasion and intracellular growth. PrsA1 and PrsA2 are secreted bacterial lipoprotein chaperones that contribute to the folding of proteins translocated across the bacterial membrane; PrsA2 is required for L. monocytogenes virulence, whereas the function of PrsA1 remains to be determined. We have solved an X-ray crystal structure of PrsA1 and have used this model to guide comparison structure-based mutagenesis studies with PrsA2. Targeted mutagenesis of PrsA2 demonstrates that oligomerization of PrsA2 as well as molecular features of the foldase domain are required for protein secretion and virulence, whereas a functional role was uncovered for PrsA1 in bacterial resistance to alcohol. Interestingly, PrsA2 membrane localization is not required for all PrsA2-dependent activities, suggesting that the lipoprotein retains function when released from the bacterial cell. PrsA chaperones are thus multifaceted proteins with distinct domains adapted to accommodate the functional needs of a diverse array of secreted substrates. PMID:27007641

  4. Crystallization and preliminary X-ray analysis of molecular chaperone-like diol dehydratase-reactivating factor in ADP-bound and nucleotide-free forms

    International Nuclear Information System (INIS)

    The molecular chaperone-like reactivating factor for adenosylcobalamin (coenzyme B12) dependent diol dehydratase was crystallized in ADP-bound and nucleotide-free forms. Preliminary X-ray analysis indicated that crystals are orthorhombic and diffract to 2.0 Å. Adenosylcobalamin (coenzyme B12) dependent diol dehydratase (EC 4.2.1.28) catalyzes the conversion of 1,2-diols and glycerol to the corresponding aldehydes. It undergoes mechanism-based inactivation by glycerol. The diol dehydratase-reactivating factor (DDR) reactivates the inactivated holoenzymes in the presence of adenosylcobalamin, ATP and Mg2+ by mediating the release of a damaged cofactor. This molecular chaperone-like factor was overexpressed in Escherichia coli, purified and crystallized in the ADP-bound and nucleotide-free forms by the sandwich-drop vapour-diffusion method. The crystals of the ADP-bound form belong to the orthorhombic system, with space group P212121 and unit-cell parameters a = 83.26, b = 84.60, c = 280.09 Å, and diffract to 2.0 Å. In the absence of nucleotide, DDR crystals were orthorhombic, with space group P212121 and unit-cell parameters a = 81.92, b = 85.37, c = 296.99 Å and diffract to 3.0 Å. Crystals of both forms were suitable for structural analysis

  5. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huijuan; Wang, Ke; Liu, Wenxin; Hao, Quan, E-mail: quan_haotj@126.com

    2014-02-07

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer.

  6. PTEN overexpression improves cisplatin-resistance of human ovarian cancer cells through upregulating KRT10 expression

    International Nuclear Information System (INIS)

    Highlights: • Overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin. • KRT10 is a downstream molecule of PTEN involved in the resistance-reversing effect. • Overexpression of KRT10 enhanced the chemosensitivity of C13K cells to cisplatin. - Abstract: Multi-drug resistance (MDR) is a common cause of the failure of chemotherapy in ovarian cancer. PTEN, a tumor suppressor gene, has been demonstrated to be able to reverse cisplatin-resistance in ovarian cancer cell line C13K. However, the downstream molecules of PTEN involved in the resistance-reversing effect have not been completely clarified. Therefore, we screened the downstream molecules of PTEN and studied their interactions in C13K ovarian cancer cells using a 3D culture model. Firstly, we constructed an ovarian cancer cell line stably expressing PTEN, C13K/PTEN. MTT assay showed that overexpression of PTEN enhanced the sensitivity of C13K cells to cisplatin, but not to paclitaxel. Then we examined the differently expressed proteins that interacted with PTEN in C13K/PTEN cells with or without cisplatin treatment by co-immunoprecipitation. KRT10 was identified as a differently expressed protein in cisplatin-treated C13K/PTEN cells. Further study confirmed that cisplatin could induce upregulation of KRT10 mRNA and protein in C13K/PTEN cells and there was a directly interaction between KRT10 and PTEN. Forced expression of KRT10 in C13K cells also enhanced cisplatin-induced proliferation inhibition and apoptosis of C13K cells. In addition, KRT10 siRNA blocked cisplatin-induced proliferation inhibition of C13K/PTEN cells. In conclusion, our data demonstrate that KRT10 is a downstream molecule of PTEN which improves cisplatin-resistance of ovarian cancer and forced KRT10 overexpression may also act as a therapeutic method for overcoming MDR in ovarian cancer

  7. Closed-Cell Aluminum Foam of Improved Sound Absorption Ability: Manufacture and Properties

    Directory of Open Access Journals (Sweden)

    Alexandra Byakova

    2014-08-01

    Full Text Available The paper presents a new method for the production of the closed-cell Al foams of improved sound absorbing ability. Final heat treatment procedure including heating below the solidus temperature followed by water quenching is proposed as an alternative method to machining, which is used commonly for improvement of the sound absorption coefficient. Several kinds of foams based on AlZnMg-alloys comprising brittle eutectic domains of interdendritic redundant phase have been produced by the Alporas-like melting process to realize the method above. Opening of the closed cell structure required for ensuring high sound absorption ability has been achieved by cracking the walls between neighboring cells, making them gas permeable. They ultimately looked like Helmholtz micro-perforated resonators. Processing parameters and other variables that are favorable both for foaming regime and for final heat treatment are discussed and specified.

  8. An improved ScoreCard to assess the differentiation potential of human pluripotent stem cells

    Science.gov (United States)

    Tsankov, Alexander M.; Akopian, Veronika; Pop, Ramona; Chetty, Sundari; Gifford, Casey A.; Daheron, Laurence; Melton, Douglas A.; Tsankova, Nadejda M.; Meissner, Alexander

    2015-01-01

    Research on human pluripotent stem cells has been hampered by the lack of a standardized, quantitative, scalable assay of pluripotency. We have previously described an assay called ScoreCard that used gene expression signatures to quantify differentiation efficiency. Here we report an improved version of the assay based on qPCR that enables faster, more quantitative assessment of functional pluripotency. We provide an in-depth characterization of the revised signature panel through embryoid body and directed differentiation experiments as well as a detailed comparison to the teratoma assay. We also show that the improved ScoreCard enables applications such as screening of small molecules, genetic perturbations and assessment of culture conditions. Beyond stem cell applications, this approach can in principle be extended to other cell types and lineages. PMID:26501952

  9. Differentiated cells derived from fetal neural stem cells improve motor deficits in a rat model of Parkinson’s disease

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Hao Song; Aifang Shen; Chao Chen; Yanming Liu; Yabing Dong; Fabin Han 

    2015-01-01

    Objective:Parkinson’s disease (PD), which is one of the most common neuro‐degenerative disorders, is characterized by the loss of dopamine (DA) neurons in the substantia nigra in the midbrain. Experimental and clinical studies have shown that fetal neural stem cells (NSCs) have therapeutic effects in neurological disorders. The aim of this study was to examine whether cells that were differentiated from NSCs had therapeutic effects in a rat model of PD. Methods:NSCs were isolated from 14‐week‐old embryos and induced to differentiate into neurons, DA neurons, and glial cells, and these cells were characterized by their expression of the following markers:βⅢ‐tubulin and microtubule‐associated protein 2 (neurons), tyrosine hydroxylase (DA neurons), and glial fibrillary acidic protein (glial cells). After a 6‐hydroxydopamine (6‐OHDA)‐lesioned rat model of PD was generated, the differentiated cells were transplanted into the striata of the 6‐OHDA‐lesioned PD rats. Results:The motor behaviors of the PD rats were assessed by the number of apomorphine‐induced rotation turns. The results showed that the NSCs differentiated in vitro into neurons and DA neurons with high efficiencies. After transplantation into the striata of the PD rats, the differentiated cells significantly improved the motor deficits of the transplanted PD rats compared to those of the control nontransplanted PD rats by decreasing the apomorphine‐induced turn cycles as early as 4 weeks after transplantation. Immunofluorescence analyses showed that the differentiated DA neurons survived more than 16 weeks. Conclusions:Our results showed that cells that were differentiated from NSCs had therapeutic effects in a rat PD model, which suggests that differentiated cells may be an effective treatment for patients with PD.

  10. Improving the Efficiency of Organic Solar Cells upon Addition of Polyvinylpyridine

    Directory of Open Access Journals (Sweden)

    Rita Rodrigues

    2014-12-01

    Full Text Available We report on the efficiency improvement of organic solar cells (OPVs based on the low energy gap polyfluorene derivative, APFO-3, and the soluble C60 fullerene PCBM, upon addition of a residual amount of poly (4-vinylpyridine (PVP. We find that the addition of 1% by weight of PVP with respect to the APFO-3 content leads to an increase of efficiency from 2.4% to 2.9%. Modifications in the phase separation details of the active layer were investigated as a possible origin of the efficiency increase. At high concentrations of PVP, the blend morphology is radically altered as observed by Atomic Force Microscopy. Although the use of low molecular weight additives is a routine method to improve OPVs efficiency, this report shows that inert polymers, in terms of optical and charge transport properties, may also improve the performance of polymer-based solar cells.

  11. Enhancement of lipase r27RCL production in Pichia pastoris by regulating gene dosage and co-expression with chaperone protein disulfide isomerase.

    Science.gov (United States)

    Sha, Chong; Yu, Xiao-Wei; Lin, Nai-Xin; Zhang, Meng; Xu, Yan

    2013-12-10

    Pichia pastoris has been successfully used in the production of many secreted and intracellular recombinant proteins, but there is still a large room of improvement for this expression system. Two factors drastically influence the lipase r27RCL production from Rhizopus chinensis CCTCC M201021, which are gene dosage and protein folding in the endoplasmic reticulum (ER). Regarding the effect of gene dosage, the enzyme activity for recombinant strain with three copies lipase gene was 1.95-fold higher than that for recombinant strain with only one copy lipase gene. In addition, the lipase production was further improved by co-expression with chaperone PDI involved in the disulfide bond formation in the ER. Overall, the maximum enzyme activity reached 355U/mL by the recombinant strain with one copy chaperone gene PDI plus five copies lipase gene proRCL in shaking flasks, which was 2.74-fold higher than that for the control strain with only one copy lipase gene. Overall, co-expression with PDI vastly increased the capacity for processing proteins of ER in P. pastoris. PMID:24315648

  12. Improved explant method to isolate umbilical cord-derived mesenchymal stem cells and their immunosuppressive properties.

    Science.gov (United States)

    Mori, Yuka; Ohshimo, Jun; Shimazu, Takahisa; He, Haiping; Takahashi, Atsuko; Yamamoto, Yuki; Tsunoda, Hajime; Tojo, Arinobu; Nagamura-Inoue, Tokiko

    2015-04-01

    The umbilical cord (UC) has become one of the major sources of mesenchymal stem cells (MSCs). The common explant method of isolating UC-derived MSCs (UC-MSCs) involves mincing the UCs into small fragments, which are then attached to a culture dish bottom from which the MSCs migrate. However, the fragments frequently float up from the bottom of the dish, thereby reducing the cell recovery rate. To overcome this problem, we demonstrate an improved explant method for UC-MSC isolation, which involves the use of a stainless steel mesh (Cellamigo(®); Tsubakimoto Chain Co.), to protect the tissue from floating after the minced fragments are aligned at regular intervals in culture dishes. The culture medium was refreshed every 3 days and the adherent cells and tissue fragments were harvested using trypsin. The number of UC-MSCs isolated from 1 g of UC using the explant method with Cellamigo was 2.9 ± 1.4 × 10(6)/g, which was significantly higher than that obtained without Cellamigo (0.66 ± 0.53 × 10(6)/g) (n = 6, p < 0.01) when cells reached 80-90% confluence. In addition, the processing and incubation time required to reach 80-90% confluence was reduced in the improved explant method compared with the conventional method. The UC-MSCs isolated using the improved method were positive for CD105, CD73, CD90, and HLA class I expression and negative for CD45 and HLA class II expression. The isolated UC-MSCs efficiently inhibited the responder T cells induced by allogeneic dendritic cells in a mixed lymphocyte reaction. Conclusively, we demonstrated that the use of Cellamigo improves the explant method for isolating UC-MSCs. PMID:25220032

  13. Doxorubicin Cardiotoxicity and Cardiac Function Improvement After Stem Cell Therapy Diagnosed by Strain Echocardiography.

    Science.gov (United States)

    Oliveira, Maira S; Melo, Marcos B; Carvalho, Juliana L; Melo, Isabela M; Lavor, Mario Sl; Gomes, Dawidson A; de Goes, Alfredo M; Melo, Marilia M

    2013-01-01

    Doxorubicin (Dox) is one of the most effective chemotherapeutic agents; however, it causes dose-dependent cardiotoxicity. Evaluation of left ventricular function relies on measurements based on M-mode echocardiography. A new technique based on quantification of myocardial motion and deformation, strain echocardiography, has been showed promising profile for early detection of cardiac dysfunction. Different therapy strategies, such as flavonoid plant extracts and stem cells, have been investigated to improve heart function in toxic cardiomyopathy. This work aimed to assess early cardiac function improvement after treatments with either flavonoid extract from Camellia sinensis or mesenchymal stem cells in Dox cardiotoxicity using strain echocardiography. Twenty Wistar rats were randomly assigned to four groups. They received water (control, Dox, Dox + stem cells) or 100 mg/kg C. sinensis extract (Dox + C. sinensis) via gavage, daily, for four weeks. Animals also received saline (control) or 5 mg/kg doxorubicin (Dox, Dox + C. sinensis, Dox + stem cells) via intraperitoneal injection, weekly, for four weeks. Stem cells were injected (3 × 10(6) cells) through tail vein prior the beginning of the experiment (Dox + stem cells). Animals were evaluated by hematological, electrocardiography, echocardiography, and histopathological examinations. Dox cardiotoxicity was only diagnosed with strain echocardiography, detecting a decrease in ventricular function. C. sinensis extract did not prevent ventricular dysfunction induced by Dox. However, strain echocardiography examination revealed that Dox cardiotoxicity was significantly suppressed in rats treated with stem cells. In conclusion, strain echocardiography was able to detect precocity signs of heart failure and stem cell therapy showed cardioprotection effect against Dox cardiotoxicity. PMID:23459697

  14. Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay.

    Science.gov (United States)

    Pearce, John A

    2015-12-01

    The Arrhenius formulation for single-step irreversible unimolecular reactions has been used for many decades to describe the thermal damage and cell death processes. Arrhenius predictions are acceptably accurate for structural proteins, for some cell death assays, and for cell death at higher temperatures in most cell lines, above about 55 °C. However, in many cases--and particularly at hyperthermic temperatures, between about 43 and 55 °C--the particular intrinsic cell death or damage process under study exhibits a significant "shoulder" region that constant-rate Arrhenius models are unable to represent with acceptable accuracy. The primary limitation is that Arrhenius calculations always overestimate the cell death fraction, which leads to severely overoptimistic predictions of heating effectiveness in tumor treatment. Several more sophisticated mathematical model approaches have been suggested and show much-improved performance. But simpler models that have adequate accuracy would provide useful and practical alternatives to intricate biochemical analyses. Typical transient intrinsic cell death processes at hyperthermic temperatures consist of a slowly developing shoulder region followed by an essentially constant-rate region. The shoulder regions have been demonstrated to arise chiefly from complex functional protein signaling cascades that generate delays in the onset of the constant-rate region, but may involve heat shock protein activity as well. This paper shows that acceptably accurate and much-improved predictions in the simpler Arrhenius models can be obtained by adding a temperature-dependent time delay. Kinetic coefficients and the appropriate time delay are obtained from the constant-rate regions of the measured survival curves. The resulting predictions are seen to provide acceptably accurate results while not overestimating cell death. The method can be relatively easily incorporated into numerical models. Additionally, evidence is presented

  15. Combined strategy of endothelial cells coating, Sertoli cells coculture and infusion improves vascularization and rejection protection of islet graft.

    Directory of Open Access Journals (Sweden)

    Yang Li

    Full Text Available Improving islet graft revascularization and inhibiting rejection become crucial tasks for prolonging islet graft survival. Endothelial cells (ECs are the basis of islet vascularization and Sertoli cells (SCs have the talent to provide nutritional support and exert immunosuppressive effects. We construct a combined strategy of ECs coating in the presence of nutritious and immune factors supplied by SCs in a co-culture system to investigate the effect of vascularization and rejection inhibition for islet graft. In vivo, the combined strategy improved the survival and vascularization as well as inhibited lymphocytes and inflammatory cytokines. In vitro, we found the combinatorial strategy improved the function of islets and the effect of ECs-coating on islets. Combined strategy treated islets revealed higher levels of anti-apoptotic signal molecules (Bcl-2 and HSP-32, survival and function related molecules (PDX-1, Ki-67, ERK1/2 and Akt and demonstrated increased vascular endothelial growth factor receptor 2 (KDR and angiogenesis signal molecules (FAk and PLC-γ. SCs effectively inhibited the activation of lymphocyte stimulated by islets and ECs. Predominantly immunosuppressive cytokines could be detected in culture supernatants of the SCs coculture group. These results suggest that ECs-coating and Sertoli cells co-culture or infusion synergistically enhance islet survival and function after transplantation.

  16. ß-amylase1 mutant Arabidopsis plants show improved drought tolerance due to reduced starch breakdown in guard cells

    OpenAIRE

    Prasch, Christian Maximilian; Ott, Kirsten Verena; Bauer, Hubert; Ache, Peter; Hedrich, Rainer; Sonnewald, Uwe

    2015-01-01

    Highlight bam1 mutant plants impaired in stomatal starch degradation showed an improved drought tolerance associated with a down-regulation of guard cell-specific gene expression involved in water uptake and cell expansion.

  17. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation

    Directory of Open Access Journals (Sweden)

    Brian G. Ballios

    2015-06-01

    Full Text Available The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs. The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability.

  18. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility

    International Nuclear Information System (INIS)

    Porous scaffolds have been widely used in tissue engineering because they can guide cells and tissues to grow, synthesize extracellular matrix and other biological molecules, and facilitate the formation of functional tissues and organs. Although various natural and synthetic biodegradable polymers have been used to fabricate the scaffolds, synthetic polymers have been more widely used for scaffolds since they have good mechanical strength, reproducible/controllable mechanical-chemical properties, and controllable biodegradation rates. However, the ‘hydrophobic character’ of common synthetic polymers is considered a limitation for tissue engineering applications because it can lead to a low initial cell seeding density, heterogeneous cell distribution in the scaffold, and slow cell growth due to insufficient absorption/diffusion of cell culture medium into scaffold and lack of specific interaction sites with cells. The hydrophilization of porous synthetic polymer scaffolds has been considered as one of the simple but effective approaches to achieve desirable in vitro cell culture and in vivo tissue regeneration within the scaffolds. In this review paper, representative synthetic biodegradable polymers and techniques to fabricate porous scaffolds are briefly summarized and their hydrophilization techniques to improve cell/tissue compatibility are discussed. (paper)

  19. An improved model for nucleation-limited ice formation in living cells during freezing.

    Directory of Open Access Journals (Sweden)

    Jingru Yi

    Full Text Available Ice formation in living cells is a lethal event during freezing and its characterization is important to the development of optimal protocols for not only cryopreservation but also cryotherapy applications. Although the model for probability of ice formation (PIF in cells developed by Toner et al. has been widely used to predict nucleation-limited intracellular ice formation (IIF, our data of freezing Hela cells suggest that this model could give misleading prediction of PIF when the maximum PIF in cells during freezing is less than 1 (PIF ranges from 0 to 1. We introduce a new model to overcome this problem by incorporating a critical cell volume to modify the Toner's original model. We further reveal that this critical cell volume is dependent on the mechanisms of ice nucleation in cells during freezing, i.e., surface-catalyzed nucleation (SCN and volume-catalyzed nucleation (VCN. Taken together, the improved PIF model may be valuable for better understanding of the mechanisms of ice nucleation in cells during freezing and more accurate prediction of PIF for cryopreservation and cryotherapy applications.

  20. Oxygen cycling to improve survival of stem cells for myocardial repair: A review.

    Science.gov (United States)

    Dall, Christopher; Khan, Mahmood; Chen, Chun-An; Angelos, Mark G

    2016-05-15

    Heart disease represents the leading cause of death among Americans. There is currently no clinical treatment to regenerate viable myocardium following myocardial infarction, and patients may suffer progressive deterioration and decreased myocardial function from the effects of remodeling of the necrotic myocardium. New therapeutic strategies hold promise for patients who suffer from ischemic heart disease by directly addressing the restoration of functional myocardium following death of cardiomyocytes. Therapeutic stem cell transplantation has shown modest benefit in clinical human trials with decreased fibrosis and increased functional myocardium. Moreover, autologous transplantation holds the potential to implement these therapies while avoiding the immunomodulation concerns of heart transplantation. Despite these benefits, stem cell therapy has been characterized by poor survival and low engraftment of injected stem cells. The hypoxic tissue environment of the ischemic/infracting myocardium impedes stem cell survival and engraftment in myocardial tissue. Hypoxic preconditioning has been suggested as a viable strategy to increase hypoxic tolerance of stem cells. A number of in vivo and in vitro studies have demonstrated improved stem cell viability by altering stem cell secretion of protein signals and up-regulation of numerous paracrine signaling pathways that affect inflammatory, survival, and angiogenic signaling pathways. This review will discuss both the mechanisms of hypoxic preconditioning as well as the effects of hypoxic preconditioning in different cell and animal models, examining the pitfalls in current research and the next steps into potentially implementing this methodology in clinical research trials. PMID:27091653

  1. Identification of Functionally Conserved Regions in the Structure of the Chaperone/CenH3/H4Complex

    OpenAIRE

    Hong, Jingjun; Feng, Hanqiao; Zhou, Zheng; Ghirlando, Rodolfo; Bai, Yawen

    2012-01-01

    In eukaryotes, a variant of conventional histone H3 termed CenH3 epigenetically marks the centromere. The conserved CenH3 chaperone specifically recognizes CenH3 and is required for CenH3 deposition at the centromere. Recently, the structures of the chaperone/CenH3/H4 complexes have been determined for H. sapiens (Hs) and the budding yeasts S. cerevisiae (Sc) and K. lactis (Kl). Surprisingly, the three structures are very different, leading to different proposed structural bases for chaperone...

  2. The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers.

    Directory of Open Access Journals (Sweden)

    Nil Emre

    Full Text Available BACKGROUND: Due to the inherent sensitivity of human embryonic stem cells (hESCs to manipulations, the recovery and survival of hESCs after fluorescence-activated cell sorting (FACS can be low. Additionally, a well characterized and robust methodology for performing FACS on hESCs using multiple-cell surface markers has not been described. The p160-Rho-associated coiled kinase (ROCK inhibitor, Y-27632, previously has been identified as enhancing survival of hESCs upon single-cell dissociation, as well as enhancing recovery from cryopreservation. Here we examined the application of Y-27632 to hESCs after FACS to improve survival in both feeder-dependent and feeder-independent growth conditions. METHODOLOGY/PRINCIPAL FINDINGS: HESCs were sorted using markers for SSEA-3, TRA-1-81, and SSEA-1. Cells were plated after sorting for 24 hours in either the presence or the absence of Y-27632. In both feeder-dependent and feeder-independent conditions, cell survival was greater when Y-27632 was applied to the hESCs after sort. Specifically, treatment of cells with Y-27632 improved post-sort recovery up to four fold. To determine the long-term effects of sorting with and without the application of Y-27632, hESCs were further analyzed. Specifically, hESCs sorted with and without the addition of Y-27632 retained normal morphology, expressed hESC-specific markers as measured by immunocytochemistry and flow cytometry, and maintained a stable karyotype. In addition, the hESCs could differentiate into three germ layers in vitro and in vivo in both feeder-dependent and feeder-independent growth conditions. CONCLUSIONS/SIGNIFICANCE: The application of Y-27632 to hESCs after cell sorting improves cell recovery with no observed effect on pluripotency, and enables the consistent recovery of hESCs by FACS using multiple surface markers. This improved methodology for cell sorting of hESCs will aid many applications such as removal of hESCs from secondary cell types

  3. An Epigenetic Modifier Results in Improved In Vitro Blastocyst production after Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Zhang, Yunhai; Li, Juan; Villemoes, Klaus; Pedersen, Anette Møjbæk; Purup, Stig; Vajta, Gabor

    2007-01-01

    significantly improve blastocyst yield compared to the control (46.4 ± 4.6% vs 17.7 ± 4.9% for treated and untreated embryos, respectively; p < 0.05), whereas similar cleavage rate and total cell number per blastocyst were observed. In order to assess if the improvement is cell line specific, three cell lines...... were tested, and for all cell lines an enhancement in blastocyst development compared to their corresponding control was observed. Our data demonstrate that TSA treatment after somatic cell nuclear transfer in the pig can significantly improve the in vitro blastocyst production...

  4. Analysis of Entropy Generation for the Performance Improvement of a Tubular Solid Oxide Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Vittorio Verda

    2009-03-01

    Full Text Available The aim of the paper is to investigate possible improvements in the design and operation of a tubular solid oxide fuel cell. To achieve this purpose, a CFD model of the cell is introduced. The model includes thermo-fluid dynamics, chemical reactions and electrochemistry. The fluid composition and mass flow rates at the inlet sections are obtained through a finite difference model of the whole stack. This model also provides boundary conditions for the radiation heat transfer. All of these conditions account for the position of each cell within the stack. The analysis of the cell performances is conducted on the basis of the entropy generation. The use of this technique makes it possible to identify the phenomena provoking the main irreversibilities, understand their causes and propose changes in the system design and operation.

  5. Derivation of Primordial germ cells from Human Embryonic and Induced Pluripotent Stem Cells is significantly improved by co-culture with human fetal gonadal cells

    Science.gov (United States)

    Park, Tae Sub; Galic, Zoran; Conway, Anne E.; Lindgren, Anne; Van Handel, Benjamin J.; Magnusson, Mattias; Richter, Laura; Teitell, Michael A.; Mikkola, Hanna K.A; Lowry, William E.; Plath, Kathrin; Clark, Amander T

    2012-01-01

    The derivation of germ cells from human embryonic stem cells (hESCs) or human induced pluripotent stem (hIPS) cells represents a desirable experimental model and potential strategy for treating infertility. In the current study we developed a triple biomarker assay for identifying and isolating human primordial germ cells (PGCs) by first evaluating human PGC formation during the first trimester in vivo. Next, we applied this technology to characterizing in vitro derived PGCs (iPGCs) from pluripotent cells. Our results show that co-differentiation of hESCs on human fetal gonadal stromal cells significantly improves the efficiency of generating iPGCs. Furthermore, the efficiency was comparable between various pluripotent cell lines regardless of origin from the inner cell mass of human blastocysts (hESCs), or reprogramming of human skin fibroblasts (hIPS). In order to better characterize the iPGCs we performed Real time PCR, microarray and bisulfite sequencing. Our results show that iPGCs at day 7 of differentiation are transcriptionally distinct from the somatic cells, expressing genes associated with pluripotency and germ cell development while repressing genes associated with somatic differentiation (specifically multiple HOX genes). Using bisulfite sequencing, we show that iPGCs initiate imprint erasure from differentially methylated imprinted regions by day 7 of differentiation. However, iPGCs derived from hIPS cells do not initiate imprint erasure as efficiently. In conclusion, our results indicate that triple positive iPGCs derived from pluripotent cells differentiated on hFGS cells correspond to committed first trimester germ cells (before 9 weeks) that have initiated the process of imprint erasure. PMID:19350678

  6. Cell adhesion-mediated radioresistance (CAM-RR). Extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, N.; Meineke, V. [Inst. of Radiobiology, Medical Academy of the German Armed Forces, Munich (Germany)

    2003-05-01

    Background: Cell-extracellular matrix (ECM) contact is thought to have great impact on cellular mechanisms resulting in increased cell survival upon exposure to ionizing radiation. Several human tumor cell lines and normal human fibroblastic cell strains of different origin, all of them expressing the wide-spread and important integrin subunit {beta}1, were irradiated, and clonogenic cell survival, {beta}1-integrin cell surface expression, and adhesive functionality were investigated. Material and Methods: Human tumor cell lines A172 (glioblastoma), PATU8902 (pancreas carcinoma), SKMES1 (lung carcinoma), A549 (lung carcinoma), and IPC298 (melanoma) as well as normal human skin (HSF1) and lung fibroblasts (CCD32) and human keratinocytes (HaCaT) were irradiated with 0-8 Gy. Besides colony formation assays, {beta}1-integrin cell surface expression by flow cytometry and adhesive functionality by adhesion assays were analyzed. Results: All cell lines showed improved clonogenic survival after irradiation in the presence of fibronectin as compared to plastic. Irradiated cells exhibited a significant, dose-dependent increase in {beta}1-integrin cell surface expression following irradiation. As a parameter of the adhesive functionality of the {beta}1-integrin, a radiation-dependent elevation of cell adhesion to fibronectin in comparison with adhesion to plastic was demonstrated. Conclusion: The in vitro cellular radiosensitivity is highly influenced by fibronectin according to the phenomenon of cell adhesion-mediated radioresistance. Additionally, our emerging data question the results of former and current in vitro cytotoxicity studies performed in the absence of an ECM. These findings might also be important for the understanding of malignant transformation, anchorage-independent cell growth, optimization of radiotherapeutic regimes and the prevention of normal tissue side effects on the basis of experimental radiobiological data. (orig.)

  7. Laser Induced Forward Transfer for front contact improvement in silicon heterojunction solar cells

    International Nuclear Information System (INIS)

    Highlights: • LIFT technique is investigated to improve heterojunction HJ solar cells. • Doped silicon films are adequate precursors for LIFT application in HJ cells. • LIFT leads to a reduction of the series resistance of a-Si HJ diodes. • LIFT allows the improvement of the front contact resistance in a-Si HJ solar cells. - Abstract: In this work the Laser Induced Forward Transfer (LIFT) technique is investigated to create n-doped regions on p-type c-Si substrates. The precursor source of LIFT consisted in a phosphorous-doped hydrogenated amorphous silicon layer grown by Plasma Enhanced Chemical Vapor Deposition (PECVD) onto a transparent substrate. Transfer of the doping atoms occurs when a sequence of laser pulses impinging onto the doped layer propels the material toward the substrate. The laser irradiation not only transfers the doping material but also produces a local heating that promotes its diffusion into the substrate. The laser employed was a 1064 nm, lamp-pumped system, working at pulse durations of 100 and 400 ns. In order to obtain a good electrical performance a comprehensive optimization of the applied laser fluency and number of pulses was carried out. Subsequently, arrays of n + p local junctions were created by LIFT and the resulting J–V curves demonstrated the formation of good quality n+ regions. These structures were finally incorporated to enhance the front contact in conventional silicon heterojunction solar cells leading to an improvement of conversion efficiency

  8. Laser Induced Forward Transfer for front contact improvement in silicon heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Colina, M., E-mail: monicacolinb@gmail.com; Morales-Vilches, A.; Voz, C.; Martín, I.; Ortega, P.; Orpella, A.; López, G.; Alcubilla, R.

    2015-05-01

    Highlights: • LIFT technique is investigated to improve heterojunction HJ solar cells. • Doped silicon films are adequate precursors for LIFT application in HJ cells. • LIFT leads to a reduction of the series resistance of a-Si HJ diodes. • LIFT allows the improvement of the front contact resistance in a-Si HJ solar cells. - Abstract: In this work the Laser Induced Forward Transfer (LIFT) technique is investigated to create n-doped regions on p-type c-Si substrates. The precursor source of LIFT consisted in a phosphorous-doped hydrogenated amorphous silicon layer grown by Plasma Enhanced Chemical Vapor Deposition (PECVD) onto a transparent substrate. Transfer of the doping atoms occurs when a sequence of laser pulses impinging onto the doped layer propels the material toward the substrate. The laser irradiation not only transfers the doping material but also produces a local heating that promotes its diffusion into the substrate. The laser employed was a 1064 nm, lamp-pumped system, working at pulse durations of 100 and 400 ns. In order to obtain a good electrical performance a comprehensive optimization of the applied laser fluency and number of pulses was carried out. Subsequently, arrays of n + p local junctions were created by LIFT and the resulting J–V curves demonstrated the formation of good quality n+ regions. These structures were finally incorporated to enhance the front contact in conventional silicon heterojunction solar cells leading to an improvement of conversion efficiency.

  9. Human Placenta-Derived Adherent Cells Improve Cardiac Performance in Mice With Chronic Heart Failure

    Science.gov (United States)

    Chen, Hong-Jung; Chen, Chien-Hsi; Chang, Ming-Yao; Tsai, Da-Ching; Baum, Ellen Z.; Hariri, Robert

    2015-01-01

    Human placenta-derived adherent cells (PDACs) are a culture-expanded, undifferentiated mesenchymal-like population derived from full-term placental tissue, with immunomodulatory, anti-inflammatory, angiogenic, and neuroprotective properties. PDA-001 (cenplacel-L), an intravenous formulation of PDAC cells, is in clinical development for the treatment of autoimmune and inflammatory diseases. We tested the therapeutic effects of PDA-001 in mice with chronic heart failure (CHF). Three weeks after transaortic constriction surgery to induce CHF, the mice underwent direct intramyocardial (IM) or i.v. injection of PDA-001 at a high (0.5 × 106 cells per mouse), medium (0.5 × 105 cells per mouse), or low (0.5 × 104 cells per mouse) dose. The mice were sacrificed 4 weeks after treatment. Echocardiography and ventricular catheterization showed that IM injection of PDA-001 significantly improved left ventricular systolic and diastolic function compared with injection of vehicle or i.v. injection of PDA-001. IM injection of PDA-001 also decreased cardiac fibrosis, shown by trichrome staining in the vicinity of the injection sites. Low-dose treatment showed the best improvement in cardiac performance compared with the medium- and high-dose groups. In another independent study to determine the mechanism of action with bromodeoxyuridine labeling, the proliferation rates of endothelial cells and cardiomyocytes were significantly increased by low or medium IM dose PDA-001. However, no surviving PDA-001 cells were detected in the heart 1 month after injection. In vivo real-time imaging consistently revealed that the PDA-001 cells were detectable only within 2 days after IM injection of luciferase-expressing PDA-001. Together, these results have demonstrated the cardiac therapeutic potential of PDA-001, likely through a paracrine effect. PMID:25673767

  10. Improved Quality of Life in A Case of Cerebral Palsy after Bone Marrow Mononuclear Cell Transplantation.

    Science.gov (United States)

    Sharma, Alok; Sane, Hemangi; Kulkarni, Pooja; D'sa, Myola; Gokulchandran, Nandini; Badhe, Prerna

    2015-01-01

    Cerebral palsy (CP) is a non progressive, demyelinating disorder that affects a child's development and posture and may be associated with sensation, cognition, communication and perception abnormalities. In CP, cerebral white matter is injured resulting in the loss of oligodendrocytes. This causes damage to the myelin and disruption of nerve conduction. Cell therapy is being explored as an alternate therapeutic strategy as there is no treatment currently available for CP. To study the benefits of this treatment we have administered autologous bone marrow mononuclear cells (BMMNCs) to a 12-year-old CP case. He was clinically re-evaluated after six months and found to demonstrate positive clinical and functional outcomes. His trunk strength, upper limb control, hand functions, walking stability, balance, posture and coordination improved. His ability to perform activities of daily living improved. On repeating the Functional Independence Measure (FIM), the score increased from 90 to 113. A repeat positron emission tomography-computed tomography (PET-CT) scan of the brain six months after intervention showed progression of the mean standard deviation values towards normalization which correlated to the functional changes. At one year, all clinical improvements have remained. This indicated that cell transplantation may improve quality of life and have a potential for treatment of CP. PMID:26199918

  11. Improved Quality of Life in A Case of Cerebral Palsy after Bone Marrow Mononuclear Cell Transplantation

    Directory of Open Access Journals (Sweden)

    Alok Sharma

    2015-07-01

    Full Text Available Cerebral palsy (CP is a non progressive, demyelinating disorder that affects a child’s development and posture and may be associated with sensation, cognition, communication and perception abnormalities. In CP, cerebral white matter is injured resulting in the loss of oligodendrocytes. This causes damage to the myelin and disruption of nerve conduction. Cell therapy is being explored as an alternate therapeutic strategy as there is no treatment currently available for CP. To study the benefits of this treatment we have administered autologous bone marrow mononuclear cells (BMMNCs to a 12-year-old CP case. He was clinically re-evaluated after six months and found to demonstrate positive clinical and functional outcomes. His trunk strength, upper limb control, hand functions, walking stability, balance, posture and coordination improved. His ability to perform activities of daily living improved. On repeating the Functional Independence Measure (FIM, the score increased from 90 to 113. A repeat positron emission tomography- computed tomography (PET-CT scan of the brain six months after intervention showed progression of the mean standard deviation values towards normalization which correlated to the functional changes. At one year, all clinical improvements have remained. This indicated that cell transplantation may improve quality of life and have a potential for treatment of CP.

  12. 分子伴侣的多重功能%The mutifunction of chaperones

    Institute of Scientific and Technical Information of China (English)

    翟静; 张凤珍; 蒋汉明

    2004-01-01

    分子伴侣是一类能帮助其他蛋白质进行正确折叠、组装、转运、介导错误折叠的蛋白质进行降解的蛋白质.它们还参与染色体的复制、抗原的加工与提呈,并作用于一些信息转导分子以调节生长和发育.分子伴侣发挥功能依赖于ATP的结合与水解.热休克应答是生物界从细菌到植物和动物普遍存在的,它是保护细胞免受像热休克、酒精、能量代谢抑制剂、重金属、抗原加工与提呈、凋亡等有害环境损伤的一个基本的防御机制.这些蛋白质的相对水平是非常重要的,过多或过少的Hsp70或Hsp90可以导致生长异常、发育畸形甚至细胞死亡.%Moleculer Chaperones are proteins that can help target protein to acquire one possible conformation, translocation, refolding of intermediates, chromosome replication, proteases, such as the ubiquitin-dependent proteasome, ensure that damaged and short-lived proteins are degraded efficiently.They can also interact with multiple key components of signaling pathways that regulate growth and development. They function in ATP binding and hydrolysis. Heat shock response is ubiquitous and highly conserved-in all organisms from bacteria to plants and animals-as an essential defense mechanism for protection of cells from a wide range of harmful conditions, including heat shock, alcohols, inhibitors of energy metabolism, heavy metals, oxidative stress, antigen processing and presentation, apoptosis. The relative levels of these proteins may be important, as too little or too much Hsp70 or Hsp90 can result in aberrant growth control, developmental malformations and cell death.

  13. All-silicon tandem solar cells: Practical limits for energy conversion and possible routes for improvement

    Science.gov (United States)

    Jia, Xuguang; Puthen-Veettil, Binesh; Xia, Hongze; Yang, Terry Chien-Jen; Lin, Ziyun; Zhang, Tian; Wu, Lingfeng; Nomoto, Keita; Conibeer, Gavin; Perez-Wurfl, Ivan

    2016-06-01

    Silicon nanocrystals (Si NCs) embedded in a dielectric matrix is regarded as one of the most promising materials for the third generation photovoltaics, owing to their tunable bandgap that allows fabrication of optimized tandem devices. Previous work has demonstrated fabrication of Si NCs based tandem solar cells by sputter-annealing of thin multi-layers of silicon rich oxide and SiO2. However, these device efficiencies were much lower than expected given that their theoretical values are much higher. Thus, it is necessary to understand the practical conversion efficiency limits for these devices. In this article, practical efficiency limits of Si NC based double junction tandem cells determined by fundamental material properties such as minority carrier, mobility, and lifetime are investigated. The practical conversion efficiency limits for these devices are significantly different from the reported efficiency limits which use Shockley-Queisser assumptions. Results show that the practical efficiency limit of a double junction cell (1.6 eV Si NC top cell and a 25% efficient c-Si PERL cell as the bottom cell) is 32%. Based on these results suggestions for improvement to the performance of Si nanocrystal based tandem solar cells in terms of the different parameters that were simulated are presented.

  14. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    International Nuclear Information System (INIS)

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He+ ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He+ ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft

  15. Cell Adhesion Selectivity of Stent Material to improve Bio-functionality by Ion Beam Modification

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesang; Park, JUngchan; Jung, Myunghwan; Kim, Yongki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Junkyu [Bio alpha., Co. Ltd., Gimhae (Korea, Republic of)

    2014-05-15

    In this study, ion implantation into collagen coated Co-Cr alloy, which is a cheaper material of the artificial stent product comparing with Ti alloy, has been studied to develop small diameter artificial stent by the cell adhesion control. The size of stent was 1.6mm of the diameter and 18mm of the length. The life-time of artificial stent depends on adhesion property of endothelial-cells. We successfully controlled cell adhesion selectivity between endothelial cell and muscle cell by using collagen coated and He{sup +} ion beam irradiated Co-Cr-alloy to apply to artificial stent. But, we did not achieve the inhibition of platelet adhesion, yet by using collagen coating and He{sup +} ion beam irradiation. Based on this study, we have plan to research about separation between collagen coating effect and ion beam effect. Also, we will have more detail analysis of the mechanism of cell attachment. In recent years, ion implantation has been applied to the surface modification of prosthesis to improve blood compatibility and tissue compatibility in field of biomedical application. As well known, bio compatibility was concerned with the cell adhesion selectivity for bio-functionality. The biomedical application of ion beam technology would be used more widely in the future such as catheter and artificial graft.

  16. Improving Efficiency of Multicrystalline Silicon and CIGS Solar Cells by Incorporating Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2015-10-01

    Full Text Available This work studies the use of gold (Au and silver (Ag nanoparticles in multicrystalline silicon (mc-Si and copper-indium-gallium-diselenide (CIGS solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.

  17. Compensation for phase dispersion in horizontal-switching liquid crystal cell for improved viewing angle

    International Nuclear Information System (INIS)

    In this paper we propose an optical configuration of a horizontal-switching liquid crystal (LC) cell with two positive C-plates and a single A-plate in order to improve the optical property in the diagonal direction, which is a weakness of horizontal-switching LC cells. The proposed configuration's optical design was performed on a Poincare sphere with the trigonometric method. From calculations, we show that the proposed structure can increase the contrast ratio in the diagonal direction by about 10 times

  18. How to Improve the Survival of Transplanted Mesenchymal Stem Cell in Ischemic Heart?

    Directory of Open Access Journals (Sweden)

    Liangpeng Li

    2016-01-01

    Full Text Available Mesenchymal stem cell (MSC is an intensely studied stem cell type applied for cardiac repair. For decades, the preclinical researches on animal model and clinical trials have suggested that MSC transplantation exerts therapeutic effect on ischemic heart disease. However, there remain major limitations to be overcome, one of which is the very low survival rate after transplantation in heart tissue. Various strategies have been tried to improve the MSC survival, and many of them showed promising results. In this review, we analyzed the studies in recent years to summarize the methods, effects, and mechanisms of the new strategies to address this question.

  19. Improved Sufur/Lithium Suflide Nano-composite Electrodes for Next-Generation Lithium Cells

    OpenAIRE

    Lin, Zhan; Fronczek, David Norman; Nan, Caiyun; Choi, Seong E.; Zhang, Yuegang; Cairns, Elton J.; Song, Min-Kyu

    2013-01-01

    A new generation of batteries with a capability of at least 400 Wh/kg is urgently needed since current lithium ion cells are reaching their maximum energy storage capability (~200 Wh/kg). The lithium/sulfur cell, with a theoretical specific energy of 2680 Wh/kg, is an attractive candidate. However, its rapid capacity decay owing to polysulfide dissolution requires good protection of the cathode materials before it can be commercialized. In our research, we are working on improving the perform...

  20. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3...... hydrocarbon reformer and a catalytic burner are to be developed and integrated with the stack. The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability, conductivity, mechanical and other properties. For this purpose, basic polymers...

  1. An efficient method for performance improvement of organometal halide perovskite solar cell via external electric field

    OpenAIRE

    Gong, Xiu; MA, HENG; JIANG, YU-RONG; Li, Meng; Wang, Zhao-Kui; Soga, Tetsuo

    2015-01-01

    An effective method, performed adding external electric field (EEF) on CH3NH3PbI3-xClx (OPIC) perovskite layer during the annealing process, is proposed to improve the performance of the solar cell. By harmonizing EEF direction with the hole/electron modified layer, a significant improvement on the short circuit current and fill factor is obtained. Using the simplest planar device, the largest positive EEF of 2.5*10^6 V/m makes PCE increase from 12.86 to 14.33, whose increment reaches 11.4% c...

  2. Pulmonary Langerhans Cell Histiocytosis-associated Pulmonary Hypertension Showing a Drastic Improvement Following Smoking Cessation.

    Science.gov (United States)

    Kinoshita, Yoshiaki; Watanabe, Kentaro; Sakamoto, Atsuhiko; Hidaka, Kouko

    2016-01-01

    Pulmonary Langerhans cell histiocytosis (PLCH) is a rare, smoking-related, interstitial lung disease, and pulmonary hypertension (PH) is associated with mortality. We herein report a case of PLCH complicated by severe PH and respiratory impairment. After developing PH, the patient displayed a cystic pattern on chest high-resolution computed tomography (HRCT). This, in turn, corresponded with the scarring stage of PLCH. However, the patient's PH and respiratory impairment improve dramatically following smoking cessation. PLCH patients with a cystic pattern on chest HRCT may still be able to improve their PH and respiratory impairment when they are able to quit smoking. PMID:26935369

  3. Improving charge transport property and energy transfer with carbon quantum dots in inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin, E-mail: guowb@jlu.edu.cn, E-mail: chenwy@jlu.edu.cn, E-mail: dawei.yan@hotmail.com; Li, Hao; Shen, Liang [State Key Laboratory on Integrated Optoelectronics, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Chen, Weiyou, E-mail: guowb@jlu.edu.cn, E-mail: chenwy@jlu.edu.cn, E-mail: dawei.yan@hotmail.com [College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Yan, Dawei, E-mail: guowb@jlu.edu.cn, E-mail: chenwy@jlu.edu.cn, E-mail: dawei.yan@hotmail.com [Research Center of Laser Fusion, CAEP, P.O. Box 919-983, Mianyang 621900 (China)

    2014-08-18

    Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.

  4. Bradykinin preconditioning improves therapeutic potential of human endothelial progenitor cells in infarcted myocardium.

    Directory of Open Access Journals (Sweden)

    Zulong Sheng

    Full Text Available OBJECTIVES: Stem cell preconditioning (PC is a powerful approach in reducing cell death after transplantation. We hypothesized that PC human endothelial progenitor cells (hEPCs with bradykinin (BK enhance cell survival, inhibit apoptosis and repair the infarcted myocardium. METHODS: The hEPCs were preconditioned with or without BK. The hEPCs apoptosis induced by hypoxia along with serum deprivation was determined by annexin V-fluorescein isothiocyanate/ propidium iodide staining. Cleaved caspase-3, Akt and eNOS expressions were determined by Western blots. Caspase-3 activity and vascular endothelial growth factor (VEGF levels were assessed in hEPCs. For in vivo studies, the survival and cardiomyocytes apoptosis of transplanted hEPCs were assessed using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodi- carbocyanine,4-chlorobenzenesul-fonate salt labeled hEPCs and TUNEL staining. Infarct size and cardiac function were measured at 10 days after transplantation, and the survival of transplanted hEPCs were visualized using near-infrared optical imaging. RESULTS: In vitro data showed a marked suppression in cell apoptosis following BK PC. The PC reduced caspase-3 activation, increased the Akt, eNOS phosphorylation and VEGF levels. In vivo data in preconditioned group showed a robust cell anti-apoptosis, reduction in infarct size, and significant improvement in cardiac function. The effects of BK PC were abrogated by the B2 receptor antagonist HOE140, the Akt and eNOS antagonists LY294002 and L-NAME, respectively. CONCLUSIONS: The activation of B2 receptor-dependent PI3K/Akt/eNOS pathway by BK PC promotes VEGF secretion, hEPC survival and inhibits apoptosis, thereby improving cardiac function in vivo. The BK PC hEPC transplantation for stem cell-based therapies is a novel approach that has potential for clinical used.

  5. Chaperone protein HYPK interacts with the first 17 amino acid region of Huntingtin and modulates mutant HTT-mediated aggregation and cytotoxicity

    International Nuclear Information System (INIS)

    Highlights: • HYPK reduces mutant HTT-mediated aggregate formation and cytotoxicity. • Interaction of HYPK with HTT requires N-terminal 17 amino acid of HTT (HTT-N17). • Deletion of HTT-N17 leads to SDS-soluble, smaller, nuclear aggregates. • These smaller aggregates do not associate with HYPK and are more cytotoxic. • Maybe, interaction of HYPK with amphipathic HTT-N17 block HTT aggregate formation. - Abstract: Huntington’s disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminal HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK

  6. Chaperone protein HYPK interacts with the first 17 amino acid region of Huntingtin and modulates mutant HTT-mediated aggregation and cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Kamalika Roy [Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Centre for Neuroscience, Indian Institute of Science, Bangalore 560012 (India); Bhattacharyya, Nitai P., E-mail: nitai_sinp@yahoo.com [Biomedical Genomics Centre, PG Polyclinic Building, 5, Suburbun Hospital Road, Kolkata 700020 (India)

    2015-01-02

    Highlights: • HYPK reduces mutant HTT-mediated aggregate formation and cytotoxicity. • Interaction of HYPK with HTT requires N-terminal 17 amino acid of HTT (HTT-N17). • Deletion of HTT-N17 leads to SDS-soluble, smaller, nuclear aggregates. • These smaller aggregates do not associate with HYPK and are more cytotoxic. • Maybe, interaction of HYPK with amphipathic HTT-N17 block HTT aggregate formation. - Abstract: Huntington’s disease is a polyglutamine expansion disorder, characterized by mutant HTT-mediated aggregate formation and cytotoxicity. Many reports suggests roles of N-terminal 17 amino acid domain of HTT (HTT-N17) towards subcellular localization, aggregate formation and subsequent pathogenicity induced by N-terminal HTT harboring polyQ stretch in pathogenic range. HYPK is a HTT-interacting chaperone which can reduce N-terminal mutant HTT-mediated aggregate formation and cytotoxicity in neuronal cell lines. However, how HYPK interacts with N-terminal fragment of HTT remained unknown. Here we report that specific interaction of HYPK with HTT-N17 is crucial for the chaperone activity of HYPK. Deletion of HTT-N17 leads to formation of tinier, SDS-soluble nuclear aggregates formed by N-terminal mutant HTT. The increased cytotoxicity imparted by these tiny aggregates might be contributed due to loss of interaction with HYPK.

  7. Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination.

    Science.gov (United States)

    Luo, Haiping; Xu, Pei; Roane, Timberley M; Jenkins, Peter E; Ren, Zhiyong

    2012-02-01

    The low conductivity and alkalinity in municipal wastewater significantly limit power production from microbial fuel cells (MFCs). This study integrated desalination with wastewater treatment and electricity production in a microbial desalination cell (MDC) by utilizing the mutual benefits among the above functions. When using wastewater as the sole substrate, the power output from the MDC (8.01 W/m(3)) was four times higher than a control MFC without desalination function. In addition, the MDC removed 66% of the salts and improved COD removal by 52% and Coulombic efficiency by 131%. Desalination in MDCs improved wastewater characteristics by increasing the conductivity by 2.5 times and stabilizing anolyte pH, which therefore reduced system resistance and maintained microbial activity. Microbial community analysis revealed a more diverse anode microbial structure in the MDC than in the MFC. The results demonstrated that MDC can serve as a viable option for integrated wastewater treatment, energy production, and desalination. PMID:22178493

  8. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT...... catalytic burner are to be developed and integrated with the stack. The key issue of the project is development and improvement of the temperature-resistant polymer membranes with respect to durability, conductivity, mechanical and other properties. For this purpose, basic polymers will be first synthesized...

  9. Improved performance of silicon-nanoparticle film-coated dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravindra Kumar; Bedja, Idriss M. [CRC, Department of Optometry, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh 11433 (Saudi Arabia); Aldwayyan, Abdullah Saleh [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2012-11-15

    Silicon (Si) nanoparticles with average size of 13 nm and orange-red luminescence under UV absorption were synthesized using electrochemical etching of silicon wafers. A film of Si nanoparticles with thickness of 0.75 {mu}m to 2.6 {mu}m was coated on the glass (TiO{sub 2} side) of a dye-sensitized solar cell (DSSC). The cell exhibited nearly 9% enhancement in power conversion efficiency ({eta}) at film thickness of {proportional_to}2.4 {mu}m under solar irradiation of 100 mW/cm{sup 2} (AM 1.5) with improved fill factor and short-circuit current density. This study revealed for the first time that the Si-nanoparticle film converting UV into visible light and helping in homogeneous irradiation, can be utilized for improving the efficiency of the DSSCs. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Pentacene nanostructural interlayer for the efficiency improvement of polymer solar cells

    International Nuclear Information System (INIS)

    In poly(3-hexylthiophene) mixed with phenyl C61-butyric acid methyl ester heterojunction polymer solar cells, organic small molecular pentacene was introduced as the interfacial layer between PEDOT:PSS coated ITO substrates and polymer layer. It is found that the short circuit current density and power conversion efficiency were distinctly improved due to the introduction of the nanostructural pentacene interlayer. The nearly 100% power conversion efficiency improvement was obtained on the cells with a 4 nm pentacene interlayer, which benefits from the increased short circuit current from 2.34 mA/cm2 to 5.76 mA/cm2. The morphology of different thicknesses of pentacene thin films was observed by atomic force microscopy. The effect of pentacene interlayer's thickness on the distribution of light in the active layer was simulated by using a transfer matrix mode.

  11. Improving efficiency of silicon heterojunction solar cells by surface texturing of silicon wafers using tetramethylammonium hydroxide

    Science.gov (United States)

    Wang, Liguo; Wang, Fengyou; Zhang, Xiaodan; Wang, Ning; Jiang, Yuanjian; Hao, Qiuyan; Zhao, Ying

    2014-12-01

    Texturing of silicon surfaces is an effective method for improving the efficiency of silicon solar cells. Etching by using tetramethylammonium hydroxide (TMAH) is more attractive than other texturing processes because TMAH is non-toxic, and high-quality anisotropic features can be realized without any metal ion contaminants. In this study, TMAH texturing conditions are varied to optimize the surface morphology of silicon wafers. Excellent optical properties are obtained. This is because of the formation of pyramidal structures with different random sizes but uniform shapes; in fact, when the optimal etching conditions (2% TMAH, 10% isopropyl alcohol (IPA) at 80 °C) are used, the reflectance is only 10.7%. In comparison with NaOH texturing, the TMAH process described here yields smaller pyramids with smoother (111) facets, leading to improved performance in silicon heterojunction solar cells, with a conversion efficiency of 17.8%.

  12. A futuristic approach towards interface layer modifications for improved efficiency in inverted organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, J. P., E-mail: jai-ti2002@yahoo.com, E-mail: tiwarijp@mail.nplindia.org; Ali, Farman; Sharma, Abhishek; Chand, Suresh [Physics of Energy Harvesting Division (Organic and Hybrid Solar Cell Group), CSIR-National Physical Laboratory, CSIR-Network of Institutes for Solar Energy (NISE), Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Pillai, Sriraj; Parakh, Sonal [Physics of Energy Harvesting Division (Organic and Hybrid Solar Cell Group), CSIR-National Physical Laboratory, CSIR-Network of Institutes for Solar Energy (NISE), Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Department of Physics, Delhi Technological University, Bawana Road, Delhi 110042 (India)

    2014-01-27

    Inverted polymer Solar Cells of the classical poly (3-hexylthiophene) (P3HT):(6,6)-phenyl-C{sub 61}butyric acid methyl ester (PC{sub 61}BM) blend on indium tin oxide substrates were fabricated, which shows improved device performance, by using a facile solution–processed ZnO-polyelectrolytes [poly (diallyldimethylammonium chloride) (PDADMAC), Poly (acrylic acid sodium salt) (PAS), poly (4-styrenesulfonic acid) (PSS), and Polyvinylpyrrolidone (PVP)] nanocomposite as a cathode interface layer compared to devices using pristine ZnO as cathode buffer layer in ambient conditions. The devices with different combinations of polyelectrolyte with ZnO show different improvements in the device efficiency. The combinations of ZnO with PVP and PDADMAC show highest amount of improvements in the efficiency by a factor of ∼17–19. The improvement of the efficiency may be due to various phenomena, such as the passivation of ZnO surface as well as bulk traps, work function modification, improved energy level alignment, improved electronic coupling of the inorganic/organic interface, improved light harvesting, and decrease of surface as well as bulk charge recombination in the device. The introduction of polyelectrolyte into ZnO inhibits the aggregation of ZnO nanoparticles yielding the large area ZnO nanoclusters; and hence, forming the uniform film of ZnO resulting in the modifications of morphology as well as electronic structure of ZnO-polyelectrolyte nano-composite favouring better electronic coupling between cathode and active layer and hence enhancing the current and, consequently, the efficiency. This simple low temperature ZnO-polyelectrolyte nanocomposite based protocol proposed for cathode interface layer modification may be very much useful for roll to roll industrial manufacturing of organic solar cells.

  13. A futuristic approach towards interface layer modifications for improved efficiency in inverted organic solar cells

    International Nuclear Information System (INIS)

    Inverted polymer Solar Cells of the classical poly (3-hexylthiophene) (P3HT):(6,6)-phenyl-C61butyric acid methyl ester (PC61BM) blend on indium tin oxide substrates were fabricated, which shows improved device performance, by using a facile solution–processed ZnO-polyelectrolytes [poly (diallyldimethylammonium chloride) (PDADMAC), Poly (acrylic acid sodium salt) (PAS), poly (4-styrenesulfonic acid) (PSS), and Polyvinylpyrrolidone (PVP)] nanocomposite as a cathode interface layer compared to devices using pristine ZnO as cathode buffer layer in ambient conditions. The devices with different combinations of polyelectrolyte with ZnO show different improvements in the device efficiency. The combinations of ZnO with PVP and PDADMAC show highest amount of improvements in the efficiency by a factor of ∼17–19. The improvement of the efficiency may be due to various phenomena, such as the passivation of ZnO surface as well as bulk traps, work function modification, improved energy level alignment, improved electronic coupling of the inorganic/organic interface, improved light harvesting, and decrease of surface as well as bulk charge recombination in the device. The introduction of polyelectrolyte into ZnO inhibits the aggregation of ZnO nanoparticles yielding the large area ZnO nanoclusters; and hence, forming the uniform film of ZnO resulting in the modifications of morphology as well as electronic structure of ZnO-polyelectrolyte nano-composite favouring better electronic coupling between cathode and active layer and hence enhancing the current and, consequently, the efficiency. This simple low temperature ZnO-polyelectrolyte nanocomposite based protocol proposed for cathode interface layer modification may be very much useful for roll to roll industrial manufacturing of organic solar cells

  14. Bone marrow mesenchymal stem cells combined with minocycline improve spinal cord injury in a rat model

    OpenAIRE

    Chen, Dayong; Zeng, Wei; Fu, Yunfeng; Gao, Meng; Lv, Guohua

    2015-01-01

    The aims of this study were to assess that the effects of bone marrow mesenchymal stem cells (BMSCs) combination with minocycline improve spinal cord injury (SCI) in rat model. In the present study, the Wistar rats were randomly divided into five groups: control group, SCI group, BMSCs group, Minocycline group and BMSCs + minocycline group. Basso, Beattie and Bresnahan (BBB) test and MPO activity were used to assess the effect of combination therapy on locomotion and neutrophil infiltration. ...

  15. Mitochondrial Hormesis links nutrient restriction to improved metabolism in fat cell

    OpenAIRE

    Barbato, Daniele Lettieri; Tatulli, Giuseppe; Aquilano, Katia; Ciriolo, Maria R.

    2015-01-01

    Fasting promotes longevity by reprogramming metabolic and stress resistance pathways. However, although the impact on adipose tissue physiology through hormonal inputs is well established, the direct role of fasting on adipose cells is poorly understood. Herein we show that white and beige adipocytes, as well as mouse epididymal and subcutaneous adipose depots, respond to nutrient scarcity by acquiring a brown-like phenotype. Indeed, they improve oxidative metabolism through modulating the ex...

  16. Agmatine Improves Cognitive Dysfunction and Prevents Cell Death in a Streptozotocin-Induced Alzheimer Rat Model

    OpenAIRE

    Song, Juhyun; Hur, Bo Eun; Bokara, Kiran Kumar; Yang, Wonsuk; Cho, Hyun Jin; Park, Kyung Ah; Lee, Won Taek; Lee, Kyoung Min; Lee, Jong Eun

    2014-01-01

    Purpose Alzheimer's disease (AD) results in memory impairment and neuronal cell death in the brain. Previous studies demonstrated that intracerebroventricular administration of streptozotocin (STZ) induces pathological and behavioral alterations similar to those observed in AD. Agmatine (Agm) has been shown to exert neuroprotective effects in central nervous system disorders. In this study, we investigated whether Agm treatment could attenuate apoptosis and improve cognitive decline in a STZ-...

  17. Quercetin improves insulin resistance and hepatic lipid accumulation in vitro in a NAFLD cell model

    OpenAIRE

    Li, Xiuli; Wang, Rong; Zhou, Na; Wang, Xiaohui; Liu, Qingyan; BAI, YUQIN; Bai, Yin; Liu, Zhijie; Yang, Huiming; ZOU, JIHONG; Wang, Hongxia; SHI, TIEWEI

    2012-01-01

    Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver diseases in the absence of significant alcohol consumption. The aim of this study was to investigate the effect of quercetin on insulin resistance and lipid metabolic abnormalities in free fatty acid (FFA)- and insulin-induced HepG2 cell model of NAFLD, and to determine the possible underlying mechanism. Quercetin markedly improves hepatic lipid accumulation and decreases the levels of triglyceride (TG). The lipid-lower...

  18. Cell Treatment for Stroke in Type Two Diabetic Rats Improves Vascular Permeability Measured by MRI

    OpenAIRE

    Ding, Guangliang; Chen, Jieli; Chopp, Michael; Li, Lian; Yan, Tao; Li, Qingjiang; Cui, Chengcheng; Davarani, Siamak P. N.; JIANG, Quan

    2016-01-01

    Treatment of stroke with bone marrow stromal cells (BMSC) significantly enhances brain remodeling and improves neurological function in non-diabetic stroke rats. Diabetes is a major risk factor for stroke and induces neurovascular changes which may impact stroke therapy. Thus, it is necessary to test our hypothesis that the treatment of stroke with BMSC has therapeutic efficacy in the most common form of diabetes, type 2 diabetes mellitus (T2DM). T2DM was induced in adult male Wistar rats by ...

  19. Adipose-Derived Stem Cells Improve Efficacy of Melanocyte Transplantation in Animal Skin

    OpenAIRE

    Lim, Won-Suk; Kim, Chang-Hyun; Kim, Ji-Young; Do, Byung-Rok; Kim, Eo Jin; Lee, Ai-Young

    2014-01-01

    Vitiligo is a pigmentary disorder induced by a loss of melanocytes. In addition to replacement of pure melanocytes, cocultures of melanocytes with keratinocytes have been used to improve the repigmentation outcome in vitiligo treatment. We previously identified by in vitro studies, that adipose-derived stem cells (ADSCs) could be a potential substitute for keratinocytes in cocultures with melanocytes. In this study, the efficacy of pigmentation including durability of grafted melanocytes and ...

  20. Improved method for linear B-cell epitope prediction using antigen's primary sequence.

    Directory of Open Access Journals (Sweden)

    Harinder Singh

    Full Text Available One of the major challenges in designing a peptide-based vaccine is the identification of antigenic regions in an antigen that can stimulate B-cell's response, also called B-cell epitopes. In the past, several methods have been developed for the prediction of conformational and linear (or continuous B-cell epitopes. However, the existing methods for predicting linear B-cell epitopes are far from perfection. In this study, an attempt has been made to develop an improved method for predicting linear B-cell epitopes. We have retrieved experimentally validated B-cell epitopes as well as non B-cell epitopes from Immune Epitope Database and derived two types of datasets called Lbtope_Variable and Lbtope_Fixed length datasets. The Lbtope_Variable dataset contains 14876 B-cell epitope and 23321 non-epitopes of variable length where as Lbtope_Fixed length dataset contains 12063 B-cell epitopes and 20589 non-epitopes of fixed length. We also evaluated the performance of models on above datasets after removing highly identical peptides from the datasets. In addition, we have derived third dataset Lbtope_Confirm having 1042 epitopes and 1795 non-epitopes where each epitope or non-epitope has been experimentally validated in at least two studies. A number of models have been developed to discriminate epitopes and non-epitopes using different machine-learning techniques like Support Vector Machine, and K-Nearest Neighbor. We achieved accuracy from ∼54% to 86% using diverse s features like binary profile, dipeptide composition, AAP (amino acid pair profile. In this study, for the first time experimentally validated non B-cell epitopes have been used for developing method for predicting linear B-cell epitopes. In previous studies, random peptides have been used as non B-cell epitopes. In order to provide service to scientific community, a web server LBtope has been developed for predicting and designing B-cell epitopes (http://crdd.osdd.net/raghava/lbtope/.

  1. Somatostatin Improved B Cells Mature in Macaques during Intestinal Ischemia-Reperfusion.

    Directory of Open Access Journals (Sweden)

    Ling Liu

    of B cells, greatly improved B cells mature in macaques during ischemia-reperfusion. Preventive supplements of somatostatin may greatly limit intestinal injury and bacterial translocation during ischemia-reperfusion.

  2. Unique Residues Involved in Activation of the Multitasking Protease/Chaperone HtrA from Chlamydia trachomatis

    OpenAIRE

    Huston, Wilhelmina M.; Joel D. A. Tyndall; Lott, William B.; Stansfield, Scott H.; Timms, Peter

    2011-01-01

    DegP, a member of the HtrA family of proteins, conducts critical bacterial protein quality control by both chaperone and proteolysis activities. The regulatory mechanisms controlling these two distinct activities, however, are unknown. DegP activation is known to involve a unique mechanism of allosteric binding, conformational changes and oligomer formation. We have uncovered a novel role for the residues at the PDZ1:protease interface in oligomer formation specifically for chaperone substrat...

  3. Thioredoxin Reductase Type C (NTRC) Orchestrates Enhanced Thermotolerance to Arabidopsis by Its Redox-Dependent Holdase Chaperone Function

    Institute of Scientific and Technical Information of China (English)

    Ho Byoung Chae; Jeong Chan Moon; Mi Rim Shin; Yong Hun Chi; Young Jun Jung; Sun Yong Lee; Ganesh M.Nawkar

    2013-01-01

    Genevestigator analysis has indicated heat shock induction of transcripts for NADPH-thioredoxin reductase,type C (NTRC) in the light.Here we show overexpression of NTRC in Arabidopsis (NTRCoE) resulting in enhanced tolerance to heat shock,whereas NTRC knockout mutant plants (ntrcl) exhibit a temperature sensitive phenotype.To investigate the underlying mechanism of this phenotype,we analyzed the protein's biochemical properties and protein structure.NTRC assembles into homopolymeric structures of varying complexity with functions as a disulfide reductase,a foldase chaperone,and as a holdase chaperone.The multiple functions of NTRC are closely correlated with protein structure.Complexes of higher molecular weight (HMW) showed stronger activity as a holdase chaperone,while low molecular weight (LMW) species exhibited weaker holdase chaperone activity but stronger disulfide reductase and foldase chaperone activities.Heat shock converted LMW proteins into HMW complexes.Mutations of the two active site Cys residues of NTRC into Ser (C217/454S-NTRC) led to a complete inactivation of its disulfide reductase and foldase chaperone functions,but conferred only a slight decrease in its holdase chaperone function.The overexpression of the mutated C217/454S-NTRC provided Arabidopsis with a similar degree of thermotolerance compared with that of NTRCoE plants.However,after prolonged incubation under heat shock,NTRCoE plants tolerated the stress to a higher degree than C217/454S-NTRCoE plants.The results suggest that the heat shock-mediated holdase chaperone function of NTRC is responsible for the increased thermotolerance of Arabidopsis and the activity is significantly supported by NADPH.

  4. Modulation of the chaperone heat shock cognate 70 by embryonic (pro)insulin correlates with prevention of apoptosis

    OpenAIRE

    De La Rosa, Enrique J; Vega-Núñez, Elena; Morales, Aixa V.; Serna, José; Rubio, Eva; Pablo, Flora de

    1998-01-01

    Insights have emerged concerning insulin function during development, from the finding that apoptosis during chicken embryo neurulation is prevented by prepancreatic (pro)insulin. While characterizing the molecules involved in this survival effect of insulin, we found insulin-dependent regulation of the molecular chaperone heat shock cognate 70 kDa (Hsc70), whose cloning in chicken is reported here. This chaperone, generally considered constitutively expressed, showed regulation of its mRNA a...

  5. Immunoglobulin-like PapD chaperone caps and uncaps interactive surfaces of nascently translocated pilus subunits.

    OpenAIRE

    Kuehn, M J; Normark, S; Hultgren, S. J.

    1991-01-01

    Molecular chaperones are found in the cytoplasm of bacteria and in various cellular compartments in eukaryotes to maintain proteins in nonnative conformations that permit their secretion across membranes or assembly into oligomeric structures. Virtually nothing, however, has been reported about a similar requirement for molecular chaperones in the periplasm of Gram-negative bacteria. We used the well-characterized P pilus biogenesis system in Escherichia coli as a model to elucidate the mecha...

  6. Colonic inflammation in mice is improved by cigarette smoke through iNKT cells recruitment.

    Directory of Open Access Journals (Sweden)

    Muriel Montbarbon

    Full Text Available Cigarette smoke (CS protects against intestinal inflammation during ulcerative colitis. Immunoregulatory mechanisms sustaining this effect remain unknown. The aim of this study was to assess the effects of CS on experimental colitis and to characterize the intestinal inflammatory response at the cellular and molecular levels. Using the InExpose® System, a smoking device accurately reproducing human smoking habit, we pre-exposed C57BL/6 mice for 2 weeks to CS, and then we induced colitis by administration of dextran sodium sulfate (DSS. This system allowed us to demonstrate that CS exposure improved colonic inflammation (significant decrease in clinical score, body weight loss and weight/length colonic ratio. This improvement was associated with a significant decrease in colonic proinflammatory Th1/Th17 cytokine expression, as compared to unexposed mice (TNF (p=0.0169, IFNγ (p<0.0001, and IL-17 (p=0.0008. Smoke exposure also induced an increased expression of IL-10 mRNA (p=0.0035 and a marked recruitment of iNKT (invariant Natural Killer T; CD45+ TCRβ+ CD1d tetramer+ cells in the colon of DSS-untreated mice. Demonstration of the role of iNKT cells in CS-dependent colitis improvement was performed using two different strains of NKT cells deficient mice. Indeed, in Jα18KO and CD1dKO animals, CS exposure failed to induce significant regulation of DSS-induced colitis both at the clinical and molecular levels. Thus, our study demonstrates that iNKT cells are pivotal actors in the CS-dependent protection of the colon. These results highlight the role of intestinal iNKT lymphocytes and their responsiveness to environmental stimuli. Targeting iNKT cells would represent a new therapeutic way for inflammatory bowel diseases.

  7. Triiodothyronine improves the primary antibody response to sheep red blood cells in severely undernourished weanling mice

    International Nuclear Information System (INIS)

    Three experiments were conducted in which weanling mice were fed a nutritionally complete diet either ad libitum or in restricted quantities such that they lost about 30% of their initial weight over a 14-day period. In Experiments 1 and 2, half the animals from each group received dietary triiodothyronine (T3) supplements. In Experiment 3, food-intake-restricted mice were fed graded levels of potassium iodide. Malnutrition reduced the number of nucleated cells per spleen, the number of splenic IgG plaque-forming cells (PFC) per 106 cells, and the serum antibody titers against sheep red blood cells as determined by radioimmunoassay. T3 supplements increased antibody titers, the number of nucleated cells per spleen, and both IgM and IgG PFC per 106 spleen cells in malnourished mice, but had no effect on well-nourished mice. The beneficial effect of T3 was not a result of improved protein, energy, or iodine status in the malnourished mice

  8. Histone deacetylase inhibitors improve the replication of oncolytic herpes simplex virus in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    James J Cody

    Full Text Available New therapies are needed for metastatic breast cancer patients. Oncolytic herpes simplex virus (oHSV is an exciting therapy being developed for use against aggressive tumors and established metastases. Although oHSV have been demonstrated safe in clinical trials, a lack of sufficient potency has slowed the clinical application of this approach. We utilized histone deacetylase (HDAC inhibitors, which have been noted to impair the innate antiviral response and improve gene transcription from viral vectors, to enhance the replication of oHSV in breast cancer cells. A panel of chemically diverse HDAC inhibitors were tested at three different doses (LD50 for their ability to modulate the replication of oHSV in breast cancer cells. Several of the tested HDAC inhibitors enhanced oHSV replication at low multiplicity of infection (MOI following pre-treatment of the metastatic breast cancer cell line MDA-MB-231 and the oHSV-resistant cell line 4T1, but not in the normal breast epithelial cell line MCF10A. Inhibitors of class I HDACs, including pan-selective compounds, were more effective for increasing oHSV replication compared to inhibitors that selectively target class II HDACs. These studies demonstrate that select HDAC inhibitors increase oHSV replication in breast cancer cells and provides support for pre-clinical evaluation of this combination strategy.

  9. Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    WU Zhi-yuan; HUI Guo-zhen; LU Yi; WU Xin; GUO Li-he

    2006-01-01

    Background Human amniotic epithelial cells (HAECs), which have several characteristics similar to stem cells,therefore could possibly be used in cell therapy without creating legal or ethical problems. In this study, we transplanted HEACs into the injured spinal cord of rats to investigate if the cells can improve the rats' hindlimb motor function.Methods HAECs were obtained from a piece of fresh amnion, labeled with Hoechst33342, and transplanted into the site of complete midthoracic spinal transections in adult rats. The rats (n=21) were randomly divided into three groups: Sham-operation group (n=7), cells-graft group (n=7), and PBS group (n=7). One rat of each group was killed for histological analysis at the second week after the transplantation. The other six rats of each group were killed for histological analysis after an 8-week behavioral testing. Hindlimb motor function was assessed by using the open-field BBB scoring system. Survival rate of the graft cells was observed at second and eighth weeks after the transplantation. We also detected the myelin sheath fibers around the lesions and the size of the axotomized red nucleus. A one-way ANOVA was used to compare the means among the groups. The significance level was set at P<0.05.Results The graft HAECs survived for a long time (8 weeks) and integrated into the host spinal cord without immune rejection. Compared with the control group, HAECs can promote the regeneration and sprouting of the axons, improve the hindlimb motor function of the rats (BBB score: cells-graft group 9.0± 0.89 vs PBS group 3.7± 1.03, P<0.01), and inhibit the atrophy of axotomized red nucleus [cells-graft group (526.47 ± 148.42) μm2 vs PBS group (473.69±164.73) μm2, P<0.01].Conclusion Transplantation of HAECs can improve the hindlimb motor function of rats with spinal cord injury.

  10. Supercapacitive microbial fuel cell: Characterization and analysis for improved charge storage/delivery performance.

    Science.gov (United States)

    Houghton, Jeremiah; Santoro, Carlo; Soavi, Francesca; Serov, Alexey; Ieropoulos, Ioannis; Arbizzani, Catia; Atanassov, Plamen

    2016-10-01

    Supercapacitive microbial fuel cells with various anode and cathode dimensions were investigated in order to determine the effect on cell capacitance and delivered power quality. The cathode size was shown to be the limiting component of the system in contrast to anode size. By doubling the cathode area, the peak power output was improved by roughly 120% for a 10ms pulse discharge and internal resistance of the cell was decreased by ∼47%. A model was constructed in order to predict the performance of a hypothetical cylindrical MFC design with larger relative cathode size. It was found that a small device based on conventional materials with a volume of approximately 21cm(3) would be capable of delivering a peak power output of approximately 25mW at 70mA, corresponding to ∼1300Wm(-3). PMID:27400393

  11. Improved recovery of bisulphite-treated cell-free DNA in plasma

    DEFF Research Database (Denmark)

    Pedersen, Inge Søkilde; Krarup, H.B.; Thorlacius-Ussing, O.;

    Detection of cell-free methylated DNA in plasma is a promising tool for tumour diagnosis and monitoring. Due to the very low amount of cell-free DNA in plasma, sensitivity of the detection methods are of utmost importance. The vast majority of currently available methods for analysing DNA...... of PCR amplifying methylated and umethylated MEST. This procedure allows low levels of DNA to be easily and reliably analysed, a prerequisite for the clinical usefulness of cell-free methylated DNA detection in plasma....... methylation are based on bisulphite-mediated deamination of cytosine. However, the recovery of bisulphite-converted DNA is very poor. Here we introduce an alternative method for the crucial steps of bisulphite removal and desulfonation, improving recovery, especially for specimens with low levels of DNA. The...

  12. Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells.

    Science.gov (United States)

    Wu, Qiliang; Zhou, Pengcheng; Zhou, Weiran; Wei, Xiangfeng; Chen, Tao; Yang, Shangfeng

    2016-06-22

    A two-step method has been popularly adopted to fabricate a perovskite film of planar heterojunction organo-lead halide perovskite solar cells (PSCs). However, this method often generates uncontrollable film morphology with poor coverage. Herein, we report a facile method to improve perovskite film morphology by incorporating a small amount of acetate (CH3COO(-), Ac(-)) salts (NH4Ac, NaAc) as nonhalogen additives in CH3NH3I solution used for immersing PbI2 film, resulting in improved CH3NH3PbI3 film morphology. Under the optimized NH4Ac additive concentration of 10 wt %, the best power conversion efficiency (PCE) reaches 17.02%, which is enhanced by ∼23.2% relative to that of the pristine device without additive, whereas the NaAc additive does not lead to an efficiency enhancement despite the improvement of the CH3NH3PbI3 film morphology. SEM study reveals that NH4Ac and NaAc additives can both effectively improve perovskite film morphology by increasing the surface coverage via diminishing pinholes. The improvement on CH3NH3PbI3 film morphology is beneficial for increasing the optical absorption of perovskite film and improving the interfacial contact at the perovskite/spiro-OMeTAD interface, leading to the increase of short-circuit current and consequently efficiency enhancement of the PSC device for NH4Ac additive only. PMID:27253082

  13. Fucoxanthinol, Metabolite of Fucoxanthin, Improves Obesity-Induced Inflammation in Adipocyte Cells

    Directory of Open Access Journals (Sweden)

    Hayato Maeda

    2015-08-01

    Full Text Available Fucoxanthin (Fx is a marine carotenoid found in edible brown seaweeds. We previously reported that dietary Fx metabolite into fucoxanthinol (FxOH, attenuates the weight gain of white adipose tissue of diabetic/obese KK-Ay mice. In this study, to evaluate anti-diabetic effects of Fx, we investigated improving the effect of insulin resistance on the diabetic model of KK-Ay mice. Furthermore, preventing the effect of FxOH on low-grade chronic inflammation related to oxidative stress was evaluated on 3T3-L1 adipocyte cells and a RAW264.7 macrophage cell co-culture system. A diet containing 0.1% Fx was fed to diabetic model KK-Ay mice for three weeks, then glucose tolerance was observed. Fx diet significantly improved glucose tolerance compared with the control diet group.  In in vitro studies, FxOH showed suppressed tumor necrosis factor-α (TNF-α, and monocyte chemotactic protein-1 (MCP-1 mRNA expression and protein levels in a co-culture of adipocyte and macrophage cells. These findings suggest that Fx ameliorates glucose tolerance in the diabetic model mice. Furthermore, FxOH, a metabolite of Fx, suppresses low-grade chronic inflammation in adipocyte cells.

  14. Deformability based sorting of red blood cells improves diagnostic sensitivity for malaria caused by Plasmodium falciparum.

    Science.gov (United States)

    Guo, Quan; Duffy, Simon P; Matthews, Kerryn; Deng, Xiaoyan; Santoso, Aline T; Islamzada, Emel; Ma, Hongshen

    2016-02-21

    The loss of red blood cell (RBC) deformability is part of the pathology of many diseases. In malaria caused by Plasmodium falciparum infection, metabolism of hemoglobin by the parasite results in progressive reduction in RBC deformability that is directly correlated with the growth and development of the parasite. The ability to sort RBCs based on deformability therefore provides a means to isolate pathological cells and to study biochemical events associated with disease progression. Existing methods have not been able to sort RBCs based on deformability or to effectively enrich for P. falciparum infected RBCs at clinically relevant concentrations. Here, we develop a method to sort RBCs based on deformability and demonstrate the ability to enrich the concentration of ring-stage P. falciparum infected RBCs (Pf-iRBCs) by >100× from clinically relevant parasitemia (asymmetrical constrictions using oscillatory flow. This mechanism provides dramatically improved selectivity over previous biophysical methods by preventing the accumulation of cells in the filter microstructure to ensure that consistent filtration forces are applied to each cell. We show that our approach dramatically improves the sensitivity of malaria diagnosis performed using both microscopy and rapid diagnostic test by converting samples with difficult-to-detect parasitemia (0.1%). PMID:26768227

  15. Fucoxanthinol, Metabolite of Fucoxanthin, Improves Obesity-Induced Inflammation in Adipocyte Cells.

    Science.gov (United States)

    Maeda, Hayato; Kanno, Shogo; Kodate, Mei; Hosokawa, Masashi; Miyashita, Kazuo

    2015-08-01

    Fucoxanthin (Fx) is a marine carotenoid found in edible brown seaweeds. We previously reported that dietary Fx metabolite into fucoxanthinol (FxOH), attenuates the weight gain of white adipose tissue of diabetic/obese KK-Ay mice. In this study, to evaluate anti-diabetic effects of Fx, we investigated improving the effect of insulin resistance on the diabetic model of KK-Ay mice. Furthermore, preventing the effect of FxOH on low-grade chronic inflammation related to oxidative stress was evaluated on 3T3-L1 adipocyte cells and a RAW264.7 macrophage cell co-culture system. A diet containing 0.1% Fx was fed to diabetic model KK-Ay mice for three weeks, then glucose tolerance was observed. Fx diet significantly improved glucose tolerance compared with the control diet group.  In in vitro studies, FxOH showed suppressed tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1) mRNA expression and protein levels in a co-culture of adipocyte and macrophage cells. These findings suggest that Fx ameliorates glucose tolerance in the diabetic model mice. Furthermore, FxOH, a metabolite of Fx, suppresses low-grade chronic inflammation in adipocyte cells. PMID:26248075

  16. Efficiency improvements by Metal Wrap Through technology for n-type Si solar cells and modules

    Energy Technology Data Exchange (ETDEWEB)

    Wenchao, Zhao; Jianming, Wang; Yanlong, Shen; Ziqian, Wang; Yingle, Chen; Shuquan, Tian; Zhiliang, Wan; Bo, Yu; Gaofei, Li; Zhiyan, Hu; Jingfeng, Xiong [Yingli Green Energy Holding Co., Ltd, 3399 North Chaoyang Avenue, Baoding (China); Guillevin, N.; Heurtault, B.; Aken, B.B. van; Bennett, I.J.; Geerligs, L.J.; Weeber, A.W.; Bultman, J.H. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    N-type Metal Wrap Through (n-MWT) is presented as an industrially promising back-contact technology to reach high performance of silicon solar cells and modules. It can combine benefits from both n-type base and MWT metallization. In this paper, the efficiency improvements of commercial industrial n-type bifacial Si solar cells (239 cm{sup 2}) and modules (60 cells) by the integration of the MWT technique are described. For the cell, after the optimization of integration, over 0.3% absolute efficiency gain was achieved over the similar non-MWT technology, and Voc gain and Isc gain up to 0.9% and 3.5%, respectively. These gains are mainly attributed to reduced shading loss and surface recombination. Besides the front pattern optimization, a 0.1m{Omega} reduction of Rs in via part will induce further 0.06% absolute efficiency improvement. For the module part, a power output of n-MWT module up to 279W was achieved, corresponding to a module efficiency of about 17.7%.

  17. Improvement of Electrical Properties of Silicon Quantum Dot Superlattice Solar Cells with Diffusion Barrier Layers

    Science.gov (United States)

    Yamada, Shigeru; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Konagai, Makoto

    2013-04-01

    We investigate the effects of a niobium-doped titanium dioxide (TiO2:Nb) diffusion barrier layer on the performance of silicon quantum dot superlattice (Si-QDSL) solar cells. The insertion of a 2-nm-thick TiO2:Nb layer significantly reduces phosphorus diffusion from a highly doped n-type layer into a Si-QDSL layer during thermal annealing at 900 °C. The phosphorous concentration in the Si-QDSL layer of the solar cell with the TiO2:Nb diffusion barrier layer was found to be less than 1018 cm-3, which is approximately two orders of magnitude lower than that of the solar cell without the diffusion barrier layer. The reduction in phosphorous concentration leads to the improvement of photo-generated carrier collection in the Si-QDSL layer. The short circuit current density of the solar cell with the diffusion barrier layer was dramatically improved to 1.6 mA/cm2 without the degradation of open circuit voltage and fill factor.

  18. Shortening and Improving the Embryonic Stem Cell Test through the Use of Gene Biomarkers of Differentiation

    Directory of Open Access Journals (Sweden)

    Andrea C. Romero

    2011-01-01

    Full Text Available The embryonic Stem cell Test (EST is a validated assay for testing embryotoxicity in vitro. The total duration of this protocol is 10 days, and its main end-point is based on histological determinations. It is suggested that improvements on EST must be focused toward molecular end-points and, if possible, to reduce the total assay duration. Five days of exposure of D3 cells in monolayers under spontaneous differentiation to 50 ng/mL of the strong embryotoxic 5-fluorouracil or to 75 μg/mL of the weak embryotoxic 5,5-diphenylhydeantoin caused between 20 and 74% of reductions in the expression of the following genes: Pnpla6, Afp, Hdac7, Vegfa, and Nes. The exposure to 1 mg/mL of nonembryotoxic saccharin only caused statistically significant reductions in the expression of Nes. These exposures reduced cell viability of D3 cells by 15, 28, and 34%. We applied these records to the mathematical discriminating function of the EST method to find that this approach is able to correctly predict the embryotoxicity of all three above-mentioned chemicals. Therefore, this work proposes the possibility of improve EST by reducing its total duration and by introducing gene expression as biomarker of differentiation, which might be very interesting for in vitro risk assessment embryotoxicity.

  19. Natural Killer Cells Improve Hematopoietic Stem Cell Engraftment by Increasing Stem Cell Clonogenicity In Vitro and in a Humanized Mouse Model.

    Science.gov (United States)

    Escobedo-Cousin, Michelle; Jackson, Nicola; Laza-Briviesca, Raquel; Ariza-McNaughton, Linda; Luevano, Martha; Derniame, Sophie; Querol, Sergio; Blundell, Michael; Thrasher, Adrian; Soria, Bernat; Cooper, Nichola; Bonnet, Dominique; Madrigal, Alejandro; Saudemont, Aurore

    2015-01-01

    Cord blood (CB) is increasingly used as a source of hematopoietic stem cells (HSC) for transplantation. Low incidence and severity of graft-versus-host disease (GvHD) and a robust graft-versus-leukemia (GvL) effect are observed following CB transplantation (CBT). However, its main disadvantages are a limited number of HSC per unit, delayed immune reconstitution and a higher incidence of infection. Unmanipulated grafts contain accessory cells that may facilitate HSC engraftment. Therefore, the effects of accessory cells, particularly natural killer (NK) cells, on human CB HSC (CBSC) functions were assessed in vitro and in vivo. CBSC cultured with autologous CB NK cells showed higher levels of CXCR4 expression, a higher migration index and a higher number of colony forming units (CFU) after short-term and long-term cultures. We found that CBSC secreted CXCL9 following interaction with CB NK cells. In addition, recombinant CXCL9 increased CBSC clonogenicity, recapitulating the effect observed of CB NK cells on CBSC. Moreover, the co-infusion of CBSC with CB NK cells led to a higher level of CBSC engraftment in NSG mouse model. The results presented in this work offer the basis for an alternative approach to enhance HSC engraftment that could improve the outcome of CBT. PMID:26465138

  20. Natural Killer Cells Improve Hematopoietic Stem Cell Engraftment by Increasing Stem Cell Clonogenicity In Vitro and in a Humanized Mouse Model.

    Directory of Open Access Journals (Sweden)

    Michelle Escobedo-Cousin

    Full Text Available Cord blood (CB is increasingly used as a source of hematopoietic stem cells (HSC for transplantation. Low incidence and severity of graft-versus-host disease (GvHD and a robust graft-versus-leukemia (GvL effect are observed following CB transplantation (CBT. However, its main disadvantages are a limited number of HSC per unit, delayed immune reconstitution and a higher incidence of infection. Unmanipulated grafts contain accessory cells that may facilitate HSC engraftment. Therefore, the effects of accessory cells, particularly natural killer (NK cells, on human CB HSC (CBSC functions were assessed in vitro and in vivo. CBSC cultured with autologous CB NK cells showed higher levels of CXCR4 expression, a higher migration index and a higher number of colony forming units (CFU after short-term and long-term cultures. We found that CBSC secreted CXCL9 following interaction with CB NK cells. In addition, recombinant CXCL9 increased CBSC clonogenicity, recapitulating the effect observed of CB NK cells on CBSC. Moreover, the co-infusion of CBSC with CB NK cells led to a higher level of CBSC engraftment in NSG mouse model. The results presented in this work offer the basis for an alternative approach to enhance HSC engraftment that could improve the outcome of CBT.

  1. Transthyretin Amyloidosis: Chaperone Concentration Changes and Increased Proteolysis in the Pathway to Disease.

    Directory of Open Access Journals (Sweden)

    Gonçalo da Costa

    Full Text Available Transthyretin amyloidosis is a conformational pathology characterized by the extracellular formation of amyloid deposits and the progressive impairment of the peripheral nervous system. Point mutations in this tetrameric plasma protein decrease its stability and are linked to disease onset and progression. Since non-mutated transthyretin also forms amyloid in systemic senile amyloidosis and some mutation bearers are asymptomatic throughout their lives, non-genetic factors must also be involved in transthyretin amyloidosis. We discovered, using a differential proteomics approach, that extracellular chaperones such as fibrinogen, clusterin, haptoglobin, alpha-1-anti-trypsin and 2-macroglobulin are overrepresented in transthyretin amyloidosis. Our data shows that a complex network of extracellular chaperones are over represented in human plasma and we speculate that they act synergistically to cope with amyloid prone proteins. Proteostasis may thus be as important as point mutations in transthyretin amyloidosis.

  2. 1.15 Å resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Chingakham R. [Kansas State University, 338 Ackert Hall, Manhattan, KS 66506 (United States); Lovell, Scott; Mehzabeen, Nurjahan [University of Kansas, Del Shankel Structural Biology Center, Lawrence, KS 66047 (United States); Chowdhury, Wasimul Q.; Geanes, Eric S. [Kansas State University, 338 Ackert Hall, Manhattan, KS 66506 (United States); Battaile, Kevin P. [IMCA-CAT Hauptman–Woodward Medical Research Institute, 9700 South Cass Avenue, Building 435A, Argonne, IL 60439 (United States); Roelofs, Jeroen, E-mail: jroelofs@ksu.edu [Kansas State University, 338 Ackert Hall, Manhattan, KS 66506 (United States)

    2014-03-25

    The proteasome-assembly chaperone Nas2 binds to the proteasome subunit Rpt5 using its PDZ domain. The structure of the Nas2 PDZ domain has been determined. The 26S proteasome is a 2.5 MDa protease dedicated to the degradation of ubiquitinated proteins in eukaryotes. The assembly of this complex containing 66 polypeptides is assisted by at least nine proteasome-specific chaperones. One of these, Nas2, binds to the proteasomal AAA-ATPase subunit Rpt5. The PDZ domain of Nas2 binds to the C-terminal tail of Rpt5; however, it does not require the C-terminus of Rpt5 for binding. Here, the 1.15 Å resolution structure of the PDZ domain of Nas2 is reported. This structure will provide a basis for further insights regarding the structure and function of Nas2 in proteasome assembly.

  3. Structure of the hypothetical Mycoplasma protein, MPN555, suggestsa chaperone function

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Gahmen, Ursula; Aono, Shelly; Chen, Shengfeng; Yokota,Hisao; Kim, Rosalind; Kim, Sung-Hou

    2005-06-15

    The crystal structure of the hypothetical protein MPN555from Mycoplasma pneumoniae (gi pbar 1673958) has been determined to a resolution of 2.8 Angstrom using anomalous diffraction data at the Sepeak wavelength. Structure determination revealed a mostly alpha-helical protein with a three-lobed shape. The three lobes or fingers delineate a central binding groove and additional grooves between lobes 1 and 3, and between lobes 2 and 3. For one of the molecules in the asymmetric unit,the central binding pocket was filled with a peptide from the uncleaved N-terminal affinity tag. The MPN555 structure has structural homology to two bacterial chaperone proteins, SurA and trigger factor from Escherichia coli. The structural data and the homology to other chaperone for MPN555.

  4. Structure of Glycerol Dehydratase Reactivase: A New Type of Molecular Chaperone

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Der-Ing; Reiss, Lisa; Turner, Jr., Ivan; Dotson, Garry (Dupont)

    2010-03-08

    The function of glycerol dehydratase (GDH) reactivase is to remove damaged coenzyme B{sub 12} from GDH that has suffered mechanism-based inactivation. The structure of GDH reactivase from Klebsiella pneumoniae was determined at 2.4 {angstrom} resolution by the single isomorphous replacement with anomalous signal (SIR/AS) method. Each tetramer contains two elongated 63 kDa {alpha} subunits and two globular 14 kDa {beta} subunits. The {alpha} subunit contains structural features resembling both GroEL and Hsp70 groups of chaperones, and it appears chaperone like in its interactions with ATP. The fold of the {beta} subunit resembles that of the {beta} subunit of glycerol dehydratase, except that it lacks some coenzyme B12 binding elements. A hypothesis for the reactivation mechanism of reactivase is proposed based on these structural features.

  5. The Role of System-Specific Molecular Chaperones in the Maturation of Molybdoenzymes in Bacteria

    Directory of Open Access Journals (Sweden)

    Meina Neumann

    2011-01-01

    Full Text Available Biogenesis of prokaryotic molybdoenzymes is a complex process with the final step representing the insertion of a matured molybdenum cofactor (Moco into a folded apoenzyme. Usually, specific chaperones of the XdhC family are required for the maturation of molybdoenzymes of the xanthine oxidase family in bacteria. Enzymes of the xanthine oxidase family are characterized to contain an equatorial sulfur ligand at the molybdenum center of Moco. This sulfur ligand is inserted into Moco while bound to the XdhC-like protein and before its insertion into the target enzyme. In addition, enzymes of the xanthine oxidase family bind either the molybdopterin (Mo-MPT form of Moco or the modified molybdopterin cytosine dinucleotide cofactor (MCD. In both cases, only the matured cofactor is inserted by a proofreading process of XdhC. The roles of these specific XdhC-like chaperones during the biogenesis of enzymes of the xanthine oxidase family in bacteria are described.

  6. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa

    Directory of Open Access Journals (Sweden)

    Jiménez-Zurdo José I

    2010-03-01

    identified S. meliloti sRNAs co-inmunoprecipitate with a FLAG-epitope tagged Hfq protein. Conclusions Our results support that the S. meliloti RNA chaperone Hfq contributes to the control of central metabolic pathways in free-living bacteria and influences rhizospheric competence, survival of the microsymbiont within the nodule cells and nitrogen fixation during the symbiotic interaction with its legume host alfalfa. The identified S. meliloti Hfq-binding sRNAs are predicted to participate in the Hfq regulatory network.

  7. Improving Energy Efficiency and Enabling Water Recycle in Biorefineries Using Bioelectrochemical Cells

    International Nuclear Information System (INIS)

    Improving biofuel yield and water reuse are two important issues in further development of biorefineries. The total energy content of liquid fuels (including ethanol and hydrocarbon) produced from cellulosic biomass via biochemical or hybrid bio-thermochemical routes can vary from 49% to 70% of the biomass entering the biorefinery, on an energy basis. Use of boiler for combustion of residual organics and lignin results in significant energy and water losses. An alternate process to improve energy recovery from the residual organic streams is via use of bioelectrochemical systems such as microbial fuel cells (MFCs) microbial electrolysis cells (MECs). The potential advantages of this alternative scheme in a biorefinery include minimization of heat loss and generation of a higher value product, hydrogen. The need for 5-15 gallons of water per gallon of ethanol can be reduced significantly via recycle of water after MEC treatment. Removal of inhibitory byproducts such as furans, phenolics and acetate in MFC/MECs to generate energy, thus, has dual advantages including improvements in energy efficiency and ability to recycle water. Conversion of the sugar- and lignin- degradation products to hydrogen is synergistic with biorefinery hydrogen requirements for upgrading F-T liquids and other byproducts to high-octane fuels and/or high value products. Some of these products include sorbitol, succinic acid, furan and levulinate derivatives, glycols, polyols, 1,4-butenadiol, phenolics polymers, etc. Potential process alternatives utilizing MECs in biorefineries capable of improving energy efficiency by up to 30% are discussed.

  8. Quantum dot loading in strong alkaline: improved performance in quantum-dot sensitized solar cells

    International Nuclear Information System (INIS)

    For the first time, we demonstrate that the conversion efficiency of CdTe quantum-dot sensitized solar cells could be effectively improved by using a strong alkaline environment during deposition of quantum dots (QDs) onto the TiO2 mesoporous electrode. Alkalis play three unique roles during the deposition: (i) decreasing the inter-particle electrostatic force between TiO2 nanoparticles and QDs to improve QD deposition; (ii) spontaneous formation of Cd(OH)2 during the deposition, which contributes to improvement of device efficiency; (iii) enhancing QD stability by hindering ligands' detachment from QD surface. With these advantages, improved QD loading onto a TiO2 photoanode has been achieved, from barely loading to dense, uniform QD loading with an optimized NaOH addition. Using this method, the overall efficiency of CdTe sensitized solar cell exceeds 2.1% when coupled with a Cu2S cathode—an almost 40% increase of efficiency compared with QDs deposited under a relatively low pH environment. (paper)

  9. Improving electricity production in tubular microbial fuel cells through optimizing the anolyte flow with spiral spacers.

    Science.gov (United States)

    Zhang, Fei; Ge, Zheng; Grimaud, Julien; Hurst, Jim; He, Zhen

    2013-04-01

    The use of spiral spacers to create a helical flow for improving electricity generation in microbial fuel cells (MFCs) was investigated in both laboratory and on-site tests. The lab tests found that the MFC with the spiral spacers produced more electricity than the one without the spiral spacers at different recirculation rates or organic loading rates, likely due to the improved transport/distribution of ions and electron mediators instead of the substrates because the organic removal efficiency was not obviously affected by the presence of the spiral spacers. The energy production in the MFC with the spiral spacers reached 0.071 or 0.073 kWh/kg COD in either vertical or horizontal installment. The examination of the MFCs installed in an aeration tank of a municipal wastewater treatment plant confirmed the advantage of using the spiral spacers. Those results demonstrate that spiral spacers could be an effective approach to improve energy production in MFCs. PMID:23500582

  10. Improved solid oxide fuel cell stacks: Power density, durability and modularity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lund Frandsen, H.; Kiebach, W.R.; Hoeegh, J. (Technical Univ. of Denmark. Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)

    2010-10-15

    This report presents the work performed within the project PSO2009-1-10207 during the period from 01-04-2009 - 31-06-2010. The report is divided into three parts covering the three work packages: Stack components; Stacks and durability; and Large SOFC systems: modularity and scalability. The project contains 38 milestones and all milestones in the project have been either fully or partly fulfilled. Two major achievements within this project concern the robustness towards dynamic operations and implementation of cells with more active cathodes: Within this project tools to evaluate and test SOFC stacks with respect to robustness during dynamic operations has been developed. From stack tests performed under dynamic conditions it was observed that the effect on degradation and failure seemed to be very little. The thermo-mechanical models developed in this project in combination with the dynamic stack model was used in combination to understand why. The results clearly showed that the hardest stress field applied to the cells arises from the steady state operating point rather than from the dynamic conditions. This is a very promising result concerning the fact that especially small CHP units in a commercial system will experience dynamic conditions from load cycling and thermal cycling. A new type of cell with a more active cathode has been formulated and introduced into the TOFC stacks in this project. The aim was to improve the effect of the stack by 25 %. However, compared to a standard stack with the ''old'' cells, the stack effect was increased by 44% - from a cross flow stack with standard 2G cells to a cross flow stack with 2.5G cells. The new type of cells also show an excellent stability towards moisture in the cathode feed, and a stack with 2.5G cells has been tested for 12.000 hrs with a degradation rate of 30 mOMEGAcm2/1000 hr. (Author)

  11. Modulation of the chaperone-like activity of bovine α-crystallin

    OpenAIRE

    Clark, John I.; Huang, Qing-ling

    1996-01-01

    The effects of pantethine, glutathione, and selected chemical reagents on the anti-aggregation activity of α-crystallin was evaluated. Protein aggregation was monitored by light scattering of solutions of denatured βL-crystallin or alcohol dehydrogenase (ADH). The ratios of βL-crystallin/α-crystallin and ADH/α-crystallin were adjusted so that partial inhibition of protein aggregation at 60°C or 37°C, respectively, was observed and modulation of the chaperone ac...

  12. Unique Photobleaching Phenomena of the Twin-Arginine Translocase Respiratory Enzyme Chaperone DmsD

    OpenAIRE

    Rivardo, Fabrizio; Leach, Thorin G.H.; Chan, Catherine S.; Winstone, Tara M. L.; Ladner, Carol L.; Sarfo, Kwabena J.; Turner, Raymond J.

    2014-01-01

    DmsD is a chaperone of the redox enzyme maturation protein family specifically required for biogenesis of DMSO reductase in Escherichia coli. It exists in multiple folding forms, all of which are capable of binding its known substrate, the twin-arginine leader sequence of the DmsA catalytic subunit. It is important for maturation of the reductase and targeting to the cytoplasmic membrane for translocation. Here, we demonstrate that DmsD exhibits an irreversible photobleaching phenomenon upon ...

  13. Distinct roles for histone chaperones in the deposition of Htz1 in chromatin

    Science.gov (United States)

    Liu, Hongde; Zhu, Min; Mu, Yawen; Liu, Lingjie; Li, Guanghui; Wan, Yakun

    2014-01-01

    Histone variant Htz1 substitution for H2A plays important roles in diverse DNA transactions. Histone chaperones Chz1 and Nap1 (nucleosome assembly protein 1) are important for the deposition Htz1 into nucleosomes. In literatures, it was suggested that Chz1 is a Htz1–H2B-specific chaperone, and it is relatively unstructured in solution but it becomes structured in complex with the Htz1–H2B histone dimer. Nap1 (nucleosome assembly protein 1) can bind (H3–H4)2 tetramers, H2A–H2B dimers and Htz1–H2B dimers. Nap1 can bind H2A–H2B dimer in the cytoplasm and shuttles the dimer into the nucleus. Moreover, Nap1 functions in nucleosome assembly by competitively interacting with non-nucleosomal histone–DNA. However, the exact roles of these chaperones in assembling Htz1-containing nucleosome remain largely unknown. In this paper, we revealed that Chz1 does not show a physical interaction with chromatin. In contrast, Nap1 binds exactly at the genomic DNA that contains Htz1. Nap1 and Htz1 show a preferential interaction with AG-rich DNA sequences. Deletion of chz1 results in a significantly decreased binding of Htz1 in chromatin, whereas deletion of nap1 dramatically increases the association of Htz1 with chromatin. Furthermore, genome-wide nucleosome-mapping analysis revealed that nucleosome occupancy for Htz1p-bound genes decreases upon deleting htz1 or chz1, suggesting that Htz1 is required for nucleosome structure at the specific genome loci. All together, these results define the distinct roles for histone chaperones Chz1 and Nap1 to regulate Htz1 incorporation into chromatin. PMID:25338502

  14. Pharmacological chaperones as a potential therapeutic option in methylmalonic aciduria cblB type

    OpenAIRE

    Jorge-Finnigan, Ana; Brasil, Sandra; Underhaug, Jarl; Ruíz-Sala, Pedro; Merinero, Begoña; Banerjee, Ruma; Desviat, Lourdes R; Ugarte, Magdalena; Martinez, Aurora; Pérez, Belén

    2013-01-01

    Methylmalonic aciduria (MMA) cblB type is caused by mutations in the MMAB gene. This encodes the enzyme ATP:cob(I)alamin adenosyltransferase (ATR), which converts reduced cob(I)alamin to an active adenosylcobalamin cofactor. We recently reported the presence of destabilizing pathogenic mutations that retain some residual ATR activity. The aim of the present study was to seek pharmacological chaperones as a tailored therapy for stabilizing the ATR protein. High-throughput ligand screening of o...

  15. Chaperone Hsp31 contributes to acid resistance in stationary-phase Escherichia coli.

    Science.gov (United States)

    Mujacic, Mirna; Baneyx, François

    2007-02-01

    Hsp31, the product of the sigmaS - and sigmaD -dependent hchA gene, is a heat-inducible chaperone implicated in the management of protein misfolding at high temperatures. We show here that Hsp31 plays an important role in the acid resistance of starved Escherichia coli but that it has little influence on oxidative-stress survival. PMID:17158627

  16. Histone Chaperone Asf1 Plays an Essential Role in Maintaining Genomic Stability in Fission Yeast

    OpenAIRE

    Tanae, Katsuhiro; Horiuchi, Tomitaka; Matsuo, Yuzy; Katayama, Satoshi; Kawamukai, Makoto

    2012-01-01

    The histone H3-H4 chaperone Asf1 is involved in chromatin assembly (or disassembly), histone exchange, regulation of transcription, and chromatin silencing in several organisms. To investigate the essential functions of Asf1 in Schizosaccharomyces pombe, asf1-ts mutants were constructed by random mutagenesis using PCR. One mutant (asf1-33(ts)) was mated with mutants in 77 different kinase genes to identify synthetic lethal combinations. The asf1-33 mutant required the DNA damage checkpoint fa...

  17. Evidence for a Functional Role of the Molecular Chaperone Clusterin in Amyloidotic Cardiomyopathy

    OpenAIRE

    Michael J Greene; Sam, Flora; Soo Hoo, Pamela T.; Patel, Rupesh S.; Seldin, David C.; Connors, Lawreen H.

    2011-01-01

    Molecular chaperones, including the extracellular protein clusterin (CLU), play a significant role in maintaining proteostasis; they have a unique capacity to bind and stabilize non-native protein conformations, prevent aggregation, and keep proteins in a soluble folding-competent state. In this study, we investigated amyloid-infiltrated cardiac tissue for the presence of CLU and measured serum levels of CLU in patients with and without amyloidotic cardiomyopathy (CMP). Cardiac tissues contai...

  18. Essential role of the molecular chaperone gp96 in regulating melanogenesis

    OpenAIRE

    Zhang, Yongliang; Helke, Kristi L.; Coelho, Sergio G.; Valencia, Julio C.; Hearing, Vincent J.; SUN, SHAOLI; Liu, Bei; Li, Zihai

    2013-01-01

    Through a process known as melanogenesis, melanocyte produces melanin in specialized organelles termed melanosomes, which regulates pigmentation of the skin, eyes and hair. Gp96 is a constitutively expressed heat shock protein in the endoplasmic reticulum whose expression is further up-regulated upon ultraviolet irradiation. However, the roles and mechanisms of this chaperone in pigmentation biology are unknown. In this study, we found that knockdown of gp96 by RNA interference significantly ...

  19. The Assembly and Intermolecular Properties of the Hsp70-Tomm34-Hsp90 Molecular Chaperone Complex

    Czech Academy of Sciences Publication Activity Database

    Trčka, F.; Durech, M.; Hernychová, L.; Man, Petr; Müller, P.; Vojtěšek, B.

    2014-01-01

    Roč. 289, č. 14 (2014), s. 9887-9901. ISSN 0021-9258 R&D Projects: GA ČR(CZ) P301/11/1678; GA MZd(CZ) 00209805 Grant ostatní: Regional Center for Applied Molecular Oncology (CZ) CZ.1.05/2.1.00/03.0101 Institutional support: RVO:61388971 Keywords : HSP90 * chaperone * protein assembly Subject RIV: EE - Microbiology, Virology Impact factor: 4.573, year: 2014

  20. Screening Molecular Chaperones Similar to Small Heat Shock Proteins in Schizosaccharomyces pombe

    OpenAIRE

    Han, Jiyoung; Kim, Kanghwa; Lee, Songmi

    2015-01-01

    To screen molecular chaperones similar to small heat shock proteins (sHsps), but without α-crystalline domain, heat-stable proteins from Schizosaccharomyces pombe were analyzed by 2-dimensional electrophoresis and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Sixteen proteins were identified, and four recombinant proteins, including cofilin, NTF2, pyridoxin biosynthesis protein (Snz1) and Wos2 that has an α-crystalline domain, were purified. Among these protein...